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Lp errors of ū and the convergence rates are obtained for each method.188

3.9 A grid convergence study by solving the 2-D linear advection equa-

tion, ∂tu + r∂xu + s∂xu = 0 where r = s =
1

2
, is performed. The

numerical solution at tend = 150 is compared to the exact solution,
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ABSTRACT

This dissertation presents a step towards high-order methods for continuum-transition

flows. In order to achieve maximum accuracy and efficiency for numerical methods

on a distorted mesh, it is desirable that both governing equations and correspond-

ing numerical methods are in some sense compact. We argue our preference for

a physical model described solely by first-order partial differential equations called

hyperbolic-relaxation equations, and, among various numerical methods, for the dis-

continuous Galerkin method. Hyperbolic-relaxation equations can be generated as

moments of the Boltzmann equation and can describe continuum-transition flows.

Two challenging properties of hyperbolic-relaxation equations are the presence

of a stiff source term, which drives the system towards equilibrium, and the ac-

companying change of eigenstructure. The first issue can be solved by an implicit

treatment of the source term. To cope with the second difficulty, we develop a

space-time discontinuous Galerkin method, based on Huynh’s “upwind moment

scheme.” It is called the DG(1)–Hancock method.

The DG(1)–Hancock method for one- and two-dimensional meshes is described,

and Fourier analyses for both linear advection and linear hyperbolic-relaxation equa-

tions are conducted. The analyses show that the DG(1)–Hancock method is not

only accurate but efficient in terms of turnaround time in comparison to other semi-

and fully discrete finite-volume and discontinuous Galerkin methods. Numerical

tests confirm the analyses, and also show the properties are preserved for nonlinear

xxii



equations; the efficiency is superior by an order of magnitude.

Subsequently, discontinuous Galerkin and finite-volume spatial discretizations

are applied to more practical equations, in particular, to the set of 10-moment equa-

tions, which are gas dynamics equations that include a full pressure/temperature

tensor among the flow variables. Results for flow around a micro-airfoil are com-

pared to experimental data and to solutions obtained with a Navier–Stokes code,

and with particle-based methods. While numerical solutions in the continuum

regime for both the 10-moment and Navier–Stokes equations are similar, clear differ-

ences are found in the continuum-transition regime, especially near the stagnation

point, where the Navier–Stokes code, even when implemented with wall-slip, over-

estimates the density.

xxiii



CHAPTER I

INTRODUCTION

1.1 Motivation

In the design process, engineers need the resultant performance of devices in-

stantaneously to optimize and finalize the design. This is necessary, especially in

industry, to shorten the design process. In general, one can conduct a theoretical or

experimental analysis to understand the physics and the sources of loss in desired

performance. A theoretical analysis is a strong method owing to its universality,

however, it can not be applied to real engineering problems because of the generally

simple assumptions made. Conversely, experimental analysis is case dependent, yet

it allows testing of a reasonably complex system. The drawbacks of the experiment

are that it is often expensive and time consuming, especially if a parameter study

is necessary to optimize a design.

To overcome the limitations of both theoretical and experimental analysis, the

approach of computational simulation was introduced. Originally the complement

of theoretical analysis, it is now been recognized as a third mode of science. In

this context, computational simulation is referred to as scientific computing, or

computational science. Figure 1.1 shows the relations among these three approaches;

each approach has its own strength and weakness.

1
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Theory: mathematics

× limited analytical solution

© universality, good insight

Experiment: observation

× scaling effect, danger

© no modeling, complex system

Scientific Computing: digital computing

× approximation, resolution

? cost

© complex system, good insight

phenomenon

insight

model confirmation

dataapproximate solution

× measurement problems, cost

Figure 1.1: Three pillars of the scientific method and their relations are shown. The
scientific computing approach is relatively new, complementing both theoretical and
experimental approaches.

In a computational simulation, complex mathematical descriptions of physics,

mainly by differential, integral, or integro-differential equations, are solved numeri-

cally by approximation methods, instead of by deducing an analytical ‘exact’ solu-

tion. Because the computational domain is discretized, the solution can be obtained

for a fairly complex geometry. However, since in this approach the original govern-

ing equations are approximated numerically, extra care is necessary to ensure that

an obtained numerical result is in some sense consistent with the original equations.

More precisely, one needs to know how much numerical error is introduced in the

approximated solution.

Thirty-five years ago, it had been thought that computational simulation would

be both cost- and time-effective compared to experiments; this may indeed be true

for a simulation on simple geometries, yet it is still arguable for real engineering sim-

ulations where geometries are complex. In these cases, numerical results obtained

by currently available solvers are highly dependent on the quality of computational
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grids. Expertise of grid generation is necessary to generate grids ‘smooth’ enough

to accommodate deficiencies of solvers. This process may result in a duration of a

few weeks or even a month to generate a computational grid.

It is now recognized that the experiment can never be neglected; it may serve,

for instance, to validate the design of a few final candidates based on numerical

simulations.

The generality, versatility, and manageable cost of computational simulation

have lead to its heavy use in the past three decades as an analysis tool to assist

engineers with design.

‘Efficiency’ is an important concept in computational simulation. Here, we ex-

clude the pre-process (grid generation) and post-process (visualization) from con-

sideration. Under this assumption, efficiency can be decomposed into two major

factors: speed, i.e., CPU time to complete the calculation up to a given evolution

time tend on a given grid, and the numerical accuracy of the resultant numerical

solution. Therefore, efficiency can be defined as:

the total CPU time needed to yield a given solution accuracy.

This is a useful index, especially when comparing methods with different orders

of convergence. Here, the order of convergence is defined in regard to the local

truncation error of the method. If

truncation error ∼ O(∆xr, ∆ts) , (1.1)

where ∆x and ∆t are the size of discretization intervals in space and time, the

method is said to be r-th order in space and s-th order in time. A low-order

method tends to be computationally less expensive, requiring less CPU time, than

a high-order method per computational grid or time step. However, it requires finer
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grids to reduce the truncation error to a desirable level. Thus, to achieve a pre-set

accuracy, the overall run-time of a low-order method might be longer than that

of a high-order method. This becomes more significant once a multidimensional

problem is considered. One caution we need to observe is that the order of accuracy

as defined about is not everything. Indeed, the actual truncation error is expressed

by

truncation error = C × (∆xr, ∆ts) + higher-order error, (1.2)

where C is the coefficient of the lowest-order numerical error. Thus, the magnitude

of the coefficient, C, is as important as the order of a numerical method. An

interesting discussion of this issue can be found in [LeV02, p. 150].

The efficiency index is based on the user’s point of view; if one wants to obtain

a numerical result within a particular error margin, then what method provides

the result in the shortest run-time? Here, the emphasis is not on the order of

convergence itself, but on efficiency, which indeed demonstrates how ‘good’ a method

is. Nevertheless, it has been observed that there is a high correlation between

efficiency and the order of convergence: a higher-order method tends to be more

efficient [VAKJ03, Bon99]. Besides the efficiency of a method in terms of turnaround

time, it is critical, as mentioned previously, to consider the method’s capability of

handling complex geometries. If a method is incapable of producing accurate results

on the mediocre-quality grids provided by grid-generation software packages, a vast

amount of time needs to be spent on improving the grid properties even before

starting a calculation.

In the aerospace engineering community, the compressible Navier–Stokes (NS)

equations have been adopted as the model equations to understand and analyze flow

phenomena theoretically. Due to the nonlinearity and complexity of the equations,
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analytical solutions are only available in special cases [Whi91]. This limitation of

theoretical analysis, and the advent of the modern digital computer have motivated

scientists and engineers to solve the NS equations numerically. As a result, numer-

ous methods have been proposed for almost half a century, and great successes have

been achieved. Nowadays, computational fluid dynamics (CFD) has become one of

the most important design tools for aerospace engineers besides wind-tunnel exper-

iments. Some historical perspectives of the development of CFD in the aerospace

community, and the current status, can be bound in [Jam01, Fuj05]. Unfortunately,

there is a general consensus in the community that CFD is mature/solved, and not

much space is left for the development of an innovative numerical method. This is

somewhat understandable: the currently available methods are fairly accurate and

robust in engineering applications, and if their efficiency is not sufficient, then one

can always utilize adaptive mesh refinement to increase resolution where needed, and

implement the multigrid methods or brute-force parallelization to reduce run-time.

The ceaseless advancement of computer architectures also discourages researchers

to invest their time in developing a new numerical method. Frankly, it becomes

more and more difficult and risky to devote one’s career to inventing a method

that would appeal to other researchers and engineers, but would force them to

rewrite their in-house Euler or Navier–Stokes codes. A further discussion regarding

the stagnation of method development in the ’90s, and some unsolved problems of

current methods are presented by Roe [Roe05a].

Even though the currently available methods provide reasonably accurate re-

sults, these methods are not necessary efficient. Also, it is well-known that, on

greatly distorted grids, these methods show at most second-order convergence in

space for practical applications. The demand of solving realistic/practical prob-
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lems translates into the use of unstructured grids, and efficient implementation on

parallel computers. The local-preconditioning [vLLR91, Tur99, RNK02] and multi-

grid-relaxation techniques [Jam91] have been developed to accelerate the conver-

gence to steady solutions; however, the benefits are still limited, and, furthermore,

applying these techniques to parallel computers is not trivial. Recently, a success

in computing steady Euler solutions with N unknowns in O(N) operations was

achieved [vLD99, NvL03]; for the Navier–Stokes equations such progress is still far

away [DvL03, KvLW05].

Because of the lack of efforts to develop new, efficient high-order methods, CFD

users have remained using classical methods, and heavily rely on parallel computing.

After a recession in method development lasting almost a decade, the need for

efficient and robust discretizations for high-fidelity CFD on unstructured grids has

become widely recognized in recent years [DH05, Wan07, Eka05]. In keeping with

this insight, we propose in this dissertation a combination of two approaches toward

efficient and robust schemes for advection-dominated flows on unstructured grids,

one at the partial-differential-equation (PDE) level and the other at the discretiza-

tion level. Specifically, we aim to develop a unified numerical method for simulating

continuum and transitional flow. This can be achieved by simultaneously taking

the following two approaches: the use of first-order PDEs and the use of compact

high-order discretizations. These will be highlighted in the next two sections.

1.2 First Approach: First-Order PDEs

The first approach is replacing everybody’s favorite Navier–Stokes equations by

a larger set of first-order hyperbolic-relaxation PDEs, which contains the NS equa-

tions. (N.B.: here ‘first-order’ refers to the order of the PDEs.) This is a rather
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radical approach. First-order hyperbolic-relaxation equations for transitional flow

can be derived by taking moments of the Boltzmann equation. From a numeri-

cal point of view, the loss of accuracy inherent in adopting the NS equations as

the model equations is linked to the second-order derivative modeling molecular

diffusion. The elliptic nature of this term yields global data dependence on the

discretized domain, and causes a loss of accuracy on nonsmooth adaptively-refined

grids. In comparison, a first-order PDE model offers many numerical advantages,

including the following:

1. it can replace global stiffness from diffusion terms with local stiffness from

source terms, and yield the best accuracy on nonsmooth, adaptively refined

grids [CP95];

2. it requires smaller discrete stencils, reducing communications in parallel pro-

cessing;

3. it has the form of the moment closures of the Boltzmann equation, where the

source term describes departure from local thermodynamic equilibrium.

The NS equations are only valid in the continuum-fluid regime where the macro-

scopic representation of the gas is sufficient. First-order PDEs may overcome this

physical limitation. The dimensionless number that indicates whether the contin-

uum assumption is valid or not, is the Knudsen number, denoted by Kn. The

Knudsen number is defined as the ration of molecular mean free path to character-

istic length scale, thus

Kn :=
molecular mean free path

characteristic length scale
=

λ

L
. (1.3)
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Introducing the Mach number, Ma, and the Reynolds number, Re, and using kinetic

theory, the Knudsen number is found to have the following relation to these [GeH99]:

Kn ∼ Ma

Re
. (1.4)

Hence, high Mach number or low Reynolds number lead to high Knudsen number,

resulting in a regime where the continuum assumption is no longer valid. For in-

stance, flow in or around micro-electro-mechanical systems (MEMS) or a reentry

vehicle are typically in the so-called transition regime; the flow is in between contin-

uum and free-molecular flow, with Knudsen numbers in the range 0.1 ≤ Kn ≤ 10.

In this regime the NS equations, even allowing for slip at a solid boundary, do not

describe the flow with sufficient accuracy. Table 1.1 summarizes the properties of

the simplest models available for a reliable description in different ranges of Knud-

sen numbers [AYB01]. Figure 1.2 is a schematic of physical regimes of hypersonic

flow. A typical Space Shuttle flight trajectory shows that a vehicle experiences

nonequilibrium flow in the large part of its flight path [Sal07].

As pointed out by Vincenti and Kruger, there may be a tendency to regard the

Boltzmann equation as the last mathematical model in the microscopic description

of gases, and its limitations are often overlooked [VK86, p. 333]. The limitations

of the Boltzmann equation become clear through its derivation from an even more

fundamental equation of motion, the Liouville equation. The Liouville equation is

a continuity equation, describing the time evolution of the N -particle distribution

function in a 6N -dimensional phase space; the Boltzmann equation deals only with

a single-particle distribution function. The Boltzmann equation can be derived from

the Liouville equation under the assumptions of binary (two-body) collisions and

molecular chaos (no correlation of initial velocities between two molecules before a
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Knudsen number Assumption Mathematical model

Kn → 0 continuum flow Euler equations
(no molecular diffusion)

Kn ≤ 10−3 continuum flow Navier–Stokes equations
(with molecular diffusion) (no-slip B.C.)

10−3 ≤ Kn ≤ 10−1 continuum-transition regime Navier–Stokes equations
(1st-order slip B.C.)

moment equations

Burnett equations
(1st-order slip B.C.)

10−1 ≤ Kn ≤ 10 transition regime moment equations

Burnett equations
(2nd-order slip B.C.)

Kn ≫ 10 free-molecular flow Vlasov equation
(collisionless Boltzmann equation)

Table 1.1: Simplest mathematical model needed in different flow regimes categorized
by the Knudsen number. The full Boltzmann equation (including collisions) is the
most complete model among these models and valid in all Knudsen regimes.

collision). Similarly to Table 1.1, relations among yet other mathematical models are

shown in Table 1.2. The arrows indicate the direction of derivations; also indicated

are the necessary assumptions.

If binary collision and molecular chaos are valid assumptions, then the Boltz-

mann equation is the most competent and complete model equation since it de-

scribes microscopic/particle physics. However, it is an integro-differential equation,

for which it is even more cumbersome to obtain analytical solutions than for the

NS equations. Its numerical approximation is not an easy task either, because a

seven-dimensional phase space must be discretized. Nevertheless, some progress

has been presented recently for the direct discretization of the Boltzmann equa-

tion [Ari01, KAA+07, Tch06, Mor06].
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Mathematical model Solution method

molecular dynamics

Monte Carlo methods

direct solution

direct solution

direct solution

direct solution

direct solution

Monte Carlo
direct simulation

deterministic molecular Newton’s Law

probabilistic molecular Liouville equation

Boltzmann equation

hydrodynamic continuum extended hydrodynamics

Navier–Stokes–Fourier equations

Euler equations

moment equations Burnett, super-Burnett
equations

f = ma

F(xi, vi, t), i ∈ [1, Np]

F(x, v, t)

∂tU + ∇ · F = ∇ · (D∇U)

∂tU + ∇ · F = 0

molecular chaos

thermodynamics

local equilibrium

Chapman–Enskogmethod of
moments

Viewpoint of description

expansion

small deviation
from LTE

binary collisions

irrotational

nonlinear potential equation

small dusturbance

transonic small-disturbance equation

linearize

Prandtl–Glauert equation
(1 −M2

∞)φxx + φyy + φzz = 0

incompressible

Laplace equation: ∆φ = 0

incompressible

direct solution

(′′)

(′′)

(′′)

Table 1.2: The various mathematical models describing the motion of gases, and
their relations among each other. The hierarchical assumptions lead from the Li-
ouville equation, through the Euler equations, to the Laplace equation [Myo01,
OOC98, Jam04].



12

To circumvent the numerical and mathematical adversities of the Boltzmann

equation, mainly two approaches have been proposed: the direct-simulation Monte

Carlo (DSMC) method [Bir63, Bir94] and extended-hydrodynamics (generalized

hydrodynamics) methods [CC70, Str05, MR98, Eu92].

The DSMC method, a particle-based method, introduces computational parti-

cles representing the bulk of actual molecules to model the translational and colli-

sional phenomena. Thus, this method does not literally solve the Liouville/Boltzmann

equation numerically, yet under the assumption of molecular chaos and binary col-

lisions, it has been proved that the DSMC method converges to the solution of

the Boltzmann equation as the number of particles tends to infinity [Wag92]. The

method is extremely accurate, especially in the high Knudsen regime. The DSMC

method is required for the highest Knudsen numbers, i.e., rarefied flow, however, in

the transition regime there is competition with extended-hydrodynamics methods.

The DSMC method produces statistical scatter in the solutions, and it requires a

cell size of the order of the molecular mean free path. These properties lead to a

computational penalty, especially in the transition (low Knudsen number) regime.

Conversely, the extended-hydrodynamics methods are PDE-based, thus they do not

have such statistical issues.

Extended-hydrodynamics methods assume the shape of the velocity-distribution

function (VDF) in the Boltzmann equation, then transform from the microscopic to

the macroscopic representation through taking moments over the velocity spaces.

Reducing the dimension of the equation by defining macroscopic quantities pro-

vides the mathematical simplicity and computational efficiency. Actually, there are

two essential approaches to deriving macroscopic governing equations: the Chap-

man–Enskog expansion and Grad’s method of moments.
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The Chapman–Enskog expansion adopts a perturbed Maxwellian distribution

function, then the macroscopic variables are expanded with respect to the Knudsen

number as the small parameter. The advantage of the Chapman–Enskog expan-

sion is that the number of state variables stays the same as in the NS equations,

i.e., (ρ, ρu, ρE) for the conserved quantities. However, higher-order derivatives are

introduced to describe the non-equilibrium phenomena. The resulting equations

are called the Burnett [Bur36, CC70] and super-Burnett equations [WC48, Foc73,

Sha93] corresponding to the second- and third-order expansion with respect to the

Knudsen number. The Burnett equations, for instance, contain third-order deriva-

tives; these undesirable higher-order terms cause discretization issues on a nons-

mooth grid. Furthermore, the Burnett and super-Burnett equations are known to be

linearly unstable [Bob82, UVGC00]. In the augmented Burnett equations [ZMC93],

some super-Burnett terms are added to stabilize the equations. Another direction

is simplifying the collision integral via the Bhatnagar–Gross–Krook (BGK) model;

the resulting system is called the BGK–Burnett equations [AYB01, Bal04]. Despite

the efforts to improve the original Burnett equations, the higher-order terms re-

main highly undesirable with regard to discretization on nonsmooth grids. For this

reason, we have eliminated the choice of the Burnett equations or the extended-

hydrodynamics equations derived by the Chapman–Enskog expansion as the gov-

erning equations.

Grad’s method of moments utilizes a distribution function in a Hilbert space,

and takes moments over the phase space [Gra49]. The resulting equations are called

‘moment equations.’ The advantage of Grad’s method of moments is that the re-

sulting equations contain only first-order derivatives. However, now the number of

state variables, hence the number of governing equations, is increased. This would
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seem to be a computational penalty, but these quantities actually have their ben-

efits. For instance, the heat fluxes, which form a vector in the NS equations, now

fill up a tensor, and evolution equations for these higher-order quantities exist and

are coupled to the mass and momentum equations. Similarly, all elements of the

shear stress tensor have their own evolution equation. In comparison, the NS equa-

tions employ algebraic constitutive laws for stress (Stokes) and heat flux (Fourier);

these quantities are proportional to the gradients of velocity and temperature, re-

spectively. Having the stress and heat-flux tensors evolve together with the other

conserved quantities makes one expect to obtain a more accurate prediction of these

physical quantities. Combining the representation of non-equilibrium gas dynamics

with our vision of numerical efficiency, the Grad-type method of moments appears

the most suitable approach to constructing the governing equations from the Boltz-

mann equation. Recall that describing physics solely by first derivatives is the key

to developing efficient, highly parallelizable schemes on nonsmooth grids.

Despite the promising properties of the moment equations, the level of maturity

of this approach is far from affording it to replace or complement the NS equations

and the DSMC method. Mainly, two obstacles need to be overcome to make the

approach applicable to a practical engineering problem; again one is at the PDE

level, and the other is at the discretization level.

The first issue is that, particularly for steady supersonic flow, the moment equa-

tions produce a discontinuity inside a smooth shock structure [Gra52, Hol64]. This

is due to the nature of hyperbolic equations, which allow the physical quantities

to propagate only at finite characteristic speeds. In reality, owing to the signifi-

cant effect of molecular diffusion, a smooth shock profile connects the upstream and

downstream states. This smooth profile is not realized by the moment equations
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once a flow is above a critical Mach number. For Grad’s 13-moment equations, the

critical Mach number is approximately 1.65. Some improvements in the model have

been shown to increase the critical Mach number, e.g., by taking further higher-

moment equations [Wei95], or introducing second-order dissipation terms in the

system [TS04]. Even though making the moment approach more suitable for su-

per/hypersonic flow is a critical issue, the derivation of a new set of equations is

beyond the scope of this study. Here, we will only adopt the robust and physically

reasonable ‘10-moment equations’ [Lev96, Bro96] as a representative set of model

equations.

The second issue is the lack of an efficient numerical method. The moment equa-

tions have the form of hyperbolic equations with a relaxation source term. Since the

source term is parameterized by the ‘relaxation time’, which is of the order of the

mean collision time, any standard explicit method has a severe time-step restriction

with regard to both stability and accuracy, especially if one is only interested in

evolution at the macroscopic temporal and spatial scale. A standard implicit treat-

ment for the source term overcomes the stability restriction; however, taking the

large time step does not necessary guarantee the accuracy of solutions. This study

mainly focuses on this issue, i.e., the development of efficient and accurate methods

for hyperbolic-relaxation equations with stiff relaxation source terms.

1.3 Second Approach: Compact High-Order Method

The second approach is to adopt a high-order discretization method that can

preserve compactness in both space and time. Here, a compact method refers to

one satisfying the following property:

the update to a given cell should only be a function of the tn-solutions
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of the cell itself, and its immediate neighbors [Low96, p. 4].

Since the methodologies to achieve high-order convergence in space and in time

differ considerably, a discretization method in space is discussed first.

1.3.1 Spatial Discretization

In a standard finite-volume method (FVM), solutions are defined as cell-averaged

quantities over the computational domain, and the higher-order accuracy in space

relies on local piecewise-polynomial reconstruction, which requires extended stencils.

Representative of the great successes achieved by higher-order FVMs are MUSCL1

(second-order in space) by Van Leer [vL79] and PPM2 (third-order in space) by

Colella and Woodward [CW84]. Later, the k-exact reconstruction was proposed by

Barth and Jespersen [BJ89]. Among these reconstruction methods, where recon-

struction stencils are fixed, a total-variation-diminishing (TVD) limiter is necessary

to ensure solution monotonicity near a discontinuity. Two defects of this approach

are the clipping of local extrema and the difficulty of extending the TVD philoso-

phy to multiple dimensions. (For a multidimensional solutions, sensing monotonic-

ity by the total variation is unsuited.) In practice, limiting is done dimension by

dimension using a one-dimensional TVD condition. The clipping of extrema can

be avoided by replacing the TVD condition by the total-variation-bounded (TVB)

condition [Shu87, CS89].

To overcome the difficulty of extending the TVD principle to multidimensional

problems, Harten et al. proposed the Essentially Non-Oscillatory (ENO) scheme,

which is TVB and retains high-order accuracy in smooth regions [HOEC86, HO87,

1The acronym for Monotone Upstream-centered Scheme for Conservation Laws.

2The acronym for Piecewise Parabolic Method.



17

HEOC87]. In brief, an ENO scheme uses adaptive stencils in order to choose the

stencil on which the solution is smoothest; this way the reconstructed polynomial

never spans a discontinuity. However, choosing the best stencil may vary erratically,

causing anomalies in the reconstructed solution. Later, a more robust reconstruction

process, based on a convex combination of interpolants on all possible stencils,

called weighted ENO (WENO) was proposed by Liu et al. [LOC94], and Jiang and

Shu [JS96]. The extension of the WENO scheme to nonsmooth grids was proposed

by Friedrichs [Fri98], and Hu and Shu [HS99]. These reconstruction techniques have

allowed higher-order spatial discretization in the finite volume framework; however,

an issue is that the higher a method’s order, the larger the reconstruction stencils

are. For instance, stencils for the quadratic reconstruction (for third-order accuracy)

on tetrahedral grids require 50 to 70 cells [DL99].

The discontinuous Galerkin (DG) method overcomes the issue of growing stencils

by increasing a solution representation in each element; a solution in a cell/element

is no longer piecewise constant, but polynomial of degree k. Obviously, when

k = 0, a DG method is equivalent to a first-order finite volume method. A DG

method was first introduced by Reed and Hill at Los Alamos National Laboratory

to solve the steady linear neutron transport equation [RH73]. Soon after, LaSaint

and Raviart presented error analyses, and showed that a DG(k) method for a steady

one-dimensional problem is of order 2k+1, and for a two-dimensional problem with

strictly rectangular elements it is of order k + 1 [LR74]. The analysis was later

extended to general triangular elements by Johnson and Pitkäranta, who showed

that the formal order of accuracy of DG(k) is k +
1

2
[JP86, Joh87]. The result was

confirmed numerically by Peterson [Pet91]. For a comprehensive literature review of

almost three decades of DG research, see Cockburn and Shu [CS01], and Zienkiewicz
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et al. [ZTSP03]. Surprisingly, attention to DG methods in the aerospace commu-

nity came quite recently. Part of the reason was the robustness of second-order

finite-volume methods, and the advent of massively parallel computers in the early

’90s. These circumstances made CFD practitioners and code developers complacent.

Besides the DG spatial discretization, there are other methods that also pre-

serve the compactness while achieving high-order convergence in space on nons-

mooth grids, in particular, the spectral difference (SD) [LVW06] and spectral vol-

ume (SV) [Wan02] methods. A comparisons between the SV and DG methods was

presented in [ZS05, SW04]. The authors conclude that the DG method is more

accurate but requires more memory and has a more restrictive stability condition

than the SV method. Shu also compared high-order finite-difference, finite volume

WENO, and DG methods [Shu03]. He concludes that DG methods are the most

flexible in terms of arbitrary triangulation and boundary conditions, but the de-

velopment of more robust and high-order-preserving limiters is necessary. In this

thesis, we purposely exclude high-order finite-difference methods and spectral meth-

ods, as their applicability is limited to structured grids. Among the exceptions is

the spectral method developed by Kopriva, which can be applied to unstructured

quadrilateral staggered grids. Carpenter and Gottlieb also extended spectral meth-

ods to unstructured grids [CG96].

Another class of high-order methods called the spectral element method, origi-

nally developed by Patera [Pat84], uses high-order polynomials to achieve spectral-

like convergence. The further development of the spectral element method in the

context of a DG method was done by Karniadakis and Sherwin [KS05].

Related to the Galerkin formulation, Hermitian methods achieve high-order ac-

curacy by defining not only solutions at nodes, but their derivatives at the same
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points. This type of element is called a Hermitian element, compared to the La-

grangean elements, which define only the solution itself, but at multiple places

in an element. Since the method adopts the Hermitian polynomials for the solu-

tion approximation, we could consider the Hermitian methods a Galerkin method,

yet it does not utilize the weighted-residual formulation completely. Due to the

continuity requirement of a certain order at each node, the method is currently

restricted to linear equations, and a main drawback is that Hermitian methods

are non-conservative [Roe05b, pp. 240–244]. Recent developments and applica-

tions of Hermitian methods to computational acoustics are presented by Capdev-

ille [Cap05, Cap06, Cap07].

1.3.2 Temporal Discretization

So far, only spatial discretization has been discussed. As to the temporal dis-

cretization, the semi-discrete method is currently the most successful approach. A

semi-discrete method incorporating the method-of-lines (MOL) [Sch91] decomposes

the spatial and temporal discretizations. This simplifies the development/formulation

of a method and its coding significantly. Once the spatial discretization is con-

structed, one’s favorite ODE solver can be employed for the time discretization.

Details of methods for ODE’s can be found in [Lam91, HNW93, HW96]. For

hyperbolic conservation laws, a TVD Runge–Kutta ODE solver is the common

choice [SO88]. More recently it is referred to as the strong stability-preserving (SSP)

method [GST01]. The methods are one-step multi-stage and assure nonlinear tem-

poral stability. One of the drawbacks of the semi-discrete approach is that the sta-

bility condition becomes increasingly restrictive as the spatial discretization method

goes higher-order. This has been observed for the DG method [CS01, p. 191] and
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the SV method [Wan02, p. 249]. Increasing the order of the RK solver slightly re-

laxes the stability restriction; however, this introduces extra function evaluations,

making the method more expensive. Another defect of RK methods is that, if the

fifth or higher order in time is desired, the required number of stages is greater than

the order of a method; this is called the Butcher barrier [Lan98, p. 182].

Another class of ODE solvers are multi-step methods: Adams–Bashforth, Adams–

Moulton, and the backward-difference formula (BDF) et al.. A multi-step method

achieves high-order accuracy by utilizing the prior solutions, whereas a multi-stage

method does it by adding function evaluations. Thus, a multi-step method is gen-

erally less expensive, but more memory is required to store the prior solutions. Fur-

thermore, the size of the time-step is more restricted due to the data-dependence

over multiple times.

1.3.3 Space-Time Discretization

To overcome the stability restriction and lesser efficiency of the semi-discrete

MOL approach, the fully discrete method is considered. In this approach, spa-

tial and temporal operators are discretized in similar manner. The classical one

is the Lax–Wendroff method, second-order in both space and time [LW64]. The

method takes advantage of the original PDEs, replacing the temporal derivative

by spatial derivatives. To our knowledge, the first attempt to include a DG spa-

tial discretization in the space-time approach was done by Bar-Yoseph [BY89], and

Bar-Yoseph and Elata [BYE90]. They apply the space-time DG method to the

1-D Euler equations. Due to their choice of space-time mesh, their method is fully

implicit. Choe and Holsapple combine the idea of the temporal Taylor–Galerkin

method, which is a finite-element extension of the Lax–Wendroff idea, with the
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discontinuous Galerkin method in space (they denote this as TG–DFEM: Tay-

lor–Galerkin discontinuous finite-element method). The resulting method is one

step, explicit second-order in both space and time, and stable up to a Courant

number of 0.4. The method is applied to 1-D scalar linear and nonlinear equations.

Later, Lowrie et al. develop an explicit space-time DG method, and present a super-

convergence result, O(2k + 1) convergence, in both Fourier analyses and numerical

tests [LRvL95, Low96, LRvL98]. However, the resulting method for 2-D problems

requires staggered grids, and could suffer from substantial numerical dissipation.

More recently, the idea of high-order space-time discretizations has returned to

the finite volume framework. Toro et al. developed an arbitrarily high order (ADER)

method: a one step method with modified generalized Riemann problems solved at

each cell interface [TMN01]. Later, Dumbser et al. applied the ADER approach to

the DG framework [DM05, QDS05]. Again, the method is one step, requiring the

same memory space as the forward-Euler time integration. The results show that

their DG–ADER or DG–LW method is more efficient than a DG–RK method due

to the reduced usage of a limiter at intermediate stages. However, a Fourier analysis

shows that these fully discrete methods still have a similar stability restriction as

DG–RK methods [DM06, p. 224][QDS05, p. 4533].

The approach by Van der Vegt and Van der Ven is more direct; they treat

space and time variables in the same manner, and construct a four-dimensional

discontinuous functional space to represent solutions. They denote this approach as

the space-time discontinuous Galerkin method [vdVvdV02, KvdVvdV06]. Unlike

semi-discrete methods, the method is inherently implicit, and pseudo-time stepping

is introduced to solve the implicit equations in each time interval.

Our approach is also to develop a method with complete coupling, thus discretiz-
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ing in both space and time simultaneously. Yet, the current method still stays in

between semi-discrete and fully discrete methods since trial (basis) functions for the

solution representation solely depend on space, not on time. The method proposed

here is based on the ‘upwind moment scheme’ recently developed by Huynh for

hyperbolic conservation laws [Huy06a], and based in turn on Van Leer’s Scheme III

in [vL77, p. 281]. The solution representation is only piecewise linear. The two key

characteristics of this method are:

1. cell variables are updated over a half time step without any interactions with

neighboring cells (Hancock’s observation [vAvLR82]);

2. the gradient of each flow variable evolves by an independent equation (DG

representation).

The story behind the invention of Hancock’s scheme and its relation to MUSCL

and PPM are described in [vL06, Hol96]. The resulting scheme looks promising in

comparison to the popular MOL approach. The upwind moment scheme is a fully

discrete, one-step method with one intermediate update step needed for computing

the volume integral of the fluxes. It requires solving a Riemann problem twice at

each cell interface but achieves third-order accuracy in space and time.

In this thesis, the upwind moment method, originally developed for hyperbolic

conservation laws, is extended to hyperbolic-relaxation equations. Here, we will call

the method in a more generic manner, ‘DG(k)–Hancock method.’ The method pre-

serves compactness through a DG spatial discretization, and attains a high efficiency

by the Hancock discretization in time interlaced by a Gauss–Radau quadrature for

the source term.
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1.4 Current State of Hyperbolic–Relaxation Equations

1.4.1 Mathematical Background

Our target equations, the moment equations, have the form of hyperbolic-

relaxation equations. More precisely, these are systems of hyperbolic equations

with stiff relaxation source terms such that

∂tu(x, t) + ∇ · f(u) =
1

ǫ
s(u); x ∈ Ω, t > 0, (1.5)

where u, s ∈ Rm, f ∈ Rm×3, and ǫ > 0 is the relaxation time. In the above equations

there exist two time scales: one is the advective time scale denoted by T and the

other is the relaxation time ǫ. We need to keep in mind that these two time scales

are genuinely disparate. Also, the above form is somewhat more restrictive than

the general form of hyperbolic equations with stiff source terms. For instance,

advection-reaction equations have the same form as the above equations, but the

source term is not the relaxation source term. In this case, the system possesses

multiple equilibrium states, whereas the stiff relaxation source term always leads the

system to the unique equilibrium state. Here, we only consider such stiff-relaxation

source terms.

Let a be the characteristic wave speed, hence of the order of the eigenvalues of

the flux Jacobian ∂fn/∂u, and L be the characteristic length, then we have

T =
L

a
. (1.6)

The behavior of hyperbolic-relaxation equations dramatically changes as the ratio of

two time scales (stiffness parameter),
T

ǫ
, changes; the stiffness parameter is inversely

proportional to the Knudsen number. When the advection is dominant, and the

relaxation towards the equilibrium state is slow, hence T ≪ ǫ, then the systems is
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called to be in the frozen limit. In this case, the original equations become pure

advection equations,

∂tu(x, t) + ∇ · f(u) = 0, (1.7)

which correspond to the collisionless Boltzmann equation. When wave propagation

and relaxation processes are equally important, hence T ∼ ǫ, then the state is in the

transition regime. See Table 1.1 on page 10 for the corresponding Knudsen range.

When the source-term effect dominates that of the wave propagation, T ≫ ǫ,

the system is said to be in the near-equilibrium limit. In such a regime, the original

hyperbolic-relaxation equations reduce to a system of n < m second-order equations

∂tU + ∇ · F(U) = ∇ · (D(U)∇U), (1.8)

where U ∈ Rn,F ∈ Rn×3, and D ∈ Rn×n is a tensor of diffusion coefficients, with

eigenvalues proportional to ǫ. This reduced system is derived through a Chap-

man–Enskog expansion [CLL94, Liu87], and the corresponding physical equations

are the Navier–Stokes equations. Subsequently, when ǫ → 0, the system reaches the

equilibrium limit:

∂tU + ∇ · F(U) = 0, (1.9)

and this is the form of the Euler equations. In the context of gas kinetics, the

equilibrium limit means that wherever a velocity distribution function is away from

the equilibrium (Maxwellian) distribution, the source term drives the state to the

local thermodynamic equilibrium instantaneously.

When we consider a numerical method to solve the hyperbolic-relaxation equa-

tions (1.5) in the near-equilibrium or equilibrium limit, a common explicit integra-

tion in time will result in the following restrictive time step:

∆t ∼ ǫ. (1.10)
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In contrast, a typical explicit method for the Euler equations (1.9) leads to the time

step:

∆t ∼ ∆x

a
≫ ǫ, (1.11)

where ∆x is the typical size of a computational cell. Hence, one might expect that

even though we solve the hyperbolic-relaxation equations (1.5), in the equilibrium

limit, we could construct a method with a time step ∆t ∝ ∆x. This means that

a method does not need to resolve the fast relaxation process described by the

source term, yet provides the correct equilibrium limit numerically. In general, this

property is called underresolved or asymptotic preserving. A similar argument can

be made for the Navier–Stokes equations, but the well-known restriction due to the

explicit treatment of the diffusion term leads to ∆t ∝ ∆x2. If the diffusion term is

treated implicitly, then we recover the advective time-step constraint: ∆t ∝ ∆x.

In order to develop such a method, there are two numerical issues to overcome:

maintaining stability in the stiff (near-equilibrium/equilibrium) regime, and ob-

taining the accurate reduced system numerically. The stability issue can be solved

quite easily; implicit treatment of the source terms, particularly an L-stable method,

guaranties the unconditional stability even in the stiff regime. However, a stable

numerical method for hyperbolic-relaxation equations does not always ensure that

the method simultaneously reduces to a consistent discretization of the reduced

equations. This is simply because the method does not know anything about the

reduced equations. As shown by Hittinger [Hit00], and Hittinger and Roe [HR04],

the resulting equilibrium flux F(U) is the resultant of tight coupling between the

frozen flux f(u) and the relaxation source term s(u). This becomes more clear when

the following 1-D linear hyperbolic-relaxation equations,

∂tu + A∂xu = Qu, (1.12)
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are considered. By introducing new variables w such that u = eQ tw, they show

that the resulting finite-volume method has the form [HR99, RH01]:

ūn+1
j = eQ∆tūn

j − 1

∆x

tn+1∫

tn

eQ(tn+1−t)
(
fj+1/2(t) − fj−1/2(t)

)
dt. (1.13)

The above equations show that when the relaxation is fast, thus Q is large, cell-

interface fluxes are a combination of the frozen flux and exponential damping.

Hence, separating the flux and source evaluations as with operator splitting fails

to capture the coupling, and results in a reduction of the order of accuracy due to

excessive numerical dissipation [LMM87, LM89, Pem93b, JL96, AR97].

The above formulation also reveals that a straightforward frozen Riemann solver

based on f(u) becomes inadequate in the near-equilibrium/equilibrium limit, where

a Riemann flux should be constructed based on the equilibrium flux F(u). Using a

‘frozen’ Riemann solver even in the near-equilibrium limit means that the numer-

ical method tries to push the system back to the frozen limit; this is completely

opposite to how the source term acts in the system. There are basically two ap-

proaches to achieve the coupling. The first approach, the ideal one but definitely

uphill, is constructing a Riemann solver with built-in source-term effect. In this

way, the eigenstructure of the Riemann solver automatically adapts from frozen to

equilibrium limit based on the parameter
∆t

ǫ
. Substantial work along this path has

been conducted by Pember [Pem93b, Pem93a] and Hittinger [Hit00].

The second approach is more straightforward. It was shown that the simple

operator splitting results in reducing the order of accuracy, due to insufficient cou-

pling. But we can introduce more coupling, for instance, by adding extra stages in

method-of-lines. Recently, Pareschi and Russo extended implicit-explicit (IMEX)

Runge–Kutta methods, originally developed by Ascher et al. for advection-diffusion
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equations [ARW95, ARS97], to hyperbolic-relaxation equations [PR05]. The IMEX

Runge–Kutta methods together with the WENO spatial reconstruction result in

second- and third-order methods, and a numerical test confirms analyses.

Our approach based on a compact high-order method stays in between the above

two approaches. Due to the usage of a frozen Riemann solver, this approach does

not solve the fundamental issue described previously. However, it is well-known

that, as a method becomes higher-order, the choice of Riemann solver becomes less

important to accuracy; in this way, we circumvent the lack of an ideal Riemann

solver in the near-equilibrium/equilibrium limit by adopting a high-order method

with enough coupling between the frozen flux and the sources. A high-order method

also prevents the physical dissipation to be smeared by the numerical dissipation

on unresolved coarse grids.

In this section, we have briefly overviewed the properties of hyperbolic-relaxation

equations. The more detail mathematical descriptions and proofs can be found in

the review paper by Natalini [Nat98] and references therein. A concise description

is also provided in [LeV02, pp. 410–415].

1.4.2 Previous Work

In [HSvL05], various numerical methods for hyperbolic-relaxation equations are

categorized into the following four types:

• semi-discrete method [LMM87, LM89, JL96, LM99b, CJR97, PR05],

• characteristic method [AR97, AR98, Par98],

• central-difference finite-volume method [BS97, LRR00],

• modified coupled-space-time Godunov method [Pem93b, Hit00].
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Recently, Lowrie and Morel developed the DG(1) spatial discretization method

together with an implicit time integrator for linear hyperbolic-relaxation equa-

tions [LM99b, LM99a, LM02]. Based on Fourier analyses and numerical tests, they

show that the DG(1) method is asymptotic preserving in their diffusion scaling.

Hence, second-order accuracy is uniformly achieved without damaged by the nu-

merical dissipation even though the relaxation process is not resolved at all. Their

promising results interested us in the potential use of DG methods for discretizing

first-order systems for compressible, viscous flow. However, the application of their

results to our problem must be done with care because their choices of scaling and

limit-taking are not the same as ours. A detailed discussion is formed in [HSvL05],

while further investigation for fully discrete methods based on Fourier analyses and

numerical tests are presented in this thesis in Chapter IV.

1.5 Outline of Thesis

This thesis is organized as follows. In Chapter 2, at first the DG(1)–Hancock

method for systems of one-dimensional hyperbolic-relaxation equations is described.

The detailed mathematical finite-element formulations are omitted for simplicity.

Once the 1-D DG(1)–Hancock method is described, the multidimensional extension

is provided in the following section together with more rigorous formulations. Be-

sides the DG(1)–Hancock method, the original Hancock method and semi-discrete

methods (ODE solvers) are also described for later comparisons. The original up-

wind moment scheme by Huynh for systems of hyperbolic conservation laws is also

described.

In Chapter 3, instead of jumping straight to the analysis for hyperbolic-relaxation

equations, the analysis of DG(1)–Hancock method for the scalar one- and two-
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dimensional linear advection equations are performed. In these cases, the DG(1)–

Hancock method is equivalent to both Van Leer’s scheme III and Huynh’s upwind

moment scheme. The dissipation/dispersion errors, the order of accuracy, and the

stability condition are compared to those of various semi-discrete and fully discrete

methods. The numerical results presented later confirm the analyses. It is shown

that the DG(1)–Hancock method preserves the prominent properties of both finite-

volume and finite-element methods, and the stability constraint can be more relaxed

than that of semi-discrete DG–RK methods.

In Chapter 4, after understanding the basic properties of the DG(1)–Hancock

method for hyperbolic conservation laws, the analyses of the DG(1)–Hancock method

and other currently available methods for one- and two-dimensional linear hyperbolic-

relaxation equations are conducted. Again, dissipation/dispersion error, and the

order of accuracy are compared to those of various methods. The Fourier analy-

sis shows high accuracy with minimum number of Riemann solvers. The following

numerical tests confirm the analyses, and also the efficiency of the DG(1)–Hancock

method compared to several semi-discrete methods.

In Chapter 5, the methods are applied to more practical equations, in particu-

lar, the set of 10-moment equations which are gas dynamics equations that include

a pressure/temperature tensor. The external flow around a NACA0012 airfoil is

computed and compared with flow results from alternative methods: the NS equa-

tions, Information Preservation (IP) method, and DSMC; these solutions are also

compared to experimental flow measurements.

The conclusions and suggestions for future work are following in Chapter 6.



CHAPTER II

NUMERICAL METHODS FOR HYPERBOLIC

EQUATIONS WITH RELAXATION SOURCE

TERM

2.1 Introduction

The method proposed here to solve the hyperbolic-relaxation equations,

∂tu(x, t) + ∂xf(u) =
1

ǫ
s(u); x ∈ R, t > 0, (2.1)

where u ∈ R
m, is based on the ‘upwind moment scheme’ [Huy06a] recently devel-

oped by Huynh for hyperbolic conservation laws:

∂tU(x, t) + ∂xF(U) = 0; x ∈ R, t > 0, (2.2)

where U ∈ Rn, n < m. Recall that the hyperbolic-relaxation equations we are inter-

ested in have a unique equilibrium limit; when ǫ → 0, (2.1) reduces to the hyperbolic

conservation laws (2.2). The solution representation of the upwind moment scheme

is only piecewise linear. The two key characteristics of this method are:

1. After initial gradient is established at each cell, cell variables are updated over

a half time step without any interactions with neighboring cells (Hancock’s

observation [vAvLR82, vL06]);

30
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: Riemann flux

(a) characteristic variables

∂tv + Λ∂xv = 0 ∂tu + A∂xu = 0

: characteristic lines

Figure 2.1: The development of the Hancock time integration is motivated by the
fact that when a Riemann flux is evaluated at the half time step tn+1/2, then there
is no wave interaction at both interfaces along (xj±1/2, [t

n, tn+1/2]). Hence, predicted
values associated to the half-time can be obtained by any form of equations, e.g.,
the conservation, or primitive form, expressed in the cell’s interior. These equations
then produce the input values for the Riemann problems at (xj±1/2, t

n+1/2).

2. the gradient of each flow variable evolves by an independent equation (DG

representation).

Hancock’s observation is illustrated in Figure 2.1 by using the 1-D Euler equations

as an example. In order to evaluate fluxes at the half-time tn+1/2, three character-

istic lines can be drawn for each interface. When we pay attention in the domain

[xj−1/2, xj+1/2] × [tn, tn+1/2], it is realized that we can neglect wave interaction to

adjacent cells until flow quantities evolve to tn+1/2. This observation leads to the

conclusion that any form of the Euler equations besides the characteristic form

can also accurately evolve the flow quantities from time tn to tn+1/2. Here, this

observation is extended to hyperbolic-relaxation equations.
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As to the DG discretization, the number of discretized update equations is

twice that for the original PDEs. We denote the upwind moment scheme by

“DG(1)–Hancock method”; it looks promising in comparison to the popular method-

of-lines (MOL) approaches such as FV/DG–MOL. The MOL decouples the dis-

cretizations in space and time: first a semi-discrete form in space is evaluated, then

integrated over time by a suitable ODE solver, e.g., RKs. The upwind moment

scheme
(
DG(1)–Hancock

)
is a fully discrete, one-step method with one intermedi-

ate update step needed for computing the volume integral of the flux. It requires

solving a Riemann problem twice at each cell interface. Based on a Fourier analysis,

the method achieves third-order accuracy in space and time. By design, the up-

wind moment scheme for a linear advection equation reduces to Van Leer’s ‘scheme

III’ [vL77], which is a DG spatial discretization with an exact shift operator for the

time evolution. It was shown that the method is linearly stable up to Courant num-

ber 1 with an upwind flux. Conversely, DG spatial discretizations combined with

MOL typically have a more strict stability condition: for DG(1)–RK2 (second-order)

the limit is
1

3
, and for the DG(2)–RK3 (third-order) it is

1

5
[CS01, p. 190].

When discretizing hyperbolic-relaxation equations (2.1), the source term has to

be treated implicitly to ensure the stability in the stiff regime (ǫ ≪ 1). In contrast,

the advection term is treated explicitly due to the complexity of the flux evaluation.

These methods are ‘semi-implicit.’ It is expected that the stability of a method

is solely constrained by the explicit discretization, that is, by an advective CFL

condition: ∆t ∝ ∆x. This can indeed be realized; however, the simple implicit

treatment of source terms, e.g., the backward Euler method (1st-order), does not

always guarantee high-order accuracy in the stiff regime, where the source-term

effect is important.
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The unique feature of the upwind moment scheme is the evaluation of the

space-time volume integral in the update equation of the solution gradient. Indeed,

this volume integral of the flux makes the method third-order accurate. When ap-

plying the upwind moment scheme to hyperbolic-relaxation equations, a difficulty

arises in computing the volume integral of the source term in the update equation

of the cell-average. Since the vector of cell-average variables at the next time level,

ūn+1, is still unknown, no simple quadrature rule in time can be used. Thus, instead

of computing the volume integral by a quadrature, we use an idea from stiff ODE

solvers to solve stiff source terms accurately. In our method, the time integral of

the source term is discretized by the two-point Gauss–Radau quadrature, which can

be regarded as an L-stable ODE solver if advection terms are omitted. The same

quadrature points are used for the volume integral of the flux in the gradient-update

equation, whereas Huynh’s original upwind moment method for conservation laws

adopts the three-point Gauss–Lobatto quadrature.

Because the source term does not contain spatial derivatives, the method is

point-implicit, that is, the implicitness is local, requiring no information from neigh-

boring cells. Previously a method for the case of a linear flux and source was pre-

sented [SvL06]; here we extend the method to a nonlinear flux and source. The

extension to multiple dimensions is also described.

2.2 DG(1)–Hancock Method for One-Dimensional Equations

2.2.1 DG Formulation

For brevity, we only consider a one-dimensional case with a uniform grid in

this section; the multidimensional extension is presented in the next section. Let

∆x := xj+1/2 − xj−1/2 be the cell width and Ij := [xj−1/2, xj+1/2] be the domain
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of cell j. The general DG method is obtained by converting a differential equation

to a weak formulation (weighted-residual method). Here, since a DG discretization

is adopted only in space, a test function v(x) : R → R is just a function of space.

The Hancock method is adopted for time discretization. Multiplying (2.1) by a test

function, v(x), and integrating over the interval Ij leads to the semi-discrete form

of the weak formulation:

∂

∂t

∫

Ij

u(x, t)v(x) dx = −
∫

Ij

∂xf(u(x, t))v(x) dx +

∫

Ij

1

ǫ
s(u(x, t))v(x) dx. (2.3)

Applying integration by parts on the flux term transfers the spatial differential

operator acting on the flux f(u) to the test function v(x),

∂

∂t

∫

Ij

u(x, t)v(x) dx = −f(u(x, t))v(x)

∣∣∣∣
xj+1/2

xj−1/2

+

∫

Ij

f(u(x, t))∂xv(x) dx +

∫

Ij

1

ǫ
s(u(x, t))v(x) dx. (2.4)

To derive the fully discrete method, we integrate again in time over T n := [tn, tn+1],

∫

Ij

u(x, t)v(x) dx

∣∣∣∣
tn+1

tn

︸ ︷︷ ︸
Time evolution

= −
∫

T n

f(u(x, t))v(x)

∣∣∣∣
xj+1/2

xj−1/2

dt

︸ ︷︷ ︸
Boundary integral

+

∫∫

Ij×T n

f(u(x, t))∂xv(x) dxdt

︸ ︷︷ ︸
Volume integral

+

∫∫

Ij×T n

1

ǫ
s(u(x, t))v(x) dxdt

︸ ︷︷ ︸
Volume integral

. (2.5)

Note that (2.5) is still exact in the weak formulation. To discretize the weak formula-

tion, we now approximate the exact solution u(x, t) by piecewise linear polynomials,

uh(x, t)|Ij
∈ P 1, and the test function v(x) by vh(x)|Ij

∈ P 1, where the subscript

h represents the approximate solution in polynomial space. Figure 2.2 shows the

solution distribution of DG-P 1 method (a), compared to the first- (solid line) and
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x

uh

xj+1/2xj−1/2

(b) finite volume method (uh ∈ P 0)

uh

x

(a) discontinous Galerkin method (uh ∈ P 1)

: solution distribution over a cell
: reconstructed P 1 distribution

:Riemann flux

xj−1/2 xj+1/2

Figure 2.2: Solution distribution of a DG-P 1 method (a) and the first-order finite
volume method (b) are compared. Dashed lines in (b) are reconstructed piecewise
linear distributions of a second-order finite volume method.

second-order (dashed line) finite-volume method (b). The Legendre polynomials up

to degree 1 are adopted for both basis (trial) and test functions, thus

uh(x, t) = ūj(t)φ0(x) + ∆uj(t)φ1(x), (2.6a)

vh(x) ∈ span{φ0(x), φ1(x)}, (2.6b)

where

φ0(x) = 1, φ1(x) =
x − xj

∆x
. (2.7)

Here, the cell-average and the undivided gradient of u(x, t) in space are defined by

ūj(t) :=
1

∆x

∫

Ij

u(x, t) dx, (2.8a)

∆uj(t) :=
12

∆x2

∫

Ij

(x − xj)u(x, t) dx. (2.8b)

Note that u(x, t) = uh(x, t) + O(∆x2) in x ∈ Ij ; however, the distributions of the

true solution u(x, t) and the approximated polynomial function uh(x, t) over the

domain Ij are equivalent in the weak sense due to the orthogonality of the Legendre
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polynomials,

∫

Ij

u(x, t)φk(x) dx ≡
∫

Ij

uh(x, t)φk(x) dx, k = 0, 1. (2.9)

Once the basis and test functions are chosen, approximate governing equations are

derived by adopting the basis functions φ0(x) and φ1(x) as the test function vh(x).

Inserting φi(x) into vh(x) leads to two independent update equations:

• v(x) = 1 :

∫

Ij

uh(x, t) dx

∣∣∣∣
tn+1

tn
= −

∫

T n

f(uh(x, t))

∣∣∣∣
xj+1/2

xj−1/2

dt +

∫∫

Ij×T n

1

ǫ
s(uh(x, t)) dxdt, (2.10a)

• v(x) =
x − xj

∆x
:

∫

Ij

uh(x, t)
x − xj

∆x
dx

∣∣∣∣
tn+1

tn
= −

∫

T n

f(uh(x, t))
x − xj

∆x

∣∣∣∣
xj+1/2

xj−1/2

dt

+
1

∆x

∫∫

Ij×T n

f(uh(x, t)) dxdt +

∫∫

Ij×T n

1

ǫ
s(uh(x, t))

x − xj

∆x
dxdt. (2.10b)

The time-evolution term and boundary integral can be further simplified by insert-

ing (2.6a) into uh(x, t), then

∆x
[
ūn+1

j − ūn
j

]
= −

∫

T n

[
fj+1/2(t) − fj−1/2(t)

]
dt

︸ ︷︷ ︸
Boundary integral

+

∫∫

Ij×T n

1

ǫ
s(uh(x, t)) dxdt

︸ ︷︷ ︸
Volume integral

, (2.11a)

∆x

12

[
∆u

n+1

j − ∆u
n

j

]
= −1

2

∫

T n

[
fj+1/2(t) + fj−1/2(t)

]
dt

︸ ︷︷ ︸
Boundary integral

+
1

∆x

∫∫

Ij×T n

f(uh(x, t)) dxdt

︸ ︷︷ ︸
Volume integral

+

∫∫

Ij×T n

1

ǫ
s(uh(x, t))

x − xj

∆x
dxdt

︸ ︷︷ ︸
Volume integral

, (2.11b)
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where the flux at the interface xj±1/2 is fj±1/2(t) = f(uh(xj±1/2, t)). The approxima-

tion made so far is in the solution representation uh ∈ P 1, which is polynomial of

degree 1, and in using the same polynomial basis for basis and test functions. The

next step is approximating the boundary integral,

∫

T n

(·) dt, for the interface flux, and

the volume integral,

∫∫

Ij×T n

(·) dxdt, for both source term and flux by quadrature. Pre-

viously, the method for a linear flux and source term was introduced [SvL06]. Also, a

Fourier analysis of both semi-discrete second-order high-resolution Godunov (HR2)

and DG(1) methods was presented [HSvL05]. Here, we extend the linear method

to nonlinear flux and source terms. Fourier analyses of a fully discrete method are

presented in Chapter IV.

2.2.2 Boundary Integral of the Flux

At the cell-interfaces, xj±1/2, the time integral of a flux is approximated by the

midpoint rule. Thus when a flux is integrated over the time interval in [tn, tn+k],

the flux at tn+k/2 is considered as the averaged flux:

tn+k∫

tn

fj±1/2(t) dt ≈ (k∆t) f
n+k/2
j±1/2 , (2.12)

where ∆t := tn+1 − tn and k ∈ [0, 1]. Since the approximated solution at the

cell-interface, uh(xj±1/2, t), is discontinuous, and not uniquely determined, a Rie-

mann problem is solved exactly or approximately to compute the interface-flux. Let

f̂ be the solution of a Riemann problem, then

f
n+k/2
j±1/2 ≈ f̂j±1/2

(
u

n+k/2
j±1/2,L,u

n+k/2
j±1/2,R

)
. (2.13)

For a linear flux, f(u) = Au where A ∈ Rm×m, the upwind flux is given by

f̂(uL,uR) = A+uL + A−uR, (2.14)
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with A± = RΛ±L, where Λ ∈ R
m×m is the diagonal matrix of eigenvalues of A. For

a nonlinear flux, common approximate Riemann solvers are given by the following

form:

f̂(uL,uR) =
1

2
[f(uR) + f(uL)] − 1

2
Q [uR − uL] , (2.15)

with

Q =






R|Λ|L Roe (upwind), all waves [Roe81],

(1 − α)λ+λ− + α(λ−V + + λ+V −)

λ+ − λ−
HLLL or HLL2, three waves

−1

2

λ+ + λ−

λ+ − λ−

∆f

∆u
[Lin02, HLvL83],

λ+λ−

λ+ − λ−
− 1

2

λ+ + λ−

λ+ − λ−

∆f

∆u
HLL1, two waves [HLvL83],

|λi|max I Rusanov, one wave [Rus62],

∆x

∆t
I Lax–Friedrichs, zero wave [Lax54],

where I ∈ Rm×m is the identity matrix. The cell-interface values at the half-time,

u
n+k/2
j+1/2,L/R, are obtained by a Taylor-series expansion of u(x, t) in space and time

using the Cauchy–Kovalevskaya (or Lax–Wendroff) procedure [Lan98, p. 317]: re-

placing the time derivative by the spatial derivative,

u(x, t) = u(xj , t
n) + (x − xj)∂xu(xj , t

n) + (t − tn)∂tu(xj , t
n) + O

(
∆x2, ∆t2, ∆x∆t

)

≈ un
j + (x − xj)∂xu

n
j + (t − tn)

[
−∂xf(u

n
j ) +

1

ǫ
s(un

j )

]

= un
j +

[
(x − xj)I − (t − tn)A(un

j )
]
∂xu

n
j +

t − tn

ǫ
s(un

j ), x ∈ Ij, t ∈ T n,

(2.16)

where the flux Jacobian A(u) :=
∂f

∂u
with A(u) : Rm → Rm×m. Replacing point

values, un
j and ∂xu

n
j , by cell-averages and undivided gradient values preserves the

second-order accuracy since un
j = ūn

j + O(∆x2) and ∆x∂xu
n
j = ∆u

n

j + O(∆x3).
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Also, the source term is evaluated from the approximated solution, u(x, t), instead

of the known solution, ūn
j , to make the source term implicit. This again does not

affect the order of approximation. Finally, the approximation of the state variable

u(x, t) in domain Ij × T n is given by

u(x, t) ≈ ūn
j +

[
(x − xj)I− (t − tn)A(ūn

j )
] ∆u

n

j

∆x
+

t − tn

ǫ
s
(
u(x, t)

)
. (2.17)

Inserting x = xj +
∆x

2
, xj+1−

∆x

2
and t = tn +

k∆t

2
leads to the cell-interface values

for a Riemann solver at (xj+1/2, t
n+k/2), where k ∈ [0, 1] will be used below to define

quadrature points:

u
n+k/2
j+1/2,L = uj(xj + ∆x/2, tn + k∆t/2)

= ūn
j +

1

2

[
I − k∆t

∆x
A(ūn

j )

]
∆u

n

j +
k∆t

2ǫ
s
(
u

n+k/2
j+1/2,L

)
, (2.18a)

u
n+k/2
j+1/2,R = uj+1(xj+1 − ∆x/2, tn + k∆t/2)

= ūn
j+1 −

1

2

[
I +

k∆t

∆x
A(ūn

j+1)

]
∆u

n

j+1 +
k∆t

2ǫ
s
(
u

n+k/2
j+1/2,R

)
. (2.18b)

Note that the implicit character is caused by the source term. In practice, for fluid

dynamics equations, this predictor step can be simplified by using a different form

of governing equations. Typically, the source term is a homogeneous function of

degree one with respect to w, hence it satisfies

1

ǫ(w)
s(w) = Qww, (2.19)

where w ∈ Rm is the vector of primitive variables, and Qw :=
∂s(w)

∂w
∈ Rm×m. The

constant coefficient matrix Qw can be inverted analytically, thus the predictor step

is evaluated explicitly as follows:

w(x, t) = [I − (t − tn)Qw]−1

[
wn

j +
(
(x − xj) I− (t − tn)A(wn

j )
)∆wn

j

∆x

]
. (2.20)
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(b) Gauss–Lobatto quadrature in time
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: quadrature points for the volume integral of flux
:Riemann flux

: quadrature points for the volume integral of source term

(a) Gauss–Radau quadrature in time

Figure 2.3: The locations of quadrature points for the volume integral of the flux
and source terms are shown in the space-time domain, [xj−1/2, xj+1/2] × [tn, tn+1].
Corresponding locations where wave interactions occur by a Riemann solver are
also presented. Both Gauss–Radau and Gauss–Lobatto quadratures require two
Riemann fluxes at each interface, and one intermediate stage at either tn+1/3 or
tn+1/2. In this thesis, the Gauss–Lobatto quadrature is only used for hyperbolic
conservation laws, therefore, Figure (b), does not contain quadrature points (©)
for the source term.

Once primitive variables at the half-time step are obtained, these values are used

as inputs for a Riemann solver (2.15) to compute the interface flux. The loca-

tions where a Riemann solver is applied over the space-time domain are shown in

Figure 2.3.

2.2.3 Volume Integral of the Source Term

When a DG spatial discretization with a piecewise linear solution representa-

tion is applied to hyperbolic-relaxation equations, three volume integrals appear

in (2.11): one is in the update equation of ūj , and the other two are in the update

equation of ∆uj. The same strategy as in the upwind moment method can be ap-

plied to the latter two volume integrals, assuming state variables in all quadrature
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points in time are already known. This is true as long as the update equation for

ūj is solved first. A difficulty arises when a quadrature rule is applied to the vol-

ume integral of the source term in (2.11a). Since this is the update equation of the

cell-average variables ūj , the updated state variables at a quadrature point, ūn+1
j ,

are still unknown. Yet, we can update ūj by iterating with a quadrature for the

volume integral of the source term; however, the quadrature rule or points have to

be chosen carefully when solving systems of stiff ODEs. Again, see Figure 2.3 for

quadrature points.

Here, we focus on constructing a third-order discretization in time for the source

term, while accepting second-order accuracy in space, so as to circumvent the

quadrature in space, more specifically, removing the ∆uj dependence in the vol-

ume integral of s(uh) in (2.11a). Thus, the following source-term expansion in

space is adopted:

1

ǫ
s(uh(x, t)) =

1

ǫ(ūj(t))
s(ūj(t)) +

x − xj

∆x
Q(ūj(t)) ∆uj(t) + O

(
∆x2

)
, (2.21)

where Q(u) :=
∂(s/ǫ)

∂u
with Q(u) : Rm → Rm×m. Inserting (2.21) into the volume

integral of the source term in (2.11a) leads to

∫∫

Ij×T n

1

ǫ
s(uh(x, t)) dxdt = ∆x

∫

T n

1

ǫ(ūj(t))
s(ūj(t)) dt + O

(
∆x3

)
. (2.22)

This approximation removes the coupling between (2.11a) and (2.11b), allowing

independent updates of the two equations.

In order to integrate the above equation in time, quadrature points have to be

chosen carefully in view of its stiffness. Also, to ensure stability in the stiff regime

(ǫ ≪ 1), the time-integration method for the source term needs to be implicit. Pre-

viously, the backward Euler method, which is only first-order accurate, was used to
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s-stage RK method order p stage order p̃ linear stability nonlinear stability

Gauss 2s s A-stability algebraic stability

Radau IA 2s− 1 s− 1 L-stability algebraic stability
Radau IIA 2s− 1 s L-stability algebraic stability

Lobatto IIIA 2s− 2 s A-stability No algebraic stability
Lobatto IIIB 2s− 2 s− 2 A-stability No algebraic stability
Lobatto IIIC 2s− 2 s− 1 L-stability algebraic stability

Table 2.1: The properties of the classes of implicit Runge–Kutta methods are tab-
ulated [Lam91]. The order p is based on the linear theory, and the stage order p̃ is
the lower bound obtained by the nonlinear theory. Thus, in general, the order of a
method is within [p̃, p].

integrate the source term and obtain the intermediate stage [SvL06]. Unfortunately,

linear analysis shows that the source-term discretization is overall only second-order

accurate due to the first-order temporal discretization in the intermediate step. In

order to achieve high-order accuracy and circumvent the stiffness, a fully-implicit

method is preferable. The properties of the classes of implicit Runge–Kutta meth-

ods are tabulated in Table 2.1 [Lam91, p. 250, 282]. Based on these properties, the

Radau IA, Radau IIA, and Lobatto IIIC methods, which possess both L-stability

and nonlinear stability, are candidates for time integration of the source term. In

order to achieve third-order accuracy in time, the Radau IA/IIA methods require

only two stages (s = 2, p = 3), whereas the Lobatto IIIC method requires three

stages (s = 3, p = 4). To minimize the computational cost of the fully-implicit

procedure for the source term in a scheme, we chose the former, particularly the

Radau IIA method, for the source-term integral. (This is an original contribution.)

Hence, the volume integral of the source term is approximated as

∫∫

Ij×T n

1

ǫ
s(uh(x, t)) dxdt ≈ ∆x∆t

[
3

4

s(ū
n+1/3
j )

ǫ(ū
n+1/3
j )

+
1

4

s(ūn+1
j )

ǫ(ūn+1
j )

]
, (2.23)
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where a new intermediate stage at time level n +
1

3
is introduced. Figure 2.3(a)

shows the quadrature points of the Radau IIA method for the source term by the

circle symbol (©). The overall update equations are given by

ū
n+1/3
j = ūn

j − ∆t

3

1

∆x

[
f̂
n+1/6
j+1/2 − f̂

n+1/6
j−1/2

]

︸ ︷︷ ︸
explicit

+
∆t

3

[
5

4

s(ū
n+1/3
j )

ǫ(ū
n+1/3
j )

− 1

4

s(ūn+1
j )

ǫ(ūn+1
j )

]

︸ ︷︷ ︸
implicit

, (2.24a)

ūn+1
j = ūn

j − ∆t

∆x

[
f̂
n+1/2
j+1/2 − f̂

n+1/2
j−1/2

]

︸ ︷︷ ︸
explicit

+∆t

[
3

4

s(ū
n+1/3
j )

ǫ(ū
n+1/3
j )

+
1

4

s(ūn+1
j )

ǫ(ūn+1
j )

]

︸ ︷︷ ︸
implicit

. (2.24b)

To solve this system numerically, first the interface fluxes are computed explicitly.

Then, the problem reduces to finding the solutions of systems of nonlinear algebraic

equations of the following form:

uA = Cf + Cs sA(uA), (2.25)

where

uA =




ū
n+1/3
j

ūn+1
j


 , sA(uA) =




s(ū
n+1/3
j )

ǫ(ū
n+1/3
j )

s(ūn+1
j )

ǫ(ūn+1
j )


 , (2.26a)

Cf =




ūn
j − ∆t

3

1

∆x

[
f̂
n+1/6
j+1/2 − f̂

n+1/6
j−1/2

]

ūn
j − ∆t

∆x

[
f̂
n+1/2
j+1/2 − f̂

n+1/2
j−1/2

]


 , Cs = ∆t




5

12
I − 1

12
I

3

4
I

1

4
I


 , (2.26b)

with uA,Cf ∈ R
2m,Cs ∈ R

2m×2m, and sA(uA) : R
2m → R

2m. Here, the New-

ton–Raphson method is employed to find the solution, thus the iteration process at

step p is given by

up+1
A = up

A − [IA − CsQA(up
A)]

−1
[up

A −Cf − Cs sA(up
A)] , p = 0, 1, 2 . . . , (2.27)

where

QA(uA) :=
∂sA

∂uA
=




Q(ū
n+1/3
j ) 0

0 Q(ūn+1
j )


 , QA(uA) : R

2m → R
2m×2m, (2.28)
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and IA ∈ R
2m×2m. To start up the iteration, the initial guess at the time level n,

u0
A =

[
ūn

j ; ūn
j

]
, is used. The iteration on the system of 2m equations can be reduced

to 2(m − l) equations where l < n, since the first l entries of the source term are

zero.

In general, when the Newton–Raphson method is implemented, it is more ef-

ficient to adopt LU -decomposition to the matrix [IA −CsQA(up
A)], and solve the

system of linear algebraic equations instead of inverting it. However, the structure

of the source term is typically simple, and the inverse matrix, [IA − CsQA(up
A)]−1,

can be obtained analytically as a function of uA. The advantage of the choice

of hyperbolic-relaxation equations over the NS equations is clear here: since the

method is point-implicit due to the source term, the inverse of the matrix is still lo-

cal, whereas the implicit treatment of the diffusion term in the NS equations makes

the domain of dependence global.

2.2.4 Volume Integral of the Flux

Gauss–Lobatto Points (Original Upwind Moment Scheme)

First, we review Huynh’s original upwind moment scheme [Huy06a]. The method

utilizes the three-point Gauss–Lobatto quadrature (see Figure 2.3(b)) for both space

and time integration of the flux, thus the volume integral of the flux is approximated

by

∫∫

Ij×T n

f(uh(x, t)) dxdt ≈ ∆t

∫

Ij

1

6

[
f(u(x, tn)) + 4f(u(x, tn+1/2)) + f(u(x, tn+1))

]
dx

≈ ∆t

∫

Ij

f(û(x)) dx

≈ ∆t
∆x

6

[
f(û(xj−1/2)) + 4f(û(xj)) + f(û(xj+1/2))

]
, (2.29)
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where

û(x) = ˆ̄uj + ∆̂uj
x − xj

∆x
, (2.30a)

ˆ̄uj =
1

6

(
ūn

j + 4ū
n+1/2
j + ūn+1

j

)
, (2.30b)

∆̂uj =
1

2

(
∆u

n

j + ∆u
n+1

j

)
. (2.30c)

Here, (̂·) denotes a time-averaged value. When the discretization of conservation

laws, (2.11) with s = 0, is considered, the volume integral appears only in the second

equation (2.11b). Since the cell-average variables are updated in the first equation,

ūn+1
j is already known when the volume integral in the second equation is evaluated.

Thus ˆ̄uj is evaluated explicitly whereas ∆u
n+1

j in (2.30c) is still unknown, and an

iterative process is required. To start the iteration, the slope at the time level n

is used as the initial guess; however, Huynh reported that no improvement was

observed by iterations, and suggested to replace (2.30c) by

∆̂uj = ∆u
n

j . (2.31)

When the flux is linear, f(u) = Au, the volume integral (2.29) is evaluated exactly

in space and approximately in time, thus

∫∫

Ij×T n

f(uh(x, t)) dxdt = ∆xA

∫

T n

ūj(t) dt

≈ ∆x∆t Aˆ̄uj , (2.32)

where ˆ̄uj is given by (2.30b). In (2.30b), the new intermediate stage, ū
n+1/2
j , is

introduced, and computed in advance by updating over a half time step:

ū
n+1/2
j = ūn

j − 1

∆x

tn+1/2∫

tn

[
fj+1/2(t) − fj−1/2(t)

]
dt

= ūn
j − ∆t

2

1

∆x

[
f̂
n+1/4
j+1/2 − f̂

n+1/4
j−1/2

]
. (2.33)
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Note that the method only requires the cell-average value at the half-time step,

not the undivided gradient, since the slope at the time level n is used in the entire

space-time domain according to (2.31). Once the intermediate state is obtained,

from (2.11), the final update equations become

ūn+1
j = ūn

j − ∆t

∆x

[
f̂
n+1/2
j+1/2 − f̂

n+1/2
j−1/2

]
, (2.34a)

∆u
n+1

j = ∆u
n

j − ∆t

∆x
6

[
f̂
n+1/2
j+1/2 + f̂

n+1/2
j−1/2 − 2

∆x∆t
f(ûj)

]
, (2.34b)

where f(ûj) is given by (2.29). In summary, the original upwind moment scheme

is a one-step method with one intermediate stage for the volume integral, requiring

two Riemann solvers at each cell-interface.

Gauss–Radau Points

When the hyperbolic-relaxation equations are considered, quadrature points for

the flux in (2.11b) need to be modified based on the quadrature for the source term.

Since we adopt the two-point Radau IIA method (2.23) as the time integrator for

the source term, the same Radau points are employed for the volume integral of

the flux. The bullet symbols (•) in Figure 2.3(a) on page 40 represent the location

of quadrature points for the flux over the space-time domain. Consequently, the

Gauss–Radau quadrature in time and the Gauss–Lobatto quadrature in space are

applied:

∫∫

Ij×T n

f
(
uh(x, t)

)
dxdt = ∆t

∫

Ij

[
3

4
f
(
u(x, tn+1/3)

)
+

1

4
f
(
u(x, tn+1)

)]
dx + O

(
∆t4
)

≈ ∆x∆t

(
3

4
f̄n+1/3 +

1

4
f̄n+1

)
, (2.35)
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where

f̄k =
1

6

[
f
(
ũk

j−1/2

)
+ 4f

(
ũk

j

)
+ f
(
ũk

j+1/2

)]
, (2.36a)

ũk(x) = ūk
j + ∆u

n

j

x − xj

∆x
. (2.36b)

Here, the undivided gradient is frozen at the time level n in order to keep the treat-

ment explicit. In the update equation of the undivided gradient, the intermediate-

stage value, ∆u
n+1/3

j , is required, and another volume integral of the flux over the

time domain T n′

= [tn, tn+1/3] is needed. Unlike in the method for hyperbolic

conservation laws, the intermediate slope quantities are necessary due to the fully

implicit treatment of the source term. Since the flux is not a stiff term and the cell-

averaged variables at the quadrature points k = 0,
1

3
are known, the trapezoidal

rule is applied in time while the Gauss–Lobatto quadrature is applied in space:

∫∫

Ij×T n′

f
(
uh(x, t)

)
dxdt =

∆t

3

∫

Ij

1

2

[
f
(
u(x, tn)

)
+ f
(
u(x, tn+1/3)

)]
dx + O

(
∆t3
)

≈ ∆x∆t

6

(
f̄n + f̄n+1/3

)
, (2.37)

where spatial averaged fluxes are obtained by (2.36).

2.2.5 Integral of the Moment of the Source Term

The second-order approximation of the source term, (2.21), is inserted into the

volume integral of the moment of the source term in (2.11b), and the Gauss–Radau

quadrature is used in time:

∫∫

Ij×T n

1

ǫ
s(uh(x, t))

x − xj

∆x
dxdt =

∆x

12

∫

T n

Q(ūj(t))∆uj(t) dt + O
(
∆x3

)

≈ ∆x∆t

12

[
3

4
Q(ū

n+1/3
j )∆u

n+1/3

j +
1

4
Q(ūn+1

j )∆u
n+1

j

]
.

(2.38)
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Following the same procedure as the cell-average update, the Radau IIA method

is adopted for the source term, and the final update formulas for the undivided

gradient are given by

∆u
n+1/3

j = ∆u
n

j − ∆t

3

6

∆x

[
f̂
n+1/6
j+1/2 + f̂

n+1/6
j−1/2 − 2

∆x∆t
f(u

n+1/6
j )

]

︸ ︷︷ ︸
explicit

+
∆t

3

1

ǫ

[
5

4
Q(ū

n+1/3
j )∆u

n+1/3

j − 1

4
Q(ūn+1

j )∆u
n+1

j

]

︸ ︷︷ ︸
implicit

,

(2.39a)

∆u
n+1

j = ∆u
n

j − ∆t

∆x
6

[
f̂
n+1/2
j+1/2 + f̂

n+1/2
j−1/2 − 2

∆x∆t
f(u

n+1/2
j )

]

︸ ︷︷ ︸
explicit

+
∆t

ǫ

[
3

4
Q(ū

n+1/3
j )∆u

n+1/3

j +
1

4
Q(ūn+1

j )∆u
n+1

j

]

︸ ︷︷ ︸
implicit

,

(2.39b)

where f(u
n+1/6
j ) and f(u

n+1/2
j ) are obtained by (2.37) and (2.35) respectively. Once

the interface fluxes and volume integrals of fluxes are computed explicitly, the prob-

lem is reduced to solving a system of linear algebraic equations:

∆uA = ∆Cf + CsQA(uA)∆uA, (2.40)

where

∆uA =




∆u
n+1/3

j

∆u
n+1

j


 , (2.41a)

∆Cf =




∆u
n

j − ∆t

3

6

∆x

[
f̂
n+1/6
j+1/2 + f̂

n+1/6
j−1/2 − 2

∆x∆t
f(u

n+1/6
j )

]

∆u
n

j − ∆t

∆x
6

[
f
n+1/2
j+1/2 + f

n+1/2
j−1/2 − 2

∆x∆t
f(u

n+1/2
j )

]


 , (2.41b)

with ∆uA, ∆Cf ∈ R2m. Since uA is already known by (2.27), no iteration is required,

and ∆uA is obtained by

∆uA = [IA − CsQA(uA)]−1 ∆Cf. (2.42)
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As mentioned previously, the structure of the source term is typically simple; the

inverse of the above matrix can be obtained analytically.

2.3 Extension to Multidimensional Equations

In this section, we extend the 1-D DG(1)–Hancock method described in the

previous section to multidimensional problems. Here, we closely follow the notations

conventionally adopted in the finite-element community. Nevertheless, sufficient

explanations of notations and terminologies are provided for those who are more

accustomed to finite-volume or finite-difference methodologies. Interested readers

are referred to the following books for the rigorous mathematical foundation of the

finite-element methodology: [ZTZ05, FFS03, BS02].

As to the semi-discrete discontinuous Galerkin methods combined with Runge–

Kutta time-marching (DG(k)–RK methods), Cockburn and Shu extended their

one-dimensional formulation [CLS89] to triangular grids [CHS90]; later, Bey and

Oden extended such methods to quadrilateral elements of arbitrary polynomial de-

gree [BO91]. Prior to the development of multidimensional DG(k)–RK methods,

Allmaras and Giles indeed developed the semi-discrete P 1 discontinuous Galerkin

method combined with the third-order Runge–Kutta method, DG(1)–RK3, for

quadrilateral elements [AG87, All89]. However, they did not denote their method

as a discontinuous Galerkin method, and this might be a reason why their seminal

work is little known in the community nowadays. Their method is the direct exten-

sion of Van Leer’s scheme III (for a scalar linear equation) to the two-dimensional

Euler/NS equations.

Subsequently, Halt and Agarwal extended the Allmaras–Giles method to higher

order and triangular elements, and they denote the method as the “moment method”
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[HA92, AH99]. Borrel and Berde also adopted the moment approach, and pre-

sented a few numerical results for the two-dimensional Euler and Navier–Stokes

equations [BB95, BB98]. The specific aspect of the moment method is that, even

though the formulation is now recognized as a semi-discrete discontinuous Galerkin

method, the method is discretized directly on the physical domain except for the

volume integral; a typical DG method is discretized in a local (ξ, η) coordinate sys-

tem, to which the original governing equations, expressed in (x, y), are transformed.

An advantage of the formulation of the moment method is that the update equation

for the cell-averaged quantities is always independent of the other update equations

for slopes. In this section, the spatial approach of the moment method is taken, yet

time integration is done by the Hancock method.

2.3.1 Ritz–Galerkin Method

The system of multidimensional hyperbolic-relaxation equations is given by

∂tu(x, t) + ∇ · f(u(x, t)) =
1

ǫ
s(u(x, t)); x ∈ Ω, t > 0, (2.43)

where u ∈ Rm is the vector of conserved quantities, f ∈ Rm×3 is the 3-D flux tensor,

s ∈ R
m is the source vector for the conservation form, and Ω is the domain of

interest. Let T be a time interval, then the solution u(x, t) in (2.43) is defined over

the entire spatial domain Ω and temporal domain, i.e. u(x, t) ∈ Ω×T . Figure 2.4(a)

shows a schematic of notations introduced in the above equation. By specifying

the initial condition, u(x, 0) = u0(x), and sufficient boundary conditions along

boundary ∂Ω, the problem statement of the differential equations (2.43) is:

Find u(x, t) such that the solution u(x, t) satisfies (2.43) for any x ∈ Ω

and any t ∈ T .
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x
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boundary: ∂Ω
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boundary: ∂Kj
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Kj

Ke

Figure 2.4: Schematic of the sequence of the discontinuous Galerkin approximation
to solve an original partial differential equation. The analytical solution u(x, t) is
projected to the finite dimensional subspace Wh(Ωh), then further decomposed to
local elements. Defining the space of polynomial functions P k(K), where K ∈ Ωh,
independently in each element with possible discontinuity along edges, allows us to
recast the global problem as the union of local problems.
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Since the solution u(x, t) is defined over the continuous space-time domain, it is

impossible to represent the true solution u(x, t) on a digital computer with a finite

resource of memory or storage. Thus we make an assumption that the true solution

can be accurately approximated by a finite number of functions such that

u(x, t) ≈ uh(x, t) =
∑

i

ci(x, t)φi(x, t), (2.44)

where the coefficients ci(x, t) are called the degrees of freedom, and φi(x, t) the trial

(basis) functions. Our goal is to construct the evolution equations of the degrees

of freedom ci(x, t) to compute an approximate solution of the original differential

equations (2.43). In general, the procedure of projecting a solution defined in an

infinite-dimensional space W (Ω) to an approximating solution like (2.44) in a finite

dimensional space Wh(Ωh) is called the Ritz–Galerkin method. More specifically,

the Ritz–Galerkin method can be subdivided to the Ritz method, which employs a

variational formulation, and the weighted-residual method, where a weak formula-

tion is applied. See Figure 2.5 for their hierarchical relations [KS05, FFS03, DH03]

A brief summary of these methods are as follows:

• Ritz method, or also called Rayleigh–Ritz method (variational formulation):

An variational principle equivalent to the original differential equations is for-

mulated, and the original problem is recast as the minimization problem for

the variational formulation. For instance, the solution of physical problem

expressed in differential form is restated as the extremum of a function. A

drawback of this approach is that constructing a variational formulation might

not be possible for complex physical systems such as the Navier–Stokes equa-

tions.

• Weighted residual method (weak formulation):
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Ritz–Galerkin method:uh =
∑

ciφi ∈ Wh ⊂ W

weighted residual method:

∫

Ωh

vj R(uh) dx = 0
Rayleigh–Ritz method

variational formulationweak formulation

Bubnov–Galerkin method: Petrov–Galerkin method:

• standard Galerkin: vj ∈ Wh(Ωh)

• finite element: vj ∈ P k(Ωh)

• collocation: vj = δ(x−xj)

• finite volume: vj =

{
1, inside of Ωj

0, outside

• least-squares: vj =
∂R

∂cj

(vj := ψi 6= φj)(vj := φj)
test = trial functions test 6= trial functions

• discontinuous Galerkin: vj |Kj
∈ P k(Kj)

• spectral element: vj ∈ P k(Ωh), k ≫ 1

• sreamline upwind: vj = φj + h δφj

Petrov–Galerkin

space-time method:

• Taylor–Galerkin

• space-time Galerkin/least-squares

• time-discontinuous Galerkin

• Lagrange–Galerkin

• characteristic Galerkin

Figure 2.5: The hierarchy of discretization methodologies is shown. The Ritz–
Galerkin methods can be subdivided into two methodologies: weighted residual
and Rayleigh–Ritz. Depending on the definition of test functions, various schemes
can be distinguished. Also, various time-integration methods besides a typical ODE
solver are listed.



54

The original differential equation is rewritten in an integral form through

a weak formulation. This approach is less restrictive and can be applied

to a physical problem that does not have a variational formulation. Nev-

ertheless, if a variational formulation can be obtained for a certain problem,

both variational and weighted-residual methods lead to an identical discretiza-

tion. The Galerkin weighted-residual method can be further subdivided into

Bubnov–Galerkin, and Petrov–Galerkin methods. Bubnov–Galerkin meth-

ods, often simply called Galerkin methods, set test functions identical to trial

functions, whereas Petrov–Galerkin methods employ different functions. In

the case when an approximation of the solution in (2.44) is piecewise polyno-

mial, a Bubnov/Petrov–Galerkin method is particularly called a finite-element

method. Hence, it is more appropriate to call a DG method, for instance, a

discontinuous Bubnov–Galerkin finite-element method.

Here, we employ the method of weighted residuals, more precisely a discontinuous

Galerkin method, which is one of the Bubnov–Galerkin methods, to obtain the

discretization method. The procedure to obtain the weak formulation is explained

in the next section.

2.3.2 Weak Formulation

At first, we define a scalar function in the same space as the solution u(x, t),

and denote it as v(x, t) ∈ Ω × T . This is called the test function. Multiplying

the original differential equations (2.43) by a test function, v(x, t), and integrating

over the space-time domain Ω(t) × T leads to the weak formulation of the original
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differential equations:

∫∫

Ω(t)×T

∂tu(x, t) v(x, t) dxdt = −
∫∫

Ω(t)×T

∇ · f(u(x, t)) v(x, t) dxdt

+

∫∫

Ω(t)×T

1

ǫ
s(u(x, t)) v(x, t) dxdt. (2.45)

The weak formulation of the problem is:

Find u(x, t) such that the solution u(x, t) satisfies (2.45) for any test

function v(x, t) ∈ Ω × T .

Note that the problem is still defined in an infinite-dimensional space. In order

to remove derivatives of the solution and its flux from the space-time integrals, we

integrate by parts, yielding the equalities

∫

T

∂tu(x, t)v(x, t) dt ≡ [u(x, t) v(x, t)]t2t1 −
∫

T

u(x, t) ∂tv(x, t)dt, (2.46a)

∫

Ω(t)

∇ · f(u) v(x) dx ≡
∫

∂Ω(t)

v(x) f · n dσ −
∫

Ω(t)

∇v(x) · f(u) dx; (2.46b)

these are inserted into the weak formulation (2.45). Here, n is the outward unit

vector normal to the boundary ∂Ω(t), and T := [t1, t2]. The integration variable

σ in the right hand side of (2.46b) is defined along the boundary ∂Ω(t). See also

Figure 2.4(a) illustrating their definitions.

In the course of its derivation, one might wonder why a DG method always

relies on integration by parts. The reason is that the integration by parts transfers

a differential operator acting on nonlinear functions to test functions. For instance,

the divergence operator, ∇·, applied to the nonlinear flux f(u) on the left hand side

of (2.46b) is now acting on a gradient operator, ∇, on a test function v(x) on the

right hand side. This operation is not unique to DG methods: weighted-residual
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methods in general take advantage of it. For instance, a finite volume method uses

the same technique in its derivation. This can be seen by letting the test function

be v(x) = 1, then (2.46b) becomes the divergence theorem:

∫

Ω

∇ · f(u) dx ≡
∫

∂Ω

f · n dσ, (2.47)

which is the core of the derivation of a finite volume method. By seeing the sim-

ilarity between a finite-volume and Galerkin (finite-element) method, it would be

more appropriate and intuitive to state that the multivariable divergence theorem is

applied to the flux-divergence term instead of using the term “integration by parts.”

Inserting the identities (2.46) into the weak formulation (2.45), and applying

Fubini’s theorem, which allows to alternate the order of integration in space and

time, the weak formulation becomes

∫

Ω(t2)

u(x, t2) v(x, t2) dx −
∫

Ω(t1)

u(x, t1) v(x, t1) dx −
∫∫

Ω(t)×T

u(x, t) ∂tv(x, t) dxdt

= −
∫∫

∂Ω(t)×T

v(x, t) f(u(x, t)) · n dσdt +

∫∫

Ω(t)×T

∇v(x, t) · f(u(x, t)) dxdt

+

∫∫

Ω(t)×T

1

ǫ
s(u(x, t)) v(x, t) dxdt. (2.48)

When we assume that the spatial domain over the interval of time T is fixed,

thus Ω(t) = Ω, and the test function only varies in space, v(x, t) = v(x) thus

∂tv(x, t) ≡ 0, then the above equation further simplifies as follows:

∫

Ω

(
u(x, t2) − u(x, t1)

)
v(x) dx = −

∫∫

∂Ω×T

v(x) f(u(x, t)) · n dσdt

+

∫∫

Ω×T

∇v(x) · f(u(x, t)) dxdt +

∫∫

Ω×T

1

ǫ
s(u(x, t)) v(x) dxdt. (2.49)

Note that the above equation is still exact in the weak sense, and the solution is

defined in an arbitrary domain Ω × T with the boundary ∂Ω × T .
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2.3.3 Finite-Dimensional Approximation

In order to derive a numerical method on finite, discrete meshes (elements), at

first, we decrease the continuous domain Ω, which requires infinite information to

be represented, to a domain that only requires finite information to be defined. A

straightforward approach is to assume Ω to be a convex polygonal domain. Here, we

denote this domain as Ωh ⊂ Ω. The subscript (·)h denotes an approximation of the

continuous domain Ω on a discretized computational grid, where h symbolizes mesh

size. See Figure 2.4(b) on page 51 for a schematic of this approximation. Note that

the temporal domain is defined as the finite interval T = [t1, t2], yet the solution

u(x, t) is still continuous in the interval T . Once the entire computational domain

Ωh is defined, we define non-overlapping elements that compose the entire domain

Ωh. Let Kj be a typical element in the domain; thus Kj ∈ Ωh, then its boundary is

defined by ∂Kj . Each face (3-D) or edge (2-D) of the element Kj is denoted as ei,

hence ei ∈ ∂Kj . We also define the element Ke ∈ Ωh, which shares the edge ei of

the element Kj. The corresponding schematics are shown in Figures 2.4(c) and (d).

After the continuous domain has been reduced to the finite dimensional domain,

we are ready to reduce the continuous solution u(x, t) to the approximated solution

uh(x, t), which requires a finite number of data (degrees of freedom) to be repre-

sented. In other words, the solution u(x, t) is projected to the finite-dimensional

domain Ωh. To achieve this goal, we define the finite-dimensional space Wh, called

a broken space, for an approximate solution:

Wh(Ωh) = {wh(x) ∈ L∞(Ωh) : wh(x)|Kj
∈ P k(Kj), ∀Kj ∈ Ωh}. (2.50)

This is a expression we commonly encounter in papers dealing with a discontinuous

Galerkin method, but it might not be quite intuitive for those who are new to
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Galerkin methods. We therefore go into the details one by one to explain what the

above equation means. The first relation on the right hand side is that w(x) is

a general bounded function defined over the domain Ωh, since L∞(Ωh) means the

space of bounded functions. The second term after the colon is a condition on a

function wh(x) at each element Kj . It says that wh(x)|Kj
is a function restricted to

the domain defined by Kj, and P k(Kj) is the space of polynomial functions of at

most degree k defined on the element Kj. Thus, a function on the element Kj can

only be expressed by polynomial functions, and such function representation makes

a DG method a finite-element method. Note that a functional space on the element

Kj , which is a polynomial space P k(Kj), is defined independently from neighboring

elements; continuity along edges is not enforced. Hence, the above functional space

Wh(Ωh) allows discontinuities along edges. This property subdivides the global

problem of finding the approximation of u(x, t) over the entire domain Ωh to the

collection of local problems of finding a local solution u(x, t)|Kj
on each element

Kj ∈ Ωh. Let uh(x, t) and vh(x) be an approximate solution and a test function

over the domain Ωh; then the approximate solution and test function at the element

Kj are related to these as follows:

solution:

u(x, t) ≈ uh(x, t) ∈ Wh(Ωh) −→ u(x, t)|Kj
≈ uh(x, t)|Kj

∈ P k(Kj), (2.51a)

test function:

v(x) ≈ vh(x) ∈ Wh(Ωh) −→ v(x)|Kj
≈ vh(x)|Kj

∈ P k(Kj). (2.51b)

When replacing a globally defined continuous solution and test function by a lo-

cally defined approximated solution and test function, the weak formulation (2.49)

previously defined over the entire computational domain Ωh × T can be recast to
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the individual element Kj as follows:

∫

Kj

(
uh(x, t2)|Kj

− uh(x, t1)|Kj

)
vh(x)|Kj

dx

= −
∫∫

∂Kj×T

vh(x)|Kj
f
(
uh(x, t)|Kj

,uh(x, t)|Ke

)
· nei,Kj

dΓdt

+

∫∫

Kj×T

∇vh(x)|Kj
· f(uh(x, t)|Kj

) dxdt +

∫∫

Kj×T

1

ǫ
s(uh(x, t)|Kj

) vh(x)|Kj
dxdt,

for any Kj ∈ Ωh, (2.52)

where nei,Kj
is the outward unit vector normal to an edge ei of the element Kj . The

integration variable Γ in the surface integral is defined along edges of the element Kj.

Figure 2.4(d) explains notations schematically. Note that, as mentioned previously,

the whole process of approximating the continuous problem (2.49) by the discrete

problem (2.52) on a finite dimensional broken subspace Wh(Ωh) ⊂ W (Ω) is called

the discontinuous Galerkin method.

The first term on the right hand side of (2.52) is the surface integral of the flux,
∫∫

(·) dΓdt, along boundaries of the element Kj. As a consequence of the inde-

pendence of local spaces, the solution along edges can not be uniquely determined

because it may be discontinuous. See Figure 2.4(e) on page 51. Thus, the flux at

the edge ei depends on both u|Kj
and u|Ke. Since the boundary ∂Kj is composed

of all edges ei, the surface integral can be reformulated as the summation of flux

integrations along each edge, thus

∫∫

∂Kj×T

vh(x)|Kj
f(uh(x, t)|Kj

,uh(x, t)|Ke) · nei,Kj
dΓdt

≡
∑

ei∈∂Kj

∫∫

ei×T

vh(x)|Kj
f
(
uh|Kj

,uh|Ke

)
· nei,Kj

dΓdt. (2.53)
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This edge-based reformulation is particularly useful for coding, where a numerical

flux function can sweep through edges without considering connectivity with other

edges. After inserting the above equation into (2.52), the weak formulation with

respect to an element Kj is

∫

Kj

(
uh(x, t2)|Kj

− uh(x, t1)|Kj

)
vh(x)|Kj

dx

=
∑

ei∈∂Kj

∫∫

ei×T

vh(x)|Kj
f
(
uh|Kj

,uh|Ke

)
· nei,Kj

dΓdt

+

∫∫

Kj×T

∇vh(x)|Kj
· f(uh(x, t)|Kj

) dxdt +

∫∫

Kj×T

1

ǫ
s(uh(x, t)|Kj

) vh(x)|Kj
dxdt. (2.54)

It is important to note that the above equation is still exact for a solution contained

in the finite-dimensional subspace Wh(Ωh) defined by (2.50). Furthermore, the

shape of element Kj is not specified yet; any polygonal element still satisfies the

above formula.

2.3.4 Polynomial Representation of the Solution

Recall that the individual solution uh(x, t)|Kj
in the element Kj is a polynomial

function. Here, we take the Legendre polynomials up to degree k = 1 (piecewise lin-

ear functions) as the space of polynomial functions, and consider a two-dimensional

problem, thus x = (x, y),

u(x, t)|Kj
, v(x)|Kj

∈ P 1(Kj), (2.55)

where

P 1(Kj) = span{φ0(x), φ1(x), φ2(x)}

= span{1, x − xc,Kj
, y − yc,Kj

},
(2.56)
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and φm(x), m = 0, 1, 2 form the Legendre polynomial basis. The constants (xc,Kj
, yc,Kj

)

in the basis function define the centroid of the element Kj defined by

xc,Kj
:=

∫∫

Kj

x dxdy

∫∫

Kj

dxdy
, yc,Kj

:=

∫∫

Kj

y dxdy

∫∫

Kj

dxdy
. (2.57)

Let {ūj(t), ∆xuj(t), ∆yuj(t)} be the degrees of freedom (state variables), which are

continuous over the time interval t ∈ [tn, tn+1], then the solution and test functions

in the element Kj can be expressed by (2.44) as follows:

uh(x, y, t)|Kj
= ūj(t)φ0(x) + ∆xuj(t)φ1(x) + ∆yuj(t)φ2(x)

= ūj(t) +
(
∆xuj(t), ∆yuj(t)

)
· (x − xc,Kj

, y − yc,Kj
)

= ūj(t) +
(
∆xuj(t), ∆yuj(t)

)
· (x − xc,Kj

),

(2.58a)

vh(x)|Kj
∈ span{1, x − xc,Kj

, y − yc,Kj
}. (2.58b)

Similar to the 1-D case, the linear distribution of the solution uh(x, t)|Kj
satisfies

the following properties:

∫∫

Kj

uh(x, t) dxdt ≡ ūj(t), (2.59a)

uh(xc,Kj
, yc,Kj

, t) ≡ ūj(t). (2.59b)

The definition of the approximate solution (2.58a) is quite natural in the context of

a finite-volume method, i.e., the degrees of freedom possess physical meaning such

as cell-average and average slope. However, it is rather uncommon in a Galerkin

formulation, typically for a triangular element, to represent a solution based on

averaged quantities. The standard practice is that the degrees of freedom are de-

fined at nodes or points along edges of an element. This solution definition makes

the method’s derivation simple. Conversely, the major drawback of the node-based
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solution representation, especially for the DG(1)–Hancock method for hyperbolic-

relaxation equations, is that the updated cell average can not be obtained until all

degrees of freedom have been updated. This means that even though the interface

flux calculation is still explicit, the volume integral of the flux needs to be treated

implicitly. The cell-average based method does not have this issue. This is the main

reason why we prefer to adopt the finite-volume-like approximation. Nevertheless,

at least when using linear polynomials, both average-based and nodal-based de-

scriptions lead to identical algebraic equations modulo a similarity transformation.

Once the solution in the element Kj is specified, we can again restate the problem

in the weak formulation for a typical element Kj ∈ Ωh:

Find uh(x, t)|Kj
∈ P 1(Kj) × T such that the solution uh(x, t)|Kj

satis-

fies (2.54) for any test function vh(x)|Kj
∈ P 1(Kj) in the element Kj.

The same problem statement is applied to all elements in the discretized domain

Ωh. The last thing needed for an actual discretization method from the weak for-

mulation (2.54) is choosing appropriate test functions. The test function v(x)|Kj

can be arbitrary as long as it stays in the space of the polynomial functions P 1(Kj).

The natural choice is the polynomial basis functions as the test functions, hence

vh(x)|Kj
= {φ0(x), φ1(x), φ2(x)}. (2.60)

With this particular choice, where the test and basis functions are identical, the

method is called the Bubnov–Galerkin, or simply Galerkin method. If a test function

is not the same as a solution-basis function, then a method is called Petrov–Galerkin

method.
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2.3.5 Evolution Equations of the Degrees of Freedom

Inserting each test function into (2.54) with the solution representation (2.58a)

leads to the following update formulas for the degrees of freedom {ūj(t), ∆xuj(t),

∆yuj(t)}:

• vh(x)|Kj
= 1:

|Aj| [ūj(t)]
tn+1

tn = −
∑

ei∈∂Kj

∫∫

ei×T

f
(
uh|Ki

,uh|Ke

)
· nei,Kj

dΓdt +

∫∫

Kj×T

1

ǫ
s(uh(x, t)) dxdt,

(2.61a)

• vh(x)|Kj
= x − xc,Kj

:

[
Kj1∆xuj(t) + Kj2∆yuj(t)

]tn+1

tn
= −

∑

ei∈∂Kj

∫∫

ei×T

(x − xc,Kj
) f
(
uh|Ki

,uh|Ke

)
· nei,Kj

dΓdt

+

∫∫

Kj×T

(1, 0) · f(uh(x, t)|Ki
) dxdt +

∫∫

Kj×T

(x − xc,Kj
)
1

ǫ
s(uh(x, t)) dxdt,

(2.61b)

• vh(x)|Kj
= y − yc,Kj

:

[
Kj2∆xuj(t) + Kj3∆yuj(t)

]tn+1

tn
= −

∑

ei∈∂Kj

∫∫

ei×T

(y − yc,Kj
) f
(
uh|Ki

,uh|Ke

)
· nei,Kj

dΓdt

+

∫∫

Kj×T

(0, 1) · f(uh(x, t)|Ki
) dxdt +

∫∫

Kj×T

(y − yc,Kj
)
1

ǫ
s(uh(x, t)) dxdt,

(2.61c)

where f ∈ Rm×2 is the 2-D flux tensor, |Aj | is the area of the element Kj defined by

|Aj| :=

∫

Kj

φ0(x)φ0(x) dx =

∫∫

Kj

dxdy, (2.62a)
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and other tensor products of basis functions are defined by

Kj1 :=

∫

Kj

φ1(x)φ1(x) dx =

∫∫

Kj

(x − xc,Kj
)2 dxdy, (2.62b)

Kj2 :=

∫

Kj

φ1(x)φ2(x) dx =

∫∫

Kj

(x − xc,Kj
)(y − yc,Kj

) dxdy, (2.62c)

Kj3 :=

∫

Kj

φ2(x)φ2(x) dx =

∫∫

Kj

(y − yc,Kj
)2 dxdy. (2.62d)

These quantities are computed once and stored at the beginning of calculation as

long as fixed grids are considered. Let Kj be the inverse of the partial mass matrix

corresponding to the degrees of freedom, ∆xuj, ∆yuj, such that

Kj :=
1

Kj1Kj3 − K2
j2




Kj3 I −Kj2 I

−Kj2 I Kj1 I


 , (2.63)

where I ∈ Rm×m, then the update formulations in explicit form become

ūn+1
j = ūn

j − 1

|Aj|
∑

ei∈∂Kj

∫∫

ei×T

f
(
uh|Kj

,uh|Ke

)
· nei,Kj

dΓdt

+
1

|Aj|

∫∫

Kj×T

1

ǫ
s(uh(x, t)) dxdt,

(2.64a)




∆xu
n+1

j

∆yu
n+1

j


 =




∆xu
n

j

∆yu
n

j




+Kj




−
∑

ei∈∂Kj

∫∫

ei×T

(x − xc,Kj
) f
(
uh|Kj

,uh|Ke

)
· nei,Kj

dΓdt

−
∑

ei∈∂Kj

∫∫

ei×T

(y − yc,Kj
) f
(
uh|Kj

,uh|Ke

)
· nei,Kj

dΓdt




+Kj




∫∫

Kj×T

(1, 0) · f(uh(x, t)) dxdt +

∫∫

Kj×T

(x − xc,Kj
)
1

ǫ
s(uh(x, t)) dxdt

∫∫

Kj×T

(0, 1) · f(uh(x, t)) dxdt +

∫∫

Kj×T

(y − yc,Kj
)
1

ǫ
s(uh(x, t)) dxdt




.

(2.64b)
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Now we can see the advantage of defining the approximate solution based on the

cell-averaged quantities; the cell-average update equation can be solved first, then

the update quantity ūn+1
j is utilized for slope-update equations. Further numerical

approximations are necessary for the interface flux, f
(
uh|Kj

,uh|Ke

)
, surface integral

of the flux,

∫∫

ej×T

(·) dΓdt, and volume integral of the flux and source term,

∫∫

Kj×T

(·) dxdt.

2.3.6 Interface-Flux Approximation and Surface Integral

As we can see in Figure 2.4(e), a solution along the edge ej can not be uniquely

determined because continuity restriction along an edge is not enforced in a discon-

tinuous Galerkin method. Since this discontinuity is the place where wave interac-

tions occur, we borrow a precision tool developed in the finite-volume community,

i.e. the interface flux along the edge ej is obtained numerically by an approximate

Riemann solver:

f
(
uh|Kj

,uh|Ke

)
· nei,Kj

≈ f̂n
(
uh|Kj

,uh|Ke

)
, (2.65)

where f̂n is the vector of fluxes normal to the edge ei projecting from the element

Kj . Even though multidimensional problems are considered here, a Riemann solver

is still based on 1-D physics, as it is in most finite-volume methods. In this respect,

a discontinuous Galerkin method is not a truly multidimensional method. There is

a whole class of genuinely multidimensional methods called fluctuation-splitting or

residual-distribution methods originally proposed by Roe [Roe82, Roe86], yet this

rich subject goes beyond the scope of the present thesis, and we restrict ourselves

to providing some references: [Roe05a, DRS93, AM07]. The connection of this

methodology to the Petrov–Galerkin method was made by Carette et al. [CDPR95].

In an approximate Riemann solver, the flux tensor is projected normal to an ele-
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ment edge ei, then the eigenstructure of the Jacobian of the rotated flux is utilized.

The common choices are Roe’s [Roe81], HLL’s [HLvL83], and Rusanov’s [Rus62]

approximate Riemann solvers. The Rusanov flux is sometimes called the local

Lax–Friedrichs solver, but this only gives rise to a confusion. It is important to

note that the original Lax–Friedrichs flux for a DG method is unconditionally un-

stable. This was first found by Rider and Lowrie [RL02], and supported by further

analysis in [SvL07], but has not yet been recognized by the community.

The surface integral of a flux can be evaluated exactly if the flux is linear.

When a flux is nonlinear, a standard approach is approximating the integral by a

quadrature. An alternative, quadrature-free implementation is developed by Atkins

and Shu [AS96, AS98], who approximate a nonlinear flux in terms of the basis

functions:

f(u(x)) ≈
∑

i

f(u(xi)) φi(x). (2.66)

In this approach, the number of basis functions used to expand a flux has to be at

least one higher than the number of basis functions used for the solution approxima-

tion. In our formulation of the DG(1)–Hancock method, we adopt the traditional

approach: Gaussian quadratures for both surface and volume integrals.

Cockburn and Shu prove that, for a semi-discrete method, if the solution is

represented in a polynomial space P k, then a quadrature for the spatial integra-

tion along edges must be exact for a polynomial of degree 2k + 1 [CHS90]. Thus,

for DG(1)–Hancock, the spatial integration is replaced by a two-point Gaussian

quadrature, which is exact for a polynomial of degree 3. The time integration is

approximated by the midpoint rule, thus fluxes are evaluated at tn+1/2. Figure 2.6

is a schematic of the surface integral over the domain ei,Kj
× [tn, tn+1]. The symbols,

N, •, are the quadrature points associated with time tn+1/6, tn+1/2 respectively. The
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t

y
x

element:Kj

element:Ke

tn+1

tn+1/2

tn+1/6

tn

uh(x, tn)|Kj

uh(x, tn)|Ke

uh(x, tn+1)|Kj ∈ P k(Kj)

uh(x, tn+1)|Ke

∈ P k(Ke)

dΓ
xei,1

xei,2

nei,Kj

uh(x, tn+1/3)|Kj

tn+1/3

: quadrature points

Figure 2.6: The surface integral of the element-interface flux over the domain
ei,Kj

×[tn, tn+1] is replaced by the two-point Gauss quadrature in space. The quadra-
ture points are denoted by bullets (•, integration over [tn, tn+1]), and triangles (N,
integration over [tn, tn+1/3]). At each point, a Riemann solver is applied to compute
a unique interface flux.
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xc,Kj
xc,Ke

xei,2

xei,1

xei,c

◦, xc,Kj
, xc,Ke: element centroids

•, xei,1, xei,2: quadrature points (Riemann solver is applied)
×, xei,c: edge center

x

y

|ei,Kj
|

element:Kj

element:Ke

tei,Kj

nei,Kj

Figure 2.7: The bullet symbol (•) denotes quadrature points where a Riemann flux
is computed. For a P 1 method, two Riemann fluxes in the Gauss points along the
edge ej are required to approximate an actual distribution of the interface flux with
a polynomial of degree three (cubic function).

time integration of the flux over the interval [tn, tn+1] is approximated by two fluxes

located at the circular symbols (•), while triangular symbols (N) are used within

[tn, tn+1/3]. A similar schematic, but with quadrature points drawn in the x,y-plane,

is seen in Figure 2.7. It shows that a quadrilateral element requires 8 points to eval-

uate a Riemann flux, and a triangular element 6 points. The resulting quadrature

rule is as follows:

∫∫

ei×[tn,tn+1]

f
(
uh|Kj

,uh|Ke

)
· nei,Kj

dΓdt

≈
∫∫

ei×[tn,tn+1]

f̂n
(
uj(x, t),ue(x, t)

)
dΓdt

≈ |ei,Kj
|

tn+1∫

tn

∑

k

wk f̂n
(
uj(xk, t),ue(xk, t)

)
dt

≈ (tn+1 − tn) |ei,Kj
|
[
w1 f̂n

(
u

n+1/2
L1

,u
n+1/2
R1

)
+ w2 f̂n

(
u

n+1/2
L2

,u
n+1/2
R2

)]
,

(2.67)
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where the weights at Gauss points are

w1 = w2 =
1

2
, (2.68)

|ei,Kj
| is the length of the edge ei belonging to the element Kj, and the input

quantities of the Riemann solver are

u
n+1/2
L1

= uh

(
xei,1, tn+1/2

)
|Kj

, u
n+1/2
L2

= uh

(
xei,2, tn+1/2

)
|Kj

, (2.69a)

u
n+1/2
R1

= uh

(
xei,1, tn+1/2

)
|Ke, u

n+1/2
R2

= uh

(
xei,2, tn+1/2

)
|Ke. (2.69b)

The x-,y-coordinates of Gauss points xei,1, xei,2 are computed by

xei,1 = xei,c −
|ei,Kj

|
2
√

3
tei,Kj

, (2.70a)

xei,2 = xei,c +
|ei,Kj

|
2
√

3
tei,Kj

, (2.70b)

where tei,Kj
is the unit vector tangential to the edge ej of the element Kj. Other

quadrature points denoted by triangular symbols correspond to a time integral

over [tn, tn+1/3]. This integral is necessary to obtain the intermediate solution

uh(x, tn+1/3), used for the volume integral of the source term.

Hancock’s Predictor Step

So far, the interface flux has been replaced by a Riemann solver, and the sur-

face integral has been approximated by a Gaussian quadrature. To complete the

approximation of the surface integral, the last thing we need to specify is how to

compute the input quantities u(xedge, t
n+1/2) for a Riemann solver, associated to

the half-time level tn+1/2. Based on Hancock’s observation, flow quantities evolve

over the half time step without any interactions with neighbors. Hence, from the

update formula for conserved variables (2.64a) on page 64, element-face interactions
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can be removed:

ū
n+1/2
j = ūn

j − 1

2|Aj|
∑

ei∈∂Kj

∫∫

ei×T ′

f
(
uh(xei

, t)|Kj

)
· nei,Kj

dΓdt

+
1

2|Aj|

∫∫

Kj×T ′

1

ǫ
s
(
uh(x, t)

)
dxdt, (2.71)

where T ′ := [tn, tn+1/2], and the flux tensor f is simply evaluated from the solution

at each quadrature point xei
of the element Kj , obtained by (2.58a) on page 61.

The predictor step (2.71) to compute the cell-average quantities at time tn+1/2 can

be further simplified with the approximations in evaluating the flux integral at time

tn. As for the source term, since we are considering a stiff case, that is ǫ ≪ O(1),

an L-stable method for the temporal integration is preferable even in the predictor

step. The simplest one is the backward Euler method, hence the source integral is

evaluated at tn+1/2; then (2.71) becomes

ū
n+1/2
j = ūn

j − ∆t

2|Aj|
∑

ei∈∂Kj

∫

ei

f
(
uh(xei

, tn)|Kj

)
· nei,Kj

dΓ

+
∆t

2|Aj|

∫

Kj

1

ǫ
s
(
uh(x, tn+1/2)

)
dx, (2.72)

where

uh(xei
, tn) = ūn

j + φn
j

(
∆xu

n

j , ∆yu
n

j

)
· (xei

− xc,Kj
). (2.73)

Here xc,Kj
is the centroid of the element Kj , and φn

j is a gradient limiter such

as the TVB corrected minmod function by Cockburn and Shu [CS98]. The mim-

mod treatment of computing the slope from a few candidates can be replaced by

the Barth–Jespersen limiter [BJ89, Bar90], which is a multidimensional extension

of the one-dimensional double-minmod limiter [vL77], or the Venkatakrishnan lim-

iter [Ven95], which is the extension of the Van Alvada limiter [vAvLR82].
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The latest development in limiters for DG methods is the hierarchical recon-

struction due to Liu [LSTZ07], based on the moment limiter originally developed

by Biswas et al. [BDF94]. The approach reduces the limiting process a high-degree

polynomial to multiple limiting of piecewise linear functions. Thus, once a ‘good’

limiter for solution in P 1 is developed, the limiter can be applied to any higher-

degree polynomial hierarchically. Huynh’s new P 1 limiter seems to be a good can-

didate [Huy06b], but it still needs to be extended to an unstructured grid.

Once the predicted cell-average quantity ū
k+1/2
j at the element Kj is obtained,

the distribution of the solution along the edge ei can be computed by

uh(xei
, tn+1/2) = ū

n+1/2
j + φn

j

(
∆xu

n

j , ∆yu
n

j

)
· (xei

− xc,Kj
). (2.74)

Note that the slope variables ∆xu
n

j , ∆yu
n

j are still associated with the time tn. In

order to make the time integration of the source term point-implicit, the spatial

integral of the source term is evaluated with the solution at just one Gauss point,

(xei
, tn+1/2), thus

∫

Kj

1

ǫ
s
(
uh(x, tn+1/2)

)
dx ≈ |Aj|

ǫ
s
(
uh(xei

, tn+1/2)
)
. (2.75)

Inserting the above equation into (2.72) leads to the following implicit predictor

step for the input value of a Riemann solver:

uh(xei
, tn+1/2) = ūn

j − ∆t

2|Aj|
∑

ei∈∂Kj

∫

ei

f
(
uh(xei

, tn)|Kj

)
· nei,Kj

dΓ

+ φn
j

(
∆xu

n

j , ∆yu
n

j

)
· (xei

− xc,Kj
) +

∆t

2ǫ
s
(
uh(xei

, tn+1/2)
)
. (2.76)

Similar to the 1-D case, this predictor step is often based on the primitive variables

w instead of the conserved ones. Typically, the primitive form provides a linear

source term
1

ǫ(w)
s(w) = Qww, and the above implicit formula can be rewritten
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as an explicit predictor. This can be achieved by the following two steps. At first,

the conserved quantity at a particular Gauss point xei
is computed without the

influence of the source term,

ũh(xei
, tn+1/2) = ūn

j − ∆t

2|Aj|
∑

ei∈∂Kj

∫

ei

f
(
uh(xei

, tn)|Kj

)
· nei,Kj

dΓ

+ φn
j

(
∆xu

n

j , ∆yu
n

j

)
· (xei

− xc,Kj
). (2.77)

Once the predicted conserved quantity ũh(xei
, tn+1/2) at the Gauss point is obtained,

it is converted to the primitive variable w̃h(xei
, tn+1/2). The reason we do this is

that the P 1 distribution of the solution is only defined in terms of the conserved

variable uh|Kj
; the distribution of the primitive variable wh|Kj

in an element is

not even a linear function. Thus, the conversion between conserved and primitive

variables is only valid at a point, but not in the entire element. The final update

formula to obtain the input values for a Riemann solver becomes

wh(xei
, tn+1/2) = w̃h(xei

, tn+1/2) +
∆t

2ǫ
s
(
wh(xei

, tn+1/2)
)
, (2.78)

and in the case of a linear source,
1

ǫ(w)
s(w) = Qww, with a constant relaxation

time, ǫ(w) = constant, we have

wh(xei
, tn+1/2) =

[
I − ∆t

2
Qw

]−1

w̃(xei
tn+1/2). (2.79)

If the relaxation time depends on the solution, as in the 10-moment equations,

an iterative method must be applied to solve the implicit formula in the primitive

form (2.78), or conserved form (2.76); the Newton–Raphson method is sufficient.

An alternative is treating the whole predictor step in the primitive form:

wh(xei
, tn+1/2) = w(xc,Kj

, tn) − ∆t

2

(
Aw ∆xw

n
j + Bw ∆yw

n
j

)

+ φn
j (∆xw

n
j , ∆yw

n
j ) · (x − xc,Kj

) +
∆t

2ǫ
s
(
wh(xei

, tn+1/2)
)
, (2.80)
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where Aw,Bw are the coefficient matrix of the primitive equations, and the slopes

of primitive quantities at the centroid are

(
∆xw

n
j , ∆yw

n
j

)
= M−1

(
∆xu

n

j , ∆yu
n

j

)
; M :=

∂u

∂w
. (2.81)

2.3.7 Volume Integral of Flux and Source Term

In the evolution equations of the degrees of freedom (2.64), three volume integrals

need to be evaluated numerically: the source term, the flux, and the moment of

the source term. All integrals are evaluated by the L-stable two-point Radau IIA

quadrature in time in view of the stiffness of the source term. Linearization of

the source term allows a simpler implicit treatment, i.e., the cell-average update

equations are independent of the updates of the other two degrees of freedom. As for

the flux integral, either a Gauss quadrature or a Gauss–Lobatto quadrature in space

is adopted. Figure 2.8 shows locations of quadrature points for both quadrilateral

and triangular elements. Note that the quadrature points for the flux (•) and the

source term (N) are different. In Chapter III, it may shown that the order of spatial

and temporal integration of the flux affects the accuracy of the DG(1)–Hancock

method. From numerical results, it was concluded that spatial integration at each

time level needs to be carried out first, then a time integration is applied to spatially

averaged quantities.

Volume Integral of the Source Term

The volume integral of the source term appears in the cell average update equa-

tion (2.64a). The quadrature points are shown in Figure 2.8 as the triangular

symbol (N). In order to make the update equations of cell-averaged quantities in-

dependent to other two update formulas of the degrees of freedom, the source term
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element:Kj element:Ke

uh(x, tn)|Ke ∈ P k(Ke)

tn+1

tn

tn+1/3

(b)

tn+1

tn

tn+1/3

uh(x, tn)|Kj

∈ P k(Kj)

element:Kj

tn+1

tn

tn+1/3

uh(x, tn)|Kj

∈ P k(Kj)

(c)

(a)

: quadrature points for flux
: quadrature points for source term

t

y
x

Figure 2.8: The quadrature points required for the volume integrals of flux and
source term are denoted as bullet (•) and triangle (N) respectively. For the flux in-
tegration, four points are necessary at each time level for a quadrilateral element (a),
while three points along edges are required for a triangular element (b). Alternative
quadrature points for a quadrilateral element are shown in (c), with the benefit that
conserved quantities at the Gauss points along edges are already computed when a
Riemann flux has to be calculated.
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is linearized such that

1

ǫ
s(uh(x, t)) ≈ 1

ǫ(ūj(t))
s
(
ūj(t)

)
+Q

(
ūj(t)

) (
∆xuj(t), ∆yuj(t)

)
·(x−xc,Kj

), (2.82)

where Q(u) =
∂(s/ǫ)

∂u
. By approximating the above linearization, integration in

space is evaluated analytically, and the volume integral can be simplified together

with the two-point Radau IIA method such that

∫∫

Kj×T

1

ǫ
s
(
uh(x, t)

)
dxdt ≈ |Aj|

∫

T

1

ǫ
s
(
ūj(t)

)
dt

≈ |Aj|∆t

[
3

4

s(ū
n+1/3
j )

ǫ(ū
n+1/3
j )

+
1

4

s(ūn+1
j )

ǫ(ūn+1
j )

]
. (2.83)

Volume Integral of the Flux

Volume integrals of the flux appear in the update formula of the slope quanti-

ties (2.64b). The space-time volume integral is first approximated by the two-point

Radau IIA quadrature in time:

∫∫

Kj×T

f(uh(x, t)) dxdt ≈ ∆t

∫

Kj

[
3

4
f
(
u(x, tn+1/3)

)
+

1

4
f
(
u(x, tn+1)

)]
dx. (2.84)

The next step is quadrature of the flux in space at the time levels tn+1/3, tn+1. Since

the shape of an element can be any polygon, a coordinate transformation from the

global (physical) coordinate, x = (x, y), to the local (computational) coordinate,

ξ = (ξ, η), is necessary. In this section, we keep the formulation in general form to

make it valid for both quadrilateral and triangular elements. Let J be the Jacobian

matrix of the coordinate transformation from ξ to x, thus J :=
∂x

∂ξ
∈ R2×2, then

the integration over the domain Kj can be transform to the local domain K̂j :=

[−1, 1] × [−1, 1] such that

∫

Kj

f(u(x, t)) dx =

∫

K̂j

f(u(ξ, t))|J(ξ)| dξ, (2.85)



76

where |J(ξ)| is the Jacobian determinant. In the case of a triangular element, the

Jacobian determinant is constant and equivalent to the area of a triangle, which

further simplifies the above quadrature. Conversely, for a quadrilateral element,

both the flux and Jacobian determinant at a quadrature point in the local domain

K̂j have to be evaluated simultaneously. The quadrature points for quadrilateral and

triangular elements are indicated in Figure 2.8(a) and (b) by the bullet symbol (•).

Cockburn and Shu propose to recycle extrapolated quantities already computed for

a Riemann solver [CS98, p. 206]. This leads to the nine-point quadrature shown

in Figure 2.8(c). The only extra computational work is computing the flux at the

centroid of the local element K̂j . Finally, the volume integral of the flux is replaced

by quadrature:

∫∫

Kj×T

f(uh(x, t)) dxdt ≈ ∆t
∑

i

wi|J(ξi)|
[
3

4
f(u(ξi, t

n+1/3)) +
1

4
f(u(ξi, t

n+1))

]
,

(2.86a)

where wi are the weights at Gauss points. The detailed implementation of the

coordinate transformation for quadrilateral and triangular elements are provided in

Appendix A on page 343.

Volume Integral of the Moment of the Source Term

The volume integral of the moment of the source term appears in the evolution

equations of slope quantities (2.64b) on page 64. Following the procedure taken for

the source-term volume integral, the source term linearization (2.82) is assumed.

Hence, the spatial integration is done analytically, while the two-point Radau IIA
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quadrature is applied in time. The resulting formulas are the following:

∫∫

Kj×T

(x−xc,Kj
)
1

ǫ
s
(
uh(x, t)

)
dxdt

≈ Kj1

∫

T

Q
(
ū(t)

)
∆xuj(t) dt + Kj2

∫

T

Q
(
ū(t)

)
∆yuj(t) dt

≈ 3

4
∆tQ

(
ū

n+1/3
j

) (
Kj1∆xu

n+1/3

j + Kj2∆yu
n+1/3

j

)

+
1

4
∆tQ

(
ūn+1

j

) (
Kj1∆xu

n+1

j + Kj2∆yu
n+1

j

)
,

(2.87a)

∫∫

Kj×T

(y−yc,Kj
)
1

ǫ
s
(
uh(x, t)

)
dxdt

≈ 3

4
∆tQ

(
ū

n+1/3
j

) (
Kj2∆xu

n+1/3

j + Kj3∆yu
n+1/3

j

)

+
1

4
∆tQ

(
ūn+1

j

) (
Kj2∆xu

n+1

j + Kj3∆yu
n+1

j

)
.

(2.87b)

2.3.8 Update Formulas in Discrete Form

In summary, discrete update formulations for the DG(1)–Hancock method are

presented. Since the solution u is approximated by a piecewise linear function, we

have three independent update equations for three vectors of degrees of freedom.

Owing to the linearization of the source term, the update equations of the first degree

of freedom, the cell averages, can be updated from tn to tn+1 without updating the

other two degrees of freedom. The actual discretized form including the intermediate
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update equation is as follows:




ū
n+1/3
j

ūn+1
j


 =




ūn
j

ūn
j




− ∆t

|Aj |




1

3

∑

ei∈∂Kj

|ei,Kj
|
[
w1 f̂n

(
u

n+1/6
ei,1,L ,u

n+1/6
ei,1,R

)
+ w2 f̂n

(
u

n+1/6
ei,2,L ,u

n+1/6
ei,2,R

)]

∑

ei∈∂Kj

|ei,Kj
|
[
w1 f̂n

(
u

n+1/2
ei,1,L ,u

n+1/2
ei,1,R

)
+ w2 f̂n

(
u

n+1/2
ei,2,L ,u

n+1/2
ei,2,R

)]




︸ ︷︷ ︸
explicit

+ ∆t




5

12
I − 1

12
I

3

4
I

1

4
I







1

ǫ(ū
n+1/3
j )

s(ū
n+1/3
j )

1

ǫ(ūn+1
j )

s(ūn+1
j )




︸ ︷︷ ︸
implicit

,

(2.88a)

where I ∈ Rm×m. The Newton–Raphson method is adopted for the implicit source

term.

Once the cell-averaged variables at the three time levels, tn, tn+1/3, tn+1, are

known, the volume integrals of the flux can be evaluated explicitly; then the final

update formulas for the rest of the degrees of freedom (slope quantities) are only

implicit with respect to the source term. Again, the Newton–Raphson method is
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applied to the following update formulas for the slope quantities:




∆xu
n+1/3

j

∆yu
n+1/3

j

∆xu
n+1

j

∆yu
n+1

j




=




∆xu
n

j

∆yu
n

j

∆xu
n

j

∆yu
n

j




+ ∆t




Kj 0

0 Kj







−1

3

∑

ei∈∂Kj

|ei,Kj
|
[
w1(xei,1 − xc,Kj

) f̂n
(
u

n+1/6
ei,1,L ,u

n+1/6
ei,1,R

)

+w2(xei,2 − xc,Kj
) f̂n
(
u

n+1/6
ei,2,L ,u

n+1/6
ei,2,R

)]

−1

3

∑

ei∈∂Kj

|ei,Kj
|
[
w1(yei,1 − yc,Kj

) f̂n
(
u

n+1/6
ei,1,L ,u

n+1/6
ei,1,R

)

+w2(yei,2 − yc,Kj
) f̂n
(
u

n+1/6
ei,2,L ,u

n+1/6
ei,2,R

)]

−
∑

ei∈∂Kj

|ei,Kj
|
[
w1(xei,1 − xc,Kj

) f̂n
(
u

n+1/2
ei,1,L ,u

n+1/2
ei,1,R

)

+w2(xei,2 − xc,Kj
) f̂n
(
u

n+1/2
ei,2,L ,u

n+1/2
ei,2,R

)]

−
∑

ei∈∂Kj

|ei,Kj
|
[
w1(yei,1 − yc,Kj

) f̂n
(
u

n+1/2
ei,1,L ,u

n+1/2
ei,1,R

)

+w2(yei,2 − yc,Kj
) f̂n
(
u

n+1/2
ei,2,L ,u

n+1/2
ei,2,R

)]




︸ ︷︷ ︸
explicit

+ ∆t




Kj 0

0 Kj







∑

i

wi |J(ξi)|
[
1

2
f(u(ξi, t

n)) +
1

2
f(u(ξi, t

n+1/3))

]
· (1, 0)

∑

i

wi |J(ξi)|
[
1

2
f(u(ξi, t

n)) +
1

2
f(u(ξi, t

n+1/3))

]
· (0, 1)

∑

i

wi |J(ξi)|
[
3

4
f(u(ξi, t

n+1/3)) +
1

4
f(u(ξi, t

n+1))

]
· (1, 0)

∑

i

wi |J(ξi)|
[
3

4
f(u(ξi, t

n+1/3)) +
1

4
f(u(ξi, t

n+1))

]
· (0, 1)




︸ ︷︷ ︸
explicit
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+ ∆t




5

12
I − 1

12
I

3

4
I

1

4
I







Q
(
u

n+1/3
j

)
0 0 0

0 Q
(
u

n+1/3
j

)
0 0

0 0 Q
(
un+1

j

)
0

0 0 0 Q
(
un+1

j

)







∆xu
n+1/3

j

∆yu
n+1/3

j

∆xu
n+1

j

∆yu
n+1

j




︸ ︷︷ ︸
implicit

,

(2.88b)

where I,Kj ∈ Rm×m. These completes the discretization of the DG(1)–Hancock

method for two-dimensional problems.

2.4 The Original Hancock Method

The original Hancock method [vAvLR82], which is a second-order finite volume

method, is described for the purpose of comparison to the DG(1)–Hancock method.

Among finite-volume methods for hyperbolic systems, those of the Godunov-type

have been most successful; these require an algorithm for solving the Riemann

problem arising at each cell interface, either exactly or approximately. As explained

in the previous section, a first-order finite volume method can be seen as the simplest

of discontinuous Galerkin methods, with the local solution in P 0. Starting with

the second method, instead of storing extra degrees of freedom, a finite-volume

method reconstructs a higher-order polynomial in a cell by using information from

neighboring cells.

The Hancock discretization for the multidimensional hyperbolic-relaxation equa-

tions (2.43) can be started from the update equation of cell-averaged variables (2.64a)

in the DG formulation (on page 64). In general, evaluation of the volume-averaged

source term,

∫

Kj

1

ǫ
s(u(x)) dx, requires numerical quadrature; in particular, it is not

equivalent to standard finite-volume practice of evaluating the source term based
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on the cell-average, s(ū(xj)). For instance, in the 1-D case,

s̄j(u) : =
1

∆x

∫

Ij

s(u(x)) dx

= s(ūj) + O
(
∆x2

)
. (2.89)

In a second-order accurate method such as described below, though, the average

source term s̄j(u) can be replaced by s(ūj). Similarly, the spatial integral along

edges of an element can be approximated by the midpoint rule; the interface flux

at the element ei is evaluated at the edge center xei,c such that

∫∫

ei×T

f
(
uh|Kj

,uh|Ke

)
· nei,Kj

dΓdt ≈ |ei,Kj
|
∫

T

f̂n
(
uj(xei,c, t),ue(xei,c, t)

)
dt, (2.90)

where f̂n is a Riemann flux outward of Kj and normal to the edge ej , and |ei,Kj
| is the

length of the edge ei belonging to the element Kj . Figure 2.9 shows the quadrature

points (midpoint rule) where a Riemann solver is applied. Consequently, finite-

volume methods of second-order accuracy in space can be written in fully discrete

form as

ūn+1
j = ūn

j − 1

|Aj|
∑

ei∈∂Kj


|ei,Kj

|
∫

T

f̂n
(
uj(xei,c, t),ue(xei,c, t)

)
dt


+

∫

T

1

ǫ
s(ūj(t)) dt.

(2.91)

Note that time integrations of the flux and source term along the time domain

T := [tn, tn+1] have not been specified yet. Second-order accuracy in space and

time is achieved by introducing linear subcell distributions and evaluating fluxes

and source terms halfway during the time step:

∫

T

f̂n
(
uj(xei,c, t),ue(xei,c, t)

)
dt ≈ ∆t f̂n

(
uj(xei,c, t

n+1/2),ue(xei,c, t
n+1/2)

)
, (2.92a)

∫

T

1

ǫ
s(ūj(t)) dt ≈ ∆t

ǫ
s
(
ūj(t

n+1/2)
)
. (2.92b)
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xc,Kj
xc,Ke

xei,c

◦, xc,Kj
, xc,Ke: element centroids

•, xei,c: quadrature points (Riemann solver is applied)

x

y

|ei,Kj
|element:Kj

element:Ke

Figure 2.9: Quadrature points for Hancock’s original method. The bullet symbol (•)
denotes quadrature points where a Riemann flux is computed. The midpoint rule
guarantees the second-order approximation of the surface integral of the flux along
the edge ej .

Here, the source term integration is treated explicitly for the sake of simplicity.

However, due to the explicit treatment, the time step will suffer by the stiffness of

the source term, i.e., ∆t ∼ min

(
h

|λ|max

, ǫ

)
, where λmax is the maximum eigenvalue

of the flux Jacobian.

Inserting the above approximate time integrals into (2.91) results in the fully

discrete Hancock method:

ūn+1
j = ūn

j −
∆t

|Aj |
∑

ei∈∂Kj

f̂n
(
uj(xei,c, t

n+1/2),ue(xei,c, t
n+1/2)

)
|ei,Kj

|+∆t

ǫ
s
(
ūj(t

n+1/2)
)
.

(2.93)

The half-time (predictor) step, which includes gradient-limiting, to obtain uj(x, tn+1/2)

is done in terms of primitive variables, w(x, t), instead of conserved variables,

u(x, t), to prevent non-physical values such as negative pressures. Let M be the

Jacobian matrix defined by

M :=
∂u

∂w
, (2.94)
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then the two-dimensional hyperbolic-relaxation equations can be reformulated in

the primitive form:

∂w

∂t
+ Aw

∂w

∂x
+ Bw

∂w

∂y
= M−11

ǫ
s(w), (2.95)

where Aw,Bw ∈ Rm×m are the coefficient matrices of the primitive equations 1

obtained by a similarity transformation of the flux Jacobian:

{Aw,Bw} := M−1

(
∂f(u)

∂u

)
M; f ∈ R

m×2. (2.96)

When the 10-moment equations are considered, owing to its simple structure, the

source term is not affected by the variable transformation: M−1 1

ǫ
s ≡ 1

ǫ
s. Since the

divergence theorem can not be applied to the primitive form, we discretize (2.95)

by finite-differencing. Applying the forward Euler method in time, the primitive

quantities at the half time step, w
n+1/2
j , are approximated by

w
n+1/2
j = wn

j − ∆t

2

(
Aw ∆xw

n
j + Bw ∆yw

n
j

)
+

∆t

2ǫ
s(wn

j ), (2.97)

where the gradients of the primitive variables, ∇wn
j = (∆xw

n
j , ∆yw

n
j ), are ob-

tained by either the Green–Gauss formula [BF90] or solving a least-square prob-

lems [Bar93, OGvA02] involving data from all adjacent cells. In general, the least-

squares gradient reconstruction is more robust than the Green–Gauss contour inte-

gral, yet various ways of weighting residuals are possible in the former method, and

the unweighted approach this is often taken is not even the best [Mav07].

Once primitive variables at half-time are obtained, interface fluxes are computed

by solving Riemann problems. Finally, the full-time (corrector) step to update

1The resulting matrix An should not be called as the primitive Jacobian since the definition of
a Jacobian matrix is the derivative of one vector to another one. The reader is referred to helpful
hints in [vL06] for preventing misuse of terminologies.
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conservative variables can be written as

ūn+1
j = ūn

j −
∆t

|Aj |
∑

ei∈∂Kj

f̂n
(
w̃j(xei,c, t

n+1/2), w̃e(xei,c, t
n+1/2)

)
|ei,Kj

|+∆t

ǫ
s
(
wj(t

n+1/2)
)
,

(2.98)

where the primitive quantities, w
n+1/2
j , associated with the centroid of a cell, are

linearly extrapolated to the midpoint xei,c of the edge ei by

w̃j(x, tn+1/2) = w
n+1/2
j + φi (∇wn

j ) · (x − xc,Kj
). (2.99)

Here φi is a gradient limiter such as the double-minmod limiter [Bar90], and xc,Kj

is the centroid of cell Kj . For details of implementation one is referred to [DZ93,

pp. 49–57]. Note that the slope quantities, ∇wn
j , are used for the reconstruction

step; ideally, slopes associated with the time level tn+1/2 need to be computed, yet

old slopes are sufficient for a second-order method.

2.5 Semi-Discrete Methods

The DG(1)–Hancock and Hancock methods introduced in the previous sections

are fully discrete methods. This means that the spatial and temporal derivatives are

discretized simultaneously. The other approach to discretizing hyperbolic-relaxation

equations (2.1) is based on the method-of-lines (MOL), which decouples the spatial

and temporal discretizations. The advantages of adopting an MOL are the simpli-

fication of the design of a scheme, flexibility to combine a suitable spatial and tem-

poral methods, and ease of implementation. While general-purpose semi-discrete

finite-difference, finite-volume, or discontinuous Galerkin methods are employed as

spatial discretizations, a number of time discretizations (ODE solvers) have been

developed specifically for hyperbolic-relaxation equations.
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2.5.1 Time Integration with a Stiff Source Term

When a semi-discrete method is considered, the 1-D hyperbolic-relaxation equa-

tions can be written in the form:

∂uj(t)

∂t
= −∂f(uj(t))

∂x
+

1

ǫ
s(uj(t)), (2.100)

where the solution uj is still a continuous function in time. Due to the stiffness intro-

duced by the relaxation time ǫ in the source term, the source term needs to be treated

implicitly for stability. Conversely, the flux is evaluated explicitly. One of the dif-

ficulties in designing such a method is that when the flow is in equilibrium, thus

ǫ → 0, the method has to be consistent with the hyperbolic conservation laws (2.2)

at the discretization level. This property guarantees that a underresolved method

correctly captures the macroscopic behavior. Jin named such schemes asymptotic

preserving (AP) [Jin99]. Numerous methods have been proposed to achieve the AP

property [Jin95, CJR97, Jin99, LRR00, Rus02]. These methods are summarized as

the Butcher array in [PR03].

Among the family of these Runge–Kutta methods, Pareschi and Russo ex-

tend the implicit-explicit (IMEX) Runge–Kutta method, originally developed for

advection-diffusion problems [ARS97, ARW95], to hyperbolic-relaxation equations

[PR05]. The methods utilize an explicit, strongly-stability-preserving (SSP) method

for the flux, and an L-stable, diagonally implicit Runge–Kutta method for the source

term. The methods are shown to possess the AP property at the equilibrium limit.

They use the notation IMEX–SSPk(s, σ, p) where k is the order of the SSP scheme,

s the number of states of the implicit method, σ the number of stages of the ex-

plicit method, and p the order of the IMEX method. Here, we adopt a second-order

IMEX Runge–Kutta method: IMEX–SSP2(3,3,2) as the time integration for the
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MOL approach. This time integrator requires three stages for both explicit and

implicit terms to achieve second-order accuracy. The update formulas are given by

u(1) = un +
∆t

4ǫ
s(u(1)),

u(2) = un − ∆t

2
∂xf(u

(1)) +
∆t

4ǫ
s(u(2)), (2.101)

u(3) = un − ∆t

2

[
∂xf(u

(1)) + ∂xf(u
(2))
]
+

∆t

3ǫ

[
s(u(1)) + s(u(2)) + s(u(3))

]
,

un+1 = un − ∆t

3

[
∂xf(u

(1)) + ∂xf(u
(2)) + ∂xf(u

(3))
]
+

∆t

3ǫ

[
s(u(1)) + s(u(2)) + s(u(3))

]
.



CHAPTER III

ANALYSIS FOR 1-D AND 2-D LINEAR

ADVECTION EQUATIONS

3.1 Introduction

In this chapter, a Fourier analysis is employed to uncover the linear proper-

ties of methods for hyperbolic conservation laws without source terms; hyperbolic-

relaxation systems will be analyzed in Chapter IV. The analysis is also called a ‘Von

Neumann analysis’ named after John von Neumann, who originally introduced the

analysis for parabolic differential equations [vNR47, vNR63]. The actual applica-

tions of the analysis can be found in many textbooks [RM67, TAP97]. The analysis

shows the order of accuracy, the dominant numerical dissipation/dispersion errors

for the low-frequency mode, and the linear stability of a method. Note that the as-

sumptions required for a Fourier analysis are uniform grids and periodic boundary

conditions. The dimensionless 1-D and 2-D linear advection equations,

∂tu + r∂xu = 0, |r| ≤ 1, (3.1a)

∂tu + r∂xu + s∂yu = 0, |r|, |s| ≤ 1, (3.1b)

are considered as the model equations. Here, the normalization is rather uncommon.

The advection speed is normalized by the larger ‘frozen’ wave speed (= 1) arising

87
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further on in hyperbolic-relaxation systems. The motivation of this normalization

will be clear once hyperbolic-relaxation systems are considered in Chapter IV.

The Courant number, ν, is defined by the dimensionless frozen wave speed, 1,

instead of the advection speed, r, thus

ν := 1
∆t

∆x
, ∆x, ∆t ∈ R

+. (3.2)

Again, this definition is rather uncommon. Conventionally, the Courant number for

a linear advection equation is defined by

ν̃ := r
∆t

∆x
, (3.3)

where the advection speed, r, is normalized by the spatial and temporal scales.

To make the analysis consistent with the results later presented for the linear

hyperbolic-relaxation equations, we adopt ν as the Courant number here. The

conventional expression can be recovered by substituting

rν = ν̃. (3.4)

Recall that, for a linear advection equation, both the upwind moment scheme

(with Gauss–Lobatto quadrature for the volume integral) and the proposed method

(with Gauss–Radau quadrature) are identical to Van Leer’s scheme III [vL77]. The

upwind moment method (DG(1)–Hancock) is compared with three other method-

ologies: a semi-discrete high-resolution Godunov method (HR) with method-of-lines

(MOL) or Hancock time integration, and a DG(1)–MOL method. These methods

can be regarded as the combination of a spatial and a temporal discretization, and

are tabulated in Table 3.1. Here, we adopt the notations HRs and RKs, where s

is the order of accuracy, and DG(k) where k is the degree of the polynomial basis.

A Fourier analysis for the 1-D advection equation shows that the upwind moment
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high-resolution Godunov (HR) discontinuous Galerkin (DG)

Runge–Kutta (RK) HR2–RK2, HR2–RK3 DG(1)–RK2, DG(1)–RK3

Hancock (Ha) Hancock (HR2–Ha) upwind moment (DG(1)–Ha)

Table 3.1: The combinations of space and time discretization methods. First row:
semi-discrete methods; second row: the fully discrete methods.

method is linearly stable up to the Courant number 1 with an upwind flux, whereas

DG spatial discretizations combined with MOL typically have a more strict stability

condition: for DG(1)–RK2 (second-order) the limit is
1

3
, and for the DG(2)–RK3

(third-order) it is
1

5
[CS01, p. 191].

3.2 Methodology

3.2.1 Difference Operators in Fourier (Frequency) Space

To investigate and compare the properties of a method, it is useful to write

a method in compact form. Let the forward, δ+, and backward, δ−, difference

operator be

δ+uj = uj+1 − uj, (3.5a)

δ−uj = uj − uj−1, (3.5b)

where uj ∈ Rn. Then, translation over any number of cells can be expressed by

applying these difference operators multiple times, e.g.,

uj+2 = (I + δ+)2uj, (3.6a)

uj−2 = (I − δ−)2uj , (3.6b)
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where I is the identity operator, that is, uj = Iuj . Using these difference operators,

the simplest fully discrete methods can be expressed as

un+1
j = G(ν, r, q)un

j , (3.7)

where G ∈ Rn×n is an amplification factor or matrix, and q is the dissipation

parameter of the q-flux (3.27) [vL69]. Since the fully discrete method considered

here is a multi-stage one-step method, it can be written as the forward Euler method

in time, thus

un+1
j − un

j

∆t
= M(ν, r, q, ∆x)un

j , (3.8a)

or

un+1
j = [I + ∆tM(ν, r, q, ∆x)]un

j , (3.8b)

where M ∈ Rn×n is a ‘spatial-temporal’ difference operator. Comparing to the (3.7),

the amplification matrix, G, can be expressed in terms of M:

fully discrete : GM = I + ∆tM. (3.9)

Conversely, a semi-discrete method is only expressed in an ODE form:

∂uj(t)

∂t
= N(r, q, ∆x)uj(t), (3.10)

where N ∈ Rn×n is a ‘spatial’ difference operator. The notation of the two difference

operators is made distinct on purpose: to a fully discrete method is assigned M,

and to a semi-discrete method N. Note that since a semi-discrete method is only

discretized in space, N is not a function of ν, thus an ODE solver is in charge of the

temporal discretization. Here, two RK methods are adopted for the time integration

in semi-discrete methods. The two- and three-stage RK methods are second- and
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third-order accurate in time respectively. For a system of linear equations, a RK

method simply generates the series expansion of the matrix exponential eN∆t up to

a certain order, thus

RK2: GN = I + ∆tN +
∆t2

2
N2, (3.11a)

RK3: GN = I + ∆tN +
∆t2

2
N2 +

∆t3

6
N3. (3.11b)

In a Fourier analysis, the investigation of the amplification factor G is the main

interest. When a finite-volume method is applied to a scalar linear equation, this

factor is a scalar, thus the derivation is straightforward. However, when a DG

method is applied, even though the target equation is a scalar equation, the ampli-

fication factor becomes a matrix due to the introduction of extra variables in each

cell. To extract the behavior of a method, eigenvalues of G must be obtained by

solving a characteristic equation,

det(G − gI) = 0, (3.12)

where g is an eigenvalue of G. Later, a Fourier analysis is extended to the 2 × 2

linear hyperbolic-relaxation equations. In this case, a DG(1) method produces a

4 × 4 amplification matrix, and an analysis directly dealing with the amplification

matrix, G, becomes cumbersome.

Instead of directly computing eigenvalues from G, the derivation is simpli-

fied by assuming that the spatial matrix operator N is diagonalizable such that

N = RΛNR−1. A sufficient condition for this assumption is that the character-

istic polynomial of N has n distinct eigenvalues. Inserting this relation into, for

instance, (3.11a) leads to,

RK2: R−1GNR = I + ∆tΛN +
∆t2

2
Λ2

N. (3.13)
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Since the similarity transformation is eigenvalue-invariant, eigenvalues of N are

computed first, and then inserted into the above equation to obtain the eigenvalues

of GN. This significantly reduces the complexity of the derivation for an MOL-

based method since we only need eigenvalues of the spatial matrix operator, N, not

the amplification matrix, GN, in the first place. Let g(i) be the amplification factor

corresponding to the i-th eigenvalue λi of N, then (3.13) is replaced by

RK2: g(i) = 1 + ∆tλi +
∆t2

2
λ2

i . (3.14)

This is an example of the spectral mapping theorem [Var62], [Hir89, p. 297].

For a single Fourier mode of wavelength N∆x, the solution at cell j can be

represented as follows:

uj = û0 exp

(
i
2πj

N

)

= û0 exp(iβj), β ∈ [−π, π], (3.15)

where β is the spatial frequency of the wave. Here, β = 0 corresponds to the

low-frequency limit, and β = π is the high-frequency limit. Using a Fourier repre-

sentation, the difference operators are now replaced by exponential functions,

δ+ = eiβ − 1, (3.16a)

δ− = 1 − e−iβ. (3.16b)

Inserting these relations into a matrix operator, M or N, removes the difference

operators in the amplification matrix.

3.2.2 Exact Solution

An exact solution is critical to examining the order of accuracy of a method.

The exact solution of (3.1a) in the harmonic mode is given by

u(x, t) = û0e
ik(x−rt), (3.17)
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where k is the spatial wave number. The exact amplification factor is obtained by

expressing u(x, t + ∆t) in terms of u(x, t),

u(x, t + ∆t) = û0e
ik(x−rt)e−irk∆t

= e−irk∆tu(x, t). (3.18)

It shows that the exact amplification factor for the time step ∆t, and the exact

eigenvalue of the spatial discretization operator in (3.10) are given by

gexact = e−irk∆t, (3.19a)

λexact = −irk. (3.19b)

In a Fourier mode, the wave number k is related to the frequency of a wave β by

k =
β

∆x
, (3.20)

thus the amplification factor and spatial eigenvalue become

gexact(ν̃, β) = e−irνβ = e−iν̃β, (3.21a)

λexact = − ir

∆x
β. (3.21b)

A good understanding of the properties of a method is obtained by rewriting an

amplification factor in the polar form. An amplification factor can be expressed by

the modulus |g| and the phase angle φ ∈ [−π, π] such that

g = |g|eiφ, (3.22)

where

|g| =
√

ℜ(g)2 + ℑ(g)2, (3.23a)

φ = arg(g) = arctan

[ℑ(g)

ℜ(g)

]
. (3.23b)
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The modulus represents the dissipation, and the phase angle represents the disper-

sion of a method. For the exact solution, we have

|gexact| = 1, (3.24a)

φexact = −rνβ = −ν̃β. (3.24b)

Later in an analysis, the low-frequency limit of a Fourier mode is compared with the

exact solution. The exact amplification factor in the low-frequency limit is given by

expanding in the frequency of a wave, β, with the fixed Courant number, rν, thus

gexact(rν, β) = 1 + (−irν)β +
1

2
(−irν)2β2 +

1

6
(−irν)3β3 +

1

24
(−irν)4β4 + O

(
β5
)
.

(3.25)

3.2.3 Example of the Analysis (First-Order Method)

Before we start analyzing a higher-order method, the first-order method is an-

alyzed to demonstrate a Fourier analysis for both accuracy and stability. Here,

a finite-volume discretization in space, and the forward Euler method in time are

employed for the 1-D linear advection equation (3.1a). The resulting scheme is as

follows:

ūn+1
j − ūn

j

∆t
= − 1

∆x

(
f̂n

j+1/2 − f̂n
j−1/2

)
, (3.26)

where the linear flux, f(u) = ru, is evaluated at the time level tn at each cell

interface, j ± 1/2. Making the analysis more general, the q-flux [vL69], which

parameterizes the amount of numerical dissipation added into the flux calculation,
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is employed as the flux function:

f q
j+1/2(uL, uR) =

r

2
(uL + uR) − q

2
(uR − uL), with q =





|r| upwind,

1 Rusanov, HLL1,

∆x

∆t
Lax–Friedrichs.

(3.27)

The unity value in the Rusanov flux comes from the dimensionless frozen wave speed

which, appears in the linear hyperbolic-relaxation equations. Here, the dissipation

parameter, q, satisfies the inequality,

|r| ≤ q ≤ ∆x

∆t
=

1

ν
. (3.28)

Thus, it is easily seen that the upwind flux introduces the least numerical dissipation,

whereas the Lax–Friedrichs (LxF) has the most. The first-order approximation of

interface fluxes is given by using the cell-averaged values as input, thus for the

q-flux,

f̂n
j+1/2 = f q

j+1/2(ū
n
j , ūn

j+1), (3.29a)

f̂n
j−1/2 = f q

j−1/2(ū
n
j−1, ū

n
j ). (3.29b)

Here, even though the first-order method (3.26) can be seen as a fully discrete

method, strictly speaking, it is a semi-discrete method combined with the MOL

approach, since the flux formula does not contain time variation. Inserting the

difference equations of fluxes into the update equation, the resulting scheme has the

three-point formula:

ūn+1
j − ūn

j

∆t
= − r

2∆x
(ūn

j+1 − ūn
j−1) +

q

2∆x
(ūn

j+1 − 2ūn
j + ūn

j−1)

=
q − r

2∆x
ūn

j+1 −
q

∆x
ūn

j +
q + r

2∆x
ūn

j−1. (3.30)
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Applying the difference operators (3.5) to the above equation leads to the compact

form, thus

ūn+1
j = g1st-orderū

n
j

= (1 + ∆t N1st-order) ūn
j , (3.31)

where

N1st-order =
q − r

2∆x
δ+ − q + r

2∆x
δ−, (3.32a)

or for a Fourier mode,

N1st-order =
q − r

2∆x
eiβ − q

∆x
+

q + r

2∆x
e−iβ. (3.32b)

Shift Condition

When the upwind flux, q = r, is used, and the Courant number is set to unity,

thus r
∆t

∆x
= 1, then the spatial difference operator multiplied by the time step, ∆t,

reduces to

∆tN1st-order = −∆t
( r

∆x
δ−
)

= −δ−, (3.33)

which is the exact upwind difference operator. Inserting the above equation into

the update formula (3.31) leads to the exact solution:

ūn+1
j = (1 − δ−)ūn

j

= ūn
j−1. (3.34)

The property, which a method reduces to the exact solution with unity Courant

number, is called the shift condition, or the unit CFL condition [LeV02, p. 85]. This

property can be found in some fully discrete methods, but almost never in the

high-order semi-discrete methods.
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Amplification Factor

Once the compact difference form is obtained, replacing the difference operators

δ± by the Fourier mode (3.16) leads to

λ1st-order = − 1

∆x
[q(1 − cos β) + ir sin β] , (3.35)

where we explicitly change the notation from N to λ, stating that λ is the eigenvalue

of N. In this example, λ and N are identical, however, when a DG method is

adopted for a scalar linear equation, or any scheme for a system of linear equations,

the difference operator, N, becomes a matrix. In these cases, the characteristic

equation,

det(N − λI) = 0, (3.36)

needs to be solved to obtain eigenvalues of spatial difference operators. Once the

eigenvalue of the spatial difference operator, N, is obtained, the amplification factor,

g, is given by

g1st-order = 1 + ∆tλ1st-order

= 1 − ν [q(1 − cos β) + ir sin β] (3.37a)

= 1 − ν̃
[q
r
(1 − cos β) + i sin β

]
. (3.37b)

To analyze the properties of the method, it is useful to rewrite the amplification

factor in the polar form (3.22), thus

g1st-order = |g1st-order|eiφ1st-order , (3.38)

where

|g1st-order| =

√

1 − 4

[
qν − (rν)2 −

(
(qν)2 − (rν)2

)
sin2 β

2

]
sin2 β

2
, (3.39a)

φ1st-order = arctan

[ −rν sin β

1 − qν(1 − cos β)

]
. (3.39b)
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Accuracy

Typically, we are interested in the behavior of a method in the low-frequency

limit, β ≪ 1. Taking the power-series expansion around β = 0 of the amplification

factor and phase angle leads to

|g1st-order| = 1 − 1

2

[
qν − (rν)2

]
β2 + O

(
β4
)
, (3.40a)

φ1st-order = −rνβ +
1

6
rν
[
1 − 3qν + 2(rν)2

]
β3 + O

(
β5
)
. (3.40b)

The equations (3.40) shows the amount of dissipation (amplitude error) appears

in even orders of β, and the dispersion (phase error) in odd orders. The relative

errors of dissipation and dispersion are obtained by comparing with the exact solu-

tion (3.24) respectively, thus

|g1st-order|
|gexact|

= 1 + O
(
β2
)
, (3.41a)

φ1st-order

φexact

= 1 + O
(
β2
)
. (3.41b)

The overall order of accuracy can be derived by assuming the following form:

gmethod = eλ̃method∆t, (3.42)

where λ̃method is the eigenvalue containing the information of both spatial and tem-

poral discretizations. This formula assumes that a method has unique exponential

form that includes both spatial and temporal discretization errors in the eigenvalue,

λ̃method. Note that λ̃1st-order is somewhat different with λ1st-order in (3.35) since the

latter contains only the spatial discretization error. Taking the logarithm of the
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amplification factor leads to

λ̃1st-order∆t = ln(g1st-order)

= ln|g1st-order| + iφ1st-order

= −irνβ − 1

2

[
qν − (rν)2

]
β2 +

1

6
irν
[
1 − 3qν + 2(rν)2

]
β3 + O

(
β4
)
.

(3.43)

The leading error terms are obtained by subtracting the exact eigenvalue (3.21a)

from the discretization method,

λ̃1st-order∆t − λexact∆t = −1

2

[
qν − (rν)2

]
β2 +

1

6
irν
[
1 − 3qν + 2(rν)2

]
β3 + O

(
β4
)
.

(3.44)

To derive the order of accuracy, the frequency, β, is replaced by the wave number, k,

given by (3.20). Then, dividing it by the time step, ∆t, leads to the local truncation

error (LTE) of the method, thus

LTE1st-order = λ̃1st-order − λexact

= −1

2

(
q ∆x − r2 ∆t

)
k2 +

ir

6

[
1 − 3qν + 2(rν)2

]
∆x2k3 + O

(
k4
)
,

(3.45)

here we assume the grid size, ∆x, is fixed to guarantee the correct asymptotic

expansion with respect to k. The leading error is the k2-term with coefficients ∆x

and ∆t, thus the method is first-order accurate in space and time.

The relation between λ1st-order and λ̃1st-order becomes clear after taking the series

expansion of the eigenvalue (3.35). Following the same procedure, the truncation

error of the spatial discretization is given by

λ1st-order − λexact = −1

2
q ∆x k2 +

ir∆x2

6
k3 + O

(
k4
)
, (3.46)

thus the spatial discretization is first-order accurate in space. The identical trun-

cation error is obtained by letting ∆t, ν → 0 in (3.45). This example shows that
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analyzing the eigenvalue of spatial discretization, λmethod, provides only the order

of accuracy in space. Hence, the eigenvalue, λ̃method, defined by (3.42) is necessary

to examine the order of accuracy in both space and time.

The order of accuracy can be also obtained by expanding the amplification

factor (3.37) directly with respect to β:

g1st-order = 1 − irνβ − 1

2
qνβ2 +

1

6
irνβ3 + O

(
β4
)
. (3.47)

Subtracting (3.25) from the above equation leads to the leading error term,

g1st-order − gexact = −1

2

[
qν − (rν)2

]
β2 +

1

6
irν
[
1 − (rν)2

]
β3 + O

(
β4
)
. (3.48)

Following the same procedure, replacing β by k, and dividing by ∆t, leads to the

same conclusion. This approach is more straightforward for deriving the order

of accuracy in the low-frequency limit; however, the resulting formula does not

distinguish whether the higher-order error comes from the dissipation or dispersion

any more. This is due to the fact that when (3.42) is expanded,

gmethod = 1 + λ̃∆t +
1

2
(λ̃∆t)2 + O

(
(λ̃∆t)3

)
, (3.49)

and (3.43) is inserted, the (λ̃∆t)2 term will produce the β3-term which results from

the multiplication of β (dispersion) and β2 (dissipation) terms. Thus, the resulting

formula can not distinguish the error coming from two different sources even though

it has a similar form of (3.43). Nevertheless, the leading error term, β2-term in this

case, is always identical in both approaches.

Stability

The stability of a method can be examined by the modulus of the amplification

factor (3.23a). The necessary and sufficient condition for linear stability is

|g(β, ν̃)| ≤ 1 for any β ∈ [−π, π]. (3.50)
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The stability condition for the particular flux function (3.27) can be easily obtained

for the first-order method. The moduli of the amplification factor (3.39a) for the

various flux functions are given by

|g1st, LxF| =
√

cos2 β + (rν)2 sin2 β, (3.51a)

|g1st, upwind| =

√
1 − 4rν(1 − rν) sin2 β

2
, (3.51b)

thus the necessary and sufficient condition for linear stability is

|r|ν ≤ 1, (3.52)

for both flux functions. Here, it is important to distinguish between the stability

condition obtained by a Fourier analysis and the Courant–Friedrichs–Lewy (CFL)

condition [CFL28, CFL67]. The CFL condition is a necessary condition for the linear

or nonlinear stability, but not sufficient. Luckily, a symmetric three-point method

supported by (j−1, j, j+1) as described in this example leads to the necessary CFL

condition identical to (3.52). Thus, the CFL condition indeed becomes necessary

and sufficient for the first-order method. It is also important to notice that the

CFL condition itself allows a larger-than-unity Courant number when an explicit

method uses a wider stencil. Thus, interpreting the CFL condition as ν̃ ≤ 1 for any

explicit methods is misleading. In general, for an explicit method utilizing 2m + 1

cells such that

ūn+1
j =

m∑

k=−m

cj+kū
n
j+k, m ≥ 1, (3.53)

the CFL condition provides the following necessary stability condition:

ν̃ ≤ m. (3.54)

Consequently, when a higher-order method is considered, a Fourier analysis is nec-

essary to provide the complete linear stability conditions. For instance, the explicit
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second-order upwind method by Warming and Beam [WB76], [TAP97, p. 119],

un+1
j = un

j − ν̃(un
j − un

j−1) +
1

2
ν̃(ν̃ − 1)(un

j − 2un
j−1 + un

j−2), (3.55)

using one-sided three-point stencil supported by (j − 2, j − 1, j), has the CFL con-

dition 0 ≤ rν ≤ 2. A Fourier analysis also shows that this is the necessary and

sufficient for the stability. This is a rare example showing that the weaker CFL

condition matches the sufficient condition. Typically, a method using a wider sten-

cil tends to increase the order of accuracy while sacrificing stability. Thus, it has

a more restrictive condition on the Courant number provided by a Fourier analysis

than the CFL condition. Again, the CFL condition can not provide the complete

stability conditions. We also need to keep in mind that when a compact explicit

high-order method is considered, due to the CFL condition, one can only expect its

stability to be given by at most ν̃ ≤ 1. More discussion of Courant number and

Fourier analysis for an explicit method can be found in [Leo94].

When the stability condition (3.50) is considered for a higher-order method, the

modulus of the amplification factor becomes a lengthy expression, and it does not

always lead to simple stability conditions. Thus, it is useful to assess the necessary

conditions for linear stability by taking the low- and high-frequency limit. The

low-frequency limit of the modulus is given by (3.40a). The necessary condition for

stability is that the β2-term is always negative, thus qν − (rν)2 ≥ 0, or

rν = ν̃ ≤ q

r
. (3.56)

In the high-frequency limit, we have

|g1st-order| = |1 − 2qν| + O
(
(β − π)2

)
, (3.57)

and the necessary condition for stability is |qν| ≤ 1 which is automatically satisfied

by the definition of q in (3.28). Thus, overall the necessary condition is given
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Figure 3.1: Contour plot of the modulus of the amplification factor, |g1st-order(ν̃, β)|,
computed with the upwind flux. It shows that the first-order method is stable for
ν̃ ≤ 1.
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Figure 3.2: Contour plot of the modulus of the amplification factor, |g1st-order(ν̃, β)|,
computed with the Lax–Friedrichs flux. It shows that the first-order method is
stable for ν̃ ≤ 1.
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by (3.56), and indeed it is sufficient as well for this example. The approach taken

here is similar to the heuristic stability analysis based on the modified-equation

analysis. The link between the Fourier analysis and the modified-equation analysis

is discussed in the next section.

Another approach to obtain a stability condition is purely numerical: plot the

modulus of an amplification factor with respect to the Courant number, ν̃, and

the frequency of a wave, β. Of course, this approach does not provide the rigorous

derivation of a stability limit; however, the complex mathematical operations can be

eliminated, and the stability domain is identified visually. Even though the complete

stability analysis is obtained easily for the first-order method, for future reference,

the contour plots of the amplification factor, |g1st-order|, with those for the upwind

and Lax–Friedrichs fluxes are shown in Figure 3.1 and 3.2, respectively. The shaded

area is where the method is stable, thus |g1st-order| ≤ 1, and the stability limit where

|g1st-order| = 1 is indicated by a thick line. These two figure clearly show that the

1st-order method with the upwind or Lax–Friedrichs flux inserted is linearly stable

for ν̃ ≤ 1. Also, it shows that the Lax–Friedrichs flux tends to damp the middle

frequencies, whereas the upwind flux rather damps the high frequencies.

3.2.4 Fourier Analysis v.s. Modified Equation Analysis

The Fourier analysis and the modified-equation analysis [Hir68, WH74, GSS86]

are the standard methods to analyze a linear discretization method. Originally,

a Fourier analysis was developed to investigate the properties of a linear method

applied to a linear equation; contrarily, the modified equation was for a nonlinear

equation where a Fourier analysis can not decompose a wave package down to a

single Fourier mode [Hir68]. Even though the assumptions made for a Fourier
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analysis are more restrictive, these two analyses are interrelated and transferable.

When both analyses are applied to a linear equation, a Fourier analysis provides the

actual solution of the equation, hence consistency, order of accuracy, and complete

conditions for linear stability, while the modified-equation analysis only provides

insight into the consistency of a method. It is important to show both stability

and consistency of a linear method, since the Lax equivalence theorem (cf. [RM67])

shows that these two conditions are necessary and sufficient for convergence. A

Fourier analysis suffices for this purpose. The order of accuracy can be derived by

both analyses, even though it is rather common to utilize the modified equation.

Fourier analysis assumes a uniform grid and periodic boundaries, representing

a solution in the Fourier domain. It is only applicable to linear equations since

a single harmonic can not be isolated in nonlinear equations; a complete Fourier

series is required to represent a solution. As shown in the previous section, a Fourier

analysis provides the dissipation (amplitude error) and the dispersion (phase error)

in the entire frequency domain. An example regarding the first-order method was

shown in (3.39).

The modified-equation analysis assumes a uniform grid and ignores the boundary

effects. It derives a ‘modified’ differential (not difference) equation which a numeri-

cal method actually solves. The resulting equation has the form of the original PDE

with the local truncation error, providing the order of accuracy and consistency of

a discretization. The analysis is applicable to nonlinear equations [GM85], however,

nonlinear terms in the truncation error make it difficult to predict its effects. Here,

the modified equation is derived for the first-order method as an example, starting

from (3.30) in the previous section. It will be shown that the truncation error ob-

tained by the modified-equation analysis can be seen as the low-frequency limit of
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an amplification factor, g1st-order, obtained by a Fourier analysis.

Example of the Modified Equation Analysis

At first, the solution in neighboring cells is replaced by the following Taylor-series

expansions,

ūn+1
j = ūn

j + ∆t∂tu +
1

2
(∆t)2∂ttu +

1

6
(∆t)3∂tttu + O

(
(∆t)4

)
, (3.58a)

ūn
j±1 = ūn

j ± ∆x∂xu +
1

2
(∆x)2∂xxu ± 1

6
(∆x)3∂xxxu + O

(
(∆x)4

)
, (3.58b)

thus, (3.30) becomes

∂tu + r∂xu = −∆t

2
∂ttu +

q∆x

2
∂xxu− (∆t)2

6
∂tttu− r(∆x)2

6
∂xxxu + O

(
(∆x)3, (∆t)3

)
.

(3.59)

In order to replace all time-derivatives by spatial derivatives, the Cauchy–Kovalevskaya

procedure, sometimes called the Lax–Wendroff procedure [Lan98, p. 266] is applied,

namely, ∂ttu is replaced by taking ∂t(3.59) − r∂x(3.59), thus

∂ttu = r2∂xxu +
∆t

2
(−∂tttu + r∂ttxu) +

q∆x

2
(∂xxtu − r∂xxxu) + O

(
(∆x)2, (∆t)2

)
.

(3.60)

Inserting the above equation into (3.59) leads to

∂tu + r∂xu =
1

2

(
q∆x − r2∆t

)
∂xxu +

(
qr∆x∆t

4
− r∆x2

6

)
∂xxxu − q∆x∆t

4
∂xxtu

− r∆t2

4
∂xttu +

∆t2

12
∂tttu + O

(
(∆x)3, (∆x)2∆t, (∆t)3

)
, (3.61)

where higher-order time derivatives appear. Repeating the same procedure, these

time derivatives are given by

∂xxtu = −r∂xxxu + O(∆x, ∆t) , (3.62a)

∂xttu = r2∂xxxu + O(∆x, ∆t) , (3.62b)

∂tttu = −r3∂xxxu + O(∆x, ∆t) , (3.62c)
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thus the modified equation is now expressed only by spatial derivatives:

∂tu + r∂xu =
1

2

(
q∆x − r2∆t

)
∂xxu − 1

6

(
r∆x2 − 3qr∆x∆t + 2r3∆t2

)
∂xxxu

+ O
(
(∆x)3, (∆x)2∆t, ∆x(∆t)2, (∆t)3

)

=
1

2

(
q ∆x − r2 ∆t

)
∂xxu − r∆x2

6

[
1 − 3qν + 2(rν)2

]
∂xxxu + . . . .

(3.63)

It clearly shows that the method is first-order accurate in space and time since the

factors ∆x and ∆t appear in the leading error (dissipation) term.

The link from the modified equation to a Fourier analysis can be made by in-

serting a Fourier mode (3.17) on page 92 into the modified equation. This has the

effect of replacing the spatial derivatives by multiplication with the wave number,

k, as follows:

∂xxu = −k2u and ∂xxxu = −ik3u. (3.64)

Inserting the above relations into (3.63) leads to

∂tu + r∂xu = −1

2

(
q ∆x − r2 ∆t

)
k2u +

ir

6

[
1 − 3qν + 2(rν)2

]
∆x2k3u + . . . ,

(3.65)

which recovers the result obtained by a Fourier analysis in the low-frequency limit (3.45),

multiplied by u. Since the modified-equation analysis truncates the higher-order

derivatives, which become important for high-frequency mode, it is only valid in

the low-frequency limit. In this sense, a Fourier analysis is preferable since it pro-

vides the properties of a method in the whole frequency domain.

Modified Equation → Fourier Analysis

Warming and Hyett have shown that the relative phase error,
φmethod

φexact

, normally

obtained by a Fourier analysis can be derived from the modified equation [WH74].
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Assume the modified equation has the form:

∂tu + r∂xu =
∞∑

n=1

(
c2n

∂2nu

∂x2n
+ c2n+1

∂2n+1u

∂x2n+1

)
, (3.66)

then the relative phase error is given by

φmethod

φexact

= 1 − 1

r

∞∑

n=1

(−1)n

(
β

∆x

)2n

c2n+1. (3.67)

Also, it was shown that a necessary stability condition is given by

(−1)l−1c2l > 0, (3.68)

where c2l is the coefficient of the lowest even-order derivative term. This is iden-

tical to the result of the ‘heuristic’ stability analysis of Hirt for a nonlinear equa-

tion [Hir68].

Fourier Analysis → Modified Equation

So far, it was shown that the asymptotic result obtained by a Fourier analysis

can be recovered by the modified-equation analysis. Carpenter et al. have shown the

opposite way; they derived a systematic procedure to obtain the modified equation

from an amplification factor given by a Fourier analysis [CdLBL97]. In summary,

they defined the λ̃ which corresponds to our previous definition in (3.42) such that

λ̃ =
1

∆t
ln
(
g(β)

)
, (3.69)

then take the formal series expansion with respect to β,

λ̃ =

∞∑

n=1

b̃nβn. (3.70)

Once the coefficients, b̃n, for all n are known, the modified equation is given by the

following form:

∂tu =
∞∑

n=1

c̃n
∂nu

∂xn
, (3.71)
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where the coefficient, c̃n, is

c̃n =

(
∆x

i

)n

b̃n. (3.72)

The related work by Ramshaw provides a more direct way to obtained the modified

equation [Ram94]. The coefficient, c̃n, is obtained by the n-th derivative of the

eigenvalue evaluated at k = 0:

c̃n =
1

inn!

∂nλ̃(k)

∂kn

∣∣∣∣
k=0

. (3.73)

This method shows the direct link between a Fourier analysis and the modified-

equation analysis.

Which One Is More Suitable?

The properties of both analyses are summarized in Table 3.2. One of the defi-

ciencies of the modified-equation analysis over a Fourier analysis is that the analysis

truncates the higher-order derivatives which represent the high-frequency modes of

the solution. Thus, the analysis does not provide the properties of a method in

whole frequency domain. Another deficiency is that the method only reveals the

truncation error of the principal root [Cha90]. This is critical especially when a

DG method or a multi-step method are adopted for the discretization, since the

characteristic equation of these methods contains both principal and extraneous

roots. Typically, a spurious solution coming from an extraneous root is damped

quickly, thus it does not affect the accuracy. However, for stability, all eigenval-

ues of the amplification matrix have to satisfy the stability condition (3.50). Since

the modified-equation analysis does not provide the extraneous roots, we can not

confirm if the spurious solution is actually damped, (i.e., the eigenvalue has a neg-

ative real part), or not. Consequently, the complete stability analysis can not be

performed.
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Fourier analysis modified equation analysis

assumptions
uniform grids uniform grids
periodic boundary no boundary effect

strength
valid for all frequencies valid for nonlinear equations
provides all wave modes provides consistency

weakness
valid only for linear equations truncated results

provides only the principal root

Table 3.2: The properties of Fourier and modified-equation analyses are summa-
rized.

Conversely, a Fourier analysis provides both principal and extraneous roots,

allowing to assess the complete stability conditions even though the analysis is only

valid for linear equations. Thus, we will conduct a Fourier analysis instead of the

modified-equation analysis to investigate the dominant truncation errors, the order

of accuracy, and the stability conditions of various discretization methods.

3.2.5 Methodology of Analysis

The procedure of a Fourier analysis is summarized here in concise formulas.

Accuracy

1. Express the difference equation in the form of a linear combination of neigh-

boring cell values. Then, using the difference operator (3.5), rewrite it in the

compact operator form. For a fully discrete explicit method:

un+1
j − un

j

∆t
=
∑

i

aiu
n
i = M(δ+, δ−)un

j , (3.74a)

and for a semi-discrete method:

∂u(t)

∂t
=
∑

i

aiui(t) = N(δ+, δ−)uj(t). (3.74b)
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2. Once a compact form is obtained, replace difference operators for a Fourier

mode by (3.16). The eigenvalues of a spatial discretization operator are given

by solving the following characteristic equations:

fully discrete : det [M(β) − λ(β)I] = 0, (3.75a)

semi-discrete : det [N(β) − λ(β)I] = 0. (3.75b)

The order of the spatial accuracy can be found by identifying the lowest-order

term of the series expansion of an accurate eigenvalue, given by

λ(β) =
∞∑

n=1

bnβn. (3.76)

3. To examine the order of accuracy in both space and time, a fully discrete

method is combined with the forward Euler method, and a semi-discrete

method is incorporated in an RKs method given by (3.11). The amplification

matrices (or factors) are given by

fully discrete : GM(β) = I + ∆tM(β), (3.77a)

semi-discrete : GN(β) = RKs (N(β)) . (3.77b)

When G is a matrix, amplification factors, g(β), are obtained by solving the

following characteristic equation:

det [G(β) − g(β)I ] = 0. (3.78)

Once an amplification factor is obtained, it can be written in the polar form

to decouple the dissipation and dispersion errors:

g = |g|eiφ, (3.79)
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where

|g(β)| =

∞∑

n=0

b2nβ2n, (3.80a)

φ(β) =

∞∑

n=0

b2n+1β
2n+1. (3.80b)

Since the formulas of |g| and φ are lengthly for a higher-order method, they will

be presented only in the form of a power series with respect to the frequency

of a wave.

4. Once a modulus, |g|, and phase angle, φ, are known, the local truncation error

is obtained by the following formula:

LTEmethod = λ̃method − λexact

=
1

∆t
ln g − λexact

=
1

∆t
(ln|g|+ iφ) − λexact

=
1

∆t

[
ib1β + b2β

2 + ib3β
3 − 1

2
(b2

2 − 2b4)β
4 + . . .

]
− λexact. (3.81)

In order to correspond to the result from the modified-equation analysis, wave

frequency, β, is replaced by β = k∆x, thus

LTEmethod =
1

ν

[
ib1k + b2∆xk2 + ib3∆x2k3 +

(
b4 −

1

2
b2
2

)
∆x3k4 + . . .

]

− (−irk). (3.82)

Here, we implicitly assume that the grid size, ∆x, is fixed. As long as a

method is consistent with the original PDE, it satisfies b1 ≡ −rν, thus the

above equations is further simplified:

LTEmethod =
1

ν

[
b2∆xk2 + ib3∆x2k3 +

(
b4 −

1

2
b2

)
∆x3k4 + . . .

]

=
∞∑

n=2

cnkn, (3.83)
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where

c2 =
∆x

ν
b2, c3 = i

∆x2

ν
b3, and c4 =

∆x3

ν

(
b4 −

1

2
b2

)
. (3.84)

The overall order of accuracy can be found by the coefficient of the lowest

order, cn. For instance, if cn = O(∆x, ∆t), then a method is first-order in

space and time.

An alternative way to obtain the coefficient, cn, is directly computing it from

an accurate amplification factor, g(k). Hence, the cn is given by a Taylor

series expansion around k = 0:

cn =
1

n!

∂nλ̃(k)

∂kn

∣∣∣∣
k=0

=
1

n!∆tg(k = 0)

∂ng(k)

∂kn

∣∣∣∣
k=0

. (3.85)

Stability

Ideally, the stability criterion is directly obtained from the modulus of an am-

plification factor, |gmethod|. However, a high-order method tends to have a lengthly

expression for this modulus, and in most of the cases, extracting a stability con-

dition from a modulus is not feasible. The heuristic stability analysis provides a

necessary stability condition, (3.68), yet not sufficient. An alternative way to iden-

tify a stability condition for a high-order method is based on the numerical contour

plot of the modulus, |gmethod(ν̃, β)|. Using a contour plot, we find the maximum

allowable Courant number, ν̃max, such that |gmethod(ν̃max, β)| ≤ 1 for any β ∈ [0, π].

3.3 Difference Operators and Their Properties in 1-D

In this section, a Fourier analysis is employed to uncover the dominant truncation

errors in the low-frequency limit, the order of accuracy, and the stability conditions

of various discretization methods.
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3.3.1 HR–MOL Method

A semi-discrete high-resolution Godunov method combined with the method-

of-lines (HR–MOL) for the 1-D linear advection equation (3.1a) has the following

form:

∂ūj(t)

∂t
= − 1

∆x

(
f̂j+1/2(t) − f̂j−1/2(t)

)
, (3.86)

where the linear flux, f(u(t)) = ru(t), is evaluated at each cell interface. The

interface flux f̂j±1/2(t) must be evaluated at various time levels, depending on the

time discretization method (ODE solver) chosen. The interface flux is obtained as

in the q-flux (3.27). For the linear advection equation, it becomes

f̂j+1/2(t) =
r

2

(
uj+1/2,L(t)+uj+1/2,R(t)

)
−q

2

(
uj+1/2,R(t)−uj+1/2,L(t)

)
, q > 0, (3.87)

where the input values of the flux function are the linearly reconstructed values at

the cell interface j + 1/2:

uj+1/2,L(t) = ūj +
∆x

2

(
∆uj

∆x

)
, (3.88a)

uj+1/2,R(t) = ūj+1 −
∆x

2

(
∆uj+1

∆x

)
. (3.88b)

The slopes,
∆uj,j+1

∆x
, approximate the derivative,

∂u

∂x
, and are given by the average

of the differences with the neighboring cells:

∆uj

∆x
=

1

2

(
ūj+1 − ūj

∆x
+

ūj − ūj−1

∆x

)
=

ūj+1 − ūj−1

2∆x
, (3.89a)

∆uj+1

∆x
=

ūj+2 − ūj

2∆x
. (3.89b)

The linear reconstruction from the original piecewise constant values leads an HR–MOL

method to second-order accuracy in space whereas the original Godunov method,

which uses the piecewise constant data, is first-order accurate. Here, we denote the

second-order semi-discrete Godunov method as HR2–MOL.
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After inserting the cell interface fluxes into the original semi-discrete form (3.86),

and some algebra, the spatial difference operator, NHR2, in the semi-discrete form

of (3.10) is given by

NHR2 = − 1

8∆x

[
(q − r)(δ+)2 − 2(q − 2r)δ+ + 2(q + 2r)δ− + (q + r)(δ−)2

]
,

(3.90a)

or, for a Fourier mode, using (3.16),

NHR2 = − 1

8∆x

[
(q − r)e2iβ + 2(3r − 2q)eiβ + 6q − 2(2q + 3r)e−iβ + (q + r)e−2iβ

]
.

(3.90b)

The identical result can be obtained by setting ν = 0 in the spatial-temporal op-

erator for the Hancock method (3.116), derived further below. To check whether

the method satisfies the shift condition described on page 96, take the upwind flux,

q = r, with the unity Courant number, and multiply by the time step, ∆t, then

∆t NHR2, upwind = − r∆t

4∆x

[
δ+ + 3δ− + (δ−)2

]

= −1

4

[
δ+ + 3δ− + (δ−)2

]
. (3.91)

Since the spatial difference operator contains the forward difference operator, δ+,

no RK methods, which yield polynomials of ∆t NHR2, can produce the exact shift

operator, 1− δ−. Thus, the HR2–MOL method does not satisfy the shift condition.

Accuracy

Taking the low-frequency limit of the spatial difference operator, NHR2, leads to

the asymptotic eigenvalue:

λHR2 = − ir

∆x
β − ir

12∆x
β3 − q

8∆x
β4 + O

(
β5
)
. (3.92)
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The order of accuracy in space is obtained by replacing β by the wave number k,

then

λHR2 − λexact = − ir

12
∆x2 k3 − q

8
∆x3 k4 + O

(
k5
)
; (3.93)

the method appears to be second-order accurate in space.

To examine the overall order of accuracy, the RK2 and RK3 methods (3.11) are

employed for the time integration. The amplification factors, gHR2RK2 and gHR2RK3,

are expressed in the polar form where the modulus and the phase angle of the

HR2–RK2 method are given by

|gHR2RK2| = 1 − rν

8

[q
r
− (rν)3

]
β4 + O

(
β6
)
, (3.94a)

φHR2RK2 = −rνβ − rν

12

[
1 + 2(rν)2

]
β3 + O

(
β5
)
, (3.94b)

and for the HR2–RK3 method,

|gHR2RK3| = 1 − rν

8

[
q

r
+

1

3
(rν)3

]
β4 + O

(
β6
)
, (3.95a)

φHR2RK3 = −rνβ − rν

12
β3 + O

(
β5
)
. (3.95b)

Following the same procedure, the local truncation errors have the following forms:

LTEHR2RK2 = λ̃HR2RK2 − λexact

=
1

∆t
(ln|gHR2RK2| + iφHR2RK2) − λexact

= − ir

12

[
1 + 2(rν)2

]
∆x2 k3 − r

8

[q
r
− (rν)3

]
∆x3k4 + O

(
k5
)

= − ir

12

(
∆x2 + 2r2 ∆t2

)
k3 + O

(
k4
)
, (3.96a)

LTEHR2RK3 = λ̃HR2RK3 − λexact

= − ir

12
∆x2 k3 − r

8

(
q

r
∆x3 +

1

3
r3 ∆t3

)
k4 + O

(
k5
)
. (3.96b)
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Thus, the HR2–RK2 method is second-order accurate in space and time, and the

HR2–RK3 is second-order in space and third-order in time. It clearly shows that

the third-order time-integration method (RK3) eliminates the ∆t2–term of the

HR2–RK2 method, making the method third-order accurate in time. However,

since a semi-discrete method decouples the space and time discretizations, a higher-

order time integration can not eliminate the second-order spatial discretization error.

Thus, the HR2–RK3 method is still second-order in space.

Stability

As mentioned in the example of the first-order method, obtaining the analytical

stability condition for a high-order method is not straightforward or sometimes not

possible. Thus, we adopt a numerical approach to investigate the linear stability

condition. The modulus of the amplification factor, |gHR2RK2(ν̃, β)|, evaluated with

the upwind and Lax–Friedrichs fluxes, is shown in Figures 3.3 and 3.4 respectively.

The shaded area indicates the stability region, where |gHR2RK2(ν̃, β)| ≤ 1. These

two figures show that the HR2–RK2 method is linearly stable for ν̃ ≤ 1 with both

the upwind and the Lax–Friedrichs fluxes.

Compared to the first-order method, Figure 3.1 and 3.2 on page 103, the HR2–RK2

method increases the stability region beyond unity around middle to high frequen-

cies. However, the method lost the shift condition: |gHR2RK2(1, β)| 6= 1 for some β.
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Figure 3.3: Contour plot of the modulus of the amplification factor, |gHR2RK2(ν̃, β)|,
computed with the upwind flux. It shows that the HR2–RK2 method is stable for
ν̃ ≤ 1.
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Figure 3.4: Contour plot of the modulus of the amplification factor, |gHR2RK2(ν̃, β)|,
computed with the Lax–Friedrichs flux. It shows that the HR2–RK2 method is
stable for ν̃ ≤ 1.
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3.3.2 DG–MOL Method

A semi-discrete DG method combined with the method-of-lines (DG–MOL) for

the 1-D linear advection equation (3.1a) has update formulas for both the cell-

average and undivided gradient,

∂ūj(t)

∂t
= − 1

∆x

(
f̂j+1/2(t) − f̂j−1/2(t)

)
, (3.97a)

∂∆uj(t)

∂t
= − 1

∆x
6
(
f̂j+1/2(t) + f̂j−1/2(t) − 2rūj(t)

)
, (3.97b)

where the volume integral of the flux in the second equation simplifies owing to

the linearity. The q-flux (3.87) is adopted for the cell interface fluxes with linearly

interpolated values:

uj+1/2,L(t) = ūj +
1

2
∆uj , (3.98a)

uj+1/2,R(t) = ūj+1 −
1

2
∆uj+1. (3.98b)

Note that a DG method does not need to approximate the slope ∆uj(t) by using

data from the neighboring cells since the slope is also stored as a variable in each

cell. After inserting the difference form of fluxes, and some algebra, the spatial

difference operator has the following form:

NDG(1) = A
+D+ + C + A

−D−, (3.99)

where

A
+ =

q − r

2∆x




1 −1

2

6 −3


 , A

− =
q + r

2∆x



−1 −1

2

6 3


 , (3.100a)

C =
r

∆x




0 0

0 −6q

r


 , D± = δ±I, (3.100b)
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or, for a Fourier mode,

NDG(1) = A
+eiβI + C

′ − A
−e−iβI, (3.101)

where

C
′ = − r

∆x




q

r

1

2

−6
3q

r


 . (3.102)

Here, the notation “DG(1)” stands for a method representing the solution as piece-

wise polynomial of degree 1. The identical result can be obtained by setting ν = 0

in the spatial-temporal operator for a DG(1)–Hancock method (3.129)–(3.132). In

order to obtain the eigenvalues of the spatial operator, the characteristic equation

of NDG(1), given by

(∆xλ)2 +
[
(q − r)δ+ − (q + r)δ− + 6q

]
∆xλ

+ 3q
[
(q − r)δ+ − (q + r)δ−

]
− 3(q2 − r2)δ+δ− = 0, (3.103)

is solved for λ. Because of the lengthy expression of the roots in the general form,

we present only the result for the upwind flux, q = r, as an example:

λ
(1),(2)
DG(1), upwind =

r

∆x

(
−3 + δ− ±

√
9 − 12δ− + (δ−)2

)
, (3.104a)

or, for a Fourier mode,

λ
(1),(2)
DG(1), upwind =

r

∆x

(
−2 − e−iβ ±

√
−2 + 10e−iβ + e−2iβ

)
. (3.104b)

It shows that the DG(1)–MOL does not satisfy the shift condition.

Accuracy

The asymptotic eigenvalues in the low-frequency limit are given by

λ
(1)
DG(1) = − ir

∆x
β − r2

72q∆x
β4 + O

(
β5
)
, (3.105a)

λ
(2)
DG(1) = − 6q

∆x
+

3ir

∆x
β + O

(
β2
)
, (3.105b)
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where the former is the principal root and the latter is the extraneous one. Since

a temporal discretization has not been considered yet, all errors appearing here are

attributed solely to the spatial discretization. The order of accuracy in space is

obtained by replacing β by the wave number k, then

λ
(1)
DG(1) − λexact = − r2

72q
∆x3 k4 + O

(
k5
)
, (3.106a)

λ
(2)
DG(1) − λexact = − 6q

∆x
+ O(k) , (3.106b)

thus the principal root is third-order accurate in space, and the extraneous root

is zeroth-order. Fortunately, the extraneous root damps quickly since the leading

error, − 6q

∆x
, is a large negative real value.

To examine the overall accuracy, time integration methods RK2 and RK3 given

by (3.11) are employed. The amplification factors of the principal root are expressed

in the polar form where the modulus and the phase angle of the DG(1)–RK2 method

are given by

|g(1)
DG(1)RK2| = 1 − rν

72

[
r

q
− 9(rν)3

]
β4 + O

(
β6
)
, (3.107a)

φ
(1)
DG(1)RK2 = −rνβ − 1

6
(rν)3 + O

(
β5
)
, (3.107b)

and for the DG(1)–RK3 method,

|g(2)
DG(1)RK3| = 1 − rν

72

[
r

q
+ 3(rν)3

]
, (3.108a)

φ
(2)
DG(1)RK3 = −rνβ + O

(
β5
)
. (3.108b)
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Thus, the local truncation errors become

LTEDG(1)RK2 = λ̃DG(1)RK2 − λexact

=
1

∆t

(
ln|g(1)

DG(1)RK2| + iφ
(1)
DG(1)RK2

)
λexact

= −ir

6
(rν)2∆x2k3 − r

72

(
r

q
− 9(rν)3

)
∆x3k4

= −ir3

6
∆t2 k3 − r

72

(
r

q
∆x3 − 9r3∆t3

)
k4 + O

(
k5
)
. (3.109a)

LTEDG(1)RK3 = λ̃DG(1)RK3 − λexact

= − r

72

(
r

q
∆x3 + 3r3 ∆t3

)
k4 + O

(
k5
)
. (3.109b)

The first equation shows that the temporal discretization RK2 introduces a second-

order error in the DG(1)–RK2 method, hence the DG(1)–RK2 method is third-order

in space, yet second-order in time. Since the RK3 method is third-order accurate,

the DG(1)–RK3 method is third-order in both space and in time.

Stability

The stability domain of the DG(1)–RK2 method was first presented by Cock-

burn and Shu [CS91], and they referred to the stability proof for a simpler case by

Chavent and Cockburn [CC87, CC89]. Here, we present the stability limit by plot-

ting the modulus of the two amplification factors independently. The modulus of the

accurate and inaccurate amplification factors, |g(1),(2)
DG(1)RK2|, computed with the up-

wind flux are shown in Figures 3.5(a) and 3.5(b) respectively. The figures show that

the accurate amplification factor possesses a larger stability domain (ν̃max = 0.468)

than the inaccurate amplification factor (ν̃max = 1/3). Overall, the stability is con-

strained by the inaccurate amplification factor, so DG(1)–RK2 with the upwind flux

is stable for ν̃ ≤ 1

3
.

Counterintuitive results are shown in Figures 3.6(a) and 3.6(b), where the Lax–



123

Friedrichs flux is employed. The contour plots of the modulus show that neither the

accurate nor inaccurate amplification factor is stable for any Courant number, even

when ν̃ = 0. Thus, the DG(1)–RK2 with the Lax–Friedrichs flux is unconditionally

unstable. This was originally found by Rider and Lowrie [RL02]. The same result

is obtained for the DG(1)–RK3 method. This is somewhat surprising since the

Lax–Friedrichs flux adopts the largest possible dissipation coefficient,
∆x

∆t
, among

all q-fluxes to stabilize the method.

A reason for the destabilizing result produced by this most dissipative flux func-

tion can be found by comparing the dominant numerical dissipation in (3.109) to

that in (3.96). For a DG method, the dissipation parameter q appears in the denomi-

nator, whereas an HR method contains it in the numerator. Thus, for a DG method,

as the numerical dissipation in the flux increases, the method actually becomes less

dissipative, at least for low frequencies. This is completely opposite to the behavior

of an HR method. Hence, the most dissipative flux leads to the least low-frequency

dissipation, resulting in an unconditionally unstable DG method. More specifi-

cally, the instability originates in the extraneous root, λ
(2)
DG(1). The leading error in

the extraneous root, multiplied by the time step ∆t (this product appears when a

time integration method is applied), evaluated with the upwind and Lax–Friedrichs

fluxes, reads:

Lax–Friedreich : ∆t λ
(2),LxF
DG(1) = − ∆t

6q

∆x
= −6, (3.110a)

upwind : ∆t λ
(2),upwind
DG(1) = − ∆t

6r

∆x
= −6ν̃. (3.110b)

Assume, for instance, that the RK2 method is used for time integration, then the

above eigenvalues should satisfy a necessary condition, ℜ[∆t λ] ∈ [−2, 0], for stabil-

ity in the low-frequency limit. The second equation, for the upwind flux, satisfies
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this stability condition as long as ν̃ ≤ 1

3
. Conversely, the first equation never sat-

isfies the stability condition, no matter how small the time step is; thus, DG(1)

together with the Lax–Friedrichs flux is unconditionally unstable.

To remedy the instability of the Lax–Friedrichs flux, Rider and Lowrie propose

the following modified Lax–Friedrichs flux [RL02]:

fmLxF
j+1/2(uL, uR) =

r

2
(uL + uR) − z

2

∆x

∆x
(uR − uL), (3.111)

where z =
1

3
for DG(1), and z =

1

5
for DG(2). These constants are chosen such that

the maximum stable Courant number is the same as for the DG method combined

with the upwind flux. The motivation of the choice of constant becomes clear when

the leading error is again considered:

modified Lax–Friedrichs: ∆tλ
(2),mLxF
DG(1) = −∆t

6 qmLxF

∆x

= −6z, (3.112)

thus as long as z ≤ 1

3
, the leading error satisfies the stability condition, ℜ[∆t λ] ∈

[−2, 0]. Since the condition is merely necessary and not sufficient, the full stability

domains based on the modified Lax–Friedrichs flux are obtained numerically and

shown in Figures 3.7(a) and 3.7(b). For this flux function, both accurate and

inaccurate eigenmodes possess the same stability limit, ν̃ ≤ 0.424. This is less

restrictive than the DG(1)–RK2 with the upwind flux; however, it can be observed

that the modified Lax–Friedrichs flux is more dissipative than the upwind flux,

especially for high frequency modes.
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Figure 3.5: Contour plots of the modulus of the amplification factor,
|gDG(1)RK2(ν̃, β)|, computed with the upwind flux. The plots show that the in-
accurate amplification factor results in a more strict stability condition, ν̃ ≤ 1/3,
than the accurate amplification factor, ν ≤ 0.468. Thus, the DG(1)–RK2 method
with the upwind flux is stabile for ν̃ ≤ 1/3.
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Figure 3.6: Contour plots of the modulus of the amplification factor,
|gDG(1)RK2(ν̃, β)|, computed with the Lax–Friedrichs flux. The plots show that there
is always a growing mode in a particular frequency at any Courant number. Thus,
the DG(1)–RK2 method with the Lax–Friedrichs flux is unconditionally unstable.
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Figure 3.7: Contour plots of the modulus of the amplification factor,
|gDG(1)RK2(ν̃, β)|, computed with the modified Lax–Friedrichs flux. The plots show
that the modified flux results in a stable DG(1)–RK2 method for ν̃ ≤ 0.424, whereas
the original Lax–Friedrichs flux leads to an unconditionally unstable DG method.
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3.3.3 HR–Hancock Method

The original Hancock method described in Chapter II is a fully discrete one-

step method [vAvLR82, vL06]. Here, we denote the method as “HR–Hancock”

or “HR–Ha.” The update formula is slightly different from that of an HR–MOL

method, and given by

ūn+1
j = ūn

j − ∆t

∆x

(
f̂

n+1/2
j+1/2 − f̂

n+1/2
j−1/2

)
, (3.113)

where the time level of the flux evaluation is already specified: t = tn+1/2. Again,

the q-flux (3.87) is adopted; however, the input values of the flux function are given

by a Taylor series expansion in space and time, thus

u
n+1/2
j+1/2,L = ūn

j +
1

2

(
1 − r

∆t

∆x

)
∆u

n

j , (3.114a)

u
n+1/2
j+1/2,R = ūn

j+1 −
1

2

(
1 + r

∆t

∆x

)
∆u

n

j+1. (3.114b)

As in the HR–MOL method, the slope ∆uj is obtained by the average of two slopes

over cells (j + 1, j, j − 1), hence

∆u
n

j

∆x
=

1

2

(
ūn

j+1 − ūn
j

∆x
+

ūn
j − ūn

j−1

∆x

)
=

ūn
j+1 − ūn

j−1

2∆x
. (3.115)

After inserting the difference form of fluxes, and some algebra, the spatial-temporal

difference operator is given by

MHR2Ha = − 1

8∆x

[
(q − r)(1 + rν)(δ+)2 + (q + r)(1 − rν)(δ−)2

]

+
1

4∆x

[
(q − 2r + r2ν)δ+ − (q + 2r + r2ν)δ−

]
, (3.116a)

or, for a Fourier mode, using (3.16),

MHR2Ha = − 1

8∆x

[
(q − r)(1 + rν)e2iβ + (q + r)(1 − rν)e−2iβ

]

− 1

4∆x

[
(3r − 2q − rqν)eiβ + (3q + r2ν) − (3r + 2q − rqν)e−β

]
. (3.116b)
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When the upwind flux, q = r, is used, and we set the Courant number equal to 1

(rν = ν̃ = 1), then the above operator reduces to

∆t MHR2Ha = −δ−, (3.117)

which is the exact upwind difference operator. Inserting the above equation into

the original update scheme (3.113) leads to

ūn+1
j = ūn

j − δ−ūn
j

= ūn
j−1. (3.118)

Thus, the HR2–Hancock method produces the exact shift (page 96).

Accuracy

Replacing the difference operators by their Fourier symbols (3.16) and taking

the low-frequency limit leads to the asymptotic eigenvalue

λHR2Ha = − ir

∆x
β − r2ν

2∆x
β2 −

(
ir

12∆x
− iqrν

4∆x

)
β3 −

(
q

8∆x
− r2ν

6∆x

)
β4 + O

(
β5
)
.

(3.119)

The order of accuracy in space is obtained by letting ν → 0, and replacing β by the

wave number k:

λHR2Ha − λexact = − ir

12
∆x2 k3 + O

(
k4
)
, (3.120)

thus the method is second-order accurate in space.

To examine the overall order of accuracy, the amplification factor, gHR2Ha =

1 + ∆t MHR2Ha, is expressed in the polar form where the modulus and the phase

angle are given by

|gHR2Ha| = 1 − rν

8

[q
r
− (rν)3 + 2rν(qν − 1)

]
β4 + O

(
β6
)
, (3.121a)

φHR2Ha = −rνβ − rν

12

[
1 − 3qν + 2(rν)2

]
β3 + O

(
β5
)
. (3.121b)
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Following the same procedure, the local truncation error is as follows:

LTEHR2Ha = λ̃HR2Ha − λexact

=
1

∆t
(ln|gHancock| + iφHancock) − λexact

= − ir

12

[
1 − 3qν + 2(rν)2

]
∆x2k3

− r

8

[q
r
− (rν)3 + 2rν(qν − 1)

]
∆x3k4 + O

(
k5
)

= − ir

12

(
∆x2 − 3q ∆x∆t + 2r2 ∆t2

)
k3 + O

(
k4
)
. (3.122)

Here, a new expression, ∆x∆t, appears in the leading error term. Since the time

step scales as the grid size, ∆t ∝ ∆x, based on the CFL condition, this term is

second-order error. Thus, the HR2–Hancock method is second-order in space and

time.

Stability

The modulus of the amplification factors, |gHR2Ha(ν̃, β)|, with the upwind and

Lax–Friedrichs fluxes inserted are shown in Figure 3.8 and 3.9 respectively. The

shaded area indicates the stability region, thus |gHR2Ha(ν̃, β)| ≤ 1. These two fig-

ures show that the HR2–Hancock method combined with both the upwind and

Lax–Friedrichs fluxes is linearly stabile for ν̃ ≤ 1. Compared to the HR2–RK2

method shown in Figure 3.3 and 3.4, the HR2–Hancock is less dissipative, and also

possesses the shift condition: |gHR2Ha(1, β)| = 1 for any β ∈ [0, β].
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Figure 3.8: The modulus of the amplification factor, |gHR2Ha(ν̃, β)|, combined with
the upwind flux is shown in the contour plot. It shows that the HR2–Hancock
method is stabile for ν̃ ≤ 1.
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Figure 3.9: The modulus of the amplification factor, |gHR2Ha(ν̃, β)|, combined with
the Lax–Friedrichs flux is shown in the contour plot. It shows that the HR2–Hancock
method is stabile for ν̃ ≤ 1.



132

3.3.4 DG–Hancock Method

The DG–Hancock method described in Chapter II is also fully discrete, and

introduces two variables for a scalar equation, yielding a 2×2 amplification matrix.

The update formulas for cell-average and undivided gradient have the following

form:

ūn+1
j = ūn

j − ∆t

∆x

(
f̂

n+1/2
j+1/2 − f̂

n+1/2
j−1/2

)
, (3.123a)

∆u
n+1

j = ∆u
n

j − ∆t

∆x
6
(
f̂

n+1/2
j+1/2 + f̂

n+1/2
j−1/2 − 2rǔj

)
, (3.123b)

where the interface fluxes are evaluated at the time level, tn+1/2, by the q-flux (3.87).

The input values for the flux function at the time level tn+k/2 are given by

u
n+k/2
j+1/2,L = ūn

j +
1

2

(
1 − r

k∆t

∆x

)
∆u

n

j , (3.124a)

u
n+k/2
j+1/2,R = ūn

j+1 −
1

2

(
1 + r

k∆t

∆x

)
∆u

n

j+1. (3.124b)

The volume integral of the flux over the domain [xj−1/2, xj+1/2]× [tn, tn+1] simplifies

owing to the linear flux. Hence, the spatial integration is done exactly, and a quadra-

ture is only required in time. Two techniques are employed: 3-point Gauss–Lobatto

and 2-point Gauss–Radau quadratures. These quadratures, with their necessary

intermediate update equation, are as follows:

3-point Gauss–Lobatto

ǔj,GL =
1

6
(ūn

j + 4ū
n+1/2
j + ūn+1

j ), (3.125)

where

ū
n+1/2
j = ūn

j − ∆t

2

1

∆x

(
f̂

n+1/4
j+1/2 − f̂

n+1/4
j−1/2

)
, (3.126)

2-point Gauss–Radau

ǔj,GR =
1

4
(3ū

n+1/3
j + ūn+1

j ), (3.127)
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where

ū
n+1/3
j = ūn

j − ∆t

3

1

∆x

(
f̂

n+1/6
j+1/2 − f̂

n+1/6
j−1/2

)
. (3.128)

Here, the cell-interface fluxes, f̂
n+1/6
j±1/2 and f̂

n+1/4
j±1/2 , are again obtained by the q-flux,

with the input values (3.124) with k =
1

6
,
1

4
respectively. Even though the two

quadratures use different points, owing to the linear flux both Gauss–Lobatto and

Gauss–Radau lead to the identical volume integral of the flux, hence ûj,GL ≡ ûj,GR.

After inserting the flux formula into the update scheme, and some algebra, a

space-time difference operator in the form of (3.8a) results; using the notation

un
j = [ūn

j , ∆u
n

j ]T it can be written in the form

MDG(1)Ha = A
+D+ + C + A

−D−, (3.129)

where

A
+ =

q − r

2∆x




1 −1

2
(1 + rν)

6(1 + rν) −3 − 6rν − 2(rν)2


 , (3.130a)

A
− =

q + r

2∆x




−1 −1

2
(1 − rν)

6(1 − rν) 3 − 6rν + 2(rν)2


 , (3.130b)

C =
r

∆x




0 0

0 −6
(q

r
− rν

)


 , D± = δ±I, (3.130c)

or, when applied to a Fourier mode,

MDG(1)Ha = A
+eiβI + C

′ − A
−e−iβI, (3.131)

where

C
′ = − r

∆x




q

r

1

2
(1 − qν)

−6(1 − qν)
3q

r
− 2rqν2


 . (3.132)



134

When the upwind flux q = r is used, and we set the Courant number equal to 1

(rν = ν̃ = 1), the above operator reduces to

∆tMDG(1)Ha = −δ−I, (3.133)

which is again the exact upwind difference operator. Combined with the forward

Euler time integrator (3.9), the method reduces to the exact solution un+1
j = un

j−1.

Thus the DG(1)–Hancock method produces the exact shift.

As mentioned earlier, even though a scalar equation is considered, a DG method

produces a difference operator in matrix form. Thus, the characteristic equation of

MDG(1)Ha is a quadratic form:

(∆xλ)2 +
[
(q − r)

(
(rν)2 + 3rν + 1

)
δ+ − (q + r)

(
(rν)2 − 3rν + 1

)
δ−

+ 6(q − r2ν)
]
∆xλ − 1

4
(rν)2

[
(q − r)2(δ+)2 + (q + r)2(δ−)2

]

+ 3(q − r2ν)
[
(q − r)δ+ − (q + r)δ−

]
− 1

2
(q2 − r2)

[
6 − (rν)2

]
δ+δ− = 0, (3.134)

which provides two eigenvalues; principal and extraneous. Since the general forms

of eigenvalues are lengthy, only the eigenvalues for the upwind flux, q = r, are

presented here as an example:

λ
(1,2)
DG(1)Ha, upwind =

r

∆x

[
1 − 3rν + (rν)2

]
δ−

− r

∆x
(1 − rν)

[
3 ∓

√
9 − 6(2 − rν)δ− +

(
1 − 4rν + (rν)2

)
(δ−)2

]
. (3.135)

The asymptotic analysis that follows, though, is based on the general q-flux.



135

Accuracy

Replacing the difference operators by their Fourier symbols (3.16), and taking

the low-frequency limit, leads to

λ
(1)
DG(1)Ha = − ir

∆x
β − r2ν

2∆x
β2 +

ir3ν2

6∆x
β3

− r

72∆x

[
r

q

(
1 − (rν)2

)2

1 − r2ν/q
− 3rν

(
1 − qν + (rν)2

)
]

β4 + O
(
β5
)
,

(3.136a)

λ
(2)
DG(1)Ha = − 6r

∆x

(q

r
− rν

)
+

ir [3 − 6qν + 2(rν)2]

∆x
β + O

(
β2
)
. (3.136b)

When comparing with the exact eigenvalue (3.21a), it is clear that λ
(1)
DG(1)Ha is the

principal root and λ
(2)
DG(1)Ha is the extraneous one. Based on the range of the dis-

sipation parameter (3.28), it is easily shown that
q

r
− rν ≥ 0. Thus, the leading

term independent of β in λ
(2)
DG(1)Ha is a negative real value, and the corresponding

extraneous wave is damped quickly. The order of accuracy in space is obtained by

letting ν → 0,

λ
(1)
DG(1)Ha − λexact = − r2

72q
∆x3 k4 + O

(
k5
)
, (3.137a)

λ
(2)
DG(1)Ha − λexact = − 6q

∆x
+ O(k) , (3.137b)

thus the principal root is third-order accurate in space and the extraneous root is

zeroth-order.

To examine the dissipation and dispersion of the method, the eigenvalues of

the amplification matrix of a fully discrete form, GDG(1)Ha = I + ∆tMDG(1)Ha, are

obtained, and rewritten in the polar form (3.22). The modulus and the phase angle
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of the principal root are given by

|g(1)
DG(1)Ha| = 1 − rν

72

[
r

q

(
1 − (rν)2

)2

1 − r2ν/q
− 3rν(1 − qν)

]
β4 + O

(
β6
)
, (3.138a)

φ
(1)
DG(1)Ha = −rνβ +

rν

540

(
1 − (rν)2

)[
3
(
1 − 4(rν)2

)

− 5r2

(
1 − (rν)2

)(
1 − 3qν + 2(rν)2

)

(q − r2ν)2

]
β5 + O

(
β7
)
.

(3.138b)

Following the same procedure as before, the local truncation error of an accurate

mode is given by

LTE
(1)
DG(1)Ha = λ̃

(1)
DG(1)Ha − λexact

=
1

∆t

(
ln|g(1)

DG(1)Ha| + iφ
(1)
DG(1)Ha

)
− λexact

= − r

72

[
r

q

(
1 − (rν)2

)2

1 − r2ν/q
− 3rν(1 − qν)

]
∆x3 k4 + O

(
k5
)
. (3.139)

Therefore, the DG(1)–Hancock method is third-order in space and time.

Stability

The modulus of the accurate and inaccurate amplification factors, |g(1),(2)
DG(1)Ha|,

computed with the upwind fluxes are shown in Figure 3.10. Compared to the

DG(1)–RK2 method illustrated in Figures 3.5(a) and 3.5(b) on page 125, the

DG(1)–Hancock method possesses a wider stability region, ν̃ ≤ 1, and also is less

dissipative at high frequencies. When the Lax–Friedrichs flux is employed, as for

DG(1)–RK2, the DG(1)–Hancock method becomes unconditionally unstable shown

in Figure 3.11.
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Figure 3.10: Contour plots of the modulus of the amplification factor,
|gDG(1)Ha(ν̃, β)|, computed with the upwind flux. These show that the DG(1)–
Hancock method with the upwind flux is stable for ν̃ ≤ 1.
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Figure 3.11: Contour plots of the modulus of the amplification factor,
|gDG(1)Ha(ν̃, β)|, computed with the Lax–Friedrichs flux. These show that the
DG(1)–Hancock method with the Lax–Friedrichs flux is unconditionally unstable.
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3.3.5 Miscellaneous Methods (SV–MOL, DG–ADER)

Even though our main focus in this section is the analysis and comparison

of the DG–Hancock method to the HR/DG–MOL methods, we also present re-

sults for two newly developed high-order methods: the spectral finite volume (SV)

method [Wan02] and the arbitrarily high-order schemes using derivatives (DG–ADER

method) [DM06].

SV–MOL Method

The spectral finite volume method subdivides the spectral volume (SV) into a

few control volumes (CV). The cell-averaged state variables are defined at each CV

inside an SV. For instance, the state variable of the SV over x ∈ [xj−1/2, xj+1/2] is

defined as ūj = [ūj,1 ūj,2] for the second-order method. One of the advantages of

an SV method is that the method does not require the volume integral of a flux

over the SV, whereas a DG method typically employs a quadrature to compute the

volume integral of a flux. Thus, an SV method is computationally less expensive

than a DG method. Furthermore, in general, an SV method has a less restrictive

stability limit than a DG method. However, a DG method tends to provide more

accurate (less dissipative) results than an SV method. A detailed comparison of an

SV to a DG method can be found in [SW04, ZS05].

Here, we consider the second-order SV method (SV2) [Wan02, p. 224]. The

semi-discrete form of the method is given by

∂ūj,1(t)

∂t
= − 1

∆x/2

(
f̂j+1/2(t) − fj(t)

)
, (3.140a)

∂ūj,2(t)

∂t
= − 1

∆x/2

(
fj(t) − f̂j−1/2(t)

)
, (3.140b)

where the interface fluxes across the SV boundaries, f̂j±1/2(t), are obtained by the
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q-flux (3.87) with the following input values:

uj+1/2,L(t) = −1

2
ūj,1(t) +

3

2
ūj,2(t), (3.141a)

uj+1/2,R(t) =
3

2
ūj+1,1(t) −

1

2
ūj+1,2(t). (3.141b)

Since the state variable is continuous across the interior CV boundary at xj , the

flux, fj(t), is obtained analytically such that

fj(u(t)) = fj

(
1

2

(
ūj,1(t) + ūj,2(t)

))

=
r

2
[ūj,1(t) + ūj,2(t)] . (3.142)

After inserting the flux formula into the update scheme, and some algebra, the

spatial difference operator becomes the following compact form:

NSV2 = A
+D+ + C + A

−D−, (3.143)

where

A
+ =

q − r

2∆x




0 0

3 −1


 , A

− =
q + r

2∆x




1 −3

0 0


 , (3.144a)

C =
2q

∆x



−1 1

1 −1


 , D± = δ±I, (3.144b)

or, for a Fourier mode,

NSV2 = A
+eiβI + C

′ − A
−e−iβI, (3.145)

where

C
′ =

1

2∆x



−(3q − r) q − 3r

q + 3r −(3q + r)


 . (3.146)
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Accuracy The eigenvalues of the spatial operator, NSV2, in the low-frequency

limit are as follows:

λ
(1)
SV2 = − ir

∆x
β +

ir

24∆x
β3 − r2

32q∆x
β4 + O

(
β5
)
, (3.147a)

λ
(2)
SV2 = − 4q

∆x
+

2ir

∆x
β + O

(
β2
)
. (3.147b)

Similar to a DG discretization, the leading term of the extraneous root has a negative

real value. Thus, the spurious mode is damped quickly. The order of accuracy in

space is obtained by replacing β by the wave number k:

λ
(1)
SV2 − λexact =

ir

24
∆x2 k3 + O

(
k4
)
, (3.148a)

λ
(2)
SV2 − λexact = − 4q

∆x
+ O(k) . (3.148b)

Hence, the SV discretization containing two CVs (SV2) is second-order in space.

The overall accuracy can be obtained by combining it with an ODE solver. Here,

the second-order Runge–Kutta (RK2) method is adopted for the time integration.

Following the same procedure as in the previous analysis, the local truncation error

of the SV2–RK2 method is given by

LTESV2RK2 =
ir

24

[
1 − 4(rν)2

]
∆x2k3 − r

32

[
r

q
− 4(rν)3

]
∆x3k4

=
ir

24

(
∆x2 − 4r2 ∆t2

)
k3 − r

32

[
r

q
− 4(rν)3

]
∆x3k4. (3.149)

The above equation shows that the SV2–RK2 method is second-order in space and

time. In contrast to the DG(1)–RK2 method, a higher-order time discretization,

e.g., SV2–RK3, does not increase the overall accuracy since the spatial discretiza-

tion error is still second-order. This is clearly shown by comparing the eigenval-

ues (3.148a) to (3.106a) on page 121.
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Stability The modulus of the amplification factor, |gSV2RK2(ν̃, β)|, computed

with the upwind flux is shown in Figure 3.12. Interestingly, the dissipation prop-

erty of the SV2–RK2 method is qualitatively similar to that of the DG(1)–RK2

method shown in Figures 3.5(a) and 3.5(b) on page 125. Both methods are second-

order accurate in space and time, however the stability domains are different: the

SV2–RK2 method has a wider stability domain ν̃ ≤ 1

2
, whereas DG(1)–RK2 has

ν̃ ≤ 1

3
. This wider stability domain together with the volume-integral free flux

makes the SV2–RK2 method less computationally expensive than the DG(1)–RK2

method. However, the SV2–RK2 tends to be more dissipative than the DG(1)–RK2.

For instance, at low frequencies, the dominant dissipation of the SV2–RK2 is twice

as large as the DG(1)–RK2 method. More detailed comparisons are followed at the

end of the section.
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Figure 3.12: Contour plots of the modulus of the amplification factor,
|gSV2RK2(ν̃, β)|, computed with the upwind flux. These show that the inaccurate
amplification factor has a more restrictive stability domain. Thus, the SV2–RK2
method with the upwind flux is stabile for ν̃ ≤ 1/2.
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DG–ADER Method

A DG–ADER method is a fully discrete method, utilizing the Cauchy–Kovalevskaya

procedure to replace the temporal derivatives by the spatial derivatives [DM05].

Even though a DG–ADER method can be extended to an arbitrary high-order of

accuracy, we only analyze the second method, DG(1)–ADER, here. The resulting

method is similar to the DG(1)–Hancock method except for the evaluation of the

volume integral of the flux. For a linear flux, the flux integral in time is approxi-

mated by the flux at the intermediate state, n + 1/2, thus

1

∆t

∫

T n

f(ūj)dt ≃ f(û
n+1/2
j ), (3.150)

where the predicted value, û
n+1/2
j , is given by

û
n+1/2
j = ūn

j − ∆t

2
fx(u)

= ūn
j − r∆t

2

∆u
n

j

∆x
. (3.151)

Note that compared to the DG(1)–Hancock method, the volume integral of the

DG(1)–ADER method does not require a Riemann solver; the wave interactions

across the cell interfaces are neglected in the volume integral. Here, we omit

the derivation of the method; the interested reader is referred to the original pa-

pers [DM06, DM05]. The spatial difference operator of the DG(1)–ADER method

together with the q–flux (3.87) has the following form:

MDG(1)ADER = A
+D+ + C + A

−D−, (3.152)
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where

A
+ =

q − r

2∆x




1 −1

2
(1 + rν)

6 −3(1 + rν)


 , (3.153a)

A
− =

q + r

2∆x



−1 −1

2
(1 − rν)

6 3(1 − rν)


 , (3.153b)

C =
1

∆x




0 0

0 −6q


 , D± = δ±I, (3.153c)

or, for a Fourier mode,

MDG(1)ADER = A
+eiβI + C

′ − A
−e−iβI, (3.154)

where

C
′ = − r

∆x




q

r

1

2
(1 − qν)

−6 3
(q

r
+ rν

)


 . (3.155)

Compared to the DG(1)–Hancock method (3.130) on page 133, the DG(1)–ADER

method contains less information due to the crude approximation of the volume

integral of the flux given by (3.151). More specifically, the DG(1)–ADER method

does not carry the (rν)2 term, which is necessary for third-order accuracy in space

and time.

When the upwind flux, q = r, is used, the difference operator multiplied by ∆t

is reduced to

∆tMDG(1)ADER =



−ν̃δ− −1

2
ν̃(1 − ν̃)δ−

6ν̃δ− 3ν̃
(
(1 − ν̃)δ− − 2

)


 , (3.156)

where ν̃ = rν. The above equation shows that no Courant number ν̃ ∈ [0, 1] provides

−δ−I. Hence, the DG(1)–ADER method does not satisfy the shift condition.
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To obtained the local truncation error, the forward Euler method is adopted for

the time integration:

GDG(1)ADER = I + ∆tMDG(1)ADER. (3.157)

Accuracy Following the same procedure, the local truncation error of the

method becomes

LTE
(1)
DG(1)ADER = λ̃

(1)
DG(1)ADER − λexact

= − ir

12
rν

(
r

q
− rν

)
∆x2 k3

− r

72

r

q

[
1 − 4

r

q
(rν) + 3(rν)2

]
∆x3k4 + O

(
k5
)
.

(3.158a)

Thus, the DG(1)–ADER method is second-order accurate in space and time.

Stability The modulus of the amplification factor, |gDG(1)ADER(ν̃, β)|, computed

with the upwind flux, is shown in Figure 3.13. In contrast to the SV2–RK2 method,

the dissipation property of the DG(1)–ADER method is qualitatively similar to

that of DG(1)–Hancock method shown in Figure 3.10 on page 137. However, the

DG(1)–ADER method is second-order accurate and the stability domain is more

restrictive, ν̃ ≤ 1

3
, whereas the DG(1)–Hancock method is third-order accurate

while stable for ν̃ ≤ 1.
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Figure 3.13: Contour plots of the modulus of the amplification factor,
|gDG(1)ADER(ν̃, β)|, computed with the upwind flux. The plots show that both ac-
curate and inaccurate amplification factors are stabile for ν̃ ≤ 1/3. Thus, the
DG(1)–ADER method with the upwind flux is stabile for ν̃ ≤ 1/3.
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3.3.6 Dominant Dispersion/Dissipation Error and Stability in 1-D

The results of a Fourier analysis for each method are listed below for compar-

ison. The details of the HR3–RK3, DG(2)–RK3, and DG(2)–ADER methods are

presented in Appendix B on page 349. The local truncation errors show the domi-

nant dispersion error, O(k3)-term, and the dissipation error, O(k4)-term. Moreover,

owing to the equivalence of the Fourier analysis and the modified-equation analysis,

the leading error term indicates the order of accuracy. Note that c3 ∝ ∆x2 and

c4 ∝ ∆x3.
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semi-discrete methods:

LTEHR2RK2 = c3

[
1 + 2(rν)2

]
k3 + c4

[q
r
− (rν)3

]
k4, (3.159a)

LTEHR2RK3 = c3 k3 + c4

[
q

r
+

1

3
(rν)3

]
k4, (3.159b)

LTEHR3RK3 = +
2

3
c4

[
q

r
+

1

2
(rν)3

]
k4, (3.159c)

LTE
(1)
DG(1)RK2 = c3

[
2(rν)2

]
k3 +

1

9
c4

[
r

q
− 9(rν)3

]
k4, (3.159d)

LTE
(1)
DG(1)RK3 =

1

9
c4

[
r

q
+ 3(rν)3

]
k4, (3.159e)

LTE
(1),upwind
DG(2)RK3 =

1

9
c4

[
3(rν)3

]
k4, (3.159f)

LTE
(1)
SV2RK2 = −1

2
c3

[
1 − 4(rν)3

]
k3 +

2

9
c4

[
r

q
− 4(rν)3

]
k4, (3.159g)

fully discrete methods:

LTEHR2Ha = c3

[
1 − 3qν + 2(rν)2

]
k3+ c4

[q
r
− (rν)3 + 2rν(qν − 1)

]
k4,

(3.159h)

LTE
(1)
DG(1)Ha =

1

9
c4

[
r

q

(
1 − (rν)2

)2

1 − r2ν/q
− 3rν(1 − qν)

]
k4,

(3.159i)

LTE
(1)
DG(1)ADER = c3

[
rν

(
r

q
− rν

)]
k3 +

1

9
c4

[
r

q

(
1 − 4

r

q
(rν) + 3(rν)2

)]
k4,

(3.159j)

LTE
(1),upwind
DG(2)ADER =

1

15
c4 [rν(1 − rν)] k4, (3.159k)

where

c3 = − ir

12
∆x2 , c4 = −r

8
∆x3 . (3.160)
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The above equations show that the leading errors of the HR3–RK3, DG(1)–RK3,

DG(2)–RK3, DG(1)–Hancock, and DG(2)–ADER methods are O(∆x3), whereas in

the rest of methods they are O(∆x2). Interestingly, the DG(1) spatial discretization

can yield a third-order method, at least for a linear equation discretized on a uni-

form grid, if a proper time integration method is adopted. The Hancock and RK3

method lead to a third-order method; note that, DG(1)–RK3 requires three flux

calculations at each cell-interface whereas DG(1)–Hancock requires two to achieve

the same order. The DG(2) spatial discretization together with the same (third)

order of temporal discretization provides a third-order method: DG(2)–RK3 and

DG(2)–ADER. In these methods, the leading error can be attributed to the tempo-

ral discretization, as can be seen by letting ν̃ = rν → 0 : the O(k4)-term disappears.

The analysis also shows the lower dissipation of DG discretizations: the leading-

error coefficient of a DG(1) method is
1

9
of the value for HR2,

1

6
of the value for

HR3, and
1

2
of the value for SV2.

The stability limits of the methods when combined with the upwind and Lax–

Friedrichs fluxes are shown in Table 3.3. In an HR (finite-volume) method, the

linear stability limit increases as the order of method increases due to the inclusion

of wider stencils. Conversely, DG and SV methods reduce their stability domain

while increasing the order of accuracy, because increasing the number of unknowns

per cell is equivalent to a grid refinement. This suggests that the inaccurate (second)

amplification factor indeed contributes to the accuracy, but on the subgrid scale.

In order to understand the grid-refinement phenomena of the DG and SV methods,

previously presented stability domains are reproduced over the domain β ∈ [0, 2π],

and shown in Figure 3.14. For each method, the accurate amplification factor is

plotted over β ∈ [0, π], while the inaccurate one is plotted for β ∈ [π, 2π]. A smooth
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method order
maximum Courant number, ν̃max

upwind: q = r Lax–Friedrichs: q = ∆x/∆t

semi-discrete

HR1–RK1 1 1.0 1.0
HR2–RK2 2 1.0 1.0
HR2–RK3 2 1.175 1.499
HR3–RK3 3 1.625 1.681

DG(1)–RK2 2 0.333 unstable
DG(1)–RK3 3 0.409 unstable
DG(2)–RK3 3 0.209 unstable

SV2–RK2 2 0.500 unstable
SV3–RK3 3 0.333 (unconfirmed)

fully discrete

HR2–Hancock 2 1.0 1.0
DG(1)–Hancock 3 1.0 unstable

DG(1)–ADER 2 0.333 unstable
DG(2)–ADER 3 0.170 unstable

Table 3.3: The maximum stable Courant number, ν̃max := r
∆t

∆x
, of a method applied

to the 1-D linear advection equation is tabulated. The DG(1)–Hancock method is
seen to possess the largest stability domain among all DG discretizations listed here.

transition of the modulus of the amplification factor across the wave frequency π

is observed for all four methods, and also the stability of MOL based methods,

DG(1)–RK2 and SV2–RK2, is restricted by the wave of highest frequency, β = 2π.

Among DG(1)–Hancock, DG(1)–RK3, and DG(2)–RK3, all third-order accu-

rate, DG(1)–Hancock possesses the largest stability domain, ν̃max = 1.0. Never-

theless, DG(1)–Hancock requires only two Riemann solvers per cell-interface per

time-step, whereas both DG(1)–RK3 and DG(2)–RK3 need three Riemann solvers.
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Figure 3.14: Previously presented stability domains of various upwind methods
applied to the 1-D linear advection equation are reproduced over the frequency
β ∈ [0, 2π]. The accurate amplification factor is plotted for β ∈ [0, π] while the
inaccurate one is plotted for β ∈ [π, 2π]. The shaded area indicates the region
where |gmethod(ν̃)| ≤ 1. Observe that the smooth transition of an amplification
factor across the frequency π, and also that the stability limit for MOL is typically
restricted by the highest frequency 2π.



154

3.3.7 Stability of Methods with the Rusanov Flux

When the scalar linear advection equation is considered, the definition of the

Rusanov flux, which adopts the largest characteristic speed as the dissipation pa-

rameter, becomes vague. One could say the Rusanov flux actually coincides with

the upwind flux. Meanwhile, when hyperbolic-relaxation equations are considered

later in Chapter IV, the Rusanov and upwind fluxes are defined distinctively owing

to the existence of two kinds of waves: frozen and equilibrium waves.

The linear stability conditions of methods with the Rusanov flux are now inves-

tigated. Here, let the frozen wave speed be 1, and the equilibrium wave speed is

r ≤ 1, then the Courant number is defined by (3.2) on page 88. Since the equilib-

rium wave speed r is a free parameter, the stability of a method is conducted for the

whole rage of r ∈ [0, 1]. Obviously, when r = 1, the analyses recover the previous

stability analyses with the upwind flux. Rather surprisingly, as the equilibrium wave

speed r approaches zero, some methods increase their stability domains, while the

DG(1)–Hancock method reduces its stability. The stability limit of each method is

summarized in Table 3.4. As for the DG(1)–Hancock method, the detailed maxi-

mum Courant number based on numerical contour plots is tabulated in Table 3.5.

Throughout the analysis, it is observed that the most unstable mode occurs at the

longest wave (β = 0) in the rage of r ∈
[
0,
√

3/2
]
. Hence, an analytical maximum

Courant number can be obtained by inserting β = 0 into the amplification factor,

and solve for ν:

νmax(r) =
3 −

√
9 − 12r2

6r2
; r ∈ [0,

√
3/2]. (3.161)

Once r is greater than

√
3

2
, the most unstable mode shift from β = 0 to β =

π

2
.

Even though the analytical form of amplification factors for β =
π

2
are obtained,
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method order
maximum Courant number, νmax

Rusanov flux: q = 1

semi-discrete

HR2–RK2 1 1.0
HR2–RK3 2 [1.175, 1.256]
HR3–RK3 3 [1.625, 1.884]

DG(1)–RK2 2 0.333
DG(1)–RK3 3 [0.409, 0.418]
DG(2)–RK3 3 0.209

SV2–RK2 2 0.500
SV3–RK3 3 (unconfirmed)

fully discrete

HR2–Hancock 2 1.0
DG(1)–Hancock 3 [0.333, 1.0]

DG(1)–ADER 2 0.333
DG(2)–ADER 3 [0.166, 0.170]

Table 3.4: The maximum stable Courant number, νmax := 1
∆t

∆x
, of a method

applied to the 1-D linear advection equation is tabulated. The DG(1)–Hancock
method reduces its stability as the equilibrium wave speed becomes smaller. If an
interval is indicated, the method’s stability varies with the value of r.

deriving an explicit form of ν is cumbersome, and further more it does not include

the corresponding transition from β = 0 to
π

2
. Hence, for the higher r-values,

we only approximate ν by a P 4 polynomial function based on the data listed in

Table 3.5(b). Thus, the maximum Courant number with respect to the equilibrium

wave speed can be approximated as follows:

νmax(r) ≈





1

3
+

1

9
r2 +

2

27
r4 if 0 ≤ r ≤

√
3

2
,

4∑

k=0

ckr
k if

√
3

2
< r ≤ 1,

(3.162)

where the coefficients are tabulated in Table 3.6. Finally, measured Courant num-

bers, analytical values, and approximated values (3.162) are plotted in Figure 3.15.

Later, the 10-moment equations are adopted as nonlinear hyperbolic-relaxation
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(a) r ∈
[
0,
√

3/2
]

r νmax(r)

0.0 1/3
0.1 0.335
0.2 0.338
0.3 0.344
0.4 0.353
0.5 0.367
0.6 0.387
0.7 0.420
0.8 0.482
0.82 0.504
0.84 0.536
0.85 0.560
0.86 0.596
0.865 0.636√

3/2 ∼ 0.866 2/3 ∼ 0.667

(b) r ∈
[√

3/2, 1
]

r νmax(r)

0.866 0.758
0.87 0.787
0.88 0.828
0.90 0.877
0.92 0.912
0.94 0.939
0.96 0.962
0.98 0.982
1.0 1.0

Table 3.5: The allowable maximum Courant number with respect to the equilibrium
wave speed r ∈ [0, 1] for the DG(1)–Hancock method with the Rusanov flux is
tabulated. These values are measured based on contour plots of the modulus of
amplification factors. When r = 1, the result recovers the stability with the upwind
flux, while the stability domain is reduced towards 1/3 as the equilibrium wave gets
smaller.

equations. This system has a dimensionless wave speed defined by

r(M) :=
u + a

u +
√

3a
=

M + 1

M +
√

3
, (3.163)

hence, as the Mach number increases, the maximum stable Courant number also

relaxes towards unity. The transition of the Courant number with respect to r is

shown in Figure 3.16.
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c0 −1.569446110504144×103

c1 6.612514388329900×103

c2 −1.044389804968620×104

c3 7.331699503711032×103

c4 −1.929870438514635×103

Table 3.6: Coefficients of the polynomial approximation in (3.162).
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Figure 3.15: The maximum Courant number with respect to the equilibrium wave
speed r is shown together with analytical and approximated values.
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Figure 3.16: The maximum Courant number increases monotonically as the dimen-
sionless equilibrium wave speed for the 10-moment equations increases.
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3.4 Difference Operators and Their Properties in 2-D

In this section, several discretization methods are applied to the two-dimensional

linear advection equation (3.1b), and a Fourier analysis is employed to uncover their

dominant dissipation and dispersion errors, order of accuracy, and domain of linear

stability. Four methods, HR2–RK2, HR2–Hancock, DG(1)–RK2, and DG(1)–RK3,

are compared to the DG(1)–Hancock method. To simplify the analysis, we only

consider rectangular grids here; the extension of a Fourier analysis on quadrilateral

and triangular grids is shown by Huynh [Huy03] for the upwind (Hancock) and some

centered staggered methods.

To write a method in compact form, the difference operators in the x-,y-directions

are defined as follows:

δ+
x ui,j = ui+1,j − ui,j, δ−x ui,j = ui,j − ui−1,j , (3.164a)

δ+
y ui,j = ui,j+1 − ui,j, δ−y ui,j = ui,j − ui,j−1. (3.164b)

Even though the multi-dimensional problem is considered, Godunov-type and DG

methods utilize a one-dimensional Riemann solver. Let uE and uW be the point

values on either side of a cell face normal to the x-direction, and uN and uS at the

cell faces normal to the y-direction. Then, the interface fluxes in the x-,y-directions

are given by

f q
i+1/2,j(uW , uE) =

r

2
(uE + uW ) − qx

2
(uE − uW ), (3.165a)

gq
i,j+1/2(uS, uN) =

s

2
(uN + uS) − qy

2
(uN − uS), (3.165b)
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where

upwind : (qx, qy) = (|r|, |s|), (3.166a)

Rusanov: (qx, qy) = (1, 1), (3.166b)

Lax–Friedrichs : (qx, qy) =

(
∆x

∆t
,
∆y

∆t

)
. (3.166c)

Note that the 1-D Lax–Friedrichs flux does not produce the original 2-D Lax–Friedrichs

scheme formulated for a staggered grid. In fact, the Lax–Friedrichs flux contains

too much dissipation for a 2-D calculation and causes a high-frequency instability,

even in a first-order method. We will therefore not apply the Lax–Friedrichs flux

beyond one dimension.

The exact solution of (3.1b) for a harmonic mode is

u(x, y, t) = û0e
ikx(x−rt)eiky(y−st), (3.167)

where (kx, ky) are the wave numbers in (x, y). The exact amplification factor is

obtained by inserting the time increment, t + ∆t, into the above equation, then

insert u(x, t):

u(x, t + ∆t) = e−i(rkx+sky)∆t u(x, t). (3.168)

Hence, the exact amplification factor and exact eigenvalue of the spatial differenti-

ation in the time step, ∆t, are given by

gexact = e−i(rkx+sky)∆t, (3.169a)

λexact = −i(rkx + sky). (3.169b)

Since the wave numbers (kx, ky) are related to the spatial frequencies of a wave in

the x-, and y-directions, (α, β), such that

(kx, ky) =

(
α

∆x
,

β

∆y

)
, (3.170)
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the exact amplification factor and exact eigenvalue of 2-D spatial differentiation can

be expressed as

gexact(ν̃x, ν̃y, α, β) = e−i(rνxα+sνyβ) = e−i(ν̃xα+ν̃yβ), (3.171a)

λexact = −i

(
r

∆x
α +

s

∆y
β

)
. (3.171b)

The exact amplification factor in the low-frequency limit is given by expanding in

the frequencies of a wave, (α, β), at fixed Courant numbers, (rνx, sνy), thus

gexact(rνx, sνy, α, β) =

[
1 + (−irνx)α +

1

2
(−irνx)

2α2 + O
(
α3
)]

×
[
1 + (−isνy)β +

1

2
(−isνy)

2β2 + O
(
β3
)]

. (3.172)

The asymptotic expansion is further simplified when the wave speeds in the x-,y-

directions are the same, s = r, and we also set νx = νy = ν; then

gexact(rν, β) = 1 + 2(−irν)β + 2(−irν)2β2 +
4

3
(−irν)3β3 +

2

3
(−irν)4β4 + O

(
β5
)
.

(3.173)

Accuracy

The local truncation error of a multi-dimensional method is obtained by straight-

forward extension of the one-dimensional analysis [CdLBL97, Ram94], described in

the previous section. A Taylor series expansion of a space-time eigenvalue, λ̃method,

around kx = ky = 0 leads to a local truncation error:

LTEmethod = λ̃method − λexact

=
1

∆t
ln g(rνx, sνy, kx, ky) − λexact

=
∞∑

m,n=2

cm,nkm
x kn

y , (3.174)
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where the coefficient of the modified equation, cm,n is given by

cm,n =
1

m! n!

∂m+nλ̃

∂km
x ∂kn

y

∣∣∣∣
kx,ky=0

=
1

m! n!∆tg(kx, ky = 0)

∂m+ng(kx, ky)

∂km
x ∂kn

y

∣∣∣∣
kx,ky=0

. (3.175)

In the one-dimensional analysis, the polar form of an amplification factor is obtained

first, then a local truncation error is derived. However, in the two-dimensional

case, a local truncation error is directly obtained by the above equation due to the

complexity of deriving the polar form of the amplification factor.

Stability

A single Courant number for a two-dimensional problem on rectangular grids

can not be uniquely defined; most often used in practice is the definition

ν̃2D := ν̃x + ν̃y

= r
∆t

∆x
+ s

∆t

∆y
. (3.176)

This choice is explained in some detail in Chapter V, as it derives from the more

general form (5.13). Following a procedure similar to the one-dimensional analysis,

the linear stability conditions of various methods with the upwind flux is obtained

numerically.

As a preliminary analysis, the stability domains of the first-order method with

the upwind flux is considered. The maximum modulus of the amplification factor

|g1st-order|max over β ∈ [0, π] at the Courant numbers ν̃x, ν̃y ∈ [0, 1] is shown in

Figure 3.17. The shaded area represents the stable region: |g1st-order| ≤ 1 for any

β ∈ [0, π]. Based on the numerical results, the stability domain for the upwind flux

is given by

ν̃upwind
2D, 1st-order = ν̃x + ν̃y ≤ 1.0. (3.177)
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Figure 3.17: Stability domain of the first-order method applied to the 2-D linear
advection equation. The shaded area indicates the region where |gfirst-order(ν̃x, ν̃y)| ≤
1 for α, β ∈ [0, π]. This shows that the first-order method with the upwind flux is
linearly stable for ν̃upwind

2D, 1st-order = ν̃x + ν̃y ≤ 1.

3.4.1 HR–MOL Method

The HR–MOL method on rectangular grids has the following form:

∂ūj(t)

∂t
= − 1

∆x

(
f̂i+1/2,j(t) − f̂i−1/2,j(t)

)
− 1

∆y

(
ĝi,j+1/2(t) − ĝi,j−1/2(t)

)
, (3.178)

where the interface fluxes are given by the q-flux (3.165):

f̂(t)i+1/2,j = f q
i+1/2,j

(
ui+1/2,j,W (t), ui+1/2,j,E(t)

)
, (3.179a)

ĝ(t)i,j+1/2 = gq
i,j+1/2

(
ui,j+1/2,S(t), ui,j+1/2,N(t)

)
. (3.179b)



164

The input values for the q-flux are obtained by

ui+1/2,j,W = ūi,j +
1

2
∆xui,j, ui+1/2,j,E = ūi+1,j −

1

2
∆xui+1,j, (3.180a)

ui+1/2,j,S = ūi,j +
1

2
∆yui,j, ui+1/2,j,N = ūi,j+1 −

1

2
∆yui,j+1, (3.180b)

where, just as the 1-D analysis, the slopes are obtained by the difference over the

domain (i + 1, i, i − 1) in the x-direction, and (j + 1, j, j − 1) in the y-direction

respectively:

∆xui,j =
1

2
(ūi+1,j − ūi−1,j), (3.181a)

∆yui,j =
1

2
(ūi,j+1 − ūi,j−1). (3.181b)

After inserting these difference formulas into the semi-discrete method (3.178), and

some algebra, the spatial difference operator of the HR2–MOL becomes

∂ūj(t)

∂t
= NHR2ūj(t), (3.182)

where

NHR2 =

2∑

m=1

[
a1m(δ+

x )m + a2m(δ−x )m + b1m(δ+
y )m + b2m(δ−y )m

]
. (3.183)

Here, the coefficients of the difference operator NHR2 are given by



a11 a12

a21 a22


 = − 1

8∆x




2(2r − qx) qx − r

2(2r + qx) qx + r


 , (3.184a)




b11 b12

b21 b22


 = − 1

8∆y




2(2s − qy) qy − s

2(2s + qy) qy + s


 . (3.184b)

Accuracy Taking the low-frequency limit of the difference spatial operator NHR2

leads to the asymptotic eigenvalue:

λHR2 = −i

(
r

∆x
α +

s

∆y
β

)
− i

12

(
r

∆x
α3 +

s

∆y
β3

)
−1

8

(
qx

∆x
α4 +

qy

∆y
β4

)
+O
(
α5, β5

)
.

(3.185)
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The order of accuracy in space is obtained by replacing (α, β) to the wave numbers,

(kx, ky), thus

λHR2 − λexact = − i

12

(
r ∆x2 k3

x + s ∆y2 k3
y

)
+ O

(
k4

x, k
4
y

)
. (3.186)

Since the HR2–MOL is a semi-discrete method, a suitable time integration method

is applied; here, the RK2 method is adopted. Once a time integration method

is applied, the overall order of accuracy can be obtained directly by applying the

method described in (3.174); then

LTEHR2RK2 = λ̃HR2RK2 − λexact

= − i

12

(
r ∆x2 k3

x + s ∆y2 k3
y

)

− i

6

[
r3k3

x + s3k3
y + 3rs(rkx + sky)kxky

]
∆t2

+
1

8

[
(r4∆t3 − qx∆x3)k4

x + (s4∆t3 − qy∆y3)k4
y

]

+
1

2
rs∆t3(r2k2

x + s2k2
y)kxky +

3

4
r2s2∆t3k2

xk
2
y + O

(
k4

x, k
4
y

)
.

(3.187)

The above equation shows that the HR2–RK2 method is second-order accurate in

space and time. If we further assume a uniform grid, ∆x = ∆y = ∆h, and the

uniform wave numbers, kx = ky = k, then the local truncation error becomes

LTEHR2RK2 = − i

12
(r + s)

[
∆h2 + 2(r + s)2 ∆t2

]
k3

− 1

8

[
(qx + qy)∆h3 − (r + s)4∆t3

]
k4 + O

(
k5
)
, (3.188)

which can be seen as the direct extension of the one-dimensional result shown

in (3.96a) on page 116.

Stability The stability condition of the two-dimensional HR2–RK2 method with

the upwind flux is obtained numerically. The maximum modulus of the amplification
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factor |gupwind
HR2RK2|max over β ∈ [0, π] at the Courant numbers ν̃x, ν̃y ∈ [0, 1] is shown

in Figure 3.18. The shaded area represents the stable region: |gupwind
HR2RK2| ≤ 1 for any

β ∈ [0, π]. The figure shows that the two-dimensional HR2–RK2 method is stable

for

ν̃upwind
2D, HR2RK2 = ν̃x + ν̃y ≤ 1.0. (3.189)
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Figure 3.18: Stability domain of the HR2–RK2 method with the upwind flux applied
to the 2-D linear advection equation. The shaded area indicates the region where
|gHR2RK2(ν̃x, ν̃y)| ≤ 1 for α, β ∈ [0, π]. It shows that the HR2–RK2 method is

linearly stable for ν̃upwind
2D, HR2RK2 = ν̃x + ν̃y ≤ 1.0.
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3.4.2 DG–MOL Method

The DG–MOL method using the P 1 Legendre polynomial for both basis and

test functions has the following semi-discrete form on the rectangular grids:

∂ūj(t)

∂t
= − 1

∆x

(
f̂i+1/2,j(t) − f̂i−1/2,j(t)

)
− 1

∆y

(
ĝi,j+1/2(t) − ĝi,j−1/2(t)

)
,

(3.190a)

∂∆xui,j(t)

∂t
= − 6

∆x

(
f̂i+1/2,j(t) + f̂i−1/2,j(t) − 2rūi,j(t)

)

− 12

∆y




1∫

0

(
ξ − 1

2

)
ĝξ,j+1/2(ξ, t) dξ −

1∫

0

(
ξ − 1

2

)
ĝξ,j−1/2(ξ, t) dξ


 ,

(3.190b)

∂∆yui,j(t)

∂t
= − 6

∆x

(
ĝi,j+1/2(t) + ĝi,j−1/2(t) − 2sūi,j(t)

)

− 12

∆x




1∫

0

(
η − 1

2

)
f̂i+1/2,η(η, t) dη −

1∫

0

(
η − 1

2

)
f̂i−1/2,η(η, t) dη



 .

(3.190c)

Note that the line integrals of the flux,

∫
(·) dξ and

∫
(·) dη, appear in the update

formulas of the undivided gradient. Due to the linear variation of the fluxes, f̂i±1/2,η

and ĝξ,i±1/2, along cell interfaces, the resulting integrand of the line integral is a

quadratic function with respect to ξ or η. Inserting the q-flux (3.165) into the

above equations leads to the difference operator of the DG(1)–MOL method such

that

∂ūj(t)

∂t
= NDG(1) ūj(t), (3.191)

where

NDG(1) = A
+D+

x + A
−D−

x + B
+D+

y + B
−D−

y + C. (3.192)
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Here, the coefficient matrices are given by

A
+ =

qx − r

2∆x




1 −1

2
0

6 −3 0

0 0 1




, A
− =

qx + r

2∆x




−1 −1

2
0

6 3 0

0 0 −1




, (3.193a)

B
+ =

qy − s

2∆y




1 0 −1

2

0 1 0

6 0 −3




, B
− =

qy + s

2∆y




−1 0 −1

2

0 −1 0

6 0 3




, (3.193b)

C =




0 0 0

0 −6qx

∆x
0

0 0 −6qy

∆y




, D± = δ±I. (3.193c)

Accuracy In order to uncover the order of accuracy in space, the asymptotic

eigenvalues of the difference operator NDG(1) in the low-frequency limit are obtained.

Due to the complexity of the formulas, we assume α = β, then

λ
(1)
DG(1) = −i

(
r

∆x
+

s

∆y

)
β − 1

72

(
3q2

x + r2

qx∆x
+

3q2
y + s2

qy∆y

)
β4 + O

(
β5
)
, (3.194a)

λ
(2)
DG(1) = −6qx

∆x
+ i

(
3r

∆x
− s

∆y

)
β + O

(
β2
)
, (3.194b)

λ
(3)
DG(1) = −6qy

∆y
+ i

(
3s

∆y
− r

∆x

)
β + O

(
β2
)
. (3.194c)

Furthermore, assuming a uniform grid, ∆x = ∆y = ∆h, hence the identical wave

numbers kx = ky = k in the x-,y-directions, leads to

λ
(1)
DG(1) − λexact = − 1

72


3(qx + qy)︸ ︷︷ ︸

multi-D error

+
r2

qx
+

s2

qy


 ∆h3 k4 + O

(
k5
)
, (3.195a)

λ
(2)
DG(1) − λexact = −6qx

∆h
+ O(k) , (3.195b)

λ
(3)
DG(1) − λexact = −6qy

∆h
+ O(k) . (3.195c)
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The above equations show that the principal root is third-order accurate, and the

extraneous roots are damped quickly; the leading errors have negative real values.

The high-order accuracy of the DG(1) spatial discretization is preserved for the

two-dimensional problem on a rectangular grid. However, compared to the result

of the one-dimensional problem (3.106a) on page 121, the extra dissipation error,

− 1

24
(qx + qy) ∆h3, appears in the O(k4)-term. Since this error never disappears

even if one-dimensional advection in two-dimensional space (e.g., r 6= 0, s = 0) is

considered, the error is inherent in the multi-dimensional discretization of a DG

method.

To examine the overall accuracy, both RK2 and RK3 method are adopted

as the time-integration method. The local truncation error of DG(1)–RK2 and

DG(1)–RK3 are obtained directly by (3.174); then

LTEDG(1)RK2 = λ̃
(1)
DG(1)RK2 − λexact

= − i

6
(r + s)3 ∆t2 k3

− 1

72

[
3(qx + qy) +

r2

qx
+

s2

qy
− 9(r + s)4ν3

]
∆h3 k4 + O

(
k5
)
,

(3.196a)

LTEDG(1)RK3 = λ̃
(1)
DG(1)RK3 − λexact

= − 1

72

[(
3(qx + qy) +

r2

qx
+

s2

qy

)
∆h3 + 3(r + s)4 ∆t3

]
k4 + O

(
k5
)
.

(3.196b)

Thus, the DG(1)–RK2 method is third-order accurate in space and second-order

in time, just as the method for the one-dimensional problem (3.109a) on page 122.

Similarly, the two-dimensional DG(1)–RK3 method is third-order in space and time.
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Stability The modulus of the amplification factors of both DG(1)–RK2 and

DG(1)–RK3 methods with the upwind flux are shown in Figure 3.19. Based on the

numerical contour plots of the modulus, the stability condition of each method in

terms of ν̃2D is

ν̃upwind
2D, DG(1)RK2 = ν̃x + ν̃y ≤ 0.333, (3.197a)

ν̃upwind
2D, DG(1)RK3 = ν̃x + ν̃y ≤ 0.409, (3.197b)

respectively. Thus, adding another stage slightly increases the stability domain, and

also the order of accuracy. A drawback is that the RK3 requires an extra Riemann

solver to compute at each cell interface.
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(a) The stability domain of the DG(1)–RK2 method.
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(b) The stability domain of the DG(1)–RK3 method.

Figure 3.19: Stability domain of the DG(1)–RK2/RK3 methods with upwind flux
applied to the 2-D linear advection equation. The shaded area indicates the region
where |gDG(1)RK2/RK3(ν̃x, ν̃y)| ≤ 1 for α, β ∈ [0, π]. These show that the DG(1)–RK2

method is linearly stable for ν̃upwind
2D, DG(1)RK2 = ν̃x + ν̃y ≤ 0.333, and the three-stage

RK method slightly increases the stability domain.
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3.4.3 HR–Hancock Method

The HR–Hancock method on a rectangular grid has the following form:

ūn+1
i,j = ūn

i,j −
∆t

∆x

(
f̂

n+1/2
i+1/2,j − f̂

n+1/2
i−1/2,j

)
− ∆t

∆y

(
ĝ

n+1/2
i+1/2,j − ĝ

n+1/2
i−1/2,j

)
, (3.198)

where interface fluxes are given by the q-flux:

f̂
n+1/2
i+1/2,j = f q

i+1/2,j

(
u

n+1/2
i+1/2,j,W , u

n+1/2
i+1/2,j,E

)
, (3.199a)

ĝ
n+1/2
i,j+1/2 = gq

i,j+1/2

(
u

n+1/2
i,j+1/2,S, u

n+1/2
i,j+1/2,N

)
. (3.199b)

The input values of the q-flux are obtained by a Taylor series expansion of u(x, y, t)

around (xi, yj, t
n); then

u
n+k/2
i+1/2,j,E = ūn

i+1,j−
1

2

(
1 + r

k∆t

∆x

)
∆xu

n

i+1,j −s
k∆t

∆y
∆yu

n

i+1,j, (3.200a)

u
n+k/2
i+1/2,j,W = ūn

i,j +
1

2

(
1 − r

k∆t

∆x

)
∆xu

n

i,j −s
k∆t

∆y
∆yu

n

i,j, (3.200b)

u
n+k/2
i,j+1/2,N = ūn

i+1,j −r
k∆t

∆x
∆xu

n

i+1,j−
1

2

(
1 + s

k∆t

∆y

)
∆yu

n

i+1,j, (3.200c)

u
n+k/2
i,j+1/2,S = ūn

i,j −r
k∆t

∆x
∆xu

n

i,j +
1

2

(
1 − s

k∆t

∆y

)
∆yu

n

i,j. (3.200d)

Inserting the above equations into the update formula (3.198) leads to the difference

operator of the HR2–Hancock method such that

un+1
j = (1 + ∆t MHancock) un

j , (3.201)

where

MHancock =

2∑

m=1

[
a1m(δ+

x )m + a2m(δ−x )m + b1m(δ+
y )m + b2m(δ−y )m

]

+ c11δ
+
x δ+

y + c12δ
+
x δ−y + c21δ

−
x δ+

y + c22δ
−
x δ−y . (3.202)
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Here, the coefficients of the difference operator are given by




a11 a12

a21 a22


 = − 1

8∆x




2(2r − qx − r2νx) (1 + rνx)(qx − r)

2(2r + qx + r2νx) (1 − rνx)(qx + r)


 , (3.203a)




b11 b12

b21 b22


 = − 1

8∆y




2(2s − qy − s2νy) (1 + sνy)(qy − s)

2(2s + qy + s2νy) (1 − sνy)(qy + s)


 , (3.203b)




c11 c12

c21 c22


 =

∆t

8∆x∆y




2rs − sqx − rqy 2rs − sqx + rqy

2rs + sqx − rqy 2rs + sqx + rqy


 . (3.203c)

Accuracy Taking the low-frequency limit of the difference operator MHR2Ha

leads to the asymptotic eigenvalue:

λHR2Ha = −i

(
r

∆x
α +

s

∆y
β

)
− ∆t

2

[( r

∆x

)2

α2 +

(
s

∆y

)2

β2 +
2rs

∆x∆y
αβ

]

− i

12

(
r

∆x
α3 +

s

∆y
β3

)
+

i∆t

4

(
rα

∆x
+

sβ

∆y

)(
qxα

2

∆x
+

qyβ
2

∆y

)
+ O

(
α4, β4

)
.

(3.204)

The order of accuracy in space is obtained by replacing (α, β) to the wave numbers,

(kx, ky), and let ∆t → 0, then

λHR2Ha − λexact = − i

12

(
r ∆x2 k3

x + s ∆y2 k3
y

)
+ O

(
k4

x, k
4
y

)
. (3.205)

The above equation shows that the HR2–Hancock method is second-order in space.

The overall order of accuracy can be obtained by adopting the forward Euler method
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as the time integrator; then the local truncation error becomes

LTEHR2Ha = λ̃HR2Ha − λexact

= − i

12

(
r ∆x2 k3

x + s ∆y2 k3
y

)
− i

6
(rkx + sky)

3 ∆t2

+
i

4
(rkx + sky)

(
qx ∆x∆t k2

x + qy ∆y∆t k2
y

)

+
1

8

[
r4∆t3 − qx∆x3 + 2r2∆x∆t(∆x − qx∆t)

]
k4

x

+
1

8

[
s4∆t3 − qy∆y3 + 2s2∆y∆t(∆y − qy∆t)

]
k4

y

+
1

2
rs∆t

(
r2∆t2 − qx∆x∆t + 2∆x2

)
k3

xky

+
1

2
rs∆t

(
s2∆t2 − qy∆y∆t + 2∆y2

)
kxk

3
y

+
1

4
∆t2

(
−s2qx∆x − r2qy∆y + 3(rs)2∆t

)
k2

xk
2
y + O

(
k4

x, k
4
y

)
.

(3.206)

Thus, the HR2–Hancock method is second-order accurate in space and time. If

we further assume a uniform grid, ∆x = ∆y = ∆h, and uniform wave numbers,

kx = ky = k, then the above equation is further simplified:

LTEHR2Ha = − i

12
(r+s)

[
∆h2 − 3(qx + qy) ∆h∆t + 2(r + s)2 ∆t2

]
k3+O

(
k4
)
,

(3.207)

which is identical to the local truncation error of the HR2–Hancock method applied

to the one-dimensional problem (3.122) on page 130, if we form 2-D parameters by

summation of the wave speeds and the dissipation coefficients.

Stability The stability domain of the HR2–Hancock with the upwind flux is

shown in Figure 3.20. The shaded area indicates the region where |gHR2Ha(ν̃x, ν̃y)| ≤

1 for any α, β ∈ [0, π]. As we expected, the two-dimensional HR2–Hancock method

is stable for

ν̃upwind
2D, HR2Hancock = ν̃x + ν̃y ≤ 1. (3.208)
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Figure 3.20: Stability domain of the HR2–Hancock method with upwind flux applied
to the 2-D linear advection equation. The shaded area indicates the region where
|gHR2Ha(ν̃x, ν̃y)| ≤ 1 for α, β ∈ [0, π]. It shows that the HR2–Hancock method is

linearly stable for ν̃upwind
2D, HR2Ha = ν̃x + ν̃y ≤ 1.
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3.4.4 DG–Hancock Method

The DG(1)–Hancock method on a rectangular grid has the following update

formulas:

ūn+1
i,j = ūn

i,j −
∆t

∆x

(
f̂

n+1/2
i+1/2,j − f̂

n+1/2
i−1/2,j

)
− ∆t

∆y

(
ĝ

n+1/2
i+1/2,j − ĝ

n+1/2
i−1/2,j

)
, (3.209a)

∆xu
n+1

i,j = ∆xu
n

i,j −
∆t

∆x
6
(
f̂

n+1/2
i+1/2,j + f̂

n+1/2
i−1/2,j − 2rǔi,j

)

− ∆t

∆y
12




1∫

0

(
ξ − 1

2

)
ĝ

n+1/2
ξ,j+1/2(ξ) dξ −

1∫

0

(
ξ − 1

2

)
ĝ

n+1/2
ξ,j−1/2(ξ) dξ


 ,

(3.209b)

∆yu
n+1

i,j = ∆yu
n

i,j −
∆t

∆y
6
(
ĝ

n+1/2
i,j+1/2 + ĝ

n+1/2
i,j−1/2 − 2sǔi,j

)

− ∆t

∆x
12




1∫

0

(
η − 1

2

)
f̂

n+1/2
i+1/2,η(η) dη −

1∫

0

(
η − 1

2

)
f̂

n+1/2
i−1/2,η(η) dη



 ,

(3.209c)

where the fluxes in both coordinate directions are given by the q-flux (3.199). The

volume integral of the flux simplifies owing to flux linearity, and quadrature is only

required in time. Again, both Gauss–Lobatto and Gauss–Radau quadratures in

time:

3-point Gauss–Lobatto

ǔj =
1

6
(ūn

j + 4ū
n+1/2
j + ūn+1

j ), (3.210)

where

ū
n+1/2
j = ūn

j − ∆t

2

1

∆x

(
f̂

n+1/4
j+1/2 − f̂

n+1/4
j−1/2

)
, (3.211)

2-point Gauss–Radau

ǔj =
1

4
(3ū

n+1/3
j + ūn+1

j ), (3.212)
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where

ū
n+1/3
j = ūn

j − ∆t

3

1

∆x

(
f̂

n+1/6
j+1/2 − f̂

n+1/6
j−1/2

)
; (3.213)

for ǔi,j these lead to identical final update formulas. After inserting the difference

form of the volume integral of the fluxes and the q-flux, the difference operator has

the form

un+1
j =

(
I + ∆tMDG(1)Ha

)
un

j , (3.214)

where

MDG(1)Ha = A
+D+

x + A
−D−

x + B
+D+

y + B
−D−

y + C, (3.215)

with

D±
x = δ±x I, D±

y = δ±y I, (3.216)

and the coefficient matrices are given by

A
+ =

qx − r

2∆x




1 −1

2
(1 + rνx) −sνy

2

6(1 + rνx) −3 − 6rνx − 2(rνx)
2 −(3 + 2rνx)sνy

6sνy −(3 + 2rνx)sνy 1 − 2(sνy)
2




, (3.217a)

A
− =

qx + r

2∆x




−1 −1

2
(1 − rνx)

sνy

2

6(1 − rνx) 3 − 6rνx + 2(rνx)
2 −(3 − 2rνx)sνy

−6sνy −(3 − 2rνx)sνy −1 + 2(sνy)
2




, (3.217b)

B
+ =

qy − s

2∆y




1 −rνx

2
−1

2
(1 + sνy)

6rνx 1 − 2(rνx)
2 −(3 + 2sνy)rνx

6(1 + sνy) −(3 + 2sνy)rνx −3 − 6sνy − 2(sνy)
2




, (3.217c)

B
− =

qy + s

2∆y




−1
rνx

2
−1

2
(1 − sνy)

−6rνx −1 + 2(rνx)
2 −(3 − 2sνy)rνx

6(1 − sνy) −(3 − 2sνy)rνx 3 − 6sνy + 2(sνy)
2




, (3.217d)
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C =




0 0 0

0 − 6r

∆x

(qx

r
− rνx

) 6s

∆y
rνx

0
6r

∆x
sνy − 6s

∆y

(qy

s
− sνy

)




. (3.217e)

Accuracy In view of the lengthy formula, let us assume the wave frequencies

in the x- and y-directions are the same, thus α = β. Furthermore, in the O(β4)-

term, a square mesh, ∆x = ∆y = ∆h, is assumed. Under these assumptions, the

asymptotic eigenvalues based on the upwind flux, (qx, qy) = (r, s), become

λ
(1)
DG(1)Ha = −i

(
r

∆x
+

s

∆y

)
β − 1

2

(
r

∆x
+

s

∆y

)2

∆tβ2 +
i

6

(
r

∆x
+

s

∆y

)3

∆t2β3

− r + s

72∆h

[
4 − 5(r + s)

∆t

∆h
+ 2(r + s)2

(
∆t

∆h

)2

− 4(r + s)3

(
∆t

∆h

)3
]

β4

+ O
(
β5
)
,

(3.218a)

λ
(2),(3)
DG(1)Ha = − 3

∆h

[
(r + s) − ν(r2 + s2) ±

√
(r − s)2

(
1 − 2(r + s)ν

)
+ (r2 + s2)2ν2

]

+ O(β) .

(3.218b)

Replacing the wave frequency by the wave number, k =
β

∆h
, and letting ∆t → 0

brings out the spatial order of accuracy:

λ
(1),upwind
DG(1)Ha − λexact = −r + s

18
∆h3 k4 + O

(
k5
)
, (3.219a)

λ
(2),upwind
DG(1)Ha − λexact = − 6r

∆h
+ O(k) , (3.219b)

λ
(3),upwind
DG(1)Ha − λexact = − 6s

∆h
+ O(k) , (3.219c)

thus, the spatial discretization is third-order accurate. Comparing the dominant

dissipation error (3.219a) to the error obtained in the one-dimensional case, (3.137a)
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on page 135, the multi-dimensionality increases the dissipation by a factor 4. This

multi-dimensional error originates with the line integral of the flux along the cell

interfaces, the last term in (3.209b) and (3.209c).

When the Lax–Friedrichs flux

(
qx = qy = q =

∆h

∆t
in the O(β4) term

)
is adopted,

the asymptotic eigenvalues become

λ
(1),LxF
DG(1)Ha = −i

(
r

∆x
+

s

∆y

)
β − 1

2

(
r

∆x
+

s

∆y

)2

∆tβ2 +
i

6

(
r

∆x
+

s

∆y

)3

∆t2β3

− r + s

72[(r2 + s2)∆t − q∆h]

[
(6q2 + r2 + s2) − 12q(r2 + rs + s2)

(
∆t

∆x

)

+ 2(r + s)2
(
3q2 + 2(r2 + s2)

)(∆t

∆x

)2

− 3q(r + s)2(3r2 + 2rs + 3s2)

(
∆t

∆x

)3

+ 4(r + s)4(r2 + s2)

(
∆t

∆x

)4]
β4 + O

(
β5
)
,

(3.220a)

λ
(2),LxF
DG(1)Ha = − 6q

∆h
+ O(β) , (3.220b)

λ
(3),LxF
DG(1)Ha = − 6

∆h

[
q − (r2 + s2)ν

]
+ O(β) . (3.220c)

As in the one-dimensional case, the Lax–Friedrichs flux, q =
∆h

∆t
, leads to the

constant leading error − 6q

∆h
= −6 in λ

(2),LxF
DG(1)Ha, thus the method becomes uncondi-

tionally unstable.

The overall order of accuracy for the scheme with the upwind flux becomes

LTE
(1),upwind
DG(1)Ha = −r + s

72

[
4 − 5(r + s)ν + 2(r + s)2ν2 − (r + s)3ν3

]
∆h3 k4+O

(
k5
)
,

(3.221)

thus the accurate eigenmode of the two-dimensional DG(1)–Hancock method is

third-order in space and time.

Stability The unity contour of the amplification-factor modulus |gDG(1)Ha| with

upwind flux is shown in Figure 3.21. The shaded area indicates the region where



180

|gDG(1)Ha(ν̃x, ν̃y)| ≤ 1 for any α, β ∈ [0, π]. The numerical result shows that a

sufficient condition for the two-dimensional DG(1)–Hancock to be stable is

ν̃upwind
2D, DG(1)Ha = ν̃x + ν̃y ≤ 0.664. (3.222)
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Figure 3.21: Stability domain of the DG(1)–Hancock method with upwind flux
applied to the 2-D linear advection equation. The shaded area indicates the region
where |gDG(1)Ha(ν̃x, ν̃y)| ≤ 1 for α, β ∈ [0, π]. It shows that the DG(1)–Hancock

method is linearly stable for ν̃upwind
2D, DG(1)Ha = ν̃x + ν̃y ≤ 0.664.
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3.4.5 Dominant Dissipation/Dispersion Error and Stability in 2-D

The results of a Fourier analysis for each method are listed below for comparison:

LTEHR2RK2 = c3

[
1 + 2(r + s)2ν2

]
k3

+ c4

[
qx + qy

r + s
− (r + s)3ν3

]
k4,

(3.223a)

LTEupwind
HR2Ha = c3

[
1 − 3(r + s)ν + 2(r + s)2ν2

]
k3

+ c4

[
1 − 2(r + s)ν + 2(r + s)2ν2 − (r + s)3ν3

]
k4,

(3.223b)

LTE
(1)
DG(1)RK2 = c3

[
2(r + s)2ν2

]
k3

+
1

9
c4

[
3(qx + qy)

r + s
+

1

r + s

(
r2

qx
+

s2

qy

)
− 9(r + s)3ν3

]
k4,

(3.223c)

LTE
(1)
DG(1)RK3 =

1

9
c4

[
3(qx + qy)

r + s
+

1

r + s

(
r2

qx
+

s2

qy

)
+ 3(r + s)3ν3

]
k4, (3.223d)

LTE
(1),upwind
DG(1)Ha =

1

9
c4

[
4 − 5(r + s)ν + 2(r + s)2ν2 − (r + s)3ν3

]
k4, (3.223e)

where

c3 = −i (r + s)

12
∆h2 , c4 = −r + s

8
∆h3 . (3.224)

The local truncation errors show the dominant dispersion error
(
O(k3) -term

)
, and

the dissipation error,
(
O(k4) -term

)
. Compared to the one-dimensional results (3.159)

on page 149, the leading dissipation error of a two-dimensional DG(1) method in-

creases by a factor 4 due to the multi-dimensionality. In contrast, an HR2 method

possesses the same amount of dispersion and dissipation for both one- and two-

dimensional discretizations. The DG(1)–Hancock and DG(1)–RK3 methods are

superior with a leading error O(∆h3); the rest of the methods have error O(∆h2).

The stability limits for the upwind and Lax–Friedrichs fluxes are also sum-

marized in Table 3.7. The two-dimensional DG(1)–Hancock method is stable for

ν̃2D ≤ 0.664, more restrictive than in one dimension, and also more restrictive than
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method order
maximum Courant number:

(ν̃2D)max := (ν̃x + ν̃y)max

semi-discrete

HR1–RK1 1 1.0
HR2–RK2 2 1.0

DG(1)–RK2 2 0.333
DG(1)–RK3 3 0.409

fully discrete
HR2–Hancock 2 1.0
DG(1)–Hancock 3 0.664 ≃ 2/3

Table 3.7: Maximum 2-D Courant number, (ν̃2D)max := (ν̃x + ν̃y)max, for various
methods combined with the upwind flux (qx, qy) = (r, s) are applied to the 2-D linear
advection equation. The stability domain of DG(1)–Hancock reduces to (ν̃2D)max =
0.664 in two dimensions, yet greater than for DG(1)–RK2/RK3.

for the two-dimensional HR2–RK2/Hancock method (ν̃2D ≤ 1.0), but still 50% less

restrictive than for the two-dimensional DG(1)–RK2 method (ν̃2D ≤ 0.333).

Relating to the stability limit for two-dimensional problem, Huynh recently

found a factor
1√
2

reduction for a high-order method if tensor-product basis func-

tions are adopted [Huy07, p. 3]. Note that, on a rectangular grid, a tensor-product

basis of P 1 functions has four degrees of freedom, whereas our minimal P 1 basis

has three degrees of freedom. Since our analysis is restricted to rectangular grids,

further reduction of the stability domain for two-dimensional problems is expected

when quadrilateral grids are considered.

3.4.6 Stability of Methods with the Rusanov Flux

Similar to the 1-D case, the DG(1)–Hancock method with the Rusanov flux

reduces its stability domain as equilibrium wave speeds decrease. The upper bound

is obtained by the wave speeds (r, s) = (1, 1), just as for the method with the

upwind flux: (ν2D)max = 0.664. Conversely, the lower bound is identical to that of

the DG(1)–RK2 method: (ν2D)max = 0.333. Owing to the fact that the stability
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domain is convex while r, s ≤ 0.664 (see Figure 3.22), the stability condition deduced

in the 1-D analysis (Figure 3.15 on page 157) is still applicable. Here, even though

we obtain the maximum 2-D Courant number numerically as 0.664, it is more

plausible to set it to
2

3
≃ 0.666 owing to the analogy with the 1-D analysis. Finally,

let v := min(r, s), then the maximum Courant number of the 2-D DG(1)–Hancock

method on a rectangular grid is given by

(ν̃2D)max := (ν̃x + ν̃y)max ≈





1

3
+

1

9
v2 +

2

27
v4 if 0 ≤ v ≤

√
3

2
,

2

3
if

√
3

2
< v ≤ 1.

(3.225)
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Figure 3.22: The stability domains of the 2-D DG(1)–Hancock method with the
Rusanov flux are presented. Similar to the 1-D case, the stability domain reduces
as wave speeds (r, s) decrease. Note that the Courant numbers in the x-,y-directions
are defined by νx := ∆t/∆x and νy := ∆t/∆y respectively.
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3.5 Grid Convergence Study in 1-D

To confirm the previous analysis and demonstrate the efficiency of the DG(1)–

Hancock method, the 1-D linear advection equation,

∂tu + r∂xu = 0 with r =
1

2
, u(x, 0) = cos(2πx), (3.226)

is solved over the domain x ∈ [0, 1] with periodic boundary conditions. The numer-

ical solution at tend = 300, after the harmonic wave has propagated 150 times across

the domain, is compared to the exact solution. The upwind flux is used to compute

a cell-interface flux, and we set the Courant number for each method equal to 90%

of the method’s linear stability limit listed in Table 3.3;

νHR2–RK2 = νHR2–Hancock = νDG(1)–Hancock = 0.9, (3.227a)

νDG(1)–RK2 = 0.3, νDG(1)–RK3 = 0.37, νDG(2)–RK3 = 0.19. (3.227b)

The L2-, L∞-errors and CPU time of each method are listed in Table 3.8. At first, to

assess the dispersion and dissipation errors of methods qualitatively, the numerical

solution by DG(1)–Hancock at tend is plotted together with solutions by three other

methods: HR2–RK2, HR2–Hancock, and DG(1)–RK2. The grid used for the DG

methods is twice as coarse (N = 20) as for the HR methods (N = 40), because the

former use two independent date per mesh. The numerical results superimposed on

the exact solution are shown in Figure 3.23. The DG(1)–Hancock method produces

the least dispersive/dissipative result among the four methods. As shown in the

local truncation errors (3.159) on page 149, the leading error of the HR2–RK2,

DG(1)–RK2, and HR2–Hancock methods is dispersive, caused by the O(k3)-term.

Thus, a traveling wave solution suffers especially with HR2–RK2 and DG(1)–RK2.

However, HR2–Hancock has surprisingly little dispersive/dissipative error, which
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can be understood from the shift condition shown at (3.118) on page 129 which the

Hancock method would satisfy at ν̃ = 1.

Secondly, a grid convergence study is conducted, with results shown in Fig-

ure 3.24. The L2-norms of solution errors are plotted against the number of de-

grees of freedom (solution parameters). It is seen that DG(1)–Hancock converges

with third-order accuracy, while its error levels are almost comparable to those of

DG(2)–RK3.

Even though Figure 3.24(a) provides the accuracy of a method, it does not show

its efficiency. Therefor, L2-norms of solution errors are plotted against CPU time

in Figure 3.24(b). This figure reveals that the DG(1)–Hancock is actually more

efficient than DG(2)–RK3: the former method has only two unknowns
(
DG(1)

)

and a two-stage update formula (Hancock), whereas the latter method has three

unknowns
(
DG(2)

)
and a three-stage update formula

(
RK(3)

)
.

Finally, CPU time normalized by the CPU time of the DG(1)–RK2 method for a

specific error level is shown in Figure 3.25. Remarkably, the DG(1)–Hancock method

is almost two orders of magnitude more efficient than the DG(1)–RK2 method.

However, this could be a flattering result since the model equation we are solving

is merely the 1-D linear advection equation with periodic boundaries. We expect

that, when a nonlinear problem is considered, the efficiency of DG(1)–Hancock will

be degraded; in fact, the numerical results in the next section still show an order of

magnitude difference with DG(1)–MOL for a 1-D nonlinear hyperbolic-relaxation

system.
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(a) The HR2–RK2 method (ν̃ = 0.9)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10 10 6.96e−01 — 9.36e−01 — 0.00e+00
20 20 5.99e−01 0.22 8.43e−01 0.15 0.00e+00
40 40 7.74e−01 −0.37 1.09e+00 −0.38 2.00e−02
80 80 8.31e−01 −0.10 1.17e+00 −0.10 8.00e−02

160 160 2.23e−01 1.90 3.16e−01 1.90 3.00e−01
320 320 5.61e−02 1.99 7.93e−02 1.99 1.19e+00
640 640 1.40e−02 2.00 1.98e−02 2.00 4.76e+00

1280 1280 3.51e−03 2.00 4.96e−03 2.00 2.67e+01
2560 2560 8.77e−04 2.00 1.24e−03 2.00 1.07e+02
5120 5120 2.19e−04 2.00 3.10e−04 2.00 4.27e+02

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10 10 7.15e−01 — 9.83e−01 — 0.00e+00
20 20 3.96e−01 0.85 5.59e−01 0.81 0.00e+00
40 40 1.09e−01 1.86 1.54e−01 1.86 2.00e−02
80 80 2.75e−02 1.99 3.88e−02 1.99 6.00e−02

160 160 6.86e−03 2.00 9.70e−03 2.00 2.40e−01
320 320 1.71e−03 2.00 2.42e−03 2.00 9.50e−01
640 640 4.28e−04 2.00 6.06e−04 2.00 3.78e+00

1280 1280 1.07e−04 2.00 1.51e−04 2.00 1.79e+01
2560 2560 2.68e−05 2.00 3.78e−05 2.00 7.14e+01
5120 5120 6.68e−06 2.00 9.44e−06 2.00 2.85e+02

(c) The DG(1)–RK2 method (ν̃ = 0.3)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10 20 8.96e−01 — 8.58e−01 — 0.00e+00
20 40 1.15e+00 −0.36 1.14e+00 −0.41 1.00e−02
40 80 3.44e−01 1.74 3.44e−01 1.73 5.00e−02
80 160 8.72e−02 1.98 8.72e−02 1.98 1.80e−01

160 320 2.18e−02 2.00 2.18e−02 2.00 7.00e−01
320 640 5.45e−03 2.00 5.45e−03 2.00 2.79e+00
640 1280 1.36e−03 2.00 1.36e−03 2.00 1.54e+01

1280 2560 3.41e−04 2.00 3.41e−04 2.00 7.35e+01
2560 5120 8.52e−05 2.00 8.52e−05 2.00 2.93e+02



188

(d) The DG(1)–RK3 method (ν̃ = 0.37)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10 20 9.61e−01 — 9.19e−01 — 0.00e+00
20 40 3.70e−01 1.38 3.69e−01 1.32 2.00e−02
40 80 5.66e−02 2.71 5.66e−02 2.70 6.00e−02
80 160 7.27e−03 2.96 7.27e−03 2.96 2.30e−01

160 320 9.13e−04 2.99 9.13e−04 2.99 9.20e−01
320 640 1.14e−04 3.00 1.14e−04 3.00 3.72e+00
640 1280 1.43e−05 3.00 1.43e−05 3.00 2.02e+01

1280 2560 1.78e−06 3.00 1.78e−06 3.00 9.33e+01
2560 5120 2.23e−07 3.00 2.23e−07 3.00 3.73e+02

(e) The DG(2)–RK3 method (ν̃ = 0.19)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10 30 5.31e−02 — 7.33e−02 — 1.00e−02
20 60 6.13e−03 3.11 8.62e−03 3.09 4.00e−02
40 120 7.46e−04 3.04 1.05e−03 3.03 1.50e−01
80 240 9.25e−05 3.01 1.31e−04 3.01 6.20e−01

160 480 1.15e−05 3.00 1.63e−05 3.00 2.42e+00
320 960 1.44e−06 3.00 2.04e−06 3.00 9.69e+00
640 1920 1.80e−07 3.00 2.55e−07 3.00 4.94e+01

1280 3840 2.32e−08 2.96 3.28e−08 2.96 2.14e+02
2560 7680 7.44e−09 1.64 1.05e−08 1.64 8.53e+02

(f) The DG(1)–Hancock method (ν̃ = 0.9)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10 20 1.74e−01 — 2.42e−01 — 0.00e+00
20 40 2.54e−02 2.78 3.57e−02 2.76 1.00e−02
40 80 3.25e−03 2.97 4.59e−03 2.96 3.00e−02
80 160 4.08e−04 2.99 5.76e−04 2.99 1.30e−01

160 320 5.10e−05 3.00 7.21e−05 3.00 5.00e−01
320 640 6.38e−06 3.00 9.02e−06 3.00 2.00e+00
640 1280 7.97e−07 3.00 1.13e−06 3.00 8.05e+00

1280 2560 9.96e−08 3.00 1.41e−07 3.00 3.57e+01
2560 5120 1.28e−08 2.96 1.81e−08 2.96 1.43e+02

Table 3.8: A grid convergence study by solving the 1-D linear advection equation,

∂tu + r∂xu = 0 where r =
1

2
, is performed. The numerical solution at tend = 300 is

compared to the exact solution, then both Lp errors of ū and the convergence rates
are obtained for each method.



189

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

 

 
HR2−RK2,  N=40
HR2−Hancock,  N=40
DG(1)−RK2,  N=20
DG(1)−Hancock,  N=20
Exact Solution

x

ū
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Figure 3.23: Numerical results of four methods at tend = 300 in problem (3.226).
The DG(1)–Hancock method appears to be the least dissipative and dispersive.
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(a) L2-norms of error plotted against number of degrees of freedom.
DG(1)–Hancock is almost comparable to DG(2)–RK3.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

 

 

HR2−RK2
HR2−Hancock
DG(1)−RK2
DG(1)−RK3
DG(2)−RK3
DG(1)−Hancock

CPU time [s]

L
2
-n

o
rm

o
f
er

ro
r,
L

2
(ū
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(b) L2-norms of error plotted against CPU time. DG(1)–Hancock is
the most efficient method.

Figure 3.24: The L2-norms of errors shown in Table 3.8 are plotted in terms of
both degrees of freedom and CPU time. The grid convergence study shows the
superiority of the DG(1)–Hancock method.
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Figure 3.25: CPU time required to achieve the target error level, normalized by the
DG(1)–RK2 result. The high efficiency of DG(1)–Hancock is evident.
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3.6 Grid Convergence Study in 2-D

The previous one-dimensional numerical experiment is extended to a two-dimensional

problem. The two-dimensional linear advection equation,

∂tu + r∂xu + s∂yu = 0 with r =
1

2
, u(x, y, 0) = cos

(
2π(x + y)

)
, (3.228)

is solved over the domain (x, y) ∈ [0, 1] × [0, 1] with periodic boundary conditions.

The numerical solution at tend = 150 is compared to the exact solution. The upwind

flux is used at cell interfaces, and we set the Courant number for each method equal

to 90% of the method’s linear stability limit listed in Table 3.7;

νHR2–RK2 = νHR2–Hancock = 0.9, (3.229a)

νDG(1)–RK2 = 0.3, νDG(1)–RK3 = 0.37, νDG(1)–Hancock = 0.6. (3.229b)

Note that the stability limit of the DG(1)–Hancock method in two dimensions re-

duces to ν̃2D ≤ 0.664 while the other methods have the same stability limit as in

one dimension. The L2-, L∞-norms of errors and the CPU time of each method are

listed in Table 3.9. Figures 3.26(a) and 3.26(b) show the L2-norm of error against

the number of degree of freedom and the CPU time. These show that the high

accuracy, efficiency, and third-order convergence of the DG(1)–Hancock method are

preserved even in two dimensions. A rather surprising result is the superiority of

HR2–Hancock to DG(1)–Hancock in the region of high error-level, L2(ūerror) ≥ 10−2.

Apparently, for the HR2–Hancock method, the relatively finer grid (compared to

one for a DG method with the same number of degrees of freedom) leads to a

lower numerical error in this range. However, as higher accuracy is required, the

DG(1)–Hancock method takes over in terms of both accuracy and efficiency. The

CPU time normalized by the CPU time of the DG(1)–RK2 method for a specific
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error level is shown in Figure 3.27. Compared to the one-dimensional result shown

in Figure 3.25, the efficiency of the DG(1)–Hancock method is reduced, yet it shows

that an order of magnitude difference with DG(1)–RK2 method.

(a) The HR2–RK2 method (ν̃ = 0.9)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10× 10 100 6.84e−01 — 9.67e−01 — 4.00e−02
20× 20 400 5.96e−01 0.20 8.42e−01 0.20 3.30e−01
40× 40 1600 7.73e−01 −0.37 1.09e+00 −0.37 2.79e+00
80× 80 6400 8.31e−01 −0.10 1.17e+00 −0.11 2.42e+01

160×160 25600 2.23e−01 1.90 3.16e−01 1.90 5.71e+02
320×320 102400 5.61e−02 1.99 7.93e−02 1.99 4.47e+03
640×640 409600 1.40e−02 2.00 1.98e−02 2.00 3.49e+04

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10× 10 100 7.04e−01 — 9.93e−01 — 3.00e−02
20× 20 400 3.94e−01 0.84 5.50e−01 0.85 2.50e−01
40× 40 1600 1.09e−01 1.85 1.54e−01 1.83 2.06e+00
80× 80 6400 2.75e−02 1.99 3.88e−02 1.99 1.70e+01

160×160 25600 6.86e−03 2.00 9.70e−03 2.00 2.63e+02
320×320 102400 1.71e−03 2.00 2.42e−03 2.00 2.21e+03
640×640 409600 4.28e−04 2.00 6.06e−04 2.00 1.78e+04

(c) The DG(1)–RK2 method (ν̃ = 0.3)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10× 10 300 6.84e−01 — 9.68e−01 — 1.20e−01
20× 20 1200 6.96e−01 −0.02 9.80e−01 −0.02 9.80e−01
40× 40 4800 2.55e−01 1.45 3.60e−01 1.44 8.13e+00
80× 80 19200 6.32e−02 2.01 8.94e−02 2.01 1.23e+02

160×160 76800 1.55e−02 2.02 2.20e−02 2.02 1.43e+03
320×320 307200 3.86e−03 2.01 5.46e−03 2.01 1.16e+04
640×640 1228800 9.64e−04 2.00 1.36e−03 2.00 9.92e+04
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(d) The DG(1)–RK3 method (ν̃ = 0.37)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10× 10 300 6.84e−01 — 9.68e−01 — 1.70e−01
20× 20 1200 5.66e−01 0.27 8.00e−01 0.27 1.44e+00
40× 40 4800 1.33e−01 2.09 1.88e−01 2.09 1.19e+01
80× 80 19200 1.83e−02 2.86 2.59e−02 2.86 2.16e+02

160×160 76800 2.32e−03 2.98 3.28e−03 2.98 1.95e+03
320×320 307200 2.91e−04 3.00 4.11e−04 3.00 1.74e+04
640×640 1228800 3.64e−05 3.00 5.14e−05 3.00 1.36e+05

(e) The DG(1)–Hancock method (ν̃ = 0.6)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate CPU time [s]

10× 10 300 6.84e−01 — 9.67e−01 — 1.10e−01
20× 20 1200 4.73e−01 0.53 6.69e−01 0.53 9.20e−01
40× 40 4800 9.42e−02 2.33 1.33e−01 2.33 7.28e+00
80× 80 19200 1.26e−02 2.90 1.78e−02 2.90 9.22e+01

160×160 76800 1.59e−03 2.99 2.25e−03 2.99 1.13e+03
320×320 307200 1.99e−04 3.00 2.82e−04 3.00 8.94e+03
640×640 1228800 2.49e−05 3.00 3.52e−05 3.00 7.20e+04

Table 3.9: A grid convergence study by solving the 2-D linear advection equation,

∂tu + r∂xu + s∂xu = 0 where r = s =
1

2
, is performed. The numerical solution at

tend = 150 is compared to the exact solution, and both Lp-errors of ū and conver-
gence rates are obtained for each method.
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(a) L2-norms of error plotted against number of degrees of free-
dom. The third-order convergence of the DG(1)–Hancock method
is observed.
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(ū

e
rr

o
r
)

(b) L2-norms of error plotted against CPU time. DG(1)–Hancock is
the most efficient method for L2(ūerror) ≤ 10−2.

Figure 3.26: The L2-norms of errors shown in Table 3.9 are plotted in terms of both
degrees of freedom and CPU time. The 2-D linear advection equation is solved by
various methods. Note that we did not test DG(2)–RK3, as we did in 1D. The grid
convergence study shows the superiority of the HR2–Hancock method at low error
levels, L2(ūerror) ≥ 10−2, yet the DG(1)–Hancock method takes over in accuracy
and efficiency when high accuracy is required.
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C
P

U
ti
m

e
to

a
ch

ie
v
e

th
e

tr
a
g
et

er
ro

r
le

v
el

(n
o
rm

a
li
ze

d
b
y

th
e

D
G

(1
)–

R
K

2
)

Figure 3.27: CPU time required to achieve the target error level, normalized by the
DG(1)–RK2 result. The 2-D linear advection equation is solved by various methods.
The high efficiency of DG(1)–Hancock is shown especially when higher accuracy is
required.
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3.7 Grid Convergence Study for Nonlinear Hyperbolic Equa-
tions

3.7.1 The Inviscid Burgers’ Equation

To extend the analysis to nonlinear equations, the inviscid Burgers’ equation:

∂u(x, t)

∂t
+

∂

∂x

(
1

2
u2

)
= 0; x ∈ R, t > 0, (3.230)

which represents the simplest model of the motion of a fluid is considered. The

nonlinearity in the flux term leads to the non-constant wave propagation speed u

unlike the constant speed in the linear advection equation. Thus the shape of the

initial-value distribution is no longer preserved, and it creates either a discontinu-

ity (shock) or a smooth profile (expansion). Also, a sufficiently smooth initial condi-

tion could still generate a discontinuity within a finite time due to the nonlinearity.

Here, our motivation is to assess the order of convergence of a numerical method,

therefore, an initial condition that only creates an expansion wave is chosen. The

initial condition is given by

u(x, 0) =






−1 x ≤ −5,

tanh

(
10x

25 − x2

)
−5 < x < 5,

1 x ≥ 5.

(3.231)

The exact solution in the general form can be constructed by the method of char-

acteristics, and is given by an implicit relation:

u(x, t) = u(x − ut, 0). (3.232)

Note that, in general, the above exact solution is only valid before a shock is formed,

but with the initial values (3.231) this is not a concern. The exact solution at time
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Figure 3.28: The broken line represents the initial condition for the Burgers’ equa-
tion, and the solid line is the exact solution at time tend = 5.0.

tend with the initial condition (3.231) is given by

u(x, t) =






−1 x ≤ −5 − tend,

u(x − utend, 0) −5 − tend < x < 5 + tend,

1 x ≥ 5 + tend.

(3.233)

The profiles of the initial condition and exact solution at tend = 5.0 are shown in

Figure 3.28. The cell-averaged value in each cell is obtained with sufficient accuracy

by three-point Gauss quadrature. The solution at a quadrature point xi is the

solution at the unknown coordinate x at time t = 0, which satisfies the implicit

relation

x = xi − u(x, 0) tend; (3.234)

it is computed by Newton’s method:

xn+1 = xn − f(xn)

fx(xn)
, (3.235)



199

where

f(x) = x + tanh

(
10x

25 − x2

)
tend − xi, (3.236a)

fx(x) =
10(x2 + 25)

(x2 − 25)2
sech2

(
10x

25 − x2

)
. (3.236b)

The Courant number for each method is identical to the value used in the case

of one-dimensional linear advection, equation (3.227) on page 185, that is: 90%

of its stability limit. The L1-,L∞-norms, and corresponding CPU time are listed

in Tables 3.10 and 3.11. Table 3.10 shows that DG(1)–RK3 and DG(2)–RK3 are

third-order accurate, and HR2–RK2, HR2–Hancock, and DG(1)–RK2 are second-

order accurate in both L1- and L∞-norms. Thus, the order of accuracy obtained by

the linear analysis is preserved for a scalar nonlinear problem.

Table 3.11 shows a grid-convergence study of the DG(1)–Hancock method with

various volume-integral treatments. Two quadratures in time, Gauss–Lobatto and

Gauss–Radau, are compared for the nonlinear flux; recall that these two quadratures

give identical results for a linear flux. See Figure 2.3 on page 40 for their quadrature

points in space-time domain.

The sequence of quadratures applied in space and time is examined for its influ-

ence on the order of accuracy. For the spatial integration in the volume integral of

the flux, the Gauss–Lobatto quadrature is always used. Tables 3.11 (a) and (c) show

the result when either the Gauss–Lobatto/Radau temporal quadratures are made

first, then a spatial quadrature is made later. Conversely, Tables 3.11 (b) and (d)

show the result when a spatial quadrature is made first at each time level, then

a temporal quadrature is applied. For instance, in the case of Table 3.11 (d), the
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volume integral of flux is obtained by the Gauss–Radau quadrature in time

∫∫

Ij×T n

f(u) dxdt ≈ ∆t

4

(
3f̄n+1/3 + f̄n+1

)
, (3.237)

where spatially averaged fluxes at time levels n +
1

3
and n + 1 are computed by

f̄n+1/3 =
∆x

6

[
f(u

n+1/3
j+1/2 ) + 4f(u

n+1/3
j ) + f(u

n+1/3
j+1/2 )

]
, (3.238a)

f̄n+1 =
∆x

6

[
f(un+1

j+1/2) + 4f(un+1
j ) + f(un+1

j+1/2)
]
. (3.238b)

Table 3.11 shows that the order of accuracy is sensitive to the sequence of spatial

and temporal quadratures, while both Gauss–Lobatto and Gauss–Radau quadra-

tures in time, when combined in the same sequence, provide similar error levels.

Computing a spatial quadrature first is necessary to achieve higher-order accuracy;

the convergence rates based on the L1-norms of error shows third-order convergence

in this case, yet L∞-norms converge only at the second-order.
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(a) The HR2–RK2 method (ν̃ = 0.9)

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 10 5.52e−02 — 7.91e−02 — 1.64e−02
20 20 2.17e−02 1.35 5.17e−02 0.61 1.69e−02
40 40 8.21e−03 1.40 3.28e−02 0.66 6.24e−02
80 80 2.46e−03 1.74 1.50e−02 1.13 2.30e−01

160 160 6.34e−04 1.95 5.44e−03 1.46 9.11e−01
320 320 1.53e−04 2.06 1.61e−03 1.75 3.73e+00
640 640 3.66e−05 2.06 4.26e−04 1.92 1.47e+01

1280 1280 9.02e−06 2.02 1.08e−04 1.98 5.92e+01
2560 2560 2.25e−06 2.01 2.69e−05 2.00 2.37e+02
5120 5120 5.61e−07 2.00 6.73e−06 2.00 9.46e+02

(b) The HR2–Hancock method (ν̃ = 0.9)

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 10 1.19e−02 — 2.92e−02 — 1.31e−02
20 20 6.03e−03 0.99 1.43e−02 1.03 8.97e−03
40 40 1.84e−03 1.71 4.79e−03 1.57 3.00e−02
80 80 4.30e−04 2.10 1.38e−03 1.79 1.17e−01

160 160 9.91e−05 2.12 3.25e−04 2.09 4.67e−01
320 320 2.36e−05 2.07 8.42e−05 1.95 1.87e+00
640 640 5.80e−06 2.03 2.16e−05 1.96 7.49e+00

1280 1280 1.44e−06 2.01 5.46e−06 1.98 3.01e+01
2560 2560 3.57e−07 2.01 1.37e−06 1.99 1.20e+02
5120 5120 8.92e−08 2.00 3.44e−07 2.00 4.80e+02

(c) The DG(1)–RK2 method (ν̃ = 0.3)

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 20 1.60e−02 — 2.98e−02 — 2.01e−02
20 40 3.78e−03 2.08 1.28e−02 1.22 5.04e−02
40 80 1.07e−03 1.83 6.01e−03 1.09 1.92e−01
80 160 2.32e−04 2.20 1.99e−03 1.60 7.57e−01

160 320 4.97e−05 2.22 5.19e−04 1.94 3.02e+00
320 640 1.14e−05 2.13 1.24e−04 2.07 1.22e+01
640 1280 2.75e−06 2.05 3.02e−05 2.04 4.91e+01

1280 2560 6.79e−07 2.02 7.44e−06 2.02 1.97e+02
2560 5120 1.69e−07 2.01 1.85e−06 2.01 7.91e+02
5120 10240 4.20e−08 2.00 4.61e−07 2.00 3.18e+03
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(d) The DG(1)–RK3 method (ν̃ = 0.37)

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 20 9.36e−03 — 2.24e−02 — 4.34e−02
20 40 2.59e−03 1.85 8.47e−03 1.41 6.10e−02
40 80 6.82e−04 1.93 3.06e−03 1.47 2.25e−01
80 160 1.15e−04 2.57 9.56e−04 1.68 8.89e−01

160 320 1.68e−05 2.78 2.07e−04 2.21 3.08e+00
320 640 2.20e−06 2.93 3.16e−05 2.71 1.24e+01
640 1280 2.79e−07 2.98 4.23e−06 2.90 4.95e+01

1280 2560 3.49e−08 2.99 5.35e−07 2.98 1.99e+02
2560 5120 4.37e−09 3.00 6.71e−08 3.00 7.99e+02
5120 10240 5.47e−10 3.00 8.39e−09 3.00 3.22e+03

(e) The DG(2)–RK3 method (ν̃ = 0.19)

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 30 1.68e−03 — 4.01e−03 — 7.60e−02
20 60 2.62e−04 2.68 8.30e−04 2.27 1.28e−01
40 120 6.04e−05 2.12 4.36e−04 0.93 4.86e−01
80 240 4.61e−06 3.71 6.58e−05 2.73 1.87e+00

160 480 4.41e−07 3.39 6.45e−06 3.35 6.81e+00
320 960 4.70e−08 3.23 6.58e−07 3.29 2.80e+01
640 1920 5.66e−09 3.05 7.60e−08 3.11 1.11e+02

1280 3840 7.01e−10 3.01 9.30e−09 3.03 4.42e+02
2560 7680 8.75e−11 3.00 1.16e−09 3.01 1.76e+03
5120 15360 1.09e−11 3.00 1.44e−10 3.00 7.07e+03

Table 3.10: A grid convergence study by solving the inviscid Burgers’ equation
∂tu + u∂xu = 0. The numerical solution at tend = 5.0 is compared to the exact
solution, then both Lp-norms of error ūerror and convergence rates are obtained for
various methods.
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(a) The DG(1)–Hancock method (ν̃ = 0.9): Lobatto quadrature for the
volume integral in time (time → space).

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 20 2.82e−02 — 6.57e−02 — 3.36e−02
20 40 6.07e−03 2.22 1.68e−02 1.97 2.80e−02
40 80 5.76e−04 3.40 2.49e−03 2.75 8.69e−02
80 160 8.32e−05 2.79 5.22e−04 2.26 3.20e−01

160 320 1.83e−05 2.19 1.21e−04 2.11 1.21e+00
320 640 4.38e−06 2.06 2.92e−05 2.05 4.70e+00
640 1280 1.06e−06 2.04 7.16e−06 2.03 1.86e+01

1280 2560 2.62e−07 2.02 1.78e−06 2.01 7.17e+01
2560 5120 6.50e−08 2.01 4.42e−07 2.01 2.82e+02
5120 10240 1.62e−08 2.01 1.10e−07 2.00 1.12e+03

(b) The DG(1)–Hancock method (ν̃ = 0.9): Lobatto quadrature for the
volume integral in time (space → time).

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 20 7.38e−03 — 2.26e−02 — 6.32e−03
20 40 3.42e−03 1.11 9.81e−03 1.21 1.95e−02
40 80 3.52e−04 3.28 1.68e−03 2.55 6.69e−02
80 160 3.82e−05 3.20 3.15e−04 2.41 2.65e−01

160 320 4.44e−06 3.11 6.69e−05 2.23 1.07e+00
320 640 5.29e−07 3.07 1.54e−05 2.12 4.29e+00
640 1280 7.19e−08 2.88 3.69e−06 2.06 1.72e+01

1280 2560 8.61e−09 3.06 9.03e−07 2.03 6.89e+01
2560 5120 1.03e−09 3.06 2.23e−07 2.02 2.74e+02
5120 10240 1.43e−10 2.85 5.56e−08 2.01 1.10e+03



204

(c) The DG(1)–Hancock method (ν̃ = 0.9): Radau quadrature for the
volume integral in time (time → space).

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 20 2.88e−02 — 6.57e−02 — 2.05e−02
20 40 6.15e−03 2.23 1.68e−02 1.97 2.71e−02
40 80 5.91e−04 3.38 2.49e−03 2.75 8.58e−02
80 160 8.34e−05 2.82 5.22e−04 2.26 3.17e−01

160 320 1.83e−05 2.19 1.21e−04 2.11 1.19e+00
320 640 4.39e−06 2.06 2.92e−05 2.05 4.59e+00
640 1280 1.06e−06 2.04 7.16e−06 2.03 1.85e+01

1280 2560 2.62e−07 2.02 1.78e−06 2.01 7.05e+01
2560 5120 6.50e−08 2.01 4.42e−07 2.01 2.79e+02
5120 10240 1.62e−08 2.01 1.10e−07 2.00 1.11e+03

(d) The DG(1)–Hancock method (ν̃ = 0.9): Radau quadrature for the
volume integral in time (space → time).

N DOF L1 error of ū Rate L∞ error of ū Rate CPU time [s]

10 20 9.47e−03 — 2.50e−02 — 5.43e−03
20 40 3.46e−03 1.45 1.00e−02 1.32 1.86e−02
40 80 3.26e−04 3.41 1.63e−03 2.61 6.31e−02
80 160 3.32e−05 3.30 3.12e−04 2.39 2.49e−01

160 320 3.67e−06 3.18 6.67e−05 2.23 1.01e+00
320 640 4.30e−07 3.09 1.54e−05 2.12 4.08e+00
640 1280 5.92e−08 2.86 3.69e−06 2.05 1.62e+01

1280 2560 7.03e−09 3.07 9.03e−07 2.03 6.45e+01
2560 5120 8.67e−10 3.02 2.23e−07 2.02 2.59e+02
5120 10240 1.19e−10 2.86 5.56e−08 2.01 1.03e+03

Table 3.11: A grid convergence study by solving the inviscid Burgers’ equation
∂tu + u∂xu = 0. DG(1)–Hancock methods with various volume-integral meth-
ods are compared. The results show that doing spatial quadrature first, temporal
quadrature later leads to higher accuracy than vice versa.



205

10
1

10
2

10
3

10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

HR2−RK2
HR2−Hancock
DG(1)−RK2
DG(1)−RK3
DG(2)−RK3
DG(1)−Hancock

degrees of freedom

L
1
-n

o
rm

o
f
er

ro
r,
L

1
(ū
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(a) L1-norms of error plotted against number of degrees of free-
dom. Unlike the result of 1-D linear advection, DG(2)–RK3 is
more accurate than DG(1)–Hancock method.
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(b) L1-norms of error plotted against CPU time. DG(1)–Hancock
is almost comparable to DG(2)–RK3.

Figure 3.29: The L1-norms of errors shown in Table 3.10 and 3.11 are plotted in
terms of both degrees of freedom and CPU time. The grid convergence study shows
the DG(2)–RK3 method is more accurate than the DG(1)–Hancock method, yet
DG(1)–Hancock is more efficient on coarser grids.
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Figure 3.30: CPU time required to achieve the target error level, normalized by the
DG(1)–RK2 result. The high efficiency of DG(1)–Hancock is evident; it is matched
by DG(2)–RK3 only on the finest grid.



CHAPTER IV

ANALYSIS FOR 1-D AND 2-D LINEAR

HYPERBOLIC-RELAXATION EQUATIONS

4.1 Introduction

In this chapter, numerical methods including the DG(1)–Hancock method for

hyperbolic-relaxation equations are investigated analytically and numerically. As

a preliminary analysis for hyperbolic-relaxation equations, various methods for hy-

perbolic conservation laws were analyzed in the previous chapter; Fourier analyses

and numerical tests show the superior accuracy and efficiency of the DG(1)–Hancock

method over the semi-discrete, method-of-lines approach for both linear and nonlin-

ear equations. We shall now carry out a Fourier analysis of four methods applied to

one- and two-dimensional systems of linear hyperbolic-relaxation equations. The lo-

cal truncation error of the DG(1)–Hancock is compared to HR2–MOL, DG(1)–MOL,

and HR2–Hancock; numerical tests confirm the linear analysis. Later, the discretiza-

tion methods are applied to a system of nonlinear hyperbolic-relaxation equations

to examine the validity of the linear analysis.

207



208

4.2 Model Equations: Generalized Hyperbolic Heat Equa-
tions

4.2.1 Dimensional Form

The model equation we consider is the generalized hyperbolic heat equations

(GHHE) [JL96, Hit00, LM02],

∂tu + ∂xv = 0, (4.1a)

∂tv + a2
F ∂xu = −1

τ
(v − aEu); x ∈ R, t > 0, (4.1b)

where u(x, t) ∈ R is the conserved variable and v(x, t) ∈ R is the flux of u. In vector

form, u = [u, v]T , f = [v, a2
F u]T , and s = [0, aEu − v]T in

∂tu + ∂xf(u) =
1

τ
s(u). (4.2)

There are three constant parameters: τ > 0 is a relaxation time, aF > 0 is a frozen

wave speed, and aE > 0 is an equilibrium wave speed. For stability, |aE| ≤ aF . The

constant Jacobian matrix and its eigenvalues are as follows:

A :=
∂f

∂u
=




0 1

a2
F 0


 −→ λ1,2 := Eig(A) = ±aF . (4.3)

Here, we insist that these three parameters have physical meaning; once the problem

is described, these parameters are fixed. The above equations are constructed such

that the frozen waves propagate at speed ±aF in the beginning; these eventually

decay. Simultaneously, equilibrium waves at speed ±aE enter the model; one of

the equilibrium waves with speed −aE is quickly damped out, and the other wave

with speed aE dominates the solution. Figure 4.1 describes these waves schemati-

cally. The right hand side of (4.1) represents the relaxation process, which always

drives the non-equilibrium flux variable v to its equilibrium flux aEu. A detailed
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x

t

frozen wave: aFfrozen wave:−aF

equilibrium wave: aE

Figure 4.1: Initially, two frozen waves propagate with speed ±aF ; they eventually
decay. Meanwhile, the equilibrium wave with speed aE arises and dominates the
flow field in the long-time limit.

dispersion analysis and the exact solution of the Riemann problem are presented by

Hittinger [HR04, Hit00].

Let L be a length scale of interest, and aF serve as a reference wave speed, then

a reference time scale can be defined by T :=
L

aF

. Note that this is a particular

choice of scaling: another reference time may be chosen. Since aF is a fixed value,

changing the length scale of interest affects the reference time. The GHHE can

be reduced to a smaller set of equations by a certain choice of T relative to the

relaxation time τ , which really means choosing a certain length scale of interest.

When the time of interest is much smaller than the relaxation time (T ≪ τ),

the relaxation process is not yet important, and the GHHE is reduced to the wave

equation,

∂tu + ∂xv = 0,

∂tv + a2
F∂xu ≃ 0,

−→ ∂ttu − a2
F ∂xxu = 0, (4.4)

where the wave speeds are ±aF . This is the reduced form of the frozen limit.

On the other hand, when the time of interest is much larger than the relaxation
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time (T ≫ τ), the relaxation process is no longer negligible. Asymptotic expansion

of u and v for small τ gives an advection-diffusion equation (the derivation for the

particular scaling is given in Appendix C on page 354):

∂tu + aE∂xu = τ(a2
F − a2

E)∂xxu + O
(
τ 2
)
. (4.5)

This is the reduced form in the near-equilibrium limit. Note that the leading dif-

fusion coefficient τ(a2
F − a2

E) always has a positive sign as long as aE ≤ aF ; this

property is called the sub-characteristic condition for stability [Liu87]. There are

two different physical processes included in this equation; the relative strength of

the two parameters, advection speed aE and diffusion coefficient ǫ(a2
F −a2

E), decides

which is the dominant physics. This will be discussed in more detail in a later

section.

We further consider the time scale of interest T to be infinite; this is equivalent

to letting τ → 0, so the relaxation process occurs instantaneously, and the above

equation becomes a pure advection equation:

∂tu + aE∂xu = 0, (4.6)

where the wave speed is aE. This is the reduced form of the GHHE in the equilibrium

limit.

To summarize, let t̄ be the dimensionless time normalized by the relaxation time

τ such that

t̄ :=
T

τ
=

L

aF τ
. (4.7)

The reduced equations of the GHHE corresponding to t̄ are shown in Table 4.1.

These forms can be seen as consecutive transformations of the GHHE in the time

frame.
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dimensionless time assumption reduced equation

t̄ ≪ 1 frozen limit ∂ttu − a2
F ∂xxu = 0

t̄ ≫ 1 near-equilibrium limit ∂tu + aE∂xu ≃ τ(a2
F − a2

E)∂xxu

t̄ → ∞ equilibrium limit ∂tu + aE∂xu = 0

Table 4.1: The reduced forms of the GHHE are listed in each limit. The character-
istic of the GHHE changes with the time scale of interest.

4.2.2 Nondimensionalization of the 1-D GHHE

Choice of Scaling Parameters

As seen in the previous section, the GHHE changes characteristics in different

time scales of interest even though the equations themselves are linear. Thus, when

we nondimensionalize the original equations (4.1), the specific choice of reference

time t0 affects the behavior of the equations significantly. Here, three different refer-

ence times are chosen for nondimensionalization. Let each symbol with subscript 0

serve as a reference parameter to nondimensionalize the variables, and the notation

(̂·) represent a dimensionless variable, then

t̂ :=
t

t0
, x̂ :=

x

x0
, û :=

u

u0
, and v̂ :=

v

v0
. (4.8)

Inserting these relations into (4.1) leads to

∂t̂û +

(
v0/u0

x0/t0

)
∂x̂v̂ = 0, (4.9a)

∂t̂v̂ + a2
F

(
u0/v0

x0/t0

)
∂x̂û = − 1

τ/t0

(
v̂ − aE

u0

v0
û

)
. (4.9b)

Assuming a unity wave speed in (4.9a), hence

v0/u0

x0/t0
= 1 −→ v0

u0
=

x0

t0
, (4.10)
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does not change the problem, and the above equations become

∂t̂û + ∂x̂v̂ = 0, (4.11a)

∂t̂v̂ +

(
aF

x0/t0

)2

∂x̂û = − 1

τ/t0

(
v̂ − aE

x0/t0
û

)
. (4.11b)

Now, the proper reference time t0 and reference speed
x0

t0
have to be chosen for the

nondimensionalization. Available constant parameters are aF [LT−1], aE [LT−1],

and τ [T]. Also, let L [L] be a length scale of interest, which may vary within a

problem. As to a reference time, the obvious choice is t0 = τ ; in this scaling, time

is measured at a scale of the same order of the relaxation process. A next possible

scaling is t0 =
L

aF

where time is scaled by the traveling time of frozen waves. The

equilibrium speed can be used as scaling when aE 6= 0, thus t0 =
L

aE

. Note that

L

aF

≤ L

aE

. Another nonintuitive choice is t0 =
L2

τa2
F

.

As a reference speed
x0

t0
, both frozen speed aF and equilibrium speed aE are the

obvious choices; the characteristic speed of relaxation
L

τ
might be a possible choice

as well. The specific forms of each scaling are discussed in the next section under

the assumption u0 = O(1).

Scaling 1: Relaxation Time Scale (t0 = τ)

Choosing the relaxation time as the reference time (t0 = τ) eliminates the τ

dependence in the equations when frozen wave speed is selected as reference speed

x0/t0 = aF , the dimensionless variables (4.8) become

t̃ =
t

τ
, x̃ =

x

aF τ
, ũ =

u

u0

, and ṽ =
v

aF u0

, (4.12)

and we set t̃ = ũ = O(1). In this scaling, the dimensionless GHHE (4.11) becomes

∂t̃ũ + ∂x̃ṽ = 0, (4.13a)

∂t̃ṽ + ∂x̃ũ = −(ṽ − rũ), (4.13b)
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where

r :=
aE

aF

, |r| ≤ 1, (4.14)

is the dimensionless equilibrium speed. Note that in this scaling, there is no reduced

asymptotic form since the time scale of interest is set to be that of relaxation process.

Scaling 2: Frozen-Wave Time Scale (t0 = L/aF )

In this scaling, the reference time is scaled by t0 =
L

aF

, and the frozen wave

speed aF is chosen as the reference speed. Then, the dimensionless variables (4.8)

become

t̂ =
t

L/aF
, x̂ =

x

L
, û =

u

u0
, and v̂ =

v

aF u0
, (4.15)

and we set t̂ = û = O(1). Under these scaling, the dimensionless GHHE become

∂t̂û + ∂x̂v̂ = 0, (4.16a)

∂t̂v̂ + ∂x̂û = −1

ǫ
(v̂ − rû), (4.16b)

where

ǫ :=
τaF

L
> 0, (4.17)

is the dimensionless relaxation time, and r is defined by (4.14). Recall that both

τ and aF are fixed, yet L could be changed. Thus, ǫ is a function of the length

scale of interest L. We are particularly interested in the nondimensional form of

the GHHE in this frozen-wave time scale since the above equations reduce to the

advection-dominated advection-diffusion equation,

∂t̂û + r∂x̂û = ǫ (1 − r2)∂x̂x̂û + O
(
ǫ2
)
, (4.18)

in the near-equilibrium limit (ǫ ≪ O(1)); the derivation is shown in Appendix C on

page 354. Note that the inverse of the dimensionless relaxation time ǫ can be seen
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as the dimensionless time t̄ defied by (4.7):

1

ǫ
=

L/aF

τ
=

T

τ
→ t̄ ≡ 1

ǫ
. (4.19)

Hence, the smaller the relaxation time ǫ, the longer the time scale for the GHHE,

and eventually the GHHE reduces to the advection equation in the limit where

ǫ → 0.

Scaling 3: Equilibrium-Wave Time Scale (t0 = L/aE)

In this scaling, the reference time is scaled by t0 =
L

aE
, and the equilibrium

wave speed aE is chosen as reference speed. Thus, the dimensionless variables (4.8)

become

ť =
t

L/aE
, x̌ =

x

L
, ǔ =

u

u0
, and v̌ =

v

aEu0
, (4.20)

and we set ť = ǔ = O(1). Under these scaling, the dimensionless GHHE becomes

∂ťǔ + ∂x̌v̌ = 0, (4.21a)

∂ťv̌ +
1

r2
∂x̌ǔ = − 1

ǫr
(v̌ − ǔ), (4.21b)

where r and ǫ are defined by (4.14) and (4.17), respectively. The reduced equation

in the near-equilibrium limit is

∂ťǔ + ∂x̌ǔ =
ǫ (1 − r2)

r
∂x̌x̌ǔ + O

(
ǫ2
)
, (4.22)

where the dimensionless advection speed is 1, and the viscosity is the inverse of the

Peclet number defined by

Pe :=
r

ǫ (1 − r2)
. (4.23)

Relation of Dimensionless Parameters

Even though we are interested in the frozen-time scale (4.16), and further anal-

ysis focusses on this scaling, the results can be transformed to other scales by using
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the following relations:

frozen-wave time → relaxation time:

t̃ =
t̂

ǫ
, x̃ =

x̂

ǫ
, ũ = û, and ṽ = v̂, (4.24a)

frozen-wave time → equilibrium-wave time:

ť = rt̂, x̌ = x̂, ǔ = û, and v̌ =
v̂

r
. (4.24b)

4.2.3 Nondimensional Form

Symmetric Frozen-Wave-Speeds Model

Among the various nondimensionalization, we adopt the second scaling, frozen-

wave time scale, for the following analysis. For simplicity, the notation (̂·) is hence-

forth omitted, and our target model equations are written as

∂tu + ∂xv = 0, (4.25a)

∂tv + ∂xu = −1

ǫ
(v − ru). (4.25b)

Here, u is the conserved variable, v is the flux of u, and ǫ > 0 is a dimensionless

relaxation time. In vector form, u = [u, v]T , f = [v, u]T , and s = [0, ru − v]T in

∂tu + ∂xf(u) =
1

ǫ
s(u). (4.26)

This system has ‘frozen’ wave speeds ±1 when relaxation is weak (ǫ ≫ 1); when

relaxation dominates (ǫ ≪ 1), it reduces to the advection-diffusion equation,

∂tu + r∂xu = ǫ(1 − r2)∂xxu + O
(
ǫ2
)
, (4.27)

with an ‘equilibrium’ wave speed r. For stability, |r| ≤ 1. Note that we have

written this equation in a form that leads to an advection-dominated advection-

diffusion asymptotic limit. This is consistent with a focus on compressible, viscous
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flow. Other choices of scalings, such as diffusive scalings [LM02, NP00], can lead

to more strongly parabolic limits. Indeed, for r = O(ǫ), the scaling of Lowrie and

Morel [LM02] is in effect a long-time, small-advective-flux limit.

Asymmetric Frozen-Wave-Speeds Model

The system (4.25) can be generalized to break symmetry in the frozen limit

[HSvL05]:

∂tu + ∂xv = 0, (4.28a)

∂tv + c∂xu + (1 − c)∂xv = −1

ǫ
(v − ru). (4.28b)

The frozen wave speeds are thus −c and 1, and the near-equilibrium form is

∂tu + r∂xu = ǫ(1 − r)(c + r)∂xxu + O
(
ǫ2
)
. (4.29)

Note the modification to the diffusion rate. For stability, −c ≤ r ≤ 1. This model

is used only for limited cases due to the complexity of analysis.

Exact Solution

In the reduced equation of the GHHE (4.27), the exact eigenvalue of the spatial

differentiation operator for the harmonic mode u(x, t) = û0e
(ikx+λt) is given by

λGHHE
exact = −irk − ǫ(1 − r2)k2 − 2iǫ2r(1 − r2)k3 + O

(
ǫ3
)
. (4.30)

Note that the above exact solution is indeed an infinite series. Conversely, the

exact solution of the spatial differential operator of the genuine advection-diffusion

equation runs only up to O(ǫ2), thus

λadv-diff
exact = −irk − ǫ(1 − r2)k2. (4.31)
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4.3 Difference Operators and Their Properties in 1-D

Various discretization methods are applied to the linear hyperbolic-relaxation

equations (4.25), and a Fourier analysis is conducted to uncover those properties.

By this we can show, to a given order in ǫ, if a scheme captures the advection-

dominated advection-diffusion limit (4.27) with second-order accuracy in ∆x. Sim-

ilar analyses have been done using modified differential equations [JL96, LM02],

though not always using the same scaling and limit. Furthermore, the analysis here

also considers temporal discretization to reveal an issue of both spatial and temporal

stiffness inherent in the system.

4.3.1 Operator-Splitting Method

At first, to demonstrate an extra difficulty arising due to the stiff source term,

operator splitting is adopted in the time integrator. This splitting decouples the

time evolution of the flux and source terms, allowing us to compute these indepen-

dently. The great advantage of this method, particularly for hyperbolic-relaxation

equations, is that the source term, which yields exponential damping, can be inte-

grated exactly. In order to isolate the error introduced by the operator splitting,

we eliminate the spatial discretization error by taking the flux derivative from the

exact solution. Thus, the operator-split update operator for (4.25) takes the form

u(1) = e
∆t
2

1
ǫ
Qun,

u(2) = e−ik∆tAu(1), (4.32)

un+1 = e
∆t
2

1
ǫ
Qu(2),

where

A :=
∂f

∂u
=




0 1

1 0


 and Q =




0 0

r −1


 . (4.33)
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Following the same procedure as in the previous chapter, the local truncation error

in the low-frequency limit is found to be

LTEsplitting =

[
(1 + e∆t/ǫ)(1 − r2)∆t

2(1 − e∆t/ǫ)
+ ǫ(1 − r2)

]
k2 + O

(
k3
)

≃ −1 − r2

12

∆t2

ǫ
k2 = −(1 − r2)ν2

12

∆x2

ǫ
k2, (4.34)

where the Courant number is defined by

ν := 1
∆t

∆x
. (4.35)

The above equation shows that the splitting is second-order in space and time.

However, since the above error is in the k2-term, an extra numerical dissipation is

added to the physical dissipation −ǫ(1 − r2)k2 in (4.30); this leads to an incorrect

diffusion coefficient. To ensure the physical dissipation is dominant, the following

inequality has to be satisfied:

(1 − r2)ν2

12

∆x2

ǫ
≪ ǫ(1 − r2) −→ ν∆x ≪ ǫ. (4.36)

Particularly, when the near-equilibrium limit (ǫ ≪ 1) is considered, the time step

and grid size are severely restricted such that

∆t = ν∆x ∝ ǫ, (4.37)

otherwise the excessive numerical dissipation damps all waves in the domain.

The above example shows that straightforward decoupling of the flux and source

term leads to an accurate method in the near-equilibrium limit only when (4.37)

is satisfied. In order to overcome this severe restriction, coupling between flux and

source term is necessary; for instance, an MOL with several stages, or a fully discrete

method in which the flux has strong coupling with the source term.
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4.3.2 HR–MOL Method

A semi-discrete high-resolution Godunov method (HR–MOL), particularly, the

second-order method, is considered. The HR2–MOL method applied to the asym-

metric GHHE equation (4.28) has the following generic form:

∂ūj(t)

∂t
= − 1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+

1

ǫ
s (ūj) , (4.38)

where f̂j±1/2 denotes the approximate flux at interfaces j ± 1/2. We will take this

to be the upwind flux

f̂j+1/2 (uL,uR) = A+uL + A−uR, (4.39)

where, if Λ is the diagonal matrix of eigenvalues of A, A± = RΛ±L. In the case of

an asymmetric system (4.28),

A+ =
1

1 + c




c 1

c 1


 , A− =

c

1 + c



−1 1

c −c


 . (4.40)

After inserting the difference forms into the original ODE (4.38) and some algebra,

the semi-discrete method can be written in the compact form:

∂ūj(t)

∂t
=

(
NHR2 +

1

ǫ
Q

)
ūj(t), (4.41)

where ūj = [ūj, v̄j ]
T ; the difference operator of the flux derivative NHR2 is given by

NHR2 = − 1

4(1 + c)∆x

(
A

2+D2+ + A
+D+ + A

−D− + A
2−D2−

)
, (4.42)

where

A
+ =




−2c 1 + 3c

c(1 + 3c) 1 − 3c2


 , A

− =




2c 3 + c

c(3 + c) 3 − c2


 (4.43a)

A
2+ =




c −c

−c2 c2


 , A

2− =




c 1

c 1


 , D± = δ±I, D2± = (δ±)2I, (4.43b)
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or, for a Fourier mode,

NHR2 = − 1

4(1 + c)∆x

(
A

2+e2iβI + A
′+eiβI + C + A

′−e−iβI + A
2−e−2iβI

)
, (4.44)

where

A
′+ =




−4c 1 + 5c

c(1 + 5c) 1 − 5c2


 , A

′− =




−4c −1 − 5c

−c(5 + c) −5 + c2


 , (4.45a)

C =




6c 3(1 − c)

3c(1 − c) 3(1 + c2)


 . (4.45b)

In order to obtain the eigenvalues of the HR2 spatial discretization, the quadratic

characteristic equation,

det

(
NHR2 +

1

ǫ
Q − λI

)
= 0, (4.46)

is solved. For simplicity, we only present the case when c = 1; the two roots have

following form:

λ
(1),(2)
HR2 =

(1 − cos β)2

2∆x

+
1

2ǫ

[
1 ∓

√
1 − 2ir

ǫ

∆x
(3 − cos β) sin β +

( ǫ

∆x
(3 − cos β) sin β

)2
]

. (4.47)

Spatial Accuracy We expand the trigonometric factors in (4.47) for the long

wave-length limit β ≪ 1, and then expand the square root. The results are

λ
(1)
HR2 = − ir

∆x
β − ǫ(1 − r2)

∆x2
β2 −

[
ir

12∆x
+

2iǫ2r(1 − r2)

∆x3

]
β3

−
[

1

8∆x
+

ǫ(1 − r2)

6∆x2
+

ǫ2(1 − r2)(1 − 5r2)

∆x4

]
β4 + O

(
β5
)
,

(4.48a)

λ
(2)
HR2 = −1

ǫ
+

ir

∆x
β + O

(
β2
)
. (4.48b)

The second root (4.48b) exhibits rapid exponential decay for ǫ ≪ 1, while the

first root (4.48a) does not, thus the latter λ
(1)
HR2 is the dominant behavior in this
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asymptotic limit. Following the analysis of the linear advection equation in the

previous chapter, the spatial discretization error is obtained by replacing β by the

wave number k :=
β

∆x
, then

λ
(1)
HR2 − λGHHE

exact = − ir

12
∆x2

︸ ︷︷ ︸
dispersion error

k3 −
[
1

8
∆x3 +

ǫ(1 − r2)

6
∆x2

]

︸ ︷︷ ︸
dissipation error

k4 + O
(
k5
)
, (4.49a)

λ
(2)
HR2 − λGHHE

exact = −1

ǫ
+ 2irk + O

(
k2
)
, (4.49b)

where the exact spatial differential operator λGHHE
exact is given in (4.30). In the first

equation, both dispersive (k3-term) and dissipative (k4-term) errors are present;

the dispersive error is second-order in ∆x, and since the correct limit shows no

dispersion, these numerical dispersion errors can not be confused with any physical

dispersion. However, the leading dissipative error term, −1

8
∆x3k4, does not scale

with ǫ, and so can compete with the physical dissipation −ǫ (1−r2)k2 in (4.30) if the

relaxation scale is unresolved (∆x ≫ ǫ). For the physical dissipation to dominate,

(dominant numerical dissipation) ≪ (physical dissipation), (4.50)

thus,

1

8
∆x3k4 ≪ ǫ(1 − r2)k2. (4.51)

Solving for ∆x leads to the threshold grid size ∆h∗
HR2:

∆x ≪ 2

[
ǫ(1 − r2)

k2

]1/3

= 2
( r

k2 Pe

)1/3

, (4.52)

thus,

∆h∗
HR2 := 2

( r

k2 Pe

)1/3

. (4.53)

Hence, the HR2 scheme does not attain the asymptotic limit to second-order in ∆x

with ∆x independent of ǫ.
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For the HR2 scheme, the result (4.52) is well known. It appears for the r = 0

case in previous studies, [JL96, LM02] although not necessarily in our scaling. The

form (4.49a) for r 6= 0 for the HR2 scheme can be obtained from Eq. (3.17) in Jin

and Levermore [JL96, p. 461] or Eq. (31) in Lowrie and Morel [LM02, p. 420]. In

the scaling of the latter work, the term that leads to (4.52) is actually divergent

since it goes like
∆x3

ǫ
(due to the time dilation of this scaling), but it still leads

to the constraint (4.52). Jin and Levermore claimed that the grid size restriction

can be removed by averaging the frozen and equilibrium fluxes [Jin95]. However,

we find that the grid restriction still exists in their method. The detailed analysis

is described in Appendix D.

It is interesting to compare (4.52) with a direct discretization of the asymptotic

equation (4.27) on page 215 using the Rusanov flux function and slope reconstruc-

tion. The diffusion term is discretized using a three-point, second-order central-

difference approximation. From a Fourier analysis, the eigenvalue of the scheme

is

λadv-diff
HR2 −λadv-diff

exact = − ir

12
∆x2 k3 −

[
1

8
∆x3 − ǫ(1 − r2)

12
∆x2

]
k4 + O

(
k5
)
, (4.54)

for ∆x ≪ 1. We see that this has the same fourth-order numerical dissipation

term as the HR2 discretization of GHHE (4.49a). This discretization will have the

same restriction (4.52) on ∆x to ensure that the physical dissipation is dominant.

When this restriction is satisfied, the above equation shows that the HR2 method

is second-order in space owing to ∆x2 in the k3-term.

Spatial-Temporal Accuracy In our previous analysis, we only consider the

spatial discretization of the HR2 method under the assumption that the flux and

source term are discretized at the same time level [HSvL05]. However, a typically
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ODE solver for a stiff problem discretizes the flux and source terms at different

time levels due to the implicit treatment of the source term. Furthermore, the

system (4.25) possesses both spatial and temporal stiffness, thus, analyzing a fully

discrete form of any method is necessary. A great number of stiff ODE solvers

have been proposed in the last few decades [Jin95, CJR97, LRR00, NP00, TSL00,

HW96, Lam91]. Among these methods, we adopt the implicit-explicit (IMEX)

Runge–Kutta methods originally developed by Ascher et al. [ARW95, ARS97] for

hyperbolic-parabolic equations, and later extended to hyperbolic-relaxation equa-

tions by Pareschi and Russo [PR05]. The methods treat the flux term explicitly by a

strong-stability-preserving (SSP) method, and the source term by an L-stable diago-

nally implicit Runge–Kutta method (DIRK). The authors developed a family of sec-

ond and third-order methods. Here, as an example, we adopt the IMEX–SSP2(3,3,2)

method; both explicit and implicit methods require three stages, and overall accu-

racy is second-order. The actual update formulas are the following:

u(1) = un +
∆t

4ǫ
s(u(1)),

u(2) = un − ∆t

2
∂xf(u

(1)) +
∆t

4ǫ
s(u(2)), (4.55)

u(3) = un − ∆t

2

[
∂xf(u

(1)) + ∂xf(u
(2))
]
+

∆t

3ǫ

[
s(u(1)) + s(u(2)) + s(u(3))

]
,

un+1 = un − ∆t

3

[
∂xf(u

(1)) + ∂xf(u
(2)) + ∂xf(u

(3))
]

+
∆t

3ǫ

[
s(u(1)) + s(u(2)) + s(u(3))

]
.

The development of the truncation-error analysis is based on the method described

in Chapter III. In order to obtain an explicit form for roots of a characteristic equa-

tion, due to the complexity of any amplification matrix G, we assume a power-series

form for the amplification factor,

gmethod = g0 + g1k + g2k
2 + O

(
k3
)
, (4.56)
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for the wave number k ≪ 1. In brief, once an amplification factor g is obtained

from an amplification matrix G, the local truncation error is obtained by

LTEmethod =

∞∑

n=2

cnkn, (4.57)

where the coefficient cn is

cn =
1

n!∆tg(k = 0)

∂ng(k)

∂kn

∣∣∣∣
k=0

. (4.58)

The intermediate formulas for the derivation of the local truncation error are omitted

here; only the final result is presented. The local truncation error of the HR2–IMEX

method becomes

LTEHR2IMEX =


−

ir

12

(
1 + (rν)2

)
∆x2

︸ ︷︷ ︸
dominant dispersion error

−iǫ r(1 − r2)ν

6
∆x


 k3

−




1

8

(
1 − r

3
(rν)3

)
∆x3

︸ ︷︷ ︸
dominant dissipation error

+
ǫ (1 − r2)

6
∆x2


 k4. (4.59)

Under the assumption of near-equilibrium we have r = O(1) and ǫ ≪ 1; when the

physical dissipation dominates over the dissipation error,

1

8

(
1 − r

3
(rν)3

)
∆x3k4 ≪ ǫ (1 − r2)k2, (4.60)

then the method is second-order in both space and time owing to the dominant

dispersion error in the k3-term. Note that the remaining terms in (4.59) are guar-

anteed to be always smaller than the physical dispersion and dissipation owing to ǫ

in their coefficients. Finally, the threshold grid size for the fully discrete method is

given by

∆h∗
HR2IMEX := 2


 ǫ(1 − r2)(

1 − r

3
(rν)3

)
k2




1/3

. (4.61)
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4.3.3 DG–MOL Method

Within cell j, the second-order DG method uses a linear basis

u(x, t) = (1 − ξ)u1(t) + ξ u2(t), ξ =
x − xj−1/2

∆x
∈ [0, 1], (4.62)

such that u(xj−1/2) = u1 and u(xj+1/2) = u2 are the solution values in cell j at the

extreme left and right edges, respectively. For linear flux (f(u) = Au) and source

functions (s(u) = Qu), the semi-discrete DG(1) scheme is then

∂u1(t)

∂t
= − 1

∆x

[
−4f̂j−1/2 − 2f̂j+1/2 + 3f(u1) + 3f(u2)

]
+

1

ǫ
s(u1), (4.63a)

∂u2(t)

∂t
= − 1

∆x

[
4f̂j+1/2 + 2f̂j−1/2 − 3f(u1) − 3f(u2)

]
+

1

ǫ
s(u2), (4.63b)

where the upwind flux function is to be inserted

f̂j+1/2 (uL,uR) = f̂j+1/2 (u1,j+1,u2,j) . (4.64)

To relate (4.63) to the HR2–MOL (4.38) method, we define

ūj =
1

2
(u1 + u2) and ∆uj = u2 − u1, (4.65)

such that u(x, t) = ūj(t) +

(
ξ − 1

2

)
∆uj(t). The DG(1)–MOL scheme (4.63) is

then

∂ūj(t)

∂t
= − 1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+

1

ǫ
s (ūj) , (4.66a)

∂∆uj(t)

∂t
= − 6

∆x

(
f̂j+1/2 + f̂j−1/2 − 2f(ūj)

)
+

1

ǫ
s
(
∆uj

)
, (4.66b)

where the upwind flux function becomes

f̂j+1/2 (uL,uR) := f̂j+1/2

(
ūj +

1

2
∆uj , ūj+1 −

1

2
∆uj+1

)
. (4.67)

The first update equation (4.66a) with (4.67) is precisely the HR2 method (modulo

limiting) where
∆uj

∆x
is the slope in cell j. For the HR2 method, the differences ∆uj
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are approximated at each step by differencing neighboring cell-averaged values ūj±1,

whereas in the DG(1) method, the slopes evolve as additional variables.

It is these slopes, whether computed or self-evolving, that are responsible for

providing second-order spatial accuracy in the flux evaluation. It is also these slopes

that provide the distinction between the two schemes.

For length scales much larger than the relaxation length scale aτ , the flux dis-

cretization must approximate the coupling between the two hyperbolic and relax-

ation operators. For an HR method, the flux function is based solely on the original

hyperbolic operator and each slope purely on the initial data. In contrast, the DG

method simultaneously updates the solution average and slope under the influence

of the source.

It is interesting to conduct a Fourier analysis of the one-dimensional DG(1)

method (4.63) for the asymmetric system (4.28) on page 216 as ǫ → 0. Following

the previous analysis, take uj = [ūj , ∆uj ]
T , then the difference form of the DG(1)

method can be written as

∂uj(t)

∂t
=

(
NDG(1) +

1

ǫ
QDG(1)

)
uj(t). (4.68)

Here, the difference operator of the flux discretization is given by

NDG(1) = A
+D+ + C + A

−D−, (4.69)

where

A
+ =

1

(1 + c)∆x




c −c −c

2

c

2

−c2 c2 c2

2
−c2

2

6c −6c −3c 3c

−6c2 6c2 3c2 −3c2




, (4.70a)
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A
− =

1

(1 + c)∆x




−c −1 −c

2
−1

2

−c −1 −c

2
−1

2

6c 6 3c 3

6c 6 3c 3




, (4.70b)

C =
1

(1 + c)∆x




0 0 0 0

0 0 0 0

0 0 −12c −6(1 − c)

0 0 −6c(1 − c) −6(1 + c2)




, (4.70c)

and

QDG(1) =




Q 0

0 Q


 . (4.71)

The difference operator (4.69) can be also written for a Fourier mode,

NDG(1) = A
+D+ + C

′ − A
−D−, (4.72)

where

C
′ =

1

(1 + c)∆x




−2c −1 + c 0 −1

2
(1 + c)

−c(1 − c) −(1 + c2) −1

2
c(1 + c) −1

2
(1 − c2)

0 6(1 + c) −6c −3(1 − c)

6c(1 + c) 6(1 − c2) −3c(1 − c) −3(1 + c2)




. (4.73)

In order to obtain eigenvalues of the DG(1) spatial discretization, we compute the

characteristic equation,

det

(
NDG(1) +

1

ǫ
QDG(1) − λI

)
= 0, (4.74)

and take the equilibrium ǫ = 0 to obtain a quadratic equation in λ. (This will yield
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the leading-order term in λ.) This is

(∆xλ)2 −
[(

2c + r(1 − c)

1 + c

)
(6 + δ+ − δ−) − r(δ+ + δ−)

]
∆xλ

+ 3r

[
r(δ− − δ+) +

(
2c + r(1 − c)

1 + c

)
(δ+ + δ−)

]
= 0, (4.75)

or, for a Fourier mode,

(∆xλ)2 − 2

[(
2c + r(1 − c)

1 + c

)
(2 + cos β) − ir sin β

]
∆xλ

+ 6r

[
r(1 − cos β) +

(
2c + r(1 − c)

1 + c

)
i sin β

]
= 0. (4.76)

Spatial Accuracy The DG(1) scheme in compact form is given in (4.68); we

restrict ourselves here to the special case of c = 1. Since this is a 4× 4 system, the

characteristic polynomial is of degree four. The leading-order behavior is given by

the quadratic equation (4.76). Using these to find the terms of O(ǫ), and, at each

order, expanding out the trigonometric terms for β ≪ 1, we find

λ
(1)
DG(1) = − ir

∆x
β −ǫ(1 − r2)

∆x2
β2 + O

(
β3
)
, (4.77a)

λ
(2)
DG(1) = −1

ǫ
+

ir

∆x
β +

ǫ(1 − r2)

∆x2
β2 + O

(
β3
)
, (4.77b)

λ
(3)
DG(1) = − 6

∆x
+

3ir

∆x
β+

∆x − 9ǫ(1 − r2)

∆x2
β2 + O

(
β3
)
, (4.77c)

λ
(4)
DG(1) =−1

ǫ
− 6

∆x
− 3ir

∆x
β+

∆x + 9ǫ(1 − r2)

∆x2
β2 + O

(
β3
)
. (4.77d)

The last three roots all exhibit rapid exponential decay for ∆x ≪ 1 and ǫ ≪ 1,

while the first root does not. Since λ
(1)
DG(1) is the dominant root in the asymptotic

limit, we continue expanding it; then the spatial discretization error becomes

λ
(1)
DG(1) − λGHHE

exact = − 1

72

[
∆x3 − 1 − r2

∆x + 6ǫ
∆x4

]
k4 + O

(
k5
)
, (4.78)
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where we have made the substitution k =
β

∆x
. Since we are considering the near-

equilibrium limit ǫ ≪ 1, expanding the above error with respect to ǫ provides

λ
(1)
DG(1)−λGHHE

exact = − 1

72

[
r2 ∆x3 + 6ǫ(1 − r2)∆x2 − 36ǫ2(1 − r2)∆x

]
k4+O

(
ǫ3k4, k5

)
,

(4.79)

Again, we find a third-order numerical dissipation term independent of ǫ in the

k4-term that can compete with the physical second-order dissipation. The criterion

for the physical dissipation to dominate is

1

72
r2∆x3k4 ≪ ǫ(1 − r2)k2. (4.80)

Solving for ∆x leads to the threshold grid size ∆h∗
DG(1):

∆x ≪ 2

[
9ǫ(1 − r2)

r2k2

]1/3

= 2

(
9

rk2 Pe

)1/3

, (4.81)

thus,

∆h∗
DG(1) := 2

(
9

rk2 Pe

)1/3

, (4.82)

which is a factor of

(
9

r2

)1/3

larger than for the HR2 scheme. When rescaled, this is

the same result as Eq. (32) in Lowrie and Morel [LM02, p. 420] which was obtained

from a modified differential-equation analysis.

We directly discretize the advection-diffusion limit (4.27) using the DG(1) scheme

with the Rusanov flux function; this is equivalent to the HLL1 flux with c = 1. The

diffusion term is discretized using the recently developed ‘recovery method’ [vLN05,

vLLvR07]. The eigenvalues of spatial discretization from the Fourier analysis are

λ
(1), adv-diff
DG(1) − λadv-diff

exact = − r2∆x4

36 [2∆x + 5ǫ(1 − r2)]
k4 + O

(
k5
)
, (4.83a)

λ
(2), adv-diff
DG(1) − λadv-diff

exact = − 6

∆x
− 15ǫ(1 − r2)

∆x2
+ O(k) . (4.83b)
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The dominant eigenvalue, the first equation, can be further expanded in terms of ǫ

since we are assuming the near-equilibrium limit ǫ ≪ 1; then

λadv-diff
DG(1) − λadv-diff

exact = − 1

72

[
r2 ∆x3 − 5ǫr2(1 − r2)

2
∆x2

]
k4 + O

(
ǫ2k4, k5

)
. (4.84)

Again, the dominant numerical dissipation is of precisely the same form as for the

GHHE discretization (4.79).

Finally, we note that, for r = O(ǫ) with ǫ ≪ 1, the DG(1) scheme exhibits

an interesting property. In this case, the fourth-order numerical dissipation term

in (4.79) becomes higher-order in ǫ, and the constraint (4.81) on ∆x is removed.

Thus, the DG(1) scheme should converge with second-order accuracy with ∆x in-

dependent of ǫ, since the higher-even-order terms are too small to compete with

the physical dissipation. This case is included in the diffusive limit considered by

Lowrie and Morel [LM02], and our result agrees with theirs when one accounts for

the time dilation of their scaling.

Spatial-Temporal Accuracy Following the procedure used earlier, the local

truncation error of the DG(1)–MOL combined with the IMEX–SSP2(3,3,2) is found

to have following form:

LTE
(1)
DG(1)IMEX = −




ir(rν)2

12
∆x2

︸ ︷︷ ︸
dominant dispersion error

+
iǫ r(1 − r2)ν

6
∆x


 k3

−




r
(
r − 3(rν)3

)

72
∆x3

︸ ︷︷ ︸
dominant dissipation error

+
ǫ(1 − r2)

12
∆x2


 k4. (4.85)

Just as for the HR2 method, if the physical dissipation is dominant over the dissi-

pation error,

r
(
r − 3(rν)3

)

72
∆x3k4 ≪ ǫ(1 − r2)k2, (4.86)
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the method is second-order in space and time. Solving the above equation for ∆x

leads to the threshold grid size:

∆h∗
DG(1)IMEX := 2

[
9ǫ (1 − r2)

r
(
r − 3(rν)3

)
k2

]1/3

. (4.87)

4.3.4 HR–Hancock Method

It is also interesting to compare the HR2–Hancock method to the DG(1)–Hancock

method. The Hancock methodology is applied to the flux discretization, while a

method for the source term is still to be chosen. Here, similar to the choice for the

DG(1)–Hancock method, we apply the Radau IIA method for the source term. As

described in Chapter II, the update formulas for the cell average are the following:

ū
n+1/3
j = ūn

j − ∆t

3

1

∆x

[
f̂
n+1/6
j+1/2 − f̂

n+1/6
j−1/2

]
+

∆t

3

1

ǫ

[
5

4
Qū

n+1/3
j − 1

4
Qūn+1

j

]
, (4.88a)

ūn+1
j = ūn

j − ∆t

∆x

[
f̂
n+1/2
j+1/2 − f̂

n+1/2
j−1/2

]
+

∆t

ǫ

[
3

4
Qū

n+1/3
j +

1

4
Qūn+1

j

]
. (4.88b)

where u = [u, v]T and the inputs for a Riemann solver are computed by (2.18) on

page 39.

In view of the lengthy expressions, intermediate formulas are omitted, and the

final result for the local truncation error is presented here:

LTEHR2Ha = −




ir (1 − 3ν + 2(rν)2)

12
∆x2

︸ ︷︷ ︸
dominant dispersion error

+
iǫ r(1 − r2)ν

2
∆x


 k3

−




(
1 − r(rν)3 + 2r2ν(ν − 1)

)

8
∆x3

︸ ︷︷ ︸
dominant dissipation error

−ǫ(1 − r2)(4 + 3ν)

12
∆x2


 k4. (4.89)

When the grid size is less than the threshold grid size:

∆h∗
HR2Ha := 2

[
ǫ(1 − r2)

(1 − r(rν)3 + 2r2ν(ν − 1)) k2

]1/3

, (4.90)
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the physical dissipation dominates over the numerical dissipation under the assump-

tion of near-equilibrium (r = O(1) , ǫ ≪ 1), and the method becomes second-order

in space and time.

4.3.5 DG–Hancock Method

The DG(1)–Hancock method for the 1-D GHHE has the form (4.88) together

with the update equations for ∆uj :

∆u
n+1/3

j = ∆u
n

j − ∆t

3

6

∆x

[
f̂
n+1/6
j+1/2 + f̂

n+1/6
j−1/2 − 2

∆x∆t
f(u

n+1/6
j )

]

+
∆t

3

1

ǫ

[
5

4
Q∆u

n+1/3

j − 1

4
Q∆u

n+1

j

]
,

(4.91a)

∆u
n+1

j = ∆u
n

j − ∆t

∆x
6

[
f̂
n+1/2
j+1/2 + f̂

n+1/2
j−1/2 − 2

∆x∆t
f(u

n+1/2
j )

]

+
∆t

ǫ

[
3

4
Q∆u

n+1/3

j +
1

4
Q∆u

n+1

j

]
.

(4.91b)

After some algebra, the local truncation error of the dominant eigenvalue is found

to be given by

LTE
(1)
DG(1)Ha = −

[
r

72

(
r
(
1 − (rν)2

)2

1 − r2ν
− 3rν(1 − ν)

)
∆x3

︸ ︷︷ ︸
dominant dissipation error

+
ǫ (1 − r2)

12(1 − r2ν)2

×
(

1 +
1

3
r2 +

ν2

6

(
2r2(r2 − 9) + 3r4ν + r4(9 − 7r2)ν2 + 3r6ν3

))
∆x2

]
k4. (4.92)

Note that the leading error is a k4-term, hence a dissipation, whereas in other

methods possess a leading dispersion error. The threshold grid size to guarantee

the method be third-order accurate is

∆h∗
DG(1)Ha := 2

[
9ǫ (1 − r2)(1 − r2ν)

r2
(
1 − 3ν + (3 + r2)ν2 − 3r2ν3 + (rν)4

)
k2

]1/3

. (4.93)

4.3.6 Limiting Flux Function

Here, we show by a Fourier analysis of the semi-discrete HR2–MOL and DG(1)–

MOL methods with the upwind flux based on the frozen wave speeds ±1, that this
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flux reduces to the Rusanov flux (q = 1) when ǫ → 0 [HSvL05]. Hence, at the

discretization level, solving

∂tu + ∂xv = 0, (4.94a)

∂tv + ∂xu = −1

ǫ
(v − ru); Eig(A) = ±1, (4.94b)

by using the upwind flux (also with q = 1 for this system) is identical to directly

solving

∂tu + r∂xu = 0; Eig(A) = r, (4.95)

with the Rusanov flux (q = 1). Note that the genuine upwind flux for the above ad-

vection equation is obtained by q = r. This means that the semi-discrete HR2–MOL

and DG(1)–MOL methods for (4.94) are not strictly upwind in the equilibrium limit

(ǫ → 0).

The dominant dispersion/dissipation errors of semi-discrete methods for advection-

diffusion in the low-frequency limit are given by (3.93) on page 116 for HR2–MOL

and (3.106) on page 121 for DG(1)–MOL with q = 1, while the exact solution for

the GHHE in this case is (4.30).

Consider the DG(1) discretization of the equilibrium advection equation,

∂tu + r∂xu = 0, (4.96)

obtained by taking ǫ = 0 in (4.27):

∂u1,j

∂t
= − 1

∆x

[
−4f q

j−1/2 − 2f q
j+1/2 + 3r(u1,j + u2,j)

]
, (4.97a)

∂u2,j

∂t
= − 1

∆x

[
4f q

j+1/2 + 2f q
j−1/2 − 3r(u1,j + u2,j)

]
. (4.97b)

We substitute for f q a q-flux [vL69], that is,

f q
j+1/2(u2,j, u1,j+1) =

r

2
(u2,j + u1,j+1) −

q

2
(u1,j+1 − u2,j)

=
1

2

[
2r + (r − q)δ+

]
ūj +

1

4

[
2q + (q − r)δ+

]
∆uj . (4.98)
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In the manner of (4.68), we solve for the characteristic equation of the discrete

system and insert a harmonic modes to find

(∆xλ)2 − 2 [q(2 + cos β) − ir sin β]∆xλ + 6r [r(1 − cos β) + iq sin β] = 0, (4.99)

which is precisely the form of (4.76) on page 228 with

q =
2c + r(1 − c)

1 + c
. (4.100)

This q corresponds to the first Harten–Lax–Van Leer (HLL1) flux function [HLvL83]

based on the frozen wave speeds aL = |−c| and aR = 1, where

f̂HLL1(uL, uR) =
aL

aR + aL

f(uR) +
aR

aR + aL

f(uL) − aRaL

aR + aL

(uR − uL)

=
c

1 + c
ruR +

1

1 + c
ruL − c

1 + c
(uR − uL)

=
r

2
(uR + uL) − 1

2

2c + r(1 − c)

1 + c
(uR − uL), (4.101)

with fL|R = ruL|R. Thus the equilibrium (and near-equilibrium) asymptotic flux

function for the DG(1) scheme applied to the simple one-dimensional problem is

just the HLL1 flux function based on the frozen wave speeds 1 and −c. This

is not completely surprising, as a stable relaxation system has a subcharacteristic

condition, that is, each equilibrium wave speed must be bounded by two frozen wave

speeds [Liu87, CLL94]. Since the upwind flux function in the DG discretization only

knows about the two frozen wave speeds, it continues to use them to approximate

the included equilibrium wave speed. Of course, this means that the equilibrium

method is not strictly upwind.

Note that when the symmetric system (4.25) is considered, the above flux func-

tion reduces to the Rusanov flux:

f̂Rusanov(uL, uR) =
r

2
(uR + uL) − 1

2
(uR − uL). (4.102)
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Thus, the result of the analysis for the linear advection equation obtained in Chap-

ter III can be directly related here by letting q = 1. This is the reason why we

defined in chapter III the Courant number (3.2) on page 88 based on the frozen

wave speed 1, instead of the equilibrium wave speed r.

4.3.7 Dominant Dispersion/Dissipation Error in 1-D

In summary, the local truncation error of each method is listed for comparison.

semi-discrete methods:

LTEHR2MOL =

[
c3

(
1 + (rν)2

)
+

1

6
c̃3ν

]
k3+

[
c4

(
1

r
− 1

3
(rν)3

)
+

1

6
c̃4

]
k4,

(4.103a)

LTE
(1)
DG(1)MOL =

[
c3(rν)2 +

1

6
c̃3ν

]
k3+

[
1

9
c4

(
r − 3(rν)3

)
+

1

12
c̃4

]
k4,

(4.103b)

fully discrete methods:

LTEHR2Ha =

[
c3

(
1 − 3ν + 2(rν)2

)
+

1

2
c̃3ν

]
k3

+

[
c4

(
1

r
− (rν)3 + 2rν(ν − 1)

)
− 1

12
c̃4 (4 + 3ν)

]
k4,

(4.103c)

LTE
(1)
DG(1)Ha =

[
1

9
c4

(
r
(
1 − (rν)2

)2

1 − r2ν
− 3rν(1 − ν)

)
+

c̃4

12(1 − r2ν)2

×
(

1 +
1

3
r2 +

ν2

6

(
2r2(r2 − 9) + 3r4ν + r4(9 − 7r2)ν2 + 3r6ν3

))
]

k4,

(4.103d)

where the coefficients of errors attributed to the explicit flux discretization are

c3 = − ir

12
∆x2 , c4 = −r

8
∆x3 , (4.104a)

and the implicit source-term errors have coefficients

c̃3 = −iǫr(1 − r2) ∆x , c̃4 = −ǫ(1 − r2) ∆x2 . (4.104b)
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The above equations show that HR2–MOL, DG(1)–MOL, and HR2–Hancock have

a first-order error ∼ k3, as c̃3 = O(ǫ∆x). However, numerically, this error term

is not pronounced in the near-equilibrium limit since ǫ ≪ 1, thus the dominant

error of the methods stem from c3 = O(∆x2). Similarly, the dominant error of

DG(1)–Hancock is c4 = O(∆x3).

As it was described previously, when r = O(ǫ) with ǫ ≪ 1, the DG(1) method

reveals uniform spatial convergence. To demonstrate this, we simply set r = 0, then

the local truncation error of each method becomes

LTEHR2MOL =

[
−1

8
∆x3 − 1

6
ǫ∆x2

]
k4, (4.105a)

LTEHR2Ha =

[
−1

8
∆x3 +

1

12
ǫ (4 + 3ν) ∆x2

]
k4, (4.105b)

LTE
(1)
DG(1)MOL = − 1

12
ǫ∆x2 k4, (4.105c)

LTE
(1)
DG(1)Ha = − 1

12
ǫ∆x2 k4. (4.105d)

All dispersions, O(k3)-terms, have disappeared, and the dominate error is the dis-

sipation. The dominant dissipation errors of both DG(1) methods are proportional

to ǫ, while HR2 methods have the term,
1

8
∆x3, which is independent of ǫ. Hence,

DG(1) methods lose their grid size restrictions, but HR2 methods still need to satisfy

the following inequality:

1

8
∆x3k4 ≪ ǫk2 −→ ∆x ≪ 2

( ǫ

k2

)1/3

, (4.106)

to guarantee physical dissipation is dominant. Since the leading errors of HR2

methods are proportional to ∆x3, we expect third-order convergence on coarse grids.

4.3.8 Stability of Methods

All four methods described previously include implicit treatment of the source

term. Particularly, an L-stable time integrator is employed. Hence, the stability
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condition is restricted solely by an explicit discretization of the flux even in the stiff

regime. Recall that, in the near-equilibrium (stiff) regime, discretizing hyperbolic-

relaxation equations with the upwind flux is equivalent to discretizing the advection

equation directly with the Rusanov flux. Thus, it is beneficial to look into the sta-

bility of each method applied to the advection equation. In Chapter III on page 154,

stability analyses of methods with the Rusanov flux was conducted. A rather sur-

prising property was found for the DG(1)–Hancock method; the stability domain

reduces as the equilibrium wave speed gets smaller, while other methods possess

constant stability domains. This property suggests that, in the frozen limit, the

maximum Courant number of the DG(1)–Hancock method is still unity, yet in the

near-equilibrium limit, it will depend on the magnitude of the dimensionless equi-

librium wave speed |r|; the maximum Courant number can be found from (3.162)

on page 155, or Figure 3.15 on page 157.

4.4 Model Equations for Two-Dimensional Problem

In two dimensions we consider the simple system

∂tu + ∂xv + ∂yw = 0, (4.107a)

∂tv + ∂xu + r∂yw = −1

ǫ
(v − ru), (4.107b)

∂tw + s∂xv + ∂yu = −1

ǫ
(w − su), (4.107c)

where v and w are the fluxes in the x- and y-directions, respectively. The above

equations can be written in vector form:

∂tu(x, t) + ∂xf(u) + ∂yg(u) =
1

ǫ
s(u); x ∈ R

2, t > 0, (4.108)
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with linear fluxes and source, f(u) = Au, g(u) = Bu, and s(u) = Qu, where

A =




0 1 0

1 0 0

0 s 0




, B =




0 0 1

0 0 r

1 0 0




, Q =
1

ǫ




0 0 0

r −1 0

s 0 −1




. (4.109)

The near-equilibrium limit is formally

∂tu + r∂xu + s∂yu = ǫ
[
(1 − r2)∂xxu + (1 − s2)∂yyu

]
+ O

(
ǫ2
)
, (4.110)

with the equilibrium wave speeds r and s in the x- and y-directions, respectively.

The derivation is shown in Appendix C on page 354. For a harmonic mode with

wave vector k = (kx, ky), a stability criterion in the near-equilibrium limit is found

by insisting that the second-order derivative terms are dissipative; mathematically,

this is |rkx + sky| ≤ |k|. Due to the complexity of the analysis, we restrict the

discussion to a uniform grid with unit aspect ratio (∆h := ∆x = ∆y), and the wave

frequencies in the x- and y-directions are the same, thus α = β and kx = ky = k.

Based on these assumptions, the exact solution of the reduced equation (4.110) in

the near-equilibrium limit is

λGHHE
exact = −i(r+s)k−ǫ(2−r2−s2)k2−iǫ2(r+s)(3−2r2+rs−2s2)k3+O

(
ǫ3
)
. (4.111)

It has been shown that the near-equilibrium limit is formed by coupling between

the flux and relaxation operators [Hit00, HR04], and this is clear by inspection of

the wave speeds and diffusion coefficients in (4.27), (4.29) on page 216, and (4.110).

4.5 Difference Operators and Their Properties in 2-D

In this section, due to the complexity of multidimensional Fourier analysis, we

restrict ourselves to semi-discrete methods, namely, HR2–MOL and DG(1)–MOL

methods.
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4.5.1 HR–MOL Method

The HR2–MOL method applied to the two-dimensional GHHE equation (4.107)

has the form:

∂ūjk(t)

∂t
= − 1

∆x

(
f̂j+1/2,k − f̂j−1/2,k

)
− 1

∆y

(
ĝj,k+1/2 − ĝj,k−1/2

)
+

1

ǫ
Qūjk, (4.112)

and its compact form is

∂ūj(t)

∂t
=

(
NHR2 +

1

ǫ
Q

)
ūj(t), (4.113)

where ūj = [ūj, v̄j, w̄j]
T The flux-difference operator NHR2 is given by

NHR2 = A
2+D2+

x + A
+D+

x + A
−D−

x + A
2−D2−

x

+ B
2+D2+

y + B
+D+

y + B
−D−

y + B
2−D2−

y . (4.114)

Here, the coefficients matrices are

A
+ =

1

4∆x




1 −2 0

−2 1 0

s −2s 0




, A
− = − 1

4∆x




1 2 0

2 1 0

s 2s 0




(4.115a)

A
2+ =

1

8∆x




−1 1 0

1 −1 0

−s s 0




, A
2− = − 1

8∆x




1 1 0

1 1 0

s s 0




, (4.115b)

B
+ =

1

4∆y




1 0 −2

r 0 −2r

−2 0 1




, B
− = − 1

4∆y




1 0 2

r 0 2r

2 0 1




, (4.115c)

B
2+ =

1

8∆y




−1 0 1

−r 0 r

1 0 −1




, B
2− = − 1

8∆y




1 0 1

r 0 r

1 0 1




, (4.115d)
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D±
x = δ±x I, D2±

x = (δ±x )2I, D±
y = δ±y I, D2±

y = (δ±y )2I. (4.115e)

Accuracy Following the previous analysis, the eigenvalues of the spatial dis-

cretization are obtained by solving the characteristic equations:

det

(
NHR2 +

1

ǫ
Q − λI

)
= 0. (4.116)

Taking the low-frequency limit, under the assumptions of ∆x = ∆y = ∆h and

α = β, leads to asymptotic eigenvalues,

λ
(1)
HR2 = −i(r + s)

∆h
β − ǫ(2 − r2 − s2)

∆h2
β2

−
[
i(r + s)

12∆h
+

iǫ2(r + s)(3 + 2r2 − rs + 2s2)

∆h3

]
β3 + O

(
β4
) (4.117a)

λ
(2)
HR2 = −1

ǫ
+

ir

∆h
β + O

(
β2
)
, (4.117b)

λ
(3)
HR2 = −1

ǫ
+

is

∆h
β + O

(
β2
)
, (4.117c)

where the first eigenvalue represents the dominant wave in the asymptotic limit,

and the other waves damp quickly since the leading errors are large negative real.

The spatial discretization error corresponding to the dominant wave is derived by

replacing the wave frequency by the wave number, then

λ
(1)
HR2−λ2D-GHHE

exact = −i(r + s)

12
∆h2 k3−

[
1

4
∆h3 +

ǫ(2 − r2 − s2)

6
∆h2

]
k4+O

(
k5
)
.

(4.118)

Thus, the spatial discretization error of the dominant wave is second-order in space.

In order to ensure the physical dissipation is dominant in the near-equilibrium limit

ǫ ≪ 1, the following relation has to be satisfied:

1

4
∆h3k4 ≪ ǫ(2 − r2 − s2)k2. (4.119)
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Solving for ∆h results in the threshold grid size:

∆hHR2 ≪
[
4ǫ (2 − r2 − s2)

k2

]1/3

. (4.120)

4.5.2 DG–MOL Method

The two-dimensional DG(1)–MOL method utilizes a linear solution representa-

tion:

u(x, y, t) = ū(t) +

(
ξ − 1

2

)
∆xu(t) +

(
η − 1

2

)
∆yu(t), (4.121)

where ξ ∈ [0, 1] is as before and η =
y − yk−1/2

∆y
∈ [0, 1]. The semi-discrete

DG(1)–MOL method is

∂ūjk(t)

∂t
= − 1

∆x

(
f̂j+1/2,k − f̂j−1/2,k

)
− 1

∆y

(
ĝj,k+1/2 − ĝj,k−1/2

)
+

1

ǫ
Qūjk, (4.122a)

∂∆xujk(t)

∂t
= − 6

∆x

[
f̂j+1/2,k + f̂j−1/2,k − 2f(ūjk)

]

− 12

∆y




1∫

0

(
ξ − 1

2

)
ĝξ,k+1/2(ξ) dξ −

1∫

0

(
ξ − 1

2

)
ĝξ,k−1/2(ξ) dξ


+

1

ǫ
Q∆xujk,

(4.122b)

∂∆yujk(t)

∂t
= − 6

∆y

[
ĝj,k+1/2 + ĝj,k−1/2 − 2g(ūjk)

]

− 12

∆x




1∫

0

(
η − 1

2

)
f̂j+1/2,η(η) dη −

1∫

0

(
η − 1

2

)
f̂j+1/2,η(η) dη


+

1

ǫ
Q∆yujk,

(4.122c)

where

f̂j+1/2,k = f̂

(
ūj,k +

1

2
∆xuj,k, ūj+1,k −

1

2
∆xuj+1,k

)
, (4.123a)

ĝj,k+1/2 = ĝ

(
ūj,k +

1

2
∆yuj,k, ūj,k+1 −

1

2
∆yuj,k+1

)
, (4.123b)
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are one-dimensional upwind flux functions (4.39). The two-dimensional DG(1)–MOL

discretization can be written in the compact form

∂ujk(t)

∂t
=
(
NDG(1) + QDG(1)

)
ujk(t), (4.124)

where

ujk = [ujk, ∆xujk, ∆yujk]
T

= [ūjk, v̄jk, w̄jk, ∆xujk, ∆xvjk, ∆xwjk, ∆yujk, ∆yvjk, ∆ywjk]
T , (4.125)

and the matrix operator of spatial differencing is given by

NDG(1) = A
+D+

x + A
−D−

x + C + B
+D+

y + B
−D−

y , (4.126)

where

A
+ =

1

4∆x




2A1 −A1 0

12A1 −6A1 0

0 0 2A1




, A
− =

1

4∆x




−2A2 −A2 0

12A2 6A2 0

0 0 −2A2




,

(4.127a)

B
+ =

1

4∆y




2B1 0 −B1

0 2B1 0

12B1 0 −6B1




, B
− =

1

4∆y




−2B2 0 −B2

0 −2B2 0

12B2 0 6B2




,

(4.127b)

C =




0 0 0

0 C1 0

0 0 C2




, A1 =




1 −1 0

−1 1 0

s −s 0




, A2 =




1 1 0

1 1 0

s s 0




, (4.127c)

B1 =




1 0 −1

r 0 −r

−1 0 1




, B2 =




1 0 1

r 0 r

1 0 1




, (4.127d)
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C1 = − 6

∆x




1 0 0

0 1 0

s 0 0




, C2 = − 6

∆y




1 0 0

r 0 0

0 0 1




. (4.127e)

The source-term matrix is defined to be

QDG(1) =




Q 0 0

0 Q 0

0 0 Q




. (4.128)

We look for roots of the characteristic polynomial

det

(
NDG(1) +

1

ǫ
QDG(1) − λI

)
= 0, (4.129)

under the assumption α = β. As in the 1-D case, we assume a power-series form

for the eigenvalue, and solve for the eigenvalue order-by-order in β. We find the

following eigenvalues:

λ
(1)
DG(1) = −i

(
r

∆x
+

s

∆y

)
β − ǫ

(
1 − r2

∆x2
+

1 − s2

∆y2

)
β2 + O

(
β3
)
, (4.130a)

λ
(2)
DG(1) = − 6

∆x
+ O(β) , λ

(3)
DG(1) = − 6

∆y
+ O(β) , (4.130b)

λ
(4)
DG(1) = − 6

∆x
− 1

ǫ
+ O(β) , λ

(5)
DG(1) = − 6

∆y
− 1

ǫ
+ O(β) , (4.130c)

λ
(6,7,8,9)
DG(1) = −1

ǫ
+ O(β) . (4.130d)

To simplify the analysis, we further assume a uniform grid, ∆x = ∆y = ∆h, then

the spatial-discretization error is obtained by comparing the dominant eigenvalue
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to the exact solution:

λ
(1)
DG(1) − λ2D-GHHE

exact = −
[
1

9
∆h3 − 2 − r2 − s2

72(∆h + 6ǫ)
∆h4

]
k4 + O

(
k5
)

= − 1

72

[
( 6︸︷︷︸
multi-D error

+r2 + s2) ∆h3 + 6ǫ(2 − r2 − s2)∆h2

]
k4

+ O
(
ǫ2k4, k5

)
.

(4.131)

The above equation shows that in the near-equilibrium limit ǫ ≪ 1, the dominant

error is O(∆h3), thus the DG(1) spatial discretization is third-order in space. To

ensure the physical dissipation is dominant, the mesh size has the following con-

strain:

6 + r2 + s2

72
∆h3k4 ≪ ǫ(2 − r2 − s2)k2. (4.132)

Solving for ∆h leads to

∆hDG(1) ≪ 2

[
9ǫ (2 − r2 − s2)

(6 + r2 + s2)k2

]1/3

. (4.133)

As pointed out in a Fourier analysis of the DG(1)–MOL method for the 2-D

advection equation on page 169, the two-dimensional DG(1) discretization contains

a multidimensional error, − 1

12
∆h3, in the O(k4)-term. Since the upwind flux for

the GHHE in the near-equilibrium limit is equivalent to the direct discretization

of the advection equation with the Rusanov flux (qx = qy = 1), the above error

really comes from the term − 1

24
(qx + qy)∆h3. This extra multidimensional error

eliminates the uniform-convergence property which the DG(1) method possess in

one dimensional problem with a certain scaling.

In the 1-D case, for the specific scaling where the equilibrium speed is r = O(ǫ),

the DG(1) method does not have any grid size restriction to achieve second-order

accuracy. However, due to the multidimensional error independent of the equilib-
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rium wave speeds r, s, there is always a grid size restriction even in the case where

r = O(ǫ) with ǫ ≪ 1.

4.5.3 Dominant Dispersion/Dissipation Error

In summary, the local truncation errors of spatial discretization methods, HR2

and DG(1), are listed for comparison:

LTEHR2 = c3 k3+

[
c4

2

r + s
+

1

6
c̃4

]
k4, (4.134a)

LTEDG(1) =

[
1

9
c4

(
6

r + s
+

r2 + s2

r + s

)
+

1

12
c̃4

]
k4, (4.134b)

where the coefficients of errors attributed to the flux discretization are

c3 = −i(r + s)

12
∆h2 , c4 = −r + s

8
∆h3 , (4.135a)

and the source-error coefficients are

c̃4 = −ǫ(2 − r2 − s2) ∆h2 . (4.135b)

Note that the above errors are merely the spatial discretization errors; unlike in the

1-D analysis given by (4.103) on page 235, the temporal errors are not considered.

Meanwhile, the above results can be related to Fourier analyses for the 2-D advection

equation given by (3.223) on page 181 combined with the Rusanov flux (qx = qy =

1), and zero temporal error (ν = 0). The HR2 method has a leading second-order

dispersion error, whereas the DG(1) method is third-order accurate as long as grids

are coarse, hence ∆h ≫ O(ǫ).

When we consider the case r = s = 0, the above truncation errors become

LTEHR2 = −1

4
∆h3 − 1

3
ǫ∆h2, (4.136a)

LTEDG(1) = − 1

12
∆h3 − 1

6
ǫ∆h2. (4.136b)
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Unlike in one dimension, the DG(1) method possesses a dominant error independent

to ǫ. Hence, both spatial discretizations yield grid-size restrictions to ensure the

physical dissipation is dominant.

4.5.4 Stability of Methods

Similar to the 1-D case, the stability of the 2-D DG(1)–Hancock method in the

near-equilibrium limit varies as the dimensionless wave speed changes. The stability

limit is given by (3.225) on page 183. The rest of methods remain same stability

properties as the upwind flux; stability limits are listed in Table 3.7 on page 182.

4.6 Grid-Convergence Study in 1-D

4.6.1 Problem Definition

We consider the symmetric model problem (4.25) on page 215. To confirm the

analysis, consider an initial-value problem on a periodic domain with a harmonic

initial condition,

u(x, 0) = ℜ{u0 exp(ikx)} = u0 cos(kx), (4.137)

where k = 2π and u0 = (1, 1)T . A dispersion analysis provides the exact solution for

the computation of the L2-norm [Hit00]. The DG(1)–Hancock method is compared

with the HR2–MOL and DG(1)–MOL methods, both incorporating the IMEX–RK

method [PR05]. For each method, we consider both a frozen limit (ǫ ≫ 1, non-stiff)

and a near-equilibrium limit (ǫ ≪ 1, stiff) with two equilibrium wave speeds in the

stiff regime:

frozen (non-stiff) limit : r =
1

2
, ǫ = 103, tend = 100, (4.138a)

near-equilibrium (stiff) limit : r = 0,
1

2
, ǫ = 10−5, tend = 300, (4.138b)
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and compute the error norms relative to an exact analytic solution. The non-stiff

case represents frozen waves with speed ±1 propagate 100 times over the compu-

tation domain. Similarly, in the stiff case with r =
1

2
, the equilibrium wave travels

150 wave lengths until tend = 300. Note that r = 0 corresponds to no advection,

hence the system reduces to a pure diffusion equation:

∂tu = ǫ ∂xxu. (4.139)

In both cases, the final analytical damping factor is obtained by

u(tend) = e−ǫ(1−r2)k2 tend ≈ 0.915, (4.140)

thus, a sinusoidal wave is physically dissipated by 8.5%. The Courant numbers

based on the unit wave speed:

νmethod = 1
∆t

∆x
, (4.141)

are set to be

νHR2–MOL = νHR2–Hancock = 0.9, (4.142a)

νDG(1)–MOL = 0.3, (4.142b)

νDG(1)–Hancock =






0.9 frozen limit

0.3 near-equilibrium limit.

(4.142c)

The DG(1) method requires cell averages ūj and slopes ∆uj in each cell for

initial conditions. Given an initial function u(x, 0) in (4.137), the initial cell values
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are obtained from

ūj(t = 0) :=
1

∆x

∫

Ij

u(x, 0)dx, (4.143a)

∆xuj(t = 0) :=

∫

Ij

u(x, 0)

(
x − xj

∆x

)
dx

∫

Ij

(
x − xj

∆x

)2

dx

=
12

∆x2

∫

Ij

u(x, 0)(x − xj)dx, (4.143b)

where Ij ∈ [xj−1/2, xj+1/2].

4.6.2 Convergence in the Frozen Limit

When the relaxation time is large relative to the residence time, the effect of the

source term is negligible, and the model equations behave like pure advection equa-

tions showed in (4.4) on page 209. The time step based on frozen wave speeds ±1

provides a stable method. Table 4.2 and Figure 4.2 demonstrate second-order con-

vergence in this limit for HR2–IMEX, DG(1)–IMEX, and HR2–Hancock. As we

expected for the DG(1)–Hancock method, third-order convergence is observed. Fig-

ure 4.3 shows the normalized CPU time needed to achieve the target error level.

As in the case of advection, the high accuracy and efficiency of the DG(1)–Hancock

method are evident.
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(a) The HR2–IMEX-SSP2(3,3,2) method (ν̃ = 0.9)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 10 6.78e−01 — 9.12e−01 — 6.78e−01 — 9.12e−01 — 0.00e+00
20 20 7.92e−01 −0.22 1.11e+00 −0.29 7.92e−01 −0.22 1.11e+00 −0.29 1.00e−02
40 40 1.14e+00 −0.52 1.60e+00 −0.53 1.14e+00 −0.52 1.60e+00 −0.53 4.00e−02
80 80 3.91e−01 1.54 5.54e−01 1.54 3.91e−01 1.54 5.54e−01 1.54 1.50e−01

160 160 1.00e−01 1.96 1.42e−01 1.96 1.01e−01 1.96 1.42e−01 1.96 6.00e−01
320 320 2.52e−02 2.00 3.56e−02 2.00 2.52e−02 2.00 3.56e−02 2.00 2.43e+00
640 640 6.30e−03 2.00 8.91e−03 2.00 6.30e−03 2.00 8.91e−03 2.00 1.22e+01

1280 1280 1.57e−03 2.00 2.23e−03 2.00 1.57e−03 2.00 2.23e−03 2.00 5.13e+01
2560 2560 3.94e−04 2.00 5.57e−04 2.00 3.94e−04 2.00 5.57e−04 2.00 2.05e+02
5120 5120 9.84e−05 2.00 1.39e−04 2.00 9.84e−05 2.00 1.39e−04 2.00 1.24e+03

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 10 6.51e−01 — 9.14e−01 — 6.51e−01 — 9.14e−01 — 0.00e+00
20 20 2.73e−01 1.25 3.85e−01 1.25 2.73e−01 1.25 3.85e−01 1.25 1.00e−02
40 40 7.16e−02 1.93 1.01e−01 1.93 7.16e−02 1.93 1.01e−01 1.93 5.00e−02
80 80 1.79e−02 2.00 2.53e−02 2.00 1.79e−02 2.00 2.53e−02 2.00 2.10e−01

160 160 4.46e−03 2.00 6.31e−03 2.00 4.46e−03 2.00 6.31e−03 2.00 8.30e−01
320 320 1.11e−03 2.00 1.58e−03 2.00 1.11e−03 2.00 1.58e−03 2.00 3.34e+00
640 640 2.78e−04 2.00 3.94e−04 2.00 2.78e−04 2.00 3.94e−04 2.00 1.42e+01

1280 1280 6.96e−05 2.00 9.84e−05 2.00 6.96e−05 2.00 9.84e−05 2.00 5.81e+01
2560 2560 1.74e−05 2.00 2.46e−05 2.00 1.74e−05 2.00 2.46e−05 2.00 2.33e+02
5120 5120 4.34e−06 2.00 6.14e−06 2.00 4.34e−06 2.00 6.14e−06 2.00 9.32e+02
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(c) The DG(1)–IMEX-SSP2(3,3,2) method (ν̃ = 0.3)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 20 7.41e−01 — 1.03e+00 — 7.41e−01 — 1.03e+00 — 1.00e−02
20 40 3.29e−01 1.17 4.64e−01 1.14 3.29e−01 1.17 4.64e−01 1.14 3.00e−02
40 80 8.25e−02 2.00 1.16e−01 1.99 8.25e−02 2.00 1.16e−01 1.99 1.40e−01
80 160 2.02e−02 2.03 2.86e−02 2.02 2.02e−02 2.03 2.86e−02 2.02 5.80e−01

160 320 5.03e−03 2.01 7.11e−03 2.01 5.03e−03 2.01 7.11e−03 2.01 2.33e+00
320 640 1.25e−03 2.00 1.77e−03 2.00 1.25e−03 2.00 1.77e−03 2.00 1.15e+01
640 1280 3.13e−04 2.00 4.43e−04 2.00 3.13e−04 2.00 4.43e−04 2.00 4.97e+01

1280 2560 7.83e−05 2.00 1.11e−04 2.00 7.83e−05 2.00 1.11e−04 2.00 2.01e+02
2560 5120 1.96e−05 2.00 2.77e−05 2.00 1.96e−05 2.00 2.77e−05 2.00 8.63e+02

(d) The DG(1)–Hancock method (ν̃ = 0.9)

Nx DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 20 1.19e−01 — 1.65e−01 — 1.19e−01 — 1.65e−01 — 0.00e+00
20 40 1.66e−02 2.84 2.34e−02 2.82 1.66e−02 2.84 2.34e−02 2.82 2.00e−02
40 80 2.11e−03 2.97 2.99e−03 2.97 2.11e−03 2.97 2.99e−03 2.97 6.00e−02
80 160 2.65e−04 3.00 3.75e−04 2.99 2.65e−04 3.00 3.75e−04 2.99 2.50e−01

160 320 3.32e−05 3.00 4.69e−05 3.00 3.32e−05 3.00 4.69e−05 3.00 9.90e−01
320 640 4.15e−06 3.00 5.86e−06 3.00 4.15e−06 3.00 5.86e−06 3.00 4.00e+00
640 1280 5.18e−07 3.00 7.33e−07 3.00 5.18e−07 3.00 7.33e−07 3.00 1.71e+01

1280 2560 6.48e−08 3.00 9.16e−08 3.00 6.48e−08 3.00 9.16e−08 3.00 6.89e+01
2560 5120 8.12e−09 3.00 1.15e−08 3.00 8.12e−09 3.00 1.15e−08 3.00 2.75e+02

Table 4.2: A grid convergence study by solving the 1-D GHHE in the frozen limit (r = 1/2, ǫ = 103) is performed. L2,
L∞-norms, rates of convergence, and CPU times of each method are tabulated.
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Figure 4.2: 1-D GHHE grid convergence study in the frozen limit for r =
1

2
and

ǫ = 103. The L2-norms of errors shown in Table 4.2 are plotted against both degrees
of freedom and CPU time. The grid convergence study shows the superiority of the
DG(1)–Hancock method.
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Figure 4.3: CPU time required to achieve the target error level, normalized by the
DG(1)–IMEX-SSP2(3,3,2) result. The high efficiency of DG(1)–Hancock is evident.
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4.6.3 Convergence in the Near-Equilibrium Limit I

When the relaxation time ǫ is small relative to the residence time, the source term

is dominant, and the asymptotic equation is the advection-dominated advection-

diffusion equation (4.5) on page 210. We have found that, for both HR2 and DG(1)

methods, when r 6= 0, each spatial discretization method has a mesh size threshold

restriction,

∆x ∼
( ǫ

k2

) 1
3

, (4.144)

above which numerical dissipation dominates and below which physical dissipation

dominates. Note that when r = 0, the DG(1) method loses this restriction. We

demonstrate this numerically in the next section. As before, the time step is based

solely on the frozen wave speed CFL condition, yet the Courant number of the

DG(1)–Hancock method is reduced to 0.3. Since the diffusion is weak, the simu-

lations are run for many time steps until a sufficient amplitude reduction can be

observed. In our particular choice of parameters, a sinusoidal wave damps 8.5%

compared to its initial profile.

Firstly, to demonstrate the accuracy of the DG(1)–Hancock method qualita-

tively, computational results at tend = 300 are presented in Figure 4.4. It shows that

the DG(1)–Hancock method is the least dissipative and dispersive of all, whereas

the HR2–IMEX method produces a completely inaccurate solution.

Secondly, in order to assess performance quantitatively, a grid-convergence study

of the solution at the final time tend = 300 is summarized in Table 4.5 and Fig-

ure 4.5. Figure 4.6 shows the normalized CPU time to achieve the target error level.

Third-order convergence is observed for the DG(1)–Hancock method, whereas the

HR2–IMEX, HR2–Hancock, and DG(1)–IMEX methods show second-order conver-
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Figure 4.4: Numerical solutions at the final time tend = 300 in the near-equilibrium
limit. The DG(1)–Hancock method is the most accurate of all. Note that the exact
solution itself is slightly damped by the physical dissipation.
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Nx L2(ūexact) L∞(ūexact) L2(v̄exact) L∞(v̄exact)

10 6.36e-01 8.56e-01 3.18e-01 4.28e-01
20 6.44e-01 9.00e-01 3.22e-01 4.50e-01
40 6.46e-01 9.11e-01 3.23e-01 4.56e-01

Table 4.3: L2- and L∞-norms of the exact solution at tend = 300.

equilibrium HR2–IMEX HR2–Hancock DG(1)–IMEX DG(1)–Hancock
wave speed r (ν = 0.9) (ν = 0.9) (ν = 0.3) (ν = 0.3)

0.0 79 79 no restriction no restriction
0.25 81 80 15 11
0.50 87 84 26 19
0.75 101 91 41 32
1.0 physical dissipation vanishes, no restriction

Table 4.4: The threshold number of meshes N∗
x := 1/∆h∗ of each method in the

near-equilibrium limit ǫ = 10−5 with the wave number k = 2π. The DG(1)–Hancock
method requires the fewest meshes to ensure that the physical dissipation is domi-
nant.

gence in the L2-norm. The HR2–IMEX and HR2–Hancock methods only begin

to converge when Nx > 80, while the DG(1)–IMEX and DG(1)–Hancock methods

converge for Nx > 20. The utter lack of convergence for HR2 methods can be

understood by considering the values of the L2-error norms, which are roughly the

L2-norms of the exact solution. In other words, the numerical dissipation has so

swamped the physical dissipation, that there is effectively no signal left. The actual

L2- and L∞-norms of exact solutions for Nx = 10, 20, 40 are listed in Table 4.3.

Considering Table 4.5, all four methods begin to exhibit convergence precisely when

the mesh size ∆x becomes smaller than the theoretical limit ∆h∗
method obtained by a

Fourier analysis. The threshold number of meshes N∗
x for each method is tabulated

in Table 4.4.
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As for DG(1) methods, we observe that the order of accuracy seem to decrease

on finer grids. This can be understood by the Fourier analysis given in (4.103).

For instance, the DG(1)–MOL has two leading dispersion errors: c3 ∝ ∆x2 and

c̃3 ∝ ǫ∆x. On coarse grids, hence c3 ≫ c̃3, second-order convergence is pronounced.

However, as grids get finder and start resolving the relaxation scale, these two

coefficients become comparable, and eventually the first-order error, c̃3, dominates.

A similar observation can be made for the DG(1)–Hancock method regarding its

convergence reduction from third- to second-order.

Lastly, it can be observed that the HR2–Hancock method in this limit loses the

high accurate observed in the frozen limit. The reason is that the shift condition of

the HR2–Hancock method owing to the upwind flux is no longer preserved in the

near-equilibrium limit. Note that in this limit the flux becomes the Rusanov/HLL1

type (on page 234); excessive numerical dissipation reduces the accuracy to almost

the same level as for the HR2–IMEX method.
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(a) The HR2–IMEX-SSP2(3,3,2) method (ν̃ = 0.9)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 10 8.65 6.36e−01 — 8.56e−01 — 3.18e−01 — 4.28e−01 — 0.00e+00
20 20 4.33 6.45e−01 −0.02 9.01e−01 −0.07 3.22e−01 −0.02 4.50e−01 −0.07 3.00e−02
40 40 2.16 8.46e−01 −0.39 1.20e+00 −0.41 4.23e−01 −0.39 5.98e−01 −0.41 1.20e−01
80 80 1.08 3.57e−01 1.24 5.05e−01 1.24 1.79e−01 1.24 2.52e−01 1.24 4.50e−01

160 160 0.54 9.40e−02 1.93 1.33e−01 1.92 4.70e−02 1.93 6.65e−02 1.92 1.79e+00
320 320 0.27 2.36e−02 1.99 3.34e−02 1.99 1.18e−02 1.99 1.67e−02 1.99 7.37e+00
640 640 0.14 5.93e−03 1.99 8.39e−03 1.99 2.97e−03 1.99 4.19e−03 1.99 3.64e+01

1280 1280 0.07 1.49e−03 1.99 2.11e−03 1.99 7.46e−04 1.99 1.06e−03 1.99 1.53e+02
2560 2560 0.03 3.78e−04 1.98 5.34e−04 1.98 1.89e−04 1.98 2.67e−04 1.98 6.13e+02
5120 5120 0.02 9.64e−05 1.97 1.36e−04 1.97 4.82e−05 1.97 6.81e−05 1.97 3.89e+03

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 10 8.43 6.36e−01 — 8.56e−01 — 3.18e−01 — 4.28e−01 — 1.00e−02
20 20 4.21 6.45e−01 −0.02 9.01e−01 −0.07 3.23e−01 −0.02 4.51e−01 −0.07 4.00e−02
40 40 2.11 8.83e−01 −0.45 1.25e+00 −0.47 4.42e−01 −0.45 6.24e−01 −0.47 1.60e−01
80 80 1.05 3.81e−01 1.21 5.39e−01 1.21 1.91e−01 1.21 2.70e−01 1.21 6.30e−01

160 160 0.53 1.00e−01 1.93 1.42e−01 1.92 5.02e−02 1.93 7.10e−02 1.92 2.52e+00
320 320 0.26 2.51e−02 2.00 3.55e−02 2.00 1.25e−02 2.00 1.77e−02 2.00 1.01e+01
640 640 0.13 6.20e−03 2.02 8.77e−03 2.02 3.10e−03 2.02 4.38e−03 2.02 4.25e+01

1280 1280 0.07 1.51e−03 2.04 2.13e−03 2.04 7.53e−04 2.04 1.06e−03 2.04 1.74e+02
2560 2560 0.03 3.50e−04 2.11 4.95e−04 2.11 1.75e−04 2.11 2.47e−04 2.11 6.98e+02
5120 5120 0.02 7.12e−05 2.30 1.01e−04 2.30 3.56e−05 2.30 5.04e−05 2.30 2.85e+03
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(c) The DG(1)–IMEX-SSP2(3,3,2) method (ν̃ = 0.3)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 20 2.62 5.29e−01 — 7.21e−01 — 2.65e−01 — 3.61e−01 — 3.00e−02
20 40 1.31 1.46e−01 1.86 2.06e−01 1.81 7.34e−02 1.85 1.03e−01 1.80 1.10e−01
40 80 0.65 3.13e−02 2.22 4.43e−02 2.22 1.57e−02 2.22 2.22e−02 2.22 4.60e−01
80 160 0.33 7.37e−03 2.09 1.04e−02 2.09 3.69e−03 2.09 5.22e−03 2.09 1.76e+00

160 320 0.16 1.83e−03 2.01 2.59e−03 2.01 9.17e−04 2.01 1.30e−03 2.01 7.12e+00
320 640 0.08 4.69e−04 1.97 6.63e−04 1.97 2.35e−04 1.97 3.32e−04 1.97 3.46e+01
640 1280 0.04 1.23e−04 1.93 1.74e−04 1.93 6.16e−05 1.93 8.72e−05 1.93 1.49e+02

1280 2560 0.02 3.36e−05 1.88 4.75e−05 1.88 1.68e−05 1.88 2.38e−05 1.88 6.00e+02
2560 5120 0.01 9.53e−06 1.82 1.35e−05 1.82 4.77e−06 1.82 6.74e−06 1.82 2.84e+03

(d) The DG(1)–Hancock method (ν̃ = 0.3)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 20 1.95 4.48e−01 — 6.30e−01 — 2.24e−01 — 3.15e−01 — 3.00e−02
20 40 0.97 5.91e−02 2.92 8.35e−02 2.91 2.96e−02 2.92 4.18e−02 2.91 1.50e−01
40 80 0.49 6.99e−03 3.08 9.88e−03 3.08 3.49e−03 3.08 4.94e−03 3.08 5.60e−01
80 160 0.24 8.70e−04 3.01 1.23e−03 3.01 4.35e−04 3.01 6.15e−04 3.01 2.23e+00

160 320 0.12 1.12e−04 2.95 1.59e−04 2.95 5.62e−05 2.95 7.95e−05 2.95 8.86e+00
320 640 0.06 1.51e−05 2.89 2.14e−05 2.89 7.57e−06 2.89 1.07e−05 2.89 3.57e+01
640 1280 0.03 2.17e−06 2.80 3.07e−06 2.80 1.09e−06 2.80 1.54e−06 2.80 1.54e+02

1280 2560 0.02 3.41e−07 2.67 4.82e−07 2.67 1.70e−07 2.67 2.41e−07 2.67 6.26e+02
2560 5120 0.01 6.13e−08 2.48 8.66e−08 2.48 3.06e−08 2.48 4.33e−08 2.48 2.50e+03

Table 4.5: A grid convergence study by solving the 1-D GHHE in the near-equilibrium limit (r = 1/2, ǫ = 10−5) is performed.
L2, L∞-norms, rates of convergence, and CPU times of each method are tabulated.
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(a) L2-norms of error plotted against number of degrees of free-
dom. DG(1)–Hancock is the most accurate in a given number
of degrees of freedom.
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(b) L2-norms of error plotted against CPU time. DG(1)–Hancock
is the most efficient method.

Figure 4.5: 1-D GHHE grid convergence study in the near-equilibrium limit for
r = 1/2 and ǫ = 10−5. The L2-norms of errors shown in Table 4.5 are plotted
against both degrees of freedom and CPU time. The grid convergence study shows
the superiority of the DG(1)–Hancock method.



260

10
−5

10
−3

10
−1

10
−2

10
−1

10
0

10
1

10
2

 

 
HR2−IMEX−SSP2(3,3,2)
HR2−Hancock
DG(1)−IMEX−SSP2(3,3,2)
DG(1)−Hancock

target error level, L2(ūerror)
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Figure 4.6: CPU time required to achieve the target error level, normalized by the
DG(1)–IMEX-SSP2(3,3,2) result. The high efficiency of DG(1)–Hancock is evident.
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4.6.4 Convergence in the Near-Equilibrium Limit II

When the equilibrium wave speed vanishes (r = 0), both DG(1)–IMEX and

DG(1)–Hancock methods should exhibit second-order convergence without the thresh-

old. Results are provided in Table 4.6 and Figure 4.7. Figure 4.8 shows the normal-

ized CPU time to achieve the target error level. Indeed, DG(1) methods converge

at a second-order rate and exhibit no threshold. This suggests that the threshold

for r =
1

2
was in fact a demonstration of the behavior of the spatial discretization.

As before, both HR2–IMEX and HR2–Hancock methods exhibit a threshold, and

do not appear to begin to converge until ∆x < ∆h∗
HR2. See Table 4.4 for a threshold

number of mesh size with respect to r. For Nx > 80, both HR2 methods appear to

converge at a rate greater than two. This can be explained by the fact that, for our

choice of parameters, the
1

8
∆x3 k4 error term in (4.105) on page 236 still dominates

the numerical error, even if it is smaller than the physical dissipation. Nevertheless,

due to the large coefficient of that term, DG(1) methods still yield more accurate

results. The almost identical error levels of DG(1)–IMEX and DG(1)–Hancock are

explained by Fourier analyses presented in (4.105) on page 236; both method possess

identical dominant dissipation errors.

Rather surprisingly, the convergence of the HR2–Hancock method stalls on finer

grids. The cause is unclear, yet it might be related to the anti-diffusive (positive)

error appearing in (4.105b) on page 236. Since the method is space-time coupled,

we are not able to trace back the source of error to either spatial or temporal

discretization.
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(a) The HR2–IMEX-SSP2(3,3,2) method (ν̃ = 0.9)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 10 7.90 6.18e−01 — 8.31e−01 — 3.88e−05 — 5.49e−05 — 0.00e+00
20 20 3.95 6.25e−01 −0.02 8.73e−01 −0.07 3.93e−05 −0.02 5.49e−05 0.00 3.00e−02
40 40 1.98 3.75e−01 0.74 5.29e−01 0.72 2.36e−05 0.74 3.33e−05 0.72 1.10e−01
80 80 0.99 6.77e−02 2.47 9.57e−02 2.46 4.28e−06 2.46 6.05e−06 2.46 4.50e−01

160 160 0.49 8.92e−03 2.93 1.26e−02 2.92 5.57e−07 2.94 7.87e−07 2.94 1.78e+00
320 320 0.25 1.12e−03 2.99 1.59e−03 2.99 7.11e−08 2.97 1.00e−07 2.97 7.29e+00
640 640 0.12 1.41e−04 2.99 2.00e−04 2.99 8.58e−09 3.05 1.21e−08 3.05 3.65e+01

1280 1280 0.06 1.78e−05 2.99 2.52e−05 2.99 1.12e−09 2.93 1.59e−09 2.93 1.55e+02
2560 2560 0.03 2.26e−06 2.98 3.20e−06 2.98 1.17e−10 3.26 1.66e−10 3.26 6.18e+02
5120 5120 0.02 2.93e−07 2.95 4.14e−07 2.95 1.65e−11 2.83 2.34e−11 2.83 4.03e+03

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 10 7.90 6.18e−01 — 8.31e−01 — 3.88e−05 — 5.49e−05 — 1.00e−02
20 20 3.95 6.25e−01 −0.02 8.73e−01 −0.07 3.93e−05 −0.02 5.49e−05 0.00 4.00e−02
40 40 1.98 3.74e−01 0.74 5.28e−01 0.73 2.35e−05 0.74 3.31e−05 0.73 1.60e−01
80 80 0.99 6.75e−02 2.47 9.53e−02 2.47 4.22e−06 2.48 5.96e−06 2.47 6.40e−01

160 160 0.49 8.83e−03 2.93 1.25e−02 2.93 5.50e−07 2.94 7.78e−07 2.94 2.54e+00
320 320 0.25 1.10e−03 3.00 1.56e−03 3.00 6.81e−08 3.01 9.63e−08 3.01 1.01e+01
640 640 0.12 1.41e−04 2.97 2.00e−04 2.97 8.57e−09 2.99 1.21e−08 2.99 4.26e+01

1280 1280 0.06 3.90e−05 1.85 5.52e−05 1.85 2.42e−09 1.82 3.42e−09 1.82 1.74e+02
2560 2560 0.03 3.20e−05 0.29 4.52e−05 0.29 2.01e−09 0.27 2.84e−09 0.27 6.96e+02
5120 5120 0.02 2.64e−05 0.27 3.74e−05 0.27 1.66e−09 0.27 2.35e−09 0.27 2.84e+03
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(c) The DG(1)–IMEX-SSP2(3,3,2) method (ν̃ = 0.3)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 20 — 2.99e−03 — 4.02e−03 — 6.11e−07 — 8.64e−07 — 3.00e−02
20 40 — 6.45e−04 2.21 9.00e−04 2.16 1.65e−07 1.89 2.31e−07 1.91 1.10e−01
40 80 — 1.55e−04 2.06 2.18e−04 2.05 4.22e−08 1.97 5.95e−08 1.96 4.40e−01
80 160 — 3.82e−05 2.02 5.40e−05 2.01 1.06e−08 1.99 1.50e−08 1.99 1.75e+00

160 320 — 9.49e−06 2.01 1.34e−05 2.01 2.67e−09 1.99 3.78e−09 1.99 7.06e+00
320 640 — 2.35e−06 2.01 3.32e−06 2.01 6.74e−10 1.99 9.54e−10 1.99 3.44e+01
640 1280 — 5.78e−07 2.02 8.17e−07 2.02 1.70e−10 1.99 2.41e−10 1.99 1.49e+02

1280 2560 — 1.40e−07 2.05 1.98e−07 2.05 4.27e−11 1.99 6.04e−11 1.99 5.98e+02
2560 5120 — 3.28e−08 2.09 4.64e−08 2.09 1.04e−11 2.04 1.47e−11 2.04 2.72e+03

(d) The DG(1)–Hancock method (ν̃ = 0.3)

Nx DOF ∆x/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10 20 — 2.99e−03 — 4.02e−03 — 1.14e−06 — 1.61e−06 — 3.00e−02
20 40 — 6.45e−04 2.21 9.01e−04 2.16 2.85e−07 1.99 3.99e−07 2.01 1.50e−01
40 80 — 1.55e−04 2.06 2.18e−04 2.05 7.14e−08 2.00 1.01e−07 1.99 5.80e−01
80 160 — 3.82e−05 2.02 5.40e−05 2.01 1.79e−08 2.00 2.52e−08 2.00 2.29e+00

160 320 — 9.50e−06 2.01 1.34e−05 2.01 4.46e−09 2.00 6.30e−09 2.00 9.14e+00
320 640 — 2.36e−06 2.01 3.34e−06 2.01 1.11e−09 2.01 1.57e−09 2.01 3.66e+01
640 1280 — 5.81e−07 2.02 8.22e−07 2.02 2.75e−10 2.01 3.89e−10 2.01 1.54e+02

1280 2560 — 1.41e−07 2.04 2.00e−07 2.04 6.74e−11 2.03 9.54e−11 2.03 6.18e+02
2560 5120 — 3.33e−08 2.09 4.70e−08 2.09 1.61e−11 2.07 2.27e−11 2.07 2.47e+03

Table 4.6: A grid convergence study by solving the 1-D GHHE in the near-equilibrium limit (r = 0, ǫ = 10−5) is performed.
L2, L∞-norms, rates of convergence, and CPU times of each method are tabulated.
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(a) L2-norms of error plotted against number of degrees of free-
dom.
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(b) L2-norms of error plotted against CPU time.

Figure 4.7: 1-D GHHE grid convergence study in the near-equilibrium limit for
r = 0 and ǫ = 10−5. The L2-norms of errors shown in Table 4.6 are plotted against
both degrees of freedom and CPU time. HR2 methods converge at the third order,
while DG(1) methods are second order.
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Figure 4.8: CPU time required to achieve the target error level, normalized by
the DG(1)–RK2 result. The superiority of the DG(1)–Hancock method over the
DG(1)–IMEX method is lost when zero equilibrium speed is considered.
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4.7 Grid Convergence Study in 2-D

4.7.1 Problem Definition

We consider the two-dimensional model problem (4.107) on page 237. To confirm

the analysis, consider an initial-value problem on a periodic domain (x, y) ∈ [0, 1]×

[0, 1] in each direction, and use the harmonic initial condition,

u(x, y, 0) = ℜ{u0 exp (ikxx) exp (ikyy)}

= u0[cos(kxx) cos(kyy) − sin(kxx) sin(kyy)], (4.145)

where u0 = [1, 1, 1]T and kx = ky = 2π. This initial condition has variation in the

diagonal direction (at 45◦ angle with the x-axis) and is uniform in the other diagonal

direction. A dispersion analysis, included in Appendix C on page 354, provides the

exact solution for the computation of the L2-norm.

Following the 1-D analysis, the DG(1)–Hancock method is compared to the

HR2–IMEX, HR2–Hancock, and DG(1)–IMEX methods. For each method, we

consider both a frozen limit (ǫ ≫ 1, non-stiff) and a near-equilibrium limit (ǫ ≪ 1,

stiff), with two equilibrium wave speeds in the stiff regime:

frozen (non-stiff) limit : r = s =
1

2
, ǫ = 103, tend = 100, (4.146a)

near-equilibrium (stiff) limit : r = s = 0,
1

2
, ǫ = 10−5, tend = 150, (4.146b)

and we compute the error norms relative to an exact analytic solution. Note that

r = s = 0 corresponds to no advection, hence the system reduces to a pure diffusion

equation:

∂tu = ǫ (∂xxu + ∂yyu) . (4.147)

In both cases, the analytical damping factor is obtained by

u(tend) = e−ǫ(2−r2−s2)k2 tend ≈ 0.915, (4.148)
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thus, a sinusoidal wave is physically dissipated by 8.5%. The Courant numbers

based on the unit wave speed:

(ν2D)method := 1
∆t

∆x
+ 1

∆t

∆y
, (4.149)

are set as

νHR2–MOL = νHR2–Hancock = 0.9, (4.150a)

νDG(1)–MOL = 0.3, (4.150b)

νDG(1)–Hancock =






0.6 frozen limit

0.3 near-equilibrium limit.

(4.150c)

Note that the maximum stable Courant number of the DG(1)–Hancock method is

reduced to 0.66 in two dimensions. A DG(1) method requires cell averages ūjk and

slopes ∆xujk, ∆yujk in each cell for initial conditions. Given an initial function

u(x, y, 0), the initial cell values are obtained from

ūjk =
1

∆x∆y

∫∫

Cjk

u(x, y, 0) dxdy, (4.151a)

∆xujk =
12

∆x2∆y

∫∫

Cjk

u(x, y, 0)(x − xj) dxdy, (4.151b)

∆yujk =
12

∆x∆y2

∫∫

Cjk

u(x, y, 0)(y − yk) dxdy, (4.151c)

where the integration is over the cell Cjk := [xj−1/2, xj+1/2] × [yk−1/2, yk+1/2].

4.7.2 Convergence in the Frozen Limit

Table 4.7 and Figure 4.9 demonstrate the expected third-order convergence for

the 2-D DG(1)–Hancock method, and second-order convergence for the DG(1)–IMEX,

HR2–IMEX, and HR2–Hancock methods in the frozen limit, although, the onset of
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the asymptotic convergence rate requires slightly more points per dimension than

in 1D. We note that in this frozen problem the initial-value distribution propagates

along the diagonal of the domain, which produces an effective mesh size in the prop-

agation direction larger than h by a factor
√

2. This factor is enough to explain the

difference between the 1-D and 2-D results. Figure 4.10 shows the normalized CPU

time to achieve the target error level. The high efficiency of the DG(1)–Hancock

method is evident.
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(a) The HR2–IMEX-SSP2(3,3,2) method (ν̃ = 0.9)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error), L2(w̄error) Rate L∞(v̄error), L∞(w̄error) Rate CPU time [s]

10× 10 100 7.35e−01 — 1.02e+00 — 6.32e−01 — 8.93e−01 — 2.00e−01
20× 20 400 7.33e−01 0.00 1.03e+00 −0.01 6.38e−01 −0.01 9.02e−01 −0.01 1.76e+00
40× 40 1600 1.19e+00 −0.70 1.68e+00 −0.71 1.07e+00 −0.75 1.52e+00 −0.75 1.49e+01
80× 80 6400 5.98e−01 0.99 8.46e−01 0.99 5.35e−01 1.00 7.56e−01 1.00 2.38e+02

160×160 25600 1.63e−01 1.88 2.30e−01 1.88 1.38e−01 1.95 1.96e−01 1.95 2.10e+03
320×320 102400 4.12e−02 1.98 5.83e−02 1.98 3.46e−02 2.00 4.89e−02 2.00 1.75e+04
640×640 409600 1.03e−02 2.00 1.46e−02 2.00 8.63e−03 2.00 1.22e−02 2.00 1.34e+05

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error), L2(w̄error) Rate L∞(v̄error), L∞(w̄error) Rate CPU time [s]

10× 10 100 7.35e−01 — 1.02e+00 — 6.32e−01 — 8.93e−01 — 2.70e−01
20× 20 400 8.69e−01 −0.24 1.22e+00 −0.26 7.06e−01 −0.16 9.98e−01 −0.16 2.24e+00
40× 40 1600 3.70e−01 1.23 5.24e−01 1.22 2.91e−01 1.28 4.12e−01 1.28 1.84e+01
80× 80 6400 9.63e−02 1.94 1.36e−01 1.94 7.79e−02 1.90 1.10e−01 1.90 2.21e+02

160×160 25600 2.39e−02 2.01 3.38e−02 2.01 1.97e−02 1.98 2.78e−02 1.98 2.41e+03
320×320 102400 5.96e−03 2.01 8.42e−03 2.01 4.94e−03 1.99 6.98e−03 1.99 1.63e+04
640×640 409600 1.49e−03 2.00 2.10e−03 2.00 1.24e−03 2.00 1.75e−03 2.00 1.17e+05
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(c) The DG(1)–IMEX-SSP2(3,3,2) method (ν̃ = 0.3)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error), L2(w̄error) Rate L∞(v̄error), L∞(w̄error) Rate CPU time [s]

10× 10 300 7.35e−01 — 1.02e+00 — 6.32e−01 — 8.93e−01 — 1.08e+00
20× 20 1200 6.49e−01 0.18 9.15e−01 0.16 5.65e−01 0.16 7.97e−01 0.16 9.33e+00
40× 40 4800 1.78e−01 1.87 2.51e−01 1.87 1.61e−01 1.81 2.28e−01 1.81 1.05e+02
80× 80 19200 3.27e−02 2.44 4.63e−02 2.44 3.00e−02 2.43 4.24e−02 2.42 1.62e+03

160×160 76800 6.99e−03 2.23 9.89e−03 2.23 6.24e−03 2.27 8.82e−03 2.27 1.26e+04
320×320 307200 1.68e−03 2.06 2.37e−03 2.06 1.45e−03 2.10 2.06e−03 2.10 9.83e+04

(d) The DG(1)–Hancock method (ν̃ = 0.6)

Nx ×Ny DOF L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error), L2(w̄error) Rate L∞(v̄error), L∞(w̄error) Rate CPU time [s]

10× 10 300 7.34e−01 — 1.02e+00 — 6.31e−01 — 8.92e−01 — 8.10e−01
20× 20 1200 4.78e−01 0.62 6.67e−01 0.61 4.08e−01 0.63 5.77e−01 0.63 6.60e+00
40× 40 4800 9.13e−02 2.39 1.29e−01 2.37 7.80e−02 2.39 1.10e−01 2.39 5.90e+01
80× 80 19200 1.21e−02 2.91 1.72e−02 2.91 1.04e−02 2.91 1.47e−02 2.91 6.61e+02

160×160 76800 1.53e−03 2.99 2.16e−03 2.99 1.31e−03 2.99 1.85e−03 2.99 5.29e+03
320×320 307200 1.91e−04 3.00 2.71e−04 3.00 1.64e−04 3.00 2.32e−04 3.00 4.23e+04

Table 4.7: L2-, L∞-norms and rates of convergence for r = s =
1

2
in the frozen limit (ǫ = 103) for the 2-D GHHE system.
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(a) L2-norms of error plotted against number of degrees of free-
dom. DG(1)–Hancock is the most accurate for a given number
of degrees of freedom.
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(b) L2-norms of error plotted against CPU time. DG(1)–Hancock
is the most efficient method.

Figure 4.9: 2-D GHHE grid convergence study in the frozen limit for r = s =
1

2
and

ǫ = 103. The L2-norms of errors shown in Table 4.7 are plotted against both degrees
of freedom and CPU time. The grid-convergence study shows the superiority of the
DG(1)–Hancock method.
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Figure 4.10: CPU time required to achieve the target error level, normalized by
the DG(1)–IMEX-SSP2(3,3,2) result. The high efficiency of DG(1)–Hancock is pre-
served for a two-dimensional problem.
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equilibrium
HR2 (ν = 0.9) DG(1) (ν = 0.3)

wave speed r

0.0 79 55
0.25 81 56
0.50 87 62
0.75 104 76
1.0 physical dissipation vanishes, no restriction

Table 4.8: The threshold number of meshes N∗
x := 1/∆h∗ of each method in the

near-equilibrium limit ǫ = 10−5 with wave number kx = ky = 2π.

4.7.3 Convergence in the Near-Equilibrium Limit I

Results are shown in Table 4.9 and Figure 4.11. Figure 4.12 shows the normalized

CPU time to achieve the target error level. Both HR2–IMEX and HR2–Hancock

methods follow the Fourier analysis: second-order convergence is observed. The

DG(1)–Hancock method preserves third-order accuracy in two-dimensional prob-

lems. Compared to the 1-D result, an unexpected result is obtained for the DG(1)–

IMEX method. First, it converges as third-order, then deteriorates towards second-

order. Since Fourier analysis shows that DG(1) method is third-order in space, this

reduction must be related to the temporal error. A similar trend is also observed

in the results for the frozen limit in Table 4.7(c). Unfortunately, a Fourier analysis

of the fully discrete method could not be performed due to the complexity of the

formulas, so the exact source of error is still unknown.

These grid-convergence results reveal that if one allows a moderately large error,

then both DG(1)–Hancock and DG(1)–IMEX are comparable in both accuracy and

efficiency. However, if a low error level is required, then the DG(1)–Hancock method

is superior to other methods because the method is truly third-order accurate.
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(a) The HR2–IMEX-SSP2(3,3,2) method (ν̃ = 0.9)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 100 8.70 6.26e−01 — 8.85e−01 — 3.13e−01 — 4.43e−01 — 3.10e−01
20× 20 400 4.35 6.42e−01 −0.04 9.08e−01 −0.04 3.21e−01 −0.04 4.54e−01 −0.04 2.68e+00
40× 40 1600 2.17 8.45e−01 −0.40 1.19e+00 −0.39 4.22e−01 −0.40 5.95e−01 −0.39 2.22e+01
80× 80 6400 1.09 3.57e−01 1.24 5.05e−01 1.24 1.79e−01 1.24 2.52e−01 1.24 3.76e+02

160×160 25600 0.54 9.40e−02 1.93 1.33e−01 1.93 4.70e−02 1.93 6.65e−02 1.93 3.14e+03
320×320 102400 0.27 2.36e−02 1.99 3.34e−02 1.99 1.18e−02 1.99 1.67e−02 1.99 2.50e+04
640×640 409600 0.14 5.93e−03 2.00 8.39e−03 2.00 2.97e−03 2.00 4.19e−03 2.00 2.04e+05

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 100 8.70 6.26e−01 — 8.85e−01 — 3.13e−01 — 4.43e−01 — 4.00e−01
20× 20 400 4.35 6.43e−01 −0.04 9.09e−01 −0.04 3.21e−01 −0.04 4.54e−01 −0.04 3.35e+00
40× 40 1600 2.17 8.82e−01 −0.46 1.25e+00 −0.46 4.41e−01 −0.46 6.23e−01 −0.46 2.70e+01
80× 80 6400 1.09 3.81e−01 1.21 5.39e−01 1.21 1.91e−01 1.21 2.70e−01 1.21 3.78e+02

160×160 25600 0.54 1.00e−01 1.93 1.42e−01 1.93 5.02e−02 1.93 7.10e−02 1.93 3.05e+03
320×320 102400 0.27 2.51e−02 2.00 3.55e−02 2.00 1.25e−02 2.00 1.77e−02 2.00 2.41e+04
640×640 409600 0.14 6.18e−03 2.02 8.74e−03 2.02 3.09e−03 2.02 4.37e−03 2.02 1.85e+05
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(c) The DG(1)–IMEX-SSP2(3,3,2) method (ν̃ = 0.3)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 300 6.19 6.26e−01 — 8.85e−01 — 3.13e−01 — 4.43e−01 — 1.65e+00
20× 20 1200 3.10 5.94e−01 0.08 8.40e−01 0.08 2.97e−01 0.08 4.20e−01 0.08 1.40e+01
40× 40 4800 1.55 1.82e−01 1.71 2.57e−01 1.71 9.11e−02 1.71 1.29e−01 1.71 1.62e+02
80× 80 19200 0.77 2.70e−02 2.75 3.82e−02 2.75 1.35e−02 2.75 1.91e−02 2.75 2.22e+03

160×160 76800 0.39 3.79e−03 2.83 5.35e−03 2.83 1.90e−03 2.83 2.68e−03 2.83 1.97e+04
320×320 307200 0.19 6.26e−04 2.60 8.86e−04 2.60 3.14e−04 2.60 4.44e−04 2.60 1.49e+05

(d) The DG(1)–Hancock method (ν̃ = 0.3)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 300 6.19 6.26e−01 — 8.85e−01 — 3.13e−01 — 4.43e−01 — 2.43e+00
20× 20 1200 3.10 5.77e−01 0.12 8.16e−01 0.12 2.89e−01 0.12 4.08e−01 0.12 2.00e+01
40× 40 4800 1.55 1.63e−01 1.83 2.30e−01 1.83 8.14e−02 1.83 1.15e−01 1.83 1.78e+02
80× 80 19200 0.77 2.31e−02 2.81 3.27e−02 2.81 1.16e−02 2.81 1.64e−02 2.81 1.98e+03

160×160 76800 0.39 2.94e−03 2.97 4.16e−03 2.97 1.47e−03 2.97 2.08e−03 2.97 1.57e+04
320×320 307200 0.19 3.69e−04 3.00 5.22e−04 3.00 1.85e−04 3.00 2.61e−04 3.00 1.27e+05

Table 4.9: L2-, L∞-norms and rates of convergence for r =
1

2
in the near-equilibrium limit (ǫ = 10−5) for the 2-D GHHE

system.
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(a) L2-norms of error plotted against number of degrees of free-
dom.
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(b) L2-norms of error plotted against CPU time.

Figure 4.11: 2-D GHHE grid convergence study in the near-equilibrium limit for

r = s =
1

2
and ǫ = 10−5. The L2-norms of errors shown in Table 4.9 are plotted

against both degrees of freedom and CPU time. The grid-convergence study still
shows a slight superiority of the DG(1)–Hancock method.
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Figure 4.12: CPU time required to achieve the target error level, normalized by the
DG(1)–IMEX-SSP2(3,3,2) result.
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4.7.4 Convergence in the Near-Equilibrium Limit II

In a single dimension, both DG(1)–IMEX and DG(1)–Hancock methods for

r = 0 do not appear to have a threshold above which numerical dissipation domi-

nates over physical dissipation. However, problems of practical significance are mul-

tidimensional, and multiple dimensions frequently introduce additional couplings.

Analysis suggests that part of the multidimensional error is independent of the wave

speeds, and causes the mesh-size restriction even when zero wave speeds, r = s = 0,

are considered. To gauge whether 2-D DG(1) methods actually exhibit this behav-

ior, we conduct a two-dimensional numerical experiment.

The results are shown in Table 4.10 and Figure 4.13. Figure 4.14 shows the

normalized CPU time to achieve the target error level. It is observed that all four

methods converge with third-order accuracy. This can be understood again by the

Fourier analysis given in (4.136) on page 245. Even though the analyses do not

include the temporal discretization error, they predict third-order convergence on

coarse grids for both HR2 and DG(1) spatial discretizations. When the grids become

finer, we expect a reduction to second-order convergence because the spatial error

is proportional to ǫ∆h2. The dominant dissipation error of the DG(1) method is

1

3
of that of HR2, but Figure 4.13 appears to indicate the opposite; the reason is

that DG(1) uses three times as more degrees of freedom as HR2. In the end, the

errors of both methods are quite comparable. These numerical results show that

the DG(1) spatial discretization loses its superiority to HR2 in the near-equilibrium

limit with r = s = 0.
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(a) The HR2–IMEX-SSP2(3,3,2) method (ν̃ = 0.9)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 100 7.90 6.08e−01 — 8.59e−01 — 3.82e−05 — 5.14e−05 — 3.10e−01
20× 20 400 3.95 6.23e−01 −0.03 8.80e−01 −0.03 3.91e−05 −0.03 5.53e−05 −0.11 2.66e+00
40× 40 1600 1.98 3.75e−01 0.73 5.30e−01 0.73 2.35e−05 0.73 3.33e−05 0.73 2.23e+01
80× 80 6400 0.99 6.77e−02 2.47 9.58e−02 2.47 4.26e−06 2.47 6.02e−06 2.47 3.73e+02

160×160 25600 0.49 8.91e−03 2.93 1.26e−02 2.93 5.56e−07 2.94 7.86e−07 2.94 3.16e+03
320×320 102400 0.25 1.12e−03 2.99 1.59e−03 2.99 7.01e−08 2.99 9.92e−08 2.99 2.46e+04
640×640 409600 0.12 1.41e−04 2.99 2.00e−04 2.99 8.54e−09 3.04 1.21e−08 3.04 1.95e+05

(b) The HR2–Hancock method (ν̃ = 0.9)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 100 7.90 6.08e−01 — 8.59e−01 — 3.82e−05 — 5.14e−05 — 4.00e−01
20× 20 400 3.95 6.23e−01 −0.03 8.80e−01 −0.03 3.91e−05 −0.03 5.53e−05 −0.11 3.30e+00
40× 40 1600 1.98 3.74e−01 0.74 5.29e−01 0.74 2.35e−05 0.74 3.32e−05 0.74 2.63e+01
80× 80 6400 0.99 6.74e−02 2.47 9.54e−02 2.47 4.22e−06 2.48 5.97e−06 2.48 3.28e+02

160×160 25600 0.49 8.83e−03 2.93 1.25e−02 2.93 5.50e−07 2.94 7.78e−07 2.94 2.65e+03
320×320 102400 0.25 1.11e−03 3.00 1.56e−03 3.00 6.82e−08 3.01 9.65e−08 3.01 2.08e+04
640×640 409600 0.12 1.53e−04 2.85 2.17e−04 2.85 9.37e−09 2.87 1.32e−08 2.87 1.67e+05
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(c) The DG(1)–IMEX-SSP2(3,3,2) method (ν̃ = 0.3)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 300 5.48 6.08e−01 — 8.59e−01 — 3.82e−05 — 5.14e−05 — 1.56e+00
20× 20 1200 2.74 5.66e−01 0.10 8.01e−01 0.10 3.56e−05 0.10 5.04e−05 0.03 1.34e+01
40× 40 4800 1.37 1.64e−01 1.79 2.32e−01 1.79 1.03e−05 1.79 1.45e−05 1.79 1.55e+02
80× 80 19200 0.68 2.35e−02 2.81 3.32e−02 2.81 1.46e−06 2.82 2.06e−06 2.82 2.20e+03

160×160 76800 0.34 2.99e−03 2.97 4.23e−03 2.97 1.84e−07 2.99 2.60e−07 2.99 1.80e+04
320×320 307200 0.17 3.76e−04 2.99 5.31e−04 2.99 2.26e−08 3.02 3.19e−08 3.02 1.44e+05

(d) The DG(1)–Hancock method (ν̃ = 0.3)

Nx ×Ny DOF ∆h/∆h⋆ L2(ūerror) Rate L∞(ūerror) Rate L2(v̄error) Rate L∞(v̄error) Rate CPU time [s]

10× 10 300 5.48 6.08e−01 — 8.59e−01 — 3.82e−05 — 5.14e−05 — 2.41e+00
20× 20 1200 2.74 5.66e−01 0.10 8.01e−01 0.10 3.55e−05 0.10 5.03e−05 0.03 1.98e+01
40× 40 4800 1.37 1.64e−01 1.79 2.32e−01 1.79 1.02e−05 1.80 1.45e−05 1.80 1.79e+02
80× 80 19200 0.68 2.34e−02 2.81 3.31e−02 2.81 1.45e−06 2.82 2.05e−06 2.82 1.94e+03

160×160 76800 0.34 2.98e−03 2.97 4.21e−03 2.97 1.82e−07 2.99 2.58e−07 2.99 1.53e+04
320×320 307200 0.17 3.73e−04 3.00 5.28e−04 3.00 2.22e−08 3.04 3.14e−08 3.04 1.24e+05

Table 4.10: L2-, L∞-norms and rates of convergence for r = s = 0 in the near-equilibrium limit (ǫ = 10−5) for the 2-D GHHE
system.
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(a) L2-norms of error plotted against number of degrees of free-
dom.
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(b) L2-norms of error plotted against CPU time.

Figure 4.13: 2-D GHHE grid convergence study in the near-equilibrium limit for
r = s = 0 and ǫ = 10−5. The L2-norms of errors shown in Table 4.10 are plotted
against both degrees of freedom and CPU time. The grid-convergence study shows
all methods converge in third-order, and error levels are comparable.
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the DG(1)–IMEX-SSP2(3,3,2) result. DG(1) methods are now less efficient than
HR2 methods due to the extra degrees of freedom. They require for achieving high
accuracy.
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4.8 Grid-Convergence Study for Nonlinear Hyperbolic–
Relaxation Equations

4.8.1 The Euler Equations with Heat Transfer

To demonstrate the accuracy of the DG(1)–Hancock method when applied to

a nonlinear hyperbolic-relaxation system, the Euler equations with heat transfer,

which reduce to the isothermal Euler equations in the equilibrium limit, are adopted

as a model equation [Pem93b]:

∂

∂t




ρ

ρu

ρE




+
∂

∂x




ρu

ρu2 + p

ρuH




= −1

ǫ




0

0

ρ(T − T0)




, (4.152)

where the pressure is given by the ideal gas law, p := (γ − 1)ρe = ρRT . The frozen

characteristic speeds are u±a, u, where the speed of sound is given by a :=
√

γp/ρ.

In the equilibrium limit (ǫ → 0), the nonequilibrium temperature T converges to

the constant equilibrium temperature T0 instantaneously. As a result, the above

equations tend asymptotically to the following isothermal Euler equations:

∂

∂t




ρ

ρu


 +

∂

∂x




ρu

ρu2 + p∗


 =




0

0


 , (4.153)

where the gas becomes polytropic with equilibrium γ = 1 and the pressure is given

by p∗(ρ) := ρRT0. The equilibrium characteristic speeds are u ± a∗, where the

constant speed of sound is a∗ :=
√

p∗/ρ =
√

RT0.



284

Consider an initial-value problem with the following C
∞ initial distributions:

ρ0(x) = exp

(
u0(x)

a∗

)
, (4.154a)

u0(x) =






−a∗, x < −5,

a∗ tanh

[
− 10x

(x + 5)(x − 5)

]
, x ∈ [−5, 5],

a∗, x > 5,

(4.154b)

p0(x) = (a∗)2ρ0(x), (4.154c)

plotted in Figure 4.15. The initial conditions are chosen such that the analytical

solution of the isothermal Euler equations becomes a simple wave solution; one of

the Riemann invariants remains constant: J−
iso(x, t) = ln ρ0 −

u0

a∗
≡ 0. Also, the flow

properties are non-equilibrium (T 6= T0) only within the domain x ∈ [−5, 5]. The

equilibrium speed of sound, equilibrium temperature, and the ratio of specific heats

are taken to be:

a∗ =
√

0.4, T0 = 1, γ = 1.4. (4.155)

The computational domain is confined to x ∈ [−16, 16] with uniform meshes, and

the solution at the time tend = 5.0 is used for checking grid convergence and com-

parison among methods.

Richardson Extrapolation for Grid Convergence

In order to determine the order of accuracy of the various schemes, we need to

know the exact solution of (4.152) at the time tend. When the frozen limit (ǫ → ∞)

is considered, the exact solution can be obtained with the regular Euler equations.

Conversely, at the equilibrium limit (ǫ → 0), the exact solution is derived from the

isothermal Euler equations, (4.153). Simple-wave solutions are available for these

two conservation laws; however, the resulting exact solutions are not strictly the
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exact solution of (4.152). For instance, when O(ǫ) ≪ 1, an asymptotic expansion

shows that a series of O
(
ǫk
)
-term appears on the right-hand side of the conservation

laws,

∂tU + ∂xF(U) = O(ǫ) ∂xxU + . . . . (4.156)

Thus, the actual exact solution should be derived from (4.156), which contains an

infinite series in terms of ǫ. This could be possible if a simple system is considered;

however, the derivation can be cumbersome.

To overcome this difficulty, Richardson extrapolation, which does not require

knowledge of the exact solution, is adopted for the grid-convergence study. In

brief, successive grid solutions provide an estimated exact solution, ūi,exact, and the

coefficients of the local truncation error, cj, in the following form:

ūi = ūi,exact + c1∆x + c2∆x2 + c3∆x3 + . . . . (4.157)

Thus, once the right-hand side of the above equation is computed, the error at the

cell i is given by

errori(u) := ūi − ūi,exact

= (c1)i∆x + (c2)i∆x2 + (c3)i∆x3 + . . . , (4.158)

after which, the Lp-norm on the uniform grid is obtained by

Lp(u) :=

[
1

N

N∑

i=1

|errori(u)|p
]1/p

. (4.159)

Numerical Results

The DG(1)–Hancock method is compared to two semi-discrete methods: HR2–MOL

and DG(1)–MOL. As to the time integrator, we adopt the IMEX–SSP2(3,3,2) (2.101).
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In order to verify the accuracy of a method in the stiff regime (ǫ ≪ O(1)), the re-

laxation time is taken as

ǫ = 10−8. (4.160)

Due to the implicit treatment of the source term, the time step is solely constrained

by the maximum acoustic wave speed, thus

∆t = νmethod
∆x

|u| + a
, (4.161)

where νmethod is the Courant number of the method used. Here, we set a Courant

number as 90% of a method’s linear stability limit:

νHR2–MOL = 0.9,

νDG(1)–MOL = 0.3, (4.162)

νDG(1)–Hancock = 0.8.

As to the stability of the DG(1)–Hancock method, the maximum Courant number

depends on the dimensionless equilibrium wave speed |r|. For the Euler equations

with heat transfer, r is defined by

r :=
|u| + a∗

|u| + a
. (4.163)

Based on the initial conditions (4.154), we have
|u|
a∗

= 1 and
a

a∗
=

√
1.4, thus

r =
2

1 +
√

1.4
≈ 0.916.

The approximated polynomial (3.162) on page 155 provides the maximum Courant

number for the specific r such that

νmax(r) ≈ 0.907. (4.164)
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The density distribution at tend = 5.0, superposed to the exact solution of the

isothermal Euler equations, is shown in Figure 4.16. Even though the exact solution

of the isothermal Euler equations does not contain the O(ǫ)-term, the numerical

result is in good agreement with the exact solution. This is because the relaxation

time, ǫ, is so small (ǫ = 10−8), thus the O(ǫ)-term is negligible, at least in the

eyeball norm.

To disclose the order of accuracy of each method, Richardson extrapolation was

adopted for the grid-convergence study. The L1-norm of the density error, L1(ρ),

is shown in Figure 4.17. The plot shows that all three methods are second-order

accurate, yet DG(1)–Hancock has an error nearly an order of magnitude lower

than HR2/DG(1)–MOL. Note that previously the linear analysis predicted third-

order convergence of the DG(1)–Hancock method (4.103d); however, due to the

linearization of the source term in space, (2.21) on page 41, the method reduces to

second-order accuracy for the nonlinear source in (4.152).

In Figure 4.17 it is shown that the DG(1)–Hancock method again is superior

to the other two methods in terms of accuracy; however, the method would not be

attractive if it required excessive CPU time to achieve the high accuracy. Thus,

we examined the overall efficiency of each method. Again, we defined the efficiency

based on the total CPU time to achieve a target error level. CPU time normalized

by the CPU time of the DG(1)–MOL method for a specific error level is shown in

Figure 4.18. It clearly shows the high efficiency of DG(1)–Hancock compared to

HR2/DG(1)–MOL. Such a high efficiency is achieved by a combination of accurate

computation typical of the DG spatial discretization and the wide stability range

owing to the Hancock temporal discretization.
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CHAPTER V

APPLICATION TO EXTENDED

HYDRODYNAMICS (10-MOMENT MODEL)

5.1 Introduction

In this chapter, the DG(1) and HR2 spatial discretization methods are applied

to nonlinear hyperbolic-relaxation equations which describe the motion of fluid,

namely, the 10-moment equations. The 10-moment equations are the best known

and most studied among models that use multiple moments of the Boltzmann equa-

tion [Bro96, Hit00]. Recall the hierarchical relation of the moment approach among

other mathematical models (see Figure 1.2 on page 11).

The 10-moment equations can be derived in several ways. Note that differ-

ent distribution functions could lead to identical macroscopic transport equations.

Gombosi describes the 10-moment equations by simplifying a larger set of moment

equations: the 20-moment equations derived by Grad’s method of moments [Gom94,

pp. 223–224]. He also shows that both 20-moment equations and the model obtained

by the Chapman–Enskog expansion are identical up to the third order in terms of the

relaxation time. Another approach is that of Holway, who replaces the Maxwellian

by an ellipsoidal distribution function [Hol65]. More recently, Levermore derived

the 10-moment model as a member of a hierarchy of moment closures [Lev96]. He

290



291

refers to the closure leading to the 10-moment equations as the Gaussian closure.

Subsequent to the theoretical development of moment equations, numerical re-

sults were presented by Brown et al. [BRG95, Bro96] and Levermore et al. [LM98,

LMN98] for resolving one-dimensional shock structures. Later, Groth presented re-

sults for planar Couette flow, in which the shear stress has good agreement with

an analytical solution up to a Knudsen number of 10. McDonald and Groth

extended the numerical experiments to the diatomic 10-moment or 11-moment

equations [MG05], which were originally derived by Hittinger [Hit00, Chapter V].

Suzuki et al. compared numerical results for the 10-moment equations to Navier–

Stokes and DSMC results [SvL05]; this chapter is an outgrowth of that work.

5.2 10-Moment Model

The 10-moment model is based on a Gaussian velocity distribution (Gaussian

closure) [Lev96]. The general form of the Gaussian velocity distribution G ∈ R+ is

as follows:

G(x, v, t) =
n(x, t)

(2π)3/2(detΘ)1/2
exp

(
−1

2
Θ−1

ij cicj

)
, (5.1)

where

Θij =
Pij

ρ
, i, j ∈ {1, 2, 3} (5.2)

is the temperature tensor, n(x, t) is the number density, c(x, t) the random velocity,

and Pij the generalized stress tensor. The model is equivalent to the Navier–Stokes

equations without heat conduction; this is sufficiently accurate for the flow problem

studied in this chapter, which has an almost isothermal solution.

The 10-moment model is derived as follows. Assume the velocity-distribution

function used with the Boltzmann equation is Gaussian, G, multiplying the equa-

tion with powers of velocity components, and integrate over all particle velocities.
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The Gaussian velocity distribution has the mathematical property that third-order

velocity moments are zero, leading to zero heat flux, as well as all higher-order

moments, which leads to closure of the set of moment equations. Using the BGK

approximation for the collision operator [BGK54], and expressing the equations in

vector form in a 3-D Cartesian coordinate system, the 10-moment transport equa-

tions assume the form

∂u(x, t)

∂t
+

∂f(u)

∂x
+

∂g(u)

∂y
+

∂h(u)

∂z
=

1

τ
s(u), x ∈ R

3, t > 0, (5.3)

where u ∈ R10 is the vector of conserved quantities, f , g, and h ∈ R10 are the flux

vectors, and s ∈ R10 is the source vector for the conservation form of the transport

equations. Here, τ > 0 in the source term is a characteristic relaxation time related

to viscosity and hydrostatic pressure:

τ =
µ

p
, (5.4)

with

p =
Pii

3
, (5.5)

and the shear stress is defined by

τij = p δij − Pij. (5.6)
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The flux and source vectors are given by

u =




ρ

ρux

ρuy

ρuz

ρu2
x + Pxx

ρuxuy + Pxy

ρuxuz + Pxz

ρu2
y + Pyy

ρuyuz + Pyz

ρu2
z + Pzz




, f =




ρux

ρu2
x + Pxx

ρuxuy + Pxy

ρuxuz + Pxz

ρu3
x + 3uxPxx

ρu2
xuy + 2uxPxy + uyPxx

ρu2
xuz + 2uxPxz + uzPxx

ρuxu
2
y + uxPyy + 2uyPxy

ρuxuyuz + uxPyz + uyPxz + uzPxy

ρuxu
2
z + uxPzz + 2uzPxz




, (5.7a)

g =




ρuy

ρuxuy + Pxy

ρu2
y + Pyy

ρuyuz + Pyz

ρu2
xuy + 2uxPxy + uyPxx

ρuxu
2
y + uxPyy + 2uyPxy

ρuxuyuz + uxPyz + uyPxz + uzPxy

ρu3
y + 3uyPyy

ρu2
yuz + 2uyPyz + uzPyy

ρuyu
2
z + uyPzz + 2uzPyz




, (5.7b)
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h =




ρuz

ρuxuz + Pxz

ρuyuz + Pyz

ρu2
z + Pzz

ρu2
xuz + 2uxPxz + uzPxx

ρuxuyuz + uxPyz + uyPxz + uzPxy

ρuxu
2
z + uxPzz + 2uzPxz

ρu2
yuz + 2uyPyz + uzPyy

ρuyu
2
z + uyPzz + 2uzPyz

ρu3
z + 3uzPzz




, (5.7c)

s = −




0

0

0

0

(2Pxx − Pyy − Pzz)/3

Pxy

Pxz

(2Pyy − Pxx − Pzz)/3

Pyz

(2Pzz − Pxx − Pyy)/3




. (5.7d)
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Alternatively, in tensor notation,

∂

∂t
(ρ) +

∂

∂xk
(ρuk) = 0, (5.8a)

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk + Pik) = 0, (5.8b)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk

(ρuiujuk + uiPjk + ujPik + ukPij) = −1

τ

(
Pij −

1

3
Pkkδij

)
.

(5.8c)

5.3 Numerical Methods and Allowable Time Step

Numerical methods for nonlinear hyperbolic-relaxation equations including fully

discrete and semi-discrete methods are described in Chapter II. Among the finite-

volume discretization methods, second-order accuracy in space is achieved by in-

troducing linear subcell distributions; for temporal accuracy, the HR2–Hancock

method evaluates fluxes and source terms halfway during the time step. The half-

time (predictor) step, which includes gradient-limiting, is done with primitive vari-

ables w ∈ R10 such that

w = (ρ ux uy uz Pxx Pxy Pxz Pyy Pyz Pzz)
T , (5.9)

instead of conserved variables u to prevent non-physical values such as negative

pressures. Here, the Jacobian matrix M ∈ R10×10 is defined for transformation of

variables:

M :=
∂u

∂w
. (5.10)
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In the case of the 10-moment equations,

M =




1 0 0 0 0 0 0 0 0 0

ux ρ 0 0 0 0 0 0 0 0

uy 0 ρ 0 0 0 0 0 0 0

uz 0 0 ρ 0 0 0 0 0 0

u2
x 2ρux 0 0 1 0 0 0 0 0

uxuy ρuy ρux 0 0 1 0 0 0 0

uxuz ρux 0 ρux 0 0 1 0 0 0

u2
y 0 2ρuy 0 0 0 0 1 0 0

uyuz 0 ρuz ρuy 0 0 0 0 1 0

u2
z 0 0 2ρuz 0 0 0 0 0 1




. (5.11)

Finding the allowable time step for a highly nonlinear system of equations on gen-

eral computational meshes is not straightforward. When systems of one-dimensional

conservation laws are considered, the time step is restricted by a CFL stability con-

dition:

λ∆t ≤ ∆x −→ ν̃ ≤ 1. (5.12)

In the case of the moment equations, the presence of two distinct characteristic

time scales, the advection time scale and the relaxation time scale, makes the sta-

bility analysis even more difficult. In practice, an analogy to the result from a

simple 1-D problem may be applied to the multidimensional problem for an explicit

method [Lin98, pp. 89–92]; the stability limit for explicit time integration in cell j

is approximately given by

∆tj ≤
|Aj|

1

2

∑
ei∈∂Kj

|λjei
|max |ei,Kj

| + |Aj|
τj

, (5.13)
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where |λjei
|max is the largest wave speed on either side of the element face (j, ei),

τj is the relaxation time in cell j, and |ei,Kj
| is the length of the edge ei shared by

elements Kj and Ke. See Figure 2.9 on page 82 for the schematic of two adjacent

elements. It shows that the local time step ∆tj is determined by the combination

of two characteristic times,
∆n

λ
and τ , where ∆n =

|Aj|
|ei,Kj

| is the width of element

j normal to ei,Kj
. This criterion is especially restrictive when the flow field is in the

near-equilibrium, where the relaxation time is much smaller than the advection time:

∆n

λ
≫ τ . Our main interest is in wave propagation; however, for an explicit method,

the time step has to be of the order of the relaxation time to resolve the correct

physics. This stability issue in the stiff regime can be solved by utilizing implicit

time integration methods described in Chapter II. For our numerical experiments

with the 10-moment equations, we have stayed with fully explicit time integration.

5.4 HLLL Riemann Solver for the 10-Moment Model

Among numerical methods for hyperbolic system, those of the Godunov-type

have been most successful; these require an algorithm for solving the Riemann

problem arising at each cell interface, either exactly or approximately. For a large

system of equations it is practical to use an approximate Riemann solver that does

not attempt to account for all separate waves through which the cells interact, but

lumps the information. See Figure 5.1 for its approximation of waves. Harten, Lax,

and Van Leer [HLvL83] described two families of such methods; the latest member

is due to Linde [Lin02]. The HLLL Riemann solver uses three waves to cover the

domain of influence of the cell interface; it requires only the following knowledge:

• The PDE system is hyperbolic and possesses a convex entropy function;

• maximum and minimum wave speeds are known.
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This solver is designed to capture an isolated discontinuity exactly similar to

the Roe flux, and do a reasonable job if more waves are present. This simple

design criterion allows us to approximate the solution of a Riemann problem by

only three waves bracketing two intermediate states. For the 1-D Euler equations,

all approximate Riemann solvers based on characteristic decomposition use three

waves anyway, but more complicated physical systems such as magnetohydrody-

namics, radiation hydrodynamics, and extended-hydrodynamics posses more than

three waves, and characteristic-based solvers would need to distinguish all waves in

order to provide a detailed approximation. In the three-wave HLL Riemann solver

the middle wave speed, representing an isolated discontinuity, is obtained by solving

generalized Rankine–Hugoniot conditions instead of using known analytical formu-

las for the wave speeds. Thus, the algorithm does not require a full analysis of the

characteristic wave decomposition for the system of PDE’s. As Linde mentions,

the family of HLL Riemann solvers can be applied to complex physical systems for

which the characteristic wave-decomposition analysis is extremely difficult [Lin02].

In this respect, systems of extended-hydrodynamics equations are excellent candi-

dates. In fact, the eigenstructure of the 10-moment model was already analyzed by

Brown et al. [Bro96, BRG95], and analytical results are known. However, its sim-

plicity and the planned application of the algorithm to even higher-order moment

models such as the 35-moment model equations [GRGB95, Bro96] made us select

the HLLL Riemann solver to compute the cell-interface fluxes.

The middle wave speed V is obtained in the least-square sense,

V :=
(∆u, ∆f)P

‖∆u‖2
P

=
∆uT P∆f

∆uTP∆u
=

∆WT ∆f

∆WT ∆u
, (5.14)
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(a) wave structure (PDE) (b) apprximate wave structure (HLL)

Figure 5.1: The original wave structure (a) is simplified to upper and lower bounding
waves plus a middle wave with speed V . Conservation is enforced in the space-time
domain indicated by the dashed-line box.

where

W(u) :=
∂S(u)

∂u
(5.15)

is a vector of symmetrizing variables (not primitive variables here), formed by taking

derivatives of the entropy function S(u). The symmetric positive-definite matrix P

is the Hessian of S(u), hence

P(u) :=
∂2S(u)

∂u2
=

∂W(u)

∂u
. (5.16)

The entropy function of the 10-moment model is given as

S(u) = −ρ

(
1

3
ln

detΘ

ρ2

)
. (5.17)
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Straightforward differentiation of the entropy function produces the symmetrizing

variables W and (for later use) the diagonal entries of the matrix P,

W(u) =
2

3




1

2

(
5 − ln

detΘ

ρ2
− uT Φ u

)

φ1u

φ2u

φ3u

−1

2
Φ11

−Φ12

−Φ13

−1

2
Φ22

−Φ23

−1

2
Φ33




, (5.18a)

diag[P(u)] =
2

3ρ




1

2

[
(uTΦ u)2 + 5

]

(φ1u)2 + (1 + uTΦ u)Φ11

(φ2u)2 + (1 + uTΦ u)Φ22

(φ3u)2 + (1 + uTΦ u)Φ33

1

2
Φ2

11

Φ2
12 + Φ11Φ22

Φ2
13 + Φ11Φ33

1

2
Φ2

22

Φ2
23 + Φ22Φ33

1

2
Φ2

33




, (5.18b)
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where

Φij := Θ−1
ij , i, j ∈ {1, 2, 3}, or Φ := Θ−1, (5.19a)

φ1 := (Φ11, Φ21, Φ31) , φ2 := (Φ12, Φ22, Φ32) , φ3 := (Φ13, Φ23, Φ33) , (5.19b)

and u = (ux, uy, uz)
T is the velocity vector. For a Cartesian coordinate system, the

inverse of the temperature tensor becomes

Φ =
1

ρ2 detΘ




PyyPzz − P 2
yz PxzPyz − PxyPzz PxyPyz − PxzPyy

PxzPyz − PxyPzz PxxPzz − P 2
xz PxyPxz − PyzPxx

PxyPyz − PxzPyy PxyPxz − PyzPxx PxxPyy − P 2
xy




, (5.20)

where

detΘ =
1

ρ3

(
PxxPyyPzz + 2PxyPyzPxz − PxxP

2
yz − PyyP

2
xz − PzzP

2
xy

)
. (5.21)

Once the symmetrizing variables W are obtained, the middle wave speed can be

computed by (5.14); note that the matrix P is not explicitly needed here. Then,

cell-interface fluxes are obtained by

fn(ui,uj) =
λ+fn(ui) − λ−fn(uj)

λ+ − λ−
+

(1 − α)λ−λ+ + α(λ−V+ + λ+V−)

λ+ − λ−
∆u, (5.22)

where

λmax,min = nTu±
√

3nTΘ n, (5.23a)

λ+ = max
(
0, V, λmax(ui), λmax(uj)

)
, (5.23b)

λ− = min
(
0, V, λmin(ui), λmin(uj)

)
, (5.23c)

V+ = max(0, V ), V− = min(0, V ). (5.23d)

Recall n is an outward unit vector normal to the cell face. The parameter α ∈ [ 0, 1 ]

is an estimation of the relative strength of the middle wave. The computation of α
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requires knowledge of the matrix P,

α := H
(
V ∆S − ∆(nT uS)

) (∆u, ∆f)2
P

‖∆u‖2
P‖∆f‖2

P

, (5.24)

where H(x) is the Heaviside step function used as a switch to prevent violation of

the entropy condition,

H(x) =






0 if x < 0 (discontinuity violates the entropy condition),

1 if x ≥ 0 (entropy inequality satisfied).

(5.25)

In practice we may reduce P to its main diagonal, hence the need for (5.18b).

5.5 Numerical Results

5.5.1 Resolving 1-D Shock Structures

We present some 1-D results from validation studies in which we tried to pro-

duce steady shock profiles for various inflow Mach numbers. Assuming a steady

state leads to a system of ordinary differential equations (ODE), which can be

solved by a standard fourth-order Runge–Kutta method [Bro96, pp. 256–263]. Al-

ternatively, Levermore and Morokoff derive the exact solution of the shock structure

in the form of implicit function [LM98]. Solving the implicit formula at quadrature

points by a root-finder such as the secant method can provide close-to-exact cell-

averaged quantities; this is the technique we have adopted. The resulting analytical

solutions are compared with solutions of the PDE’s obtained by the finite-volume

and discontinuous Galerkin methods described in Chapter II. Note that explicit

time-integration methods can be adopted without penalty for all calculations since

resolving shock structure requires
∆h

λ
∼ τ where λ is the maximum wave speed.

Upstream and downstream boundary conditions are assumed to be in equilib-

rium; given the upstream Mach number, density, and velocity, downstream condi-
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MaU lU [m] ρU ρD number of cells computational domain

test1 1.1 8.549×10−9 1.0 1.150 200 x/λU ∈ [−100, 100]
test2 5.0 4.362×10−9 1.0 3.571 200 x/λU ∈ [−20, 20]

Table 5.1: Initial conditions and problem setup for each test.

tions are determined from the jump-equations. Two different upstream Mach num-

bers (MaU = 1.1, 5.0) representing weak- and strong-shock cases, are examined.

The low value yields a smooth shock structure; for the high value an inviscid jump

appears in the structure, inherited from the frozen physics. To avoid constraints by

upstream and downstream values, a sufficiently wide computational domain is taken.

The computational domain normalized by the upstream mean free path is shown in

Table 5.1. We assume the monatomic gas is Argon (MWAr = 39.948 kg/kmol) and

a power law is used for the viscosity:

µ

µref

=

(
T

Tref

)n

, (5.26)

where µref = 2.125 × 10−5 Ns/m2, Tref = 273 K, and n =
13

18
for Argon [Whi91,

p. 29][Bro96]. Density distributions are normalized by the upstream and down-

stream density using the following formula,

ρ̂ =
ρ − ρU

ρD − ρU
, (5.27)

and shown in Figures 5.2 and 5.3 superimposed on exact solutions. The spatial

dimension is normalized by the upstream mean free path derived in gas-kinetic

theory using an elastic, hard-sphere model [Bir94],

λU =
16µ

5(2πρp)1/2
. (5.28)

The steady numerical solutions (symbols), obtained by running the time-dependent

code till convergence, agree well with the exact steady-state solutions (solid line).
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Figure 5.2: Density distribution in steady shock structure for MU = 1.1. The space
coordinate is normalized by the upstream mean free path λU .
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Figure 5.3: Density distribution in steady shock structure for MU = 5.0. A “frozen”
shock is followed by a relaxation zone.
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In Table 5.2, density errors computed for a sequence of grids when MU = 1.1 are

tabulated; their convergence rates demonstrate the second-order spatial accuracy of

the HR2–RK2, HR2–Hancock, and DG(1)–RK2 methods, and first-order accuracy

for the HR1 method. The Runge–Kutta time-integration methods do not affect

the accuracy of the converged steady solutions; the Hancock scheme does yield

dependence on the CFL numbers used (not tested). Nevertheless, the error-norms

of the HR2–RK2 and HR2–Hancock methods for the same grid are almost identical.

The error norms against degrees of freedom and CPU time are also plotted in

Figure 5.4. It shows the higher accuracy of the DG(1) spatial discretization over

HR2 methods. Owing to the high accuracy of the DG(1) method, it is also the most

efficient among all methods.
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(a) The HR1–RK1 method (ν̃ = 0.9)

Nx DOF L1(ρ̂error) Rate L∞(ρ̂error) Rate CPU time [s]

40 40 1.39e−01 — 3.62e−01 — 2.55e+00
80 80 8.63e−02 0.92 2.51e−01 0.53 8.49e+00

160 160 5.01e−02 0.99 1.67e−01 0.59 3.04e+01
320 320 2.74e−02 1.01 9.94e−02 0.75 1.15e+02

(b) The HR2–RK2 method (ν̃ = 0.9)

Nx DOF L1(ρ̂error) Rate L∞(ρ̂error) Rate CPU time [s]

40 40 1.17e−02 — 3.92e−02 — 5.08e+00
80 80 2.89e−03 2.27 1.19e−02 1.72 1.66e+01

160 160 5.72e−04 2.48 2.60e−03 2.20 6.01e+01
320 320 1.13e−04 2.42 5.03e−04 2.37 2.27e+02

(c) The HR2–Hancock method (ν̃ = 0.9)

Nx DOF L1(ρ̂error) Rate L∞(ρ̂error) Rate CPU time [s]

40 40 1.19e−02 — 3.99e−02 — 2.78e+00
80 80 2.97e−03 2.26 1.23e−02 1.70 7.93e+00

160 160 5.82e−04 2.48 2.64e−03 2.21 2.65e+01
320 320 1.15e−04 2.43 5.06e−04 2.38 9.50e+01

(d) The DG(1)–RK2 method (ν̃ = 0.3)

Nx DOF L1(ρ̂error) Rate L∞(ρ̂error) Rate CPU time [s]

20 40 6.12e−03 — 1.92e−02 — 2.80e+00
40 80 1.09e−03 2.48 3.53e−03 2.44 7.40e+00
80 160 1.89e−04 2.60 8.34e−04 2.08 2.22e+01

160 320 2.94e−05 2.70 1.59e−04 2.39 7.37e+01

Table 5.2: A grid convergence study is performed by solving the 10-moment equa-
tions. L1-, L∞-norms and rates of convergence for steady shock solutions (MU = 1.1)
are computed.
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(b) L1-norms of error plotted against CPU time.

Figure 5.4: The L1-norms of errors tabulated in Table 5.2 are plotted in terms of
both degrees of freedom and CPU time. The grid convergence study shows that
steady shock solutions (MU = 1.1) are second order accurate for HR2 and DG(1)
methods.



308

5.5.2 Cosine-Nozzle Flow

Internal nozzle flow is examined as the first 2-D test case. Here, only the result

obtained by the HR2–Hancock method is presented. Since there is no stagnation

point inside the nozzle, this flow problem is easier than an airfoil problem and serves

as a precursor test case. A symmetric cosine-shaped nozzle (Figure 5.5) is used as

the computational domain. The throat is located at the origin of the x-axis and

-0.05 0 0.05 0.1
0

0.01

x [m]

y
[m

]

Figure 5.5: Computational grid of cosine-curve nozzle. The number of cells is
100×10.

the total length over which area variation occurs is 0.1 m. There are 0.02 m and

0.08 m long constant-area regions at inlet and outlet. Table 5.3 shows the reservoir

conditions. Stagnation temperature T0 and Reynolds number are specified in the

Re Kn ρ0 [kg/m3] p0 [Pa] T0 [K] h0 [J/kg] rt [m]

100 0.014 8.229 × 10−4 51.38 300 1.561 × 105 5.0 × 10−3

Table 5.3: Reservoir condition for the nozzle flow

reservoir. The Knudsen number is based on the throat width and the reservoir

condition. The Reynolds number is defined as [Rot71]

Re =
ρ0

√
2h0rt

µ0
, (5.29)

where
√

2h0 is an ideal maximum escape speed from the reservoir and rt is the throat

half-width. Equation (5.29) leads to a direct relation between Reynolds number and
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Figure 5.6: Density profile along axis of nozzle.

reservoir pressure,

p0 =

(√
γ − 1

2γ
RT0

µ0

rt

)
Re. (5.30)

In this test case, Argon (µ0 = 2.299 × 10−5 Ns/m2, RAr = 208.13 J/kgK) is used

and the reservoir pressure satisfies the relation

p0 ≃ 0.5138 Re. (5.31)

Viscosity is computed by Sutherland’s law,

µ

µref
=

(
T

Tref

)3/2
Tref + S

T + S
, (5.32)

where µref = 2.125 × 10−5 Ns/m2, Tref = 273 K, and S = 144 K for Argon [Whi91].

Figure 5.6 shows the normalized density profile obtained by the 10-moment model

(circles) on the axis direction, compared with quasi-1D theory (solid line). There

is a good agreement between the PDE solution and the theoretical density profile.
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The decay of the (diamond-pattern) waves in the supersonic section indicates that

the equation system is dissipative (unlike the Euler equations).

5.5.3 NACA0012 Airfoil Flow

Before we investigate flow over a micro-airfoil, which is characteristic of the

higher limit of the continuum-transition regime (Kn ≃ 10−1), numerical solutions

of the 10-moment and Navier–Stokes equations in the near-equilibrium limit are

compared. Since the 10-moment equations formally reduce to the Navier–Stokes

equations without heat flux in the near-equilibrium limit, we expect that numer-

ical solutions obtained with the two models become comparable. We chose the

external flow around a NACA0012 airfoil which is a widely used validation test for

Navier–Stokes solvers [BR97, SWL06]. The free-stream conditions are shown in Ta-

ble 5.4 where the free-stream Reynolds number, Re∞, is based on the frees-stream

velocity, U∞, and the chord length, Lchord. The free-stream static temperature is

chosen such that the stagnation temperature is 290K for a monatomic gas at the

given free-stream Mach number. Argon is used as a gas, and Sutherland’s law (5.32)

is adopted to calculate viscosity. The order of magnitude of the local Knudsen num-

(a) Prescribed conditions

Ma∞ Re∞ γ (Argon) T∞ [K] Lchord [m] α

0.5 5,000 5/3 267 1.0 0◦

(b) Resulting free-stream conditions

Kn∞ ρ∞ [kg/m3] U∞ [m/s] p∞ [Pa]

1.62 × 10−4 6.858 × 10−4 152 38.21

Table 5.4: Free stream condition for airfoil flow.
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ber in a boundary layer is approximately

Kn ∼ Ma∞

Reδ
∼ Ma∞√

Re∞
= 7.1 × 10−3, (5.33)

where δ is the boundary layer thickness [GeH99]. Hence, the flow in the boundary

layer is at the lower end of the continuum-transition regime (cf. Table 1.1 on

page 10).

The HR2–Hancock method is applied to solve the 10-moment equations, and

HR2–RK is used for the Navier–Stokes equations. Both methods employ a C-type

grid composed by 120 × 76 cells. A typical finite-volume discretization of the

Navier–Stokes equations consists of two parts: the inviscid flux obtained by a Rie-

mann solver, and the viscous flux by central differencing. Here, we omit the descrip-

tion of discretization methods for the viscous-flux terms. Details of the implemen-

tation, particularly for a quadrilateral grid, can be found in [Fle91, pp. 105–110].

Since our Navier–Stokes solver is explicit, the stable time step becomes a function

of both the advective time-scale,
h

λ
, and the viscous time-scale,

ρh2

µ
, where h is a

typical cell size. Based on the 1-D linear stability analysis for an advection-diffusion

equation, and following the notation used in (5.13) on page 296, the stable time step

for the 2-D Navier–Stokes equations can be written as

∆tj ≤ min

[
|Aj|
c1

+
c2

c2
1

,

(
c1

|Aj|
+

c2

|Aj|2
)−1

]
, (5.34)

where

c1 =
1

2

∑

ei∈∂Kj

|λjei
|max |ei,Kj

|, (5.35a)

c2 =
∑

ei∈∂Kj

µjei
|ei,Kj

|2
ρjei

. (5.35b)

See also Figure 2.7 on page 68 for the notation.
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For a finite-volume method, in order to achieve second-order accuracy, the re-

construction of flow gradients in the each cell is required. Typically, either com-

puting a Green–Gauss contour-integral, or solving a least-square problem provides

the gradients; these procedure require all neighboring cells of the cell of interest.

When gradients at cells abutting the solid wall are computed, ghost cells are in-

troduced. Along the solid boundary, the non-slip boundary condition is employed.

Let (ucj, vcj) be the velocity vector associated with the centroid xcj of the cell i,

(ucg, vcg) the velocity vector at the centroid xcg of the ghost cell, and Q the rotation

matrix defined by

Q :=




nx sx 0

ny sy 0

0 0 1




=




nx ny 0

ny −nx 0

0 0 1




, (5.36)

where n = (nx, ny, 0) the outward unit vector normal to the wall, and s = (sx, sy, 0)

the unit vector tangential to the wall (see Figure 5.7); then, the non-slip boundary

condition leads to the velocity at the centroid of the ghost cell as follows:

(ucg, vcg, 0)Q = −(ucj, vcj, 0)Q −→ (ucg, vcg) = (−ucj,−vcj). (5.37)

This condition enforces zero velocity at the wall surface: (us, vs) = 0. As to the

density and pressure, owing to the assumption,
∂p

∂n
≈ 0, inside the boundary layer,

and the adiabatic wall,
∂T

∂n
= 0, together with the equation of state, p = ρRT , we

have

∂ρ

∂n
≈ 0,

∂p

∂n
≈ 0. (5.38)

Hence, the density and pressure in the ghost cell can be prescribed such that

ρ̄cg = ρ̄cj, and pcg = pcj. (5.39)
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Figure 5.7: Ghost cells are introduced to compute gradients of flow quantities.

Note that the density at the centroid of the cell j is identical to the cell-averaged

density, whereas pressure is specifically calculated at the centroid based on the

conserved quantities. No boundary condition on the temperature is prescribed since

the Navier–Stokes equations considered here neglect heat transfer in order to strictly

compare with the 10-moment equations. Once an approximated solution-gradient,

∇wj, is obtained in cell j, the following linear extrapolation,

wL(xs) = wcj + ∇wj · (xs − xcj), (5.40)

provides input values to a Riemann solver, f(wL,wR), implemented in the location

xs at the edge. The other input, wR, can be specified directly by the non-slip

boundary condition:

wR = (ρs, us, vs, ps) = (ρ̄cg, 0, 0, pcg). (5.41)

The numerical solutions are presented in terms of the pressure and skin friction
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coefficients defined by

Cp(x̃) :=
p(x̃) − p∞
1

2
ρ∞U2

∞

=
2

γMa2
∞

(
p(x̃)

p∞
− 1

)
, (5.42a)

Cf(x̃) :=
τs(x̃)

1

2
ρ∞U2

∞

, (5.42b)

along the surface of the airfoil; the pressure in the 10-moment model is given by (5.5).

Here, the dimensionless x-coordinate is defined by x̃ :=
x

Lchord

, and x̃ = 0, 1 cor-

respond to the leading and trailing edges, respectively. The tangential shear stress

along the wall, τs, can be directly computed with the 10-moment equations by

rotating the stress tensor P in x-,y-coordinates to P′ in n-,s-coordinates:

P′ =




Pnn Pns Pnz

Psn Pss Psz

Pzn Pzs Pzz




:= QTPQ, (5.43)

yielding

τs = −Pns

= (Pyy − Pxx)nxny + Pxy(n
2
x − n2

y). (5.44)

In the case of the Navier–Stokes equations, the tangential shear stress is obtained

by using the relation (5.6) on page 292, yielding

τs = (τxx − τyy)nxny + τxy(n
2
y − n2

x), (5.45)

where the components of the shear stress tensor are obtained by the following

Navier–Stokes constitutive laws:

τxx = µ

[
2
∂u

∂x
− 2

3

(
∂u

∂x
+

∂v

∂y

)]
, (5.46a)

τyy = µ

[
2
∂v

∂y
− 2

3

(
∂u

∂x
+

∂v

∂y

)]
, (5.46b)

τxy = µ

(
∂u

∂y
+

∂v

∂x

)
. (5.46c)
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Figure 5.8(a) shows the excellent agreement of pressure coefficients between

the 10-moment and Navier–Stokes solutions. The theoretical maximum pressure-

coefficient for (Ma∞, γ) = (0.5, 5/3) is obtained by the isentropic relation:

p0

p∞
≃ 1.2215 −→ (Cp)max = 1.0634. (5.47)

Both solutions slightly overshoot the theoretical maximum pressure coefficient at

the cell adjacent to the leading edge. In Figure 5.8(b), we observe that the 10-

moment model predicts a lower peak of the skin-friction coefficient, (Cf)max. This

is somewhat surprising since we expect the 10-moment equations to predict the shear

stresses more accurate because they are flow variables. This might be traced back to

the relatively high Knudsen number in the boundary layer shown in (5.33). Since the

flow is not completely in the continuum flow regime (Kn ≤ 10−3), nonequilibrium

effects described by the 10-moment equations in the boundary layer could predict

different surface values as computed to the Navier–Stokes equations.

The density profiles along the centerline of the airfoil are shown in Figure 5.9.

Both models agree well except near the stagnation point; the Navier–Stokes code

predicts slightly higher density values. The isentropic relation provides the theoret-

ical maximum stagnation density,

ρ0

ρ∞

≃ 1.1276. (5.48)

Unlike the pressure coefficients, the maximum densities predicted by both models

stay clearly lower that the isentropic stagnation density. While the pressure ap-

proximately remains constant across the boundary layer near the stagnation point,

the density is affected by the local dissipation. Insufficient grid resolution near the

stagnation could lead to lower predicted density values.
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Figure 5.8: Dimensionless pressure and shear stress along the NACA0012 airfoil
obtained by 10-moment and Navier–Stokes codes (Ma = 0.5, Re = 5, 000, α = 0◦).



317

−1  −0.8  −0.6  −0.4  −0.2  0.0

1 

 1.02 

 1.04 

 1.06 

 1.08 

 1.1 

 1.12 
 1.1276 

 

 

dimensionless stagnation−density for Euler solution

10−moment (HR2−Hancock)
Navier−Stokes (HR2−RK2)

dimensionless coordinate, x̃

d
im

en
si

on
le

ss
d
en

si
ty

,
ρ
/ρ

∞

Figure 5.9: Distribution of the dimensionless density along the centerline of interval
x̃ ∈ [−1, 0] is plotted.



318

5.5.4 NACA0012 Micro-Airfoil Flow

Next, the external flow around a NACA0012 micro-airfoil is computed using the

10-moment model. The free-stream initial conditions are shown in Table 5.5. The

(a) Prescribed conditions

Ma∞ Re∞ γ (Argon) T∞ [K] Lchord [m] α

0.8 73 1.4 257 0.04 0◦

(b) Resulting free-stream conditions

Kn∞ ρ∞ [kg/m3] U∞ [m/s] p∞ [Pa]

0.016 1.161 × 10−4 257 8.565

Table 5.5: Free-stream conditions for micro-airfoil flow.

Knudsen number is based on the chord length of the airfoil and the free-stream

conditions. The chord length of the airfoil is 0.04 m and a C-type grid is used. The

grid geometry is shown in Figure 5.10. Since various results are available using air as
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Figure 5.10: Computational grid around NACA0012 micro-airfoil. The coordinate
is normalized by the chord length. The number of cells is 120 × 76.
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the gas, we also assume the gas is air (MWAir = 28.966 kg/kmol), even though the

10-moment model assumes a monatomic gas. Viscosity is computed by Sutherland’s

law (5.32) where µref = 1.716 × 10−5 Ns/m2, Tref = 273 K, and S = 111 K for Air.

Hittinger has added rotational degrees of freedom to the system, leading to an

11-moment model for a diatomic gas [Hit00]; we have not used this model. The 10-

moment equation implicitly assume γ = 5/3, rather than γ = 1.4; for the density

results presented below this hardly makes a difference (see below).

In the continuum-transition regime where Kn ∈ [10−3, 10−1], the flow on the

wall has a finite velocity. This slip velocity is approximated by Maxwell’s first-order

slip boundary condition,

ugas − uwall =
2 − σ

σ

λ

µ
τs, (5.49)

where σ is an accommodation coefficient, λ is the mean free path, µ is the viscos-

ity, and τs is the tangential shear stress. The flow toward the wall is assumed to

have a Maxwellian velocity distribution. At the airfoil, completely diffuse molecu-

lar reflection is assumed in formulating the boundary condition for both methods

(achieved by setting σ = 1). The tangential shear stress is obtained by (5.45) for

the 10-moment equations. For instance, the slip velocity on a plane wall parallel to

the x-direction, n = (0, 1), is obtained by

ugas − uwall =
2 − σ

σ

λ

µ
(−Pxy). (5.50)

Furthermore, inserting the mean free path based on the Chapman–Enskog distri-

bution function [VK86, p. 414],

λ = µ

√
π

2ρp
, (5.51)

into the above equation leads to the following slip velocity:

ugas − uwall =
2 − σ

σ

√
π

2

(−Pxy)√
ρp

, (5.52)
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The above slip velocity based on Maxwell’s first-order approximation is comparable

to the boundary condition recently presented by McDonald and Groth, where a

Gaussian distribution function is adopted for incoming particles [MG05]. Their slip

velocity for a flat wall is given by

ugas − uwall =
2 − σ

σ

√
π

2

(−Pxy)√
ρPyy

. (5.53)

In the case of the Navier–Stokes equations, the tangential shear stress is obtained

by inserting constitutive laws (5.46) on page 314 into (5.45); then the the slip velocity

based on the velocity gradient at wall becomes

ugas − uwall =
2 − σ

σ
λ

(
∂us

∂n
+

∂un

∂s

)
. (5.54)

The above slip boundary condition is the actual form derived from Maxwell’s first-

order model, but we often encounter a simplified slip-velocity value under the ap-

proximation of
∂un

∂us

≈ 0, which is valid only for a planar wall. The benefit of this

assumption is the simplification of code implementation, especially for a second-

order finite-volume method. Implementing the original form (5.54) together with

the reconstruction process at cells adjacent to the wall results in an implicit proce-

dure in boundary cells. Thus, for simplicity, even though the wall along the airfoil

is curved, we adopt the following simplified slip velocity under the assumption that

the curved wall is made of small flat plates:

ugas − uwall =
2 − σ

σ
λ

∂us

∂n
. (5.55)

The 10-moment result is shown in Figure 5.11(a) with corresponding results of

the Navier–Stokes code (Figure 5.11(b)), the Information Preservation (IP) method

[SB02], (Figure 5.11(c)), and a DSMC method [SB02] (Figure 5.11(d)). The nu-

merical results of the 10-moment and Navier–Stokes equations are obtained by the
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same codes used in the previous section (near-equilibrium flow), but with different

free stream and slip boundary conditions.

There are clear differences between the solutions, especially upstream of the air-

foil. Near the stagnation point the 10-moment approach gives significantly lower

density values than the Navier–Stokes, IP, and DSMC approaches, with the for-

mer values comparing favorably to the experimental results [ARL87] reproduced in

Figure 5.11(e). Specifically, the experiment shows a normalized stagnation density

slightly higher than 1.17 (the highest contour value), which the 10-moment result is

1.19, with the density peaking a little distance upstream of the stagnation point. In

contrast, the Navier–Stokes density results peak upstream of the stagnation point

at 1.31, which both DSMC and IP densities peak in the stagnation point at 1.40. Of

course, the 10-moment result is not fully comparable, since it was computed for a

monatomic gas instead of a diatomic gas, but for the given upstream Mach number,

the difference in stagnation pressure is only 1.1%, based on the isenthalpic-isentropic

relation
(
(ρ0/ρ∞)γ=5/3 = 1.337, (ρ0/ρ∞)γ=1.4 = 1.351

)
. Thus we conclude that the

10-moment model indicates a density peak of about 1.20, in good agreement with

th experiment.

The results of the Navier–Stokes, IP, and DSMC codes raise two questions.

Firstly, why are the IP and DSMC results so far from the measured values? Secondly,

why are the Navier–Stokes results closer to the measurements than the IP and

DSMC results? One would have expected the 10-moment results to lie in between

the Navier–Stokes and particle-code results as regards accuracy. We can make

several conjectures that might provide answers, but prefer to limit ourselves to

commenting on matters over which we have control, i.e., the Navier–Stokes and

10-moment computations.
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Significant is here that the Navier–Stokes results are clearly different from the 10-

moment or experimental results. Note that, in the near-equilibrium flow presented in

the last section, both 10-moment and Navier–Stokes codes provide almost identical

density profiles (see Figure 5.9); hence, the discrepancy between the densities near

the leading edge can be understood as evidence that the 10-moment equations for

the current flow conditions provide a true nonequilibrium solution, which is outside

the domain of validity of the Navier–Stokes equations.

In Figure 5.12, the aerodynamic properties of the airfoil obtained by the 10-moment

and Navier–Stokes models are presented in terms of the pressure and skin-friction

coefficients defined by (5.42). An Euler result is supplemented in the pressure-

coefficient plot. Also indicated is the theoretical maximum pressure coefficient for

(Ma∞, γ) = (0.8, 1.4), obtained by isenthalpic-isentropic theory:

p0

p∞
≃ 1.524 −→ (Cp)max = 1.1704. (5.56)

We found it rather surprising result that the pressure coefficient around the lead-

ing edge obtained by the Navier–Stokes solver significantly exceed the value for

isentropic compression, since that is regarded as the ideal compression process pro-

viding the highest possible stagnation pressure. In order to affirm confidence in

our coding, an Euler solution was obtained by omitting the viscous flux in the

Navier–Stokes code applying full-slip boundary conditions, and using the same free-

stream conditions. The result shows that the Eulerian stagnation pressure agrees

well with the theoretical maximum value. Earlier we saw that both 10-moment

and Navier–Stokes codes provide almost identical maximum pressure coefficients

in the near-equilibrium regime (see Figure 5.8(a)), close to the theoretical maxi-

mum. In this regime the Navier–Stokes equations with zero slip produce a bound-
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ary layer across which the pressure is practically constant, as in the Euler case. In

the continuum-transition regime, however, partial slip makes the pressure do work

at the bottom of the boundary layer, significantly changing its structure. We be-

lieve that this effect allows the unexpectedly high pressures to appear, but have not

further pursued this issue.

With the 10-moment model, stagnation pressures above the isenthalpic-isentropic

maximum value are not observed. It should be noted that in these equations, due

to the inclusion of a full pressure tensor, there is no single total enthalpy to be

defined, which the entropy only relates to the determinant of the pressure tensor;

see (5.2), (5.17). As a result, there is no procedure to determine a meaningful

maximum stagnation pressure.

We found that stagnation pressures computed with the IP and DSMC codes,

published elsewhere, significantly overshoot the isenthalpic-isentropic maximum

[FBC+01, SB02].

We conclude that the discrepancy between the solutions of the 10-moment and

the Navier–Stokes equations for the flow around a micro-airfoil can be attributed

to the significant nonequilibrium effect in the stagnation region.

The numerical results for the 10-moment equations obtained by two methods,

namely, HR2–Hancock and DG(1)–RK2, agree well except for the skin friction co-

efficient. This might be due to the convergence stall of the DG(1)–RK2 method;

it occurs after the residual drops three order of magnitude. Clearly, convergence-

acceleration methods need to be studies in combination with spatial DG discretiza-

tions.

The density profiles along the centerline of the airfoil are shown in Figure 5.13.
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The isentropic relation provides the theoretical stagnation density,

ρ0

ρ∞
≃ 1.351. (5.57)

As discussed previously, the maximum density predicted by the 10-moment equa-

tions is much lower than the values obtained by the Navier-Stokes equations with

slip velocity and by the Euler equations.
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Figure 5.11: Density distribution (ρ/ρ∞) around NACA 0012 micro-airfoil by the
10-moment model, a Navier–Stokes solution, IP, DSMC methods, and experiment.
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Figure 5.12: Dimensionless pressure and shear stress along the NACA0012 airfoil
obtained by 10-moment, Navier–Stokes, and Euler codes (Ma = 0.8, Re = 73, α =
0◦).
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5.6 Avoiding Embedded Inviscid Shocks

The appearance of a discontinuity inside a steady viscous shock structure com-

puted with a hyperbolic-relaxation system indicates that the chosen relaxation term

is inadequate: it lacks information about the nonlinear characteristic fields of the

hyperbolic operator. To gain understanding, consider the 1-D hyperbolic-relaxation

system

ut + Aux = − s

τ
, (5.58)

where the matrix A is the flux Jacobian. Assume there exists a traveling-wave

solution of the form

u(x, t) = u(z), z = x − ct, (5.59)

where c is the shock speed. Inserting this equation into the system yields the ODE

(−c I + A)u′ = − s

τ
. (5.60)

Now express u′ and s in terms of the eigenvectors rk of A:

∑

k

(λk − c)C ′
krk = −1

τ

∑

k

σkrk; (5.61)

here λk is an eigenvalue of A, C ′
k is the corresponding characteristic variable, and

σk is the amplitude of the component along rk in the source vector.

Assume the shock is generated in the l-th field of characteristics; this means that

there is a point inside the shock structure where the difference between characteristic

speed and shock speed vanishes:

λl − c = 0. (5.62)

We may call this the sonic point. If in this point the amplitude σl does not vanish

simultaneously, C ′ can not remain finite, indicating the need to put a discontinuity

inside the viscous shock structure.
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This is reminiscent of steady inviscid transonic flow in a converging-diverging

channel, which is ruled by the area-velocity relation:

(M2 − 1)u′ =
A′

A
. (5.63)

If the flow reaches the sonic point (M = 1) before arriving at the throat (A′ = 0),

u′ becomes infinite.

The following detailed example demonstrates how an inviscid embedded shock

is created, and, at the same time, how it can be avoided. Consider the hyperbolic-

relaxation system

ut + vx = 0, (5.64a)

vt + f 2u2ux = −
v − 1

2
u2

τ
, f > 1; (5.64b)

its characteristic speeds are ±fu. For large times v approaches
1

2
u2, so the first

equation tends toward Burgers’ equation,

ut + uux = µuxx; (5.65)

the relation between µ and τ must still be determined. Note that the equilib-

rium equation has the characteristic speed u, which lies between the characteristic

speeds of the hyperbolic system, as required by the so-called subcharacteristic con-

dition [Liu87].

The traveling-wave solution satisfies

−cu′ + v′ = 0, (5.66a)

−cv′ + f 2u2u′ = −
v − 1

2
u2

τ
. (5.66b)
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Eliminating both v′ and v from the second equation by using the first equation leads

to the ODE

(−c2 + f 2u2)

2v0 − 2cu0 + c2 − (u − c)2
du = −dz

2τ
; (5.67)

without loss of generality we may choose the sonic point to lie at z = 0:

u0 = c. (5.68)

In a Burgers shock the profile is antisymmetric about this point.

In order to find a shock-like solution we must assume

2v0 − c2 = U2, (5.69)

where U is half the jump in u across the shock. The ODE now reads

(−c2 + f 2u2)

U2 − (u − c)2
du = −dz

2τ
, (5.70)

If the shock is slow enough, the shock structure will include the values u = ±c/f ,

causing the numerator on the LHS to vanish and u′ to become infinite. This will

lead to an inviscid shock between those values. In the special case of a steady shock

(c = 0), the profile is continuous, but it still has an infinite slope in the sonic point:

u ≈ 3

√

− 3U2

2f 2τ
z, z small. (5.71)

For systems relaxing to an equation more complicated than Burgers’ equation, the

profile is not antisymmetric around the sonic point, causing the inviscid jump to

appear even in a steady shock profile.

From (5.70) it is obvious that the LHS factor −c2 + f 2u2 is the culprit; we may

explore putting it also on the RHS, suitably normalized, i. e.,

−c2 + f 2u2

U2 − (u − c)2
du = −−c2 + f 2u2

2U2τ
dz, (5.72)
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or

du

U2 − (u − c)2
= − dz

2U2τ
, (5.73)

The solution of this ODE, with boundary conditions

u−∞ = c + U, u∞ = c − U, (5.74)

is

u = c − U tanh
( z

2Uτ

)
, (5.75)

which is identical in form to the Burgers shock profile

u = c − U tanh

(
Uz

2µ

)
. (5.76)

This shows how to choose the value of τ in order to relax to a viscosity coefficient

µ:

τ =
µ

U2
. (5.77)

Thus, the embedded inviscid shock has been completely removed.

In order to show that a time-marching scheme can find the proper asymptotic so-

lution of the hyperbolic-relaxation system, we used a standard second-order upwind-

biased finite-volume scheme with a two-stage time-integrator to find the steady

solution (c = 0) of the modified system

ut + vx = 0; (5.78a)

vt + f 2u2ux = −

(
v − 1

2
u2

)
f 2u2

U2τ
, (5.78b)

with f = 2.0, τ = 0.1, and boundary conditions

u±∞ = ±U, v±∞ = U, U = 1. (5.79)
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Once the time derivative of the solution has dropped below a certain threshold, the

solution is compared to the cell-averaged exact profile. Figure 5.14 shows the nu-

merical results plotted on top of the exact profile, for ∆x = 0.075. There is no trace

of an inviscid jump, and the agreement appears to be excellent. For comparison,

Figure 5.15 shows the incorrect profile obtained with the original system; it matches

the cubic-root solution (5.71).

−3 −2 −1 0 1 2 3
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−0.5

0

0.5

1

 

 
Numerical Solution
Exact Solution

x

ū

Figure 5.14: Steady Burgers shock profile (line, exact solution cell averaged) and nu-
merical approximation (symbols) obtained with the modified hyperbolic-relaxation
system (5.78a); τ = 0.1, ∆x = 0.075.

A grid-refinement study shows second-order convergence of the numerical to

the exact solution, see Figure 5.16. Regarding the number of time-steps needed

till convergence, this is a function of the cell size for both the hyperbolic-relaxation

scheme and a similar scheme applied directly to Burgers’ equation. The dependence

on the cell-size is not the same, due to the different character of the equations.

For ∆x ≈ 0.1, with ample coverage of the shock profile, the hyperbolic-relaxation

scheme requires fewer time-steps than the direct Burgers scheme, but this advantage
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Figure 5.15: Steady Burgers shock profile and numerical approximation obtained
with the original hyperbolic-relaxation system (5.64a); τ = 0.1, ∆x = 0.075. The
numerical profile is too steep; its derivative in the origin is infinite.

is lost because of its larger computational cost per time step. We expect the two

approaches to be comparable in efficiency in real fluid-dynamical applications.

We are currently studying how to include characteristic information on the RHS

of the general hyperbolic-relaxation system (5.58), so as to make the inviscid embed-

ded shocks disappear. Based on the previous analysis it is obvious that the matrix

(A − c I) and/or its eigenvalues, suitably normalized, will have to enter. In most

problems the shock speed c is not a priori known, but it can be estimated at each

interface by the dominant-wave-speed formula used in the Harten–Lax–Van Leer

(HLL) approximate Riemann solver:

VHLL =
∆u · M∆f

∆u · M∆u
; (5.80)

here M is a suitable positive-definite matrix. Since we intend to use the HLL-solver

anyway, the use of VHLL in the relaxation term comes at zero additional cost.
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Figure 5.16: Grid convergence of error norms for steady-shock profiles obtained with
the hyperbolic-relaxation system with modified source term.



CHAPTER VI

CONCLUSIONS

6.1 Summary

In this thesis, a step towards a first-order PDE approach to computational fluid

dynamics is described. This approach is rather radical; the Navier–Stokes equa-

tions are no longer considered as target model equations to solve numerically. Our

motivation to move into such an unexplored area is due to the fact that currently

available numerical methodologies for advection-dominated compressible flows are

not necessarily efficient. Part of the reason is that these methods have trouble

remaining just second-order accurate on a distorted, unstructured grid. Further-

more, a numerical method intended to solve the Navier–Stokes equations can not

be applied to continuum-transition flows since the model equations themselves are

physically invalid in such a flow regime.

In order to advance beyond these issues that plague standard methods for the

compressible Navier–Stokes equations, namely, second-order Godunov-type finite-

volume methods, two approaches are taken: we adopt first-order PDEs as model

equations, and discretize them by a compact numerical method, i.e., the discontin-

uous Galerkin method.

The major contributions of this thesis are:

337
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• Extension of Huynh’s original upwind moment method to systems of hyper-

bolic equations with stiff relaxation source terms, by utilizing Gauss–Radau

quadrature in time. We named the method the DG(1)–Hancock method

(Chapter II);

• Formulation of the fully discrete 2-D DG(1)–Hancock method on both quadri-

lateral and triangular elements (Chapter II);

• Detailed and comparative Fourier analysis of the DG(1)–Hancock method.

Dissipation/dispersion errors, order of accuracy, and stability are compared

to those of various fully and semi-discrete methods; it is shown that the

DG(1)–Hancock method is third-order accurate, with a less restrictive sta-

bility condition than semi-discrete methods. The high accuracy and efficiency

of the DG(1)–Hancock method are confirmed by numerical tests (Chapter III);

• The discovery that, for the DG(1)–Hancock method combined with the Ru-

sanov flux, the maximum Courant number based on the frozen-wave speed

depends on the value of the equilibrium-wave speed. In the 1-D case, its sta-

bility range varies from
1

3
to 1 as the equilibrium wave speed increases from

0 to 1. In the 2-D case, the maximum Courant number lies in the interval of

1

3
to

2

3
(Chapter III);

• Proof that the unconditional instability of DG(1) combined with the Lax–Friedrichs

flux is caused by the extraneous root. In general, the stability of the DG(1)

method combined with the upwind flux is restricted by high-frequency waves

(Chapter III);

• Linking the linear analysis of hyperbolic conservation laws to that of hyperbolic-

relaxation equations by defining a Courant number based on the frozen wave
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speed, i.e., ν := 1
∆t

∆x
, instead of r

∆t

∆x
. It is shown that an upwind method

for hyperbolic-relaxation equations in the near-equilibrium limit is equivalent

to directly discretizing the reduced equilibrium-equations with the Rusanov

flux (Chapter IV);

• Demonstration that the high efficiency of the DG(1)–Hancock method for

conservation laws is preserved when hyperbolic-relaxation equations are con-

sidered. The original Hancock method loses its efficiency in the stiff regime

since the effective flux is no longer upwind in this limit (Chapter IV);

• Explanation of the results of Lowrie and Morel [LM02], whose demonstration

of uniform second-order accuracy of DG(1) (independent of ǫ) turns out to

depend critically on their assumption that r = O(ǫ). In our scaling with

this limit, it is further shown that DG(1)–Hancock loses its superiority over

HR2–Hancock (Chapter IV);

• Numerical computation of the near-equilibrium solution (Navier–Stokes-like

limit) of a problem governed by the 1-D Euler equations with heat transfer

(Chapter IV);

• Numerical solutions of the 10-moment equations with the HR2–MOL, Han-

cock, and DG(1)–MOL methods. Computations of steady 1-D shock struc-

tures show the high accuracy of the DG(1) spatial discretization. A more

practical calculation, of an external flow around a micro-airfoil for which ex-

perimental results exist, serves as a benchmark, for comparison to results of

a Navier–Stokes solver and particle-based methods. An apparent advantage

of the 10-moment model over Navier–Stokes solvers is the treatment of the

slip velocity along the wall: it follows directly from the elements of the stress
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tensor, which are state variables (Chapter V);

• Removal of the inviscid frozen shock (drawback of moment approach) in the

solution of hyperbolic-relaxation model system by a modification of the relax-

ation term (Chapter V).

6.2 Future Work

As it was mentioned previously, the first-order PDE approach is relatively new;

there are a great number of issues that need to be explored/solved in order to make

the approach competitive or even preferable to the conventional methodologies:

finite-volume Navier–Stokes solvers and DSMC. Here, we list a few topics for future

work:

• First and foremost, constructing robust and physically more realistic mod-

els beyond the 10-moment equations is necessary. The 10-moment equations

adopted in this thesis are the best known and most robust among sets of mo-

ment equations, but the model predicts frozen shocks (jumps) inside viscous

shock structures and does not permit heat transfer. Improvement in these

areas is critical for reliably computing high-speed flows. Higher-moment sys-

tems have been developed and are being numerically studied, but they are not

quite robust [Bro96];

• The efficiency and accuracy of the DG(1)–Hancock method on a distorted,

unstructured grid needs to be investigated numerically, and possibly com-

plemented with a Fourier analysis on right triangles; our current results are

restricted to either rectangular or quadrilateral grids;

• Extending the DG(1)–Hancock method, currently third-order accurate for hy-
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perbolic conservation laws, to higher-order accuracy or possibly arbitrary or-

der is a challenge. In order to achieve this goal, a genuine space-time dis-

cretization is necessary; the resulting method is likely to be implicit. Yet,

first-order PDE’s often lead to a point-implicit method, whereas the Navier–

Stokes solvers usually can not avoid global data-dependence;

• Particularly for DG methods, two issues are still remaining: the necessity of

more sophisticated limiters that will allow higher than second-order accuracy

of multi-dimensional solutions, and reduction of the computational run-time.

Resolving these two issues will be a condition for attracting CFD practitioners;

• The method of moments is used to derive moment equations from the Boltz-

mann equation. Similarly, the method of moments (weak formulation) is

adopted to derive a discontinuous Galerkin method for given PDEs. A link

between these two procedures, one at the PDE level and the other at the

discrete level, might exist, and they may be treated uniformly;

• The treatment of slip velocity on a curved wall is vague, especially for Navier–Stokes

solvers. Rigorous analytical and numerical investigations are necessary for

both Navier–Stokes and moment approaches;

• Development of the ultimate scheme/flux function which would produce the

upwind method in the equilibrium limit is still worth pursuing.
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APPENDIX A

Implementation of Coordinate Transformations

In Chapter II, the multidimensional DG(1)–Hancock method was introduced. The

method is formulated such that both quadrilateral and triangular elements can be

used. In the final update formulas (2.88) on page 78, three coordinate-dependent

terms appear: mass matrix, {|Aj|, Kj1, Kj2, Kj3}, length of an edge in the surface

integral, and volume integral of the flux

∫∫

Kj

(·) dx. While computing an edge length

is trivial, the mass matrix and the quadrature for the volume integral depend on the

shape of the element. For implementation purposes, specific formulations of these

geometrically dependent quantities and the volume integral in the local coordinates

are presented in this appendix. The implementation of more complex elements,

e.g., curved elements, three-dimensional elements, can be found in [ZTZ05, KS05,

Hug00, Li06].

A.1 Quadrilateral Elements

Figure A.1 shows the schematic of a coordinate transformation from the quadri-

lateral global element Kj to the square local element K̂j = [−1, 1] × [−1, 1]. Any

coordinates x = (x, y) in Kj are parameterized by bilinear functions of ξ = (ξ, η)
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Figure A.1: Coordinate transformation between the global element Kj and the local

element K̂j .

such that

x(ξ) =
1 − ξ

2

1 − η

2
x0 +

1 + ξ

2

1 − η

2
x1 +

1 + ξ

2

1 + η

2
x2 +

1 − ξ

2

1 + η

2
x3, (A.1)

where ξ, η ∈ [−1, 1]. The Jacobian matrix J is defined by

J :=




∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η


 , (A.2)

then the Jacobian determinant is given by

|J(ξ, η)| = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
. (A.3)

Recall that through a coordinate transformation, the integration variables satisfy

the following identity:

dxdy ≡ |J(ξ, η)| dξdη, (A.4)

hence, spatial integration of a function g(x, y) over the domain Kj is transformed

to the quare local domain K̂j such that

∫

Kj

g(x, y) dxdy =

∫

K̂j

g(ξ, η) |J(ξ, η)| dξdη. (A.5)
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By applying the above transformation, components of the mass matrix of a quadri-

lateral element in the global coordinates are analytically evaluated by the coordi-

nates of its nodes:

|Aj| :=

∫∫

Kj

dxdy =

∫∫

K̂

|J(ξ, η)| dξdη

=
1

2
[(x0 − x2)(y1 − y3) − (x1 − x3)(y0 − y2)] , (A.6)

∫∫

Kj

x dxdy =

∫∫

K̂

x(ξ, η)|J(ξ, η)| dξdη

=
1

6

[
(x0 − x2)(x1y1 − x3y3) − (x1 − x3)(x0y0 − x2y2)

+ (x2
0 − x2

2)(y1 − y3) − (x2
1 − x2

3)(y0 − y2)
]
,

(A.7)

∫∫

Kj

y dxdy =

∫∫

K̂

y(ξ, η)|J(ξ, η)| dξdη

= −1

6

[
(y0 − y2)(x1y1 − x3y3) − (y1 − y3)(x0y0 − x2y2)

+ (y2
0 − y2

2)(x1 − x3) − (y2
1 − y2

3)(x0 − x2)
]
,

(A.8)

∫∫

Kj

x2 dxdy =
1

12

[
(x3

0 − x3
2)(y1 − y3) − (x3

1 − x3
3)(y0 − y3)

+ (x2
0 − x2

2)(x1y1 − x3y3) − (x2
1 − x2

3)(x0y0 − x2y2)

+ (x0 − x2)(x
2
1y1 − x2

3y3) − (x1 − x3)(x
2
0y0 − x2

2y2)
]
, (A.9)

∫∫

Kj

y2 dxdy = − 1

12

[
(y3

0 − y3
2)(x1 − x3) − (y3

1 − y3
3)(x0 − x3)

+ (y2
0 − y2

2)(x1y1 − x3y3) − (y2
1 − y2

3)(x0y0 − x2y2)

+ (y0 − y2)(x1y
2
1 − x3y

2
3) − (y1 − y3)(x0y

2
0 − x2y

2
2)
]
, (A.10)
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∫∫

Kj

xy dxdy =
1

12

[
(x0 − x2)(x1y

2
1 − x3y

2
3) − (x1 − x3)(x0y

2
0 − x2y

2
2)

− (y0 − y2)(x
2
1y1 − x2

3y3) + (y1 − y3)(x
2
0y0 − x2

2y2)

+
1

2

(
(x2

0 − x2
2)(y

2
1 − y2

3) − (x2
1 − x2

3)(y
2
0 − y2

2)
)]

. (A.11)

The above geometric quantities (metrics) are evaluated analytically since the coor-

dinate transformation is expressed in bilinear form (A.1).

Conversely, a quadrature is necessary to evaluate the nonlinear flux tensor

f(u(x)). As described in its derivation, the four-point Gauss quadrature (see Fig-

ure 2.8 on page 74) is employed to approximate the spatial integration:

∫

Kj

f(u(x)) dx =

∫

K̂

f(u(ξ))|J(ξ)| dξ

≈
3∑

i=0

wi|J(ξi)| f(u(ξi)), (A.12)

where the weights are wi =
1

4
, i = 0, . . . , 3, and the Gauss points where the flux

tensor is evaluated are

ξ0 =

(
− 1√

3
,− 1√

3

)
, ξ1 =

(
1√
3
,− 1√

3

)
, (A.13a)

ξ2 =

(
1√
3
,

1√
3

)
, ξ3 =

(
− 1√

3
,

1√
3

)
. (A.13b)

The solution at the Gauss point u(ξi) is computed by its solution representa-

tion (2.58a) on page 61 together with the coordinate transformation from ξ to

x given by (A.1).

A.2 Triangular Elements

At first, it is worthwhile to mention that a triangular element can be subdivided

into three quadrilateral elements [Hug00, p. 165]. See Figure A.2.
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x

y

Figure A.2: A Triangular element can be subdivided into three quadrilateral ele-
ments.

x

(x0, y0)
(x1, y1)

(x2, y2)y

element:Kj

(-1,-1) (1,-1)

(1,1)(-1,1)

ξ

η

element: K̂

a b

cd

x = x(ξ′, η′)
y = y(ξ′, η′)

dxdy = |J1(ξ
′, η′)| dξ′dη′

a
b

c
c

ba
element:K ′

η′

ξ′

(-1,1)

(1,-1)(-1,-1)

dξ′dη′ = |J2(ξ, η)| dξdηξ′ = ξ′(ξ, η)
η′ = η′(ξ, η)

Figure A.3: Coordinate transformation for triangular elements.
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Unlike a quadrilateral element, a triangular element requires two consecutive

coordinate transformations to map from the global element to the local element.

See Figure A.3 for the coordinate transformations. The resulting mapping function

is

x(ξ) =
1 − ξ

2

1 − η

2
x0 +

1 + ξ

2

1 − η

2
x1 +

1 + η

2
x2. (A.14)

Following the same procedure as for the quadrilateral element, geometrical quanti-

ties are computed by x-,y-coordinates of the element’s nodes:

|Aj| :=

∫∫

K̂

|J(ξ, η)| dξdη

=
1

2
[(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)] , (A.15)

∫∫

Kj

x dxdy =
|Aj|
3

(x0 + x1 + x2), (A.16)

∫∫

Kj

y dxdy =
|Aj|
3

(y0 + y1 + y2), (A.17)

∫∫

Kj

x2 dxdy =
|Aj|
6

(
x2

0 + x0x1 + x2
1 + x0x2 + x1x2 + x2

2

)
, (A.18)

∫∫

Kj

y2 dxdy =
|Aj|
6

(
y2

0 + y0y1 + y2
1 + y0y2 + y1y2 + y2

2

)
, (A.19)

∫∫

Kj

xy dxdy =
|Aj|
12

(
x0(2y0 + y1 + y2) + x1(y0 + 2y1 + y2) + x2(y0 + y1 + 2y2)

)
.

(A.20)
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APPENDIX B

Fourier Analysis of High-Order Methods

The Fourier analysis of three high-order methods is conducted as a continuation of

previous analyses shown in Chapter III. The difference operator and local truncation

error of each method are presented in a concise manner.

B.1 HR3–RK3 method

The third-order high-resolution Godunov method (HR3–MOL) utilizes quadratic

reconstructed values as input for the flux function. The input values are given by

uj+1/2,L(t) = ūj +
∆x

2

(
ūj+1 − ūj−1

2∆x

)
+

∆x2

12

(
ūj+1 − 2ūj + ūj−1

∆x2

)
, (B.1a)

uj+1/2,R(t) = ūj+1 −
∆x

2

(
ūj+2 − ūj

2∆x

)
+

∆x2

12

(
ūj+2 − 2ūj+1 + ūj

∆x2

)
. (B.1b)

After inserting the cell interface fluxes into the original semi-discrete form, the

spatial difference operator becomes

NHR3 = − 1

12∆x

[
(q − r)(δ+)2 − 2(q − 3r)δ+ + 2(q + 3r)δ− + (q + r)(δ−)2

]
, (B.2)

or, for a Fourier mode,

NHR3 = − 1

12∆x

[
(q − r)e2iβ − 4(q − 2r)eiβ + 6q − 4(q + 2r)e−iβ + (q + r)e−2iβ

]
.

(B.3)
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The spatial discretization in the low-frequency limit has the following discretization

error:

λHR3 − λexact = − q

12
∆x3 k4 + O

(
k5
)
, (B.4)

thus, the HR3 method is third-order accurate in space. Applying the RK3 method

as the time integrator, the local truncation error becomes

LTEHR3RK3 = − r

12

(
q

r
∆x3 +

1

2
r3 ∆t3

)
k4 + O

(
k5
)
. (B.5)

Thus, the HR3–RK3 method is third-order accurate in space and time.

B.2 DG(2)–RK3 method

The DG(2)–MOL introduces an extra update equation for ∆2uj :

∂∆2uj(t)

∂t
= − 1

∆x
60
(
f̂j+1/2(t) − f̂j−1/2(t) − r∆uj(t)

)
. (B.6)

The above update equation together with two update equations for ūj(t) and ∆uj(t)

given by (3.97) on page 119 are solved simultaneously. Similar to HR3–MOL, the

input values for the flux function are obtained by the quadratic solution represen-

tation:

uj+1/2,L(t) = ūj +
1

2
∆uj +

1

12
∆2uj, (B.7a)

uj+1/2,R(t) = ūj+1 −
1

2
∆uj+1 +

1

12
∆2uj+1. (B.7b)

After inserting the cell interface fluxes into the original semi-discrete form, the

spatial difference operator becomes

NDG(2) = A
+D+ + C + A

−D−, (B.8)
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where

A
+ =

q − r

2∆x




1 −1

2

1

12

6 −3
1

2

60 −30 5




, A
− =

q + r

2∆x




−1 −1

2
− 1

12

6 3
1

2

−60 −30 −5




, (B.9a)

C =
1

∆x




0 0 0

0 −6q

r
−1

0 60 0




, D± = δ±I, (B.9b)

or, for a Fourier mode,

MDG(2) = A
+eiβI + C

′ − A
−e−iβI, (B.10)

where

C
′ = − r

∆x




q

r

1

2

q

12r

−6
3q

r

1

2
60q

r
−30

5q

r




. (B.11)

The asymptotic eigenvalues in the low-frequency limit are obtained by solving the

characteristic equation of NDG(2). Here, we only present the result with the upwind

flux q = r:

λ
(1)
DG(2) − λexact = − r

7200
∆x5 k6 + O

(
k7
)
, (B.12)

λ
(2),(3)
DG(2) − λexact = − r

∆x
(3 ± i

√
51) + O(k) . (B.13)

The above equations show that the accurate eigenvalue of the DG(2) spatial dis-

cretization is fifth-order in space. Also, similar to the DG(1) method, inaccurate

eigenvalues damp quickly since the real part of the leading error, − 3r

∆x
, is negative

for both λ
(2)
DG(2) and λ

(3)
DG(2). Applying the RK3 method for the time integrator, the

local truncation error becomes

LTEDG(2)RK3 = − r

24
(rν)3 ∆x3 k4 + O

(
k5
)
, (B.14)
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thus, the DG(2)–RK3 method is third-order in space and time. Note that the above

error is introduced purely by the time integration method since the DG(2) spatial

discretization is fifth-order accurate. Hence, it is natural to apply the fifth-order

time integration method, RK5; then the local truncation error becomes

LTEDG(2)RK5 = − r

7200

[
1 + 50(rν)5

]
∆x5 k6 + O

(
k7
)
, (B.15)

and the method becomes fifth-order accurate. This linear analysis suggests that

when the DG discretization adopts the solution representation of a polynomial of

degree k, then the corresponding time integrator is recommended to have the order

of accuracy 2k + 1. Another benefit of using higher-order Runge–Kutta method

is enlarging the stability domain. However, increasing the number of stages of a

time-integration method results in greater computational expense due to the Rie-

mann problem to be solved at each stage.

B.3 DG(2)–ADER method

The DG(2)–ADER method is obtained by approximating the volume integral of

the flux as follows:

1

∆t

∫

T n

f(ūj) ≈ r

(
ūn

j − 1

2
r∆t

∆u
n

j

∆x
+

1

6
(r∆t)2

∆2u
n

j

∆x2

)
, (B.16)

∆x

∆t

∫

T n

∂f(ūj)

∂x
≈ r

(
∆u

n

j − 1

2
r∆t

∆2u
n

j

∆x

)
. (B.17)

After inserting the difference forms, the spatial difference operator of the DG(2)–ADER

method has the following form:

MDG(2)ADER = A
+D+ + C + A

−D−, (B.18)
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where

A
+ =

q − r

2∆x




1 −1

2
(1 + rν)

1

12
(1 + rν)(1 + 2rν)

6 −3(1 + rν)
1

2
(1 + rν)(1 + 2rν)

60 −30(1 + rν) 5(1 + rν)(1 + 2rν)




, (B.19a)

A
− =

q + r

2∆x




−1 −1

2
(1 − rν) − 1

12
(1 − rν)(1 − 2rν)

6 3(1 − rν)
1

2
(1 − rν)(1 − 2rν)

−60 −30(1 − rν) −5(1 − rν)(1 − 2rν)




, (B.19b)

C =
1

∆x




0 0 0

0 −6q

r
−(1 − 3qν)

0 60 −30rν




, D± = δ±I, (B.19c)

or, for a Fourier mode,

MDG(2)ADER = A
+eiβI + C

′ − A
−e−iβI, (B.20)

where

C
′ = − r

∆x




q

r

1

2
(1 − qν)

1

12

(
q

r
− 3rν +

2q

r
(rν)2

)

−6 3
(q

r
+ rν

) 1

2

(
1 − 3qν − 2(rν)2

)

60q

r
−30(1 + qν) 5

(
q

r
+ 3rν +

2q

r
(rν)2

)




. (B.21)

The overall accuracy is derived from the eigenvalues of the amplification matrix of a

fully discrete form, GDG(2)ADER = I+∆tMDG(2)ADER. Due to the complexity of the

derivation, we only present the case of the upwind flux q = r. The local truncation

error of the accurate mode becomes

LTE
(1),upwind
DG(2)ADER = − r

120
rν(1 − rν) ∆x3 k4 + O

(
k5
)
. (B.22)

Thus, DG(2)–ADER method is third-order in space and time.
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APPENDIX C

Asymptotic Expansion of Dimensionless GHHE

C.1 One-Dimensional Systems

Let us consider the dimensionless 1-D GHHE with frozen-wave time-scaling;

removing the (̂·) symbol in (4.16) on page 213 for simplicity yields

∂tu + ∂xv = 0, (C.1a)

∂tv + ∂xu = −1

ǫ
(v − ru), (C.1b)

where |r| ≤ 1 is fixed, and ǫ > 0 can vary. The dimensionless time t and conserved

variable u are set to O(1). Compared to the dimensional form (4.1) on page 208, the

above system shows frozen wave speeds aF = ±1, the equilibrium speed aE = r, and

the relaxation time τ = ǫ. Here, we present the derivation of the reduced equation

in the near-equilibrium limit. The derivation is based on the assumption that, in

the near-equilibrium, the state vector {u, v} can be expanded in terms of a small

parameter, the relaxation time ǫ, such that

u(x, t) = u0 + ǫu1 + ǫ2u2 + ǫ3u3 + O
(
ǫ4
)
, (C.2a)

v(x, t) = v0 + ǫv1 + ǫ2v2 + ǫ3v3 + O
(
ǫ4
)
. (C.2b)
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These expansions are called Chapman–Enskog expansions. The above equations are

inserted into (C.1), and terms of the same order of ǫ are gathered. Since ui, vi, i =

0, 1, . . ., are not functions of ǫ, the coefficient of any power of ǫ has to be zero. After

some algebra, we have

v0 = ru0, (C.3a)

v1 = ru1 − (1 − r2)∂xu0, (C.3b)

v2 = ru2 − (1 − r2)∂xu1 − 2r(1 − r2)∂xxu0, (C.3c)

v3 = ru3 − (1 − r2)∂xu2 − 2r(1 − r2)∂xxu1 − (1 − r2)(5r2 − 1)∂xxxu0, (C.3d)

thus, the flux v can be expressed in the conservative variable u such that

v = ru− ǫ (1−r2)∂xu− ǫ2 2r(1−r2)∂xxu− ǫ3 (1−r2)(5r2−1)∂xxxu+O
(
ǫ4
)
. (C.4)

Inserting the above equation into (C.1a) provides the reduced form of the dimen-

sionless GHHE:

∂tu+ r∂xu = ǫ (1− r2)∂xxu+ ǫ2 2r(1− r2)∂xxxu+ ǫ3 (1− r2)(5r2−1)∂xxxxu+O
(
ǫ4
)
.

(C.5)

Note that this reduced form is valid only when ǫ ≪ O(1) (near-equilibrium limit).

As we can see, the equation has the form of an advection-diffusion equation with

higher-order dissipation and dispersion terms; the equilibrium advection wave speed

is r, and the leading dissipation coefficient is ǫ (1 − r2). Truncating the above

equation at O(ǫ2) leads to the advection-diffusion equation:

∂tu + r∂xu = ǫ (1 − r2)∂xxu. (C.6)
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C.2 Two-Dimensional Systems

Following the same procedure as in the 1-D case, the coefficients in the asymp-

totic expansions of v and w are given by

v0 = ru0, v1 = ru1 − (1 − r2)∂xu0, (C.7)

w0 = su0, w1= su1 − (1 − s2)∂yu0. (C.8)

Thus, the fluxes can be expressed in the conservative variable u such that

v = ru − ǫ(1 − r2)∂xu + O
(
ǫ2
)
, (C.9)

w = su − ǫ(1 − s2)∂yu + O
(
ǫ2
)
. (C.10)

Inserting the above equations into the original PDE for u leads to the reduced form

of the 2-D GHHE in the near-equilibrium limit (ǫ ≪ 1):

∂tu + r∂xu + s∂yu = ǫ
[
(1 − r2)∂xxu + (1 − s2)∂yy

]
+ O

(
ǫ2
)
. (C.11)
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APPENDIX D

Jin–Levermore’s Semi-Discrete High-Resolution

Godunov Method

Jin and Levermore already realized that the upwind flux in a Godunov method

for the original hyperbolic-relaxation equations does not retain the upwind prop-

erty in the near-equilibrium limit [JL96]. In other words, the discretization in the

near-equilibrium limit is equivalent to discretizing the advection-diffusion equation

directly with a somewhat more dissipative flux function. Later, it was shown that

the corresponding flux is the first HLL1 flux function [HSvL05].

To remedy the excessive numerical dissipation in the near-equilibrium limit due

to a non-upwind flux, Jin and Levermore came up with the idea to interlace two

flux functions: one is upwind for the frozen system, and the other is upwind for the

equilibrium system. The simplest way is by a linear combination: introduce the

parameter a ∈ [0, 1] such that

f̂ = af̂frozen + (1 − a)f̂equilibrium, (D.1)

where

a ∼ ǫ

∆x
. (D.2)
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They chose the parameter a such that in the frozen limit (ǫ ≫ 1), it approaches

unity, so that the original upwind flux f̂frozen is applied. Conversely, in the near-

equilibrium limit (ǫ ≪ 1), a small a turns off the frozen flux, and the equilibrium

flux f̂equilibrium, which is upwind for the reduced equation, becomes dominant. Note

that this modification is only applied to the flux of the conserved quantity, i.e., to

the first equation of the GHHE.

Here, the method is applied to the 1-D GHHE, and a Fourier analysis is con-

ducted. The semi-discrete form is identical to the HR2–MOL method,

∂ūj(t)

∂t
= − 1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+

1

ǫ
s (ūj) , (D.3)

yet, the interface flux is computed by the following hybrid flux:

f̂j+1/2 =




v̂j+1/2

ûj+1/2


 =




af̂1,frozen + (1 − a)

[
f̂equi − ǫ(1 − r2)

uj+1 − uj

∆x

]

f̂2,frozen


 . (D.4)

The frozen flux is obtained by the system



u

v




t

+




0 1

1 0







u

v




x

= 0, −→




f̂1, frozen

f̂2, frozen


 = A+uL + A−uR, (D.5)

and the equilibrium flux by

ut + rux = 0 −→ f̂j+1/2,equi = ruj+1/2,L. (D.6)

Following the usual procedure for a Fourier analysis, the truncation errors in the

low-frequency limit is given by

λ
(1)
HR2–JL − λGHHE

exact = − ir

12
∆x2k3 −

[
1

8

(
a + (1 − a)r

)
∆x3 +

ǫ(1 − r2)

12
(3a − 1)∆x2

]
k4

+ O
(
ǫ2k3, ǫ3k4, k5

)
,

(D.7a)

λ
(2)
HR2–JL − λGHHE

exact = −1

ǫ
+ ir(1 + a)k + O

(
k2
)
. (D.7b)
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The above result without k3-term corresponds to Eq. (3.17) in Jin and Levermore [JL96,

p. 461], however, the term −1

8
(a + r)∆x3 is missing there.

As to the parameter a, they suggest to take

a := tanh
( ǫ

∆x

)
. (D.8)

In the near-equilibrium limit, the above equation can be expanded with respect to

ǫ ≪ 1 such that

a =
ǫ

∆x
+ O

(
ǫ3
)
, (D.9)

thus, the truncation error of the dominant eigenvalue becomes

λ
(1)
HR2–JL − λGHHE

exact = − ir

12
∆x2k3 −

[
r

8
∆x3 +

ǫ(1 − r)(1 − 2r)

24
∆x2

+
ǫ2(1 − r2)

4
∆x

]
k4 + O

(
ǫ2k3, ǫ3k4, k5

)
. (D.10)

Despite Jin and Leremore’s claim that the numerical dissipation (k4-term) is pro-

portional to ǫ, thus there is no grid size restriction, the above equation shows that

there is a term independent of ǫ, which they omitted. Hence, the method needs to

satisfy the following condition,

r

8
∆x3k4 ≪ ǫ(1 − r2)k2, (D.11)

in order for the physical dissipation to be dominant. Solving for ∆x leads to

∆x ≪ 2

[
ǫ(1 − r2)

rk2

]1/3

= 2

(
1

k2 Pe

)1/3

. (D.12)

This threshold mesh size is less restrictive than (4.52) on page 221 for the original

HR2–MOL, which was based on the pure frozen flux. Owing to the inclusion of the

equilibrium flux in (D.4), the equilibrium wave speed |r| ≤ 1 disappears from the

numerator.
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APPENDIX E

Dispersion Analysis for the 2-D GHHE

Following the dispersion analysis of Hittinger for the 1-D GHHE model system [Hit00,

pp. 35–47], we assume a harmonic solution,

u(x, y, t) = ℜ{v(t) exp
(
−i(kxx + kyy)

)
}, (E.1)

where (kx, ky) are wave numbers in (x, y). Inserting this into (4.107) on page 237

leads to an ordinary differential equation in terms of v(t),

dv(t)

dt
= [i(kxA + kyB) + Q]v(t). (E.2)

The solution of this is

v(t) = exp [it(kxA + kyB − iQ)] û0, (E.3)

where û0 ∈ C
3 is a constant vector. The characteristic polynomial of the exponent

is

det [kxA + kyB − iQ − ωI] = 0, (E.4a)

↓

(i − ω)
(
ω2 − |k|2 − i [ω + (rkx + sky)]

)
= 0, (E.4b)
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where |k| =
√

k2
x + k2

y, and its solutions are

ω1 = i, (E.5a)

ω2,3 =
i

2

(
1 ±

√
1 + 4 [i(rkx + sky) − |k|2]

)
. (E.5b)

So long as rkx + sky 6= 0 and |k|2 6= 1/4, all three eigenvalues are distinct. In such

a case, this matrix is diagonalizable, with right R and left L eigenvector matrices

such that

kxA + kyB − iQ = RΩL, (E.6)

where Ω = diag(w1, w2, w3) and, with ∆k = (kx − ky) − i(r − s), L = R−1,

R =




0 kx + ky kx + ky

kx ω2 −
ky

ω3
∆k ω3 −

ky

ω2
∆k

−ky ω2 +
kx

ω3
∆k ω3 +

kx

ω2
∆k




, (E.7a)

L =
1

|k|2




0

(
1 +

kx∆k

ω2ω3

)
−
(

1 − ky∆k

ω2ω3

)

− ω3

ω2 − ω3

kx

ω2 − ω3

ky

ω2 − ω3

ω2

ω2 − ω3
− kx

ω2 − ω3
− ky

ω2 − ω3




. (E.7b)

The solution of the ODE for v(t) can be written as

v(t) = exp [it(RΩL)]u0 = R exp (itΩ)Lu0. (E.8)

Inserting this into (E.1) gives the general solution at time t:

u(x, y, t) = ℜ{R exp (itΩ)Lu0 exp(−i[kxx + kyy])}, (E.9)

with the initial condition u0, which we define by (4.145) on page 266.
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