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CHAPTER 1

Introduction

Contaminated sediment is defined by the U. S. Environmental Protection Agency
(U. S. EPA) as “soils, sand and organic matter or minerals that accumulate on the
bottom of a water body and contain toxic or hazardous materials that may adversely
affect human health or the environment.” (U. S. EPA, 1998). The sediment environ-
ment, particularly surface water sediments, is characterized by three major factors

that impact the effectiveness and economics of remedial decision-making:

e Diffuse contamination: Contaminant sources in sediments are derived from,
among others, direct industrial discharge and combined sewage overflows from
urban areas (point sources), contaminant transport via the groundwater-surface
water interface, agricultural run-off, and exchanges at the air water interface
(diffuse contamination). Once released in the sediments, the contaminant is
distributed over wide areas as a result of the hydrodynamics of the system,
including tidal effects, storm events, and shipping. These events further ex-

acerbate the problem because point sources become diluted, contaminants are



exported over large areas, and the various point and diffuse sources mixed in

time and place.

Large areas of impact: According to an estimate by the U. S. EPA, approxi-
mately 10% or 1.2 billion cubic yards of the sediment underlying the country’s
surface water is sufficiently contaminated with toxic pollutants to pose potential
risks to fish and to humans and wildlife that eat fish (U. S. EPA, 1998). This
represents the upper five centimeters of sediment where many bottom dwelling
organisms live, and where the primary exchange processes between the sediment
and overlying surface water occur. For example, an assessment of 1,543 surficial
sediment samples collected during 1991 through 1997 in 25 estuaries and marine
bays representing a total area of approximately 7300 km2 indicated toxicity in
approximately 6% of the combined area (Long, 2000). Adverse ecological effects
from contaminated sediments include fin rot, increased tumor frequency, and
reproductive toxicity in fish. In addition, contaminated sediments can also pose
a threat to human health when pollutants in sediments accumulate in edible
aquatic organisms (U. S. EPA, 1998, and reference therein). Sediment con-
taminants include polycyclic aromatic hydrocarbons (PAHs), polychlorinated
biphenyls (PCBs), and various metals and metalloids (e.g. arsenic). These con-
taminants are the most frequently reported contaminants in sediments (U. S.
EPA, 1998), and often dominate the ecological and human health risk associated

with contaminated sediments.

Ecological risk via the foodchain: Ecological and human risk associated with
the sediments ecosystem is imparted by the uptake from, and propagation of
contaminants through the trophic foodchain. In dynamic river systems, ef-
fective and sustainable risk management of sediments, contaminants and their

sources must be carried out on a river basin scale. The primary concern here



is associated with hydrophobic contaminants and metals or metalloids because
of either their acute toxicity or propensity to bioaccumulate from benthic or-
ganisms to higher fish species. Comprehensive ecological risk assessments are
generally used to: i) identify and characterize the current and potential threats
to the environment from a hazardous substance release, ii) evaluate the eco-
logical impacts of alternative remediation strategies, and iii) establish cleanup

levels in the selected remedy that will protect those natural resources at risk.

The consequence is that typical site management questions attempt to address the

following issues:

e What are the major pathways contributing to ongoing exposure?

e What is the estimated time to achieve a target level of exposure under various

remedial approaches?

e What is the expected stability of the system under the 10 year wind/flood

event? 100 year event?

Investigation of contamination in the sediment features more complexity than soil or
terrestrial investigations, not only due to the sampling limitation by the simple fact
that it lies under the water, but also that the contaminant is already an integration
of different sources within a watershed or coastal region, which is difficult to distin-
guish and model separately according to the site-specific characteristics (Apitz et al.,
2005). Consequently, although it is widely understood that sediment contamination
can pose a substantial level of risk to an aquatic ecosystem, the remediation of the
contamination in the sediment inevitably becomes an even more complex challenge
because in addition to the investigation of the contamination, the remediation also

involve a variety of different treatment strategies which reduce different amount of



contamination, with different cost-effectiveness under different time span to apply
the treatment. Furthermore, the clean-up efficiency of the treatments are difficult to
evaluate and require further use of a variety of validation and risk assessment tools,
while the validation is necessary to relieve the uncertainty for the stakeholders in
mind that the residual contamination is attenuated below a certain detrimental level

(Apitz et al., 2005).

It is customary then that to address this questions, it is necessary to start with
a conceptual site model (CSM). The CSM represents an abstraction of the interac-
tive processes within the system under investigation, and at least includes the buried
sediment, the mixed layer of sediment that exposes the foodchain to the contami-
nants, the tropic foodchain, and the water phase. The CSM is then queried using a
range of investigative and analytical tools (see Fig. 1.1, adopted from Dekker et al.,
2007) including geostatistical tools to allow for data interpolation between measured

locations. This dissertation will focus on the latter.

1.1 Current State of Remediation Strategies

The current practice for remediation of contaminated sediments is primarily lim-
ited to three strategies: dredging/excavation, capping, and monitored natural re-
covery (MNR). Dredging and disposal is the most practiced approach for remedial
actions, with capping and natural recovery receiving increasing consideration as in
situ remedial options (Cushing, 1999; Adriaens et al., 2006). Dredging is applied for
high-concentration contamination, while the application of dredging requires a good
understanding of the spread of contamination. In addition, the practice of dredg-
ing may also result in a substantial amount of resuspension and at times result in

more ecological problem or ending up with little improvement with all the expenses
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(Thibodeaux and Duckworth, 2001). In other words, a monitoring approach for the
cleanup effectiveness is essential before and after the cleanup decision for the dredging

activity.

Among the three remediation strategies, capping and MNR, which are also known
as in-situ remedies, are considered for lower level of contaminant. The advantage of
in-situ sediment treatment is that it has the potential for overall protectiveness and
permanence, while satisfying the regulatory preference for reduction of toxicity, mobil-
ity, or volume through treatment. There is also great potential for reduction in cost,
relative to dredging and disposal, by eliminating the need for sediment removal as
well as ex-situ sediment water removal, treatment, and solids disposal. The applica-
tion of in-situ remediation, however, also requires a good knowledge of contamination
distribution over the study area because of the potential of high risks not observed a

priori, which may exist under a certain level of uncertainty.

Similar approaches which allow for the quantification of the impact of a given
technology (or technology suite) on the baseline (time trends, risk levels, etc...)
should be used to consider implementation of remediation strategies as a function of
the prevailing hydrogeochemical regime of the river or floodplain. Hence, the design
of a technology with ultimate practical translation needs to be informed by process
characteristics governing contaminant transport in sediments, which needs to rely on

data-driven models based on field and laboratory measurements.

Spatial analysis for all three treatment strategies are needed, consequently, to
fully understand and quantify the potential of high-risk area with its corresponding
uncertainty using probabilistic and statistical techniques. In practice, if dredge-and-
dispose is decided as the treatment, the area to dredge needs to be evaluated using
spatial analysis tools, and further evaluation is required for the risk of resuspension

of residual contaminants and eventual bioaccumulation of contaminants in the food



chain. If in-situ approaches are used, on the other hand, it is also important to
have a spatial monitoring tool for both the assessment of capping strategies and the

assessment of the potential of a possible MNR.

1.2 Current State of Spatial Analysis for
Sediment Attributes

The level of toxicity or hazard is usually represented by measurable values sci-
entifically studied to indicate their impact on human health or environment, and
understood by spatial analysts as attributes, or attribute values (p.7 of Goovaerts
1997b). With the quantification of the level of toxicity or hazard, consequently, the
first step in the contaminated sediment management, i.e., defining the contamination
problem, consists of different perspectives of the problem by government agencies or
stakeholders (p.5 of Barabds 2003), which sums up into a requlatory threshold for the
attributes of the study area (see for example, lannuzzi et al. 1995). Locations where
attribute values violate this regulatory threshold will be considered contaminated and

pose detrimental effect on human or ecology (Apitz et al., 2005).

For locations where measurements are not available, however, no attribute value
can be compared to the regulatory threshold to decide whether a cleanup decision
is needed, thus an estimation should be inferred on the basis of measurements from
other locations by a scientifically developed model in order to decide the action to take
for that certain location (p.4 of Chiles and Delfiner 1999). The estimation uncertainty
(p. 489 of Isaaks and Srivastava 1989) of this inferred value by the certain spatial
analysis model usually characterizes the conditional cumulative distribution function
(p.262 of Goovaerts 1997b), to indicate the possible true attribute values with their

correspondent likelihood of occurrence. The management of contaminated site is



illustrated in Figure 1.3., which poses two questions: (i) what is the impact of the
choice of spatial interpolation technique, and (ii) how does this influence the area

classified as contaminated per a given regulatory threshold.

With the estimation and estimation uncertainty evaluated, the rule that decides
which remediation action to take is called classification of the contamination, by
which a true/false statement is assigned as outcomes of the judgment by comparing
the regulatory threshold to the inferred value Ramsey et al. (2002), which may also
involve a certain level of uncertainties in correspond to the estimation uncertainty.
The classification may take categorical values such as “no further action,” “immediate

treatment,” or, if uncertainty exceed the expectation of decision-makers, “require

future sampling and analysis.” (Apitz et al., 2005)

1.3 Challenges and Research Needs in
Contaminated Sediment Management

The decision making process of remediation of contaminated sediment covers not
only the remediation strategies, but also how the decision makers are assisted by
scientists to make the decision. The complete process is generically called the man-
agement of the contaminated sediment, and defined by Apitz and Power (2002) as
“the process of making decisions and taking actions on sediments, taking into con-
sideration a wide range of factors.” This process depends on a complex procedure in
which the characterization of contamination and the risk-assessment of the contami-
nant has to be integrated with the negotiation process of decision making (Barabas,
2003). A simplified flowchart for the sediment contaminant management is shown in

Fig. 1.2.



| Problem Definition |

—>| Sampling Design / On-Site Sampling | <

| Laboratory Analysis |

Monitoring

| Data Analysis / Modeling |

| Mapping with Uncertainty / Simulation |

¥

| Risk Assessment / Stakeholder Negotiation |

| Action on Sediments (Including No Action) |

Figure 1.2: Flow chart of contaminated sediment management.

Although it is widely understood by modelers of environmental systems that no
sampling approach provides complete understanding of the complex sediment systems
(Chapman et al., 2002), there is a challenge to communicate to the general public how
uncertainty impacts remedial action. It is also summarized by Apitz et al. (2005) that
it is important for scientists to carefully balance a possible over-conservative cleanup
design with the potential costs of a risky design on the basis of a sparse sample set,
and to understand and communicate their conclusions to the general public along
with the explanation of the risk and cost for potential uncertainties that come along

with the outcomes.

It is crucial to provide a spatial description of the possible extent of the contam-
inated area as the basis for communication, otherwise the risk-assessment or nego-
tiation among stakeholders may not proceed. A spatial estimation/uncertainty map
acts as an important communication tool that helps the decision making, on a con-
dition that the outcomes meet the goals of the assessment objectives. Considering
that the contaminant distribution is usually heterogeneous and uncertain in space
(Levin, 1992), the estimation/uncertainty maps to meet the assessment objectives,

consequently, is by itself a complicated process. This is due to the consideration that



the maps should be able to address the concerns and priorities of all stakeholders who
will be part of the decision process, including the general public, risk assessors, and

engineers designing different remedy options (Apitz et al., 2005).

The main purpose of this research, observing all the challenges described above, is
to specifically discuss the impact of spatial estimation on describing the extent of sedi-
ment contamination, and address the uncertainties associated with spatial estimation

for remedial actions.

1.4 Dissertation Outline

This dissertation, aiming at providing a decision-support tool that facilitates com-
munication among stakeholders of a contaminated sediment management project,

follows the following structure:

The current chapter (Chapter 1) describes the challenges and research needs of
contaminated sediment management, introducing the components to be included in

order to fill the communication gaps among stakeholders.

In Chapter 2, the background literature on contaminated sediment management
is presented, which includes an explanation of the complexity of the contaminated
sediment. Followed by the literature review are concepts of site characterization using
scattered samples, and a further review of spatial estimation/uncertainty evaluation
approaches applied to facilitate site characterization and remedial decision support.
The knowledge gap for spatial analysis is described along with the statement of re-

search hypothesis for this dissertation at the end of the chapter.

In Chapter 3, the knowledge gap is proposed to be resolved by the M-Scale model,

10



a spatial statistical model developed in this dissertation. To facilitate the understand-
ing of the M-Scale model, the theoretical development of conventional ordinary kriging
(OK) and constrained kriging (CK) approaches are demonstrated preceding the sta-
tistical derivations of the M-Scale model. The development of the M-Scale model will
be detailed following the description of OK and CK, with application procedure of

the model listed at the end of the chapter.

In Chapter 4, the analytic results for artificial data using OK, CK and the M-
Scale models will be demonstrated to assess the performance of the M-Scale model
comparing to other models. Subsequently, the applicability of the M-Scale model is
explored using the Passaic River datasets (Chapter 5), which also provides the user
with diagnostic tools to choose a spatial statistical model among alternatives for the

specific goal of remedial decision.

Chapter 6 describes the importance of knowledge of artificially induced error for
on-site remedial decisions, and explores the applicability of cross-validation for a
sparse sample set. An example using the Anacostia River datasets will be demon-
strated with analysis of the benefit to decision making when knowledge of artificially

induced error is obtained.

The final chapter (Chapter 7) addresses conclusion for the results observed, with
future research proposed for the development of a more sophisticated estimation

model.

11



CHAPTER 2

Background

Dredging and disposal of contaminated sediments is the management option em-
ployed in the great majority of remedial actions, with capping and natural recovery
receiving increasing consideration as in situ remedial options (Cushing, 1999). Al-
though caps may prove durable enough to prevent exposures if properly designed,
and natural recovery may be sufficiently rapid and irreversible to be protective at
some sites, statutory criteria and the precautionary principle have sustained a long-
standing preference for dredging in remedial decision-making. Superfund criteria in
particular have been difficult standards for in situ remedies to satisfy. In addition
to complying with applicable rules and regulations, Superfund remedial actions must
be protective of human health and the environment and meet additional “balancing”
criteria for remedial selection, which include long-term effectiveness and permanence;
and reduction of toxicity, mobility, or volume through treatment. In situ remedies
are considered for low level wastes, but that close scrutiny should be applied to con-

sideration of these remedies in cases presenting high potential risk and uncertainty.
The advantage of in situ sediment treatment is that it has the potential for overall

12



Landfill

Confined disposal
facilityp Contained aguatic  |n sjty
Natural recovery disposal capping water line

Key:
- contaminated sediment Deep ocean dumplng
V7 “clean” sediment

! cleanor treated dredged material

Figure 2.1: In-place sediment remediation strategies.

protectiveness and permanence, while satisfying the regulatory preference for reduc-
tion of toxicity, mobility, or volume through treatment. There is also great potential
for reduction in cost, relative to dredging and disposal, by eliminating the need for
sediment removal as well as ex situ sediment dewatering, treatment, and solids dis-
posal. The U. S. Navy’s guidance for addressing contaminated sediments (SPAWAR
Systems Center (SSC) San Diego and Battelle Science & Technology International,
2003), the Remediation Technology Development Forum (RTDF) Weight of Evidence
Framework for Evaluation of MNR (Davis et al., 2004), and EPA’s Contaminated
Sediment Remediation Guidance for Hazardous Waste Sites (U. S. EPA, 2005) are
example frameworks that guide the sequence of decisions and also lay out opportuni-
ties for decision efficiencies. These frameworks address the sequence of management
decisions from establishment of the site to closure, with a site conceptual model
supporting each of those decisions. An important input into these decisions is the
forecasted rate of natural recovery as a baseline for comparison with active remedies
and as a component of MNR. (Fig. 2.1). Among the remediation strategies, dredging
and disposal have become less favorable not only for political and social reasons, but
also due to the problems associated with the uncertainties of defining highly con-
taminated areas, the tradeoffs of sediment disturbance and redeposition, and long
term cost of managing confined disposal facilities (CDF's). In-situ contained aquatic

disposal (CAD) is less attractive because the approach still requires dredging prior
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Figure 2.2: Components of contaminant transport/transformation.

to disposal. Alternative approaches such as passive (mitigation of exposure pathways
only) and active (exposure pathway mitigation and toxicity reduction) capping have
received increasing attention as contaminated sediment management options. How-
ever, their application has also been limited due to the uncertainties about long-term

stability and exposure pathways under various environmental conditions.

2.1 Complexity of Contaminant
Transport /Transformation in the Sediment
Environment

The critical processes affecting contaminants in sediments are bioturbation, ero-
sion /resuspension, diffusion, advection, biogeochemical interactions, and biotic or
abiotic transformation reactions (National Research Council, 1997), as illustrated
in Fig. 2.2. In addition to the mixture of different processes in the sediment with
knowledge gaps in their physical behavior, conceptual models built for each processes
require also site-specific informatiosn in order to be applicable for the remediation
project. The following sections will provide a brief overview of some of the challenges

faced in assessing the processes that impact in-place sediment remediation, describing

14



the complexity in ground water advection and sediment biogeochemistry along with
how the assessment becomes even more challenging when these attribute values are

sampled at different spatial scales.

2.1.1 Partitioning

Many chemicals of concern in contaminated sediment sites are hydrophobic; there-
fore, they have a propensity to partition to particulate matter. The degree to which
contaminants can desorb from particles determines the mass available for biota expo-
sure, as well as the rate of transport out of the system from other processes. Research
shows that the partitioning behavior of the contaminant present can be influenced by
a variety of factors, including chemical composition (Means et al., 1980; Karickhoff
et al., 1979), sediment size and composition (Rutherford et al., 1992; Huang et al.,
2003), hydraulics and hydrodynamics (Wu and Gschwend, 1986), and water chem-
istry (Elzerman and Coates, 1987). Often, a 3-phase partitioning approach is used,
where the fraction in the dissolved phase is disaggregated between sorbate bound
to dissolved organic matter and truly dissolved sorbate. The simplest relationships
assume linear partitioning (Karickhoff, 1984), and thus the partitioning coefficient is

the ratio of the concentrations in the sorbed phase to the dissolved phase:

where K, = partitioning coefficient [L3/M]; Cy = concentration in sorbed phase
[M/M]; C,, = concentration in dissolved phase [M/L?] (enclosed in the brackets are
measurement dimensions. [M]: mass unit, [L]: length unit). Often, concentrations in
the above equation are normalized to total suspended solids (T'SS), or particulate or-

ganic carbon (POC). The 3-phase approach has advantages in relating partitioning to

15



bioavailability, but dissolved organic carbon concentrations are often very small and
difficult to measure. Most fate and transport models assume adsorption and desorp-
tion kinetics to be in instantaneous equilibrium. This assumption may be adequate
when exposure times are long and the hydraulics of the system is relatively stable
(Wu and Gschwend, 1986). However, considerable research has shown that desorption
kinetics in natural systems are often quite slow (e.g., on the order of weeks to years to
reach equilibrium) and significantly differ from theoretical predictions under the equi-
librium assumption (Gong and Depinto, 1998; Pignatello et al., 1993). Therefore, the
equilibrium assumption may not always be valid, particularly in cases of high solute
turnover (i.e., storm events, etc; see Wu and Gschwend 1986) and complex biotrans-
formation processes (Bertelsen et al., 1998). In fact, in-situ concentrations have been
found that differ by 1 to 5 orders of magnitude of those predicted by the equilibrium

partitioning models (Zhou et al., 1999; Readman et al., 1987; Cullen, 2002).

2.1.2 Groundwater Advection in Sediments

The interaction of groundwater with streams and lakes has been extensively stud-
ied, yet little is known about the constraints such interaction may impose upon in-situ
contaminated sediment remediation. This phenomenon can affect sediments physi-
cally by promoting or suppressing resuspension, depending on the direction of water
exchange and grain-size. The extent to which groundwater advection affects the
chemical and physical stability of contaminants in sediment and under caps is an
important factor for sediment cap design (Myers et al., 1991; Winter, 2002). The
effect of seepage rates must be validated in the laboratory as well as in the field,
because groundwater fluxes may have effects on biogeochemical processes and redox

conditions over time (Apitz and Power, 2002).

16



Erosion rates of fine-grained cohesive sediments are often modeled as a linear
function of the applied shear stress above a certain threshold (Kandiah, 1974). The
coefficient of the linear function varies with a number of site-specific parameters,
including the environment in which the sediment was deposited (Krone, 1999; Lau,
2000), the pH of the sediment pore water (Dennett et al., 1995), salinity (Parchure and
Mehta, 1985; Gularte et al., 1995) as well as bulk density of the sediment (Parchure
and Mehta, 1985; Krone, 1999).

In general, the strength of these sediments is controlled by the physical-chemical
bonds between the surface-charged particles. A vertically upward flow of pore fluid,
associated with groundwater discharge will induce a mechanical stress that could
result in resuspension of fine material (Reddi and Govindaraju, 1995). Another im-
portant mechanism in the marine environment is that a fresh groundwater discharge
could reduce the ionic concentration of the pore fluids, consequently reducing the
strength of the inter-particle forces. Pore water seepage could also reduce the con-
solidation rates in the sediment, decreasing the bulk density as well as the erosion

resistance.

Particle Deposition and Erosion

Considerable research has been conducted in this area, but much of the theory
has been developed using non-cohesive sediments (Ibad-zade and S. P. Ghosh (trans-
lator), 1992; Cheng, 1997b), which are of less relevance than cohesive sediments for
understanding contaminant fate and transport. According to Stokes Law (Henderson,
1966), particle settling is dictated by particle diameter and density, but important
factors causing non-ideal settling include particle shape and concentration (Cheng,

1997b), flow velocity and turbulence (Cheng, 1997a), and flocculation (Lick et al.,
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1993; Droppo and Ongley, 1994). Flocs formed by fluid shear and differential settling
differ in time to form, character, and settling rates: differential settling is slower and
forms larger flocs with lower settling velocities (Lick et al., 1993). Deposition onto
and attachment to the sediment bed have been described as probabilistic processes
that are affected by turbulence at the sediment-water interface and by cohesiveness
of the solid material (Krone, 1962). Sediment scour depends on hydraulic shear stress
rising above a critical level, sufficient to dislodge particles (Kandiah, 1974). Cohesive
sediment scour has been observed to depend on sediment bulk density (Jepsen et al.,
2000), surface and porewater chemistry (Lee and Mehta, 1994), algal colonization
(Ravens and Gschwend, 1999), and gas formation (Jepsen et al., 2000), in addition

to bottom shear velocity.

Groundwater Seepage

Contaminant transport through the groundwater-surface water interface (GSI) is
governed by a combination of complex hydraulics in and around the sediment bed,
and a transport environment in the sediment bed that frequently exhibits sharp gra-
dients in temperature, salinity, redox chemistry, biological population, and physical
disruption. Mechanisms of groundwater flow and exchange with surface water can
vary significantly from river systems (McBride and Pfannkuch, 1975; Winter et al.,
1998; Conant Jr, 2004; Conant et al., 2004) to coastal environments (Robinson et al.,
1998), and directionality of exchange can vary across reaches or even at a scale of
meters (See for example, Cable et al. 1996, 1997; Conant Jr 2004; Conant et al.
2004). Where surface water concentrations of contaminants are significantly lower
than porewater concentrations, the bulk exchange coefficient is essentially equal to
the Darcy velocity. The porewater concentration may be less than expected based on

the solid-phase concentration, where transport through the sediment bed is too rapid
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to allow equilibrium to be reached.

2.1.3 Sediment Biogeochemistry and Ebullition

Microbial activities can impact contaminant mobility in both positive and nega-
tive ways (Apitz et al., 2005). The impacts may include the influence on chemical
adsorption/desorption, generating ebullition of gases (Fendinger et al., 1992), and the
chemical transformation on the contaminants themselves (Adriaens et al., 1999, 2003).
The chemical transformations can lead to less or more toxic compounds, depending

on the contaminant and on the transformation pathways.

Ebullition

Ebullition of gases resulting from microbial activities (e.g. methane, hydrogen
sulfide, dinitrogen gas, and carbon dioxide generation from methanogenesis, sulfate
reduction, and denitrification, respectively) can cause destabilizion of the sediment,
and result in the desorption of organic contaminants from the sediment particles
into the gas bubbles, thus facilitating the convective and diffusive transport of the

contaminant (Palermo et al., 2002).

Because of the high sulfate concentrations in saline environments, sulfate-reduction
is often a dominant process in marine sediments (Capone and Kiene, 1988), although
fermentation (Ollivier et al., 1994), denitrification (Bonin et al., 1994; Nowicki, 1994),
iron reduction (Lovley et al., 1991), and methanogenesis (Ollivier et al., 1994) have
also been demonstrated. These conditions may increase the reduction reactions such
as dechlorination of PCBs and dioxins (Adriaens et al., 1999), and aromatic ring

destabilization of PAHs (Chang et al., 2003). Natural dechlorination rates for these
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compounds range from seven to ten years for one chlorine to be removed, depending
on the rates of carbon mixed into the sediments (Murphy and Schramke, 1998). Lesser
chlorinated compounds have been assumed to move up to upper sediment layers, or
out of the sediments into the water column (Gevao et al., 1997; Lohmann et al., 2000;

Fu et al., 2001).

The formation, movement, emission and effect of the microbial gases in marine
sediments has been well documented (Claypool and Kvenvolden, 1983; van Weering
et al., 1997; Casper et al., 2000). The process of bubble formation, and its potential
impact on sediment stability and contaminant mobility is shown in Fig. 2.3. This
figure shows that the pathways from gas formation to sediment destabilization can

be conceived as a complex sequence of events comprised of the following steps:

1. Metabolic generation of gas resulting from respiratory processes
2. Gas bubble formation, growth, and formation of channels in sediments
3. Gas dissolution and diffusion in the sediment

4. Contaminant mobilization in the gas phase via desorption and diffusion pro-

cesses
5. Entrainment of sediment fines in particle wake during upward migration

6. Reduction of sediment bulk density and critical shear stress resulting in resus-

pension

It is generally observed that the generation of biochemical gases depends on the
amount of organic matter in sediment and on the thickness of sediment cover (Gins-
burg and Soloviev, 1997). However, limited direct measurements of gas diffusion

in porous matrices have been reported, and the available information is generally
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Figure 2.3: Gas bubble generation processes and the impact of gas bubbles on
sediment and contaminant stability.

restricted to methane, carbon dioxide, and oxygen (Elberling, 1996; Rothfuss and
Conrad, 1998). Fig. 2.4 shows the rates of ebullition observed in freshwater, tidal,
estuarine, and marine environments. This table indicates that ebullition rates varies
in tens of orders of magnitude from site to site, with uncertainties that are also site-
specific, as shown in the minimum and maximum number observed in the different

researches.

The significant uncertainties restricted the development of models that account
for sediment/cap stability as a function of gas ebullition (Palermo et al., 2002). The
impact of biogenic gases on contaminant fluxes in uncapped or capped sediments has
rarely been incorporated into the modeling and/or remediation decision making at
contaminated sites. This is in part due to the assumption that these gases would
have a negligible impact on the system, relative to other fate processes (Reible et al.,

2003). While ebullition may be insignificant at some sites, many sites show evidence

21



that biogenic gases can have an impact on both physical and chemical stability of
sediments, and also capped sediments. For example, gas bubbles rising through the
sediment column have been shown to strip contaminants from the porewater, car-
rying them through the sediment, to the water column (Martens and Klump, 1980)
and into the atmosphere (de Angelis and Scranton, 1993). The presence of gas bub-
bles decreases bulk density, rendering the sediment more susceptible to erosion, while
gas bubbles rising through the sediment can directly mix and transport buried sed-
iments to the surface by entraining sediment particles in the wake of the bubble.
Accordingly, ebullition may in part explain observed excess contaminant fluxes due
to non-resuspension processes (e.g. Hartman and Hammond (1984); Erickson et al.
(2005)). Thus, ebullition can modify natural recovery rates, and in the case of a cap,
ebullition can increase the effective thickness of a cap, as well as dictate the type
of suitable capping material (e.g. organic content, grainsize). However, probably a
more important reason that gas ebullition is neglected is the dearth of information
concerning the various mechanisms through which these gases can affect contaminant

stability /fate.

The potential importance of gas formation has been observed at the following
sites. Cap failure due to methane ebullition in freshwater environments has been ex-
perienced at the EPA /Manistique and the Oxbow, WT sites, where successive geostex-
tile layers were lifted and exposed by methane formed in the contaminated sediment
(Palermo et al., 2002). Methane outgassing has been observed at the Simpson-Tacoma
site as well, where it did not cause physical disruption of the cap, but concerns of
chemical transport by the gases prompted additional sampling of the gases (Stivers
and Sullivan, 1994). The outcome of this follow-up sampling is currently unpub-
lished. Cap design that accounted for ebullition was demonstrated at the Stryker
Bay Superfund site in Duluth, Minnesota, on the St. Louis River just upstream of

Lake Superior. At this site, ebullition actively transported both PAHs and NAPL
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Ebullition Rates in cm/d ("-" means no data reported)

Salinity Min Max Avg Stdev N(data) % CH4
fresh 0.03 0.03 - - 7 44 88  induced by rapidly falling barometric pressure Casper et al. (2000)
fresh - 0.26 - - - - - cited from Ward and Frea, 1979 Adams et al. (1990)
fresh - 0.02 - - - - - cited from Chau etal., 1977 Adams et al. (1990)
fresh - 0.26 - - - - - cited from Howard et al., 1971 Adams et al. (1990)
fresh - 0.10 - o S o o Adams et al. (1990)
flowthrough microcosm in laboratory, with SO4, numbers
fresh - - 3.22 0.56 3 - - estimated from graph
fresh 0.02 0.08 0.05 0.02 33 73 100 June-October, recalculated from graph Strayer and Tiedje. (1978)
fresh S 0.92 0.08 0.16 143 - - June and July measurements, recalc from graphs Joyce and Jewell (2003)
fresh 6.72  44.80 - - - - Outbursts during pressure release Richardson (1998)
fresh - - 10.54 - - - - daily, cited from Cicerone and Shetter, 1981 Chanton and Martens (1988)
fresh 0.32 4745 - - - - - daily, range from many environments Chanton and Martens (1988)
tidal fresh 0.01 0.01 0.01 0.00 - - - annual rate Chanton and Martens (1988)
estuarine - 10.07 - - 10 85.5 855 Martens and Klump (1980)
marine - - 0.06 - 10 82 90  June-October Martens and Klump (1980)
marine - 3.12 - - 10 82 90 same as above, converted to mmol Martens and Klump (1980)

cited from Kuznetsov, 1968; Howard et al., 1971; Chen et
- - - - - - 46 95 al, 1972, Ward and Frea, 1979; Chanton et al., 1988

Ebullition Rates in Fresh Water and Marine Environments
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Figure 2.4: Gas bubble generation processes and the impact of gas bubbles on
sediment and contaminant stability.
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to the water surface. A transient model of post-capping sediment consolidation and
associated porewater movement, groundwater advection and gas ebullition predicted
that a 3-ft thick cap would be necessary to suppress methanogenesis to levels at which
groundwater advection of dissolved gases and sediment strength would prevent the

formation of free-phase gases (Huls et al., 2003).

Diffusive Mass Transfer and Bioturbation

Diffusive mass transport of porewater contaminants across the sediment-water in-
terface is restricted by the thickness of the benthic boundary layer, which is very
difficult to either measure or to relate to system properties (Thibodeaux, 1996). Bio-
turbation, which encompasses a diverse set of mixing processes mediated by benthic
organisms, is generally thought to be the most important mechanism for reworking
sediments and releasing porewater contaminants in sediments (Reible et al., 1991).
Bioturbation increases flux by one to two orders of magnitude over molecular dif-
fusion alone (van der Loeff et al., 1984). Bioturbation is controlled by a variety of
biotic (organism size and seasonal life cycles, population density, deposition of organic
matter, and species diversity) (Widdows et al., 1998; Berelson et al., 1999; Robbins
et al., 1977; Wheatcroft et al., 1994; Petersen et al., 1998) and abiotic (temperature,
sedimentation and erosion conditions and sediment chemistry) factors (Rhoads and
Boyer, 1982; Schaffner et al., 1987). The importance of these multiple factors coupled
with the spatial and temporal heterogeneity of benthic communities (Gerino et al.,
1998; Berelson et al., 1999) has made it difficult to determine which factors are most

important in driving biological mixing.
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Biochemical Transformation

Biochemical transformation processes can occur due to chemical and biological
processes. Biodegradation can occur due to growth metabolism or catabolism (Mills
et al., 1985). For environmental transformations, redox conditions are particularly
important because of their determining role in the microbial ecology and energetics
(Capone and Kiene, 1988; Ollivier et al., 1994; Bonin et al., 1994; Nowicki, 1994;
Lovley et al., 1991; de Angelis and Scranton, 1993). Biogenic gas production may also
affect contaminant partitioning and sediment stability. For PCBs and other persistent
sediment contaminants, rates of degradation are generally very slow (Murphy and
Schramke, 1998), so that biodegradation is not generally a quantitatively important
remediation process. However, biotransformations may be important for converting
chemicals to more labile, mobile forms (Rhee et al., 1993; Adriaens et al., 1999), and
may also decrease or exacerbate toxicity, altering risk without significantly changing

total concentration (Apitz et al., 2002).

2.1.4 Uncertainty Associated with Sediment Conceptual
Model Attributes

The following is a summary of uncertainties in the components of the complex

contaminant transport/transformation.

Partitioning

Accurate modeling of the fate and transport of hydrophobic organic compounds
(HOCs) depends greatly on appropriate characterization of the site conditions as well

as the physiochemical properties of contaminants of concern. Site-specific data are
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often limited, requiring assumptions regarding the partitioning coefficients. The use
of non-site-specific partitioning data can contribute significant uncertainty to fate and
transport modeling, and the extent of this uncertainty is rarely evaluated. Laboratory
analysis of samples collected from both the water column and sediment bed of the
contaminated site is required for accurate representation of the in-situ partitioning,
but even when these are available there is uncertainty associated with translation from
the laboratory to behavior at field scale. The influence of partitioning uncertainty on

the uncertainty in predictions needs to be quantified.

Particle Deposition and Erosion

The main uncertainties in deposition processes are associated with particle size
distributions and shapes, the degree of particle aggregation/disaggregation as a func-
tion of shear stress and particle properties, and the effects of fluid shear and bottom
roughness on deposition. The main uncertainties for erosion (resuspension) process
include the effects of depth and associated consolidation on critical shear stress, and
the true resuspension rates of cohesive sediments with a range of compositions, rang-
ing from virtually all clay and fine silt with high organic content to a significant
fraction of sand but still enough clay/silt to impart cohesive properties. The litera-
ture includes a very wide range of estimates for these parameters, reflecting potential
measurement artifacts and the generally unsettled state of measurement technolo-
gies. Additional sources of uncertainty include armoring processes and the extent to
which erosion rates change over time and amount of material eroded, and quantifying
the effect of sediment porosity on resuspension, including the impact of gas bubble

formation as it affects sediment column stability.
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Groundwater Seepage (Advection)

The high degree of spatial heterogeneity and variability of seepage fluxes and
porewater concentrations implies a high degree of uncertainty in local contaminant
fluxes, although this uncertainty is reduced at a more integrated spatial scale. An
analysis of observed ranges of seepage fluxes and distribution coefficients for PCBs
indicates that contaminant fluxes would be significantly reduced by a low permeability
cap, and would be further reduced if the cap contained adsorptive materials, and that

these conclusions hold across the range of site-specific parameter values.

Ebullition and Non-Resuspension Mass Transfer

Large knowledge gaps exist about the ebullition process, particularly with respect
to the mechanistic/theoretical aspect of processes and empirical measurements of
rates and their dependence on environmental factors. The greatest uncertainties
surround the process of bubble formation and growth, and the physical transport
of contaminants. Bubble sizes and residence times need to be better understood in
order to properly estimate the extent of contaminant partitioning into the gas phase.
The rate and extent to which migrating bubbles mix sediments is also an important
uncertainty. Because gas generation rates are the driving force behind ebullition,
it is important to better define the microbial, chemical and physical factors that
affect it on all spatial and temporal scales. Diurnal, seasonal and weather related
variabilities, as well as spatial variabilities, all contribute to predictive uncertainty.
The interaction between groundwater seepage and ebullition is also not well enough
understood. Reducing these uncertainties in process understanding and quantitative
effects would greatly facilitate the incorporation of ebullition into existing modeling

frameworks.
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Diffusive Mass Transfer and Bioturbation

Chemical transport within the upper layers of bed sediments is a very complex
process that will continue to challenge the efforts of environmental chemists, benthic
biologists, and engineers. Aside from radionuclide tracer data, the laboratory and
field data needed to verify mechanistic models for a specific site are usually very
limited. While molecular diffusivity can be predicted with reasonable accuracy based
on chemical characteristics and sediment porosity, biodiffusion is much more difficult
to predict without extensive knowledge of local benthic populations and processes.
Biodiffusion releases to the water column at rates excluding molecular diffusion must

therefore be considered unless ruled out by site-specific benthic studies.

Biotransformation

The leading models contain simplifications and assumptions of site-specific param-
eters to facilitate application with limited data, generally represented as lst-order
decay rates. Given the wide range of degradation rates provided in the literature,
and the hazards of translating laboratory rates to the field, there is considerable

uncertainty in predicting biochemical transformation fluxes at any given site.

2.1.5 Overall Significance and Relative Uncertainty

To gain the most benefit from improvement of process representations one should
focus on those processes to which the surface sediment response to alternative in
situ technologies is most sensitive (i.e. where the process plays a significant role in
governing the rate of change in surface sediment concentrations over time) and for

which there is high degree of uncertainty /variability. For example, it does not pay to
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reduce process uncertainty for a process that does not significantly affect the change

in exposure from surface sediments over time.

The relative significance of processes in a system-level context can best be assessed
by comparing their rates on an equivalent basis. To do that we can initially compare
the estimated half-time for natural attenuation of a chemical in a surface sediment
layer if the process of concern is the only one leading to that attenuation (i.e., a
simple washout half-time). This is not a definitive definition of significance because
the relative significance of processes and their half-time for exposure change over time
may vary as a function of the particular in situ technology being applied. Nevertheless,
a screening assessment of significance can be obtained by comparing the attenuation
half-times with no remediation action. For this comparison, we assume the following
common parameter values (minimum, median, maximum): bulk density: 1.0x10°,
2.25x10°%, 5x10° g/m?; surface sediment mixed layer depth: 5, 10, 15 c¢m; particle
density 2.0, 2.25, 2.5 g/m?; porosity 0.8, 0.9, 0.95; equilibrium partition coefficient
105,106,107 cm?®/g. Estimates of process parameters determining mass transfer in
sediment-surface water systems can vary over as many as three orders of magnitude,
and for some processes, measurement issues and heterogeneities make it difficult to
reduce this uncertainty, even with site-specific data. For this reason, a probabilistic
approach is needed to quantify the uncertainty in any process and its impact on
prediction. Process prediction uncertainty can be difficult to evaluate on a generic
basis, but can be estimated by developing probability distributions from the rates
reported in the literature. In doing so, it should be recognized that the range of
reported rates include both artificially induced error as well as the influence of all
of the factors leading to stochastic variability in the environment. A simple Monte
Carlo analysis is used to develop a half-time distribution for the processes of interest
using estimated distributions of process-governing parameters based on the review of

parameter variability and uncertainty. The characteristics of the resulting half-time
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Table 2.1: Representative rates and attenuation half-times.

Process Range of Median Washout | Ratio (75%/25%)
Observed Rates Half-time Washout Half-times|
Net Sedimentation \ -2to 5 cm/y \ 0.5 to 15 yrs® \ N/A®Y

Gas Ebullition

Gas Phase Transport 0 to 47 cm/d

(Stripping)*© (0 to 17000 cm/y) 20,000,000 yrs 22
Particle Entrainment Unknown Unknown Unknown
0 to 125 cm/d
Groundwater Seepage 3,700 yrs 25

(0 to 46000 cm/y)

Bioturbation 0.001 to 30 cm?/y 500 yrs 20

Molecular Diffusion

2
in Porous Media 0.3 to 30 cm*/y 1,100,000 yrs 9

Biotransformation 107" to 107%/d 55 yrs 4

?Applies only when net depositional. Not a median due to unknown distribution shape.

®Unknown distribution shape for the sedimentation/erosion rates

“By partitioning to bubble phase (does not account for particle entrainment and diffusion en-
hancement)

distributions are presented in Table 2.1.

An overall assessment of the relative magnitude of predictive uncertainty for the
transport and transformation processes of interest can be made by combining the
knowledge gained from the significance and uncertainty /variability analysis presented
above with an evaluation of the other factors leading to prediction uncertainty (the-
oretical understanding, model representation and process parameterization, and site-

specific information), as shown in Table 2.2.

2.2 Uncertainty Modeling and Remedial Decision
Making

To assess the dependence between site-specific attributes, model estimations are

usually required, to interpret the information derived from the limited number of
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Table 2.2: Qualitative assessment of uncertainty.

Site-specific

Theoretical Model Information
Process Understanding | Representation (Process Overall
(Mathematical (Process Variability & | Uncertainty
Formulation) | Parameterization) | Availability
of Data)
Partitioning +++ I+ T+ T+
Net Sedimentation ++ +++ ++ ++
Gas Ebullition + + 4 +
Groundwater
e - - ++
Seepage
Diffusive Mass
Transfer and +++ ++ + ++
Bioturbation
Biotransformation +++ ++ + ++

++4++ (Low uncertainty) — + (High uncertainty)

samples collected, and to aid in future sampling guidance. The choice of methods or

models to be used, to this end, is the first step in estimation. Unfortunately, the choice

is often made on a largely subjective and intuitive basis (Maidment, 1992). While

some subjectivity may always be involved, the choice of an estimation method usually

depends on consideration of deterministic or stochastic approaches, and whether a

particular method and its parameter values are suited to the application.

2.2.1 Deterministic and Stochastic Models for Sediment
Remediation

Deterministic models, derived based on physics laws that are generally accepted,

are applied for the simplicity of their formulation or for the ease of explanation to a

broader audience. Stochastic models on the other hand, are often used to measure

the uncertainty accompanied with restriction of sample size due to the cost of taking

samples. In addition to using the stochastic model as an uncertainty assessment tool,
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the applications may also include the forecasting or estimation of a certain attribute

based on currently available measurements.

A mixed deterministic and stochastic approach may provide an alternative that
evaluates the parameters of a deterministic model from the specific site measurements
and leaves out the residuals for stochastic analysis. The mixed approach, however,
is usually categorized as a stochastic approach based on the fact that the models are
taking statistic components into consideration. For example, a kriging with a trend
model incorporates a varying local trend within a certain neighborhood expressed by
a deterministic function of the coordinates (Goovaerts, 1997b). The deterministic
components of the model require inter-disciplinary knowledge from experts in flow
modeling and lab experiments, who should be involved in the stochastic estimation

in the cases where physical models are available for attribute quantification.

Risk assessment is an integral component of decision-making for contaminated
sediment management, and an important driving force is the presence of uncertainty.
Uncertainties exist at all stages of site assessment and modeling. Even when pre-
ventive measures are based on sound planning, sampling (Batley et al., 2002) and
analytical methods (U. S. EPA, 2000) aimed at eliminating and minimizing some
sources of error and bias, uncertainties always remain. Nevertheless, the element
of uncertainty in the management of contaminated sediments is often treated inade-
quately (Suter, 1999), or not addressed at all. For example, unquantified uncertainties
can force extremely conservative estimates (Linkov et al., 2002), which can lead to
high inefficiencies in the allocation of resources for remediation. Most frequently, un-
certainty is expressed in the form of confidence intervals, or by incorporation of safety
factors based on best “professional judgment.” But these measures and strategies are
rarely tested and vary along with sampling and measurement methods, models, and

site variability and other site characteristics.
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The applications of geostatistical techniques to the spatial analysis of sediments
are recent and few. Barabds et al. (2001) modeled spatial uncertainty in dioxin con-
tamination in three dimensions using indicator kriging in Passaic River sediments;
Murray et al. (2002) mapped the extent of DDE contaminated sediment thickness
on the Palos Verdes shelf using sequential indicator simulation, while Fioole et al.
(1998) developed the SURFIS computer program, to integrate geostatistical methods
in order to account for random error in the optimization of dredging of contaminated
sediments with digital terrain models (DTMs). Ouyang et al. (2002) studied DDT
in river sediment, and used kriging to “characterize” its spatial distribution. Mear
et al. (2006) characterized geostatistical spatial structure for the fine-grained content
of the superficial sediments in eastern Bay of the Seine, France, for the indication of
heterogeneous patches in the sediment. Mear et al. also performed conditional simu-
lation of the same attribute, while locally calculated mean value of the 80 conditional
realizations to generate the estimation map. In the research by Ouyang et al. (2003),

heavy metal was estimated in river sediment.

When systems are better understood and mechanistic models available, the en-
vironmental attributes and parameters of the mechanistic models can be treated as
random variables. Uncertainties of these inputs (parameters/coefficients and vari-
ables) can be expressed in the form of value distributions. These uncertainties are
then propagated to the model output via mathematical analysis for simple models
and via stochastic simulation (Kleijnen, 1997). The uncertainty evaluation of input
parameters for the deterministic models must often rely on professional judgment,
in particular when values of parameters are scattered in the literature and were de-
rived in different experiments (or sites), by different investigators, under different
experimental (or site) conditions (Linkov et al., 2002; Steinberg et al., 1997). Once
input distributions are quantified, values for each input variable and model parameter

are randomly drawn from their probability distributions using, for example, a Monte
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Carlo approach, preserving correlations among the inputs if applicable. The resulting
combination of input values is used in the model (e.g. sediment fate and transport,
contaminant flux) to generate a realization (Rossi et al., 1993; Clarke and McFarland,
2000; Papadopoulos and Yeung, 2001). The process is repeated, while the nature of
the sampling ensures that the realizations are equally probable, allowing a statistical

summary of the model outputs.

2.3 Principles of Spatial Estimation and
Contaminant Delineation

In observation of the complexity of contaminant assessment in the sediment envi-
ronment, spatial estimation approaches have been applied to provide information for
decision making (Englund and Heravi, 1993; U. S. EPA, 2005). Especially when a
conceptual site model including, for example, a contaminant mass transport model is
not available or not sufficient to estimate the spatial attributes, statistical models are
often used to make estimates of attribute values and evaluate the estimation uncer-
tainty where no sample is taken (Goovaerts, 1998; Adriaens et al., 2006; Chiles and
Delfiner, 1999). The following paragraph provides the basic principles upon which

most of the spatial estimation models are formulated.

2.3.1 Spatial Estimation/Uncertainty Evaluation

Spatial estimation is based on the mathematical concept where an estimate is rep-
resented by a weighted average of sample values. Usually the similarity /dissimilarity
is considered among samples and between sample and estimation locations, so that

weights are properly attributed to each sample value according to the similarity
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Figure 2.5: Difference between attribute values. x represents the sample location with
spatial coordinates (uj,us), attribute values Z are represented as height along the
vertical coordinate, R;; and h;; represent the difference between attribute values and
distance between locations.

(Chiles and Delfiner, 1999; Isaaks and Srivastava, 1989).

One of the simplest forms of expressing dissimilarity is based on using the differ-
ence between attribute values (p.76 of Haining 2003), as shown in Fig. 2.5. When the
number and sample locations of sample points are considered sufficient to represent
the similarity between locations for the entire study area, the values of dissimilarity
are grouped into different classes, for example, by distances between locations (pp.74—
75 of Haining 2003), as shown in Fig. 2.6. These different values of dissimilarity are
considered as the uncertainty when one attribute value is represented by another value
at a different location. When estimations are needed at a location where samples are
not available, all other sample points can be considered to represent the unknown
value, with different uncertainty pertaining to the class of dissimilarity(pp.260-266 of
I[saaks and Srivastava 1989). Weights to the different possible representative values
are thus attributed to establish a single estimation. The weights are attributed not
only to the sample values themselves, but also their corresponding uncertainty, and

the combination of the two is a distribution of possible values for the sample location
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Figure 2.6: Summarizing attribute value differences into distribution of differences.
The value differences R;; at a separation distances class h. are pooled and summarized
as the distribution f(R;;; h.)-

(p.249 of Isaaks and Srivastava 1989), as shown in Fig. 2.7. The combination of the
weighted sum and uncertainty for a single location can be visualized as Fig. 2.8, the
distribution of which is defined as conditional distribution for the estimation because
value distribution represents the possible true value conditioned on the sampled at-
tribute values Z(z;) (p.378 of Chiles and Delfiner 1999). For a spatial estimation,
the estimation and uncertainty evaluation process is repeated throughout locations

where the estimation is needed, as shown in 2.9.

It is almost impossible to show the combination of estimation/uncertainty on a
single graph, thus representative values, e.g. the mean value, of the value distribution
for all locations are connected to form a surface representation (see for example,
pp-51-53 of Ripley 2004), as shown in Fig. 2.10. This representative value is usually

used as the attribute value based on which the spread of contaminant is delineated.
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Figure 2.7: Weighted estimation and uncertainty, where 7Z;,i = 1,...,n are sample

values, R,y are possible difference values between sample and unknown values for Z; to
represent the unknown value. Z* and R* are weighted sum of sample values and

uncertainty.
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Figure 2.8: Visualization of a local estimation/uncertainty evaluation, where samples

are presented as arrows with heads pointing to the value, and the local estimate and
its uncertainty is illustrated as a bell shape.
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Figure 2.9: Visualization of a spatial estimation/uncertainty evaluation. Estimates
and uncertainties are presented at different estimation locations.

»
v o

Figure 2.10: Visualization of representative values of a spatial estimation/uncertainty
evaluation. The representative values can be used to form an estimation surface,
presented in the figures as the shaded surface. The most presented estimation surface
is the surface of the expected value, although other statistics of the estimation (such
as quantiles, upper/lower confidence limits) can also be used.
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Figure 2.11: Four categories to express quality of classification. For a binary
classification like the exceedance/non-exceedance classification, four categories
(TP,TN,FP,FN) can be used to express the types of agreement/misclassification of
the results.

2.3.2 Classification and Delineation of Threshold
Exceedance

Once a representative attribute value is obtained, the value is compared to the
regulatory threshold to decide whether the attribute value reaches a detrimental level
(Englund and Heravi, 1994). This comparison is called classification, and the quality
of this classification is usually expressed with four categories (Ramsey et al., 2002),
as shown in Fig. 2.11. Usually the classification with larger TP /TN rates and smaller

FP/FN rates is considered a better classification.

A collection of all locations where the representative value violates the regulatory
threshold is called the delineation of contamination in this dissertation, as shown in
Fig. 2.12. Tt is hard to define an "unbiased” delineation of contamination zone in a 2-
D or 3-D space, however. As shown by the different cases conceptualized in Fig. 2.13,

where dashed line indicate the true extent of contamination, and solid lines indicate

39



>

Figure 2.12: Delineation of the extent of contamination. The horizontal plane that
cut through the estimation surface represents the regulatory threshold. A delineated
extent of contamination is represented as the shaded zone on the projected plane on

top of the estimation surface.

the estimated extent of contamination based on the classification at each estimation
location. It is clear that (a) is an underestimation of the contamination zone, with
much of the FN classification and little FP classification. Similar argument can be
made for (c) as an over-estimation of the contamination zone, since the delineation
contains much of the FP classification and little FN classification. (see also Squire
et al. 2000a) A delineation with similar amount of FP and FN classification, however,
may not necessarily define a good estimation. As shown in the same figure, both
(b) and (d) are examples of the delineation that has similar amount of FP and FN
classification, while it is obvious that (b) is a better delineation than (d) because the
amount of both false-positive and false-negative classification is smaller than that of
(d). What (b) shows is a more precise estimation that have less tendency toward FP or
FN, while (d) have more tendency toward both FP and FN. Imprecise delineations of
contaminant may also include those shown by cases (e) and (f), where certain part of
the contamination spread is underestimated and another part of the contamination

is overestimated. (See also Squire et al. (2000b) for more examples of delineation
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Figure 2.13: Delineation with different precision. Dashed contours represent the
actual extent of contamination. Solid contours represent the delineated extent of
contamination based on the estimation results.

geometry and their mismatch possibilities with the true contamination zone.)

Although an overestimation of extent of contamination results in a high FP rate,
the increase of the estimated extent of contamination usually accompanies a decrease
of the FN rate (see for example, the results of FP and FN rates in Englund and Heravi
1993 and Englund and Heravi 1994, and p.54 of Saito 2003). A decision upon quality

of delineation, consequently, will depend on the excess cost (Squire et al., 2000b):

excess cost = a(F — i) + b(T — 1)

where 7' represents the true area of contamination, F is the estimated area of con-
tamination, and ¢ is the area of overlap of the two regions, 7" and FE. Parameters
a and b are used to represent a possible financial penalty in which a false negative
classification was estimated to be a certain ratio of a false positive classification. In
fact, £ —¢ and T'— i represent the areas of FP and FN classification respectively. An

excess cost of zero indicates perfect spatial delineation, while in practice the value

41



Classified
True < FP
I ¥ : Real Value
' === e I Y R .
' : Quantile Estimates
T *
Classified ™
False

Figure 2.14: Likelihood-based classification. The classification results using different
quantiles (likelihood thresholds) may not be the same as the classification of the
actual attribute value depending on the choice of quantile. Two cases are shown to
demonstrate the possible false-negative and false-positive classification due to the
selection of quantiles/likelihood thresholds.

depends on the true extent of contamination, estimated extent of contamination, and

the objective of the cleanup of contamination.

2.3.3 Likelihood-Based Estimation and The Uncertainty of
Contamination Delineation

Because the classification depends locally on the comparison between the rep-
resentative attribute and the regulatory threshold, the classification also involves a
certain level of uncertainty (Squire et al., 2000b). When the representative value is
not assigned to be the mean value, the classification results may vary. As shown in
Fig. 2.14, when a quantile value corresponding to a certain likelihood of exceedance
is selected as the representative attribute value, the classification may change from
true to false or vice versa. For a spatial estimation, consequently, the delineation of
contaminant may also vary, as shown in Fig. 2.15. The FP and FN rates will also

change according to the change of delineation, resulting in more conservative delin-
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Figure 2.15: Likelihood-based contaminant delineation. The extent of contamination
are different depending on the choice of representative values.

eation (larger FP rate) or riskier delineation (larger FN rate). The classification on
the basis of quantile is also seen in Ramsey et al. (2002) and Barabds et al. (2001),
where a function for expectation of loss is used to make decision on the quantile to

use.

2.4 Estimation Models, Their Estimates and
Estimation Uncertainty

Although based on similar principles of spatial estimation, different models have
been developed to fit different estimation objectives. Kriging approaches have been
applied to estimate environmental attributes, such as heavy metal in soil or per-
cent of the water column occupied by submersed vegetation, to achieve the least
local estimation errors (Facchinelli et al., 2001; Valley et al., 2005). Parametric and
non-parametric methods exist to model conditional distribution of attribute values

(Goovaerts, 1998). Ordinary kriging (OK) is a parametric approach generally used for
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local estimation which generates a smooth visual representation of the spatial distribu-
tion. The smooth estimation map, however, under-represents the spatial variability, a
situation usually called smoothing effect (Isaaks and Srivastava, 1989). The approach
yields good estimates locally that minimize estimation variance, while their estimates
exhibit a smoothing effect (Carr, 1990; Olea and Pawlowsky, 1996; Goovaerts, 1997b;
Journel et al., 2000; Arik, 2002; Yamamoto, 2005) due to their tendency to produce
a central value among sample points, thus reducing the variability of the estimate.
This is illustrated by Carr (1990), who described ordinary kriging (OK) as a “low-
pass filter”, and demonstrated the smoothing effect by plotting the variogram of OK
estimates where the semivariance values of all lag distances are underestimated. In
other words, kriging approaches were developed to minimize the estimation uncer-
tainty at each estimation location rather than to estimate the variability of attribute

values between estimation locations.

Among all the conventional geostatistical approaches, indicator kriging (1K) is a
non-parametric approach, with the advantages that the shape of the local exceedance/
non-exceedance is derived using spatially varying information rather than assuming
a global analytical expression (such as a parametric Gaussian model) (Barabds et al.,
2001). The approach provides the same expected mean value of local conditional
cdf (E-type estimate) as the estimates of OK and their estimation variance are also
identical (Journel, 1983). The merit of IK over OK is the flexibility to evaluate local
quantile estimates other than the most conventional E-type estimates, consequently
is the flexibility for the delineation to achieve the site-characterization objective,
e.g. the least misclassification rate (Barabds et al., 2004). The dilemma for using
IK and quantile estimates, however, is that the flexibility to achieve a contaminant
delineation is done by assigning the likelihood of exceedance for a certain regulatory
threshold (Barabés et al., 2004), which sacrifices the flexibility of having alternatives

for stakeholders to negotiate (see Chapter 6 for detailed discussions). Although the E-
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type estimate of IK does not involve the problem above, the result coincides with OK,
therefore no further benefit is gained for characterizing the contaminant area. Another
shortcoming of 1K is the lack of capability for generating the likelihood map of block
values, as described in Deutsch and Journel (1998) that “we strongly recommend that

the block ccdf be approached through small-scale stochastic simulations.”

2.5 Spatial Statistical Approaches for the
Reproduction of Global and Spatial
Variability

To avoid the smoothing effect involved in OK and IK, stochastic simulation is in-
creasingly preferred to kriging for environmental assessment applications such as de-
lineation of contaminated areas (Desbarats, 1996; Goovaerts, 1997¢; Kyriakidis, 1997;
Naber et al., 1997), or the modeling of groundwater flow in heterogeneous aquifers
(Dagan, 1982; Desbarats and Srivastava, 1991; Morgan et al., 1993; Desbarats, 1996;
McKinney and Lin, 1996). Conditional simulation generates equiprobable maps that
represent spatial variability, and has been recognized as a method that reproduces
both the histogram and the variogram (Yamamoto, 2005). The set of alternative re-
alizations generated provides a quantitative measure of spatial uncertainty. Features
that appear consistently on most of the simulated maps are deemed certain, as ex-
pressed by a corresponding local conditional distribution summarizing the likelihood
of the attribute at each simulated grid point. The uncertainty can then be summa-
rized into probability maps, risk maps, or maps of false positives and false negatives
(Goovaerts, 1999). Such results can aid in a more scientifically grounded assessment
of safety factors and a more realistic and comprehensive formulation of confidence

intervals. The problem with conditional simulation is, as described in Journel et al.

45



(2000), “for expert users, they may have based their decision-making process on mul-
tiple equiprobable simulated images.” However, even for an estimation approach like
the conventional kriging, there is “one advantage in the eyes of many users— that
of providing a unique (single) representation/estimation of the unknown reality.” In
other words, no single map is more representative than the others in a conditional
simulation, complicating the decision-making process. Another shortcoming of the
conditional simulation is that, even if the approach reproduces spatial variability in
each simulated image, the expected exceedance of local values over all simulations is

similarly biased, as quantitatively evaluated in Aldworth and Cressie (2003).

Reduction of the smoothing effect has also been attempted in the past by post-
processing the kriging results (Olea and Pawlowsky, 1996; Journel et al., 2000; Ya-
mamoto, 2005) such that a single map could reproduce the spatial variability of the
original sample points. However, the post-processing approaches also transform the
kriging results from their original estimates that follow the constraints designed to
fulfill the objectives for the estimation model, such as the unbiasedness constraint
of weights attributed to each sample point for the local estimate. Two approaches,
known as constrained kriging (CK) (Cressie, 1993) and covariance matching kriging
(CM) (Aldworth and Cressie, 2003) are used to generate estimations that reproduce
global and spatial variability without ad hoc post-processing. The problem with the
two approaches, however, lies in the estimation stability, where estimates may or may
not be singular (not evaluated) depending on the strength of covariance (the absolute

value of the covariance) between sample and estimation locations.

The major features of the applied geostatistical approaches described in this and
the previous sections are compared in Table 2.3. The focus for this dissertation is to
develop methodology that enables reproduction of variability and enables single-map

estimation. Consequently, the estimation models that aim at reproducing variability
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Table 2.3: General comparison of geostatistical approaches. Positive signs indicate
the inherence of the feature, negative signs indicate the absence of the feature, and
NI represents non-indication of the feature. OK: ordinary kriging; QIK: quantile
indicator kriging; SS: stochastic simulation; PP: post-processing approaches; CKCM:
general constrained kriging, including constrained kriging and covariance-matching

kriging.
Geostats | Reproduces Flexible Generates Single Uses Expected
Models Attribute | Classification Stable Estimation Value as
Variability Objective Estimates Map Estimate
OK - - + + +
QIK - + + + -
SS + - + - NI
PP + + + + -
GCK + - - + +

will be further reviewed and compared in the next chapter. Since simulation ap-
proaches are essentially not regarded as estimation models, any further comparison

falls outside of the scope of this dissertation.

2.6 Data Uncertainty in a Spatial Statistical
Approach

Applications that involve the assessment of spatial uncertainty usually consist of
the data, the spatial statistical model, and the follow-up model that uses the outcome
of the spatial statistical model (p. 369 of Goovaerts 1997b), each of which involve
a certain level of uncertainty. As described in section 2.2.1, uncertainties of the es-
timated attributes (outcome of the spatial statistical model) and the parameters of
follow-up model can be expressed in the form of value distributions, subsequently
propagated to the assessment output via mathematical analysis or stochastic simula-
tion. It is recognized as well that different spatial statistical models result in different
uncertainties depending on the objectives of the statistical model (McBratney et al.,

2000). Uncertainty quantification depends on the selection of the model that may or
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may not be validated without consideration of the specific needs and appropriateness
of the inherent assumptions of the techniques. Examples of this observation could be
found in the various types of kriging approaches that generate different uncertainties
under different estimation settings, such as the use of estimation objectives for vari-
ability reproduction (Cressie, 1993; Aldworth and Cressie, 2003) or the incorporation
of secondary information (Goovaerts, 1998). What is also important, in addition to

the uncertainties described above, is the uncertainty involved in the input dataset.

Uncertainty in the estimates is a derivative from both the uncertainty in the
statistical model as described above, and the uncertainty in the data input. The
uncertainty in the data, which may come from different sources, is usually expressed in
ensemble as the nugget effect in a semivariogram. The sources of this data uncertainty
include the lack of data (sparse data sampling with micro-scale variability that could
not be detected at the minimum sampling distance used) (Schnabel and Tietje, 2003;
Western et al., 2004; Su et al., 2006), errors associated with laboratory measurements
(Crist, 1998; Holmes et al., 2005; Western et al., 2004), and other procedural errors
such as sample dislocation (Holmes et al., 2005; Goovaerts, 1994). Different values
for the nugget effect modeled in a semivariogram may influence the result of the
estimation (Schnabel and Tietje, 2003). The artificially induced error and micro-scale
components should be modeled separately whenever possible (p. 103 of Goovaerts
1997b), while the approaches to distinguish these two components usually involve
the comparison of direct- and cross-variograms which requires measurements of more
than two attributes (Goovaerts, 1994; Lin et al., 2006). For measurements of a single
attribute, however, the nugget effects are typically assumed to involve mainly micro-
scale variability (Matheron, 1971), or mainly artificially induced error and discarded

or reduced by averaging multiple collocated measurements (Su et al., 2006).
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2.7 Spatial Statistics as Tools for Expressing
Spatial Relatedness

In addition to providing the basis for spatial estimation and simulation, spatial
structures in an estimation model (parameters that express spatial relatedness) also
serve as exploratory parameters for scientific explanation of causal/covarying rela-
tions among observations in space. The definition of the spatial structures, however,
may be expressed in various aspects by the way data are collected and summarized.
For example, Crist (1998) used variogram analysis to indicate that spatial depen-
dence in termite occurrence was evident; Jung et al. (2006) used cross-variograms to
indicate that some variables (cation exchange capacity, total N, aggregate stability)
exhibit correlatedness with electrical conductivity (EC) while no spatial structure is
observed when considered separately; Mear et al. (2006) calculated the variogram of
fine-grained content in the superficial sediments and stated that a whole effect model
of the variogram corresponds to patches of various sizes; Desbarats and Bachu (1994)
evaluated the Hurst coefficient and fractal dimensions of hydraulic transmissivity and
concluded that the self-similar behavior “reflects a hierarchy of nested correlation
structures with increasingly large characteristic length scales.” Caniego et al. (2005)
used different types of multifractal spectra on certain soil properties (electrical con-
ductivity, organic matter content, soil PH, etc.) measured along transects, to observe
whether the corresponding multifractal dimensions have a suitable scaling behavior.
These findings expressed different scaling/spatial dependence of the value observed
in various perspectives. However, a limited number of studies has explored the co-
variance/correlation between mean values at different spatial scales, which is possibly
the most intuitive measure for the spatial statistics in expressing relationships across
scales, with an exception possibly only of the fundamental works by Matheron (1971).

Moreover, even though the theory given by Matheron (1971) does parameterize the
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covariance among mean values, the development of this work and follow-up research
focuses mostly (if not completely) on the point-to-area estimation (block kriging)
partially due to the mining practice, where most of the original geostatistical devel-

opments were made (Kyriakidis, 2004).

Dale et al. (2002) provide an overview of most of the mathematic tools used for spa-
tial data analysis, and quantitatively explain the differences among the approaches,
including the use of variograms among the 28 approaches. It was concluded that, in
spite of the diversity of the backgrounds and motivation that give rise to the methods
described in their paper, there are some obvious conceptual themes and mathemat-
ical similarities that tie them together. While one may not expect that any single
method can reveal all the important features of any data set, it should be noticed
that the results of different analyses may not be fully independent (Dale et al., 2002).
Depending on the specific questions to be answered about spatial characteristics of a
given dataset, new approaches are yet to be developed. For example, the use of the
covariance between mean values as an exploratory measure may provide a perspective
for scientific research focused on the relations among different types of observations

in space.

2.8 Knowledge Gaps

2.8.1 Multi-Scale Relatedness of Mean Values as
Estimation Parameters

As a scientific approach, spatial structure evaluation provides an opportunity to

explore the relationship between measurements at different scales for site attribute
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values such as contamination, microbial abundance and activity. The interest for this
multi-scale relationship persists among scholars, with different approaches not nec-
essarily involving the use of spatial statistical approaches. However, no quantitative
relationships have been developed to describe the strength of relations between sam-
ples of different physical sizes, for example by actual mean/average values at different

scales.

2.8.2 Variability-Reproducing Estimation on the Basis of
Local Mean Values Without Post-Processing

All the estimation and simulation approaches described in the previous sections are
decision support tools for site remediation. OK provides a visual tool of the general
trend of attribute values, IK further provides the flexibility to assume non-Gaussian
attribute distributions. Conditional simulation also provides visual presentation by
the equiprobable realizations, while no single map is more representative than another
and the expected exceedance is biased for remediation purposes. Post-processing of
estimates levels the trade-off between the over-smooth OK and IK approaches for
the application of on-site remediation, while deviate from the objectives that were
designed for the original estimation approach, e.g. estimates with an objective to
minimize their error will not correspond to a minimized error after post-processing.
CK and CM look like the best approaches that provide the visual representation of
the spatial distribution of site attributes, while the estimates may or may not exist
depending on the covariance between sample and estimation locations. No estimation
or simulation method serves the need for a single estimation map with estimates at
all locations, that describes the spatial variability (e.g. of sediment contamination) in
terms of the relatedness between locations, with a criterion that emphasizes preser-

vation of the variability for the estimates, without altering the estimation objectives
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such as the minimization of error of estimates.

2.8.3 Delineation of the Extent of Contamination with
Corresponding Likelihood Suitable for Decision
Making

Delineation of the extent of contamination plays a crucial role in remediation deci-
sions. Critto et al. (2005) used the exceedance of ordinary kriging results to evaluate
the risk degree of pollutants stock in the Venice lagoon sediment, which is a derivative
of a smoothed map and prone to the underestimation of exceedance (see discussions
in p.182 of Goovaerts 1997b). Barabds et al. (2001) used cross-validation of the IK
results to decide on a best likelihood threshold for the IK likelihood map in order
to minimize the misclassification rates based on the site estimation over the entire
research site. The approach, however, sacrifices the flexibility for stakeholders to
compromise among alternatives that correspond to different likelihood of exceedance
(see Chapter 6 for detailed discussion). Although evidence is shown in Aldworth and
Cressie (2003) that CK and CM are unbiased in estimating the likelihood of thresh-
old exceedance for selected locations (estimation location around where the sample
is most spatially concentrated and where the sample is least concentrated) within a
certain block (triangular sets of estimation grids), no further evidence are shown for
the general applicability when the locations and block sizes are not as limited to the

specification in that study.

In summary, most decision tools for site assessment and remediation depend on
spatial estimation/simulation either using a biased estimation map of the likelihood of
exceedance, or by assigning a single decision map corresponding to a given uncertainty
criterion. A decision on the basis of the biased likelihood map will be risky when the

likelihood map is derived from a smoothed estimation map, while on the other hand
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optimizing the misclassification rate by assigning a single contamination zone gives

less flexibility to interpret spatial data for decision making.

2.8.4 Quantification of Artificially Induced Error

In spite of the various studies that discuss model development, selection, and error
propagation, little is done to study the uncertainty in the sampled data and its impact
on the estimates and estimation variance. Accounting for the artificially induced error,
however, may totally change the interpretation of the extent of contamination (Ram-
sey et al., 2002). For studies involving a single attribute, no geostatistical research has
been done to evaluate the different components in a measurement that may include
the artificially induced error, micro-scale variability not reflected in the dataset, and
the structural signal reflected in the dataset. Quantification of artificially induced
error vs. actual variability will inform the interpretation of the estimates/estimation

variances using the dataset as the input.

2.9 Research Hypothesis

This research attempts to address the knowledge gaps by developing an estimation
model which generates a single estimation map that represents the spatial variability
on the basis of local means, without the need for post-processing. Quantifying the
artificially induced error in the measurement, will further improve the interpretation

of the outcomes of the estimation model. The specific hypothesis states that:

Effective site assessment and remedial decision making on the basis of de-

lineating the extent of contamination depends on estimation methods and
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uncertainty quantification that reproduce the observed spatial variability of

the contaminant concentrations. A better characterization of the extent of

contamination can be attained by explicitly accounting for the covariances

between multi-scale local means, and quantifying artificially induced error.

The single estimation map generated using the M-Scale model is useful for eval-
uating clusters of values and parameters derived from the estimation values, with
corresponding likelihood map that supports the remediation decisions that could be

further improved by quantifying the artificially induced error.
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CHAPTER 3

Methods

The previous chapter concluded that a new spatial estimation method is needed
that has the ability to produce a single estimation map on the basis of covariance
between mean values at different scales, serving both scientific exploration needs and
remedial decision support. In fact, a multi-scale estimation method capable of using
the covariance between means would, under one single model, facilitate both the
explanatory needs for the possible causal relations between different spatial scales
by the covariances between means, and estimation purposes that depict the spatial
variability over the study area. In this chapter, the M-Scale model is developed to
fulfill the needs described above. The estimation uncertainty of the M-Scale model is
reduced using Lagrange optimization, which is the same optimization concept used in
OK and CK. The explicit incorporation of scaled information for the M-Scale model
further enables the reproduction of spatial variability by an additional constraint
attributing the largest weight to the scale that is most related (corresponding to the
largest covariance) to the target scale, which is expected to reduce the smoothing

effect observed in conventional kriging approaches.

95



3.1 Smoothing and Variability Reproduction

The smoothing effect of conventional kriging approaches is described in the litera-
ture in terms of the expected variance of estimates (Goovaerts, 1997b), the change in
variogram (Carr, 1990), and in the visual observation of mapped estimates (Istok and
Rautman, 1996; Goovaerts, 1998; Carr, 2002; Jung et al., 2006). The smoothing ef-
fect corresponds to the reduction of variability relative to the true distribution, which
results from the nature of error minimization inherent in most kriging approaches.
The reduction of variability implies that the proportions of high and low values in
the estimated field do not reflect those in the sample. This is an undesirable feature
because the proportion of area classified as exceedance/non-exceedance regarding a
certain threshold value indicates the level of contamination for the study area, by
which remedial decisions could be made. With a closer look at the equation for error
minimization, it is found that the equations consist of a component for minimizing
variance of the weighted average of samples (minimizing the impact by sample-to-
sample covariances) (Chiles and Delfiner, 1999), and a component for maximizing the
covariance between the weighted sample average and the value to be estimated (max-
imizing the influence between sample-to-estimate covariances) (pp. 299-301 of Isaaks
and Srivastava 1989). The semantic meaning of the term “smooth,” consequently,
differs in the literature and can indicate a reduction of global variability (Goovaerts,
1997b; Yamamoto, 2005) due to the reduced variance of the weighted average (Mar-
avelias et al., 1996), or a reduction of regional variability around sample locations
(Kyriakidis, 2004) due to the “redundant” covariance between the weighted average
and the variable to be estimated (Carr, 2002). Variability reproduction, consequently,

should be examined in the context of its regionalization.

The classical smoothing effect resulting from conventional kriging approaches usu-

ally refers to the smoothing in a global perspective, with less variability relative to
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the pooled samples when all estimates throughout the estimation domain are col-
lapsed into univariate values regardless of their location. Regionally, however, the
conventional kriging estimates usually exhibit of high gradients around sample loca-
tions to match the sample values, rendering peaked estimation surfaces that visually
do not look smooth (see for example, p.51 in Ripley 2004, Goovaerts 1998, p.132 in
Goovaerts 1997b, p.159 in Chiles and Delfiner 1999, and later in this chapter referred
to as“concave smoothing” as shown in Fig. 3.2). This type of concave smoothing
is also described in p. 439 of Goovaerts (1997b) that “high frequency components
are progressively filtered as the location being estimated gets farther away from data
locations.” On the other hand, the cause of the regional smoothing around sample lo-
cations as described in Kyriakidis (2004) has never been discussed, although in some
studies this type of regional smoothing is described as being “unsmoothed (Krige and
Assibey-Bonsu, 2001),” and referred to as “convex smoothing” as shown in Fig. 3.3

later in this chapter, in contrast to the conventional global smoothing.

Variability reproduction in estimates has been implemented by the use of post-
processing of estimates (Yamamoto, 2005; Journel et al., 2000), combining high- and
low- pass filter components in kriging estimates (Carr’s filtering approach) (Carr,
1990) constrained kriging (CK) (Cressie, 1993) and covariance-matching constrained
kriging (CM) (Aldworth and Cressie, 2003). The problem with the post-processing
is that these approaches manipulate the estimates ad hoc to achieve the objective of
estimation after an expected value is evaluated, a result which should be regarded
as a function of the best estimate of the random variable rather than a best esti-
mate itself. Carr’s filtering approach evaluates the expected value of a variable with
superimposed high-pass and low-pass components for the reproduction of the global
(marginal) value distribution, while the problem lies in that the cross-covariance be-
tween sample value and the two filter components of the estimate are difficult to

evaluate a priori on the basis of solid mathematics. In a paper describing the filtering
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approach, Carr used the auto-covariance evaluated from samples of the attribute as a
surrogate for the two (supposedly different) cross-covariances (Carr, 1991; Ma, 1993;
Carr, 1993). Although CK and CM attempt to reproduce the spatial variability by
adding additional constraints on the estimates to reproduce the (co)variance among
estimates, problems arise when the covariance between samples and estimates are
generally small, resulting in unstable or no estimates at locations farther from the
sample locations (Aldworth and Cressie, 1999; Tercan, 2004; Cressie et al., 2005). Ald-
worth and Cressie (2003) proposed an approach to divide the estimation domain into
partitions (sub-regions) to “relax” (Cressie et al., 2005) the constraint to reproduce
(co)variances between the sample and estimation locations “within, but not between,
partitions, (Tercan, 2004)” and eventually when the estimates become unavailable for
these estimation approaches, “we may have to choose instead the universal kriging
predictor, (Aldworth and Cressie, 1999)” which means using UK, or OK if a drift
model is not defined, as a surrogate estimate. This estimation procedure, unlike the
post-processing procedures, does not explicitly violate the concept of finding an ex-
pected value as an estimate. The problem however, is that the estimates are subject
to inconsistent objectives depending on whether or not the estimation locations fall

within the influence range (correlation length of variogram) of the samples.

Area-influenced-kriging (Arik, 2002), or AIK, included the idea of having heavier
weights to the closest sample point, a simple implementation that included an ob-
jective constraint for variability reproduction. The constraint used in AIK follows a
philosophy that “everything is related to everything else, but near things are more
related than distant things (Tobler, 1970),” which is generally known as Tobler’s first
law of geography (Sui, 2004). In fact, the idea indicated in Tobler’s law has long been
involved in the area of spatial statistics, while the application has been mostly for the
characterization of spatial relatedness (Miller, 2004) with little attention for its impli-

cation as an objective except a few papers such as Journel et al. (2000); Brown et al.
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(2002); Arik (2002); Aldworth and Cressie (2003). AIK is an estimation approach
that has consistent objectives among estimation locations. This approach, however,
relies on a parameter called “the proportion of area influence” that should be decided
by physical parameters of the attribute (for example, by comparing estimates of the
tonnage to the theoretical value or historical blast hole data, as indicated in Arik

2002), which is not readily available in most disciplines of research.

3.2 Spatial Pattern Characterization, Multi-Scale
Characterization and the Use of Multi-Scale
Information

Spatial pattern characterization (describing the spatial pattern of variables, or
structural analysis in Chiles and Delfiner, 1999) is a major interest of research among
ecological researchers. This field of research looks for evidence of regularity, random-
ness or clumping of an attribute of interest (Kent et al., 2006). The area of research
extends from remote sensing (Woodcock and Strahler, 1987; Pax-Lenney and Wood-
cock, 1997; Zarco-Tejada and Miller, 1999; van Meirvenne and Goovaerts, 2002),
glacial surface recognition (Herzfeld, 1999), ecological measurements (Crist, 1998;
Nanos et al., 2005; Grego et al., 2006; Kent et al., 2006), to soil (Goovaerts, 1998; Wu
et al., 2002; Romshoo, 2004; Ruffo et al., 2005; Su et al., 2006; Jung et al., 2006) and
sediment characterization (Longhitano and Nemec, 2005; Adriaens et al., 2006; Mear
et al., 2006). The main interest has mostly been the recognition of spatial association.
Caniego et al. (2005) reviewed different approaches that characterize spatial patterns
of attributes, and concluded that a description of relatedness between different scales
remains to be studied. Multi-scale statistics, such as the correlation of mean values

between different spatial scales, will facilitate the explanation of association between
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different attribute values at spatial scales characterizing different physical behaviors
(Brockman and Murray, 1997; Lin et al., 2006). Despite the interest for development
and application of the multi-scale characterization, however, little research had been

done to incorporate multi-scale information in the reproduction of spatial variability.

Block kriging is a common approach that uses point measurements to estimate
the mean value over a target support volume centering at the estimation locations.
The approach may be considered as a multi-scale approach, given its flexibility in
terms of the size of the target support. However, this approach addresses only point-
to-area interpolation, without considering the case for an area-to-point counterpart
(Kyriakidis, 2004). In fact, both point-to-area and area-to-point estimation are spe-
cial cases of the originally formulated spatial estimation using point support or block
areal data as inputs (Matheron, 1971). The development of an estimator in Math-
eron’s and later work, however, focus mostly (if not completely) on point-to-area
estimation (block kriging) partially due to mining practice, where most of the origi-
nal geostatistical developments have been made (Kyriakidis, 2004). To address this
knowledge gap, a detailed mathematical expression of the area-to-point kriging is
described in Kyriakidis (2004). Yoo and Kyriakidis (2006) used this area-to-point
kriging to account for situations where the data used for interpolation of point es-
timates come from different sample volumes (called areal information). Additional
to this multi-scale nature of the model designed to use inputs of different spatial
scales, they imposed local constraints and inequality limitations informed by external
knowledge of their estimate, in order to achieve the reproduction of spatial variability.
With the multi-scale inputs and outputs in their model development, however, the
applicability to reproduce spatial variability using areal information is not compared
to the conventional point-to-point kriging in the case where no external constrain-
ing informations are provided (Yoo and Kyriakidis, 2006). In his construction of the

framework for area-to-point spatial interpolation, Kyriakidis compared the charac-

60



Table 3.1: Comparison of variogram-related spatial estimation models. Positive signs
indicate the inherence of the feature, and negative signs indicate the absence of the
feature. OK: ordinary kriging. PP: post-processing approaches. CF: Carr’s filtering
approach. CK: constrained kriging. CM: covariance-matching kriging. AIK:
area-influenced kriging. BOK: Block ordinary kriging. APK: area-to-point kriging.

Estimation | Reproduces | Consistent | Uses Expected | Generates Requires
Models Attribute | Estimation Value as Areal Only Point,

Variability | Objectives Estimate Covariance | Samples
OK - + + - +
PP + + - - +
CF + + + - -
CK + - + - +
CM + - + - +
AIK + + + - -
BOK - + + + +
APK + + + + -

teristics between point-to-point and area-to-point kriging covariances and estimates
(Kyriakidis, 2004). It can be observed by the result of this study that the recognition
of measurements as areal information improved the reproduction of variability of the
estimates with respect to the actual measurements, at least visually in the vicinity
of the measurement. Additionally, the estimates are also shown to be “coherent”
(as described by Kyriakidis), meaning that the estimates reproduce the mean values
of the areal measurements when averaged over the original sampler volume at its
original measurement location. Statistics for the reproduction of variability are not
presented in this research, although the estimation results of the area-to-point kriging
look visually more variable over the estimation domain than the conventional point-
to-point estimates because of the use of areal information. In addition, the approach
requires areal information to reproduce variability in the estimates. In a sample where
only point measurements are available, no area-to-point estimates can be generated.
To sum up the characteristics of the spatial estimation models described above, a

comparison chart is listed as Table 3.1.
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3.3 The M-Scale Perspective

The M-Scale model is proposed here in order to generate estimates that repro-
duce spatial variability as reflected by the available sample, with neither the conflict
of not using expected values as in post-processing approaches, nor the inconsistency
of estimation objectives at different locations that CK and CM are subject to. This
approach also involves the idea of using areal information for estimation similar to
area-to-point kriging. The areal information, however, is derived from point measure-
ments representing mean values at different scales, introducing a different perspective
for areal information aside from that of the area-to-point kriging. Unlike AIK, which
requires knowledge of the physical nature of the attribute values, the proposed model
requires no external information besides the sample measurements, plate sizes of dif-
ferent scales (explained later), and the variogram model. In other words, the M-Scale

model is designed to incorporate all features indicated in Table 3.1.

Technically, instead of applying a constraint on the estimate to reproduce an
expected variance/covariance like CK or CM, a constraint for the local average is
applied. Similar to the AIK, the M-Scale model follows Tobler’s Law in applying the
constraint for variability reproduction, attributing the heaviest weight to the closest
local averages. From the scientific perspective, this approach is conceptually regarded
as multi-scale estimation, including the ideas of point-to-area, area-to-point, and area-
to-area estimation, since the areal information is derived from point measurements
(point-to-area estimation), and the target support of the estimation output can be
either a point (resulting in area-to-point estimates) or a block (resulting in area-to-
area estimates). From a practical perspective, in addition to the features it provides
as shown in Table 3.1, the limiting assumption of areal data as inputs in the area-
to-point kriging described is relaxed, providing an alternative to the use of areal

information for the reproduction of variability.
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With observations of results from Kyriakidis (2004) and Yoo and Kyriakidis
(2006), the constraint to preserve local averages is expected to reproduce spatial vari-
ability. To validate this conjecture, the estimation results under different application
cases will be compared quantitatively to the results generated by OK and CK in later
chapters, as a demonstration of the characteristic performance of the M-Scale model
for estimation and variability reproduction. The following section, however, begins
with reviews of the methods used and developed in this dissertation, including the
concepts of variogram-related spatial interpolation models that the M-Scale model in-
herits. Along with the mathematical/statistical derivation, particular focus is placed
on the characteristics that define the precision of delineating threshold exceedance.
To facilitate the presentation of the M-Scale model as well as to provide a basis for
comparison, the theoretical development of ordinary kriging (OK) (Matheron, 1971)

and constrained kriging (CK) (Cressie, 1993) are described first.

3.4 Ordinary Kriging

One of the central concepts of geostatistical analysis is the variogram. A variogram
is a mathematical expression of dissimilarity described in Chapter 2 as a function of
separation distance between any two points in space (Matheron, 1961), and is defined

as follows:
1) = 5B {[Z(+ h) — Z()) (3)

where y(h) is the variogram value, or semivariance, Z(x) and Z(x+h) are two random
variables representing attributes separated by a distance h. Fig. 3.1 illustrates a

generic variogram, where h is the distance between any two locations, the influence
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range represents the range of correlation between location pairs, the sill and nugget
effect indicate the possible maximum and minimum semivariance values for long
and short separation distances respectively, and the curve in this graph explains the

relative strength of interaction in terms of the distance between the sample locations.

'YM

Sill

Nugget
Effect N

\j

| i
Influence Range
Figure 3.1: Conceptual sketch of a variogram. - represents the semivariance, and h

represents the separation distance. The characteristic parameters of a variogram are
illustrated, including the sill, the nugget effect, and the influence range.

Generally, for variogram-based approaches the spatial attribute Z(-) is regarded
as a random function that relates location z to the random variable Z(x) representing
the local attribute at location z, with a conditional cumulative distribution function
(cedf) F(x;z|(n)) at location x, conditional to the n neighboring data z(z;) (Istok
and Rautman, 1996; Barabds et al., 2001; Critto et al., 2005). This ccdf was de-
scribed in Chapter 2 as the value distribution of weighted sample values under the
evaluated uncertainty to represent the real attribute value. The ccdf fully captures
the uncertainty at x since it gives the likelihood that the unknown is no greater than

any given threshold z (Goovaerts, 1997b).

Suppose Z; = Z(x;) represents a possible attribute value at a certain sample
location z;, A\; represent estimation weights given to Z; for the linear estimation,

and Zy = Z(xg) is the unknown variable to be estimated at the estimation location
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x9. The OK estimator is designed to minimize the estimation variance (Isaaks and

Srivastava, 1989):

2

O'(Q)K:E ZO_Z/\ZZZ
L ? )
(3.2)

=E|) MNZo—-Z)+(1-)_N)Zi

Note that Z;,i = 1...n are possible values expressed as random variables, by which
an estimator for the unknown Z, is derived, and the estimated value for Z; in
terms of Z;,i = 1...n can be evaluated when the corresponding actual sample
values z;,7 = 1...n are determined. A signature characteristic of OK is the con-
straint on the assumption of first-order stationarity E[Z;] = E[Zy] = m, where
m=FE[Zp|=FE [ﬁ I Z(x)dx} is the global mean of the population, with D being
the spatial domain of size { D} (Journel, 1985). The constraint for global unbiasedness

is consequently constructed as:

=y A\=1 (3.3)

Taking account of the global unbiasedness, the estimation variance can subsequently

be expressed as

2

2 _
oo =F

> NilZo—7Z)
=2 D ANEZo — Z)(Z0 — 7)) (3.4)
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which can be further derived into an equation expressed in terms of semivariances:

O'(Q)K = Z Z /\1)\JE [Zg — Z()Zj — ZZZ[) + ZZZJ}

i g
= A\ E’Z2—2Z0Z—1—Z2—1—Z2 27,720+ 7 — 77 — Z2+2ZZ
J2 [ }
_Zz/\)‘ 70]+’70z 71])
i i J

This equation can be understood as quantitatively representing the dissimilarity be-
tween the unknown and estimated values (the estimation variance o} ), expressed in
terms of the dissimilarity between sample and unknown values 7,0, and the dissimi-

larity between sample values 7;;.

Another perspective to look at the relation between two local attribute values is
the covariance between random variables Z; and Z; (Collins and Woodcock, 1999;

Kukush, 2005), expressed as
Cij = E{[Zi —m][Z; — m]} (3.6)

Because m is constant over the spatial domain and Cj; is a function of Z; and Z;
like ~;; is, it is possible to express the semivariance 7;; (the dissimilarity) between

locations x; and z; in terms of the covariances Cj;, Cj; and Cj; (the similarity). In

fact,
1 2
vy = 5EZi = Zj]
1
=5E(Zi—m) - (Z; - m)]*
1
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In most cases, second-order stationarity is also assumed for kriging approaches (Math-
eron, 1971; Legendre and Legendre, 1998; Wu et al., 2002), i.e., the semivariance and
covariance between Z; and Z; is determined by the separation distance between the

corresponding locations x; and x;:

Cij = C(h = |v; — ;1)

Yij = Y(h = |zi — x5]) (3.8)
Thus

1
i = 5 [Cis + Cjy — 204

=0’ — O} (3.9)

where 02 = C(h = 0) = C;; = C}; is the global variance. This relation between
the semivariance and the covariance leads to the following expression for the OK

estimation variance:
oo = 0% =2 Z AiCio + Z Z Aid;Cij (3.10)
i i

in which o2 is the global variance, Cj is the covariance of the sample and the unknown,
and Cj; is the covariance between samples. To minimize this estimation variance
under the unbiasedness constraint, the method of Lagrange multipliers (Lagrange
digitized from the 1760-1761 publication, which is also called Lagrange parameter
by Goovaerts 1998) is applied, with the following Lagrangian (see p.133 of Goovaerts
1997b):

L=o02;—2u (Z)\i—1>
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i i j i

The weights \;,7 = 1...n are evaluated by solving the following matrix equation
corresponding to Equation (3.11):
Ci; 1] | A Cio
! = ~ o (3.12)
17 0| |p 1
where Cj;j is a n x n matrix of C;j, Cjg is a n x 1 vector of Cjy, 1 is a n x 1 vector of
ones, A is a n x 1 vector of \;, and pu is the Lagrange parameter to ensure the global

unbiasedness.

When optimized, the estimation variance can be written as the following equation

for the convenience of calculation:
ok = 0" =Y ACo—p (3.13)

In most OK applications, the estimation of C'(h) is done by modeling y(h) from the
experimental variogram calculated from discrete sample points (van Meirvenne and
Goovaerts, 2002; Nanos et al., 2005; Lin et al., 2006) because, unlike C'(h), v(h) does
not require knowledge of the unknown global mean Zp. The stabilized semivariance
for a larger lag distance, indicating no correlation between samples, is taken as the
estimated o2 because one-half of the variance of difference between two non-correlated
variables coincides with the global variance value. The estimation of covariances is
subsequently applied to Equation (3.12) to solve for A, so that the estimate and

estimation variance can be evaluated.

The problem with OK, however, is that only the global unbiasedness constraint

is applied in correspondence to the first-order stationarity (Cressie, 1993). No con-
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straint to reproduce spatial variability is placed on the Lagrange optimization, al-
though second-order stationarity (the consistency of spatial variability) is assumed
so that the variogram/covariance can be estimated from the sample set. The lack
of constraint to reproduce spatial variability result in a “concave” smoothing effect,
due to which estimates tend toward the global mean as the separation distance to

adjacent measurements increases (Yamamoto, 2005), as shown in Fig. 3.2.

Attribute

Location

Figure 3.2: Concave smoothing effect of OK estimation. The estimated values tend
toward the global mean value.

3.5 Constrained Kriging

The smoothing problem for OK originates from the fact that only one constraint
corresponding to the first-order stationarity is applied. With no other constraints, the
estimates generally exhibit a tendency toward the global mean to reduce the variance
of the estimate ;> A\;A;Cj;. To reduce this type of smoothing effect, Cressie (1993)

used another constraint to ensure that the variance of the estimate also matches the
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global variance, in other words

ZZ)\Z)\]C” = 0'2 (314)
J

%

Consequently the estimation variance expressed by Equation (3.10) used for OK be-

comes the following expression when Euqation (3.14) is valid:
ot =20" =2  NCi (3.15)

The Lagrangian to obtain the minimum estimation variance under the unbiasedness
constraint and the constraint for global variance reproduction (Equation (3.14)) be-

comes

i i J

%

where pq and p9 are Lagrangian multipliers to ensure the two constraints are fulfilled.

Solutions for A, p; and po can be obtained by the following equations:

1
A =— (CioCy' + 1 C;;'1)

2
1 T -1
M =g (1 C;; Ci0+#2)
1
CIC:'Cy - 1TC'1 — (17C;1Cy) ] ?
[y = i0 ~ij 0 ij ( ij 0) (317>

1TCi;11 -1

where 1, A, C;p and Cj; are the same vectors and matrices with same dimensions for
OK estimation. It is observed in Equation (3.15), however, that the variance con-
straint reduces the optimization capability by setting the sample-to-sample part of the
estimation variance to a constant, i.e., by setting > . >~ ; AiA;Cyj to 0. Consequently,

the estimation tends to attribute more weights to the samples with larger covariance
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between itself and the unknown so that ), A;Cjo is maximized and consequently ol
minimized. The effect of this weight attribution is a “convex” smoothing effect with
similar values around each sample location (Aldworth and Cressie, 2003), and large
variability between regions around different sample locations, as shown in Fig. 3.3.
In other words, the semivariance is under-reproduced for short separation distances,
and over-reproduced for long separation distances. When applied to delineation of
threshold exceedance, the area of exceedance would be overestimated around samples,

and the false-positive rate of classification will be high.

Attribute

Location

Figure 3.3: Convex smoothing effect of CK estimation. The estimated values tend
toward the sample values.

Because CK is designed to reproduce both the global mean and global variance,
however, the total amount of area delineated for threshold exceedance over the entire
spatial domain is expected to reproduce the actual total area of threshold exceedance
particularly when multi-Gaussianity is assumed. In other words, CK is expected
to reproduce the total amount of area for threshold exceedance, and if part of the
true exceedance is surrounded by samples indicating non-exceedance, the amount of
area for threshold exceedance will be complimented by over-estimating the area of
exceedance around samples which do indicate exceedance. The false-negative rate of

the classification, consequently, may not be high since the over-estimated area already
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indicates exceedance. This type of delineation imprecision is illustrated in case (e)
of Fig. 2.13. To examine this type of error in delineation, it is suggested that covar-
iograms of the estimates be compared to the covariogram modeled from the sample,
and that the false-positive rate be evaluated, so that the smoothness of estimates
between locations could be observed, and that the nature of the overestimated area

of threshold exceedance could be revealed.

The problem with CK, consequently, is that the area of threshold exceedance is
overestimated around sample locations that indicate exceedance, while in order to
have global variance reproduction, the effect is balanced by underestimating the area

of threshold exceedance where samples do not indicate exceedance of the threshold.

3.6 Attributes and Statistics for The M-Scale
Model

Both OK and CK exhibit limitations in the delineation of threshold exceedance.
OK estimates tend toward the global mean because of the lack of a constraint to repro-
duce variability, resulting in underestimation of the extent of threshold exceedance,
while CK estimates tend toward sample values, which may overestimate the extent of
threshold exceedance in the vicinity of samples that indicate exceedance. To address
these limitations, the M-Scale model was developed to generate estimates that tend
neither toward the global mean, nor toward the values of nearby sample locations.
This model is based on two tenets: (i) calculating average values for different scales
at each estimation location, and (ii) attributing different weights to these averages to
generate the estimates, as shown in Fig. 3.4. The M-Scale model applies a constraint
to reproduce variability, in addition to the unbiasedness constraint, while avoiding

overestimation of the extent of threshold exceedance around the sample locations.
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Different weights
by location and scale

Original Data

Local Mean Estimation for Scale of Interest

Figure 3.4: Conceptual sketch of the M-Scale model. Original data are used to
evaluate the local mean at different spatial scales. The local mean are further
attributed different weights and evaluated as the estimates.

Table 3.2: Comparing similar concepts and parameters for spatial attributes between
the M-Scale model and conventional kriging approaches.

Spatial Attributes M-Scale Kriging
Unknown Value Zp,(z) Zy
Sample Value Zp, (x) Z;
Independent Variable | scale a at location z | location x

As a linear spatial estimator, the M-Scale model minimizes estimation variance,
and the parameters and statistics are analogous to those used in OK and CK. The
concepts and parameters described earlier for OK and CK are compared to those in

M-Scale in Tables 3.2 and 3.3.

Table 3.3: Comparing similar spatial covariances between the M-Scale model and
conventional kriging approaches.

Spatial Attributes M-Scale Kriging
Global Variance of Unknown Cp.p, |c*=C(0)
Sample-to-Sample Covariance DuD, () Cij

Sample-to-Unknown Covariance Cp,p, C;
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3.6.1 Basic Concepts and Statistics for Block-Related
Spatial Attributes

The use of average values, instead of local point values, differentiates the M-Scale
model from conventional kriging approaches. Conceptually, these average values are
the inputs that produce the final estimate, analogous to attribute values at sample
locations in a kriging setup. These input values in the M-Scale model, however,
characterize significant differences in their statistical features from those of the local

attribute values in the following ways:

1. The values depend not only on the estimation/sampling location, but also on

the support sizes of the different spatial scales.

2. The average value of a spatial scale represents the most likely value within the
area of that scale because the area consists of different attribute values at point
locations, while the local attribute value represents the only value at each point

location.

3. Because the average is calculated using attribute values at sample locations to
represent the true mean value for all sampled and unsampled locations, uncer-

tainty exists in the average value as an input value.

These characteristic differences are quantitatively defined in this section, with im-
portant concepts that guide the idea of multi-scale statistics used in developing the

M-Scale model.

Adapted from the notation by Matheron (1971), the local mean of any exhaustive

set of attribute values within volume V' (z) centering at z is denoted as

1 / /
2@ = T /V el (3.18)
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where {V(z)} = fV dx’ is the measurement of V' (z). Two types of variance/covariance
measurement between spatial scales are also defined and derived in Matheron (1971),
respectively (i) the extension variance, denoted here as CV,y, and (ii) the covariance
between Zy, and Zy, within V', called dispersion covariance in this research, which

is denoted as Cy, ;). The extension variance is illustrated in Fig. 3.5, and is defined

Z A

Y

Figure 3.5: Conceptual sketch of extension variance. The green segment represents
the mean Zy/; The purple segment represents the mean Zy. The double arrow on top
of the purple segment indicates that the mean value changes as the centering location

of V' and V changes.

as the uncertainty when a mean value of a smaller scale 7y at a random location

within V' is used to represent the mean value of a larger scale Zy:

OV/V/ - [(ZV/ —

{V’ {V} /V// y)dzdy — {‘/1}2/‘//‘/7(x—y)dzdy
- W////v(m—y)dxdy (3.19)

Dispersion covariance represents the block-to-block (between two volumes of certain

scales) covariance chosen at random locations but with fixed distance and fixed mutual
configuration, as illustrated in Fig. 3.6. Dispersion covariance is an analog of the

covariance used in kriging approaches, except that in addition to the fixed separation
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Dispersion Covariance = E { [Zv1 - m][ZVZ— m] }

\

Figure 3.6: Conceptual sketch of dispersion covariance. The purple segment
represents the mean Zy; The green segments represent the means Zy, and Zy,, and
the black segment represents the separation distance between centers of V; and V5.

distance, the fixed shapes, fixed sizes, and fixed relative rotation angle between V;
and V5 are also included in the definition. The definition becomes more complex
because the two values are no longer attribute values at point locations. In addition
to the definition for blocks V7 and V5, the random locations for the paired blocks are
constrained within the larger block V', a constraint usually not applicable to kriging

covariances:

Cyvivplv = £ [(Zw —m)(Zy, —m)|Vi, Vo C V]

vy // y)dody = {Vl}{VQ} /V1 /V2 y)dzdy (3.20)

When the constraining block V' expands to the entire domain D (indicating no spatial
constraint), a simplified notation Cy,y, is used for Cy,y,p to denote the covariance

of Zy, and Zy, when no constraining block is used:

CV1V2 =F [(Zvl - m)(ZVQ - m)]
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e v, / ey = g /v /V v)dedy
=% — AN {VQ} /V /V y)dxdy (3.21)

From equations (3.19) and (3.21), the following equivalence is derived:
C“;’V’ — CV’V/ + CVV - 20\//\/ (322)

which is described in Matheron (1971) as “a perhaps more intuitive expression of the
(extension) variance.” Equation (3.22) can be understood as “conversion of the ex-
tension variance by the global dispersion variances and covariances.” In this research,
the idea of extension covariance is also defined, and its conversion from dispersion

variance/covariance expressed as

Ciuyy = E[(Zv, — Zv)(Zv, — Zv)]

= CV1V2 + Cyy — CV1V - CV2V (323)

The extension covariance can be understood in the same way as the dispersion covari-
ance, except that Zy is used instead of m as the reference mean value. Also when V'
expands to the entire domain, CY,,, coincides with Cy,y,. To extend the definitions
by Matheron (1971), so that the dispersion variance also applies to cases involving
point variables, the point-to-point variance Cyy(z) and point-to-block covariance Coy

are also defined in this work as

Coo = — {D} / / 1 dadx

C()V =F [(Z(l’) — m)(ZV/ — m)| Z, V/ Q V]
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B {;}2 /D/D’%x —Y) {;}2 /V/‘/V(ﬁ — y)dzdy
T ﬁ /v /V v(x — y)dady (3.24)

Note that in this case the volume V is at a fixed distance and has a fixed configuration
relative to the point location x. The basic definitions for the mean value, dispersion
variance/covariance and extension variance/covariance will later be used in the M-
Scale estimation, not only for cases when the target scale is a punctual support, but

also when it is a block volume.

3.6.2 Definition of Geometric Components for the M-Scale
Model with Their Representative Value and
Uncertainty

One important concept in spatial statistics is that “points close in space tends
to assume close values” (Chiles and Delfiner, 1999). It is consequently reasonable to
group sample values by the separation distance to a target location that may be a
sample location or an estimation location. For estimation purposes, therefore, the
spatial domain D is split into a set of non-overlapping ring areas centering at any

object location x in the entire domain, as shown in Fig. 3.7, so that the values within

///
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Figure 3.7: Domain splitting. The entire estimation domain is divided into ring areas
by the distance from the estimation location. The rings pertains to fixed
configurations with centers at the estimation location.
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the same ring area have the same degree of similarity with the value(s) of the object

point /block:

D=A(z)U---UA,(z)U---UA,(x) (3.25)

where « is the index for ring A,, and A, is the largest ring. The shape and size of each
ring area (the geometry of which does not need to be circular) are kept unchanged

over different estimation locations.

The representative attribute value for a certain ring area, called the local mean
of ring A,(zx), can be evaluated with the corresponding dispersion variance for any

object location x:

]' / x/
0.0 = Ty Jy, 2
Cooa, (x) = — 2(2') = Za, () 2da

_ / / (@' — z")da'dz" (3.26)

where x is the center of rings, and 2’ and z” are dummy variables for the integral.

In most geostatistical applications, an exhaustive collection of attribute values is
generally not available across any specific area, and thus an experimental sample is
selected. The experimental value Z} (z) is used to represent Z4,(v) and is defined

as the local average of ring A,(x), is therefore calculated by

1 Aa
7% (z) = E Za s 27
Aa< ) n a(x) — Aa7 (3 )

which is expressed as a function of several random variables that represent the at-

tribute values at the sample locations. na,(x) denotes number of available measure-
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ments within area A, (z), and Z4, ; is the random variable representing the attribute
value at each sample point within A,(z). When samples are assumed to be randomly
distributed over A,(x), Matheron (1971) also shows that the expected variance of

77 () relative to the true mean value Z4, () can be represented by

1

na, ()

(23, (0) = B{[Z3,(2) = Za,(0)]"} = ——Conpa, (3.28)
which can also be understood as “evaluating the uncertainty o*(Z} (x)) for Z3 (z)

to represent its true mean value Z4_ (z), by the point dispersion variance within A,

(Matheron, 1971).”

7 7

s,

7
,/, 7 7

A

= >
) o

E=2

Figure 3.8: Combining for subdomains. The ring areas A;... A, at an estimation
location are combined into subdomains D,. The subdomains pertains to fixed
configurations with centers at the estimation location.

The M-Scale models uses the average calculated at different scales as the input
data. Therefore, the different spatial scales (plates), are defined by the subdomains

D, (z) centered at an object location x:

Dy(z) =Ai(x)U---UA(x)U---UA,(2) (3.29)

The conceptual sketch for the plates is shown in Fig. 3.8, where each plate D,(x)

consists of ring areas equal or smaller than A,(z).
By definition, the subdomain mean Zp,(x), or local mean of plate D,(z), can be
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calculated from {A,(x)} and Z4_(x),

1

22 =150 Jowe

which can further be abbreviated as

ZDa Zw

{Aa(2)} {Aa(2)}

Z(2')dx' =

=1..

.a as follows:

201 {Aa(2)} Za, (¢)

wi(x) = =

{Da(2)} ooy {Aa(2)}

22:1 {Aa(2)}

(3.30)

(3.31)

(3.32)

Hereafter, the terminology mean will be used to indicate the true mean value

of Z(z) in the subdomain A, (z) or D,(z), and average will be used to indicate the

corresponding (weighted) average evaluated from sample values to represent the mean

values. The different means/averages and their associated variances will be used to

define the elements in the spatial covariances.

3.6.3 The M-Scale Covariances

Several types of covariances will be defined in this section. The plate-to-plate

mean covariance for scales a and b, denoted as Cp,p,(z), is defined conceptually as

the covariance between local means of plates D,(x) and Dy(x) relative to the global

mean of the spatial domain D. From the definitions in Equation (3.20), we can define:

Cp,p,(7) =E [ m)(Zp,(r) —

L / / —

m)]
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1 / " ! "
~ DT oy Jy "~ D (333)

Also with the assumption of second-order stationarity, all block-to-block covari-
ances of the same configuration will have the same values. Hence the M-Scale co-
variances are independent of the centering location x. The covariance can thus be

snnphﬁed as CDan (fL’) = CDan .

Breaking down Zp,(x) in terms of the corresponding ring means at location x, we
also have the following equations for point-to-plate, ring-to-plate and plate-to-plate

mean covariances:

b
Cop, = Z wgCOAB
A=1
b
Ca.p, = Zw%CAaAg
5=1

Cpopy = > > wi(@)wy(z)Ca,a, (3.34)

a=1 g=1

where Cs, 4, is also defined following Equation (3.20), and Cya, following Equation
(3.24). Again with second-order stationarity, C'a,a,(z) can be simplified as C, ;.
The decomposition of Cp,p, allows us to evaluate the M-Scale covariances from the
covariances of means of rings, which is location independent. The need of repeated
integration to solve for Cp,p, is thus eliminated, adding computational efficiency for

estimation at each location.

The covariance between local plate averages, however, requires additional con-
sideration because averages calculated for samples of different sizes correspond to

different levels of uncertainty when used to represent the true mean value. Assume
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the following expression for evaluating the local averages Zj, (v) and Zp, (2):

(=

a

Zp(0) =) va@)Zi (x);  Zp,(x) =Y vh(2)Z}4, () (3.35)

a=1 B=1

where v%(x) and Vg(:lr) are optimized weights for the ring averages to represent plate
averages, the value of which will be defined later. It is found that in addition to the
population mean covariances C'p, p,, there is another error term due to the expected

variance of Z} (z) relative to the true mean value Z,, (z):

Ch.p, () = E{[Zp, (x) — m][Z], (x) — m]}
= E{Zp,(x) = Zp,(x) + Zp,(x) — m]-

[Zp,(¥) = Zp,(¥) + Zp,(x) —m] }
min(a,b

)
=Cp,p, + ) va(x)vh(x)-0*(Z;, (2)) (3.36)

Note that this covariance varies with location due to different v2(x), v°(x), and

o*(Z34 (x)) values.

The covariance between the local average and the local mean is needed in order to
complete the set of covariances required for estimation. However, a component of co-
variance between local means can be separated from the expression for the covariance

between the local average and the local mean, i.e.,

E{[Z},(x) —m][Zp,(x) —m]}
=E{[Zp,(z) — Zp,(z) + Zp,(x) — m][Zp,(x) — m]}

=E{[Zp,(z) = Zp,[Zp,(x) —ml} + E{[Zp,(x) — m|[Zp,(x) — m]}

=SS vbE{[Z (@) — Za,(2)] [Za,(2) — m]}

a=1 g=1
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+ E{[Zp,(x) — m|[Zp,(x) — m]|} (3.37)
in which

E{[Z,(2) = Za, ()] [Za,(x) — m]}
— E{[(Z},(x) = m) — (Za, (&) — m)] [Za, (x) — m]}
— B{[Z;(x) = m] [Za,(x) = m]} — B {[Za, (x) — m] [Z4,(x) — m]}

= Casay — Capa, =0 (3.38)

because Z3 () is the average of attribute values grouped such that its ring covariance

with Za,(z) is the same as Z,, (v) with Z,(z). Consequently,

E{(Z}, (x) = m][Zp,(x) — m]}

=E{[Zp.(x) —m][Zp,(x) — m]} (3.39)

and therefore the covariance between local averages and local mean is identical to the

covariance between local means.

3.7 Estimation Using the M-Scale Model

The covariances defined in the previous sections can be used to define an estimate
at a given estimation location and for a given scale of interest, termed the target scale,

based on available plate averages for the same location at other scales.
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3.7.1 Best Linear Unbiased Estimator

The estimator for the M-Scale model is a best linear unbiased estimator (BLUE).
As a linear estimator, the local averages are given different weights to estimate the
mean at the scale of interest. Supposing the mean value of a target scale t is the un-
known mean of interest, we want to use the linear combination Zp, (z) = Y0 NaZp, ()
to estimate the true mean Zp,(x). The estimation variance can be evaluated as fol-

lows:

o%u(2) = | Zp,(x) ~ Zp, ()] =

Zp(r) =Y NZp, (2) (3.40)
The unbiasedness constraint leads to the requirement that:

E — E[Zpl=m (3.41)

Z AaZp, ()

which can be satisfied by requiring that

d A=1 (3.42)

and the estimation variance becomes (from Equation (3.40)):

024() = Cp,o, +2)  AaCrinu + Y > XMl p, (@) (3.43)
a a b

3.7.2 Reproducing Variability

In this study, basic concepts by Carr (1990) and Arik (2002) are adopted to form

a constraint to reproduce spatial variability, i.e., a constraint that reduces the central
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tendency of a linear estimator, which also avoids over-estimation of the spatial vari-
ability in the vicinity of sample locations. The approach identifies a scale s, hereafter
called the base scale, such that the magnitude of Z}, (x) is most representative of the
variability of the mean at the target scale Zp, (x). The base scale is defined as the scale
with the smallest extension variance ngDt relative to the target scale, leading to the
smallest expected squared difference between Zp_ (z) and Zp,(z). Therefore, when
more weight is attributed to the base scale, the estimate is more likely to reproduce

the degree of variability of the real Zp,(z).

The constraint to reproduce the observed variance is enforced not only by increas-
ing the weights attributed to the base scale, but also by minimizing the expected
difference between the value of the target variable Zp,(z) and the weighted base-
scale variable A\,Z7 (). If this requirement were not enforced, an over-weighting
for the base scale could also result in an over-estimation of the extent of threshold
exceedance around sample locations, as is observed in the CK approach. The corre-
sponding Lagrangian, by the same concept used in OK and CK, is expressed below

for minimizing estimation error under the described constraint:
* 2 *
Ly = [Zp,() = \Zp,(2)]” = Cpip, — 2ACpyp, + X;0p,p, (7) (3.44)
The derivative with respect to A4 is zero for Lg to be minimized, therefore

— 2)\SCD,5D5 + QASCESDS ([L’) =0

C(DD
= )\, = tee

- o (3.45)

In short, the variability reproducing constraint is simply a constraint on the weight
assigned to the base-scale. The unbiasedness constraint is later incorporated in the

final estimation.
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3.7.3 M-Scale Estimation: BLUE with Reproduction of
Variability

2

2, to be minimized under the unbiasedness and variability reproduction

For o

constraint, the Lagrangian is defined as follows:

L =02, (x) + 2 (Z - 1) T 20 = Cp,p, /C ()] (3.46)
The solution is obtained by solving the following set of linear equations:

Ci(z) 1 6| A Cta
1T 0 0] |m| = 1 (3.47)

&7 0 0| |pue CDtDS/C;)SDS (z)

where C}} () is a n, x n, matrix (n, represents the number of available scales) with
plate-to-plate covariances C}, p, (), Cia is a n, x 1 vector of Cp,p,, 1 is a n, x 1
vector of ones, and 4 is a n, x 1 vector of Kronecker deltas d,s for all scales a defined

as
0gs =1 ifa=s

0as =0 ifa+#s

The corresponding estimation variance becomes:

Uzst(l‘) :CDtDt + 2 Z )\aCDtDa + Z Z AaAbCEan (CL’)
a a b

=Cp,p, — Z AaCDiDy — 1 — Ashlo (3.48)

Note that the solution to A, u; and us varies with location, because these solutions

depend on C}(x) and C}_p (x) in Equation (3.47), both of which vary locally.
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Now the only remaining components required for obtaining the desired estimate
are the weights v} in Equation (3.35) for the plate average Zj, (x), which need to
be evaluated from ring averages Z} (r). The objective, consequently, is to mini-
mize the extension variance of ) v2Z4  (x) relative to Zp,(z). The reason for using
Yoo VaZa,(x) instead of ) v2Z% (x) is that variability of the attribute value is re-
produced without involving the uncertainty associated with using ring averages to
represent ring means, so that unwanted signals such as the random error that corre-
sponds to the sampling processes could be excluded from being reproduced (a detailed

discussion regarding the impact of the unwanted signal will be given in Chapter 6).

Again defining the Lagrangian under the unbiasedness constraint ) v% =1, we

have the following:

Ly =YY vahCRe, —2ps (Z e — 1) (3.49)
a f «
where 3 is the Lagrange multiplier.

The values for v$ can then be obtained by solving the following equation:

C‘;ﬂ 1 v 0
_ (3.50)
17 0] |us 1

where v is a n, x 1 vector of v% (n, represents number of available rings within D,),
1 and 0 are n, x 1 vectors of ones and zeroes, and Cj‘;ﬁ is a n, X n, matrix containing
all C’f;‘ Ay values, which can be evaluated using Equation (3.23), with ring-to-plate
and plate-to-plate covariances, which, in this equation, are decomposed into sums of
ring-to-ring covariances using Equation (3.34). The ring-to-ring covariances can be
derived from the variogram model using Equation (3.20) over the entire domain, or

(3.24) when the target scale is a point scale.
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The overall algorithm for applying the M-Scale model proceeds as follows:

e Spatial covariance evaluation

1. Evaluate ring-to-ring covariance relative to the domain D using Equation

(3.20). Evaluate the point-to-ring covariance using Equation (3.24) if the

target scale is a point scale.

2. Evaluate plate-to-plate (or point-to-plate if the target scale is a point scale)

covariance relative to the domain D by Equation (3.34).

3. Evaluate point dispersion variance within each ring by Equation (3.26) to

be used for evaluating the covariance between plate averages.

4. Evaluate extension covariance C’}* 4, by Equations (3.23) and (3.34) to be

used for evaluating plate averages.

e Local estimation

1. Obtain v} from Equation (3.50) and calculate local plate average Zj, (z)

for the estimation location z.

2. Use Equation (3.36) to evaluate covariance C}, p, () between local plate

averages.

3. Select the base scale s by identifying the scale with the minimum extension

variance Cngt and evaluate the base-scale weight A, = Cp,p,/C} p..
4. Use Equation (3.47) to obtain estimation weights A,.
5. Calculate local estimate Zp, (z) = Y0 XaZp, ().
6. Evaluate the estimation variance by Equation (3.48).

7. Repeat steps 1 through 6 for all estimation points x.
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3.8 Summary

This chapter presents the mathematical development of the M-Scale model, and
reviews basic rules for variogram-based spatial estimation. The developed model uses
the covariance between mean values at different scales to describe the spatial struc-
ture, and fulfills the need for an exploratory tool for a multi-scale data integration.
In addition, the model provides a single estimation map that reproduces the spatial
variability without ad-hoc post processing (otherwise resulting in a function of the
best estimate rather than a best estimate), or inconsistent objectives that switches
among different constraining equations at different estimation locations, such as the
case for CK. In the next chapter, the M-Scale model is validated by comparing es-
timates to those obtained from OK and CK using artificial datasets, by evaluating

various quantitative endpoints.
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CHAPTER 4

Validation of the M-Scale model
Using Artificial Data Sets

As detailed in the previous chapters, ordinary kriging (OK) and constrained krig-
ing (CK) are limited because (i) OK estimates tend toward the global mean due to
the lack of mathematical constraints to reproduce variability, which may result in
underestimation of the spatial extent and concentration levels of (in this case) sedi-
ment attributes (e.g. contamination), and (ii) CK estimates constrain data variability
near sampled locations, but may overestimate the contaminated area around samples
indicating contamination. However, the discussion of model tendency and limitation
described in Chapter 2 was based on theoretical reasoning, and a validation of the
rationale is required to re-examine the characteristics of the estimation maps that the

models generate.

Hence, the primary objective of this chapter is to objectively compare estimates
produced by the three estimation methods; the secondary goal is to validate the

attribute precision/reproducibility of the newly developed M-Scale method relative
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to OK, the comparison basis for the most commonly adapted estimation model that
focus on the precision of estimated attributes, and CK, arguably among the few
published estimation methods that focus on preserving global variability of attributes
during spatial estimation. In addition to the reproduction of global variability, a
demonstration for reproduction of spatial variability is also given, with explanations

of the corresponding benefit.

Simulation approaches are described in Chapter 2 as tools for reproducing variabil-
ity. When models are compared for their general applicability, simulation approaches
are also used to generate realizations as equally-likely representations of reality (Meisel
and Turner, 1998; Collins and Woodcock, 1999; Bian and Butler, 1999; Kukush, 2005).
In this chapter, a sample application with artificially generated data is presented to
demonstrate the characteristics of the M-Scale estimates and estimation uncertainty
when compared to OK and CK. The reproduction of attribute variability is described
globally using pooled statistics over the estimation domain, and spatially as statistics
evaluated between locations. In fact, a spatial estimation generally pertains to the
estimation goals for unbiasedness and minimal estimation variance (see for example,
pp. 260-266 of Isaaks and Srivastava 1989; pp. 46-47 of Saito 2003). In other words,

the estimation are usually designed to achieve the following objectives:

1. To reproduce estimates that are most precise in the sense of difference of esti-

mated values against actual values over the entire study area (unbiasedness).

2. To reproduce estimates that are most precise in the sense of squared error of
attribute values with respect to the actual values over the entire study area

(minimal estimation variance).

which are the premises for the design of OK, that uses the approach of Lagrange

multiplier to minimize the expected variance of estimation, under an unbiasedness
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constraint (see Chapter 3 for the detailed review including statistical derivations).

Another characteristic to be assessed for a spatial estimation model is its capa-
bility to reproduce the value distribution over the study area, i.e., the proportion of
area/volume occupied by different ranges of attribute values, representing the global
variability of the research site. Particularly for remedial decision support, the re-
production of global variability represents the performance to correctly evaluate the
volume of contaminated sediments in the research area. In observation of this im-
portance, Cressie (1993) developed an estimation approach called constrained kriging
(CK) to reproduce global variability in terms of the expected variance of the en-
tire spatial domain, which is useful in generating estimation results that reflects the

proportion of area/volume occupied by different ranges of attribute values.

Reproducing global variability, however, may not satisfy the objective of sup-
porting on-site remedial decisions. The reproduction of covariances between local
attributes may also be an important characteristic of estimation performance, which
represents the reproduction of spatial variability that relates the different ranges
of attribute values to their relative locations. To illustrate the difference between
global and spatial variability, two maps of the same global variability that correspond
to different spatial variability are shown in Figs. 4.1 and 4.2, with global and spa-
tial variability represented by the value distributions and covariograms, as shown in
Figs. 4.3 through 4.6. With the same global variability (Figs. 4.3 and 4.4), a spatially
more variable attribute (Fig. 4.1) and spatially less variable attribute (Fig. 4.2) cor-
respond to different extent of high/low values (indicated by the extent of red/blue
tone colors) and different covariograms (Figs.4.5 and 4.6). For an on-site remedial
decision support, the reproduction of spatial variability represents the performance to
reproduce the extent of contamination, which is particularly important for block re-

medial techniques such as reactive/non-reactive capping of contaminated sediments.
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Figure 4.1: Conceptual example of an
attribute that is spatially more variable
(relative to Figure 4.2).

Proportion

mean =
Value

Figure 4.3: Global variability
represented by the distribution of
values for the attribute presented in
Figure 4.1. Note that the distribution
is almost identical to Figure 4.4.

— —e - o
T + T + =+ -

Distance

Figure 4.5: Spatial variability
represented by the covariogram for for
the attribute presented in Figure 4.1.

Figure 4.2: Conceptual example of an
attribute that is spatially less variable
(relative to Figure 4.1).
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Figure 4.4: Global variability
represented by the distribution of
values for the attribute presented in
Figure 4.2. Note that the distribution
is almost identical to Figure 4.3.

Distance

Figure 4.6: Spatial variability
represented by the covariogram for for
the attribute presented in Figure 4.2.

94



In order to reproduce spatial variability, Aldworth and Cressie (2003) proposed the
use of covariance-matching constrained kriging (CM), which is shown to reproduce
covariances between local attributes. The dilemma for using CM is, however, due
to the restrictive constraints imposed on CM estimation weights, not all locations
are guaranteed to have estimates that incorporate all sampled data and match the
covariance-reproduction constraints (see Aldworth and Cressie 2003 and Chapter 3 for
the detailed review). The development of CM, nonetheless, revealed the importance

for reproducing spatial variability.

As an estimation model developed for the decision support of on-site remedial
decisions, consequently, the M-Scale model were compared to OK and CK by the
following statistical plots and quantitative endpoints, indicating three different lev-

els/perspectives of variability reproduction:

1. Scatter plot with global standard deviation of the estimates, and Q-Q plot with
Anderson-Darling test statistics (A-D test statistics) of the pooled estimates,

to indicate the reproduction of global variability.

2. Covariogram (also known as “autocovariance function” in some studies like ver
Hoef et al. 2001) with structural variance (also known as “partial sill” in the
study of ver Hoef et al. 2001) and influence range of the covariogram for the

estimates, to indicate the reproduction of spatial variability.

3. Classification (threshold exceedance/non-exceedance) map with contingency ta-
ble and Cohen’s k coefficient of agreement, to compare the amount of correct
classification, false positive and false negative rates. This analysis serves to
examine the applicability of the proposed approach for attribute (e.g. contam-
inant concentration) delineation, which also provides a different perspective for

presenting the precision of the likelihood estimation for threshold exceedance
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as given in Aldworth and Cressie (2003).

The diagnostic parameters are evaluated for both a single realization and an en-
semble of 92 realizations (100 realizations excluding 8 with singular results in CK
estimation). The results serve to indentify/differentiate the model that (i) better de-
scribes global variability (ii) better delineates regional features, and (iii) better suits
site-characterization needs. All statistics indicate different perspectives of variability
reproduction, which feature different types of application for the estimation models

to serves as decision-support tools for remedial purposes.

4.1 Selection and Description of the Artificial
Data Set

The M-Scale model is compared to OK and CK using an artificial dataset based
on a hypothetical variogram with a standardized influence range and sill value. The
realization is generated on a 50x50 grid as shown in Fig. 4.7. The realization is
generated with a mean value of 4.0 following an idealized spherical variogram model
with unit variance (the sum of a nugget effect of 0.1 and a structural variance of 0.9)
and an influence range of 10 unit-distance. Although the selection of parameters are
standardized, the sill and range parameters can be rescaled to represent the magni-
tude of variability and extent of spatial association for any attribute of interest, for
example the contamination level, without violating the rationale of using a variogram
to explain the spatial structure (a similar selection of variogram parameters can be
found in p. 254 of Deutsch and Journel 1998). The selection of nugget effect is rela-
tively arbitrary, but it represents the case where the local variability is not negligible,

an assumption that is applicable for many environmental studies (see for example,
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Figure 4.7: The artificial realization
generated from the idealized
variogram. Red-tone and Blue-tone
colors represent high and low
attribute values respectively.

Figure 4.8: Location and value of
the selected sample. The same color
scales are used corresponding to the

artificial realization.

Wu et al. 2002; Schnabel and Tietje 2003; Critto et al. 2005). The magnitude of
the nugget effect is decided on a qualitative basis (so that the nugget effect is not
negligible) rather than a quantitative selection. A subset of the realization is selected

as the experimental sample at 100 locations with coordinates randomly chosen over

the 50x50 grid, as shown in Fig. 4.8.

To demonstrate that the samples selected from this dataset are representative of
the full realization, a quantile-quantile plot (Q-Q plot) (Deutsch and Journel, 1998)
for experimental sample values versus population values is plotted to ensure that the
global attribute distribution (value distribution over the entire domain) is reproduced,
as shown in Fig. 4.9. Each point on the Q-Q plot represents the quantile pair of the
global probability distribution of the two datasets, in this case the population and
the sample set. The Q-Q plot provides a visual demonstration of the similarity of
two distributions, and the close match to the 45° bisector indicates a close match
between the two distributions. In addition, the variograms of both experimental
sample and the population values are also compared in Fig. 4.10 to show that the

spatial structure of the population is reasonably reproduced by the experimental
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Figure 4.9: Comparison of value Figure 4.10: Variogram comparison
distribution by Q-Q plot for the for the sample, the artificial
artificial realization and the sample. realization, and the variogram
It is shown in the figure that the model. The comparison indicates
sample well represents the value that the sample represents the
distribution of the artificial artificial realization reasonably well,
realization. both of which are well represented

by the modeled variogram.

sample, so that the prescribed theoretical variogram matches both the population
and the sample set. The good match of the sill indicates a good reproduction of
dissimilarity between attribute values for long separation distances, the good match of
the trend and nugget indicate a good reproduction of dissimilarity between attribute
values for short separation distances. In this case, the sample generally reproduces
dissimilarity for all separation distances, and the variogram model reasonably reflects

the dissimilarity of both the realization and the sample.

4.2 Performance of M-Scale Estimation,
Ordinary Kriging and Constrained Kriging

M-Scale estimation, ordinary kriging and constrained kriging were performed on
the 50x50 grids of the target map. A spherical variogram model is also fitted visually

to the experimental variogram for the estimation of all three models, characterized by
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a sill of 1.0, a nugget effect of 0.1, and an influence range of 11 unit-distance. For the
M-Scale model, spatial supports of diameter 1,2,4,8,16,32, and 100 were pre-selected
for the moving subdomains, or plates, as conceptualized in Fig. 3.8. Statistics needed
for the M-Scale model, including the different variances/covariances, are described
in Chapter 3, and evaluated by numerical integration according to the modeled vari-
ogram. The selection of subdomain sizes in this study was arbitrary but captures the
separation distance classes for the experimental variogram. Other specific shapes or
sizes of the plates can also be used. It is suggested, however, that a smallest scale
is included to represent an area only slightly larger than the sampling volume/area
so that the nugget effect can be differentiated from variability at other spatial scales.
It is also favorable that more scales within the influence range (as indicated by the
modeled variogram) be selected relative to the scales outside of the influence range, as
long as the ring areas cover an adequate number of sample points over the estimation
domain. The implementation process for CK is identical to that of OK, except for

the additional constraint for the reproduction of the expected variance.

Using the sampled data and modeled variogram, the estimation maps for the
three estimation models are presented in Figs. 4.11 through 4.13. Color scales in the
maps indicates the magnitude of the estimated values. Visually, high- and low- value
regions (red- and blue- tone areas) are largest in the CK estimation map, and smallest
in the OK estimation map. These estimation maps reflect the convex- and concave-
smoothing features, where the estimates tends toward the global mean for OK and
tends to the sample values for CK estimates (these are features seen in Kyriakidis

2004; Goovaerts 1997b; Yamamoto 2005, as reviewed in Chapter 3).

Standard deviation maps of the model estimates are shown in Figs. 4.14, 4.15 and
4.16, which indicate that, at most of the estimation locations, CK generally has the

largest estimation standard deviation among the three estimation approaches. The
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Figure 4.11: Estimation map by the Figure 4.12: Estimation by ordinary
M-Scale model for the example set kriging for the example set of
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Figure 4.13: Estimation by
constrained kriging for the example
set of artificial data.
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Figure 4.14: Estimation standard
deviation by the M-Scale model for
the example set of artificial data.

Figure 4.16: Estimation standard
deviation by constrained kriging for
the example set of artificial data.
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Figure 4.15: Estimation standard
deviation by ordinary kriging for the
example set of artificial data.



large estimation standard deviation results from the constraint imposed to reproduce
global variance, that limits the optimization process from reducing the uncertainty by
setting the sample-to-sample part of the estimation variance to the global variance
(ie., by setting >, 3 \A;Ci; to 0®, see reviews of CK in Chapter 3). Although
the M-Scale model imposed additional constraint in the estimation process, the M-
Scale estimation standard deviation is lower than the other two models. This can
be explained by fact that the M-Scale model considers the expected covariance be-
tween sample points within each ring area via the dispersion variance of the ring
area assuming the samples are randomly located within the ring area disregarding
the actual locations. In the cases where sample locations are clustered within ring
areas, the dispersion variance may be underestimated since clusters among sample
locations usually pertains to the redundancy of samples, resulting in less information
and more uncertainty for the sample to represent the estimate (p.188 of Isaaks and
Srivastava 1989). Despite the difference in the assumption of sample locations, there
appears to be no statistical impact on the confidence interval (characterized by two
estimation standard deviations from the estimate) across the estimation map: the
M-Scale model generates confidence intervals that cover 91% of the true values of the
realization, similar to those based on confidence intervals of OK (92%) and CK (93%)
estimation. The insignificant impact on the confidence interval results from the fact
that the sample set is in deed selected at random locations from the realization using
a random number generator, therefore resemble the ideal case for ring areas around
all estimation locations. Additional research will be needed, however, in order to

account for the impact on the estimation variance by clusters in data locations.

Four statistical graphs are used to assess the impact of model choice on the data
estimates: (i) scatter plots, (ii) Q-Q plots, (iii) covariograms and (iv) classification
maps. These measures are quantitatively assessed using the following summary statis-

tics: global standard deviation of estimates for the scatter plot, Anderson-Darling
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Figure 4.17: Scatter plot of M-Scale
estimates vs. the artificial
realization.
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Figure 4.19: Scatter plot of CK
estimate vs. the artificial realization

103

7.00_

6.00] LY

5.00 1

4.00

Estimate

3.00]

2.00]

100: /‘ T T T T T T T T T
1.0 20 30 40 50 6.0 7.0
Artificial Realization

Figure 4.18: Scatter plot of OK
estimate vs. the artificial realization
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Figure 4.20: Q-Q plot: comparing
value distribution of the M-Scale
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4.22: Q-Q plot: comparing
istribution of CK estimates

vs. the artificial realization.
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(A-D) test statistics for the Q-Q plot, influence range and structural variance for the
covariogram, and the contingency table with Cohen’s x coefficient for the classification

maps.

4.2.1 Scatter Plot and Histogram Analysis

Among the four summary graphs, scatter plots and Q-Q plots capture global vari-
ability. Scatter plots for the estimates against the true values are plotted in Figs. 4.17,
4.18 and 4.19; Q-Q plots are shown in Figs. 4.20, 4.21 and 4.22 to compare the overall
distribution of pooled values of estimates to the actual realization. In both sets of
graphs, a trend to overestimate low values and underestimate high values is observed
in OK estimates, while such a trend is not obvious for the M-Scale and CK esti-
mates. Additionally, in the Q-Q plots, more off-diagonal quantiles are observed in
OK, fewer off-diagonal quantiles for the M-Scale model, and in the case of CK the
histogram is generally reproduced following closely to the diagonal line. This good
match of value distribution observed in the Q-Q plot of CK may indicate a good
match of quantiles that involve erratic jump in the attributes (local variability) that
is not of spatial correspondence, such as the sample values that involve micro-scale
variability and unwanted artificially induced error, as illustrated in Fig. 4.23. In fact,
as demonstrated by Cressie (1993) in the mathematical development, CK considers
the reproduction of global variability without distinguishing the structural variability
from local variability. Additionally, no local variability at the estimation location can
be inferred using samples unless a sample point is located exactly at the estimation
location. The estimates generated using CK, therefore, will appear to be more vari-
able than the structural variability in order to compensate the local variability, as
illustrated in Fig. 4.24. Although indicated in Aldworth and Cressie (1999) that the

artificially induced error should be excluded from reproduction of global variability,
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Figure 4.23: Conceptual sketch for an attribute involving local uncertainty. Green

curves and distribution shape indicate the structural variability and distribution of

the structural variability; black signals indicates local variability; black distribution
shape indicates the distribution of global variability.

Figure 4.24: Using CK to reproduce global variability. Solid diamond shapes indicate
samples; green curve indicates structural variability; black curve indicates the
mixture of structural and local variability; red curve indicates the variability
reproduced by CK estimation. Value distributions are illustrated on the right

according to the colors of the curves.

the approach for distinguishing artificially induced error from micro-scale variability
in the completeness of local variability is seldom studied. The CK estimation, con-
sequently, corresponds to either the negligence of the entire local variability in the
global variance (including a component of micro-scale variability that is part of the
true signal), or the reproducation of the structural variance using the entire local vari-
ability as described above (see Chapter 6 for detailed review and discussion for the

separation of artificially induced error). In a case where variograms modeled involve
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a non-negligible nugget effect, consequently, scatter plots and Q-Q plots may not be
sufficient for the examination of variability reproduction since these graphs does not
distinguish structural variability from local variability, mixing the reproduction of the
variability from what could be inferred from samples and what could not. To meet
the end for distinguishing structural variability reproduced by the estimates, scat-
ter plots and Q-Q plots should be demonstrated in parallel with diagnostic graphs
such as covariograms, so that the impact of nugget effect on CK estimates could be

examined.

Basic regression statistics for the scatter plots are listed in Table 4.1, including
the mean, standard deviation and regression slope of estimation values against true
values. A lower standard deviation of the estimates relative to that of the population
indicates a tendency of estimates to be closer to the global mean, i.e., the tendency
to reduce variability of values. This tendency is observed to be more significant

in OK than in the M-Scale model and CK estimates. This result indicates that

Table 4.1: Basic statistics for scatter plots comparing results of the M-Scale model,
OK and CK to the artificial realization.

Statistics | Realization | M-Scale | OK CK
Mean 3.995 3.943 | 3.934 | 3.941

Std. Dev. 0.992 0.800 | 0.682 | 0.979
Slope - 0.55 0.50 | 0.72

OK tends to introduce more concave smoothing in the estimates than the M-Scale
model and CK in terms of the global variability of the estimate. The standard
deviation for CK reproduces the global population standard deviation well, which
also includes the reproduction of local variability according to the discussions above
for the reproduction of global variability. Regardless of whether the reproduction of
global variance is sufficient to indicate good performance of variability reproduction, it
is demonstrated that the M-Scale model reproduces global variability better than OK

that focus on the precision of the estimates. The global unbiasedness of the estimates
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was evaluated by comparing the population mean to the mean of estimated values.
Although M-Scale and CK show a lower bias (bias=0.052 and 0.054) relative to OK

(bias=0.061), the difference is small relative to the population standard deviation.

The slope of the regression for the scatter plot is a measure of the similarity
globally between true attribute values and their corresponding estimates. In this
global sense, CK generates estimates closer to the realization values among the three
estimation approaches, and OK has the lowest reproduction of the three (Table 4.1).
Note that, however, these statistical descriptors reflect perspectives of the global
variability reproduction, and spatial statistical descriptors should be used instead if
local variability is not part of the characteristics of interest for the attribute under

study.

The Anderson-Darling test statistic A*> (Anderson and Darling, 1954; Ang and
Tang, 2007) is used to quantify how the estimates globally reproduce the distribu-
tion of the population. This statistic is defined as the weighted average of squared
discrepancies between the cumulative distribution function of the estimate and the
population, and is interpreted as the “goodness of fit” of two histograms, where all
quantiles are treated with equal weights. The results also indicate a better fit for the
M-Scale model (A?=38.8) relative to OK (A?=91.92). CK (A%=17.28) again has the
best fit of histogram among the three approaches because of the imposed variance

constraint.

4.2.2 Covariogram Analysis

Covariograms (Curriero et al., 2002) and threshold indicator maps (Barabds et al.,
2001) can be used to compare the spatial variability of the estimated fields relative

to that of the realization. Covariograms are used in this example to illustrate the
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spatial variability in terms of the covariance between locations. A covariogram, ex-
pressed as C'(h) = 02 —~(h) (see Chapter 3 for detailed derivation), is used to indicate
the spatial dependence/dissimilarity between local variables (Jackson and Caldwell,
1993), and thus act as a complimentary component with the variogram (the spatial

independence/dissimilarity) of the attribute variance o2

. Although variograms are
popularly used to demonstrate spatial relatedness in most geostatistical studies, all
separation distances h of the variogram corresponds to a component of local variabil-

ity /error (the nugget effect) in the semivariance y(h), as shown in Fig. 4.25 (left).

In other words, the semivariance evaluated/modeled at each separation distance is
y(h) + C(h) = 0>

Y (h) C(h)
Nugget Effect

P LA B A
NP h

Nugget Effect

Figure 4.25: The correspondence of variogram vs. covariogram. It is shown in the

figure that the nugget effect is involved at all separation distances in the variogram

(except at zero separation distance, which is not easy to observe), while appears in
the covariogram at only the zero separation distance.

a mixture of a local component expressed by the nugget effect, and a spatial com-
ponent that is relevant between sample locations. When evaluating the covariogram
from the variogram, the local component cancels out the corresponding component
involved in the attribute variance o2, leaving the spatially-relevant component at each
separation distance, except the remaining nugget variance at zero separation distance
(see Fig. 4.25, and p.532 of Starks 1986). Note that the semivariance at zero separa-
tion distance is essentially zero since v(0) = E[Z(x) — Z(z)]* = 0, and the curve of

variogram jump immediately to the nugget variance at a small separation distance.
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For a spatial estimation model that uses measurements at sample locations to in-
form the value at unsampled locations, the spatial dependence between estimates
is usually more interesting (Istok and Rautman, 1996). Hence the covariogram of
the estimates are compared to that of the actual covariogram, in order to indicate
how the dependence between locations reproduces the (assumed) reality. Structural
variance (Robertson et al., 1993; Crist, 1998; Liu et al., 2007), evaluated by subtract-
ing the nugget effect from the sill value, is used as a diagnostic parameter for the
covariogram, accompanied by the influence range that indicate the spatial range of
relevance between locations. Visually in the covariogram, the structural variance can
also be observed by extrapolating the trend of covariance values for the value at zero

separation distance.

As shown in Fig. 4.26 and Table 4.2, all the covariograms have identical influence
ranges at around 18, indicating that the same data that fall out of the modeled influ-
ence range from estimation locations remain included in the three estimation models.
This result also indicates that all samples are regarded as informative for the estima-
tion in all three models, since data out of the influence range also provides information
about the unknown global mean. The covariogram for the M-Scale estimates has a
structural variance of around 0.73, as compared to that for OK and CK estimates
at 0.53, and 1.13, respectively (Table 4.2). Although none of the models exactly re-
produce the covariogram of the realization, the covariogram of the M-Scale estimate
better reproduces the covariogram relative to OK and CK (structural variance = 0.90
(M-Scale), 0.53 (OK) and 1.13 (CK)). In the case of CK, the variability is forced to
follow the targeted global variance (involving the nugget effect that indicates local
variability) and consequently the lack of reproduction for the structural variance, as
discussed in the previous section. Unfortunately, no single standard parameter sum-
maries the goodness of fit between two covariograms, and the comparison are usually

based on visual comparison and scientific knowledge of the attribute (van Meirvenne
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Figure 4.26: Comparison of M-Scale, OK and CK covariograms to the covariogram of
the artificial realization to represent their performance in terms of reproduction of
spatial correspondence between different locations.

Table 4.2: Structural variance and influence ranges indicating covariogram

reproduction.
Statistics Realization | M-Scale | OK | CK
Structural Variance 0.90 0.73 0.53 | 1.13
Influence Range 11 18 18 18

and Goovaerts, 2002).

4.2.3 Classification Map Analysis

A classification map represents the discretized variability of the spatial attribute
(p.441 of Goovaerts (1997b)). Classification maps for estimates above and below a
threshold value, consequently, can be used to demonstrate the spatial variability cor-
responding to a certain designed threshold (Barabés et al., 2001; Saito, 2003). For
example, concave smoothing (see Chapter 3) of estimates corresponds to underesti-
mation of the occurrence of exceedance for high threshold values globally, because
these estimates tend toward the global mean. On the other hand, convex smoothing
(also see Chapter 3) correspond to overestimation of the occurrence of exceedance
regionally in the vicinity of hot spots, because these estimates tend toward the sam-

ple value in their close neighbors (see Chapter 3 for statistical explanation of both
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Table 4.3: Contingency table for estimation models based on the classification maps.

M-Scale OK CK
+ - + - + - Total
+ || 3.9 6.4 || 2.8 7.5 | 5.2 5.1 10.3
— 1121|876/ 09 | 8.8 | 4.4 | 85.3 89.7
Total 6.0 | 94.0 || 3.7 96.3 || 9.6 | 90.4 || 100.0

Target

concave and convex smoothing). Specifically for site characterization that supports
remedial decision-making, a classification map is important to define areas where at-
tribute values exceed a certain regulatory threshold such that a remedial action is
required. Underestimating the occurrence of contamination increases the risk with
unrevealed contaminated area, while overestimating the occurrence of contamination
may conversely lead to additional remedial cost (Saito and Goovaerts, 2003). Par-
ticularly for research areas where the corresponding cost for remediation is linear to
the contamination level, a classification map serves as a visual tool for stakeholders

to negotiate the area where remedial action is needed.

For illustration purposes, classification maps were generated as shown in Fig. 4.27
for a threshold of 5.25, which is around the 0.9 quantile of the pooled sample mea-
surements, a value that is relatively high comparing to the sampled values. Grey
color in the map indicates values above 5.25, and white indicates values below 5.25.
The same classification maps are also created for the M-Scale model, OK and CK
estimates, as shown in Figs. 4.28, 4.29 and 4.30. It is visually observed that relative
to the exceedance of the realization, the exceedance for OK estimates consists of a
smaller area (which may underestimate the occurrence of exceedance) around the
hot spots, and the exceedance for CK estimates consists of a larger area (which may

overestimate the occurrence of exceedance).

The contingency table (also known as the error matrix, see Congalton 1991 and

Couto 2003) for the classification maps is listed in Table 4.3 to include the percent-
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Figure 4.29: Classification map for
threshold 5.25 evaluated using OK
estimates
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Figure 4.28: Classification map for
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Figure 4.30: Classification map for
threshold 5.25 evaluated using CK
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age of each classification categories, where “4” indicates values above 5.25 (classified
“true”), and “~” otherwise (classified “false”). The result shows that OK exhibits the
highest false-negative exceedance estimates, thus underestimating potentially con-
taminated areas. CK may be an over-conservative assessment approach due to the
highest false-positive rate. The false-negative rate for CK, however, is the lowest
among the three estimation models, which may due to the fact that the global vari-
ance CK is designed to reproduce includes not only the structural variance, but also
local variability (the nugget effect). The attribute that involves local variability may
correspond to occasional exceedance, and consequently results in occasional agree-

ment for the CK classification, as shown in Fig. 4.31. Among the three approaches,

Occasional Occasional
Exceedance Exceedance

Figure 4.31: Conceptual sketch for occasional exceedance. Green curve indicates
structural variability; black curve indicate a mixture of structural and local
variability; red curve indicates CK estimates.

the M-Scale exhibits a lower false-negative rate compared to OK, and a lower false-

positive rate compared to CK.

Cohen’s k coefficient (Cohen, 1960) is a parameter of the contingency table that
examines the agreement of the classification map of estimates against the classifi-
cation map of the realization. The parameter considers the improvement of agree-
ment relative to a map with random selection of action/no action locations (areas)

over the estimation domain. As shown in Fig. 4.32, even by random assignment of
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exceedance/non-exceedance that is not relevant to any spatial context, the result of
classification may reach a certain level of agreement with the actual realization. The
rate of opportune agreement is consequently used as a baseline, extracted from the
rate of agreement by a spatial estimation model (as shown in Fig. 4.33) and stan-
dardized by the maximum possible improvement of agreement relative to the random
assignment. The standardized result is in general known as Cohen’s k coefficient of

agreement, or k for convenience, which is expressed mathematically as

_ Po — Dc
K =
]-_pc

(4.1)

where pq is the proportion of units correctly classified by the estimation model, and p,
is the proportion of units for which agreement is expected by chance. With intuitive
expression, Cohen (1960) described his x coefficient as “the proportion of agreement
after chance agreement is removed from consideration.” Originally developed for char-
acterizing level of agreement in general for psychological research, this coefficient is
also used in the area of remote-sensing for the classification agreement of NDVT (Nor-
malized Difference Vegetation Index) (Pax-Lenney and Woodcock, 1997), in ecological
research for the classification agreement of tree species cover (Naesset, 1996), and in

environmental studies for the classification of contamination level (Saito, 2003).

Cohen’s k is a standardized coefficient that takes value from -1 to 1, which rep-
resents the goodness of classification for an estimation model ranging from complete
disagreement (-1) to perfect agreement (1). The rate of agreement is interpreted by
Landis and Koch with six categories of the strength of agreement(Landis and Koch,

1977; Naesset, 1996):
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Figure 4.32: Random assignment
of exceedance/non-exceedance
(with x=0). Solid line represents
the perimeter of actual
exceedance.

Figure 4.33: Classification based
on estimation (with x=0.68).
Solid line represents the
perimeter of exceedance.

Kappa Value Range Strength of Agreement

< 0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect

which provides an intuitive expression of how the estimation reproduces the actual
realization, or “useful benchmarks for the discussion” as describe in Landis and Koch

(1977).

The resulting k coefficients for the three estimation models are listed in Table 4.4,

in which OK has the largest x coefficient (best agreement) among the three models.

Table 4.4: Cohen’s x coefficient for the three estimation models evaluated by
comparing the classification results of estimates to the classification results of the
artificial realization.

M-Scale | OK | CK
K 0.53 0.54 | 0.48
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Table 4.4 also indicates that CK estimates results in less agreement in the classifi-
cation of exceedance, possibly due to the false reproduction of local variability using
structural variability. All three estimation models are categorized as “moderate”
agreement by the definition of Landis and Koch (1977), while the difference between
the M-Scale model and OK is much closer than that between CK and OK. The result,
at least for this example, indicates a possibility that the M-Scale model and OK per-
forms at the same level, and CK performs worst when overall precision is expressed
by the results of classification. A simulation using multiple realizations, will be used

to validate the performance characteristics indicated in the example realization.

4.3 Performance Comparison Using Multiple
Realizations

In order to examine the consistency of model performance, the statistics described
in the previous paragraphs were calculated for an additional 99 simulated realizations
(a total of 100 realizations) with the same random field generator, each corresponding
to samples taken at the same sampling configuration used for the example in the
previous section. Eight of the simulations were excluded from the sensitivity analysis
due to the singularity of estimates for CK, where the covariances between sample and
locations become too small for the estimate to reproduce the global variance from
sample values (Aldworth and Cressie, 2003). The resulting variability parameters are
individually averaged over the 92 realization used, and the average values are listed

in Table 4.5.

Results of the consistency check indicate that the standard deviation of the esti-
mates is best reproduced, and the population probability distribution is best fitted for

CK. The false negative rate is worst for OK, while the false positive rate is worst for
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Table 4.5: Average values for parameters of variability reproduction.

Avg. Estimate | Std. Dev. | A-D Stats | False 4+ | False — K
Realization 3.982 1.000 - - - 1.00
M-Scale 3.983 0.753 66.66 2.30 7.74 | 0.436
OK 3.983 0.671 107.45 1.21 8.22 0.473
CK 3.984 0.989 18.69 5.70 5.66 | 0.361

CK. The false negative rate looks best for CK, due to the over-estimation of hot-spot
regions, which coincides with scattered exceedance not corresponding to the sam-
ple set (also observed in the example classification maps). Cohen’s k indicated that
OK classification maps are most precise, followed by the M-Scale model and CK has
the worst classification precision among the three estimation models. These results
confirm that the M-Scale model performs similarly well in the precision of estimates
relative to OK, the conventional model that focus on the precision of the estimates, in
terms of the classification agreement using Cohen’s k coefficient. Standard deviation
of estimates and A-D test statistics indicate the best reproduction by CK, followed
by the M-Scale model and worst by OK. This result confirms that the M-Scale model
performs similarly well in the reproduction of global variability relative to CK, the
novice model that focuses on the reproduction of global variability, in terms of the
global variance and A-D test statistics. It is not obvious which model performs best in
the category of absolute bias, nevertheless, which is not hard to understand because

the constraint of the global unbiasedness is implemented in all three models.

The covariograms of the estimates are compared to sample covariograms as an
indication of the reproduction of sample covariograms. The reproduction of sample
covariogram is equivalent to the comparison of covariograms between the estimates
and the population when the sample covariogram reproduces the covariogram of the
population. The reproduction of population covariogram by the sample covariogram,
however, is not the focus of this dissertation and require future research for its impact

on the resulting estimation map.
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Nevertheless, the reproduction of covariogram cannot be indicated by a single di-
agnostic parameter. Comparison of the 92 covariograms of the estimates to sample
covariograms, consequently, needs to be conducted visually. To meet this end, the
covariances at each separation distance for the 92 samples are pooled, and the ranges
(expressed by two standard deviations from the mean) of the covariances are plot-
ted on the covariogram. The ranges of sample covariogram (ranges of covariances
plotted for all separation distances) are compared to the mean covariogram (mean
covariances plotted for all separation distances) of the estimation maps to indicate the
general tendancy of covariogram reproduction for the estimation models, as shown
in Figs. 4.34 through 4.36. It is observed that OK mean covariogram lie closer to
the lower limit, CK mean covariogram lie closer to the upper limit, and the M-Scale
mean covariogram generally lie between the limits of the sample covariogram. The
structural variances for the sample covariogram are found to be 1.10 for the upper
limit, and 0.56 for the lower limit. The structural variances for the mean covariogram
of the estimation maps are 0.58 for the M-Scale, 0.46 for OK, and 0.99 for CK. The
ranges of the mean covariances are found to be 17.0 for all estimation models, because
the same set of sample is used by the estimation models to generate estimation maps

of the population.

Based on the structural variances and visual comparison of the mean covariances
of the estimation maps to the ranges of sample covariances at all separation distances,
it is observed that OK generally underestimates spatial variability, and CK overes-
timates spatial variability. The M-Scale model, with a range that lies closer to the
modeled covariograms, indicates the best reproduction of spatial variability. This
result is consistent with the example given using one realization. This conclusion,
however, is made by an assumption that the spatial variability of the sample is repre-
sentative of the spatial variability of the population, which needs additional support

by studies that focus on the reproducibility of population variability by samples.
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Figure 4.36: Comparison of CK
mean covariogram of the 92
estimation maps to the upper and
lower limits of the 92 sample
covariograms to represent their
performance in terms of
reproduction of spatial variability.
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4.4 Summary

It is concluded in this chapter that the M-Scale model across all statistical end-
points performs as well as OK in classification precision without over-smoothing the
estimation map, and as well as CK in reproducing variability without falsely repro-
ducing local variability by increasing structural variability. In addition, the spatial
variability appears to be best reproduced by the M-Scale model, as visually observed
in the covariogram reproduction and structural variance quantified for the covari-
ogram. Hence, this proposed spatial estimation approach that explicitly incorporates
multiple scales of samples appears to be a robust method, that potentially lends itself
to applications where relationships between variable spatial supports need exploring,
and where the remedial decisions depend on the spatial variability of the estimation

map.

Regardless of the smoothing effect that is consistently observed in conventional
kriging estimation, OK does best in terms of classification precision, as indicated by
Cohen’s k coefficient. Although standardized as a measure of agreement, Cohen’s k
treats false positives (FP) in the same way as false negatives (FN), whereas in a case
of actual contamination, a false-negative may be regarded as more dangerous than
false-positive classification. The four metrics in a contingency table, consequently,
will assist the choice of estimation model, if the classification objective depends on
a particular classification performance such as the false-negative rate. It is observed
that the absolute bias of the pooled estimates corresponds to classification precision
in terms of the sum of FP and FN rates, which is equivalent to the comparison using
Cohen’s k coefficient. In fact, a smaller bias of the OK estimates indicates that, on
average, the estimates are closer to the actual value, consequently a better chance of
being classified correctly. Particularly in a multi-Gaussian case, this indicates that

most of the middle-range values, which take up the highest percentage of the counts
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of values, are closer to the actual values. Regardless of the overall small misclassifi-
cation rates for OK, the concave smoothing of OK corresponds to a small FP rate
but is compensated by a large FN rate, which is not favored as an estimation model
for site remediation (p. 421 of Isaaks and Srivastava 1989). On the other hand,
although CK results indicated the lowest false-negative rate, the model is at a lower
level for classification precision as indicated by Cohen’s k coefficient. This result for
CK also confirms the conclusion by Carr (2002), who described that an estimation
approach that “yields a sharper image” may “result in diminished estimation qual-
ity” for data which “indicate a substantial nugget value.” He further described this
substantial nugget value as an implication that “smaller scale spatial variability is
not well represented in the sample data,” and an estimation approach that attributes
higher weights for the data during estimation “as if these smaller scales are present” in

order to produce higher spatial variability, will result in higher error in the estimation.

Results for the M-Scale model, although indicating a lower x coefficient relative
to OK, has its advantage in the low false negative rate relative to the OK result.
This characteristic implies that the M-Scale model is better suited than OK as a
decision support tool for site remediation, since FN classification “usually carries a
heavier penalty, in real-life (Turney, 1995),” which “might lead to substantial financial
penalties . ..due to consequent litigation or from extra delays in site redevelopment
(Ramsey et al., 2002).” The M-Scale model, consequently, can be understood as
a better estimation model for remedial purposes relative to OK, while at the same
precision level as OK. The decision-making process, however, depends on how different
stakeholders negotiate on the importance of the classification results, which will be

site-specific and subject to change in time.

The lower k coefficient for the M-Scale model relative to OK should not be re-

garded simply as a loss of reproducibilty of attribute reality, however, because the
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reproduction of map attributes could be described from different perspectives, includ-
ing value precision, covariogram reproduction, and classification precision. The results
presented confirms the description in Journel et al. (2000) that “semivariogram repro-
duction cannot be obtained without sacrificing local accuracy.” Moreover, Krige and
Assibey-Bonsu (2001) further stated in their comment on Journel et al. (2000) that
”the possibility of it (deriving a single estimation map that reproduces semivariogram
without sacrificing accuracy) ever being successfully met is a mathematical impossi-
bility,” and ”the common-sense reason for this is that no mathematical technique can
overcome the lack of sufficient data at the local level.” Unlike CK, nonetheless, the
effect of the nugget value on the M-Scale model is not as prominent, and its precision

as indicated by the k coefficient is controlled at the same level as in OK.

Contrary to the results indicated by Cohen’s k coefficient, however, the estimation
variance of the example in this chapter indicates smaller values for the M-Scale model
at most estimation locations compared to OK, which may be due to the fact that the
M-Scale model regards samples in the ring area (increments between spatial supports)
as randomly located with little redundancy among data, thus underestimating the
estimation variance when the samples are actually clustered within ring areas. The
resulting estimation variance for the M-Scale model in the example realization has
similar coverage rate (proportion of times that the actual value is included in the
confidence level evaluated) as OK, because the sampling scheme is close to a selection
of purely random locations so that the “underevaluation” of the estimation variance

is not of significance.

To sum up, reproducing global variability indeed helps to lower the false negative
rates, as shown in the CK and the M-Scale results. When considering the ensemble
of performances based on the reproduction of spatial variability, the estimation preci-

sion, and the applicability for remedial decisions, the M-Scale model is found to be a
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robust model among the three estimation models presented, compared to OK which
focuses only on the estimation precision, and to CK that emphasizes on the reproduc-
tion of global variability. Additionally, the good performance shown in the example
realization indicate a possibility for the M-Scale model to outperform OK and/or
CK in the precision of remedial cost that uses the estimated contamination level as
the input, particularly when the associating function is unknown. To evaluate the
applicability for different cases of remedial decisions, however, additional risk-benefit
analysis, such as the excess cost described in Chapter 2, should be conducted to bal-
ance the cost originated from FP and FN, as described in Weber and Englund (1992)
that “society pays a cost for all contaminated areas, either as a remediation cost for
each block cleaned, or as a less easily defined group of costs (health effects, ecological

damage, etc.)”

The evaluation of applicability is challenging because of the lack of comparison
basis with actual measurements, and the uncertainties associated with comparative
risk-benefit analysis based on different estimators. Since no remedial plan can proceed
without a thorough sampling of the contaminated site (p. 351 of Isaaks and Srivas-
tava 1989), a solid diagnostic comparison of performance of the estimation model is
required. This diagnostic approach will be described in the next chapter, based on
a 3-dimensional site characterization of the Passaic River (NJ) for remedial decision-

making regarding sediment dioxin contamination.
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CHAPTER 5

Validation on Rich Data Set for
Point and Block Estimation

The M-Scale model was previously shown to be useful for scientific exploration by
characterizing covariances between mean values at different scales in Chapter 3, and
was further validated by using an artificial dataset to be a remedial decision support
tool in Chapter 4. To demonstrate the performance of the M-Scale model in a real-
world application for delineating contamination in the sediment of a waterway, the
Passaic River data set was used as an example. Also demonstrated is the performance
comparison for block estimation for the M-Scale model, OK and CK, because the
target scale of interest (i.e., the area or volume over which the mean value is of
interest) tends to not be a single point, but a larger area. To provide the base-line
knowledge of statistical applications for surface water sediments, a review is provided

of relevant literature.

Most research on statistical spatial analysis for sediments is limited to applications

such as validating spatial correspondence or finding the strength of spatial related-
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ness. Iriarte et al. (1997), for example, described the spatial variability of microbio-
logical measurements in the Urdaibai estuary of Northern Spain by the observation
of measurements among sampling stations, and concluded that the variability may
be a consequence of tidal flushing. Raghukumar et al. (2006) studied seasonal and
kilometer-scale spatial variability for biological measurements in deep-sea sediments
in the Central Indian Basin, including the variability of bacterial counts, total organic
matter, extracellular enzyme activities, adenosine triphosphate (ATP), and protein.
ANOVA between locations was performed to indicate the spatial variability in the dif-
ferent attributes. This study concluded that whereas no significant variability exists
vertically (within cores), significant variability was observed horizontally (between
cores), and the variability is most significant temporally (between sampling stages).
Point et al. (2007) observed the measurements of trace metal, organotin concentration
and macrofaunal species abundance in the Thau Lagoon (France) by comparing the
local coefficient of variation (CV) of sample triplicates within each station (local vari-
ability) to the global CV of the triplicate average (possible spatial variability) so that
the existence of spatial variability in the local mean values could be confirmed. This
study also compared the incidence of spatial variability of trace metal and organotin
to the macrofaunal species abundance to infer the causes of the observed variabil-
ity. Steven and Ekermo (2003) explained bathymetric variation of sediment depth in
Gooteborg Harbour (Sweden) by comparing the variograms of sediment depth, and
determined that the cause of variability in sediment was associated with area size of
erosion and accumulation area. Middelboe et al. (2006) collected viral and bacterial
abundance measurements in the sediments of Sagami Bay, Japan, and concluded that
the change sign of Moran’s I (Moran 1950, a statistic that studies spatial association
at different separation distance, similar to the use of covariogram) corresponds to the
patch size of up to 150 m in diameter for the abundance distribution. They further

described the importance of studying spatial structure “to evaluate and interpret
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differences in abundance between locations or over time.” However, no indication of
the importance of studying spatial correspondence for mapping attribute values and

uncertainty evaluation was included in their discussion.

As discussed in Chapter 2, the application of geostatistical estimation methods
for contaminant delineation is relatively recent, and few studies exist. Ouyang et al.
(2002) studied DDT (and normalized DDT by total organic carbon, TOC) in river
sediment, and used kriging to “characterize” its spatial distribution. In addition
to conventional geostatistical structural analysis by Mear et al. (2006) of the fine-
grained content of the superficial sediments in eastern Bay of the Seine (France) that
characterizes a variogram model of the hole-effect type as an indication of patches
of various sizes, these authors also performed conditional simulation of the same at-
tribute (fine-grained content). Locally calculated mean values of the 80 conditional
realizations were used to generate the estimation map, an approach with results iden-
tical to kriging results without further benefit, when the realization is generated using
a multiGaussian approach (p. 341 of Goovaerts 1997b; p.154 of Chiles and Delfiner
1999). In Ouyang et al. (2003), heavy metal concentrations (and normalized heavy
metal by Aluminum concentration) were estimated in river sediment using kriging.
The paper concluded that kriging is useful ”especially with regard to the potential
river sediment dredging” but offered no implication for classification for remedial pur-
poses. In fact, among the few geostatistical applications, even fewer offer approaches
towards decision-making, such as classification of contamination levels, except for the
study of Barabds et al. (2001). All literature information indicated the importance
for characterizing relatedness between spatial scales and mapping attribute values,
while no literature is found in the studies of under-water sediment attributes, that
uses a single expectation map to reproduce spatial variability and describe the spatial
distribution as a supporting tool for remedial application. Indeed, it makes intuitive

sense to use spatial relatedness for the explanation of the cause of spatial variability,
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such as the association of microbial activity distribution to the microbial abundance
distribution over the area of study. A precise estimation approach like kriging, in
addition to characterizing spatial relatedness, generates estimation maps that gives
visual aid for the map users to observe the general trend of spatial variability, e.g. a
map of microbial activity, with confidence intervals that indicate the precision of the
estimate individually at each location. What is more important, other than the pre-
cision of the estimation map, is how the variability is reproduced, and consequently
the precision of the ultimate result that uses the estimates generated as inputs. For
example, to assess the total amount of dechlorination by microbial activity, a map
that reproduces the variability of microbial activity is needed. In addition, a classifi-
cation map that represents the discretized variability of the spatial attribute (p.441
of Goovaerts (1997b)) serves as decision support tool when the decision is made on
the basis of the exceedance/non-exceedance of the attribute, or when the decision is
made upon a cost model that is linear to the contamination level. Few studies of sed-
iments focus on decision support using classification map, and no literature indicates

the importance of reproducing spatial variability in an estimation map.

To demonstrate the performance of the M-Scale model in a real-world application
for reproducing spatial variability and delineating threshold exceedance in the sedi-
ments of a waterway, the Passaic River dataset is used as an example. Estimates are

generated at two resolutions:
(i) the punctual/point estimation, with estimates representing the value at each
point, and
(ii) the block estimation, with estimates of average values over a certain support
size.

Since the interest of site characterization and decision support for contamination in-
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vestigation is rarely at a point scale, block estimations (estimating at a scale larger
than the sampling units) are often used in practice. A major benefit for using block
estimation is the reduction of uncertainty when the spatial resolution for the repre-
sentative estimates does not need to be as fine as the measurement unit (i.e. sample).
The propositional topic for block estimation in this chapter, consequently, is different
from most studies that use block estimation. In the research that involves block esti-
mation, the key topic usually pertains to the impact of block sizes on the variogram
(see Clark 1977), the smoothing of estimates under different block sizes (see p.158
of Goovaerts 1997b), and the reduction of the corresponding estimation variances for
the block estimates (p.311 of Journel and Huijbregts 1978). This chapter focuses
on the study of a more fundamental difference between using point estimation (es-
timating at the same scale as the sample scale) and block estimation (estimating at
a scale larger than the sample scale), that is, the impact of the nugget effect. Al-
though popularly modeled in geostatistics as a characteristic parameter, the nugget
effect is only effective for point estimation due to the following reason: according
to Journel and Huijbregts (1978) (see p.311), the target scale (size of the estima-
tion support) is often much larger than the size of the sample in practice, and thus
the impact of the nugget effect on the sample-to-estimate and estimate-to-estimate
covariances is negligible when compared with the nugget effect at the point scale.
In fact, the sample-to-estimate and estimate-to-estimate covariances defines the im-
pact of nugget effect on the estimates/estimation variance (see pp.299-301 and p.326
of Isaaks and Srivastava 1989 for the components affecting estimation weights, and
the formula for calculating estimation variance under block estimation) because the
nugget effect is inherent in the sample-to-sample covariance matrix (Aldworth and
Cressie, 1999). With an intuitive perspective, block estimates substantially reduce
the effect of artificially induced error and micro-scale variability (the impact of the

nugget effect) because a block average is essentially the average of point variables
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within an area/volume (see for example, p.328 of Isaaks and Srivastava 1989), by
which the spatially independent micro-scale variability and artificially induced error
are averaged out. Since the impact of nugget effect is only discernible for point esti-
mation, a comparison between the point estimation (estimating at the same scale as
the sample scale) and a block estimation (estimating at a scale much larger than the
sample scale) at a “small” block (at a diameter that is regarded as small relative to
the distances between sample locations) will reveal the difference between the use of
point- and block- estimations due to the impact of the nugget effect. The compari-
son between block estimation and point estimation in this chapter, consequently, is
expected to differentiate the impact of the nugget effect in terms of the diagnostic
graphs/parameters stated in the previous chapter. In addition, because this compar-
ison signifies the impact of the nugget effect, it will also provide the examination of
whether an estimation model is sensitive/subject to the modeled nugget effect, when

a point estimation is performed.

A comparison of estimates to the reality, however, is not readily available for many
research sites. The main issue for comparing estimation models using real datasets is
not only the lack of idealized mechanistic (e.g. fate and transport) models that the
data should follow, but also the unavailability of an exhaustive measurement over the
entire area/volume as the comparison basis. The exception is when the validating sets
are available exactly at the sampling locations, and when precision /reproducibility of
estimates at other locations are not the objective of the study (Schweizer and Kron-
holm, 2007; Schnabel and Tietje, 2003; Mear et al., 2006). For a spatial estimation
model, however, the interest for validation is to choose among models to be used as
a decision support tool for spatial assessment of mapped attribute values. In this
case, the samples are usually not re-sampled at the exact sample locations. Cross-
validation is an approach widely accepted for comparing among estimation models

(Maravelias et al., 1996; Goovaerts, 1998; Su et al., 2006) although the approach is
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also applied ad-hoc for the selection of certain estimation parameters (an example is
presented by Barabas et al. 2001, who used cross-validation to select the likelihood
threshold for delineation of contamination). The principle of this approach is to es-
timate the attribute value at each sample point as if the sampled value is unknown
(p.111 of Chiles and Delfiner 1999), which enables the comparison of estimates to

actual values at each sample location.

Cross-validation is usually used to compare model performance locally since this
approach generates pairs of true and estimated values only at sample locations. How-
ever, since the estimation models for reproducing variability such as CK and the
M-Scale model aim at reproducing variability by separate estimates at each loca-
tion, the result for cross-validation would also reflect the performance of variability
reproduction by these models. Re-estimation of sample points will be conducted to
compare model performance, under the point estimation case as well as the block
estimation case. Particularly, the cross-validation of the point estimation case is used
to reconfirm the characteristics of estimation described in Chapter 4 for the three es-
timation models. From a remedial decision-making perspective, the comparison also
provides an approach for model selection by exploratory examination, especially for
studies where non-negligible nugget effects are observed and the comparison involves

estimation models that are sensitive to the nugget effect.

The objective of this chapter is to compare the performance of the M-Scale model
vs. OK and CK in the delineation of dioxin contamination in Passaic River sediments
using the same statistical endpoints employed in Chapter 4. As a measure of assessing
estimation performance and examining model sensitivity against the nugget effect,

cross validation will be conducted using point and block estimates of contamination.
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5.1 The Passaic River Data Set

The Lower Passaic River Restoration Project is a comprehensive study of the 17-
mile tidal stretch of the Passaic River from Dundee Dam to Newark Bay in northern
New Jersey. The study is being carried out by a partnership of federal and state
of New Jersey agencies. During the course of the study, the sediments in the lower
eight miles of the river have been identified as a major source of contamination to
the 17-mile stretch of the Passaic River and to Newark Bay. The partner agencies
have developed a companion Focused Feasibility Study (FFS) to evaluate a range
of alternatives that might be implemented as an early action to control this major
source of pollution. This action is intended to take place in the near term, while the

comprehensive 17-mile study is on-going.

The specific study area is a 10 km reach of the Passaic River in New Jersey, under
investigation by the EPA as part of its evaluation of the Diamond Alkali Superfund
site (Barabds et al., 2001). Polychlorinated dibenzo-p-dioxin and furan (PCDD/F)
data for 2,3,7,8-substituted congeners were acquired from the U.S. EPA and from a
database of New Jersey sediment data compiled by the NOAA (U. S. EPA, 2002;
NOAA, 2002). The data set consists of 94 surface and 444 subsurface samples (a
total of 538) from 94 sediment cores taken along 27 approximately equally spaced
(7370 m) transects in 1995 (Figure 5.2, left). Most transects consist of a mid-stream
and two bank-side cores about 48 m apart. Observations represent depth-averaged

concentrations from approximately 30 cm core intervals.

The dataset used in this work is the most toxic congener, 2,3,7,8-TCDD, in order
to delineate the contaminated areas and determine the adequacy of the data in terms
of the uncertainty distribution in space. The sample histogram for the 10-based

logarithm of 2,3,7,8-TCDD data are displayed on Figure 5.1.
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Figure 5.1: Sample histogram (value distribution) for the 2,3,7,8-TCDD data (figure
used with permission by Barabds et al. 2001).

In geostatistics, dissimilarity between data is represented as a function of Eu-
clidean distance between points. Euclidean distance can be meaningless in a mean-
dering river as it could relate to points over intervening land. For implementation of
the spatial estimation, the study area is consequently converted into a rectangular
volume, mathematically “unbending” the meandering river as some of them would
necessarily be measured over land. The physical boundary was first defined into four
segments that correspond to the four sides of a rectangle. For this study site, the two
banks correspond to two opposite lengths of the rectangle, while the lines marking the
northern and southern ends of the river section correspond to the other two opposite
sides. An equal number of grid points were then laid out along each of the pairs of
facing boundaries. Sampling units in the data set are approximately 30 cm core in-
tervals with coordinates of sampling locations transformed prior to analysis. Fig. 5.2
shows the sampling points in the original and transformed coordinate systems, with
coordinates generated by Barabas et al. (2001). The samples in the three-dimensional
space are shown in Fig. 5.3 (adopted from Barabds et al. (2001)). Notice that samples

are generally sparser in the deeper sediments.
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Figure 5.2: Coordinate transformation for the Passaic River dataset. One unit
distance in the transverse direction (y-direction) corresponds to 0.6-4.0 m depending
on the local width of the channel, and in the flow direction (x-direction) one unit
distance corresponds to 19-21 m. Units in the vertical direction (depth direction,
z-direction) were kept unchanged (measurements in centimeters) since the direction
does not involve any meandering nature (figure used with permission by Barabas
et al. 2001).

5.2 Model Application

For all three estimation models, including the M-Scale model, OK and CK, the
same variogram model is used. The modeled variogram is an exponential model
with a sill value of 1.0 (including a nugget effect of 0.2 and structural variance of
0.8), and with an effective range of 90 at the flow (x) and transverse (y) directions.
The geometric anisotropy ratio is observed in directional variograms to be 2.0 at
the vertical (z) direction so an effective range of 180 is used at that direction. The
experimental variograms in the x, y, and z directions are shown in Fig. 5.4 with
the corresponding directional variogram models visually fitted to the experimental
variograms. OK and CK are performed according to the model variogram, while the
M-Scale estimation is performed using sphere volumes of diameters 1, 20, 40, 80, 120,
240, 480 and 1000 units (converted from original units of coordinates) at the x and y
directions. The same anisotropy for the variogram is also considered for the M-Scale

model so for all scales the diameters in the z direction are doubled.
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Figure 5.3: Samples in the transformed coordinate. Color scales represents the
amount of log-TCDD concentration (figure used with permission by Barabas et al.
2001).
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Figure 5.4: Experimental variograms with the variogram model for the Passaic River
study area. Left to right: flow direction (x), transverse direction (y) and vertical

direction (z).

5.3 Results for Point Estimation

5.3.1 Visual Comparison by Estimation Map

The estimation maps and the corresponding estimation standard deviation created

for the x-z cross-section at y=1 using the M-Scale model, OK and CK are illustrated

in Figs. 5.12, 5.13 and 5.14, where the variability of different sample concentrations

is visually observed in the M-Scale and CK estimates, while due to the smoothing
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effect with estimates tending toward the global mean, the variability of estimates in
the OK estimates are visually smaller. The estimation standard deviation is smallest
for the M-Scale model and largest for CK, an observation which is consistent with
the observation when applied using artificial realizations. This observation indicates
that the performance of variability reproduction for the three estimation models is
independent of the absolute value for the modeled sill and range parameters. In other
words, in spite of the strength of relatedness characterized for the individual research
sites (the range of influence spatially, and the magnitude of the associated fluctuation
between locations), the concave and convex smoothing for OK and CK persists as
long as OK estimation includes no further constraint other than the unbiasedness,
and CK estimation involves a variogram with a nugget effect that is not negligible

relative to the sill value.

5.3.2 Cross-Validation and Diagnostic Parameters for
Reproduction of Global and Spatial Variability

As mentioned in the previous chapter, a diagnosis approach is needed for model
selection. Three statistical summary graphs and corresponding diagnostic parameters
are presented in this study for the cross-validation results, respectively scatter plot
with global standard deviation, quantile-quantile (Q-Q) plot with Anderson-Darling
(A-D) test statistics, and covariograms with structural variances and influence ranges.
As mentioned in the beginning of the chapter, although cross-validation is usually used
to compare model performance locally at sample locations, CK and the M-Scale model
aim at reproducing variability by separate estimates at each location, hence the result
by re-estimating individual datum removed by turn would also reflect the performance
of variability reproduction using these models. Note that data are removed one point

at a time instead of one core (the entire column in the z-direction) at a time because
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Figure 5.5: M-Scale point estimation using the Passaic River dataset. Left:
Estimation map. Right: estimation standard deviation.
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Figure 5.6: OK point estimation using the Passaic River dataset. Left: Estimation
map. Right: estimation standard deviation.
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Figure 5.7: CK point estimation using the Passaic River dataset. Left: Estimation
map. Right: estimation standard deviation.

137



the validation is done for the estimation in a three-dimensional space instead of the

mean values over blocks covering the z-columns.

Scatter plots and Q-Q plots for the re-estimates of the cross-validation are shown
for the M-Scale model, OK and CK (Fig. 5.8 through Fig. 5.10). Covariograms of the
re-estimates are also shown in Fig. 5.11, where the covariograms are demonstrated for
the flow direction. Diagnostic parameters for the cross-validation results are also listed
in Table 5.1. Standard deviation of the re-estimates indicates the extent of values and
a reduction of standard deviation indicates smoothing. Smaller A-D test statistics
indicate a better fit of the global histogram. Reproduction of spatial variability is
represented by the structural variances and influence ranges. Smaller structural vari-
ances and larger influence range indicate more (concave) smoothing for the estimates.

It is observed that CK best reproduces the global variability according to the stan-

Table 5.1: Diagnostic parameters for the precision (the mean value) and variability
reproduction (others) of the cross-validation performed for the point estimation using
the Passaic River dataset.

Statistics Target | M-Scale | OK | CK

Mean 2.90 2.91 2.92 | 3.00

Standard Deviation 1.00 0.84 0.60 | 1.14

Slope - 0.43 0.33 | 0.61

A-D test statistic — 8.57 26.08 | 2.48
Structural Variance 0.80 0.65 0.40 | 1.00
Influence Range (Flow Direction) 90 120 120 | 120

dard deviation (comparing to the M-Scale model and OK, produces closest standard
deviation of the re-estimates relative to the standard deviation of the validation sam-
ple), slope of regression (closest to 1.00), and A-D test statistics (closest to 0.00). the
M-Scale model best reproduces spatial variability according to the structural variance
(closest value to the validation sample), and OK performs worst in the reproduction
of both global and spatial variability by the statistics listed in the table except the
mean which does not indicate reproduction of variability. The characteristics of per-

formances for variability reproduction for the three estimation models are consistent
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Figure 5.8: M-Scale scatter plot and Q-Q plot for the point re-estimates and with
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Figure 5.9: OK scatter plot and Q-Q plot for the point re-estimates with respect to
the validation set using the Passaic River dataset. Left: scatter plot. Right: Q-Q plot.
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Figure 5.10: CK scatter plot and Q-Q plot for the point re-estimates with respect to
the validation set using the Passaic River dataset. Left: scatter plot. Right: Q-Q plot.
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Figure 5.11: Covariogram reproduction for the point re-estimates with respect to the
validation set using the Passaic River dataset. All re-estimates of the 346 sample
locations are included. Notice that the M-Scale covariogram of the re-estimates lies
closer to the model covariogram. At short separation distances, covariances of OK
estimates are lower than the model covariogram, and covariances of CK estimates are
higher than the model covariogram.

with the characteristics of results described in Chapter 4, in that CK generates the
closest standard deviation of the re-estimates relative to the standard deviation of
the validation sample, the slope of regression closest to 1.0, and smallest A-D test
statistics (see diagnostic statistics in Section 4.2.1). It should be noted, however, that
the results for global variability, in addition to the spatial variability that associates
attribute values between locations, include a combination of artificially induced error
and micro-scale variability in the validation sample, which may not represent the true
variability of the population (see p.52 of Chiles and Delfiner (1999) and reviews of the
nugget effect in Chapter 6). Thus, a good reproduction of global variability may not
necessarily represent good estimation performance (see for example, p.8 of Aldworth
and Cressie 1999). The resulting covariogram indicates that the best spatial vari-
ability is reproduced by the M-Scale model as observed visually in the covariogram
comparison (Fig. 5.11), and this performance is further quantified by the structural
variance that has the closest value relative to that generated by the validation sample
(Table 5.1). The same influence ranges for all three models indicate that all measure-
ments except the left-out measurement are used for re-estimation, which is a similar

characteristic seen in Chapter 4 for the influence range (Table 4.2).
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In addition to the three diagnostic graphs and statistics, the contingency table
for the classification of the re-estimates is also created as shown in Table 5.2, where
the criterion for classification of exceeding 10000 ppt (4.0 on the log-scale, about
the average plus one standard deviation of the sample values) is selected as an ex-
ample. Although literature of dioxin studies exemplifies the use of 10 and 25 ppt
as thresholds for 2,3,7,8-TCDD contamination for the Passaic River study (Barabés
et al., 2001; Tannuzzi et al., 1995), these values fall around the 0.09 and 0.14 quantiles
of the sample, which are low quantiles that are likely to fall below the background
value, expected to correspond to high likelihood of exceedance. Moreover, according
to the site-characterization performed by Barabds (2003), the threshold exceedance
of the two thresholds using kriging as the estimation model indicates more than 95%
of the research area for both thresholds (see p.106 of Barabds 2003). As indicated in
SPAWAR Systems Center (SSC) San Diego and Battelle Science & Technology Inter-
national (2003), “cleanup levels must not be lower than ambient (i.e., background)
levels,” otherwise “sediments from elsewhere in the water body can be transported
to and deposited at the site through natural processes,” and “result in a cleanup
that effects little or no ecological improvement.” The remediation for the research
site under this threshold of exceedance, consequently, would be a suspension for the
cleanup action, on the basis of either the pooled sample (quantile statistics without
any spatial context), or the use of spatial estimation (indicator kriging, for exmaple).
In other words, a spatial estimation may not provide more support for the negoti-
ation among stakeholders, relative to an analysis based on the univariate analysis
of the pooled sample. The selection of exceedance threshold in this study, although
it appears to be arbitrary, exemplifies the case where selective remediation (see for
example, Smith and Williams 1996a,b) is used as the clean-up strategy, i.e., clean up
only the hot spots within the site to lower the pollutant level of the entire site (see

also p.26 of Saito 2003), which is also suggested by Barabas et al. (2001) “to clean
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the most risky locations” for the Passaic River study. Unlike the example in Chapter
4, however, no classification map is presented to observe the clustering of exceedance

because no such map exists for the reality over the entire research area. Cohen’s

Table 5.2: Contingency table for the classification of point re-estimates with respect
to the validation set using the Passaic River dataset.

M-Scale OK CK
+ — + — + — Total
4+ 11441 11.8 ] 26| 13.6 84| 7.8 16.2
— 1/ 2.0 81.8 || 0.3 | 83.5 9.5 | 74.3 83.8
Total 6.41]93.61( 29 |97.1 | 179 | 82.1 || 100.0

Target

r coefficients are also presented as shown in Table 5.3, expressing the standardized
precision of classification for the exceedance/non-exceedance at re-estimation loca-

tions. The contingency table indicates that CK is a significantly more conservative

Table 5.3: Cohen’s x coefficient of the point re-estimates with respect to the
validation set for the three estimation models using the Passaic River dataset.

M-Scale | OK | CK
K 0.49 0.49 | 0.36

approach for point estimation compared to the other two approaches (higher positive
rates for the estimation model, consequently higher true positive/false positive than
true negative/false negative rates relative to other estimation models). This tendency
of conservative estimation comes from the fact that the constraint for the reproduc-
tion of global variance involves the reproduction of both micro-scale variability and
artificially induced error, consequently covers the range of occasional exceedance (Co-
hen, 1960) resulting from local variability. Regardless of the better TP rate, however,
the result for Cohen’s k coefficients indicate the same classification precision for the
M-Scale model when comparing to OK, both better than that of CK. The same
characteristics of classification precision is also observed in the artificial data sets,
as shown in Table 4.3 and 4.4 that indicates smaller x coefficient for the M-Scale

model and OK relative to CK, and a conservative tendency of CK relative to OK and
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the M-Scale model. Coverage rates for the confidence intervals indicated that the
M-Scale covers 85% of the true values, comparing to OK at 94% and CK at 95% is
an underestimation of the range of estimation uncertainty. As explained in Chapter
4, clusters in the samples results in underevaluation of estimation variance for the
M-Scale model. The underevaluation of estimation variance, however, is obvious in
comparison to the underevaluation of estimation variance demonstrated for the ex-
ample in Chapter 4 (M-Scale: 91%, OK: 92%, CK: 93%), due to the fact that the
samples in the Passaic River study are intensively clustered towards river bed and
around locations of the core columns, as shown in Fig. 5.3, deviating from the ideal
case of a purely random selection of locations as approximated in the example given
in Chapter 4. As also indicated in Chapter 4, further research will be required for

the M-Scale model to account for the effect of sample clusters.

5.4 Results of the Block Estimation

A point target scale may not always make sense for remedial decisions, as described
in Schumacher et al. (1998) that even when “sampling were done with tablespoons,”
for remedial applications “backhoes, rather than tablespoons, would more likely be
used to remediate the area.” In this study, the target scale is chosen to have a diameter
of 20 length units in the flow direction as a demonstration, approximately a block of
400mx80mx40cm in the original x, y, and z coordinates, which is comparable with
respect to the smallest distance between sampling locations (the smallest distance
between sample locations is around 10 unit distances, therefore a block centering at
the sample location may include about one other sample point depending on where
the center location is), and regarded as large in comparison to the sample units (the

core samples are collected using using 2” PVC pipes (according to the EPA sampling
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protocol, see U. S. EPA 2007) cut at lengths of approximately 30 cm.) The choice
of this target scale is expected to yield results similar to those generated using point
estimation if the estimation model is not sensitive to the impact of the nugget effect.
A result that does not resemble the result of the point estimation will characterize
the difference between the use of block and point estimations, without complicating
the discussion for the choice among different sizes for the target scale. In fact, the
block averaging involved in a block estimation corresponds to a substantial, if not
complete, reduction in the impact of the nugget effect (Starks, 1986; de Roo et al.,
1992; Atkinson and Kelly, 1997). The impact of nugget effect in this example can
be regarded as completely reduced, since block averaging alters the nugget effect
by the inverse ratio of the block volume (see p.78 of Matheron 1971). In a real
application, however, a pre-defined remediation unit of the target scale needs to be
decided according to the clean-up criteria and management approaches used as the
result of cost-benefit analysis. The performance characteristics of CK in the point
estimation are also compared to the CK block estimation, which serves to observe the
sensitivity of CK estimates against the nugget effect that is conceptually illustrated

in the previous chapter.

5.4.1 Visual Comparison by Estimation Map

The block estimation was conducted on a block size with a diameter of 20 length
units. The estimation maps and the corresponding estimation standard deviations
created for the x-z cross-section at y=1 using the M-Scale model, OK and CK are
illustrated in Figs. 5.12, 5.13 and 5.14. As compared to point estimation maps, the
block estimate for OK and the M-Scale model is visually similar to the point estimates
across the study area, a result due to the fact that the selection of the target scale

corresponds to a diameter not significantly larger diameter than the smallest distance
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between samples. In fact, because OK and the M-Scale model are not designed
to reproduce local variability (the nugget effect), reduction of the nugget effect by
using a small target scale (although considered a large area relative to the sampling
units) impacts the results of the estimate by only a negligible variability that is
visually not observable. The CK estimates, however, looks significantly less variable
than CK point estimation map because the target global variance to be reproduced
is largely reduced with the reduction of artificially induced error and micro-scale
variability. This comparison of point- and block- estimation for CK indicates that CK
is sensitive to spatially uncorrelated components of the global variance (the variance
from artificially induced error and micro-scale variability). The maps for estimation
standard deviation are generally smaller in all three models when compared to their
point estimation counterpart, because the estimate is a block mean value, and the
variability of which is considerably smaller than the individual point attribute values

due to block averaging.

5.4.2 Cross-Validation of Block Estimates by Rescaled
Samples for Reproduction of (Global and Spatial
Variability

Unlike the cross-validation for point re-estimates where the validation set is readily
available as the sample values, block re-estimates at the target scale should compare
to a value representing actual mean value over the target scale, which is unknown. A
rescaling is thus required for the original sample to represent the block mean value
of the target scale at the exact sampling locations before the cross-validation can
be performed. In fact, cross-validation approaches are seldom performed for block
estimation due to the lack of the actual block mean value. Pardo-Igizquiza (1998)

studied the areal average climatological rainfall mean (i.e., the block average of the
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Figure 5.12: M-Scale block estimation for the Passaic River dataset. Left: Estimation
map. Right: estimation standard deviation.
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Figure 5.13: OK block estimation for the Passaic River dataset. Left: Estimation
map. Right: estimation standard deviation.
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Figure 5.14: CK block estimation for the Passaic River dataset. Left: Estimation
map. Right: estimation standard deviation.
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climatological rainfall) in the Guadalhorce River basin (Spain), and indicated that
“cross-validation must be used with caution, small differences in the cross-validation
results may be given just by sampling variability.” However, no sampling variabil-
ity, i.e., the nugget effect, is reduced in this study and the cross-validation for the
block estimates is done with a validation set of point measurements. There are rare
cases where cross-validation can be done with a hard-evidence validation set. For
example, in the description of Stark et al. (2003), kriging is used to study the yield
of corn. Cross-validation of the block estimate is performed by using the mean of
exhaustive samples within the estimation block as the validation set. However, an
exhaustive sample for each block volume around the sample location is usually not
attainable in most geostatistical applications. A block kriging performed on a sample
location without leaving out the sample value at that location, to this end, fits the
need for the rescaling of samples that provides the validation set without the need
of an exhaustive sample. In fact, the block kriging estimates at the sample locations
without leaving out the sample values is considered to have the least estimation er-
ror at sample locations among all linear estimation approaches (Chiles and Delfiner,
1999), consequently best represents the real block mean value at the sample location.
As block surrogates of the measured data, subsequently, it is proposed in this study
that the rescaled samples are compared to the re-estimates generated by the estima-
tion models, with one sample point left out each time at the corresponding sample
locations. The results of the cross-validation for block estimates are compared to the
results of the point estimates to indicate the impact of using block estimation rela-
tive to point estimation. The performance statistics for the block estimation of the
Passaic River data is not compared to the performance statistics for point estimation
of the artificial data sets, because the comparison involves different objectives using
a different dataset, which does not characterize the model performance in either the

change of target scale, or the general applicability for the different data sets.
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Figure 5.15: M-Scale scatter plot and Q-Q plot for the block re-estimates with
respect to the validation set using the Passaic River dataset. Left: scatter plot.
Right: Q-Q plot.
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Figure 5.16: OK scatter plot and Q-Q plot for the block re-estimates with respect to
the validation set using the Passaic River dataset. Left: scatter plot. Right: Q-Q plot.
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Figure 5.17: CK scatter plot and Q-Q plot for the block re-estimates with respect to
the validation set using the Passaic River dataset. Left: scatter plot. Right: Q-Q plot.

148



0.700_
0.6004

— —— - Model

0.5001
1 M-Scale

0.400 7
0.3001

0.200 ]

0.1001

| P
0.000 : N * o+ g g .-
0. 40. \é\g\ Q/zoA 1e\i\ fooA

- /

Disafie vy

Figure 5.18: Covariogram reproduction for the block re-estimates with respect to the
validation set using using the Passaic River dataset. All re-estimates at the 346
sample locations are included. Notice that the M-Scale covariogram of the
re-estimates lies closer to the model covariogram. At short separation distances,
covariances of OK estimates are lower than the model covariogram, and covariances of
CK estimates are slightly higher but lie reasonably close to the model covariogram.

Scatter plots and Q-Q plots for the re-estimates of the cross-validation are shown
for the M-Scale model, OK and CK in Fig. 5.15 through Fig. 5.17. Covariograms of the
re-estimates are also shown in Fig. 5.18, where the covariograms are demonstrated for
the flow direction. Diagnostic parameters for the cross-validation results are listed
in Table 5.4. Visually by the scatter plots and Q-Q plots, it is observed that the
estimate-validation pairs lie closer to the 45" bisector for the M-Scale model and
CK, an indication of the reproduction of global variability relative to OK. By the
covariograms, it is also observed that both the M-Scale model and CK lies closer to
the ideal block variogram model, and indication of better reproduction of the spatial
variability relative to that of OK. The performance is not as clearly different between
the M-Scale model and CK. Unlike point estimation, the A-D test statistics also
indicate a similar reproduction of histogram for the M-Scale model and CK. These
results, in comparison to the results of point estimation (Table 5.1), indicates that
when local variability (the nugget effect) is reduced by block averaging, CK and the
M-Scale model have similar performance in reproducing variability, both globally and

spatially, at least for the current application of this study.
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Table 5.4: Diagnostic parameters for the precision (the mean value) and variability
reproduction (others) of the cross-validation performed for the block estimation using
the Passaic River dataset.

Statistics Target | M-Scale | OK | CK

Mean 2.92 291 292 | 295

Standard Deviation 0.86 0.84 0.58 | 0.85

Slope - 0.65 0.48 | 0.68

A-D test statistic - 1.25 13.65 | 1.33
Structural Variance 0.67 0.65 0.40 | 0.66
Influence Range (Flow Direction) 90 120 120 | 120

Table 5.5: Contingency table for the classification of block re-estimates with respect
to the validation set using the Passaic River dataset.

M-Scale OK CK
+ - + - + - Total
+1140| 451 18| 67| 48| 3.7 8.5
— |/ 3.5 8.0/ 0.2|91.3| 4.7 86.8 91.5
Total 7.5 19251 2.01]98.0 1 9.5]90.5 || 100.0

Target

The contingency table for the classification of the re-estimates is again created
for block estimation as shown in Table 5.5, with respect to the same exceedance
threshold of 4.0 used in point estimation. CK remains the most conservative among
the three estimation models for block estimation, as is also indicated by the results
of point estimation in Table 5.2. When comparing the  coefficient (Table 5.6) to the
point estimation (Table 5.3), however, it is observed that relative to the significant
difference between CK and the other two models (both differences 0.13 relative to
the k of 0.36 for CK), the difference between CK and the other two models (0.03 and
0.10 relative to the x of 0.46 for CK) is not as significant as in the results of point
estimation. Again the difference between point- and block- estimations confirms that

CK estimates are sensitive to artificially induced error and micro-scale variability.

Table 5.6: Cohen’s « coefficient of the block re-estimates with respect to the
validation set for the three estimation models using the Passaic River dataset.

M-Scale | OK | CK
K 0.49 0.56 | 0.46
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5.4.3 Sensitivity Analysis by Conditional Realization of
Rescaled Samples

Although simple diagnostics can be evaluated using cross-validation for block es-
timation, the diagnostics involve a certain level of uncertainty because the rescaled
samples are products of block kriging estimations themselves. The sensitivity analysis
for this uncertainty of rescaling is consequently required to ensure the result of cross-
validation (see p.93-94 of Deutsch and Journel 1998 for a discussion of the uncertainty
corresponding to block estimates). However, the estimation variance/estimation stan-
dard deviation evaluated at separate estimation locations does not provide uncertainty
statistics for parameters of spatial association (see for example, pp. 493-494 of Jour-
nel and Huijbregts 1978 and pp. 369-370 of Goovaerts 1997b), therefore a simulation
is needed in order to parameterize the uncertainty in the spatial statistics such as the

uncertainty in the covariograms.

Simulation approaches have long been used for comparison of model performance
between models under different equi-probable realizations Meisel and Turner (1998);
Collins and Woodcock (1999); Bian and Butler (1999); Curriero et al. (2002); Kukush
(2005) and the main reason for applying simulation approaches is that spatial vari-
ability is reproduced within each simulated realization Istok and Rautman (1996);
Goovaerts (1998); Lin et al. (2000); Proce et al. (2004), so that certain parameters of
interest that characterize spatial correspondence, e.g. the gradients between locations
or length between locations, could be evaluated for their possible values. Unlike the
applications described above, the equi-probable realizations are used in this study not
as the input for estimation models or target parameter of interest, but as a comparison
basis on the impact of uncertainty of the rescaled validation set, i.e., the sensitivity

analysis of the rescaling.
For the sensitivity analysis with respect to the uncertainty of rescaling, two hun-
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dred realization of the TCDD concentration distribution are generated. Average
values of the target scale at each sample locations are calculated for each of the 200
realizations, regarded as the equi-probable rescaled samples. Q-Q plots and vari-
ograms of the equi-probable rescaled samples are shown in Figs. 5.19 through 5.21,
with solid lines in the Q-Q plot indicating the 90% upper and lower limits of each
quantile for the 200 realizations. Also in the covariograms, solid lines represent co-
variances of the re-estimates, and dash lines with plots indicates the 90% upper and
lower bounds of the covariance at different separation distances of the equi-probable
rescaled samples along the flow direction. In the Q-Q plots, it is observed that the M-
Scale model and CK histograms better reproduce the histogram of the equi-probable
rescaled samples since both the upper and lower limits for the Q-Q plots generated
under a comparison between OK and the rescaled validation sets deviate from the
45° bisector on the Q-Q plot. When different covariograms of block estimation are
compared to the summarized covariogram for the reproduction of the equi-probable
rescaled samples, it is visually observed that a better reproduction is achieved by the
M-Scale model, followed by CK and OK. It is also observed in the figures that the
fluctuation of covariance between separation distances is larger than the fluctuation
of covariance between realizations at the same separation distance (more variability
between locations than between rescaled realizations of the same location). The re-
sults indicate that uncertainty corresponding to rescaling (unknown attribute values
within the block centering at a location with known sample value) is smaller than
the uncertainty originated from the re-estimating of data (assumed unknown sample
value). In other words, for the characterization of covariogram between blocks, local
uncertainty of the block is generally smaller than uncertainty between locations. The
results for Q-Q plots and covariograms indicate that the uncertainty due to sample
rescaling is not a significant factor in the cross-validation for the study site, i.e., the

result of cross-validation is not sensitive to rescaling, at least for this particular case
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Figure 5.19: Q-Q plot and covariogram for the 200 rescaled realizations comparing to
M-Scale block re-estimates using the Passaic River dataset.

Estimate

6'00i
5.00;
4.005
3.00;
2.00;

1.00]

0'00:HH\‘“w“‘w“‘w“‘w“‘w
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Scaled Cond. Realiz.

0.900_
0.800
0.700
0.600 ]

C o.sooé
0.400
0.3003
0.2003
0.100
0.0001

Figure 5.20: Q-Q plot and covariogram for the 200 rescaled realizations comparing to
OK block re-estimates using the Passaic River dataset.
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Figure 5.21: Q-Q plot and covariogram for the 200 rescaled realizations comparing to
CK block re-estimates using the Passaic River dataset.
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Table 5.7: Summarized diagnostic parameters for the block re-estimates of the three
estimation models with respect to the 200 rescaled realizations using the Passaic
River dataset. The range of values indicates the 90% lower and upper bounds of the
diagnostic parameters.

Statistics Target M-Scale OK CK
Mean 2.90-2.94 291 2.92 2.95
Standard Deviation 0.83-0.89 0.84 0.58 0.85

Slope - 0.67-0.72 | 0.50-0.53 | 0.71-0.77

A-D test statistic - 0.84-2.04 | 12.38-16.77 | 0.98-2.56
Structural Variance 0.60-0.75 0.65 0.40 0.66
Influence Range (Flow Direction) 90 120 120 120

under the target spatial scale.

Diagnostic parameters are calculated for each equi-probable sample, and the sum-
marized parameters are listed in Table 5.7. It can be observed that both the M-Scale
model and CK reproduce global and spatial variability better than OK, as indicated
by the standard deviations, A-D test statistics, and structural variances. The differ-
ence is not significant for the ranges of values between the M-Scale model and CK,
which is consistent with the results of a single set of rescaled samples presented in
Table 5.4. In other words, these diagnostics are similar to the results presented with-
out performing the sensitivity analysis, indicating that the cross-validation presented
here for block estimation is not sensitive to uncertainty due to sample rescaling in

this study

The contingency table for the 200 conditional realizations is also listed in Table
5.8, with Cohen’s k coefficients calculated for each realization and summarized in
Table 5.9. The results are also consistent with the cross-validation results for a single
set of rescaled samples, and further confirms quantitatively by the ranges of possible
k coefficients that the classification precision are not significantly different among the
three models, which implies that all three models could serve as precise estimation

models for scientific exploration under a block target scale.
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Table 5.8: Summarized contingency table for the block re-estimates of the three
estimation models with respect to the 200 rescaled realizations using the Passaic
River dataset. The range of values indicate the 90% lower and upper bounds of the
diagnostic parameters.

M-Scale OK CK
- - - - + K
Target 3.5-4.6 | 3.55.5 1.4-201| 55-79 4.0-55| 2946
2.9-4.0 | 87.0-89.0 || 0.0-0.6 | 90.0-92.5 || 4.0-5.5 | 85.8-87.6

Table 5.9: Summarized Cohen’s k coefficient for the block re-estimates of the three
estimation models with respect to the 200 rescaled realizations using the Passaic
River dataset. The range of values indicate the 90% lower and upper bounds of the
diagnostic parameters.

M-Scale OK
k| 0.42-0.56 | 0.50-0.61

CK
0.38-0.53

5.5 Summary

This chapter compares the estimation maps generated using a data set from a
field site that has a different spatial structure to the artificial data set used in the
previous chapter, with focus on the reproduction of both global and spatial variabil-
ity. Cross-validation is performed to observe the impact of the estimation model on
spatial variability. Very different model performances were observed between point

estimation and block estimation for CK due to its sensitivity to the nugget effect.

Based on the result of cross-validation for point (punctual) estimates, the per-
formance of the three models is consistent with the observations using the artificial
dataset in Chapter 4, in which OK is found to reduce both global and spatial vari-
ability. CK reproduces global variability that includes both the actual variability
and attribute-irrelevant artificially induced error. Covariograms with structural vari-
ances indicated that the M-Scale model best represents the spatial variability, without
excess sensitivity to the nugget effect, and Cohen’s k coefficient confirms the same

precision level for the M-Scale model and OK, both exceed CK.
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For block estimations, however, CK performs at the same level as the M-Scale
model for the reproduction of spatial variability. This is observed by the covari-
ograms of the re-estimates against rescaled samples, where CK and M-Scale show
similar reproduction of covariograms with respect to the covariogram of the rescaled
samples. The standard deviation of the estimates also indicates the best reproduc-
tion of global variability for CK and the M-Scale model, and the results of Cohen’s s
coefficient further indicates the same level of classification precision for CK relative
to the M-Scale model, although both are slightly inferior to OK. In fact, with local
variability of point attributes reasonably reduced by block averaging, the sensitivity
of CK to nugget effect diminishes. The results imply that under specific cases such as
a block target scale, CK may also serve as a suitable model to reproduce variability
as well as a precise estimator for threshold exceedance. The target scale for the block
estimation is chosen to demonstrate the impact of the nugget effect, which is the
most significant difference in concept between applying point estimation and block
estimation. The impact of the block size on reducing global/spatial variability may
gradually change among block estimation performed at different target scales, while
the results should not indicate different conclusions for the sensitivity of CK against
the nugget effect, since the impact of nugget effect is considered negligible in most
cases of block estimation in practice (as described in the introductory section of this
chapter, see also p. 311 of Journel and Huijbregts 1978, pp.299-301 and p.326 of
Isaaks and Srivastava 1989, and Aldworth and Cressie 1999).

The rescaling of samples for the cross-validation of block estimates, however, in-
troduces uncertainty. Sensitivity analysis by the conditional realization is proposed
in this study to provide a way to observe the uncertainty of the rescaled sample. It
is observed by the result of the sensitivity analysis that the performance comparison

using the single set of only the rescaled samples is validated.
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In conclusion, using real samples collected from the Passaic River research area,
the M-Scale model is the most robust model among the three for point spatial estima-
tion that reproduces spatial variability and maintains the same level of classification
precision with respect to OK. For block spatial estimation, however, CK may also be
used as a suitable estimation model, in consequence of the reduction of local vari-
ability that CK is most sensitive to. As stated in Chapter 4, each estimation model
may be suitable in certain particular cases depending on the objectives of estimation.
Nevertheless, it is further observed in this chapter that cross-validation is essential
prior to generating estimation maps for the comparison of performance among candi-
date models, not only to decide on the type of estimation model to be used, but also

for the target spatial scale at which the estimation model is performed.

One of the characteristic differences of the Passaic River dataset in this chapter
from the artificial dataset in the previous chapter consists of the preferential sampling
scheme, which is commonly seen in applied geostatistics (see for example, Smith
and Williams 1996a; Ouyang et al. 2002; Schnabel and Tietje 2003). This clustered
sampling scheme results in the under-evaluation of the estimation variance/standard
deviation for the M-Scale model in the case of the Passaic dataset, as observed in the
lower coverage rates (proportion of actual values included in the confidence intervals
evaluated) using the M-Scale model. Cross-validation is required, consequently, to
observe the applicability of the M-Scale model if the estimation variance/standard
deviation is a crucial component in the process of decision making, particularly when
a preferential sampling scheme is used. Further development needs to be conducted
to improve the quantification of the estimation variance/standard deviation in order

to achieve a better coverage rate.

It should be noticed, however, that the result of cross-validation reflects only the

model performance at the sample locations. The performance may or may not be
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reflected in the cross-validation results depending on the richness/sparseness of the
sample points, among other factors that may impact estimation results. In addition,
it is not clear how the estimation variance, in other words the uncertainty of the
estimates, are useful for the decision making of the contaminant management. Ap-
proaches will be described in the next chapter for use of estimation variance, and how
the estimation error will affect its performance. A sparse dataset with samples col-
lected from different scales in the Anacostia River study will be used as an example,
which also shows the applicability of using cross-validation approaches on a study

with spatially sparse samples.
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CHAPTER 6

Application to Sparse Data Set
and the Effect of Local Uncertainty

Spatial estimation is a procedure that uses the sample set to represent the at-
tribute of interest, generating an estimate at each estimation location, and an uncer-
tainty parameter such as estimation variance corresponding to this estimate. When
a spatial estimation model is applied to generate estimation maps, the uncertainty
of the estimates would enable the decision process to take into account a range of
possible outcomes with respect to their likelihood of occurrence, so that the most
cost-effective remedial solution can be chosen (p.44 of Barabas 2003). Moreover, as is
described in Goovaerts (1998), “ignoring this uncertainty may, for example, lead one
to declare safe a contaminated location on the basis of a wrong estimate of pollutant

concentration which is slightly below the regulatory threshold.”

As described in Chapter 2, the estimation procedure uses variability at/between
sample locations (sample-to-sample variance/covariance) and variability between sam-

ple and estimation locations (sample-to-estimate covariance) to represent possible
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deviation of actual values from the estimate at the estimation location (estimation
variance). The conditional cumulative distribution function (ccdf) of the estimates
can subsequently be evaluated by adding the possible deviations to the estimated
value (see Chapter 2 for detailed reviews with illustrations). In an ideal case where
samples are perfectly measured (without artificially induced error), the cedf evalu-
ated using variability at/between sample locations and between sample and estima-
tion locations reflect the exact uncertainty (variability /range) of actual values. When
measurements involve artificially induced error, however, the variability at sample lo-
cations are increased by the error variance of this artificial signal. Consequently, the
estimation uncertainty, as a function of variability at/between sample locations and
between sample and estimation locations, also becomes larger because the measure-
ments that involve artificially induced errors are usually incorporated as part of the
attribute values when parameters of variability (such as the variance) of the artificial
error is missing in the statistical analysis. If the artificially induced error can be eval-
uated, however, this part of variance can be subtracted from the the function that
evaluate the uncertainty of the estimates. Variability of the actual values relative to
the estimates, consequently, can be correctly reflected without being overestimated
by the variability of artificial errors. In other words, the estimation uncertainty can

be reduced if the variability of the artificially induced error could be characterized.

Characterizing the variability of the artificially induced error, consequently, plays
an important role in facilitating decision making. This unwanted artificial error can be
quantified in geostatistics and is included in a parameter of the variogram called the
nugget effect which characterizes the total of variability contributed by the artificial
error that comes from the sampling process, and the micro-scale variability of the
attribute at scales smaller than the measurement scale. Little research has been
done, however, regarding how the nugget effect could be apportioned between the

artificial error and micro-scale variability based on scientifically measured data, to
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improve upon the uncertainty of spatial estimates.

The nugget effect also becomes important when a model like CK is used as a
candidate for decision support models. As indicated in Chapter 5 by the compari-
son of point estimates to block estimates, CK estimates are strongly sensitive to the
nugget effect, which may or may not be part of the real attribute value. On the
contrary, as mentioned in Schnabel and Tietje (2003), for OK and other conventional
kriging approaches the sensitivity to nugget effect is not significant. An alternative
for the CK approach to become applicable for estimation is the reduction of local
variability, because the variance constraint in CK tends to falsely reproduce local
variability of the population by the spatial variability of its estimates, as illustrated
(Fig. 4.24) and explained in Chapter 4. Without information of the artificially in-
duced error, however, removing the nugget effect for CK means that the micro-scale
variability corresponding to actual attributes is not considered at all, which may
result in the underestimation of the estimation error at the sample locations. To
evaluate the estimation error, and in some cases to reduce sensitivity to the nugget
effect, the quantification of the artificially induced error becomes an important con-
sideration for estimation tools in support of on-site remedial decisions. Although
studies have suggested to detect the existence of a true nugget effect by observing the
cross-variogram among different attributes (Lin et al., 2006; Holmes et al., 2005), this
nugget effect may be a result of unwanted random signals associated with laboratory
measurements of similar cause, e.g., unstable measurements due to the change in lab
temperature. The “true” micro-scale variability observed in the cross-variograms,
consequently, may not correspond to the true micro-scale variability for the attribute

of interest.

An alternative for quantifying the artificially induced error is proposed in this

study using measurements taken at site-scale and micro-scale, by which the amount
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of micro-scale variability evaluated for the site-scale attribute is not subject to the
unwanted random signals. In addition, in support of the conclusion made in Chapter
5 for the sensitivity of CK to the nugget effect, the point estimates before and after

nugget effect adjustment (filtering of artificially induced error) are also compared.

What is more important about uncertainty reduction for an on-site remediation
project, however, is its impact on the remedial decision making (Goovaerts, 1997a).
Consequently, in addition to quantifying the amount of reducible uncertainty, the
likelihood of exceedance for certain thresholds should also be examined to assess
the impact of this uncertainty reduction on remedial decisions. Although numerous
methods have been applied to produce uncertainty measures corresponding to their
estimates (see for example, Maravelias et al. 1996; Collins and Woodcock 1999; Cur-
riero et al. 2002; Schnabel and Tietje 2003), little has been done to evaluate the
likelihood of exceedance for certain regulatory thresholds. These uncertainty mea-
sures, consequently, offer only the information regarding where future samples should
be taken to improve the precision of the estimates (see Smith and Williams 1996a, for
example). The change in classification maps associated with uncertainty reduction,
moreover, is never expressed in the estimation approaches that offer uncertainty mea-
sures, making it hard for project managers to understand the benefit of uncertainty

reduction on cleanup actions and costs.

The impact of uncertainty reduction is expected to be more apparent for the
data in this chapter due to the small sample size, since more uncertainty is involved
in estimates based on small sample sizes, and the weight attributed to each datum
generally increases when the sample size decreases. The consequence of the increased
impact for each datum is two-fold: (i) any artificially induced error or unwanted
noise involved in the datum will increase its impact. (ii) with one datum removed, a

large proportion of information contributed by the datum is also removed (which may
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impact the applicability of cross-validation — see later in this chapter). Regardless of
the large uncertainty encountered in small sample sizes, however, the origins of this
uncertainty needs to be defined in order to clarify its impact. To facilitate discussions
in the following sections, consequently, it is necessary to describe the components of

wanted /unwanted information in the attribute variable and in the data set.

6.1 Components of Uncertainty

Sampling plans for site characterization and remedial decision-making are in-
formed by the conceptual site model (CSM) that details not only the physical de-
scription of the site, but also the main processes thought to play a role in the fate
and transport of contaminants (American Society for Testing and Materials, 1995).
The inputs to these models tend to be dependent on both deterministic and random
analytical uncertainties (Figure 6.1) that need to be managed to improve site man-
agement options. As the figure describes, analytical uncertainty is made up of errors
associated with the input data (measurements, parameter choice and data aggrega-
tion), the physical models (formulation and application) used to describe the site and
stochastic variability. Among the different uncertainties, this study focuses on the
one termed “stochastic variability” in Fig. 6.1, a component which is most impacted
by geostatistical models, and takes into account the artificially errors that is catego-
rized under input error. The stochastic uncertainty itself is composed of uncertainties
associated with the different spatial scales where measurements are taken, as shown
in Fig. 6.2. The random error involved may originate from the limit of the instru-
ment, the error due to sampling disturbance, or sample transportation/preservation
(Goovaerts, 1997b, p.102). These errors are usually not evaluated and are incorpo-

rated as meaningful data in geostatistical applications (Matheron, 1971). The impact
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Figure 6.1: Conceptual sketch of sources of uncertainties.

of including this “background” variability (as shown in Fig. 6.2 C) as real data results
in an increase of the estimation variance, leading to larger likelihood of misclassifica-
tion for the true attribute value. In other words, the artificially induced error may
increase the risk for false positive (FP) and false negative (FN) designations, thus
impacting the results of site characterization. On the other hand, if the nugget effect
is assumed to comprise solely the artificially induced error, the estimate may lead
to inappropriate designations as well, because localized real variability (as shown in

Fig. 6.2 B) is ignored in the measurement.

6.2 Estimation Uncertainty for Remedial
Decision

In previous chapters, the delineation of the contaminant is characterized by the
classification of exceedance/non-exceedance for a certain estimate. The uncertainty
of the estimate is usually evaluated as the expected value of the squared residual,
termed “estimation variance,” between the true and estimated values. This quanti-
tative uncertainty is useful when the remediation objective offers a level of flexibility

to optimize between the risk of underestimating the extent of contamination, and
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Figure 6.2: Components of a realization (left) and the corresponding variograms
(right). The added components are: (A) site-scale variability, (B) micro-scale
variability and (C) random error.
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the expense for cleaning up unnecessary areas (Ramsey et al., 2002). In the current
application, the classification of exceedance will be applied not to delineate contam-
inant levels, but to inform the spatially distributed likelihood of microbial activity
(gas production) impacting the effectiveness of capping strategies (via physical desta-
bilization of the caps). By using spatially measured values of microbial abundance
and microbial respiratory competence (see section 6.5.1) as proxy parameters for gas
production potential, geostatistical tools will be applied to selected cut-off values
to probe where excessive gas production might become a problem for the remedial

objective (long term in situ sediment capping).

6.2.1 Conditional Distribution, Confidence Interval and the
Likelihood of Exceedance

When stochastic spatial estimation is performed, the estimation uncertainty is usu-
ally considered as the conditional distribution describing the probability /likelihood
distribution of the parameter values at a given estimation location. This is usu-
ally represented by a cumulative distribution function called conditional cumulative
distribution function, or ccdf (Istok and Rautman, 1996; Schweizer and Kronholm,
2007). A confidence interval can consequently be evaluated to indicate the possible
bounds of the real attribute value under a certain confidence level that represents
the proportion of times when the bounds correctly contains the real value. In other
words, the confidence level is a model-dependent value that indicates the likelihood of
a population value being inside of the confidence interval and can be used to observe
the uncertainty of estimates at each estimation location to adjust future sampling

plans.

For remedial decisions, however, the confidence interval offers no support for re-
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Figure 6.3: Conceptual sketch for likelihood of exceedance. On the left is the
estimation surface with uncertainty and exceedance threshold as also illustrated in
Chapter 2. On the right is the illustration for the likelihood of exceedance for one of
the estimation location.
medial decision because it does not indicate the possibility for the true value to exceed
a certain regulatory threshold. It is by characterizing the ccdf that the likelihood of
exceedance corresponding to a regulatory threshold can be evaluated, providing the
possibility for attribute values at each location to exceed the threshold, which is use-

ful in the risk-assessment models in a decision process (Barabds et al., 2001; Critto

et al., 2005).

6.2.2 Remedial Decision Making on the Basis of Likelihood
of Exceedance

When a threshold for the likelihood of exceedance is used for remedial decision, the
corresponding quantile for the likelihood threshold deviates from the fixed expected
value depending on the threshold value used, as shown in Fig.6.3. This type of decision
making gives the flexibility to trade the level of confidence for certain remediation
objective, e.g., for optimizing the misclassification rate as described in Barabds et al.

(2001).

The balance has to be made, however, between the benefit of classification (risk-

reduction or cost-saving) on the basis of the likelihood threshold, i.e., the “willingness
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of the analyst to accept the risk of an incorrect (positive) decision (Istok and Rautman,
1996).” In other words, the benefit of interest for different stakeholders may conflict
with the willingness of the analyst to accept the risk of an incorrect decision. For
example, if a clean-up action for an exceedance threshold is based on an extreme 10%
likelihood of exceedance in order to prevent the risk of residual contaminant levels,
the contamination zone thus delineated will have a large area so that the benefit of
risk-reduction is attained, while the corresponding cost for the large clean-up area will
be high (the analyst will only be ”10% willing to accept that the positive classification
is wrong” because the classification extensively covers the locations even where the
likelihood of exceedance is only 10%). On the other extreme, if the clean-up action is
based on a 90% likelihood of exceedance, the remediation zone will be small and the
benefit of cost-saving is attained, while the risk of having residual contaminants will
be high because areas that are less than 90% likely to exceed the exceedance threshold
are not considered contaminated (the analyst will be ”90% willing to accept that the
positive classification is wrong” because the classification does not cover locations
where the likelihood of exceedance is lower than 90%). Note that the likelihood
threshold can be designed for each exceedance threshold of the attribute. Barabas
et al. (2001) for example, used likelihood thresholds of 54% and 52 % to achieve the
minimum misclassification rate of exceedance/non-exceedance classification, for the
exceedance thresholds of 10 and 25 ppt of the TCDD concentration in the Passaic
River dataset (the same dataset presented in the last chapter), while in this case
the likelihood thresholds are not extreme. Although the decision does not directly
depend on the likelihood thresholds chosen for different alternatives in the subsequent
risk-benefit analysis, an extreme design would be less favorable for stakeholders to

reach a compromise.

Reducing estimation uncertainty derived from the random noise induced during

the sampling process will provide greater accuracy in the estimation. The estimation
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variance, after discarding the effect of the noise, will be smaller, which is expected
to correspond to more precise estimation with the reduction of both the false pos-
itive and false negative rates. Research has addressed the reduction of artificially
induced error directly in the data by physical approaches such as mixing samples (Su
et al., 2006) or by taking average values of multiple samples (Starks, 1986), however
the impact of the reduction of local variability on the changes in the classification
map has not been reported. Unlike these approaches, however, the approach used
in this chapter quantifies the amount of artificially induced error in the data, and
reduces the impact of artificially induced error in the estimates by attributing only
the structural and micro-scale variability in the estimate-to-estimate variance and
sample-to-estimate covariances. Similar to the use of block estimation, reducing the
impact of artificially induced error does not change the values of sample-to-sample
covariances since the artificially induced error is inherent in the measurement. In
addition, this chapter will also address the impact of reducing estimation uncertainty
on the change in estimated area of exceedance. In the following sections, reducing the
impact of artificially induced error on the estimates will be expressed as adjusting the
nugget effect for convenience, since the artificially induced error is subtracted from
the nugget effect in the sample-to-estimate and estimate-to-estimate covariances to
represent the actual variability of the attribute, but not from the sample-to-sample co-
variances. To facilitate the understanding of possible ways for reducing impact from
artificially induced error, a review for the nugget effect (that includes micro-scale

variability and the artificially induced error) is provided in the following section.
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6.3 Nugget Effect in Geostatistics

In geostatistics, observed local variance is termed as the “nugget effect,” which
conceptually consists of two components: the artificially induced error irrelevant to
the true distribution of the attribute of interest, and the micro-scale variability that
corresponds to the true local variability of the attribute values. The nugget effect has

been described and treated in different ways in the scientific literature.

The source of the nugget effect is described in different studies. (Crist, 1998)
observed a large nugget effect in the termite occurrence, and indicated its sources
to result “from sampling error or spatial dependence ...at finer spatial scales than
the sampling resolution.” Schnabel and Tietje (2003) indicated that the nugget effect
observed in the heavy metal concentration in soil “might be caused by a lack of data
(sparse data sampling) or high local heterogeneity of the variable.” Western et al.
(2004), in a study on spatial relatedness of soil moisture, described the cause of the
nugget effect, indicating that “several factors, such as sampling error and short scale
variability, may cause sample values separated by extremely small distances to be
quite dissimilar ... The vertical jump from the value of 0 at the origin to the value
of the variogram at extremely small separation distances is called the nugget effect.”
Holmes et al. (2005) indicated that the nugget effect of the variograms for several soil
nutrients “accounts for both micro-scale variability in soil properties and laboratory

J

and other procedural errors,” and “a variable with no spatial dependence would have
a variogram that is pure nugget (a horizontal line), ..., the geostatistical approach

yields the same results as those obtained through classical statistical analysis.”

Although sources of nugget effect are described in the literature, few studies in-
volve detecting/differentiating micro-scale variability from artificially induced error

as components of the nugget effect. Mear et al. (2006) examined actual detailed sam-
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ple measurements of fine-grained content in the superficial sediments around certain
locations, stating that “no explanation could be given for this nugget effect (errors
of analysis or the use of different analytical methods).” In other words, the entire
variability is contributed by the micro-scale variability in their study, which “un-
derlines the existence of morphological phenomena (bathymetry and sedimentology)
with dimensions lower than the average sampling distance.” Lin et al. (2006) studied
biogeochemical measurements in groundwater, and compared the nugget effect of the
cross variogram with that of direct variograms, indicating that “the nugget effect on
the direct variogram results mainly from micro-scale variation,” because “any errors
associated with laboratory measurements or georeferencing are likely to be indepen-
dent and cancel each other out, so the nugget in the cross-variogram better represents

the true micro-scale variability.”

How the components could be further processed for the benefit of estimation,
however, is seldom discussed. Among the few available studies, the reduction of
nugget effect was done by physically mixing local samples or by taking average values
of multiple samples. For example, Su et al. (2006) took five soil samples on two
diagonals at 15 cm depth using a soil auger (diameter: 5 cm) and bulked the samples
to obtain a composite sample, and thus eliminate the micro-scale variability. In most
cases, however, the interest for nugget-effect reduction was to reduce the component
caused by artificially induced error. Characterizing artificially induced error in the
nugget effect is not common in geostatistical research except for scientific exploration,
mainly because the impact of nugget effect for conventional kriging is not obvious, as
described by Schnabel and Tietje (2003). The nugget effect influences the estimation
weights attributed to sample values “in such a way that more distant estimation points
carry a slightly larger weight than they would do without a nugget effect (Schnabel
and Tietje, 2003).” Moreover, the nugget effect is usually taken solely as the micro-

scale variability in classical kriging approaches, assuming the estimate will reproduce
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the sample value exactly without estimation error at the sample locations Matheron
(1971). The rationale for the assumption of having purely micro-scale variability as

the nugget effect was not explained.

6.4 The Analysis for the Impact of Nugget-effect
Adjustment on Likelihood-Based
Classification Maps

To reduce the impact of the artificially induced error, the artificially induced error
should be separated to achieve the biggest benefit without having an over-confident
risk assessment. The literature reviewed in the last section either characterized the
nugget effect as simply micro-scale variability (Mear et al., 2006; Lin et al., 2006) or
used the nugget effect as a parameter that has no correspondence in characterizing
spatial dependence and thus make no further discussion for how the nugget effect could
affect the precision of estimates or impact the decision making process (Crist, 1998;
Schnabel and Tietje, 2003; Western et al., 2004; Holmes et al., 2005). In this chapter,
however, the impact of nugget effect will be studied, with an approach proposed for

distinguishing the different components.

The analysis to separate the artificially induced error from micro-scale variabil-
ity involves the use of two variograms from measurements taken at different spatial
scales, respectively the site scale that describes the spatial variability in general as
illustrated in the top of Fig. 6.2, and a scale far smaller than the site scale for the
assessment of the micro-scale variability as illustrated in Fig. 6.2 (B). When charac-
terized, the micro-scale variability will be subtracted from the nugget effect of the

site-scale variogram to inform the amount of artificially induced error.
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With artificially induced error subtracted from the site-scale variogram, the struc-
tural variogram (Ouyang et al., 2003) is obtained. The impact of nugget-effect ad-
justment is consequently evaluated by generating likelihood-based classification maps
using variograms before and after the adjustment of the nugget effect where (i) the
entire nugget effect is attributed to micro-scale variability vs. (ii) where a portion of
the nugget effect is attributed to artificially induced error. The analysis follows the

steps below:

1. Fit variogram models using datasets at both the site scale and the micro-scale.

2. Evaluate the micro-scale variability using the lab-scale variogram. Calculate
the artificially induced error by subtracting the micro-scale variability from the

full nugget effect.

3. With the site scale variogram including and excluding the artificially induced
error, generate the likelihood maps of exceedance for the threshold of interest

before and after adjustment of the nugget effect.

4. For various likelihood thresholds, quantify the impact of nugget-effect adjust-
ment by calculating the difference in the estimated area of exceedance evaluated

in step 3.

It should be noted for step 2, however, that the micro-scale variability also depends on
the practical definition of “local” samples, as illustrated in Fig. 6.4. No micro-scale
variability is smoothed out in the point samples (Fig. 6.4 A). When only a single
block sample is collected locally for the site-scale at each sample location, the micro-
scale variability is characterized by the dispersion variance and covariance within
the volume of the site-scale sampler (Fig. 6.4 B). When multiple repetitions of block

samples are collocated at each sampling location and values of the repetitions averaged
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Figure 6.4: Conceptual sketch for the effect of sampling volume/configuration on
variograms. The figure demonstrates exhaustive samples for illustration of the
smoothing of variability. (A) point samples, (B) single-block samples (C)
collocated-block samples (average values of two single-block samples). The segment in
the variograms with triangular marks at both ends indicate the range of micro-scale
variability. Note the smoothed out variability from (A) through (C) correspond to
both smaller micro-scale variability and smaller artificially induced error.
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as one sample value, the micro-scale variability in the variogram should be evaluated
by the average of block-semivariances between all possible pairs of repetitions of the
block variograms (Barnes, 1991) in which the block size is defined by the volume of
the site-scale sampler (Fig. 6.4 C). The variograms for single-block samples can be
evaluated from the point/punctual variogram using Equation (3.21), and the nugget
effect of the variogram for the collocated block samples, following Barnes (1991), can

be derived from the variogram for single-block samples using Equation (6.1),

| NN
= WZZ (|lz; — z4]) (6.1)

where Cj is the nugget effect for the collocated block samples, and the right-hand
side of the equation refers to the variogram vy (|z; — z;|) for blocks of size V' between
locations x; and z;, averaged over all possible location pairs within the configuration
of the collocated sample. In fact, this nugget effect Cy characterizes the micro-scale
variability of the collocated block samples since the block averaging substantially

reduces the artificially induced error of the punctual variogram.

6.5 The Anacostia River Dataset

This study uses a set of measurements taken at two different scales to evaluate
artificially induced error in the nugget effect: (i) a benchtop laboratory experiment
aimed at testing the impact of sediment capping strategies on contaminant effluxes
from the Anacostia River (Washington, D.C.), and (ii) measurements collected during

a field sampling campaign three months after the caps were installed at a pilot scale.

The Anacostia River is a freshwater tidal system draining an urban watershed

encompassing 176 square miles in Maryland and the District of Columbia (Figure
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Figure 6.5: Bird’s eye view of the Anacostia River study site.

6.5). The Anacostia River watershed is a subwatershed within the Potomac River
Drainage Basin, which in turn empties into the Chesapeake Bay. Substantial defor-
estation and agricultural development, intense and continuous urbanization, indus-
trial development, and significant loss of fringe wetlands and marshes have resulted
in significant degradation of water quality in the Anacostia River. Elevated levels of
hazardous substances, including PCBs, pesticides such as chlordane, lead and other
heavy metals, and PAHs have been found in sediment throughout the 8.4-mile run of
the Anacostia River (Syracuse Research Corporation and National Oceanic and At-
mospheric Administration, 2000; Velinsky and Ashley, 2001). Hazardous substances
such as PCBs have been found in fish at concentrations exceeding the Food and Drug
Administration (FDA) Action Levels. The District of Columbia declared several fish
consumption health advisories in the 1990s, with restrictions on consuming bottom-
feeding species and game fish and a fish consumption ban for pregnant women and

children.

In addition, the U.S. EPA identified the Anacostia River as one of the most con-
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taminated rivers in the Chesapeake Bay watershed; it is one of three Regions of Con-
cern recognized by the U.S. EPA’s Chesapeake Bay Program as posing a significant

risk to aquatic life from sediment contamination.

The U.S. Navy Space and Warfare Systems Center (SPAWAR) conducted the in-
situ measurements of aqueous flux, or seepage, across the river-bottom interface to
the overlying water column at six locations in the Anacostia River (Chadwick et al.,
2001). These results indicated that the mean seepage rate ranges from a weak (and
negative) measurement of -0.049 cm/d, to a moderate measurement of 1.1 cm/d.
The results showed a weak to moderate tidal influence, with tidal amplitude ranging
from -0.049 cm/d to 2.7 cm/d. The phase shift of the seepage meter readings was
similar showing strongest discharge seepage just after high water, continuing a trend
of smaller phase shifts for the down-river sites. Both the tidal and mean seepage
signals at this site ranged from weak to moderate among other sites along the river.
These results indicate that there is only a weakly active groundwater migration to the

Anacostia River, in spite of the porous sediments observed in the deployment area.

In 2004, four capping strategies were implemented in the field (Fig. 6.6), including
coke breeze, apatite, a clay polymer (Aquablok™), and sand. The objective of these

cells was to test the following:

e AquaBlok: Evaluate tidal seepage control, and potential for uplift during tidal

range

e Coke: Evaluate PAH sequestration/retardation, and placement strategies of

laminated mats

e Apatite: Evaluate metal sequestration/retardation, and effectiveness of direct

placement
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e Sand: Current capping strategy
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Figure 6.6: Illustration of the four capping strategies in the Anacostia River study
site.

In support of the field efforts, the University of Michigan was contracted to assess
the potential impact of microbial activity on in situ gas generation from sediment
organic carbon, as this may impact the long term capping strategies. Two types of
data were collected that form the core of the spatial analysis described in this chapter:
microbial abundance, and microbial activity (as measured by respiratory competence,

see section 6.5.1).

Samples at two scales were used in this task: (i) paired collocated core samples,
separated around 1 foot (30 cm) apart with 2 inch (5 cm) diameter for each core, col-
lected from the uncapped control, sand cap and Aquablok capped sediments (Fig. 6.7
A), and (ii) spatially distributed samples collected from the uncapped control used
in a bench-top flux chamber experiments (Fig. 6.7 B). The field samples analyzed in
this study represented both surficial (5 cm below the cap) and deeper segments from
the core (see Table 6.1). The samples collected from the field and flux chamber were

designed to capture both short and long distance covariances in microbial attributes.
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Figure 6.7: Sampling strategies for field (A) and flux chamber (B). The photograph of
the field sample cores and the photograph of the flux chamber are shown on the right
of the figures of sampling strategies.
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Although the available spatial measurements from the Anacostia River are sparse,
they provide important information on separating unwanted variance of error signals
from actual local variability in a spatially scattered measurement set. By modeling
variograms for the site-scale and tank-scale measurements, the nugget effect can be
separated into components for micro-scale variability (local variability corresponding
to real signal) and artificially induced error (local irrelevance independently included
in each measurement), providing the rationale to reduce the estimation uncertainty.
The benefit of this uncertainty reduction applies not only to the M-Scale model, but
also to all other estimation models that generate estimation variances as a measure

of the estimation uncertainty.

6.5.1 Microbial Abundance and Activity Measurement

Microorganisms were eluted, using an established protocol (Barkovskii and Adri-
aens, 1996, 1998) from Anacostia River sediments. Using dye experiments, sedi-

ment microorganisms were enumerated and respiratory competence measured (Gru-

den et al., 2003).

Field Scale Microbiology

The results from the dual stain microscopy data are shown in Fig. 6.8, illustrated
for background samples, and those collected from the sand cap and Aquablok cap.
Aquablok is a proprietary clay-encapsulated granular material that expands and seals
once in contact with water. The difference in spatial distribution of microbial activity
can be observed from Fig. 6.9, which shows an epifluorescent microscopic photograph

for samples with 0.7 and 65% activity. The total microbial numbers range was 1.4x 10°
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Table 6.1: Designation of samples collected from field pilots (see Fig. 6.7).

Core ID Date S(x) N(y) Water Depth (m)
No cap samples
CNW-3 9/24/2004 | 1311065.98 | 438747.34 14.08
CNE-3 9/24/2004 | 1311110.85 | 438769.83 15
CSW-4 9/24/2004 | 1311100.60 | 438706.90 15
CSE-4 9/24/2004 | 1311140.97 | 438730.67 14.5
Aquablok’™ samples
ABSE-6(4) 0/21/2004 | 1311097.64 | 438841.50 12.75
ABSE-6(5) 0/22/2004 | 1311097.64 | 438841.50 12.75
ABNE-6 9/22/2004 | 1311059.63 | 438905.34 7
AS5 9/20/2004 | 1311010.53 | 438872.22
Sand cap samples
SES-5 9/23/2004 | 1311181.11 | 438869.50 9.75
NWS-5 9/23/2004 | 1311111.93 | 438888.49 8.25
NES-4 9/22/2004 | 1311151.06 | 438918.34 6.75
LT-3 10/13/2004 | 1311164.00 | 438891.00
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Figure 6.8: Total and active microorganisms in sand (A), Aquablok™ (B) and
uncapped (C) sediments.
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Figure 6.9: Microbial activity as measured using CTC for 65% (left) and 0.7% (right)
active sediment samples.

to 2.8 x 107 per gram of sediment.

The generally high activity numbers are on par with anaerobic digesters and are
well above those measured in other riverine and estuarine sediments, and indicate
that there should be an ample supply of labile organic carbon to sustain microbial

activity. The values for capped and uncapped sediments are shown in Fig. 6.8.

The following trends can be discerned: (i) capped sediments exhibit lower total
microbial numbers than uncapped sediments, but a higher fraction of the organisms
is active; (ii) the total bacterial count appears to peak at 15-20 cm under the cap or
river bottom; and (iii) the active fraction of organisms is fairly constant with depth

under caps, but decreases by up to 90% in uncapped sediments.

Flux Chamber Microbiology

The results from sediment testing for microbial abundance and metabolic compe-
tence in the unamended flux chamber are shown in Fig. 6.10. The data representing
cores A1-A7 indicate that, despite the extensive sediment mixing, there is a great
degree of spatial heterogeneity across the tank in active numbers of microorganisms,

ranging from 0 to about 10% of total organisms. The total microbial abundance is
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similar to that observed in the field cores, but the fraction of respiratory competent
organisms is much lower than in the cores (6-45%). This observation may be due to
the extensive manipulation of the sediments prior to the laboratory test, including:
the sediments were collected with a backhoe and deposited in 55 gal. drums; the
sediments were exposed to aerobic conditions for mixing prior to deposition in the
tank; and the sediments were exposed to an artificially-induced “ebullition” flux of

air.

At the fine-scale spatial resolution (within sample clusters), much greater ho-
mogeneity was observed in active microorganisms, as exemplified for sample clusters
1.1-1.4, 3.1-3.4, 6.1-6.4 and 7.1-7.4 (for location, see Fig. 6.7). Again, the abundance
of total microorganisms was on the order of 107 microorganisms/g, while active or-
ganisms ranged from 10 — 10° per gram sediment, except for sample 1.2 (Fig. 6.10).
This represents an active fraction of organisms on the order of 1-16% between these
four sample clusters (with a tighter distribution within a cluster), which is lower than
in the field cores, but similar to that observed at large spatial resolution. Interest-
ingly, sampling clusters in the neighborhood of samples A-1 and A-7 (which showed
no active microorganisms) indicate the presence of 1-10% active microorganisms,

suggesting that even at the small scale, inhomogeneities exist.

The field-scale samples and micro-scale samples are summarized into maps with
point attributes for the purposes of spatial estimation, as shown in Figs. 6.11 and

6.12.
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Figure 6.11: Site-scale sample locations with values indicated in color scales. Left:
microbial abundance (x10” microorganisms/g) Right: microbial activity (x10°
microorganisms/g). Units in distance: m.
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6.6 Analysis of the Nugget Effect for the
Anacostia River, DC Dataset

In this study, and indeed in many laboratory-scale experiments, samples taken at
the tank scale are implicitly assumed to be representative of the field scale, and thus
the micro-scale variability present on-site. This assumption may not precisely reflect
the reality, since the lab analysis involves sediments dredged up using a backhoe vol-
ume, homogenized and re-cultured in room temperatures inside of a confined flux
chamber. The resulting micro-scale variability may be underestimated in this study,
consequently, with artificially induced error overestimated. The uncertainty will thus
be over-reduced, corresponding to a risky design with underevaluated estimation vari-
ance that covers less variability than what actually is between the true attribute value
and the estimate. A lab-simulated micro-scale sample may not always under-represent
the on-site micro-scale variability, e.g. by using an initial injection of contaminant
in a flux chamber to represent the variability of a stablized plume on-site that corre-
sponds to less spatial variability due to diffusive mass transfer. The uncertainty will
thus be over-represented, corresponding to a conservative design with overevaluated
estimation variance that covers more variability than reality. Using lab experiment
to simulate the micro-scale reality on-site, consequently, needs more scrutiny regard-
ing its reproducibility of variability. This study, however, provides an example to
characterize micro-scale variability when the micro-scale samples are closely related
to the micro-scale variability on-site, e.g., by taking samples in a microcosm installed

on-site with negligible disturbance.

The micro-scale variability of the site-scale measurements, consequently, is eval-
uated using the variogram of the tank-scale measurements as part of the site-scale
nugget effect, and the artificially induced error variance is assumed to represent the

remainder of the observed nugget effect of the site-scale variogram. The resulting
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variogram of the site-scale variability is used to generate estimates and estimation

variance for the three estimation models.

Variograms for both the site-scale sample set and the micro-scale sample set are
constructed as shown in Figs. 6.13 and 6.14, and are represented by the following

equations:

Variograms for microbial abundance:

ite-scale: h)=0.1 244 - E
site-scale: ~y(h) =0.176 + 0 Xp<25‘00m)

h
micro-scale:  7y(h) = 0.020 4+ 0.080 - Exp (0 38’”)

Variograms for microbial activity:

h
site-scale:  ~y(h) = 1.980 + 3.800 - Exp <9 00’”)

h
micro-scale:  y(h) = 0.020 + 0.150 - Exp (0 38’”)

where Exp(+) denotes the exponential variogram model. The nugget effect for the site-
scale variogram is calculated directly using the 1 foot-apart collocated core sample
pairs and averaged over all sample locations. Although the variogram of the flux
chamber abundance and activity samples also feature a nugget effect, the amount of
this part relative to that of the core sample is found to be negligible in this analysis,
particularly after the block averaging (see the conceptual sketch for the effect of
block averaging in Fig. 6.4 B and C). Block variograms from the tank-scale microbial
abundance and activity were subsequently evaluated for the analysis of micro-scale
variability, as shown in Fig. 6.15. In this study, the micro-scale variability is defined as
the block-to-block semivariance of the core sample pairs because the block-to-block
semivariance equals the expected variance of the core sample pairs. For microbial

abundance data, the value is 0.068 as calculated using Equation (6.1) and dispersion
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Figure 6.13: Variogram fitting for site- and micro- scale datasets of microbial
abundance. Solid curves indicate the experimental variogram of the samples. Dash
curves indicate the modeled variograms. Left: site-scale. Right: micro-scale. Unit in
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covariance of the tank variogram model (Equation (3.21)), and for microbial activity
using the same approach the value is 0.102. Subsequently, the artificially induced
error is found by subtracting the amount of micro-scale variability from the value of
the nugget effect. The artificially induced error is found to be 0.176 — 0.068 = 0.108

for the microbial abundance, and 1.980 — 0.128 = 1.852 for the microbial activity.

6.7 Impact of Nugget-Effect Adjustment on
Model Performance

The M-Scale model, OK and CK are used as estimation models to observe the
impact of nugget-effect adjustment. Six maps of three sets are generated for each
estimation model, with two maps of each set representing the results for retaining and
adjusting the nugget effect, respectively. The three sets of maps are respectively the
estimation map, the estimation variance map, and the likelihood map for exceeding
a certain attribute threshold, as shown in Figs. 6.16 through 6.21, where the black
pixels of the figures for CK indicate singular solutions due to the lack of covariance

between sample and estimation locations to reproduce variability.
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Since the remedial option under investigation in the Anacostia River is in situ cap-
ping, this strategy is potentially impacted by, among others, microbial abundance and
microbial respiratory activity (particularly methanogenic activity) which, as stated
previously, serve as proxy parameters for microbial gas production. Since the cut-off
values for abundance and activity at which gas production becomes disruptive to the
in situ capping strategy have not been determined at this time, illustrative values
are used to demonstrate the impact of the nugget effect on spatial variability. Tar-
get threshold values are selected as 2.2 x 107 (representing the 0.75 quantile of the
pooled sample) for the total microbial abundance, and 4.5 x 10° (representing the
0.6 quantile of the pooled sample) for the microbial activity (respiratory competence)
as examples, to demonstrate the generality of estimation characteristics for the three
estimation models, in addition to the demonstration by using the 0.86 quantile (the

mean value plus one standard deviation) as the threshold in Chapter 5.

As shown in the figures, the adjustment of the nugget effect generally has a min-
imal impact on the estimation maps for OK and the M-Scale model (comparing top
graphs of Figs.6.16, 6.19, 6.17, and 6.20), while the impact is obvious on the esti-
mation variance for all three models (comparing middle graphs of Figs.6.16 through
6.21). This result for OK and the M-Scale model is consistent with the observation
by Schnabel and Tietje (2003) for the slight impact of the nugget effect on estimation
maps. However, the impact of the nugget effect on the estimation map is larger in
CK (comparing top graphs of Figs. 6.18 and 6.21), due to the constraint of estimate
variance to reproduce variability. In all estimation models the estimation variance is
lower with nugget effect adjusted, which is obvious since the estimation variance is
mainly impacted by the variance of the estimate and the weighted mean of covariances
between sample and estimate pairs. The likelihood of exceedance visually shows more
contrast (comparing bottom graphs of Figs.6.16 through 6.21), with higher estimates

to be more likely to exceed the threshold, and lower estimates to be less likely to
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Figure 6.16: Microbial abundance estimation by the M-Scale model. Top to bottom:

estimation map, estimation variance, likelihood of the estimate to exceed 2.2 x 10”.
Left: nugget effect retained. Right: nugget effect adjusted.
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Figure 6.18: Microbial abundance estimation by CK. Top to bottom: estimation map,
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Figure 6.19: Microbial activity estimation by the M-Scale model. Top to bottom:
estimation map, estimation variance, likelihood of the estimate to exceed 4.5 x 10°.
Left: nugget effect retained. Right: nugget effect adjusted.
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retained. Right: nugget effect adjusted.
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exceed the threshold. This result indirectly confirms the statements by Istok and
Rautman (1996) for the likelihood of exceedance in that the likelihood of exceedance
for higher estimates (non-exceedance for lower estimates), which represents the likeli-
hood to fulfill the “willingness of analyst to accept the risk of an incorrect decision,”
is increased with the improvement of precision, meaning that the possibility for an

incorrect decision is decreased.

In addition to the characteristics in the map of likelihood exceedance, the im-
pact of nugget-effect adjustment is also examined for the map of likelihood-based
classification, as an indication of improvement for the decision support of remedial
applications. The probability of exceedance is illustrated for microbial abundance
and microbial activity, two sediment attributes thought to have relevance to micro-
bial gas production and thus stability of sediment caps or contaminant transport.
For illustration purposes, microbial abundance of 2.2 x 107 and microbial activity of
4.5 x 10° were chosen as cut-off values for these attributes. The percentage areas for
the delineated microbial endpoint (exceeding the assumed threshold of microbial end-
points) within the estimation domain are listed for microbial abundance and activity
respectively in Tables 6.2 and 6.3. It is observed that to achieve a higher likelihood
thresholds (high willingness to accept an incorrect decision, i.e., low-cost objective in
exchange of high risk), a larger area of exceedance is delineated after nugget-effect
adjustment, consequently the risk of non-cleanups is reduced. On the other hand,
for a design with lower likelihood thresholds (low willingness to accept an incorrect
decision, i.e., high cost objective in exchange of low risk), a smaller area of exceedance
is delineated, consequently the expenses for unnecessary cleanups is saved. Therefore,
by observing the range of percent areas under different likelihood thresholds, the table
further indicates smaller differences between the ends of objectives (cost-saving/high
threshold of likelihood vs. risk-reduction/low threshold of likelihood), an indication

that a compromise between stakeholders becomes easier to reach.
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Table 6.2: Percent area of high microbial abundance (> 2.2 x 107) classified over the
estimation domain under different likelihood threshold.

M-Scale OK CK
Likelihood Nugget Effect Nugget Effect Nugget Effect
Threshold | Retained Adjusted | Retained Adjusted | Retained Adjusted
0.2 60.55 14.84 59.77 39.45 59.77 48.05
0.4 10.94 8.20 19.92 13.28 41.41 36.33
0.6 4.69 6.64 3.12 3.52 25.00 23.83
0.8 0.00 3.52 0.00 0.39 7.81 10.16

Table 6.3: Percent area of high microbial activity (> 4.5 x 10°) classified over the
estimation domain under different likelihood thresholds.

M-Scale OK CK
Likelihood Nugget Effect Nugget Effect Nugget Effect
Threshold | Retained Adjusted | Retained Adjusted | Retained Adjusted

0.2 100.00 90.62 100.00 98.83 76.56 75.00
0.4 92.58 49.61 95.31 89.45 61.33 54.30
0.6 0.00 4.30 0.39 1.56 6.25 10.16
0.8 0.00 1.56 0.00 0.00 0.00 0.39

However, a reduction of area is observed with the adjustment of nugget effect
for the classification of microbial abundance by CK estimation using a 0.6 likelihood
threshold. This could be explained by the fact that CK estimates are sensitive against
the nugget effect, consequently the nugget effect impacts the ccdf evaluated by CK
for the likelihood-based classifications not only on the variance of the cedf (reduces
the size of distribution), but also on the expected value of the ccdf (shifts the position
of the distribution). Because CK falsely reproduce local variability of the samples
by spatial variability of the estimates (see Fig. 4.24 for illustration), the benefit of
nugget-effect reduction is not only the reduction for estimation variance, but also the

adjustment of expectation from falsely reproduced variability.
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6.8 Cross-Validation and Diagnostic Parameters
for Reproduction of Global and Spatial
Variability

With the sparse dataset collected in the Anacostia River study area, the nugget-
effect adjustment was shown to have substantial impact on the estimation variance,
likelihood of exceedance, and delineation of the extent of contamination. This large
impact observed, in fact, indicates the sparseness of the dataset is usually associated
with a substantial uncertainty in the estimates. In other words, a large dissimilarity

exists between the estimates and the true attribute values for a sparse dataset.

The use of cross-validation for model comparison does not necessarily involve
the observation of absolute values of the parameters of performance between the
re-estimates and the validation set, since the comparison is usually done relatively
between performance parameters (see Maravelias et al. 1996; Su et al. 2006 and ex-
amples in Chapters 4 and 5, for example) and the performance parameters represents
only those evaluated for the sample locations. The comparison using cross-validation
may lose its power, however, when the dataset is either very rich so that each model
performs equally well, or very sparse so that each model performs equally poor. The
sparse dataset collected in the Anacostia River study area is examined on the ap-
plicability of the cross-validation approach. To demonstrated a general case without
information of the artificially induced error, the nugget effect is not adjusted in the

estimation.

In order to assess the applicability of cross-validation using a sparse sample set,
re-estimates are generated and compared to each removed datum. Scatter plots and
Q-Q plots for the re-estimates of the cross-validation are shown for the M-Scale model,

OK and CK as in Fig. 6.22 through Fig. 6.24. Diagnostic parameters for the cross-
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Table 6.4: Diagnostic parameters for the precision (the mean value) and variability
reproduction (others) of the cross-validation performed using data of the microbial

amount.
Statistics Target | M-Scale | OK | CK
Mean 1.89 1.90 1.89 | 1.92
Standard Deviation | 0.50 0.16 0.14 | 0.32
A-D test statistic - 2.63 2.65 | 0.84
Correlation Coeff. - 0.18 -0.08 | 0.12

validation results are also listed in Table 6.4. It is observed in all three scatter plots
that with the removal of one datum, the re-estimation is poorly correlated to the
true measurement value with low correlation coefficient (indicated in Table 6.4). The
Q-Q plot, standard deviation and A-D test statistic indicates a better reproduction
of global variability for CK, while the variability originates from a larger difference
between the true value and the re-estimate. In other words, with little correlation
between the re-estimate and the remaining data, the variability reproduced by CK
comes mainly from artificially induced error and micro-scale variability. Unless the
global variance is the only basis of comparison regardless of the estimation precision,
cross-validation does not provide a significant method to help select a suitable model

in this case.

The same cross-validation graphs and diagnostic parameters are also shown for
microbial activity measurements in Figs. 6.25 through 6.27 and Table 6.5. The results
provides less indication for model performance than the results for microbial amounts
because eight of the CK re-estimation for microbial activity indicates singularity due
to the lack of covariance between the re-estimation location and the locations of the
remaining data. The cross-validation result for CK, consequently, are performed with
the remaining eight re-estimates (a total of 16 points, excluding the 8 points without
re-estimates). The lack of covariance can be observed in that the influence range
of the variogram in the case of microbial activity is shorter than that of microbial

abundance (see left graphs of Figs. 6.14 and 6.13, where the influence range is around
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Figure 6.22: M-Scale scatter plot and Q-Q plot for the re-estimates with respect to
the validation set using data of the microbial amount.
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Figure 6.23: OK scatter plot and Q-Q plot for the re-estimates with respect to the

validation set using data of the microbial amount.
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Figure 6.24: CK scatter plot and Q-Q plot for the re-estimates with respect to the
validation set using data of the microbial amount.
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Table 6.5: Diagnostic parameters for the precision (the mean value) and variability
reproduction (others) of the cross-validation performed using data of the microbial

activity.
Statistics Target | M-Scale | OK | CK
Mean 3.84 3.71 3.80 | 2.26

Standard Deviation 1.94 0.58 0.37 | 1.09
A-D test statistic - 3.19 3.99 | 17.26
Correlation Coeff. — -0.18 -0.13 | -0.05

25 m for the microbial activity and around 9 m for microbial abundance). The mean
and A-D test statistic for CK consequently indicates the worst performance among
the three estimation models. The global standard error of the estimates for CK,

however, remains reproducing well, reconfirming its sensitivity to data variability.

6.9 Summary

This chapter includes general observations on the impact of sparse data sets on
spatial estimation. An approach to discern artificially induced error from micro-scale
variability is proposed, by which the impact of nugget-effect adjustment is shown to
be substantial due to the sparseness of the dataset. Additionally, by examining the
performance of estimation using cross-validation on the sparse dataset, the limitation

of cross-validation is also demonstrated.

The impact of attributing a portion of the nugget effect to the artificially in-
duced error to is represented as the area change in the classification map, so that the
assessment of this impact can be made in terms of cost/benefit in a contaminated
sediment management. In addition, it is also observed that the CK classification map
is impacted by the nugget effect not only by the estimation variance, but also the
estimates. The adjustment of nugget effect generally has a minimal impact on the

estimation maps for OK and the M-Scale model, while the impact is significant on
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Figure 6.25: M-Scale scatter plot and Q-Q plot for the re-estimates with respect to
the validation set using data of the microbial activity.
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Figure 6.26: OK scatter plot and Q-Q plot for the re-estimates with respect to the
validation set using data of the microbial activity.
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Figure 6.27: CK scatter plot and Q-Q plot for the re-estimates with respect to the
validation set using data of the microbial activity.
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the estimation variance for all three models.

Based on the Anacostia River dataset, it is concluded that the reduction of ar-
tificially induced error improves not only the apparent estimation variance, but also
the confidence of estimation expressed in terms of the likelihood of exceedance. Fol-
lowing these improvements, the benefit of nugget effect adjustment is that classifi-
cation between categories becomes more distinguishable. For a binary case like the
exceedance/non-exceedance classification, the artificially induced errors randomly in-
crease/decrease the value of attributes, subsequently increase the occasional likelihood
of non-exceedance for locations where the expected value exceeds the exceedance
threshold. In other words, artificially induced error impacts the estimation by de-
creasing the likelihood of exceedance for locations where the expected value exceeds
the exceedance threshold. Similarly, artificially induced error also impacts the estima-
tion by decreasing the likelihood of non-exceedance for locations where the expected
value is below the exceedance threshold. By adjusting the nugget effect (attributing
part of the nugget effect to the artificially induced error), more units are suggested to
be cleaned up when the likelihood threshold is high (a cost-saving threshold), and less
units are required to clean up when the likelihood threshold is low (a risk-reduction
threshold), consequently reducing the risk of non-cleanup for a cost-saving design,
and reducing unnecessary cost of over-cleanup for a risk-reduction design. In ad-
dition, by observing both the designs of higher (above 0.5) and lower (below 0.5)
likelihood thresholds, another benefit is apparent for reducing artificially induced er-
ror. The difference between alternatives of different perspectives (reducing risk or
reducing clean-up cost) becomes smaller, so that a compromise is easier to reach.
The reduction of artificially induced error, consequently, not only provides the ben-
efit of risk/cost reduction for each design of likelihood threshold, but also facilitates

the site managers/stakeholders to make a decision on selecting the likelihood design.
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For an estimation model like CK that involves reproduction of global variability,
however, the classification may or may not be improved depending on the choice of
confidence level. In fact, when the estimate of the model is adjusted to match the
global variability, the center of the ccdf is away from the best estimate comparing
to the cases without the variance constraint. The strong influence of artificially
induced error, consequently, acts not only on the variance, but also on the expected
value of the ccdf. Because CK estimates are most sensitive to the nugget effect, the
characteristics of their ccdf are most different from those of OK and the M-Scale
model in the case without nugget-effect adjustment. Although it is discussed that
the nugget effect can be adjusted ad hoc for CK when the sample involves solely
artificially induced error (Aldworth and Cressie, 1999), such adjustment may not be
reasonable if the nugget effect involves an amount of micro-scale variability that is
not negligible. An actual signal would be ignored if the nugget effect is not attributed
for the part of micro-scale variability. Conversely, even if the artificially induced error
could be attributed as part of the nugget effect, CK treated micro-scale variability
as part of structural covariance (the covariance associated with attribute values of
other locations), thus impacting both the estimates and the estimation uncertainty.
In fact, the variability characterized by the nugget effect should impact only locally
regardless of the attribute values at other locations. As an estimation model that
indicates the likelihood of exceedance, CK estimation may need more scrutiny with
respect to the amount of nugget effect involved, so that the ccdf reflects the actual
distribution of the estimation model instead of the impact from artificially induced
error. Unlike CK, OK and the M-Scale model reflect the impact of nugget effect
mainly by the amount of local uncertainty, without the conflict of the conceptual
correspondence between the samples and estimation outcomes, both of which are

applicable for likelihood-based classification.

Lastly, as a demonstration, cross-validation may not be an effective tool for eval-
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uating estimation performance when the sample size is small, because removing one
datum removes a large portion of information from the data set, in comparison with

an analysis for spatially rich sample set.
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CHAPTER 7

Conclusions and Future Research

7.1 Conclusions

Unlike estimation models that have been developed, the M-Scale model provides
an alternative that solves problems at a target scale by characterizing multi-scale
covariances of means. The goal of this dissertation was to develop, validate and
demonstrate the use of the M-Scale model for site characterization, including the
analysis of spatial structure and the delineation of the extent of contamination. The

following hypothesis was tested:

Effective site assessment and remedial decision making on the basis of de-

lineating the extent of contamination depend on estimation methods and

uncertainty quantification that reproduce the observed spatial variability of

the contaminant concentrations. A better characterization of the extent of

contamination can be attained by explicitly accounting for the covariances

between multi-scale local means, and quantifying artificially induced error.
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The specific objectives were (1) To provide a spatial statistical approach for the char-
acterization of the spatial structure and spatial distribution of a certain attribute,
such as contaminant concentration or microbiological parameters (2) To investigate
the applicability of the developed model to field data relevant to contaminated sedi-
ments using performance diagnostics of various estimation objectives (3) To explore
the sensitivity of M-Scale and other methods to nugget effect characteristics (artifi-

cially induced error and microscale variability) using laboratory and field data from

the Anacostia River (NJ).

The approach for the first objective involved the M-Scale model development
(Chapter 3) and validation using an artificial dataset under a standardized vari-
ogram (Chapter 4). The M-Scale model provides an approach to evaluate spatial
structures by quantifying covariances between mean values at different scales. The
estimator thus developed integrates benefits from ordinary kriging (precision of the
estimates) and constrained kriging (preservation of attribute variability) estimators.
Validation was accomplished by a graphical comparison of reproduced population
covariograms, and quantitative comparison of the structural variance. The compar-
isons indicate that the M-Scale model, relative to OK and CK, best reproduces spatial
variability. The approach also provides a balance between the reproduction of spa-
tial variability and the precision for delineating the extent of contamination. As
indicated by Cohen’s kappa coefficient, which represents the standardized precision
of exceedance/non-exceedance classification, the M-Scale model has a high level of
classification precision in comparison to OK, while keeping the reproduction of spa-
tial variability as described above. The improvement of false-negative classification
rates over OK further indicates that the M-Scale is a suitable approach that serves to
support the remedial decisions, because risk-reduction is usually a preferred character-
istic. Even though CK has the lowest false-negative rate among the three estimation

models,the reproduction does not differentiate between the structural variance and
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the nugget effect in the constraint imposed on the data interpolation. Hence, the
smaller false-negative rate is a result of occasional agreement of the classification,
which is compensated by an even larger false-positive rate among the three estima-
tion models, resulting in the worst precision of classification as indicated by Cohen’s

kappa coefficient, as illustrated and explained in Chpater 4.

Based on my work, I argue that a robust estimation model that balances the
different objectives is a better approach, unless an optimized ratio for the false-
positive /false-negative classification can be decided a priori, or a funtion that specifies
the association between remedial cost and contamination level can be defined. Based
on the description above, the M-Scale model serves as a robust estimation model
among the three estimation models presented in this dissertation, with regard to the

following characteristics. The model:

e Evaluates spatial structure in the form of covariances between mean values at
different scales, providing a measure of the information that each scale provides

about other scales.

e Generates estimates that reflect the structural variability characterized by the
sample. In other words, provides an intuitive reference of the variability of
spatial attributes that could be explained by the samples, without impacts
from the nugget effect that is inherent in samples but not informative for the

estimates.

e Generates classification map for the extent of contamination, which is applicable

as a decision-support tool for remedial purposes.

For the second objective, cross-validation was performed using dioxin data from

the Passaic River (NJ) to investigate the performance of different estimation models
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under point and block estimation scenarios for a rich sample set (Chapter 5). An
analysis was performed on the Anacostia river dataset (microbial parameters) to
investigate the applicability of cross-validation for a sparse sample set (Chapter 6).
A comparison of point and block estimations in Chapter 5 reveals the sensitivity of
CK estimation to the nugget effect. For point estimation, the results of scatter plots,
Q-Q plots, standard deviation of estimates, and the A-D test statistics indicate that
CK provides the best reproduction of global variability, while the covariogram and
structural variance indicate that the M-Scale model provides the best alternative to
reproduce spatial variability. The contingency table and Cohen’s x coefficient, which
reflect the model performance for the classification maps, indicate worse classification
precision for CK, better classification precision for OK and the M-Scale model. The
low false-negative rate for CK is compensated by a high false-positive rate, and the
M-Scale model has a lower false-negative rate relative to that of OK with the same
level of precision as that of OK. All descriptions above for the cross-validation are
consistent with the descriptions of performance stated for the different estimation
models as validated by the same diagnostic parameters using artificial data sets. For
block estimation, however, the nugget effect between samples and estimates is reduced
due to block averaging. Consequently, the results of block estimation indicate the
same performance of spatial-variability reproduction for CK and the M-Scale model,
and the same level of precision is attained for all three models with a slightly better
performance for OK. The conclusion for block estimation, therefore, is that all three
models perform similarly, while the reproduction of spatial variability is better for CK
and the M-Scale model with lower false-negative rates and worst for OK with higher
false-negative rates for the delineation of the extent of contamination. Although
cross-validation for the block estimation uses rescaled sample values that involve
uncertainty from the validation set, results of conditional simulation indicates this

uncertainty is relatively small relative to the uncertainty due to the lack of data.
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Consequently, the result of cross-validation on the basis of the rescaled sample is
regarded as valid. The conclusion of using cross-validation on a sparse dataset is
that the information from each data point is essential in the estimation process,
and the removal of one single measurement in the dataset implies the removal of a
big proportion of information in the input of the re-estimation process. Diagnostic
parameters evaluated for the reproduction of the validation data, consequently, are
rendered invalid since limited relatedness remains between the re-estimate and the

remaining data points.

For the third objective, an approach is introduced to adjust the nugget effect,
i.e., to attribute portions of the observed nugget effect to micro-scale variability and
artificially induced error. By adjusting the nugget effect, the precision enhancement
in the estimate is generally reflected in the change of estimation variance, regardless
of whether the estimated values are also impacted. The impact of nugget-effect ad-
justment, which results in the reduction of the estimation variance, is also reflected
in the ccdf at each estimation location. The ccdf with nugget effect adjusted and re-
tained is further derived into the likelihood of exceedance (the likelihood to fulfill the
“willingness of the analyst to accept the risk of an incorrect decision (Istok and Raut-
man, 1996).”), and subsequently the difference in the area of threshold exceedance for
each designed likelihood threshold on the basis of likelihood-based classification. The
benefit of reducing artificially induced error is a gain in the likelihood of correct clas-
sification. Another observation is that the difference in areas of exceedance between
risk-reduction and cost-saving objectives becomes smaller after reducing artificially
induced error. A compromise between stakeholders, consequently, is easier to reach

after the impact of artificially induced error is excluded from the estimation variance.

Among the three estimation models, the benefit of reducing artificially induced

error in CK estimation is found to conflict with the statements above for certain
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likelihood thresholds, due to the sensitivity of estimates against the nugget effect
when the artificially induced error is involved. The inconsistency comes from the two-
fold benefit of reducing artificially induced error, including not only the reduction of
estimation variance, but also the correction of the estimates from falsely reproducing
local variability by spatial variability in the estimates. When CK is selected as the site
characterization model, the attribution of the nugget effect into portions of artificially
induced error and micro-scale variability becomes an important procedure prior to

the estimation.

Summarizing the development and investigation performed in previous chapters,

the following conclusions can be formulated:

1. The M-Scale model generally provides a robust model for reproducing spatial
variability and the delineation of the extent of contamination. For scientific
exploration, the approach is useful for characterizing relatedness between mean
value at different spatial scales, and reproducing spatial variability in the esti-
mation map. For the support of remedial decisions, consequently, the approach
is expected to provide a robust alternative in estimating remedial cost because
the extent of contamination depends on the reproduction of spatial variability.
The M-Scale model also provides similarly precise classification as OK, with
lower false-positive rates compared to OK estimation. The performance of the
M-Scale model, however, may depend on the objective of estimation, which

includes the decision of the use of point or block estimation.

2. Cross-validation using the M-scale model indicates that it best reproduces spa-
tial variability, and result in moderate levels of both false-positive and false-
negative rates in the exceedance classification. In the Passaic River example
presented in Chapter 5, the M-Scale model is found to be the most suitable

alternative for the characterization of the site when the objective of estimation
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depends on the reproduction of spatial variability, or when a balance is needed
between the risk of false-negative assignments and the precision of the resulting

classification map.

. Given analysis of site-scale and micro-scale (based on laboratory experiments)
variograms, the artificially induced error can be evaluated, and the nugget effect
adjusted to enhance estimation precision. The benefit of enhancing estimation
precision for a likelihood-based remedial decision is expressed in terms of the
change in the area of threshold exceedance, which is informative for the subse-
quent risk-benefit analysis and stakeholders negotiation. This benefit of nugget
effect adjustment is found in OK and the M-Scale model for the example given
using the Anacostia River dataset. The nugget-effect adjustment indicates a
different impact for CK, due to the sensitivity of CK estimates to the nugget
effect, resulting in a change of the ccdf not only in its variance, but also in its
expected value of the distribution. More scrutinized quantification needs to be
performed for the nugget effect when CK is selected as a candidate model for

site characterization.

7.2 Implication of the Results for Contaminated

Sediment Management

The major challenges related to sediment management are: (i) the uncertainty

associated with characterization of large contaminated areas with low level diffuse

contamination; and (ii) the uncertainties related to long term in situ remediation

strategies. This dissertation was aimed at developing and validating a method capable

of quantifying the spatial uncertainty by capturing the information collected at various

spatial scales.
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Different estimation models feature different characteristics in their estimates as
well as their estimation uncertainty. The M-Scale model was developed to provide
a robust model that generates estimates reproducing spatial variability characterized
by the samples. The extent of contamination can be delineated using the estimates
generated, or by the likelihood derived from the estimates and the associated esti-
mation variance. However, the selection of estimation model should depend not only
on the estimation characteristics but also on the nature of the problem (e.g., site
characterization or decision support for remedial decision), the definition of prob-
lem (e.g., the regulatory threshold and likelihood threshold), objective of remediation
(e.g., risk-reduction or cost-reduction), target spatial scale (e.g., point or block esti-
mation), and spatial configuration and density of sample locations. Cross-validation
is recommended prior to the application of any estimation model, given that the sam-
ple size is sufficiently large to provide such validation. Adjustment of the nugget effect
enhances the estimation results when a likelihood-based classification is applied, indi-
cating a benefit that a compromise is easier to reach between the objectives favoring
risk-reduction and cost-saving. A sampling scheme is needed for both the site-scale
and the micro-scale if elimination of the impact by artificially induced error from the

estimated uncertainty is favored for easier compromises between stakeholders.

The implications of this work are best illustrated using the project framework that
funded this work, as shown in Fig. 7.1. The target application of this work was to
quantify the spatial uncertainty associated with in situ capping strategies subjected
to advection and microbial gas ebullition. Funded under auspices of the Strategic
Environmental Research and Development Program (SERDP), and part of a larger
combined experimental and modeling project, the challenge was to integrate data
collected at laboratory (flux chamber, flume) and field (Anacostia River) scales to
improve decision-making (i.e. to narrow the predictive uncertainty bounds on experi-

mental data). Aside from scale-specific experimental uncertainty estimations (mainly

214



Upscale

o bt Frevnis e e 8L el >
¢ laver trip e
o PR
- -
Resmpension fest section 3 -
Site b e
Characteri*igh
egressi Input -1
l'zh-':‘::"‘si " Output . .,:___
chtmim—-——j ¥=4--- *Uncertainty increases f,
Flums‘{ESpaﬁal imulati Input .
Simulati Output
. Spatial simulation -~ Input
Field <, Simula Output
| Quantified scaling uncertainties for chemical and physical stability ‘

Figure 7.1: Project framework for uncertainty-based sediment management in
Anacostia River sediments.
through regression analyses), there was a need to be able to translate data from var-
ious scales to the field. With limited experimental and field sampling data, and after
quantifying the artificially induced error and microscale variability component of the
variogram’s nugget effect, M-Scale was capable of reducing the estimation uncertainty
of the spatial delineation of sediment microbial characteristics which were shown to
serve as proxy parameters for microbial gas production. Since gas production desta-
bilizes the sediment bed and increase contaminant fluxes out of the sediment into the
overlaying water column, the M-scale estimates can then be used to inform spatial

likelihood of cap failure and future requirements for improvement in cap design.

7.3 Limitations of the M-Scale Model and Future
Research

Although the M-Scale model provides a robust alternative framework for the site

characterization and remedial decision-making, a few limitations for the model im-

plementation were also observed during the research presented in this dissertation:
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1. Dependence of performance on sampling design: It is demonstrated in Chapter
4 that the estimation variance may or may not be under-evaluated depending on
the configuration of samples (affecting the redundancy between sample points)

in each ring area.

2. Selection of shape and size of different scales: It is generally recognized that
different levels of subjectivity can be involved in spatial statistics. However,
rules for deciding the number, shape and size of scales in the M-Scale estimation
are not fully explored. For the current stage of development of the M-Scale

model, the selection will depend on the scientific judgment of the spatial analyst.

In order to overcome current limitations of the M-Scale model and to extend its
capability to different objectives for site characterization, the following future research

needs are identified:

7.3.1 Effect of Sample Redundancy on the M-Scale Model

The M-Scale model assumes that the configuration of sample locations in each
ring area is random. The result of this assumption may be an under-evaluation
of the estimation variance, which has the strongest impact on the likelihood-based
classification. Research to incorporate the sample configuration for the variance of the
sample ring average relative to the population ring mean is recommended, in order
to have an unbiased estimate for the estimation variance. The conceptual sketch is
illustrated in Fig. 7.2. If the clustered sample locations in B are falsely regarded
as random sample locations, the actual amount of uncertainty shown in B will be
regarded as the uncertainty shown in A (an underevaluation of uncertainty) since the
two correspond to the same sample size. The improvement will need to be evaluated

using the coverage rate of the estimation confidence interval described in Chapter
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Figure 7.2: Conceptual sketch of the sample redundancy in a one-dimension sample.
Dashed curves and horizontal lines indicate the unknown reality and its mean value.
Bell shapes on the left of each graph indicates the uncertainty of using sample mean
to represent the mean value of reality. A: a sample at random locations with sample
size = 14. B: a sample at clustered locations with sample size = 14. C: a sample at
non-clustered locations with sample size = 7. Note that uncertainty shown in B is
similar to that in C because each sample point in the clusters in B provides similar
information, similar to information provided by one single point.

4, and further described as the change in area of exceedance under the likelihood-
based classification described in Chapter 6, to provide indication of its applicability

for decision-support of the contamination management.

7.3.2 Selection of Size and Shape for Different Scales

As described in the limitation of the M-Scale model, the effect of shape and size, as
well as the number of scales to include for the M-Scale estimation is yet to be explored.
The M-Scale model, however, has the flexibility to define the shape of rings/plates so
that the influence of samples on estimates varies not only by the separation distance
but also by the relative direction, which may be site specific. The study on the size,
shape and number of scales will not only improve the M-Scale model for a more
robust estimation model, but also extend its capability to model the stochastic part
of contamination flow mechanism, such as the direction, distance and anisotropy of

influence, as shown in Fig.7.3.
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Figure 7.3: Example of the selection of shape and size for the M-Scale model. In this
example, influence from the upstream is stronger than the influence from the
downstream, and influence from the flow direction is stronger than the influence from
the transverse direction.

7.3.3 Integration of Additional Information

The M-Scale model is currently designed to perform estimation using samples
of a single attribute. Including, but not limited to variogram-based estimation ap-
proaches, however, it is reported that incorporating additional information in the
estimation will enhance the precision of estimation (Schnabel and Tietje, 2003). A
detailed description for the types of additional information is listed in Saito (2003)
(pp. 12-14), which includes (i) more densely sampled secondary attributes (e.g.,
expert judgment, remote-sensing data, or inexpensive surrogate measurements) (ii)
historical records (e.g., locations of suspected sources of contamination) (iii) statis-
tical properties (e.g., mean or variance of the primary attribute obtained prior to
the current sample set) (iv) areal information (e.g., soil types or land use maps)
(v) physical/chemical relations for modeling the trend of the primary attribute (e.g.,
predominant wind direction and distance to the sources, or periodic behavior in geo-
magnetic data). Particularly for (iv), the areal information may also include samples
collected in multiple scales, for which the spatial structure could be characterized by
the covariances between mean values using the M-Scale model, and further used for
the estimation at different target scales. Direction and distance information for the

predominant wind direction indicated in (v) can be achieved by the selection of shape
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and size as indicated in Section 7.3.2.

For a sparse sample configuration, this secondary information is particularly im-
portant since the information will not only enhance the precision of the estimate,
but also further assist the reproduction of variability in addition to the contributions
given by the average value of neighboring samples. The incorporation of secondary
information, similar to the use of kriging with a trend model (p.313 of Journel and
Huijbregts 1978; p.164 of Chiles and Delfiner 1999) or cokriging (p.203 of Goovaerts
1997b;Wang et al. 2006), is recommended for the future development of the M-Scale

model.

7.3.4 Extended Multi-Scale Applications

The M-Scale model is developed in this dissertation as a spatial estimation model
for the decision support of on-site remediation. However, the definition of the M-
Scale model is conceptual and general, involving no specification of the attribute of
interest, and no definition of the objective parameter. Consequently, the M-Scale
model can be applied to attributes such as the extent of rainfall intensity that serves
as the input of a runoff evaluation model. The objective parameter, in addition to
the estimates and estimation uncertainty, may also involve the weights attributed to
the different local means, which is indicative of the best scale to perform estimation
locally. Nevertheless, examining the applicability to the different objective parameter
or different attributes of interest requires knowledge of the physical process for the
particular attributes, and thus further research needs to be conducted via interdisci-

plinary cooperations and appropriate selection of the validation approach.
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