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Abstract 

 

Hydrothermal Synthesis and Characterization of Cadmium Selenide Nanocrystals 

by 

Juandria V. Williams 

 

  

Cadmium Selenide (CdSe), a type of semiconductor nanocrystal, is of interest 

because its optical properties can be tuned by varying its size, thus yielding a material 

that has potential application in electronics and biology.  Conventional preparations of 

CdSe primarily use organic solvents.  We explored the use of high-temperature liquid 

water (HTW) as an alternative reaction medium because of its environmental benignity 

and solvent properties which could potentially mimic the function of the conventional 

organic-based mediums.   

 The base case experimental conditions for the feasibility study (non-isothermal 

conditions) produced nanocrystals that exhibited quantum confinement behavior.   The 

quantum yield (QY) for the base case nanocrystals was 1.5%, but was easily increased to 

~7% by adding a cadmium sulfide (CdS) shell.  The nanocrystal mean size increased with 

increasing reaction time, temperature, stabilizer concentration and Cd:Se molar ratio.  

The mean size decreased with increasing pH. 
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Under isothermal synthesis conditions, nanocrystals smaller than those produced 

in the feasibility study were obtained when using the same process parameters.  The 

mean nanocrystal size did not increase with reaction temperature at 2 minutes, but did 

increase with time and stabilizer concentration.  The mean size also decreased with 

increasing pH and Cd:Se molar ratio.  An increase in the Cd:Se molar ratio, pH and 

Cd:stabilizer molar ratio increased the QY.  The reaction temperature and time had no 

affect on QY. 

 We used red-shift rates to determine an activation energy � for the CdSe growth 

in HTW.   We calculated � = 0.24 ± 0.04 eV/molecule from the red-shift rate method.  

Compared with organic-based systems, this value is lower, possibly due to the less bulky 

cadmium-citrate complex used.  The kinetics analysis indicates that the synthesis in HTW 

could be both reaction- and diffusion-controlled. 

 This work indicates that HTW is a viable alternative reaction medium.  

Nanocrystals can be grown that exhibit quantum confinement, and certain process 

parameters have a profound effect on the nanocrystal’s quality.  Further studies can 

identify the optimum process conditions to produce the nanocrystal with the highest 

quality. 
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Chapter 1 

Introduction 

 

Unique physical, optical and electrical phenomena can occur when a macroscopic 

material decreases in size.  At a length scale of 1 x 10
-9

 of a meter, a “nanomaterial” can 

display properties not exhibited by its macroscopic (bulk) analogue.   Carbon black, an 

amorphous form of carbon, is one of the first nanomaterials ever to be produced 

commercially, as is fumed silica.  Because of their size, carbon black and fumed silica 

particles, as well as other materials, have greatly benefited society.   As the needs and 

desires of society expand so does the demand for novel materials and devices whose 

properties are controlled by phenomena that occur in materials structured at the 

nanoscale.    

Conventional bulk manufacturing strategies could be reaching the limit of 

successfully fabricating and characterizing nano-structured materials [1].  Many of these 

“top-down” methods – the building of objects by incorporating small pieces of bulk 

material – cannot effectively allow a scientist or engineer to control the structure at the 

nanoscale, thereby influencing the resulting properties.  The ability to design materials 

with desired properties has been achieved through a “bottom-up” method – incorporating 

atomic and molecular building blocks into a material or device.  Even though the “top-

down” method can yield nanoscale material, it lacks atomic control, and, thus, is not very 

reproducible.   
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Nanotechnology is boundless in its research, but more limited in its successful 

application to date.  This does not mean that knowledge has not impacted a number of 

industries.   According to the National Nanotechnology Initiative [2], some of the 

products that benefit from unique properties of nanomaterials include sunscreens and 

cosmetics, metal-cutting tools, protective paints and coatings and, of course, 

semiconductors.  Bulk semiconductors have had a monumental impact on society, but 

researchers are finding even greater promise with semiconductors on the nanoscale.   

Semiconductor nanocrystals, a type of nanoparticle sometimes termed “quantum 

dots”, exhibit size and shape dependent electronic and optical properties that make them 

attractive.  Types of commonly fabricated semiconductor nanocrystals include cadmium 

sulfide (CdS), lead sulfide and selenide (PbS and PbSe), cadmium telluride (CdTe) and 

cadmium selenide (CdSe). These nanocrystals possess characteristics that make them 

attractive for opto-electronic applications such as light-emitting diodes (LEDs) [3, 4, 5], 

solar cells [6, 7] and biological markers [8, 9, 10, 11].   Their properties are currently 

being exploited in the field of energy conservation, most notably as alternatives to 

conventional phosphors in solid-state lighting (SSL).  According to researchers at Sandia 

National Laboratories in Albuquerque, New Mexico, conventional phosphors used in 

fluorescent lighting are not ideal in SSL due to their poor energy absorption properties 

[5].   They also account for a 50% reduction in package efficiency due to light scattering 

and associated optical losses.  The small size of a quantum dot eliminates the light 

scattering, reducing optical losses.  Furthermore, ensembles of quantum dots have nearly 

continuous absorption spectra from their band gap wavelength (near infra-red) into 

ultraviolet, allowing for multi-color emission by simultaneous excitation of different 



 

3 

 

sized quantum dots, according to Lee et al  [4].   Their narrow emission spectra almost 

guarantee pure color emission.  These specific advantages are reasons for implementing 

them as active agents in SSL. 

Photovoltaics is another application where quantum dots have demonstrated 

promise.  Current solar cells carry, at best, a 31% efficiency, meaning only 31% of the 

sun’s energy (rays) are converted into electricity as the remaining energy is wasted as 

heat [12].  The current technology is limited due to absorption and emission dynamics 

above the semiconductor band gap.  Nozik asserts that these dynamics can be markedly 

affected by the quantization effects in quantum dots, potentially realizing an increase in 

solar energy conversion to 66% [12].  A group led by Nozik demonstrated multiple 

exciton generation (MEG) in colloidal PbSe and PbS quantum dots, an important 

mechanism that may increase the conversion efficiency of solar cell devices [6].  Schaller 

et al. demonstrated a 10% reduction in energy loss by generating seven excitons from one 

photon as opposed to only one exciton produced by a single photon which accounts for 

the traditional high energy loss [7].    

Biological applications for imaging require materials and devices with intrinsic 

optical integrity – good photostability and emission efficiency.  Conventional dyes and 

fluorophores, used by researchers to visualize cellular matter, are limited by their narrow 

absorption range, broad emission spectra and short fluorescent lifetime [8].  Quantum 

dots can especially overcome these limitations by providing narrow emission spectra, a 

broad absorption range and an excellent photostability and resistance to photobleaching  

[8, 13].   ZnS/CdSe core/shell quantum dots covalently coupled to biomolecules have 

been demonstrated in use for ultra-sensitive biological detection [9, 10, 11, 13].  



 

4 

 

Nanoparticle synthesis can be achieved myriad ways.  Four generic routes exist to 

make nanoparticles [14]: gas phase synthesis, mechanical methods, form-in-place and 

wet chemistry.  Each results in a material with significantly different properties 

depending on the synthetic route.  Additionally, some routes are more amenable to a 

certain class of raw materials than others.  Of the routes listed, wet chemical processes 

have the advantage of producing a large variety of inorganic and organic compounds and 

some metals in significant quantities using inexpensive equipment (as opposed to costly 

furnaces, vacuum deposition equipment, ball mills).  Furthermore, the ability to control 

particle size and achieve high monodispersity is another attractive factor.  One drawback, 

though, is that for bulk production, a large infrastructure for bulk chemical processing 

may be required, rendering it expensive.   

 Conventional growth techniques such as molecular beam epitaxy and chemical 

vapor deposition have been used to fabricate CdSe.  However, these techniques may limit 

the practical application of the nanocrystal because it is attached to a substrate or 

embedded in a matrix [15].  Organic solvent-based colloidal methods have realized high 

quality semiconductor nanocrystals for over 15 years [16, 17, 18, 19, 20].  Key chemicals 

used in this synthetic route are often hazardous and the experiments can lack sufficient 

control, making the results difficult to reproduce [21, 22].  This has inspired researchers 

to develop greener chemistries such as alternative precursors [22, 23, 24, 25].   

 Researchers have demonstrated aqueous-based synthetic routes at relatively low 

temperatures (<100 °C) with various cadmium and selenium precursors and stabilizing 

ligands [26, 27, 28, 29].  Each of these routes, although successfully producing physical 

samples, has yet to be optimized to obtain highly luminescent, photostable, crystalline 
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structures.  In general, the quality of nanocrystals resulting from aqueous-based synthetic 

methods is not as good as those obtained from the organic-based methods.  The literature 

provides supporting evidence that the high temperature processes (250-350 °C), common 

in organic-based methods, yield higher quality product [16, 30, 31].  

 A reaction medium that has not been previously used for the synthesis of CdSe is 

high- temperature liquid water (> 200 ˚C).   This medium is of interest because high 

temperature processes (250 °C-350 °C) such as those in organic-based methods, 

generally yield higher quality product.  By varying temperature, the properties of water 

could be tuned to obtain a medium that can,  i) mimic polar solvents commonly used in 

nanoparticle synthesis,  ii) provide low surface tension (for excellent wetting of surfaces), 

and, iii) provide high diffusion coefficients.  Numerous studies have demonstrated the 

successful fabrication of metallic and ceramic nanomaterials using high-temperature 

water [32, 33, 34, 35, 36, 37, 38].  

   

1.1  Semiconductor Nanocrystals 

 The most remarkable characteristic of a semiconductor nanocrystal is the ability 

to tune its optical and electronic properties by controlling its size.  As the size of a bulk 

semiconductor is reduced, the surface area/volume ratio increases and the optical and 

electronic properties become strongly influenced by its surface structure.  Moreover, the 

electronic structure at the nanoscale ceases to resemble the bulk.  This phenomenon is a 

result of quantum confinement effects: the behavior of electrons in a particle due to 

spatial limitations.  “Quantum dots” are those particles that exhibit the behavior. 
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 When a semiconductor absorbs light, an electron moves from the nearly-full 

valence band to the nearly-empty conduction band.  The minimum energy required to 

excite an electron is dictated by the energy band gap.  The loss of the electron creates a 

“hole” (the absence of a negative charge).  The electron-hole pair, characterized by a 

preferred distance known as the Bohr radius, becomes electrostatically bound, forming an 

exciton.  As the free electron loses any excess energy in the conduction band, it will drop 

to the lower energy state (valence band) and recombine with the hole.  This energy loss 

occurs in the form of light.   

When an exciton is created within a spatially confined box smaller than the Bohr 

radius, the semiconductor’s (now a quantum dot) band gap widens since it takes much 

more energy to confine the exciton.  The energy loss associated with this electron-hole 

recombination manifests itself through shorter wavelength light emission (higher energy), 

also known as a “blue shift”.  In essence, as the nanocrystal’s size decreases, the 

absorption and emission wavelengths decrease and the light emitted transforms to a bluer 

color.  This behavior is one reason why quantum dots are being explored for many 

different applications. 

The minimum energy required for creating an exciton can be attributed to the bulk 

band gap energy, �	, and the confinement energy for the charge carriers in a potential 

well.  The overall confinement energy for the exciton can then be described as the ground 

state energy for the familiar “particle in a box” system: 

�
��� 
 ��
����� (1.1) 

where � is Planck’s constant, � is the diameter and �� is the reduced mass of the exciton: 
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�
�� 


�
��

� �
��

 (1.2) 

Here, �� and �� are the effective masses for the electrons and holes, respectively.   

Another contribution to the exciton energy is the Coulombic interaction between the 

electron and the hole.  This can be written as: 

����� 
 ������
���� � (1.3) 

where � = electron charge (C), � = dielectric constant and � = permittivity constant. 

Combining Equations 1.1, 1.2 and 1.3 gives an estimate of the size-dependent energy gap 

for a quantum dot: 

�!"#$% 
 �	!&'()% � �
��� � ����� (1.4) 

� 
 �	 � ��
����� �

�����
���� � (1.5) 

This is known as the effective mass approximation [31, 39, 40, 41] and is only a first 

approximation.  Other contributions can be included that describe a more precise 

interaction, but doing so requires a more sophisticated calculation.  The approximation 

contains size dependence in both the confinement (� ��* % and Coulombic (� �%*  terms.  

For very small quantum dot sizes, the confinement term becomes the dominant term.  

Although this approximation is not valid for all semiconductors, for practical purposes, it 

is useful in estimating the size of a nanocrystal given a peak wavelength in the emission 

spectrum.  It also provides a useful qualitative understanding of quantum confinement 

effects on semiconductor nanocrystals.   
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1.2  Characterization 

 Because the purpose for fabricating semiconductor nanocrystals has been to 

exploit their size-tunable optical characteristics, the control of the photoluminescence 

properties has been a major goal for developing tailored synthetic chemistries.  These 

properties, which comprise absorption and emission, arise from interactions between 

electrons, holes and their local environments.   

 Photoluminescence spectra serve as an optical fingerprint by which the effect of 

process parameters on the size and overall intensity of quantum dots can be analyzed.  

Semiconductor nanocrystal emissions are collected in a fluorimeter and displayed as a 

peak that may be Gaussian.  The peak of the curve corresponds to the emission 

wavelength from the mean size of the nanoparticle.  The width of the peak, typically 

reported as the full-width-at-half-maximum (fwhm), is one common method used to 

evaluate the particle size distribution.  An ensemble of quantum dots is comprised of 

individual dots with slightly different electronic properties and energy levels based on the 

size [42].   This leads to inhomogeneous broadening and displays what is reasonable to 

assume as a Gaussian function [42].  Thus, the emission spectra represent size 

distributions of individual emissions.  The fwhm serves as a statistic that can accurately 

represent the size distribution. 

The excitation of an electron in a semiconductor nanocrystal by a photon 

eventually results in a loss of energy as the electron returns to the ground state from an 

excited state.  This loss of energy (deactivation) can either manifest as fluorescence 

(emission of light), non-radiative heat to the surroundings, or some other deactivation 

process.  As the size of the energy band gap increases, the fluorescence process can be 
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interrupted since the electron has to lose more energy to reach the ground state.  The 

ability for a nanocrystal to emit the photons it has absorbed is described as quantum 

efficiency.  Quantitatively, the ratio of photons emitted to photons absorbed is the 

quantum yield.  It can be determined experimentally as: 

 

 �+,��-�� 
 �+,./012,��-�� 2,./* 3145,./ 45,��-��* 36 (1.6) 

 

where �+,��-�� is the quantum yield for the nanocrystal sample; �+,./ is the quantum 

yield for a known organic fluorophore such as Rhodamine B; 2,��-��789"72,./ are the 

integrated intensities of the photoluminescence emission spectra for the nanocrystal 

sample and organic standard, respectively; 45,./789"745,��-�� are the optical densities 

of the organic standard and nanocrystal sample, respectively.   

Since the emissive properties and quantum efficiencies are affected by the particle 

size, it would stand to reason that the absorption is size-dependent as well.  This means 

that absorption depends on the energy band gap.  For a direct band gap semiconductor, 

the optical absorption near the band edge follows the equation [43]: 

 

:�; 
 <!�; � �	%= �*  (1.7) 

where : is the absorption coefficient, �; is the photon energy (� is Planck’s constant; ; = 

photon frequency (Hz)), < is a constant, and �	 is the energy band gap (eV).  This 

equation clearly shows the dependence of the band gap on the absorption properties. 
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UV-vis absorption is a useful tool for determining nanocrystal size, however, for our 

studies, we primarily focused on photoluminescence emission spectra to analyze size 

evolution. 

 The physical determination of size and approximate morphology of the 

nanocrystals can be obtained by high-resolution transmission electron microscopy 

(HRTEM).  TEM uses a beam of electrons to pass through the crystalline sample.  A 

detector collects the electrons and an image is formed, magnified and viewed on a 

phosphor screen which is coupled to a digital camera for viewing. 

 

1.3  High-temperature Water 

 One property of liquid water is that as the temperature increases, the static 

dielectric constant decreases.  Under high-temperature (T > 200 °C) conditions, water 

behaves more like a polar organic solvent than water at room temperature.  By varying 

temperature, some of the properties of high temperature water can be tuned to mimic 

those of common organic solvents which are often used as reaction mediums, as well for 

storage, and to exchange capping groups on nanocrystals.  Ambient liquid water also 

possesses a high surface tension because of the hydrogen bonding.  But, as water 

temperature increases, hydrogen bonding and surface tension become less pronounced.  

A lower surface tension increases wettability, and, when coupled with the high-

temperature water, could effectively anneal the surface of the nanocrystal and reduce the 

number of surface defects.  These attributes, coupled with its environmental benignity, 

make high-temperature water an intriguing reaction medium for the synthesis and 

processing of nanomaterials.    
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 High-temperature water has attracted a growing interest due to its applications in 

destroying toxic waste and its uses as a medium for chemical synthesis.  Hydrothermal 

synthesis methods have also been established for a variety of particulate chemistries to 

produce materials such as ceramics and catalysts.  In particular, the synthesis of 

nanocrystalline metal oxides, using high-temperature water, has been demonstrated in 

groups led by Adschiri [33, 34, 38, 44] and Arai [32, 37, 45, 46], among others.  Particle 

morphology, size and crystal structure were controlled by varying the reaction time, 

temperature and pressure [33, 34].  High temperatures also promote crystallization which 

eliminates the need for post-process annealing [47].  The results of these studies indicate 

the potential for these methods to affect the quantum behavior of semiconductor 

nanocrystals because of the controllable thermodynamic and transport properties of this 

high-temperature medium. 

 

1.4  Cadmium Selenide Nanocrystals 

1.4.1  Properties 

 Much attention has been paid to semiconductor nanocrystals such as cadmium 

selenide (CdSe), a II-VI metal chalcogenide semiconductor.  The CdSe nanocrystal has 

an interior structure and bonding identical to that of bulk CdSe.  Bulk CdSe has a band 

gap energy of about 1.74 eV at room temperature.  Its Bohr radius (size of the exciton) is 

approximately 6 nm.  A CdSe particle smaller than this will exhibit quantum 

confinement. 
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1.4.2  Synthesis 

 A number of methods that have been developed for the preparation of CdSe 

nanocrystals include photochemical [48], γ-irradiation [49], sonochemical [50] and 

solvothermal [51] methods.  While these strategies yield particulates with properties 

unique to their fabrication strategy, the best preparation technique that exhibits strong 

confinement effects comes from colloidal chemistry using molecular precursors [52].   

 The traditional synthesis of semiconductor nanocrystals based on the pyrolysis of 

an organometallic cadmium reagent in a hot coordinating solvent serves as a powerful 

means of achieving a high quality product.  The pioneers of CdSe and other nanocrystal 

synthesis are Murray et al. [18] who, in 1993, developed a robust method by injecting an 

organic cadmium reagent, with an inorganic selenium reagent, into a hot (300 C) 

coordinating solvent – tri-n-octylphosphine oxide (TOPO).  TOPO, also acting as an 

organic ligand, served two purposes – to stabilize the growth and, to some degree, 

eliminate surface defects by binding to cadmium surface sites.  Hines and Guyo-Sionnest  

[53] progressed the research more by developing a method to encapsulate a CdSe 

nanocrystal with an inorganic shell (ZnS).  This enhanced the fluorescence, thereby 

increasing the nanocrystal’s utility.  Alivisatos’ labs at the University of California, 

Berkeley, and Lawrence Berkeley National laboratory demonstrated, through numerous 

studies, that the conventional method, with some modifications, could produce high-

quality anisotropic shapes of CdSe nanocrystals [19, 20, 54, 55].  Hundreds of 

publications dealing with the various aspects of CdSe nanocrystal preparations exist, but 

the highlights of the research will be briefly described in the Literature Review section.  
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This thesis is the culmination of investigative studies of the synthesis of CdSe 

nanocrystals in high-temperature water.  The objective of our studies were to i) 

demonstrate the one-pot synthesis of CdSe nanocrystals and examine the effects of 

process variables on the size and quality, ii) modify the injection method and examine the 

effect of the method on the nanocrystal size and quality, iii) explore and quantitatively 

model the growth evolution of CdSe nanocrystals in an aqueous medium.  The thesis is 

organized as follows: 

1. Chapter 2 presents the motivation for our work; 

2. Chapter 3 describes past and present work of CdSe nanocrystal synthesis; 

3. Chapter 4 describes the experimental and analytical methods used to 

prepare and characterize our samples; 

4. Chapter 5 examines the feasibility of using high-temperature water as an 

alternative reaction medium; 

5. Chapter 6 examines the effects of process variables on the nanocrystals 

using rapid hot-injection; 

6. Chapter 7 discusses the evolution of growth of CdSe nanocrystals and 

provides some preliminary analytical framework for a kinetics study; 

7. Chapter 8 provides a summary of the investigative findings and concludes 

with thoughts on implementing future studies that can build and enhance 

present work 
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Chapter 2 

Motivation 

 

 A prerequisite for the synthesis of high-quality CdSe nanocrystals is a high-

temperature reaction medium to promote growth.   Another requirement is an organic or 

inorganic capping agent to chemically passivate the surface and mediate growth.  The 

judicious control of the competition between the temperature and capping agent will yield 

a nanocrystal with a size leading to quantum confinement as exhibited by emission 

spectra within the visible light region.  The synthetic process must also facilitate surface 

reconstruction to eliminate surface defects due to energy traps which can suppress 

emission and lower quantum yields.  These achievements have been demonstrated, with 

varying degrees of success, through the conventional organic-based synthetic routes, but 

many limitations and hindrances do exist.   

The workhorse for the benchmark organic route consists of the organic solvent  

TOPO.   It coordinates the surface of the nanocrystal, permitting slow steady growth.  

The ligands are quite bulky and present a significant barrier to bulk cadmium and 

selenium monomer as they add to the nanocrystal surface.  Additionally, the solvent 

electronically passivates the surface as the ligands terminate dangling cadmium bonds, 

reducing energy traps.  While a seemingly perfect solvent, one of TOPO’s shortcomings 

is its flammability.  The temperatures needed to produce the nanocrystals in TOPO often 
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exceed its flashpoint (180-200 °C).  Talapin et al.[1] and  Gaponik [2] cite another 

problem with the TOPO method being the irreproducibility of the growth dynamics and 

the shape of the CdSe nanocrystals because of the grade of chemical provided.  The 

impurities in technical grade TOPO have offered benefits over the pure grade [1, 3], but 

only serendipitously.  Researchers have sought to use pure TOPO and add other solvents 

in order to mimic the presence of the tech-grade impurities [3].  This method can lack  

control as the type of impurities and amounts are often not known since they are not 

deliberately added.   

Another limitation present in the original TOPO method is the use of hazardous 

precursors, in particular, dimethyl cadmium.  The range of compatible cadmium 

precursors is limited when using TOPO, thus the reason for the use of dimethyl cadmium.  

It is highly toxic and can be unstable at the high temperature required for the reactions  

[4]. 

Fatty acids, an alternative to TOPO, are the most versatile solvent/ligand [5].  A 

wider range of greener precursors are compatible with fatty acids.  Stearic acid, for 

example, promotes faster reactions, and, thus, larger nanoparticles than what are 

produced from TOPO [5].  But, the fear here may be that the nanoparticles produced by 

fatty acids will not exhibit quantum behavior [6].  Other solvents have been used to act as 

a co-solvent to TOPO or to replace it altogether with the goal of reducing hazards and 

extra processing steps [5, 7].  In spite of this “green” effort, the usage of hazardous 

chemicals continues.  And while these are used in a laboratory setting, it is hoped that 

these methods can be parlayed into high-volume process technologies.  With the goal of 
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industry cutting down on materials that burden the environment, these methods will 

simply not be feasible in the long run. 

Semiconductor nanocrystals that are synthesized in and remain in organic solvents 

are limited to opto-electronic applications.   A water-soluble nanocrystal is required to 

function in biological entities.  Many complex methods have been developed for making 

nanocrystals water-soluble that were originally synthesized in organic solvents.  Water as 

the reaction medium, at temperatures below ambient conditions (<100 °C), has been used 

with little success, resulting in very low quantum yields [8, 9]. 

While the methods outlined above represent a step forward in the right direction, 

there remains a need to find a solvent and precursors that are at least as good as in the 

traditional organometallic approach, but are safe, inexpensive and environmentally 

friendly.  An ideal synthetic route to high-quality nanocrystals would (i) reduce 

environmental and safety risks, (ii) operate with relatively small quantities of reagents, 

(iii) incorporate a single-step and scalable process, (iv) promote solubility in organic and 

aqueous matrices, and (v) facilitate a successful technology transfer.     

We propose that high-temperature water could be a medium that will offer 

tremendous opportunities as an alternative to conventional methods, which are often 

chemically complex, experimentally tedious and hazardous.  First and foremost, it is a 

benign solvent, at any temperature.  Secondly, its properties can be tuned continuously, 

and adapted to a desired process technology.  More interestingly, though, at high 

temperatures, it behaves more like a polar organic solvent, possibly enabling the use of a 

wide variety of precursors that are deemed safe.   It is the most versatile solvent 

abundantly available and could offer more process benefits than a traditional organic 
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solvent.  To date, no one has elucidated the effects of high-temperature water on the 

physical, surface and optical properties of CdSe nanocrystals synthesized therein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

23 

 

2.1  Bibliography 

 1. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly 

Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a 

Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. Nano Lett. 

2001, 1, 207-211. 

 2. Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; 

Kornowski, A.; Eychmuller, A.; Weller, H. Thiol-Capping of CdTe Nanocrystals: 

An Alternative to Organometallic Synthetic Routes. J Phys Chem B  2002, 106, 

7177-7185. 

 3. Hollingsworth, J. A. In Semiconductor Nanocrystal Quantum Dots; Encyclopedia of 

Inorganic Chemistry; John Wiley and Sons: 2007; . 

 4. Peng, X. G. Green Chemical Approaches Toward High-Quality Semiconductor 

Nanocrystals. Chem. Eur. J. 2002, 8, 335-339. 

 5. Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative Routes Toward High Quality CdSe 

Nanocrystals. Nano Lett. 2001, 1, 333-337. 

 6. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 

1996, 271, 933-937. 

 7. Qu, L. H.; Peng, X. G. Control of Photoluminescence Properties of CdSe 

Nanocrystals in Growth. J. Am. Chem. Soc. 2002, 124, 2049-2055. 

8. Deng, D. W.; Y, J. S.; Pan, Y. Water-Soluble CdSe and CdSe/CdS Nanocrystals: A 

Greener Synthetic Route. J. Coll. Int. Sci. 2006, 299, 225-232. 

 9. Rogach, A. L.; Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. "Raisin 

Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals. Chem. 

Mater. 2000, 12, 2676-2685. 

 

 

  



 

24 

 

Chapter 3 

Literature Review 

 

The synthesis of II-VI semiconductor nanoparticles has experienced an enormous 

development in the past two decades.  CdSe, in particular, has been the subject of much 

basic research into the electronic and optical properties of quantum dots.  The amount of 

literature dealing with this topic is too voluminous to review within the context of this 

dissertation.  As such, we will initially discuss the type of reaction mediums used to 

prepare the nanocrystals and the results of the effects of experimental parameters on the 

nanocrystals.  We will then focus on the works performed by researchers in their attempts 

to understand and eventually model the growth kinetics of CdSe nanocrystals.  This 

narrower focus is justified because these are the central topics of this dissertation. 

  

3.1  Reaction Solvent 

3.1.1  Organic-based Systems  

The most successful preparations that realize high quality nanocrystals with 

narrow size distributions entail the pyrolysis of organometallic precursors in hot 

coordinating solvents.  Murray et al. [1] pioneered this strategy by injecting cadmium and 

selenium precursors into a hot (300 °C) solution of tri-n-octylphosphine oxide (TOPO) 

and maintaining growth at 230-260 °C.  The TOPO served multiple crucial roles by 

acting as the reaction medium, controlling the growth process, stabilizing the colloidal 



 

25 

 

dispersion, and passivating the nanocrystal’s surface.  This strategy produced TOPO-

capped CdSe nanocrystals with a tunable size range from 1.2 – 11.5 nm.  The average 

size and the size distribution were dependent on the growth temperature, and growth 

appeared consistent with Ostwald ripening.  They assert that as the size distribution 

sharpens, the reaction temperature must increase to maintain steady growth.  Conversely, 

they add, if the size distribution broadens, the necessary temperature for slow steady 

growth decreases.  Crude estimates of the size distribution yielded an fwhm = 50 nm, but 

modulation of the reaction temperature allowed the maintenance of a narrow size 

distribution as the sample grew.  A size distribution with a standard deviation of 10%  for 

one sample with a mean particle diameter of 3.5nm was reduced to ~5% for particles with 

a mean diameter of 3.7 nm using size-selective precipitation procedures  They calculated 

a QY of 9.6% for CdSe samples with an average size of 3.5 nm.   Their work formed the 

basis of the organometallic preparative routes and they cite several advantages.  For 

instance, nucleation does not continue during the growth stage; this helps establish the 

narrow size distribution.  The higher temperatures allowed by this method enable faster 

reactions and more crystalline product due to the annealing process during the 

nanocrystal’s growth.  This can often translate to higher quantum yields.  But the 

quantum yields achieved in this strategy do not exceed 5-15% for as-prepared particles.  

The luminescent properties can be enhanced by growing a shell with a wide-band gap 

semiconductor around the bare particles.  The TOPO method, again, yields just a small 

amount of nanoparticles.  Another problem with the TOPO method is the 

irreproducibility of the growth dynamics.   
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 Adding a solvent, such as a primary amine, to TOPO has allowed researchers to 

overcome some of the disadvantages inherent in TOPO alone.  Primary amines have been 

found to provide superior passivation to bare nanocrystals, such as ZnSe [2], as they may 

provide higher capping density and boost the quantum efficiency.  Furthermore, they 

allow for a higher reaction rate than TOPO, and monodispersity can be achieved quickly 

and maintained throughout the reaction.  Knowing this, Talapin et al. [3] tried to improve 

upon the original TOPO synthesis by introducing HDA (hexadecylamine).  Exceptionally 

monodisperse samples (fwhm = 27-31 nm) were obtained, thus, the need for post-

preparative size-selective precipitation was eliminated.  The alkylamines effectively 

passivated the bare CdSe nanocrystals allowing them to reproducibly reach quantum 

yields of 40-50%.    

 Qu and Peng  [4] examined the QY of nanocrystals under various conditions in a 

solvent mixture of TOPO and HDA, as well as TOPO mixed with other amines, such as 

dodecylamine (DDA) and octadecylamine (ODA).  They performed a systematic study 

on the relationship between the optical properties of as-prepared CdSe nanocrystals and a 

variety of growth conditions.  They looked at higher wavelength (red emitting) 

nanocrystals, in particular, those that fluoresced between 600 and 650 nm.  In general, 

their results showed that the fwhm and QY were strongly affected by the initial Cd:Se 

molar ratio.  They demonstrated that an excess of either cadmium or selenium promoted 

the formation of CdSe nanoparticles with high QY.  In excess selenium the reaction 

started out focused, or with a very narrow size-distribution as determined by the small 

fwhm.  But, as the system became more cadmium-rich, the size-distribution, over time, 

began to broaden; concurrently, the quantum yield gradually increased, came to a 
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maximum, and then gradually decreased.   At a Cd:Se molar ratio of 1:1, the size-

distribution was initially broad, but quickly narrowed over time.  The QY, under these 

conditions, over time, quickly increased then decreased.   A reaction in excess cadmium 

(Cd:Se = 2:1) did not  greatly affect the size-distribution.  The QY, however, sharply 

increased, then decreased and stabilized over time. 

 The nature of the amines was found to be an important parameter in their system 

for growing nanocrystals with high quantum efficiency.  However, among the amines, 

DDA was the worst due to the limited reaction temperature range (<230 °C).  The 

reactions that took place in TOPO/ODA yielded nanocrystals with maximum quantum 

yields of 50-60% over a given time, albeit in a large excess of selenium.  HDA was the 

best amine to produce a high quantum yield at any one point in time.  A secondary amine, 

dioctylamine (DOA), had no appreciable effect on the emission properties of the 

nanocrystals produced. 

 Alternatives to TOPO have been used due to TOPO’s inherent hazards.  For 

example, Qu et al. [5] used a one-pot approach to produce CdSe nanocrystals in a fatty 

acid solvent, namely, stearic acid at a growth temperature set between 200 and 320 °C.  

Fatty acids are much less expensive and more environmentally friendly.  This solvent 

system yielded nanocrystals in a broad size range (2 to >25 nm).  They observed 

extremely fast reaction rates, compared with the traditional TOPO method, and stated that 

this solvent was ideal for synthesizing larger nanoparticles (>4 nm).  The system did 

luminesce well with a QY = 20-30%.  The QY did tend to decrease with an increase in 

particle size. 
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 Dickerson et al. [6] also noticed rapid growth of CdSe nanoparticles in a reaction 

mixture comprised of 95% stearic acid, achieving a maximum QY of about 26% at a 

temperature of 255 °C.   Nanoparticles synthesized in dodecylamine obtained a maximum 

QY of 28% at a reaction temperature of 195 °C.  In general, the evolution of the QY and 

emission peak width (fwhm) correlated more consistently with the emission wavelength 

than with temperature.  Furthermore, the nanoparticle radius was virtually unaffected by 

the initial Cd:Se ratio.  They also observed that higher selenium levels led to the 

formation of more initial nuclei. 

 Bullen et al. [7] used a non-coordinating solvent, octadecene (ODE), as their 

reaction medium and cadmium oleate as their capping agent.  Their as-prepared CdSe 

nanoparticles, grown at a reaction temperature of 265 °C, initially exhibited an fwhm of 

43 nm, but quickly narrowed to 30 nm after the first 200 seconds.  The main focus of 

their work was toward the growth kinetics of the nanoparticles and it will be referenced 

further in this chapter. 

 Asokan et al. [8] demonstrated the formation of CdSe nanocrystals using heat 

transfer fluids DTA and T66 as reaction media.  At a growth temperature of 280 °C, 

nanocrystals formed in T66 were smaller than those formed in ODE.  After 1h of growth 

at 220 °C, synthesis in DTA and T66 yielded particles with an average diameter of 2.9 

and 3.1 nm, respectively.  These sizes were slightly less than those prepared in ODE (3.1 

nm) and TOPO (4.0 nm).  The size distributions for those nanocrystals prepared in DTA 

and T66 were reported as 18% and 17%, respectively.  These are higher than those 

reported for ODE (15%) and TOPO (13%).   Although these are rather broad, they cite 

the reason for this as an artifact of TEM analysis.   An ensemble of 2.7 nm CdSe 
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nanocrystals yielded quantum yields of 3.3% and 8.4% for DTE and T66, respectively, 

lower than those for the nanocrystals prepared in ODE (11.7%) and TOPO (15.9%).  The 

fwhms for the same ensemble were estimated to be 24 and 27nm for DTE and T66, 

respectively, compared with 33 and 34 nm for ODE and TOPO, respectively.  Reasons 

for this, they cite, include differences in surface structure and no exclusion of oxygen and 

moisture during their synthesis and characterization processes. 

 The advancement of TOPO-based preparations has served as the benchmark for 

the widespread success of producing CdSe nanocrystals.   Early applications of CdSe are 

based on this strategy, such as the fabrication of a light-emitting diode and a single 

electron transistor.   But the success has, in the recent years, been tempered by the need to 

maintain environmental benignity.  As such, researchers have been motivated to develop 

alternative synthetic methods for the well-studied model system.  Peng [9], in particular, 

discussed the drawbacks to using the organometallic synthetic approach in a hot 

coordinating solvent such as TOPO, citing toxic and hazardous conditions, expensive 

chemicals and sophisticated equipment.  Additionally, this approach is not easily 

controllable or reproducible, and only preparation of cadmium chalcogenides has been 

successfully developed.   

 

3.1.2  Aqueous-based Systems 

Another method commonly used to prepare nanocrystals uses an aqueous 

medium.  Aqueous synthetic approaches are in general, simpler, less expensive, more 

reproducible, and scalable.  Moreover, water-soluble materials are required for biological 

applications.  Attempts have been made to initially prepare the nanocrystals in organic 
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media, and then manipulate the surface through ligand exchange [1, 3, 5, 10, 11] or 

application of a polymer shell [12, 13] to make it water-soluble.  But these methods 

require more chemical processing.  Researchers have investigated various types of 

precursors, stabilizers, heating technologies and other experimental parameters in 

attempts to further develop the aqueous-based method.   

Zhang and company [14] produced cubic-structured  nanocrystalline CdSe, with 

an average size of 5 nm, in an aqueous solution at room temperature.  The reaction took 

place in an excess volume of alkaline selenium solution.  This was done to prevent 

dilution of the selenium source so that selenium ion would not precipitate.  A cadmium 

complex rather than cadmium ion served as the cadmium source; the complex proved to 

be more stable, greatly reducing the byproduct of cadmium hydroxide.   A TEM image 

showed spherical but slightly agglomerated particles.  

 Xu et al. [15] produced CdSe quantum dots in an aqueous solution using a gelatin 

stabilizer at room temperature.  They observed quenched photoluminescence, suggesting 

inadequate passivation or overall low crystallinity.     

 Li et al. [16] realized highly photoluminescent CdSe nanocrystals from room-

temperature aqueous synthesis, followed by a low temperature chemical etching process.  

Prior to etching, the nanoparticles showed no photoluminescence.  The etching process 

served to eliminate surface defects, thereby increasing the quantum efficiency to as high 

as 50%.  Furthermore, they observed narrower size-distributions post-etching, with fwhm 

values as low as 30 nm, in addition to smaller size nanoparticles.  

 Sondi et al. [17] synthesized CdSe nanoparticles in the presence of aminodextran 

(Amdex) in an aqueous solution at room temperature. The Amdex served as a growth 
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stabilizer and capping agent.  They produced CdSe nanocrystals with quantum yields of 

15-16%.    They observed wider particle distribution in the presence of Amdex compared 

with CdSe prepared in the conventional TOPO method.  They attribute this to the wide 

molecular weight distribution of the polymer itself. 

 Water alone cannot provide a ligand suitable for stabilizing and/or passivating the 

nanocrystal surface.  Therefore, judicious effort must be taken to provide a ligand or 

capping agent that is soluble and can withstand the reaction conditions.  The above 

examples describe a variety of capping agents that served the researcher’s purpose.  The 

use of thiols in aqueous solutions, however, was made prominent by researchers in their 

effort for producing cadmium telluride [18], and CdS-core clusters [19]. 

Rogach et al. [20] extended the use of thiols to CdSe nanocrystal synthesis.  They 

prepared CdSe in higher temperature aqueous-solutions using various thiols as a 

stabilizer.  One preparation involved refluxing the solution for different lengths of times, 

resulting in larger nanoparticles at longer times.  They noticed that, during the heating of 

the solution, particle growth proceeded about 5 times faster in the presence of thioacid-

stabilized CdSe compared with thioalcohol-stabilized CdSe.  As a result, thioacid-

stabilized CdSe nanocrystals were larger (2.1-3.2 nm) than thioalcohol-stabilized samples 

(1.4-2.2 nm).  The CdSe samples prepared showed a quantum yield of less than 0.1%.   

Rogach  [21] later demonstrated the presence of citrate-stabilized CdSe 

nanocrystals in 70 °C water.  The QY was quite weak at 0.1-0.15%, but the size-

distribution was relatively narrow (fwhm = 30-50 nm).   

Deng et al. [22] also synthesized citrate-stabilized CdSe nanoparticles in water at 

75 C.  They incorporated a photoactivation procedure by exposing the nanoparticles to 
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ambient light for a few days, hypothesizing that this would eliminate topological surface 

defects.  They noticed a trend of increased QY with prolonged exposure to ambient light, 

reporting a final QY of 4%.  They also reported a decrease in the nanoparticle size with 

an increase in the pH, further noticing that nanoparticles prepared in a pH = 9.1 displayed 

stronger luminescence properties than those prepared at pH = 8 and 10.  They 

investigated the effects of the initial Cd:Se molar ratio on the nanoparticle properties, and 

found that the photoluminescence intensity increased as the ratio increased from 2 to 10.  

Also, the fwhm narrowed to 37 nm as the molar ratio increased.  

 Most recently, Gao et al. [23] prepared CdSe nanocrystals in water, and then 

fabricated an LED by redispersing the as-prepared nanocrystals in a surfactant to transfer 

them to an organic solvent.  They noticed that by changing the molar ratio of cadmium 

and selenium and the reflux time, different size nanocrystals were obtained.  The average 

size obtained was just under 10 nm.  Of interest were two characteristics of the integrity 

of the nanocrystal.  The photoluminescence spectra showed weak emission, but 

electroluminescence spectra displayed strong emission.  Basically, the electron transport 

inside the crystal was quite good as it served to act as an electron carrier while a polymer 

acted as an electron hole.  By applying a voltage between the two entities, an exciton was 

formed.   These results provide more substantive proof that the promise of CdSe can be 

realized as a device component when fabricated in an aqueous medium. 

 The articles above report on CdSe synthesis in water, but always at temperatures 

at or below the normal boiling point.  Quantum yields for as-prepared particles tend to be 

low, and the processes tend to involve several steps.  It is apparent that high-temperature 

synthetic strategies are an important gateway to obtaining ideal CdSe nanocrystals.  Past 
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and present day methods incorporating aqueous reaction mediums have not provided the 

high temperature required for a true crystalline product.  Nonetheless, traditional organic 

strategies are not desirable in the long run because of safety, cost, processing and 

environmental issues.  More desirable is a fully developed route that is safe, simple, 

inexpensive, and versatile.  High-temperature water has the qualities that can provide 

tremendous advantages over conventional methods. 

 Aqueous-based reactions above the boiling point (130 - 180 °C) have been 

reported for synthesis of various semiconductor nanocrystals such as CdTe [24] and CdS  

[25].  As-prepared CdTe nanocrystals prepared by Zhang et al. evolved from 2 to 4 nm 

within 2 hours of growth.  They exhibited a QY of 30% without any post-preparative 

treatment.  Liu et al. [25] prepared polymer-capped CdS nanoparticles with an average 

diameter of 8 nm and an fwhm of ~42 nm.    Qian et al. [26] prepared alloyed CdSe-CdS 

nanocrystals at a reaction temperature of 140 °C for 1 hour.  Because of the CdS shell, 

the QY measured at 25%.  They found that after a short heating time (less than 1 hour) 

the QY measured <0.1%.  The prolonging of the heating time allowed the CdS shell to 

mature on the CdSe surface.  The fwhm was about 28 nm.  They note that their method of 

heating, microwave irradiation, greatly accelerated the growth compared with 

conventional aqueous synthesis.  Other hydrothermal methods have produced 

semiconductor nanocrystals as reported by Rajamathi et al.[27] 

 

3.2  Growth Kinetics 

 One important aspect of Murray’s work with TOPO involved a temporally 

discrete nucleation event followed by relatively rapid growth from the monomers in the 



 

34 

 

solution.  This permits a controlled growth of the nanocrystals.  The challenge then is to 

understand the mechanisms behind the nucleation and growth.  Researchers have just 

recently begun to study and understand the kinetic behavior of CdSe growth under a 

variety of reaction conditions.   

Bullen et al. [7] investigated the effects of temperature and an oleic acid stabilizer 

on the growth kinetics of CdSe nanocrystals in octadecene, a non-coordinating solvent.  

They observed increasing oleic acid concentrations led to lower nuclei concentrations, 

smaller nuclei size and larger final particle size.  They also observed that at higher 

temperatures, particles nucleated with smaller radii than those present at lower 

temperatures.  This, according to them, indicated that the nucleation is faster as 

temperature increases and that growth kinetics are less strongly dependent on 

temperature.  Consequently, higher temperatures produced more nuclei. 

Peng et al. [28] discussed the focusing of size distributions and its effect on 

nanocrystal growth.  After growing CdSe nanocrystals in TOPO at 200 °C, they observed 

an initial large size distribution (~20%) for particles with an average diameter of 2.1 nm, 

and two distinct kinetic regimes.  During the first 22 minutes, the size increased rapidly 

and the initial size distribution of particles began to narrow to ~7.7% (average diameter 

of 3.3 nm).  The nanocrystals then grew more slowly and the size distribution broadened 

to about 10.6% (average diameter of 3.9 nm).  The reason for this broadening was the 

occurrence of Ostwald ripening.  Upon a second injection of precursor, the size-

distribution began to narrow and decreased to 8.7%.  They later emphasized the 

importance of maintaining a high enough precursor concentration so that the system does 

not experience Ostwald ripening which could lead to broader size distributions. 
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Qu et al. [29] introduced an in situ method for the study of the nucleation and 

growth kinetics of CdSe nanocrystals.  Their observations suggest that the growth process 

can be divided into four stages.  The first stage is the nucleation where the total number 

of particles increases as a result of nuclei forming.  The second stage shows a significant 

drop in the concentration of the particles, and a narrowing of the size distribution.  They 

contend that the decrease of the particle concentration could not be seen ex situ.  A third 

stage, the stable stage, exhibited an equilibrium between the monomers and the particles 

in solution.   The monomer concentration was close to the solubility of the particles in 

solution, so little to no growth was occurring.  The fourth stage is Ostwald ripening, and 

thus a broadening of the size distribution occurs.   

It is apparent that Ostwald ripening, although regarded as the primary means of 

growth in earlier research, is not easily controllable, and, because of recent insights in 

kinetic behavior, can possibly be avoided.  Peng, [28] above, provides one example of a 

solution to prevent Ostwald ripening from occurring.  More important, however, is 

determining where, in the kinetic regime, growth is at its optimum.  This understanding is 

crucial for the control of the growth process.  It can also serve as a conceptual framework 

for developing large-scale systems that can produce uniform particles under optimum 

conditions. 

 Dushkin et al. [30] supplied a comprehensive study of the kinetics of CdSe 

nanocrystal growth in a hot amphiphile (TOPO) matrix.  They solved kinetic equations, 

based on classical theory, to derive analytical expressions for the mean radius and 

variance of the size distribution.  They considered the growth to be a two-stage process in 

order to describe the time variation of nanoparticle size.  During the first stage, called 
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reaction-limited growth, they noticed the size of the initial nuclei rapidly increased and 

caused an exhaustion of reactants at the nanoparticle surface.  The growth also favored a 

size focusing or narrowing of the size distribution.  Further development of the 

nanocrystal followed classic diffusion-limited growth.  The size distribution began to 

broaden at this time, however, increasing in proportion to the average particle size.  Their 

theoretical model was in good agreement with their experimental observations.  They 

conclude that the reaction-limited growth is important to obtain well-defined nanocrystals 

of high quality.  Good, precise control of the nucleation process is key to reproducible 

uniform nanoparticles, but, unfortunately, how to control this process is still unknown.   

Dickerson et al. [6, 31] saw the need for developing analytical expressions that 

would yield the activation energy for CdSe growth in a given reaction solvent.   Citing 

the need for eventual commercialization as a reason for measuring activation energies, 

they developed expressions based on synthesis time, temperature and reactant 

concentration.  Their model yielded activation energies for nanocrystals prepared in 

TOPO and stearic acid.  Chapter 7 describes, in detail, the model provided by Dickerson 

and how we adapted it for our aqueous system.    
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Chapter 4 

Experimental Methods 

 

 Batch reactor studies of the effects of experimental parameters such as time, 

temperature, pH and reagent concentrations on the optical and physical properties of 

CdSe nanocrystals were performed.  Three studies were performed – a feasibility study, 

rapid hot-injection study and a kinetic study.  Analyses were performed using 

spectroscopy and electron microscopy techniques. 

 

4.1  Materials 

 The reagents used were a cadmium and selenium precursor, sodium hydroxide for 

pH adjustment, sodium citrate as a capping agent, thioacetamide as a sulfur source, and 

deionized water as the reaction medium.  These reagents were used because they were 

successfully employed to produce CdSe nanocrystals in experiments by Rogach et al.[1]  

Cadmium perchlorate (Aldrich , 99% ), N,N-dimethylselenourea (Sigma-Aldrich, 97%), 

sodium citrate tribasic dihydrate (Sigma-Aldrich, 99%), sodium hydroxide (Fisher, 0.1N) 

and thioacetamide (Sigma-Aldrich, 99+%) were used as received.    

The batch reactors comprised 3/8” stainless steel Swagelok® fittings (port 

connectors and end caps) that, when assembled, created a reactor volume of 

approximately 1.54 ml (Figure 4.1a-b).   An additional high-temperature rated bellows 

valve, attached to one end of a batch reactor, was used for the rapid hot-injection and 
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kinetics studies (Figure 4.1c).  Our heat source consisted of a fluidized sand bath (Techne 

SBL-2) fitted with a Techne temperature controller.   

 

 

 

 

 

A 

 

B 

 

C 

Figure 4.1a-c.  Graphic of the materials for the batch reactor system used for the 

syntheses.  The batch reactor consisted of 3/8” stainless steel (A) port connectors and (B) 

end caps.   A bellows valve (C) was fitted to a batch reactor for the rapid hot-injection 

study. 
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4.2  Method 

 The batch reactors were assembled and conditioned in the following manner.  

Two 3/8” inch stainless steel Swagelok caps were attached to the two ends of a 3/8” port 

connector using a vice and a wrench.  This was done so that one end would be 

permanently capped and the other end would be fitted with the compression ferrule and 

ready to receive the cap when needed.  Conditioning consisted of triple rinsing each 

reactor with acetone, followed by a rinse with deionized water.  The empty reactors were 

then capped on both ends and placed in the preheated sand bath for 1 hour at 300 °C.  The 

conditioned reactors were taken out of the sand bath, cooled and rinsed prior to starting 

the experiments.   

We examined the following process variables for the feasibility and rapid hot-

injection studies: reaction temperature, reaction time, pH, initial Cd:Se molar ratio and 

stabilizer loading.  For the kinetics study, we varied only time and temperature.  Table 

4.1 shows the range of the process variables. 

 

 Feasibility Study 
Rapid Hot-injection 

Study 
Kinetics Study 

Temperature, C 200 – 215 200 – 240  200 – 240  

Time, min 1.5 – 2.5 1 – 10   1 – 45  

pH 8 – 11 8 – 11 9 

Stabilizer 

Loading, g 

 

2.80x10
-3

 – 

1.40x10
-2

 

 

2.80x10
-3

 – 

 1.40x10
-2

 
2.80x10

-3
 

Cd:Se Molar 

Ratio 
4 – 16 4 – 40 8 

 

Table 4.1.  Range of process parameters used for the feasibility, rapid hot-injection and 

kinetics experiments.  All values are on a per reactor basis. 
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4.2.1  Feasibility Study 

Citrate-stabilized nanocrystals were prepared in the following manner (based on a 

procedure by others):  using a pipette, 5 ml of 8x10
-2

 M cadmium perchlorate dihydrate 

solution was added to 45 ml of deionized water containing 0.1 g sodium citrate.  

Different Cd:stabilizer molar ratios were obtained by adding different amounts of sodium 

citrate.  Enough 0.1 M NaOH was added to increase the pH to 9.0.  Then, 5 mL of this 

mixture was added to a glass vial.  Immediately prior to running an experiment, a 

carefully measured amount of 1x10
-2

 M N,N-dimethylselenourea solution was added to 

the cadmium/sodium citrate solution in the vial.  1.5 ml of this resulting solution was then 

transferred to the reactor which was tightly sealed.  The selenium reagent was added 

immediately before the reaction to minimize the fast oxidative loss of the selenourea.    

Adding 0.5 ml of the selenourea solution yielded a Cd:Se molar ratio of 8:1.  Different 

Cd:Se molar ratios were obtained by adding different volumes of the N,N-

dimethylselenourea.  We chose to run experiments with excess cadmium, primarily due 

to successes with a similar CdSe synthesis by Rogach et al.   The sealed reactor was 

immersed in the preheated sand bath.  After the appointed time, the reactors were 

withdrawn from the sand bath, immediately placed in a water bath at room-temperature, 

and allowed to cool for about 1 minute.  They were then opened and their contents were 

retained in glass vials and stored in a dark, cool cabinet. 

It is important to note that the temperature inside the reactor was not the same as 

the sand bath temperature in the feasibility experiments.  The synthesis took place under 

non-isothermal conditions as the batch holding times we explored (<3 min) coincided 

with the reactor heat up time.   This mode of operation was not problematic because the 
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method of heat-up yielded reproducible results.  Moreover, our goals in this work are to 

assess the feasibility of hydrothermal syntheses and to determine the effects of different 

process variables.  Non-isothermal reaction conditions do not hinder the accomplishment 

of these goals.  Figure 4.2 shows the measured temperature inside the reactor as a 

function of the time elapsed since being placed in the sand bath. 

Core-shell CdSe/CdS nanocrystals were prepared as follows (based on a 

procedure by others [1]): 15 µL of a 4x10
-2

 M solution of thioacetamide was added to an 

already-prepared solution (~1.5 mL) of CdSe nanocrystals synthesized under the base 

case conditions.    The solution was transferred to a reactor and tightly sealed.  

Subsequent steps were identical to those for synthesizing the bare CdSe nanocrystals. 
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Figure 4.2.  Reactor heat-up profile for a batch reactor in a sand bath at 200 C for 3 

minutes.    A Type-K thermocouple was inserted through a bored Swagelok reducing 

union at one end of the reactor. 
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4.2.2  Rapid Hot-injection  and Kinetics Studies 

 The procedure to prepare the reagents for this study was identical to that for the 

feasibility study up to the point of pH adjustment.  After the sodium hydroxide was added 

to the cadmium/sodium citrate solution, the reactor assembly, comprising a batch reactor 

fitted with the bellows valve, was placed in the preheated sand bath and allowed to heat 

for at least 3 minutes.  The selenourea solution, described in the feasibility section, was 

made at the last possible moment minimize reaction with the oxygen in the atmosphere.  

Once the reagents were mixed thoroughly in the glass vial, a syringe was used to 

withdraw approximately 2 ml of solution.  The contents in the syringe were immediately 

injected into the open port of the valve.  The valve was quickly closed, and the reaction 

was allowed to take place.  At the appointed time, the reactor assembly was then quickly 

withdrawn from the sand bath and submerged into an ice water bath where the reactor 

contents were allowed to cool.  The reactors were then opened and their contents were 

retained in glass vials and stored in a dark, cool cabinet to await analysis.   

Table 4.2 summarizes the quantities of materials used in the stock solutions, vials and 

batch reactors. 
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Cadmium Selenium 

Sodium 

Citrate 
Water 

Molecular 

Weight 
311.30 g 151.07 g 294.10 g 18.00 g 

Amount in 

stock solution 
0.1245 g ------ 0.1000 g 50 ml 

# of moles in 

stock solution 
4.0x10

-4
 ------ 3.4x10

-4
 ----- 

Amount in vial 4.0x10
-5

 moles 5.0x10
-6 

moles 3.4x10
-5

 moles 5 ml 

Amount in a 

reactor 
1.12x10

-5 
moles

 
 1.40x10

-6 
moles 9.52x10

-6 
moles 1.54 ml 

 

Table 4.2.  Amounts and concentrations of the cadmium and selenium precursors and the 

capping agent (sodium citrate) used for the base case synthesis for one batch reactor.  

Each was modified accordingly as process variables changed for each investigation. 
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4.3  Analysis 

4.3.1  Photoluminescence Emission 

 Spectroscopic analysis was performed on as-prepared aqueous solutions of 

nanocrystals.  Photoluminescence spectra were acquired for each sample by using a 

modular Fluorolog 3 SPEX spectrofluorimeter.  Using a pipette, the stored sample was 

placed in a rinsed 1-cm quartz cuvette.  The cuvette was placed into the sample holder.  

For all cases, the excitation wavelength was programmed to 380 nm and emission was 

monitored from 400 to 750 nm.  After the scan was completed, the fwhm of the spectrum 

was obtained by using the fluorimeter’s Datamax software built-in statistical analysis.   

 

4.3.2  Absorption 

 Absorption spectra were acquired on a HP8453 diode array Hewlett-Packard 

spectrophotometer with a cell temperature of 25 °C.  Using a pipette, the stored sample 

was placed in a clean 1-cm quartz cuvette.  The instrument software was programmed to 

run in manual mode at fixed wavelength.  This allowed us to readily examine the 

absorbance at desired wavelengths.  Prior to data acquisition, a blank was used to 

calibrate.  The cuvette full of sample was loaded into the sample holder and the data 

acquisition proceeded.   

 

4.3.3  Quantum Yield 

 Determining absolute quantum yields (QY) are difficult, but one can find the 

relative quantum yield of a sample in reference to a standard.  In order to calculate an 

accurate quantum yield, it is necessary to avoid high concentrations of sample solution 
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which can give rise to multiple scattering processes.  The standard and sample solutions, 

therefore, need to be diluted.  For our samples, a Rhodamine B standard was used as our 

organic standard.  The diluents used were ethylene glycol and deionized water for 

Rhodamine B and the CdSe samples, respectively.  Our goal was to obtain an absorption 

of .08 at an excitation wavelength of 380.   We began by diluting Rhodamine B with 

ethylene glycol and loading into a 1-cm quartz cuvette.  We selected a fixed wavelength 

of 380 nm then followed the procedure described for the UV-vis absorption analysis.  We 

repeatedly diluted each analyzed solution until the absorption was .08, or slightly less, for 

a wavelength of 380 nm.  We then proceeded to collect fluorescence data for the diluted 

standard by following the procedure described for acquiring photoluminescence emission 

spectra.  Once the data for the Rhodamine B was collected, we proceeded to collect the 

data for the CdSe sample by following the procedure used for Rhodamine B.  Our only 

difference was the use of a different diluent which was deionized water rather than 

ethylene glycol.   

 After the data was collected, we used Equation (1.6) to determine QY.  We 

obtained the integrated intensities of the photoluminescence spectra from the 

fluorimeter’s Datamax software built-in statistical analysis. 

  

4.3.4  TEM 

 High-resolution transmission electron microscopy was performed on a JEOL 

3011 HRTEM microscope operating at 300 kV.  Samples were prepared by drying a drop 

on a 300 mesh copper grid pre-coated with thin hole-y carbon film.  Images were 

recorded on a Gatan 794 slow scan CCD TV system. 
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Chapter 5 

Feasibility Study 

 

 In this chapter, we test the hypothesis that the synthesis of CdSe nanocrystals in 

high-temperature water will yield nanocrystals that exhibit quantum behavior.  This will 

be defined by a blue shift of the photoluminescence emission.  We will also verify the 

presence of nanocrystals through TEM.  We will test the quality of the CdSe nanocrystals 

by calculating a quantum yield.      

 

5.1  Introduction 

The purpose of the feasibility study was to conduct exploratory research on the 

viability of high-temperature water as a possible reaction medium for the preparation of 

CdSe nanocrystals.  A previous aqueous-base synthesis method [1] which we adapted 

used a conventional microwave oven as a heat source which provided, on average, a 

temperature of 70 °C.  As noted in a previous chapter, higher temperatures tend to 

provide higher quality nanoparticles.  Therefore, the goal of this chapter is to provide the 

results of a baseline study of CdSe preparation as an extension of previous work to higher 

temperature realms not yet studied. 
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5.2  Experimental Methods 

We conducted experiments in stainless steel batch reactors as described in 

Chapter 4.   All analytical methods used for this study include spectroscopy and TEM, 

descriptions of which are in Chapter 4.  All emission data is displayed as normalized 

curves to show only the effect of the experimental conditions on the peak wavelength.   

 

5.3  Results and Discussion 

5.3.1  Base Case Synthesis 

 We chose � = 200 °C, > = 1.5 minutes, a Cd:Se ratio of 8:1, a Cd:stabilizer ratio 

of  1.04 and a pH of 9 as the base case conditions for our experiments. Figure 5.1, which 

shows the emission spectrum from particles synthesized at these conditions, reveals a 

blue shift from the bulk band gap (~700 nm).  This shift indicates the existence of 

quantum confinement in the nanoparticles.  The presence of a strong, single peak 

indicates that CdSe is the only nanoparticle being synthesized.  If any by-products are 

formed, they are irrelevant, and are most likely not in the form of a nanocrystal.  

 The wavelength at which the peak maximum occurs (λmax) is related to the mean 

size of the nanoparticles.  Smaller particles emit at shorter wavelengths.  Thus, one can 

use λmax as an indicator of the mean particle size.   Our λmax of 579 nm represents a mean 

particle size of approximately 5 nm, as confirmed by HRTEM.  Rogach et al. 

demonstrate CdSe particles synthesized at 3 and 5 nm, corresponding to approximate 

peak wavelengths of 560 and 580 nm, respectively [1]. 
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Figure 5.1.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water under base case conditions.   
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The full-width-at-half-maximum (fwhm), which is related to the particle size 

distribution, was calculated from the emission spectrum.  The fwhm values provide 

information about the sample’s monodispersity.  An fwhm value of ≤40 nm represents a 

narrow size distribution  [2, 3].   The fwhm for the base case product was 36 nm.   

 To verify the reproducibility of the synthesis, we performed additional 

independent experiments at the base case conditions.  The mean value determined for 

λmax is 579 ± 5 nm.  The mean value for fwhm is 37 ± 0.5 nm.  The uncertainties are the 

standard deviations.   Given these results, we conclude that the method is reproducible. 

Figure 5.2, an HRTEM image of particles obtained at these base case conditions, 

further supports the presence of CdSe quantum dots.  These images show particles on the 

order of about 5 nm diameter.   

The quantum yield of the particles produced in this base case was 1.5%, which is 

lower than quantum yields of 10-30% for particles synthesized in organic media [4, 5, 6].  

The yield is lower in our experiment, possibly due to weak passivation by sodium citrate 

and potential CdSe corrosion due to active oxygen species.  As we will report in a later 

section, the quantum yield can easily be improved by capping the particles with a CdS 

shell in a subsequent hydrothermal treatment.  It is also very likely that CdSe with a 

higher quantum yield can be synthesized hydrothermally by heating the aqueous reaction 

medium before adding the inorganic reactants.  This approach would more closely mimic 

that used with organic media, and it would allow the particle growth to occur entirely at a 

high temperature.   
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Figure 5.2.  HRTEM image of CdSe nanocrystals synthesized in high-temperature water under 

base case conditions. 
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5.3.2  Effect of Temperature 

We explored the effect of temperature within a range of 200 – 215 °C.  All other 

variables remained at their base case values.  Figure 5.3 shows normalized emission 

spectra for CdSe crystals synthesized at different temperatures.  Table 5.1 provides a 

summary of the effect of reaction temperature on λmax and fwhm.  The graphic indicates 

that as the temperature increases, the nanocrystal size increases.  At the higher 

temperatures, a cloudy, brownish product was observed, suggesting the presence of larger 

CdSe particles with bulk properties.   

The fwhm is 36, 37, 39 and 39 nm for the particles synthesized at 200, 205, 210 

and 215 °C, respectively.  There is a very modest upward trend in these values, but the 

increase may be within the bounds of experimental error.  Though we cannot completely 

rule out the existence of a relationship between temperature and particle size distribution, 

the relationship is a weak one if it indeed exists. 
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Figure 5.3.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different sand bath temperatures. 

 

 

T, °C λmax, nm fwhm, nm 

200 579 36 

205 582 37 

210 589 39 

215 603 39 

 

Table 5.1.  A summary of the effect of temperature on the PL emission peak (����) and 

size distribution (fwhm). 
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5.3.3  Effect of Batch Holding Time 

We next focused on the batch holding time.  In general, one expects the size of the 

nanocrystal to increase with increasing reaction time as more material adds to its surface.   

Figure 5.4 shows emission curves for particles synthesized at the same temperature and 

Cd:Se ratios, but batch holding times increasing in 30 second increments.  Table 5.2 

shows the relationship between the batch holding time and the nanocrystal’s properties, 

λmax and fwhm.   As expected, the nanocrystal’s size (as inferred from λmax) increases as 

reaction time increases.  The increase in λmax with each additional 30 sec of reaction is 

about the same for all peaks except for those from the runs at 1.5 to 2.0 minutes.  There is 

a larger gap between these two curves.  A replicate set of experiments exhibited the same 

gap.  The precise reason for this gap is not clear, but it seems there may exist a nucleation 

and/or growth process that is sensitive to the higher average reactor temperature in the 

two-minute experiment.   

The fwhm values (34, 34, 36, 36 and 36) are all about the same for the different 

synthesis times.  These experiments suggest that the size distribution is not affected much 

by the reaction time.   
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Figure 5.4.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different batch holding times.  
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t, min λmax, nm fwhm, nm 

0.5 561 34 

1.0 567 34 

1.5 579 36 

2.0 613 36 

2.5 619 36 

 

Table 5.2.  A summary of the effect of reaction time on the PL emission peak (����) and 

size distribution (fwhm). 
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5.3.4  Effect of Cd:Se Molar Ratio 

A few previous studies showed that the precursor ratios can dramatically 

influence the behavior of CdSe synthesis [7, 8, 9].  Donega et al.  [8] and Peng [7]  both 

concluded that an excess of Se, in addition to the judicious choices of other parameters, 

yields highly luminescent and nearly monodisperse nanocrystals without any 

postpreparative treatment.  It must be noted, however, that these two studies involved 

organic-based systems.   No studies exist on the influence of Cd:Se ratio during 

hydrothermal synthesis of the nanocrystals.   

Figure 5.5 shows that λmax increases as the Cd:Se ratio increases.  Table 5.3 

provides a summary of the effect of Cd:Se molar ratio on the λmax and fwhm trends.  This 

trend indicates that the mean particle size likewise increases.  The fwhm of the spectra 

decreases from 39 to 36 to 32 nm as the Cd:Se ratio increases from 4:1 to 8:1 to 16:1.  

This trend suggests that the size-distribution narrows as the Cd:Se ratio increases, under 

the base case conditions for temperature and time, similar to the data previously obtained 

for microwave synthesis of CdS [10]. 
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Figure 5.5  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different Cd:Se molar ratios. 

 

 

Cd:Se λmax, nm fwhm, nm 

4 560 39 

8 579 36 

16 589 32 

 

Table 5.3.  A summary of the effect of the Cd:Se molar ratio on the PL emission peak 

(����) and size distribution (fwhm). 
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5.3.5  Effect of pH 

Basic conditions facilitate the coordination of the sodium citrate stabilizer to the 

cadmium ion.  We wanted to learn the effect of pH on the average particle size during 

hydrothermal synthesis.  Figure 5.6 shows that the more basic the environment, the 

smaller the nanocrystal.  Table 5.4 summarizes the effect of pH on λmax and fwhm.  This 

result is reasonable because as the coordination between the citrate and cadmium ion 

strengthens, the particles will become more stabilized and less likely to add more 

material.  The fwhm steadily increases with pH.  The values were 34, 36, 37 and 43 nm at 

a pH of 8, 9, 10 and 11, respectively.  These results indicate that the particle size 

distribution broadened as the pH increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

64 

 

 

Figure 5.6.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different pHs.  

 

 

pH λmax, nm fwhm, nm 

8 582 34 

9 579 36 

10 572 37 

11 562 43 

 

Table 5.4.  A summary of the effect of pH on the PL emission peak (����) and size 

distribution (fwhm). 
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5.3.6  Effect of Stabilizer Loading 

The sodium citrate stabilizer helps to control the size of the nanocrystal.   The 

literature suggests that using larger amounts of stabilizer would yield smaller 

nanocrystals [11].  We observed an opposite trend.  Figure 5.7 shows that λmax decreases 

(smaller particles) as the amount of stabilizer decreases (increasing Cd:stabilizer ratio).  

Being surprised by this result, we repeated the experiments.  Precisely the same trend was 

observed in the replicate runs.  Therefore, we believe the effect in Figure 5.7 is real and 

cannot be attributed to random error.  This unexpected result may indicate that the 

nucleation and growth processes in this system somehow differ from those in other 

systems previously explored.  Clearly, further research is warranted to understand the 

effects of the sodium citrate stabilizer on the nanocrystal growth rate.  Unlike the mean 

particle size, the range of the size distribution is virtually unaffected by the increase in 

stabilizer loadings.  The fwhm values were 36, 35, 35 and 36 at the four different 

Cd:stabilizer ratios.  Table 5.5 shows the summary of the effect of stabilizer loading on 

λmax and fwhm. 
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Figure 5.7.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different stabilizer loadings. 

 

 

 

Cd: stabilizer 

ratio 

Stabilizer 

amount, g 

λmax, nm fwhm, nm 

1.18 0.1 579 36 

.59 0.2 589 35 

.39 0.3 599 35 

.27 0.4 614 36 

 

Table 5.5.  A summary of the effect of the Cd:stabilizer molar ratio on the PL emission 

peak (����) and size distribution (fwhm). 
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5.3.7  Improving Quantum Yield 

The addition of an outer shell layer to CdSe nanocrystals is  known to improve the 

quantum yield.  For example, the methods of Rogach et al. for low-temperature aqueous 

phase synthesis increased the quantum yield from 0.15 to 4.2%  by adding a layer of CdS 

[1].  The shell serves to passivate the crystal’s surface, decreasing the number of defects 

that a bare crystal tends to possess.  The quantum yield in the present experiments 

increased from 1.5% (base case) to approximately 7% by adding a CdS shell.  This result 

shows that CdSe nanoparticles with quantum yields of at least 7% can be prepared from 

the one-pot hydrothermal synthetic methods we described herein.   

 

5.4  Summary 

 The one-pot synthesis of CdSe nanoparticles in high temperature water has been 

demonstrated for the first time.  Hydrothermal synthesis at T=200 °C, Cd:Se=8:1, t=1.5 

minutes produced CdSe nanocrystals that exhibit quantum confinement behavior as 

characterized by the blue shift of a strong emission peak and the ability to fluoresce.  The 

nanoparticle size and overall size distribution depended on the reaction temperature, 

batch holding time, Cd:Se molar ratio, pH and Cd:stabilizer ratio.  The size increased 

with an increase in reaction temperature, time, stabilizer concentration and Cd:Se ratio 

and, a with a decrease in pH.  This trend with the stabilizer loading was unexpected.  It 

suggests that this hydrothermal synthesis method may provide new opportunities to 

engineer nanoparticle production systems.  It also suggests that the chemistry of CdSe 

nanoparticle synthesis in HTW might differ from that in coordinating organic solvents.   
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The quantum yield proved to be low for the base-case CdSe crystals.  The 

addition of a CdS shell, which can be done easily in HTW, increased the quantum yield 

to approximately 7%.  The low quantum yield for the bare particle (1.5%) could be a 

result of allowing both nucleation and growth to occur together in the reactor system.  

One potential remedy is to develop a method of injecting the molecular precursors into 

preheated high temperature water. 
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Chapter 6 

Rapid Hot-injection Method 

 

 In the previous chapter, we demonstrated the formation of CdSe nanocrystals 

using high-temperature water as a reaction solvent.  But, we speculated that the 

nucleation and growth dynamics were not conducive to creating high-quality 

nanocrystals. In this chapter, we test the hypothesis that by using a rapid hot-injection 

method similar to convention, we will be able to affect nucleation and growth dynamics, 

possibly separating the two more than what the previous method allowed.    

 

6.1 Introduction 

 The upsurge in the study of CdSe nanocrystals began with the trailblazing work 

performed by Murray et al. where high quality nanocrystals were obtained, not only due 

to reaction conditions, but, in part because of the synthetic route.  Their synthesis began 

with the injection of a cold precursor solution into a hot reaction solvent, causing the 

formation of nuclei.  Because the solvent temperature dropped, the formation of new 

nuclei ceased, and the system contained relatively monodisperse nuclei and enough free 

cadmium and selenium ions to establish a slow growth at a temperature lower than the 

injection temperature.  Researchers [1, 2, 3, 4, 5, 6, 7] later adapted the Murray method, 

producing nanocrystals with various physical attributes.   Murray et al. set the precedent
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for a requisite strategy for obtaining high-quality, uniform nanocrystals: the separation of 

nucleation and growth.  The adoption of separate nucleation and growth events as an 

important concept in nanocrystal synthesis was made possible from the work performed 

by LaMer and Dinegar [8].  They showed that a monodisperse preparation of colloids 

was best achieved by producing just one “brief outburst” of nuclei, leaving enough free 

monomer to then produce growth by diffusion.   This outburst was consistent with 

classical nucleation theory which states that under a condition of supersaturation and thus 

high free energy, clusters of monomer can form as a means of relieving the energy.  

Murray et al. [9] believed that the temperature of the solution was sufficient to 

decompose the reagents and, upon injection, form a supersaturated solution.  The 

resulting high free energy was relieved by nucleation of nanocrystals wherein the 

concentration of the monomer dropped below a critical concentration required for 

nucleation.  Growth was then allowed on existing nuclei, the rate of which depended on 

the temperature.   

Donega et al. [10] evaluated the phenomenology of nucleation within the 

framework of the rapid hot-injection method.   They concluded that while it is doubtful 

that the classical theory can be quantitatively applied to the formation of nuclei in the 

hot-injection method, it can provide a qualitative basis for it.  Their explanation is in 

agreement with Murray’s.
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Our hot-injection method is different from convention in that we do not inject a 

cold fluid into a hot fluid, but, rather, into a hot metal chamber.  The cold fluid comes 

into immediate contact with a metal surface, much like pouring cold water into a hot pan 

on the stove.  When this occurs, there is an instantaneous formation of bubbles.  It could 

stand to reason that similar bubbles form when injecting the cold precursor solution into 

the hot reactor, and the bubbles themselves serve as nucleation sites.  So, while we do not 

affect the saturation limit of the precursor solution, we may provide an opportunity to 

induce nucleation due to the temperature differential. 

 

6.2 Experimental Methods 

 We conducted experiments in stainless steel batch reactors fitted with a high-

temperature rated bellows valve as described in Chapter 4.   All analytical methods used 

for this study include spectroscopy and TEM, descriptions of which are in Chapter 4.  All 

emission data is displayed as normalized curves to show only the effect of the 

experimental conditions on the peak wavelength. 

 

6.3 Results and Discussion 

6.3.1 Base Case Synthesis 

 

The following conditions were chosen as a base case:  � = 200 °C, > = 2 minutes, 

?@ = 9, Cd:stabilizer molar ratio = 1.18, Cd:Se molar ratio = 8:1.  Similar to what was 

observed in the feasibility study, the emission spectrum does undergo a blue shift from 

the bulk band gap (~700 nm), indicating the existence of quantum confinement.    



 

73 

 

 

Figure 6.1.  Normalized PL peak spectra for CdSe nanocrystals synthesized in high-

temperature water using the rapid hot-injection (base case conditions) and cold injection 

(conditions identical to those for rapid hot-injection) methods.  
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The mean size of the nanocrystals formed by the rapid hot-injection method is smaller 

(λmax = 563 nm) than that formed by the method conducted in the feasibility study under 

the same conditions (λmax = 613 nm) (Figure 6.1).  An analysis by HRTEM (Figure 6.2) 

confirms that the mean particle size (about 3.5 nm) is indeed smaller.  The cold-injection 

method yielded a mean particle size of approximately 5 nm based on HRTEM.  The sizes 

were also determined by using the effective mass approximation and were calculated to 

be 4.9 nm for the rapid hot-injection study and 5.2 nm for the feasibility study.   The 

effective mass approximation, although not precise for small nanocrystals, does confirm 

the effects of quantum confinement and the rapid hot-injection method producing smaller 

particles.      

For the base case, repeat experiments resulted in an average λmax of 557 A76.5 nm, 

where the uncertainty is the standard deviation.  We did not repeat experiments for all 

conditions, but the standard deviation observed at the base case likely applies to the other 

experiments that were conducted. 

The fluorescence intensity of the nanocrystals formed under the rapid hot-

injection conditions is a little more than half of that formed under the cold-injection 

method (Figure 6.3).  Nakamura prepared CdSe in a microflow reactor and observed 

weak intensities by the smaller particles [11].     
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Figure 6.2  HRTEM image of CdSe nanocrystals produced by rapid hot-injection under 

base case conditions. 



 

76 

 

 

Figure 6.3.  Fluorescence intensities for CdSe nanoparticles synthesized in high-

temperature water using the rapid hot-injection and cold injection methods.  The spectra 

represent base case conditions. 
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  The full-width-at-half-max (fwhm) was determined from the emission spectrum 

to be 35 nm.  The fwhm for the nanocrystals formed under the cold-injection method with 

the same conditions is 36 nm.  There does not seem to be any difference in the degree of 

monodispersity for the two methods.  For the base case, repeat experiments resulted in an 

average fwhm of 35.7 A71.1 nm.  Again, this measure of the random error is likely 

applicable to all other experiments that were conducted.  Since a narrow size distribution 

can be defined as fwhm ≤ 40 nm [9], we can conclude that the base case for rapid hot-

injection has a rather narrow size distribution. 

The quantum yield for the base case was calculated to be 0.99 %.  This is not 

much different from the quantum yield calculated for the base case under the cold-

injection method (1.5%), even though the batch holding times are different (2 minutes for 

rapid hot-injection vs. 1.5 minutes for cold-injection).  The presence of the weaker 

emission also supports the lower quantum efficiency, which may arise from either 

inadequate surface passivation or deep trapped emission due to surface defects.  It is 

easier to tune the particle properties by modifying the surface via passivation, something 

we investigated and will discuss later. 

 

6.3.2 Effect of Temperature 

 

The temperature dependence of nanoparticle size and quality was investigated for 

a range of 200 – 240 °C.  All other variables remained at their base case values.  

Normalized PL emission profiles are displayed in Figures 6.4 and 6.5.  Table 6.1 shows 

the fwhm and quantum yield for the particles obtained at each temperature.  

                  



 

78 

 

Figure 6.4.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different sand bath temperatures. 
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Figure 6.5.  Profile of peak intensities for CdSe nanocrystals synthesized in high-

temperature water at different sand bath temperatures. 

 

 

T, °C λmax, nm fwhm, nm QY, % 

200 563 35 .99 

210 566 38 5.7 

220 565 37 5.5 

230 567 37 5.3 

240 565 37 4.9 

 

Table 6.1.  A summary of the effect of temperature on the PL emission peak (����), size 

distribution (fwhm) and quantum yield (QY). 
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The temperature seems to have very little effect on the particle’s mean size, as 

indicated by the small differences in the λmax values.  A temperature range of 40 °C 

resulted in a λmax range of only 4 nm, which is definitely within the experimental 

uncertainty of ±6.5 nm.  It should be noted that we were able to explore a much wider 

range of temperatures with the rapid hot-injection method, as the final product did not 

convert to bulk cadmium selenide.  The highest temperature for the cold-injection method 

was 215 °C as this was a temperature that would still yield cadmium selenide 

nanocrystals in the time scale we could investigate experimentally.  With a temperature 

range of 15 °C, we observed a 20 nm range in λmax.     

Though the temperature does not affect the nanocrystal’s size for the rapid hot-

injection method, we recognize that the reaction time was only two minutes.  It is 

possible that this reaction time may be too short to exhibit any significant growth.  It is 

also possible that the rapid-injection method may have contributed to this phenomenon 

because of the nucleation.  Dushkin et al. [12] assert that the nucleation event can, and 

does, define the subsequent growth behavior.  Bullen et al. [4] studied nucleation and 

growth of CdSe nanocrystals in a non-coordinating solvent, observing effects of 

temperature, among other variables.  They observed smaller nuclei and final particle sizes 

as the temperature increased.  They suggest that at higher temperatures, nucleation events 

are faster, nuclei concentration increases and growth kinetics are less strongly dependent 

on temperature.  This scenario may help explain the results we obtained.  As the 

concentration of CdSe nuclei increases with an increase in temperature, the availability of 

monomer decreases.  With a lack of material to add to existing nuclei, further growth is 

slowed tremendously. 



 

81 

 

Table 6.1 shows that the temperature has very little effect on the size distribution 

within the experimental temperature range, or, on the quantum yield.  The quantum yield 

for T = 200 °C is considerably lower than those for the remaining temperatures.  It is 

important to note that this rapid injection method did achieve quantum yields much 

higher than those obtained for the base case from the previous method (QY = 1.5%).  

Although we did not calculate quantum yields for all cases in the cold-injection method, 

it is likely that the yields would not have increased with an increase in temperature since 

the nanoparticle size increased dramatically.   

It has long been recognized [9, 13] that the growth stage following a nucleation 

event, if controlled, can increase the quantum yield due to thermal annealing.  It is 

believed that the growth of the nanoparticle allows the surface to restructure through the 

addition of material.  The surface can reorganize by adding ligands needed to passivate 

dangling cadmium ions and eliminating trapped surface charges to allow for proper 

electron-hole recombination. Because we observed no appreciable increase in the mean 

size of the nanocrystal at higher temperatures, we would not expect the quantum yield to 

change very much with temperature.   The temperature increase may have only served to 

create additional nuclei, thereby influencing the physical properties of the system, rather 

than the nanoparticle’s surface properties.  This scenario is consistent with the quantum 

yields at 210 – 240 °C in Table 6.1 being essentially independent of temperature.  This 

does not explain the sudden increase in quantum yield from T=200 °C to the higher 

temperatures.   

 



 

82 

 

The general trend observed in relation to temperature and nanocrystal intensity 

was that the highest reaction temperature yielded the brightest nanocrystal (Figure 6.5).  

We believe that this is due to thermal annealing of the surface. 

The temperature of the system is crucial in the overall growth and final size of 

CdSe nanoparticles, especially under the rapid injection method.   Murray et al. pioneered 

this method, which involved injection of a cold fluid into a hot solvent.  The injection led 

to the instantaneous formation of CdSe nuclei.  The subsequent drop in temperature, due 

to injection of the cold precursor solution, helped to prevent formation of new nuclei. 

Consequently, a manual increase in the temperature led to a slow growth of the 

nanoparticles.  One difference in our system is that we did not inject the cold precursor 

solution into a hot solvent, but rather into a hot empty metal reactor.   We speculate that   

a nucleation event was induced simply because of the temperature.  The reactor     

temperature probably decreased upon injection which limited nucleation.  As for the 

growth, it occurred at roughly the same temperature as the injection.  Based on the 

success of others’ hot-injection synthetic routes, we hypothesize that nucleation and 

growth were more discrete events  in this hot-injection method than in the injection 

method discussed in the previous chapter.  

 

6.3.3 Effect of Reaction Time 

Time, as a synthesis condition, has been studied to assess its effects on 

nanoparticle size and overall quality.  With all other parameters remaining constant, we 

should expect the size of the nanocrystals to increase with an increase in reaction time.  

This is because more material is allowed to add to existing nanoparticles.  Figures 6.6 and 
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6.7 show the temporal evolutions of nanoparticle size (as inferred from λmax) and 

intensity in a time range of 10 minutes from synthesis at 200 °C.  As indicated by the 

increase in λmax, appreciable growth occurs within the entire 10 minute time span.   

We observed no consistent trend in the peak intensity.  The base case time of 2 

min exhibits the largest intensity.  There seems to be an alternating increase/decrease in 

intensity as the time increases.   
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Figure 6.6.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different reaction times. 
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Figure 6.7.  Profile of PL peak intensities for CdSe synthesized in high-temperature water 

at different reaction times. 
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Table 6.2 shows the effect of reaction time on λmax , the fwhm, and the quantum yield.  

The fwhm values show a modest change, with the largest value at 4 minutes and at 8 

minutes.  It is unclear whether there is a true increase in fwhm from > = 1 to 4 minutes 

and then a decrease from > = 4 to 10 minutes.  It does appear that the smaller fwhm 

values correlate with the lower quantum yields.   

 

 

 

 

t, min λmax, nm fwhm, nm QY, % 

1 555 35 1.1 

2 563 35 0.99 

4 566 40 1.7 

6 572 36 1.1 

8 579 40 1.3 

10 589 33 0.71 

 

 

Table 6.2.  A summary of the effect of reaction time on the PL emission peak (����), 

size distribution (fwhm) and quantum yield (QY). 
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 The feasibility study and this study did reveal similar trends (increase in time 

yielded an increase in size), but we did find that this study produced smaller 

nanoparticles.  For the feasibility study, a 2.5 min reaction time span produced 

nanoparticles with λmax = 619 nm.   An increase in time (>  ≥ 3 min) resulted in brownish-

red precipitate forming, indicating larger bulk CdSe particles.  For the rapid hot-injection 

study, we were able to react for 10 minutes and produce nanoparticles with a λmax = 589 

nm.   This outcome may be a function of the synthesis method as we allowed contact of 

the cold precursor solution with a hot metal surface.  Small bubbles may have formed on 

the surface of the reactor, acting as the sites for nuclei on which the bulk material would 

grow.  

We did not observe any effect of time on the fwhm for the feasibility study and 

we are reluctant to declare the existence of any trend under the rapid hot-injection 

method.  Even when we have assumed, from the base case, that a 95% confidence 

interval of ± 1.1 nm can be applied for all of our experiments, we still cannot conclude 

that the initial increase in the fwhm followed by the decrease may in fact be real.    

An increase in the reaction time will increase the size of a nanoparticle since there 

is more time for material to move from the bulk to the nanoparticle’s surface.  This 

observation was also apparent in the feasibility study and is not a new concept.  Since 

nanoparticle size is the most important physical attribute, the application of time, in the 

context of nanoparticle synthesis, is useful when analytical expressions can be derived 

and used to describe the evolution of nanocrystal growth.   We will discuss, in more 

detail, the aspect of time in regards to the growth kinetics in Chapter 7. 
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6.3.4 Effect of Cd:Se Molar Ratio 

Since the surface of the nanocrystal plays such a crucial role in affecting the 

overall quality of the nanocrystal, a systematic control of the ratio of metal precursors 

could in turn control and improve the photoluminescence qualities  [13].  Figures 6.8 and 

6.9 show normalized emission spectra and a profile of peak intensities for CdSe 

nanocrystals synthesized at 200 °C and different Cd:Se molar ratios.   Table 6.3 further 

shows the effect of the different molar ratios on the fwhm and the quantum yield.   

Our results reveal that the initial Cd:Se molar ratio is a determining factor for the 

emission properties of the synthesized nanocrystals.  The size and quantum yield trends 

were strongly correlated with the increase in the Cd:Se molar ratio.  Figure 6.8 reveals a 

decrease in nanoparticle size as the Cd:Se molar ratio increases.  This is expected with 

our system since we did not change the number of cadmium ions for each experiment.  

Thus, the Cd:stabilizer molar ratio remained constant.  We did vary, however, the 

selenium concentration.  With less selenium monomer available for particle growth, the 

size of the nanoparticle should decrease. 

Table 6.3 shows that while the fwhm is virtually unaffected by the initial Cd:Se 

ratio, the quantum yield increases.  It is possible that with fewer dangling Se bonds, fewer 

trapped emission sites exist, thereby increasing the quantum yield [6, 14]. 

Our results are in stark contrast to those produced from the cold-injection method, 

where a more cadmium-rich environment yielded larger nanocrystals.  The cold-injection 

method most likely promoted Ostwald ripening.   With decreasing amounts of selenium 

monomer, the critical particle size required to maintain equilibrium increased so any 

particles that remained in solution were at least slightly larger than the critical size.  Peng 
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et al. [3] even discuss the importance of injecting additional monomer in order to shift the 

critical particle size of the nanoparticle back to a smaller value.   

 The rapid hot-injection method may have allowed for instantaneous formation of 

nuclei, but subsequent growth may have been hindered, possibly due to cadmium-citrate 

complexes slowing the rate of additional selenium monomer.  At a molar ratio of 40:1, 

selenium monomer may have been virtually unavailable for further growth.   
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Figure 6.8.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different Cd:Se molar ratios. 
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Figure 6.9.  Profile of peak intensities for CdSe nanocrystals synthesized in high-

temperature water at different Cd:Se molar ratios. 
 

 

 

Cd:Se λmax, nm fwhm, nm QY, % 

4:1 568 34 .05 

5.7:1 566 34 2.2 

8:1 563 35 .99 

16:1 553 34 3.9 

40:1 543 35 4.9 

 

Table 6.3.  A summary of the effect of the Cd:Se molar ratio on the PL emission peak 

(����), size distribution (fwhm) and quantum yield (QY). 
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  Numerous researchers have studied the characteristics of CdSe grown in excess 

selenium [6, 13, 15].  A selenium-rich environment promoted a faster nucleation process, 

higher quantum yields and narrower size distributions.  Conversely, cadmium-rich 

systems resulted in fewer nuclei formed, slow nucleation, and low quantum yields  [6].  

We did not carry out experiments in excess of selenium because the selenium precursor 

reacted with oxygen from the air.  In spite of this limitation, our results do show that the 

surface chemistry, as modified by the changing the Cd:Se molar ratio, is indeed a major 

influence of the nanoparticle’s quality.  These parameters had the most dynamic affect on 

the quantum efficiency.   

 

6.3.5 Effect of pH 

 The results obtained from experiments using the cold-injection method showed 

that a higher basicity yielded smaller particles.  We observed a similar trend for the rapid 

injection method (Figure 6.10).  The emission peak from nanoparticles synthesized (200 

°C) at a pH of 7 is much less defined in the rapid injection method, primarily due to the 

extremely weak intensity (Figure 6.11).   Nanoparticles synthesized at higher pH values 

exhibit more intense emission and do generate well-defined peaks.  The nanoparticle size 

decreases from the base case condition (pH = 9) as pH increases and yields more intense 

emission spectra.  Additionally, the quantum efficiency increases with the increase in pH 

from the base case condition.  

 Our results imply that, in the presence of increased alkalinity, cadmium citrate 

complexes are more strongly bound, stabilizing growth (smaller nanocrystal) and 

electronically passivating the surface (stronger emission peak).  Furthermore, cadmium 

adsorption to the nanocrystal may be stronger, since it is widely known that cadmium 
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ions tend to desorb at low pH values [16].  This increased affinity for the surface would 

aid in creating a more optimal surface structure, and with the cadmium’s increased 

affinity to the citrate, reducing dangling bonds.   

Gao et al. [17] observed enhanced fluorescence for CdTe nanoparticles prepared 

in low pH in an aqueous solution.  They conclude that the particle surface coverage with 

thiol ligands is increased in acidic CdTe solutions.  They suggest that a thick layer of 

cadmium thiol complexes is formed on the nanoparticle’s surface and can be considered 

as a wide-band gap material, making it analogous to CdS or ZnS passivation shell around 

the CdTe core.  Although our nanoparticles are prepared in the presence of a higher pH, 

this same type of pH-sensitive phenomenon could very well be occurring in our system.   

For pH values above 9, we observed a reaction after the selenium precursor was 

injected into the cadmium and citrate solution.  The color of the solution began to change 

while remaining optically clear, indicating the formation of CdSe.  Thus, it seems that a 

chemically-induced nucleation event occurred.  Subsequent injection of the solution into 

the hot reactor prompted a separate thermally-induced nucleation event.  The initial CdSe 

nuclei may have been shrouded with cadmium citrate complexes, delaying any additional 

material to be adsorbed onto the particle during the thermal growth event.  The thermally-

induced nuclei may not have had much material addition due to fewer free cadmium and 

selenium ions available for appreciable growth.   
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Figure 6.10.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different pHs. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

450 470 490 510 530 550 570 590 610 630

P
L

/P
l m

a
x

Wavelength, nm

pH=7

pH=8

pH=9

pH=10

pH=11



 

95 

 

 
Figure 6.11.  Profile of peak intensities for CdSe nanocrystals synthesized in high-

temperature water at different pHs. 

 

 

pH λmax, nm fwhm, nm QY, % 

7 556 N/A .56 

8 555 36 3.3 

9 563 35 .99 

10 560 35 3.8 

11 540 36 5.2 

 

Table 6.4.  A summary of the effect of pH on the PL emission peak (����), size 

distribution (fwhm) and quantum yield (QY). 
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6.3.6 Effect of StabilizerLloading 

 We reported earlier that, under the cold injection method, larger amounts of 

stabilizer increased the particle size.  We observed an identical trend with the rapid-

injection method.    As the stabilizer amounts decrease, the mean particle size decreases 

and the intensity increases dramatically (Figures 6.12 and 6.13).   The data shows that 

dispersity increases initially, and then decreases as the nanoparticle size increases.  There 

does not seem to be a consistent trend between the fwhm and the amount of stabilizer, 

although, at higher stabilizer amounts, the fwhm does trend downward.  Reasons for this 

could be due to there being a small number of particles.  The presence of too many citrate 

ions in the solution may be preventing the cadmium and selenium ions from attaching.   

The sheer number of citrate ions could overwhelm the cadmium, hindering the formation 

of many CdSe nuclei, but, at the same time, the citrate could rapidly complex to the 

cadmium ion as any nuclei form.   Bullen et al. [4] observed this phenomenon while 

synthesizing CdSe nanoparticles in hot octadecene.   They noticed that the number of 

nuclei linearly reduced as more oleic acid (capping agent) was added. 

 The decrease in the quantum yield with increasing amount of stabilizer may be a 

result of limited overgrowth to reconstruct the surface during the growth stage [13].  The 

excess citrate may provide a steric hindrance to the selenium monomer as it tries to move 

through the bulk to the nanocrystal’s surface. This would increase the chance of there 

being dangling cadmium bonds, and would adversely affect the quantum efficiency.    
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Figure 6.12.  Normalized PL emission spectra for CdSe nanocrystals synthesized in high-

temperature water at different stabilizer loadings. 
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Figure 6.13.  Profile of peak intensities for CdSe nanocrystals synthesized in high-

temperature water at different stabilizer loadings. 
 

 

Cd: stabilizer 

ratio 

Stabilizer 

amount, g 

λmax, nm fwhm, nm QY, % 

1.18 0.1 563 35 0.99 

.59 0.2 578 40 0.64 

.39 0.3 594 37 0.22 

.27 0.4 608 32 0.08 

.24 0.5 620 19 0.06 

 

Table 6.5.  A summary of the effect of the Cd:stabilizer ratio on the PL emission peak 

(����), size distribution (fwhm) and quantum yield (QY). 
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6.4  Summary 

 This chapter highlights the results of using a rapid hot-injection method that is 

similar to that found in conventional methods.  Our investigation revealed a smaller 

nanocrystal (���� = 563 nm) and a similar fwhm (35 nm) compared with Chapter 5’s 

cold-injection method (���� = 613 nm; fwhm = 36 nm) under the same experimental 

conditions.  The QY calculated for the rapid hot-injection method was 0.99%.  This is not 

much different from the QY calculated for the cold-injection method of 1.5% under the 

same experimental conditions except for time, which differed by 30 seconds.  We 

surveyed the effects of experimental parameters on the size (represented by ����, size-

distribution (represented by fwhm) and QY.   

size – an increase in reaction time increased the size, while an increase in Cd:Se molar 

ratio, pH and Cd:stabilizer ratio decreased the size.  An increase in reaction temperature 

did not affect the nanocrystal size.  

fwhm – an increase in the reaction temperature, Cd:Se molar ratio and pH did not affect 

the fwhm.  There seemed to be no consistent trend with the stabilizer loading in general, 

but at higher stabilizer loadings, the fwhm tended to decrease.   

QY – an increase in Cd:Se molar ratio, pH and Cd:stabilizer molar ratio increased the 

QY, but an increase in the reaction temperature and time had no effect on QY  

 The rapid hot-injection method offers advantages over the cold-injection method 

from the previous chapter in that a larger reaction temperature range can be explored.  It 

is also an adaptation of the preferred injection method since it more readily separates 

nucleation from growth.  These are reasons why we continued using this method for the 

kinetics study presented in the next chapter.   
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Chapter 7 

Kinetics Study 

 

The feasibility study in Chapter 5 confirmed the presence of CdSe nanoparticles 

as a result of using high-temperature water as a reaction medium.  The study provided 

insight into the effects of the process variables on the nanocrystal size and properties.  

Although this synthesis route yielded nanocrystals, we next explored (Chapter 6) a rapid-

hot injection that better mimicked conventional routes.  This new route yielded a smaller 

nanocrystal but behavior similar to that observed in the feasibility study.  We decided that 

this route was the better one to use in follow-up studies on nanoparticle growth dynamics 

as it would better enable us to make comparisons with experiments conducted by others 

that used the rapid hot-injection route.  The goal of this chapter is to explore and quantify   

the growth evolution of CdSe nanocrystals in an aqueous medium. 

 

7.1 Introduction 

A large amount of research has been dedicated to the preparation of nanocrystals 

with the aim of understanding the reaction conditions that favor high quality particles.  

The precise control of parameters such as pH, time, temperature, and reagent chemistries 

can determine the size, and hence the optical properties.   The ability to control the size of 
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a nanocrystal and its size-dependent properties  is what makes them desirable as materials 

with unique properties.  It is therefore essential to understand the growth behavior so that 

a desired size, and ultimately, a targeted property can be realized.   

A dearth of literature claims what mechanism actually controls the growth stage, 

or is even responsible for producing the best quality nanocrystal.  The little research that 

does exist suggests that growth is consistent with diffusion-limited Ostwald ripening        

[1, 2, 3].  Peng et al. [3] further conclude that the greatest narrowing of size distributions 

occurs within the diffusion-limited regime, and suggests that this narrowing occurs just 

before the onset of Ostwald ripening.   

 Dushkin et al. [4] provided the first comprehensive study of the kinetics of CdSe 

nanocrystal growth by developing mathematical models that attempt to describe the 

entire growth process, using classical kinetics models.  Their model contends that 

reaction and diffusion-limited growth both play a role in the growth of the nanocrystal.  

But, they suggest that the fast reaction-limited growth is important to obtain well-defined 

and uniform nanocrystals of high-quality, which is contrary to what Peng suggests.  

Talapin et al. [5] performed Monte Carlo simulations and concluded that growth could be 

limited by reaction, diffusion, or a combination of both processes, but agreed with Peng’s 

assertion.  A detailed look into the reaction conditions, however, could very well explain 

why, though general assumptions can be made, different conclusions can be drawn.  

When taking into consideration precursor chemistries, capping agents, and even 

analytical techniques, determining the actual kinetics of a system is quite complex.  But, 

it seems that mathematical models of the growth process are needed to accurately 

describe the evolution of nanocrystal growth to determine which kinetic regime governs 
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growth.  Those developed by [4, 5, 6] provide invaluable insight, but are for synthesis in 

organic solvent systems.  As far as we know, there is no record of any quantitative 

kinetics modeling for aqueous systems.  But because classic kinetic theory should be 

independent of the reaction medium, approaches developed for organics should apply, to 

some extent, to synthesis in aqueous systems.   

The model herein only represents the influence of reaction time and temperature 

on the growth evolution.  Chapter 6 does verify that other process variables, namely pH, 

Cd:Se molar concentration and Cd:stabilizer molar concentration also affect the growth 

of the nanocrystals.  Including these parameters is essential for a more comprehensive 

kinetic model, but time and temperature data are the most readily treatable in well-

established kinetic models.   

 

7.2 Experimental Methods 

We conducted experiments in stainless steel batch reactors fitted with a high-

temperature rated bellows valve as described in Chapter 4.   All analytical methods used 

for this study include spectroscopy and TEM, descriptions of which are in Chapter 4.   

 

7.3 Model Development 

One proposed route to exploring the kinetic behavior is by determining an 

activation energy, Q.  For both reaction- and diffusion-controlled growth processes, the 

kinetic behavior should be characterized by Arrhenius behavior.  The extraction of Q 

from an Arrhenius plot of ln rate vs. � �* could help reveal how much of the process is in 

fact controlled by diffusion.   
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Dickerson [7] provides a modeling framework for synthesis of CdSe in TOPO and 

stearic acid.  We adapted his model to describe our synthesis as well.  Dickerson’s model 

assumes: 1) the growth of nanoparticles occurs after nucleation and before Ostwald 

ripening, 2) the number of nuclei remains constant, 3) the particles are spherical, 4) the 

diffusion of cadmium complexes is significantly slower than diffusion of selenium, 5) the 

concentration gradient is linear, and 6) the transport of the cadmium complex is by 

diffusion with Arrhenius temperature behavior. 

Dickerson’s model was built on the basis of Fick’s first law of diffusion: 

B 
 �5�C
�D  (7.1) 

�C
�D E

CF��G � CHI.�J
KL ECF��G

KL  (7.2) 

5 
 5��D? M� �
NF�O (7.3) 

where B7PQ7$RS7T('U7#V7W8"XP'X7!X#(SQYWX� Z Q%, 57PQ7$RS7"PVV'QP[P$\7!WX�YQ%,7�C is the 

difference in concentration of cadmium complexes in the bulk solution and those at the 

nanocrystal’s surface (moles/cm
3
), CF��G is the concentration of cadmium complexes 

(moles/cm
3
) in the bulk solution, LD is the diffusion length (cm), CHI.�J is the surface 

concentration of cadmium complexes (moles/cm
3
) (it is assumed that it is orders of 

magnitude lower than in the bulk solution, so CHI.�J~0), �D is the radial distance (cm), 5� 

is the pre-exponential diffusivity coefficient (WX�YQ), � is the activation energy 

(eV/molecule), NF is the Boltzmann’s constant (eV/molecule · K) and T is the absolute 

temperature (K).  The governing equation for the growth rate is: 

]!.% 
 �^�_!.%� ` B 
 ^�_!.%�
�C
�D 5 (7.4) 
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]!.% 
 ^�_!.%�
CF��G!.%
KL 5��D? M� �

NF�O (7.5) 

where a!.% = molar growth rate (moles/s) and _!.% is the average nanocrystal radius (cm) 

at time >. 
 Dickerson proposed using the temperature-dependence of the redshift rate of PL 

emission peak wavelengths (�� �>* ) as a way for estimating7�.  The redshift rate is 

related to the rate of growth of the nanocrystal over time.  Through application of the 

effective mass model, it can be shown that �� �> b 7a.*  at a fixed test wavlength [6].  A 

full model derivation is available in Section 7.6 “Appendix: Derivation of Redshift Rate 

Model ”. 

 

7.4 Results and Discussion 

Since the peak emission wavelength, ����, is an indicator of nanoparticle size, a 

temporal profile of peak wavelengths will exhibit the particle growth behavior.  Figure 

7.1a shows such a profile for our system at various reaction temperatures.  At higher 

temperatures, the profiles trend higher because the higher temperatures tend to yield 

larger nanoparticles, indicated by larger wavelengths.  For each temperature it is apparent 

that the peak wavelength initially increases with increasing time, and then, in general, 

levels off at longer times.   
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Figure 7.1a.  Evolution of peak wavelength, ����, with reaction time at various reaction 

temperatures for CdSe nanocrystals synthesized in high-temperature water. 
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Figure 7.1b.  Evolution of peak wavelength with reaction time at various reaction 

temperatures for CdSe nanocrystals synthesized in stearic acid [7]. 
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Thus two distinct regimes, fast growth and slow growth, are apparent in Figure 

7.1a.  These profiles are similar to those observed for CdSe nanocrystals synthesized in 

stearic acid (Figure 7.1b) [7].  The rapid increase of the nanocrystal’s size at the 

beginning of the growth curves could be due to a reaction-controlled process.  Monomer 

from the particle’s immediate vicinity adsorbs to the surface, and is subsequently 

exhausted.  The longer time scale exhibits a slower growth process, which could be 

controlled by diffusion and then Ostwald ripening.   

The redshift rate can be mathematically defined as the change in emission 

wavelength with reaction time.  We fit a 3
rd

-order polynomial function to the λ vs. time 

curves at each temperature (Figure 7.1c).  Table 7.1 lists the best fit equation for each 

temperature.  We then differentiated each function to obtain the redshift rate.     

Figure 7.2a shows the profile of the red-shift rates.  In general, at a fixed 

wavelength, the red-shift rates trend higher at higher temperatures.  This is consistent 

with the growth profile shown in Figure 7.1a.  Looking at a typical red-shift rate for a 

given synthesis temperature, we see that it decreases as the wavelength increases.  The 

rate of growth of nanoparticles declines rapidly as the nanoparticle size increases.  This 

trend is similar to that observed by Dickerson et al. for CdSe nanocrystals prepared in 

stearic acid (Figure 7.2b), as well as Dushkin’s [4] observation for the preparation of 

CdSe nanocrystals in TOPO.  Dushkin further suggested the existence of the two growth 

regimes based on this trend, which leads us to speculate that we have separated 

nucleation and growth, to a degree, using our rapid hot-injection method.   
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Figure 7.1c  Evolution of peak wavelength, ����, with reaction time at various reaction 

temperatures for CdSe nanocrystals synthesized in high-temperature water, fitted with a 

3
rd

 order polynomial.   

 

Temperature, °C 3
rd

-order Polynomial Function 

200 ����7
71.29x10
-9>c � 1.18x10

-5>� � 3.48x10
-2> �551 

210 ����7
72.63x10
-10>c � 6.85x10

-6>� � 2.86x10
-2> � 554 

220 ����7
71.07x10
-9>c � 9.13x10

-6>� � 2.91x10
-2> �557 

230 ����7
72.22x10
-9>c � 1.40x10

-5>� � 3.47x10
-2> �559 

240 ����7
72.13x10
-9>c � 1.53x10

-5>� � 3.91x10
-2> �561 

 

Table 7.1  Table showing the 3
rd

-order polynomial functions for each temperature.   
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Figure 7.2a.  Red-shift rates of peak wavelengths at various reaction temperatures for 

CdSe nanocrystals synthesized in high-temperature water.  The completion wavelength, 

��, is estimated to be about 573 nm. 
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Figure 7.2b.  Red-shift rates of peak wavelengths at various reaction temperatures for 

CdSe synthesized in stearic acid by Dickerson et al.  The completion wavelength, ��, is 

shown to be 590 nm. [7] 
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According to Dickerson et al. [6], the redshift rate curves for the different 

temperatures tend to converge to a common wavelength, defined as a “completion 

wavelength”, ��.  It is at this wavelength that the limiting reactant can be assumed to be 

exhausted, and that further growth would be governed by Ostwald ripening.  Our data 

begin to converge at roughly 573 nm for the temperature range 200 – 220 °C.   

Activation energies were calculated from the red-shift rates by plotting the natural 

log of the red-shift rate against the reciprocal absolute temperature for a selected test 

wavelength.  The activation energy, �, for each test wavelength was extracted from the 

slope of the individual plots.  An example plot is shown in Figure 7.2c for a test 

wavelength of 580 nm.  Linear regression of these data lead to a � = 0.40 ± 0.11 

eV/molecule where the uncertainty represents the standard error from a regression 

analysis.  The activation energies, at each test wavelength, were then plotted against the 

entire range of test wavelengths to generate the plot shown in Figure 7.3a.  A similar plot 

for CdSe prepared in stearic acid and TOPO is shown in Figure 7.3b.     
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Figure 7.2c.  Arrhenius plot of red-shift rates at a test wavelength of 580 nm for CdSe 

nanocrystals synthesized in high-temperature water.  A value of � was calculated, via 

linear regression, to be 0.40 eV/molecule with a standard error of 0.11 eV/molecule.  The 

error bars represent the standard error. 

 

 

 

 

 

 

-4.9

-4.7

-4.5

-4.3

-4.1

-3.9

-3.7

-3.5

1.9 1.95 2 2.05 2.1 2.15 2.2

N
a

tu
ra

l 
L

o
g

 o
f 

R
ed

-s
h

if
t 

R
a

te
 a

t 
5

8
0

 n
m

Reciprocal Temperature, 1000/T  (K-1)



 

115 

 

 

Figure 7.3a.  Activation energies from redshift rates at various test wavelengths for CdSe 

nanocrystals synthesized in high-temperature water.  The completion wavelength, ��, is 

marked at 573 nm.  The average activation energy, �, is 0.24 ± 0.04 eV/molecule.  The 

error bars represent the standard error at each test wavelength. 
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Figure 7.3b.  Activation energies from red-shift rates at various test wavelengths for 

CdSe nanocrystals synthesized in stearic acid (SA) and TOPO by Dickerson et al. [6]. 

The average activation energy calculated for SA is 0.56 ± 0.12 eV/molecule and TOPO is 

0.95 ± 0.27 eV/molecule. The two lines represent the experimental bounds of CdSe 

nanocrystals prepared in high-temperature water in this study. 

 

 

 

As the size of the nanoparticle and test wavelength increase, the activation energy, 

according to the error bars, shows a slight increase.  The plot seems to indicate that a 

more rapid increase occurs after 573 nm.  This may be the occurrence of Ostwald 

ripening and the completion wavelength could be at about 573 nm.  We calculated an 

average activation energy of � = 0.24 ± 0.04 eV/molecule. 

The error bars on Dickerson’s plot are small enough to indicate that the variability 

of the activation energy with test wavelength is real along the entire range of 

wavelengths.  Our the data likewise indicate that the activation energy is somehow a 

function of the test wavelength and, hence, the nanocrystal’s size.  It is possible that the 
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activation energy is a function of the evolving kinetic process, especially at the onset of 

Ostwald ripening which, as Figure 7.3a suggests, may occur at about 573 nm.  Talapin et 

al. [5] assert, through their theoretical study of the evolution of a nanoparticle in colloidal 

solution, that activation energies of the growth and dissolution process are a function of 

nanoparticle radius.  This is because the thermodynamic chemical potential of the 

nanoparticle depends on the nanoparticle’s surface curvature.  This may help explain the 

large increase in activation energy after the suggested completion wavelength, �� = 573 

nm.  At this point, the process of Ostwald ripening begins as smaller particles dissolve 

and larger ones grow.     

The kinetics model provided by Dickerson et al. [7] may help us to begin to 

understand the growth dynamics for nanoparticles produced in aqueous media.  In 

general, our data from aqueous-phase synthesis exhibits similar behavior to that obtained 

from synthesis in stearic acid.  Our particle growth, as seen in Figure 7.1a, shows a two-

step process, rapid initial growth, followed by a slower growth.  Our redshift rate profile 

is different from that produced form the organic-based system.  It is unknown at this time 

if this is a function of the experimental method, which may introduce more random error, 

or the type of reaction medium.  The convergence of red-shift rates, known as the 

reaction completion wavelength, ��, was observed to be 590 nm for the organic-based 

system and 573 nm for the aqueous-based system.  The lower completion wavelength 

may be a factor of the experimental method or the reaction medium.  Further studies, 

with different reaction mediums and identical experimental methods, would have to 

verify this.  The shape of the curve (Figure 7.3a) that shows the activation energies from 

the red-shift rates is different than what was obtained for stearic acid (Figure 7.3b).  
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When comparing the two profiles within the same test wavelength range, our curves seem 

to show a slight increase, then a more rapid increase in activation energies.   It is 

interesting that our profile is more similar to that shown for TOPO (Figure 7.3b), 

although our profile is not within the same wavelength region.  Dickerson et al. [6] do 

state that � for TOPO could not be accurately estimated from test wavelengths near 560 

nm due to a limited number of chosen synthesis temperatures.  The plots showing the 

redshift rate and the activation energy profile indicate that the diffusion-controlled 

growth may have ceased at 573 nm. 

 Our activation energy value is lower than those obtained for synthesis in stearic 

acid and TOPO (Table 7.2).  The difference may be due to the use of different stabilizer 

ligands.  All three ligands differ in their carbon structure and length.  Both stearic acid 

and sodium citrate contain carboxyl groups.  Additionally, they possess linear carbon 

chains, but stearic acid is a longer chain acid (Scheme 7.1), and, therefore, bulkier with 

more mass.  TOPO has a branched carbon chain structure (Scheme 7.1) and is more 

massive.  The comparisons of the chemical structure of the different stabilizer ligands 

may help explain the higher activation energy for that system as it would take more 

energy to move the stearic acid and TOPO molecules, as they complex with cadmium, 

from the bulk solution to the nanoparticle’s surface. 
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Table 7.2.  Summary of average activation energies obtained by analysis of redshift rates 
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Scheme 7.1.  Comparison of stearic acid, TOPO and sodium citrate ligands.  
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Table 7.2.  Summary of average activation energies obtained by analysis of redshift rates 
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with the self-diffusion number alone, we do not know if growth is entirely diffusion-

limited.   

The error bars on our activation energy profile are larger than those on 

Dickerson’s profile.   Careful inspection of Figure 7.1a reveals wide variability of the raw 

peak wavelength vs. time data, especially at smaller times.  This is most likely an artifact 

of the way the experiments were run as we were not able to continuously draw samples 

from a large batch.  Each wavelength represents one distinct experiment, likely 

introducing more random error.    

The presence of a self-focusing size distribution can provide evidence for 

diffusion-controlled growth, according to Dickerson [7].  The fwhm value should 

decrease with an increase in wavelength, with the minimum value occurring at �� (Figure 

7.6b).  Figure 7.4a shows the profile of the fwhm for the base case conditions.  The 

observed minimum occurs at � = 576 nm, but the characteristic rapid decrease in the 

fwhm, observed in stearic acid, does not exist in our data.    It is possible that nucleation 

does not completely separate from growth, and that nuclei continue to form during the 

synthesis process.  The nuclei that do form may experience the reaction-limited growth 

kinetics at the same time that the mature particles experience diffusion-limited growth 

kinetics.  The plot seems to indicate that growth is not necessarily governed by one 

kinetic regime, but, may in fact be controlled by both reaction and diffusion.   
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Figure 7.4a.  Profile of fwhm for CdSe nanocrystals prepared in high-temperature water 

under base case conditions (� = 200 °C) at varying times.  The error bars correspond to 

the standard deviation for repeat base case experiments.   

 

 

30

32

34

36

38

40

42

44

530 540 550 560 570 580 590 600

F
W

H
M

 (
n

m
)

Wavelength, nm



 

122 

 

 

Figure 7.4b.  Profile of fwhm for CdSe nanocrystals prepared in stearic acid 

by Dickerson et al.  [7] 
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7.5  Summary 

 This chapter reports the first quantitative analysis of the growth kinetics for CdSe 

nanoparticles prepared in high-temperature water. We adapted a model originally 

developed for organic-based systems.  Two growth regimes are apparent: a rapid increase 

in nanoparticle size followed by a slower growth.  An activation energy, �, was 

determined by using a red-shift rate (� = 0.24 ± 0.04 eV/molecule).  The red-shift rate 

method yielded activation energies that seemed to vary with the particle size.  Our 

activation energy is lower than those obtained from synthesis of CdSe in stearic acid and 

TOPO possibly due to the stearic and TOPO ligands being bulkier and more massive than 

the citrate ligand.  We cannot, at this point, determine if the synthesis in high-temperature 

water is reaction- or diffusion-controlled, but we do provide an analytical framework to 

build on this research. 
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7.6  Appendix: Derivation of Redshift Rate Model 

 

The full derivation of the Dickerson’s redshift rate model, used to calculate 

activation energy, is shown in this section. 

 The model is based on Fick’s first law of diffusion: 

B 
 �5�C
�D (A-1) 

where B is the flux of cadmium into the nanocrystal (moles/cm
2
·s, 5 is the diffusivity 

(cm
2
/s), and �C �D*  is the radial concentration gradient from D 
 _ to D 
 KL: 

�C
�D�de E

CF��G � CHI.�J
KL ECF��G

KL 7 !A-�%7

where CF��G is the concentration of cadmium complexes (moles/cm
3
) in the bulk solution, 

KL is the diffusion length (cm), CHI.�J is the surface concentration of cadmium complexes 

(moles/cm
3
) and  it is assumed to be orders of magnitude lower than in the bulk solution 

(CHI.�JEh%. 
The diffusion process can be described in terms of Arrhenius behavior: 

5 
 5�SUi M� �
NF�O (A-3) 

where 5� is the pre-exponential term for the diffusion coefficient, � is the activation 

energy, NF7 is the Boltzman’s constant and � is the absolute temperature.   
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 The molar growth rate, a, can then be described as: 

 

a 
 �< Z B (A-4) 

a 
 < Z 5 �C
�D (A-5) 

< 
 ^�_� (A-6) 

Since we are interested in the Arrhenius behavior of the nanocrystal’s growth, we can 

combine equations A-2, A-3, A-5 and A-6 to obtain the relationship between the molar 

growth rate and an activation energy, �: 

a!.% 
 ^�_� CF��G
KL 5�SUi M� �

NF�O (A-7) 

 Taking the natural log of both sides of equation A-7 yields: 

(9 a!.% 
 (97 M^�_� CF��G
KL 5�O �7� �

NF� (A-8) 

A plot of ln a!.% vs.� �*  should yield a straight line with a slope = �� NF* .   

Dickerson suggests that the molar growth rate is proportional to �� �>*  as derived 

from the effective mass approximation.  We can express the effective mass 

approximation as: 

�j
� 
 �	 � k

_� (A-9) 

where � is represented by �j �*  and k represents the constants �� ���*  (see Equation 

1.5).  Solving for _�: 

_� 
 k
�j �* � �	 (A-10) 

�
_� 


�j
�k � �	

k  (A-11) 
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We can express the decrease in cadmium concentration by: 

CF��G!.% 
 C� � ^
l
m�nn
o��.

�
o� _!.%c  (A-12) 

Where C� is the original molar concentration of cadmium in the reactor (moles/cm
3
), 

o��. is the total volume of material in the reactor, o�7 is the molar volume of CdSe 

(cm
3
/moles) and m�nn is the effective number of spherical nanocrystals.  The molar 

growth rate can be expressed in terms of cadmium depletion: 

a!.% 
 �o��.
m�nn

�CF��G
�>  (A-13) 

Differentiation of Equation A-12 and substituting the result into A-13 yields: 

�CF��G 
 �M^l
m�nn
o��.

�
o� Z l_��_!.%O (A-14) 

From Equation A-9: 

�_!.% 
 _c�j
���k �� 

 

(A-15) 

So the growth rate can be written as: 

a!.% 
 � �
o� _p �j

��k
��
�>  

 

(A-16) 

 

Equation A-16 shows that it is convenient to monitor the red-shift rate as a way to track 

the growth rate of the nanocrystals.  Thus, substituting �� �>*  at a fixed test wavelength 

for a!.% in Equation A-8 should still exhibit Arrhenius behavior.  
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Chapter 8 

Summary and Conclusions 

 

8.1  Summary 

This thesis is a culmination of a series of studies of the potential for high-

temperature water to serve as a viable reaction solvent in the preparation of CdSe 

nanocrystals.  We tested a hypothesis that CdSe nanocrystals could be produced in high-

temperature water through a feasibility study (non-isothermal conditions).  Additionally, 

we examined the effects of various process parameters on the as-prepared nanocrystals.  

We then adapted a rapid hot-injection method (isothermal conditions) similar to 

convention to examine how the influence of the process parameters was affected by the 

synthesis method.  Finally, we assessed the kinetics of the growth evolution of the 

nanocrystals in high-temperature water, and compared our results with those from 

organic-based synthesis.  The following is a summation of key results from our 

investigative studies: 

• CdSe nanocrystals that exhibit quantum behavior can be synthesized in liquid water at 

temperatures > 200 °C; 

• Under non-isothermal conditions, the reaction temperature greatly affected the 

nanocrystal’s growth, possibly due to Ostwald ripening.  Under isothermal 

conditions, and at short times growth was about the same at all temperatures, being an 
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effect of either a short reaction time or the nucleation kinetics.  An increase in the 

temperature had negligible effect on the quantum yield or on the fwhm;  

• An increase in reaction time increased the size of the nanocrystals but had negligible 

effect on quantum yield.  Under non-isothermal conditions, reaction time had 

negligible effect on the fwhm, while, under isothermal conditions, we did not observe 

a consistent trend.   

• An increase in the Cd:Se molar ratio resulted in an increase in the nanocrystal size 

under non-isothermal conditions.  This trend was observed to be just the opposite 

under isothermal conditions, where, additionally, higher Cd:Se molar ratios had a 

negligible effect on fwhm but significantly increased quantum yield; 

• The pH of the solution greatly affected the nanocrystal size.  An increase in pH 

caused a decrease in the size under non-isothermal and isothermal conditions.  An 

increase in pH produced nanocrystals with higher quantum yields; 

• An increase in the amount of stabilizer increased the nanocrystal size.  It caused 

negligible effect on fwhm under non-isothermal conditions, but no consistent general 

trend was observed under isothermal conditions (there did seem to be a dramatic 

decrease in the  fwhm at higher stabilizer amounts).  The increase in stabilizer 

decreased the quantum yield; 

• Under non-isothermal conditions, the addition of a CdS shell increased the quantum 

yield from 1.5% to ~7%; 
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• A kinetic model developed for CdSe nanocrystals synthesized in stearic acid and 

TOPO was adapted for our hydrothermal synthesis.  A redshift rate method for 

obtaining an activation energy was used.  This method yielded a value of � equal to 

0.24 ± 0.04 eV/molecule.  ; 

• It is very possible that the nanocrystal growth in our studies is governed by both 

reaction- and diffusion-controlled processes. 

  

8.2  Conclusions and Future Work 

It is apparent that traditional experimental parameters can and do affect growth 

dynamics but, not surprisingly, the variability of surface atoms had a greater influence on 

the optical properties.  An increase in the Cd:Se molar ratio and Cd:stabilizer molar ratio 

had a profound effect on the nanocrystal’s quantum yield.  Quantum dots have a higher   

surface area-to-volume ratio than their bulk analogues.  Surface reconstruction and 

composition are expected to have a large influence on the optical properties of 

semiconductor nanocrystals [1].  Literature recognizes the role of the surface in 

determining the quantum yields of semiconductor nanocrystals [1, 2, 3, 4, 5].   To better 

understand how growth conditions determine the surface structure of CdSe nanocrystals 

prepared in high-temperature water, more comprehensive studies of each contribution of 

individual parameters, and the effect of their combination, will need to be assessed. 

Our kinetics study provided the first quantitative analysis for CdSe prepared 

hydrothermally.  Even though our experimental data agreed well with a model developed 

for organic-based systems [6], the model is probably not a complete representation of the 

growth dynamics of the nanocrystals.  The analytical expression uses only two process 
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variables, time and temperature.  Our feasibility and rapid hot-injection studies, however, 

confirm the influence of additional parameters such as pH and surface chemistries on 

nanoparticle size and even quantum yield.  Such parameters would need to be included in 

a kinetics model to make it more complete and more broadly applicable.   

Another interesting observation about our hydrothermal study is that some of the 

growth behavior is similar to that seen in studies conducted in octadecene [7], an organic 

non-coordinating solvent.  Growth was hardly affected as the temperature increased at a 

reaction time of two minutes, a phenomenon also observed in octadecene after five 

minutes of growth.  But our kinetics study confirmed that growth was appreciable after 

longer time periods (Figure 7.1a), especially at higher temperatures (� > 220 °C).  It 

could simply be that a two minute reaction time was not long enough to survey the 

growth in high-temperature water.  Moreover, a five minute reaction time may not be 

adequate time to observe appreciable growth in octadecene.  Another observation, made 

in both the hydrothermal and organic non-coordinating systems, was the increase in 

nanocrystal size as the amount of stabilizer increased.  To our knowledge, this effect has 

not been reported by researchers using coordinating organic solvents (e.g. TOPO, stearic 

acid).  It is likely that the non-coordinating property of the medium plays an integral role 

in the nucleation and growth dynamics of semiconductor nanocrystals.    

 We have shown, in this work, that the hydrothermal synthesis of CdSe 

nanocrystals is feasible and controllable.  This route could be a new strategy for   

semiconductor nanocrystals.  Much additional work is required if this ultimate goal is to 

be achieved.  The following paragraphs suggest some future research directions. 
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8.2.1  Autoclave Batch and Flow Reactor Studies 

An autoclave reactor can allow isothermal studies of large batches to be 

conducted. This capability is important when a full suite of analyses needs to be 

performed and volume of product is essential.  It can also allow for samples to be 

withdrawn at various time intervals and possibly enable online analysis to be conducted 

so that trends can be assessed in real-time without disturbing the reaction [8].  Finally, 

studies conducted in an autoclave would represent a scale-up of about 100X from the 1.5 

mL reactors used in this work.  

A continuous flow reactor would allow for small scale studies that could simulate 

high-volume production.  It can enable the experimenter to operate at high temperatures 

at very short times, possibly improving quantum yield.      

 

8.2.2  Kinetics Modeling 

 A comprehensive study on the kinetics of CdSe nanocrystals grown 

hydrothermally needs to be performed to truly determine the mechanism behind the 

growth at all time scales.  Data need to be obtained by conducting additional experiments 

in an autoclave batch and continuous flow reactor mentioned above.  Samples taken at 

time intervals that cover the entire growth process can result in optical spectra that better 

represents more complete growth kinetics [9].  An in situ method, akin to that developed 

by Qu et al. [8] may uncover aspects of the growth stages that cannot be observed using 

conventional analyses.  A thorough and reliable kinetics model would be useful for 

designing and optimizing large-scale processes for hydrothermal synthesis of CdSe 

nanocrystals. 
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8.2.3  X-ray Analysis 

 X-ray studies should be implemented to complement TEM in order to obtain a 

description of the nanocrystal structure.    X-ray studies can further determine the crystal 

phases (wurtzite vs. zinc blende) and indicate the presence of stacking faults.    This 

information is important in understanding the influence of structure on the electronic 

properties.   

 

8.2.4  Design of Experiments 

 A design of experiments (DOE) is a systematic approach to maximizing 

information gained while reducing time and resources.  A DOE can identify the most 

influential sources of variation of the process parameters.  It can also quantify the effects 

of the important factors including their interactions and can identify the optimal 

conditions.   

 

8.2.5  Life-cycle Assessment 

 To verify the environmental benefits provided by the hydrothermal route, a life-

cycle assessment should be performed.  The assessment would involve quantifying the 

amount of energy and raw materials used and the amount of waste generated.  The 

assessment would entail choosing alternative reaction mediums (e.g. TOPO, heat transfer 

fluids), defining system boundaries and environmental parameters, and performing 

preliminary screens.  This work would ensure a direct and objective comparison of 

synthesis in the different reaction mediums and their impact on the environment. 
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8.2.6  Emission Spectra Fitting 

 Many of the emission spectra collected in these studies were not true Gaussian 

curves as they possessed tails.  A fit of the measured data to, for example, either Gaussian 

or Lorentzian functions could reduce the error in determining the fwhm of the spectra.  

This effort may also reveal some additional information about the effect of a process 

parameter on the nanocrystal’s growth and size distribution.   
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