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Preface 
 
 

This dissertation is composed of four chapters. The first chapter contains an 

introduction to the physiological functions of the thioredoxin (Trx) system, the various 

intracellular antioxidant systems, and the roles of the Trx system in toxicology. The Trx 

system is made up of Trx and thioredoxin reductase (TrxR) and comprises the major 

antioxidant system in dipteran insects such as Drosophila melanogaster and Anopheles 

gambiae, a vector of malarial parasites. Because TrxRs from D. melanogaster and A. 

gambiae are virtually identical, TrxR from D. melanogaster (DmTrxR) offers an 

excellent model for TrxRs from dipteran insects. The dithiol-disulfide interchange 

reaction is involved in the catalysis of DmTrxR. A dyad of His-464’ and Glu-469’ in 

DmTrxR is proposed to facilitate the formation of thiolate anion to initiate the 

interchange reaction. Thus, in the first chapter, the potential roles of His-464’ and Glu-

469’ in DmTrxR are also discussed. The second chapter describes studies of the function 

of His-464’ in the acid-base catalysis involved in DmTrxR. The results showed that this 

histidine residue is crucial to the catalysis of DmTrxR; it acts as the immediate base 

catalyst to facilitate the formation of thiolate anions and also stabilizes the thiolate anions 

by ionic interactions. His-464’ is involved in both the reductive and oxidative half-

reactions. The content of the second chapter is from a manuscript that is in press in 

Biochemistry.   The third chapter describes studies of the function of Glu-469’ in acid-

base catalysis of DmTrxR. The results show that Glu-469’ is important but not crucial; 
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the function of Glu-469’ is to facilitate the proper positioning of His-464’ toward the 

interchange thiol (Cys-57). The content of the third chapter will form the basis of a 

second manuscript when two further experiments have been completed. In the fourth 

chapter, the conclusions of this study and potential future work are addressed. 
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Abstract 
 
 

Thioredoxin reductase (TrxR) catalyses the reduction of thioredoxin (Trx) by 

NADPH. Like other members of the pyridine nucleotide-disulfide family, TrxR is a 

homodimer. The catalytically active unit in the enzyme from Drosophila melanogaster 

(DmTrxR) consists of three redox centers: FAD and an N-terminal Cys-57/Cys-62 redox-

active disulfide from one monomer, and a Cys-489’/Cys-490’ C-terminal redox-active 

disulfide from the second monomer. Because dipteran insects such as D. melanogaster 

lack glutathione reductase, glutathione disulfide must be reduced by Trx, making 

DmTrxR particularly important in this organism. DmTrxR is used as a model for the 

enzyme from a malaria vector, Anopheles gambiae. Based on the structures and 

mechanisms of other family members, a dyad of His-464’ and Glu-469’ acts as the acid-

base catalyst of the dithiol-disulfide interchange reactions required in the catalysis of 

DmTrxR. 

The functions of His-464’ and Glu-469’ in the catalytic mechanism of DmTrxR 

were investigated. His-464’ was shown to be critical to catalysis by DmTrxR; thus, 

H464’Q retains only 2% of the wild-type activity. The pH dependence of Vmax for wild-

type DmTrxR has apparent pKa values of 6.4 and 9.3, whereas H464’Q DmTrxR has an 

observable pKa only at 6.4, indicating that the pKa at pH 9.3 is contributed by His-464’. 

The macroscopic pKa at pH 6.4 has been assigned to Cys-57 and Cys-490’; the thiolate of 

Cys-57 is the nucleophile in the internal dithiol-disulfide interchange reaction and the 
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thiolate of Cys-490’ is the nucleophile in the reduction of Trx. The rates of both the 

reductive and oxidative half reactions are markedly smaller in H464’Q DmTrxR than 

those of wild-type enzyme, indicating that His-464’ is involved in both half reactions. 

The pH dependence of the steady-state kinetics shows that the basicity of His-464’ 

decreases in the glutamate variants, as predicted. The reductive half-reactions of two 

glutamate variants are slower than those of wild-type enzyme.  

Malaria causes serious public health problems in the world. It is hoped that 

differences among TrxRs from human, Plasmodium falciparum (the causative agent) and 

Diptera (the vector) will be useful for developing differential inhibitors, useful as 

prophylactics. 

 

 
 
 

  

 


