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CHAPTER 1

Introduction

“The employment of machinery forms an item of great impartaim the general mass
of national industry. 'Tis an artificial force brought in aifl the natural force of man;
and, to all the purposes of labour, is an increase of handscegssion of strength,
unencumbered too by the expense of maintaining the labéddexander Hamilton, to

the US House of Representatives December 5, 1791.

1.1 Why Study Bipedal Locomotion?

The field of legged locomotion is the branch of robotics tlwaukes on the study of machines
that move from place to place using legs rather than wheelass€al motivation for studying
legged locomotion is that wheels require a continuous épkggsurface such as a road, whereas
legged machines only require intermittent support suctieapag stoned.More recent sources of
motivation are the potential applications of legged rolooentertainment, recreation, rehabilitation,
prosthesis development, human rescue, and health carep@baps the strongest motivation for
studying bipedal robots (in particular) is the potential émtomated labor in environments that
are much better suited for people than for traditional stetry or wheeled machines. Compared
with industrial pick-and-place manipulators, humanoitdats could operate with relative ease in
multi-level homes or offices, construction sites, or resem@ronments.

Unfortunately, at the current time, no legged robots—Ilenalbipedal robots—have been mass

Cited in [18].
2Raibert cites this motivation in his influential book [114].



produced for purposes other than entertainment, advegtisir education. The tasks of walking
and running, which are elegant and simple for humans, afieudifand unnatural for most legged
machines, so much so that dynamic legged locomotion is &tigifiactor in what could be the next
frontier of automation: the adaptation of machines to huerarironments.

A glimpse through the history of automation shows a techgiol shift from machines that
assisted men in the Industrial Revolution, to machines @ghatmerely supervised by men in the
age of Industrial Automation. Starting in the mid 17th ceptahe use of highly specialized me-
chanical tools helped to increase the productivity of hurtador when the task to be performed
was especially simplé. Through the 19th and mid 20th centuries, the appearance dfian&ed
factories, interchangeable parts, assembly lines, anageisain organizational techniques showed
manual labor adapting to better suit the environment of feighhme mechanized productiénin
the late 20th century, the technology of robotics and autiencantrol brought about a period of
Industrial Automation, characterized by automated factimes of self-operating, self-regulating
machines that are supervised and maintained by humans.

The success of automation in manufacturing suggests anptiential venue for mechanized
efficiency: the automation of services. In the present dayjce makes up about 80% of the United
States GDP, but robotic automation has only a minimal impact in sendadented industries. Ac-
tivities in auto repair, carpentry, construction, exptmra, forestry, health care, hospitality, human
rescue, shipping, and surveying represent a new domainpditafion of robotic labor. Tasks in
these fields are difficult to automate not only because of itggrrequirements (successful robots
would require high-level decision making skills and rel@bperation in an unpredictable environ-
ment) but also because of fundamental physical challerdggrous operation must be done by
mobile machines in areas not easily reachable by wheels)seTtobots able to perform the fun-
damentally dynamic tasks of high speed walking, running, dynamic balancing would be better
suited to execute high-level tasks such as navigating iowdor transporting goods or people in a
hostile environment.

Two hundred years from the onset of the Industrial Revofytionovations in mobile robotics

continue to occur. To name a few, a robot called the M2 “Mighitiyuse” has been used to clean

3The spinning jenny and mill works are examples of machinesabsisted workers without replacing them [18].
4See Taylor’s “Principles of Scientific Management” [138].
®U.S. Department of Commerce Statistics [35]



up nuclear waste at White Sands Missle range in the US [12@dngpany called Yobotics [3] is

conducting research on a powered orthodic brace for thoelawer leg injuries; the Japanese
robot MARIE could provide robot-assisted health care foagimg population [1]; and researchers
in METI's Humanoid Robotics Project (HRP) [68] are develapihumanoid robots fit for oper-

ating a backhoe and forklift—machines that can operateratteechines. The American military

is funding research on a bipedal robot called BEAR for useaitldfield injury rescue scenarios
[13]. Specializing in robotics and simulation, a companijeceBoston Dynamics [2] continues

DARPA-supported research on hexapods such as RHex [12Ri&#1[125] and quadrupeds such
as BigDog [113] and LittleDog [116]. Exoskeletons such ase®1[86] and HAL [85] can be used

to enhance certain aspects of human locomotion, rather#pdacing them.

The idea of a robotic workforce has international appeath wsearch groups working toward
similar goals worldwide. An explicit goal of Honda’s humash@roject [65] is to “develop tech-
nologies so that the humanoid robot can function not only agehine, but blend in our social
environment and interact with people, and play more impontales in our society”. The Japanese
Robot Association (JARA) also envisions the creation oftatiz society [79] with robots assisting
people in everything from livestock farming to nuclear pawe

If these distant frontiers of automation are to be explotedn machines must work not only
in factories, but alongside people in their homes helpinth way-to-day activities. With such a
diversity of applications it's unlikely that a single “onis fits all” solution will be appropriate for
every robot and for every application. Much more likely, atbtmuum of methods of locomotion are
needed. What is clear is that the current state-of-theeahniques are not yet sufficient for future
needs. Before our robotic workforce is to be built, advarsresneeded in both the hardware design

of legged machines and in the control algorithms that pesigble, coordinated movements.

1.2 Bottom-up Techniques of Control

Legged locomotion crosses traditional borders separattiagemic fields of study, leading to a
rich diversity of methods and motivations of research. B@neple, a better understanding of the
relationships between human and robotic walking wouldatliyebenefit those in kinesiology and

rehabilitation. An understanding of tliiest principlesof human and robot morphology would aid



those in mechanics, mechatronics, and machine designrakhens of gait planning and stabiliza-
tion would interest those in computer science, applied erattics, machine learning, dynamical
systems, and control theory.

As part of this diversity, the primary purpose of this thesit develop nonlinear control theory
that is appropriate to stabilize highly dynamic walking andning behaviors in underactuated pla-
nar bipedal robots. In order to focus on this task, other yoaspects of locomotion—underlying
biological principles, issues of mechanical and eledtedfeciency, and design principles for legged
machines—will be set aside. Results in this thesis are pravathematically and illustrated using
numerical simulation. The language of control theory wdlised throughout this thesis, in which
terms such as “stability”, “proof”, and “analysis” have sjjie mathematical interpretations.

Although potentially disconcerting at first, focusing ontheamatical aspects of walking (rather
than relying heavily on experimentation) is an acceptedriggie of study with a number of benefits
that often go unspoken. Instead of starting anew with eaatroleot prototype, mathematical theory
builds solidly on itself, largely independent of the robatwhich it is applied. Once a theorem is
proven to be true, it remains true for all time. In additidme tonclusions of mathematical analysis
are generalizeable and falsifiable—both characterisfisslal research.

As hardware technologies for building legged robots becewee more sophisticated, the math-
ematical control techniques for coordinating and staibdjzheir gaits must grow as well. While
hardware aspects of legged locomotion tend to get the mtsitiain, it is arguably the hidden
technology of control that will enable practical uses ofatsbfor day-to-day activitie$. Without
the bottom-up techniques of theorem and proof, sophisticenbot prototypes are doomed to re-
main pieces of animatronic sculpture, pacing slowly orstagd pleasantly waving for their human

creators, unable to help them with any meaningful or pragtédsk.

1.3 Context and Motivation

This thesis is intended to be read in the context of the madkieat framework of hybrid zero
dynamics (HZD), a methodology spanning everything from eting and control to optimization

and experimentation on walking and running in bipedal rebatbrief summary of key publications

The idea of control as a “hidden technology” is due to Kestrom [11].



in hybrid zero dynamics is given here, with a more thoroughexse of relevant literature to be
presented in Chapter 2.

Four papers form the backbone of the method of hybrid zeramycs. Early work on constraint-
based walking was given by Grizzle, Abba, and Plestan in, [68ihg the method of Poincaré as
an essential tool in the tractable stability analysis ofaradtuated planar bipedal walking. The
HZD theory of walking was officially coined by Westervelt,iGale, and Koditschek in [153] where
virtual constraints and hybrid invariance led to an eledawtdimensional test for evaluating the
stability of a planar bipedal walking gait. Walking expeénts on the French robot RABBIT were
presented by Westervelt, Buche, and Grizzle in [149] in WHRRABBIT exhibited outstanding sta-
bility and robustness properties when walking under an Hi&Bed controller. The final milestone
relevant to this thesis is the HZD theory of running presgriig Chevallereau, Westervelt, and
Grizzle in [31] where stable running is predicted for robsitailar to RABBIT.

The research topic of this thesis is motivated by the teatsdlok place in September 2004 to ex-
perimentally validate the HZD control of running presente{B1]. A writeup of these experiments
is available in the book chapter [101] by Morris, et al. Altlgh experimental implementations of
HZzD walking controllers worked essentially “right out ofetibox,” experimental implementations
of HZD running controllers did not. In a number of experineRIABBIT was able to achieve five
or six consecutive running steps, but no more than six wereaserved. The writeup of the exper-
iments in [101] points to unmodeled boom dynamics, a wallsmidace with inconsistent stiffness,
and the limited joint space of the robot as unforseen reas@stable running did not occur in the
two weeks allotted for experiments. Perhaps more signifitteam all of these, though, is the simple
fact that the performance requirements for running usiggcitnstraint-based controllers of [31]
were simply too near to the physical limitations of what RABEBs capable of achieving. This con-
clusion is something of a double-edged sword. Is RABBIT jpatde of running, or are the demands
of the controllers presented in [31] unreasonably high?héeiexplanation is satisfying, but both
contain some element of truth. As a participant in the rugmixperiments, it is the opinion of this
author that in all likelihood RABBIT is capable of stable nimg under the constraint-based con-
trollers of Chevallereau, Westervelt, and Grizzle. Howgitas also the opinion of this author that
if (or when) stable running is achieved on RABBIT the robuabsity to model perturbations and

external disturbances observed in planar walking will roplkesent in running. The relatively large



vertical deviations of the center of mass and high velczitypically seen in running in animals are
difficult to achieve for robots such as RABBIT. Without sinto store energy or favorable natural
dynamics, energy losses at toe strikes and actuator eftsted doing negative work will hinder

the robot’s ability to run stably and gracefully.

Figure 1.1: A picture of the AMASC actuator and a diagram ®pibtential use in a biped. Pictured
at left is the AMASC actuator [76], designed by Jonathan Hair€arnegie Mellon University. The
purpose of the AMASC is to mechanically store significant enms of energy and to introduce
compliance into an otherwise rigid mechanism. At right islaesnatic diagram showing how such
an actuator might be included into the design of a biped. &/bidsed on similar principles, the

compliance mechanism of MABEL is significantly more comptlean shown here.

In response to the experiments in Grenoble, a collaboraffeet was begun between researchers
at the University of Michigan and Carnegie Mellon UniveysitVith their expertise in robotics, con-
tributors from Carnegie Mellon University would improvearpRABBIT’s design, building a new
planar bipedal robot that was more well-suited for the highynamic task of running. With hard-
ware aspects of the projects in good hands, contributora ffee University of Michigan would
continue to research new methods in gait and controllegddsr bipedal running. The biped MA-
BEL, designed by Jonathan Hurst at Carnegie Mellon, featseees compliant actuators, in which
a motor is separated from the joint it actuates by a largesspring. See Figure 1.1 for a graphical

illustration.



1.4 Organization of Dissertation

In light of experiments on RABBIT and in preparation for theanrobot MABEL, this thesis
develops extensive new design tools that address the peime limiting aspects of previous HZD
controllers. To this end, the remainder of this dissenmtforganized into ten chapters and one
appendix.

To provide the appropriate background from which to viewdhierent work, Chapter 2 gives an
overview of relevant literature in legged locomotion, Highting philosophies and tools of research
used by three major schools of thought. Setting the stagihémrem and proof, Chapter 3 estab-
lishes the technical background relevant to the method bofitigero dynamics. The formalism of
systems with impulse effects, the definition of a solutiam] aigorous descriptions of stability are
summarized with original sources cited. Following eartierivations in [153] and [31], Chapter 4
derives models of walking and running M-link rigid planar bipeds with one degree of underactu-
ation. These models will be used extensively through Ch&otehere a model with compliance is
developed.

Original work of this thesis begins in Chapter 5 where resalte reported for the Septem-
ber 2004 constraint-based running experiments conductedeoFrench biped RABBIT housed in
Grenoble, Francé.The conclusion of this chapter sets the tone for the remaioidae document:
performance limiting aspects of both RABBIT’s hardware dinel control methodology of HZD
running need to be addressed before stable human-likenginvill be observed under constraint-
based control. Of particular interest are the transitindamding controllers used in the reported
running experiment. More formal versions of these corgrsllare seen in Chapter 6, Chapter 7,
Chapter 8, and ultimately provide a rigorous controllertfar capstone example in Chapter 9.

Original work continues with connections between passiugachic walking and HZD con-
trollers being explored in Chapter®6This chapter also analyzes the general case of walking on a
slope, gives the closed-form inverse of the decoupling imatrwalking, and investigates a type of

dynamic singularity that results from conservation préiperof angular momentum.

"The contents of this Chapter 5 are taken, with minimal maaliiim, from the book chapter [101] entitled “Achieving
Bipedal Running with RABBIT: Six Steps toward Infinity” by Blorris, E.R. Westervelt, C. Chevallereau, G. Buche,
and J. W. Grizzle. Co-authored material used by permission.

8The contents of Chapter 6 are taken, with minimal modificativom the journal article [154] entitled “Analysis
Results and Tools for the Control of Planar Bipedal Gaitagisiybrid Zero Dynamics” by E. R. Westervelt, B. Morris,
and K. D. Farrell. Co-authored material used by permission.



In conjunction with deriving smooth stabilizing contrabe Chapter 7 presents two new sets
of hypotheses under which reduced dimensional Poincags man be used for low dimensional
stability tests. The method of hybrid zero dynamics, asgumiesl in [153] for the control of planar
walking, assumed that any actuator dynamics were sufflgiéat that they could be neglected in
the controller design process. Finite-time controllersenesed to stabilize the associated transverse
dynamics, resulting in a non-Lipshitz closed-loop systdgmder the controller of Chapter 7, the
stabilized transverse dynamics are not only Lipschitzioowus, but arbitrarily smooth. Accompa-
nying stability tests are presented under two sets of hygsatht one dependent on the existence of
a special set of coordinates, the other coordinate-free.

Chapter 8 presents a new, constructive method for achigkimgroperty of impact invariance
on which the controllers of Chapter 7 depend. A set of sufiicienditions and a detailed procedure
are provided for the construction of a suitable set of outpattions that lead to the creation of an
impact invariant manifold. In previous work on the HZD of niimg, nonconstructive methods were
used to achieve impact invariance. In a scheme based oiitizanmlynomials, the new method
of achieving impact invariance significantly reduces thepotational burden otherwise faced by a
control designer searching for invariant manifolds.

Chapter 9 contains a capstone example of walking in a bipduseries compliance, tying to-
gether virtually every result developed in previous chegptéhe need for springs as motivated by
Chapter 5, the transition polynomials of Chapter 6, theil#alests of Chapter 7, and the param-
eterization of Chapter 8. Conclusions and final remarks @engn Chapter 10, with Appendix A
containing relevant proofs of the theorems and corollgpiesented in Chapter 3, Chapter 7, and

Chapter 8.



CHAPTER 2

Survey of Related Literature

To compare and contrast existing literature with the cdstenthis thesis, a few of the more
dominant trends in bipedal locomotion will now be examin€his survey is not intended to be ex-
haustive, but rather to provide a representative crosgsestiowing both the breadth and the depth
of ongoing projects in bipedal locomotion, emphasizing metation between robot morphologies
and control tools. For more complete histories of leggednoation, see [142, 114, 89, 119, 14,
148, 73].

Three classes of research in bipedal locomotion will beflgrreviewed: analytical approaches
to locomotion, the ZMP (zero moment point) criterion, andgize dynamic walkers. Boundaries
between these groups are often blurred, but they nevesthedpresent a few of the dominant ap-
proaches driving research in robotic locomotion. The firsug, the camp of formal stability the-
ory, focuses on the use of rigorous mathematical methodieiprocedures of gait design, controller
derivation, and stability proof. Analytically proving thstability of dynamic walking and running
motions can be relatively difficult, stemming from the mulhiase, hybrid nature of the problem
and the mathematical precision involved in the formulatidmelevant theorems and proofs. For
this reason many researchers choose to study static orspasisiwalking using the ZMP criterion,
forming a second major trend in bipedal locomotion reseaktére trajectory tracking controllers
are coupled with online gait modification schemes to ach@pasi-static walking gaits that keep
the robot upright, but often at the cost of producing a slawuching motion. A third group of
researchers follows in the footsteps of Tad McGeer, studsabots that require no actuation other

than gravity to walk stably down a slope. With no active cohtwhatsoever, passive dynamic



walkers produce elegant, human-like gaits with maximatieificy, but with minimal versatility of
locomotion behavior.

The following sections examine these three methodologiegreater detail, highlighting re-
search philosophies, common tools, and explaining a felwefibtable experimental successes of
each group. Because the work of this thesis is so closelydi#te context of hybrid zero dynamics

and provable stability, more emphasis will be placed oneseirig this area than the other two.

2.1 Formal Stability Analysis

The body of work on formal stability analysis of bipedal latation is characterized primarily
by an emphasis on mathematical rigor and by the use of a comet@i mathematical tools includ-
ing the modeling formalism of systems with impulse effectd the method of Poincaré sections.

Systems with impulse effects are a commonly used modelingdlism [12], consisting of a
continuous portion modeled by the flow of a differential égpraand a discrete portion modeled
by a state reset map. In the context of legged locomotioadgtstate walking or running gaits are
modeled as periodic orbits occurring in systems with impefects. For the rigorous definition of
a solution in the presence of nonsmooth impacts, see [21jtitmus phase dynamics are typically
modeled in the canonical form presented in [102] and [134h vigid collisions often treated using
the impact map of [74]. See [73] for a literature review addieg systems with impulse effects and
other common frameworks of modeling bipedal walking.

Essential to the formal stability analysis of legged loctiorois the method of Poincaré sec-
tions, as it is nearly the only way to establish the propeftyrovable stability of a walking or run-
ning motion. Parker and Chua have authored an introductfgrance to the method of Poincaré
in the context of chaotic systems [106], and Hiskens pravalgeneral development of hybrid tra-
jectory sensitivities for systems with impulse effects][7Bumerical studies using the method of
Poincaré are common and too numerous to list. In contaastlysison the Poincaré map is much
more limited. Koditschek and Buehler examine an idealizedieh of Raibert's hopper [88], sim-
plifying analysis by examining the regulation of energy.ingsthe method of Poincaré sections,
Espiau and Goswami study the stability of the two-link walke[45] and together with Thuilot,

identify chaos in [57]. A three-link planar biped with onegdee of underactuation is analyzed
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by Grizzle, Abba, and Plestan in [60] and extended to planadais with N links by Westervelt,
Grizzle, and Koditschek in [153].

To accompany hybrid modeling formalisms and the method ofdaoé sections, several control
tools are used to simplify the subsequent analysis. Sonteeahbre commonly used methods are
partial feedback linearization [131], sliding mode andtértime controllers [143, 16], continuous
phase zero dynamics (or abstractions thereof) [23, 77, 22, 47], virtual constraints [29, 25],
passivity-based control and energy shaping [136, 5, 1@4harnical optimization [99, 151], immer-
sion and invariance [10], controlled symmetries [133], fR@an reductions [8], port Hamiltonians
[42, 64], and linear matrix inequalities [128].

Because the work of this thesis is so closely tied to previessits in hybrid zero dynamics,
an extended review of HZD-specific results is now providedthe notable work of [60] by Griz-
zle, Abba, and Plestan a three-link planar biped with oneadegf underactuation was analyzed
in detail. Using techniques of zero dynamics in conjunctigth a finite-time controller [16], a
1D restricted Poincaré map was derived to check the dialofiwalking over flat ground. The
biped model, written as a system with impulse effects, wagldped using standard continuous-
phase dynamics [102] and HurmzlU's rigid body impacpriat]. Ideas of this work are extended
further in [153], where Westervelt, Grizzle, and Koditsklievelop the notion of hybrid zero dy-
namics(HZD): a powerful analytical tool resulting in a restriciéower dimensionasystermand not
just a restrictedPoincate map Techniques of optimization of HZD’s were published by Veegtlt
and Grizzle in [151], where SQP optimization was used to shadrtual constraint parameters that
resulted in stable gaits. Conditions such as joint linotasi, gait stability, and boundary conditions
were represented as constraints of optimization. One ofrtA@r benefits of using hybrid zero
dynamics is that optimization can be performed directly lom parameters of the controller to si-
multaneously determine a periodic walking or running motimd a controller that achieves it. In
this sense, the optimizer searches directly over paraipetieclosed-loop systems to find one that
exhibits a desired behavior and is approximately optim#hwaéspect to some criterion.

Initial work in hybrid zero dynamics has been extended to ahmioroader domain of robot
models. The method was extended to encompass walking irtsrelith rotating feet in [34] and
impulsive feet in [33], both by Choi and Grizzle. Itis shovinat the dimension reduction techniques

of hybrid zero dynamics are also valid in systems havingdatlation, specifically walkers with
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actuated ankles. The hybrid zero dynamics theory of runwiengpresented in [31] by Chevallereau,
Westervelt, and Grizzle, in which an HZD of running was camsted by generating a deadbeat
parameter update scheme that regulated the robot so thatitiwand in a desired configuration.

Finite time controllers were used in the stance phase tarerbkat the stability analysis performed

on the hybrid zero dynamics would extend to the full modelbdth theory and practice, running

was found to be more difficult than walking. Running was atited on RABBIT in 2004 using

a variant of hybrid zero dynamics control. Although numerconsecutive steps were observed,
a stable gait was not achieved; see the experimental resplbsted in [101]. Recently, principles

of hybrid zero dynamics have been used in conjunction wigspa dynamic gaits and Routhian

reductions to achieve quasi-3D walking by Ames and Greg§Jin [

The utility of mathematically rigorous methods is not ligdtto just theorem and proof. Demon-
strations of provably stable walking controllers have bekserved on RABBIT and ERNIE. De-
signed and constructed by the French group ROBEA, the plabat RABBIT was designed with
point feet (and without ankles) to encourage advances itraldheory. At rest RABBIT stands 1.5
m tall, has two symmetric legs with knees and hips actuateeldwtric motors through harmonic
gear reducers. The most popular method of controlling sucat would ordinarily be to use the
ZMP, which relies on ankle torque to effect changes in theidigion of ground reaction forces on
the stance foot. Without ankles, this technique cannot Ipdeap Sill, RABBIT has walked suc-
cessfully under controllers that are fundamentally déferfrom control of the ZMP. Stable walking
at 1.0 m/s was achieved in March 2003 using hybrid zero dycsemd virtual constraints [149, 29].
Other robots designed and built without ankles are BIRT aRIEE constructed at the Ohio State
University. BIRT [126, 19] is a freestanding three-leggethat with the outer two legs coordi-
nated by feedback control. ERNIE has a similar mass disiobwas BIRT but with only two legs.
Like RABBIT it is attached to a boom. Both BIRT and ERNIE wersijned without ankles to

encourage innovation in control.
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2.2 The Zero Moment Point Criterion

The ZMP criterion is an intuitive argument that was propasetie late 1960's by Vukobratovic
etal. [148, 146]. It states that as long as the zero moment'pafia robot remains strictly within the
interior of the support polygon formed by the robot’s foadf), then the robot cannot fall by tipping
over the edges of its foot (feet). When the robot does notitgcontact of the robot with the ground
can be idealized as a rigid connection to the global frame,vamnious tracking techniques can be
applied to provide joint coordination [115, 4, 58]. See thaigersary paper [146] by Vukobratovit
and Borovac for an overview of the method.

Owing to its simplicity and potential for application in dOF freestanding robots, the ZMP
has inspired several variants. A related notion is the FRb{Rotation Index) by Goswami [54],
and the CoP (center of pressure) explored by Sardain an@Besisin [124]. Such connections are
sometimes highly contested as in the confrontational wbfk4y]. Experimental results of Erbatur
et al. [44] examine the validity of the ZMP by taking data fraomman walking. A frequency domain
representation of the ZMP has also been developed [24].

One benefit of using the ZMP is that it provides a simple, ptalli oriented metric to evaluate
how close a robot is to tipping over. Researchers more istislein human-robot interaction, the
design of anthropomorphic hardware, or online gait symshean conduct experiments without
having to acquire an expertise in nonlinear control thearyvall. But, a distinct drawback of the
ZMP is that many trials are often required before success,sancesses on one robot are often
only weakly transferrable to another. Furthermore, from standpoint of formal control theory,
satisfaction of the ZMP criterion is neither necessary ndfigent for stability as described in
Chapter 3 of this thesis. Analysis and experiment on RABBIS0] have proven non-necessity,
and a computational example in Choi’s thesis [32] provesuffitiency in the absence of a higher-
level supervising controller.

Formal theory aside, ZMP-based control has been succlyssiggd in a number of robots
worldwide. One of the most well-known biped robots is ASIMé@gnda’s signature humanoid.

To date, ASIMO has made public appearances opening the NenStock exchange danced for

The zero moment point is a point on the walking surface abditlwthe net moment of the forces on the robot is
zero, including inertial forces due to acceleration.
2“Adding the Android Touch” The New York Times, February 1502.
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US daytime televisiohy and visited children worldwide ASIMO itself is the result of two decades
of research by Honda into humanoid robotics. Work began thighEQ in 1986, continued through
E1-E6, P1-P3, and finally to ASIMO in 2000; see [72]. As renearkn [71], the world’s first
self-regulating biped was Honda’s P2. In the P2 biped a sigmt ZMP-based scheme was im-
plemented where three types of controllers interacted hgeae posture stabilization [67]: ground
reaction force control, model ZMP control, and foot landipagsition control. Controllers were
developed by idealizing the robot as an inverted penduludhuaing trajectory tracking on the in-
dividually actuated joints. Improvements made from thed’hé P3 are discussed in [66]. System
specificationd for ASIMO are available in [121] with high level footstep plaing algorithms avail-
able at [98]. In December 2004, ASIMO achieved running at 3k0.8 m/s) with a 50 ms flight
phase using a controller based on posture control. A year, lat December 2005, ASIMO ran at
6 km/h (1.6 m/s) with a flight phase of 80 ms. Stable walking lbeen achieved at 2.7 km/h (0.75
m/s) [72].

Originally sponsored by Honda, and later by Japan’'s METIn{stry of Economy, Trade and
Industry) and NEDO, the Humanoid Robotics Project (HRP)Yhastated goal of “investigating the
applications of a humanoid robot for the maintenance tatk&lastrial plants and security services
of home and office” [68]. The project has produced a numbeipEds including HRP-1, HRP-1S
[161], HRP-2L [81, 83], HRP-2A, HRP-2P [84], and HRP-2, whtrdware descriptions and control
software architecture described in [68]. Detailed desioms of HRP-1S are available in [161]
including the experimental success of walking at 0.25 més ameven ground. Experiments relating
to HRP-2 stepping over obstacles are in [145] and simulatadrcomplex collision avoidance are
in [162]. In early 2004, running was announced for HRP-2LR][8sing a controller based on a
technique of resolved momentum.

Sony’s QRIO is an example of a bipedal entertainment rokadtutilizes ZMP control for walk-
ing [51]. At 58 cm tall, QRIO features 38 flexible joints and regsure sensors on each of its
feet. In addition to using the ZMP for walking and balanceymagoscillator CPG control has been

successfully applied on QRIO [43].

3The Ellen DeGeneres show, February 10, 2006

4See http://world.honda.com/ASIMO/event/

°For the level of sophistication to which Honda’s humanoiblatoproject has grown, relatively few details have been
officially published of the control algorithms governingliWiag and running.
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In addition to these popular humanoid walkers of the privsgetor, the biped JOHNNIE at
TUM is an example of an academic biped using the ZMP as itsggimmethod of control. For an
overview of the hardware design and controller objectivielobnnie see [52, 107]. For experimen-

tal demonstrations of walking at speeds up to 0.67 m/s, gge [9

2.3 Passive Dynamics and Minimal Actuation

Strongly influenced by the pioneering work of McGeer [96, Bbjhe 1990’s, researchers that
study passive dynamic walking build or simulate robots thalk on gentle slopes without active
feedback control or energy input aside from gravity. In dation studies, candidate walking gaits
are found using numerical optimization or root finding tagaes, with stability determined numer-
ically by estimating the eigenvalues of the Jacobian lizesion of the Poincaré map. Typically,
this is a testing-only procedure whereby walking motioresdgemed either stable or unstable—the
stability test is not a procedure for generating stable omati

A thorough analysis of passive bipedal walking is given byi&aet al. in [50], where simulation
shows stable period-one gaits doubling to period-two giitkse presence of increased slopes, with
continued period doubling until the onset of chaos. Higlhé&nd Moskowitz study a similar model
in [75], examining the role of impacts in achieving stabletios. In a separate effort, Goswami
et al. also demonstrate period doubling to bifurcation weitkensive analysis and simulation of a
two-link walker with prismatic knees [57]. Experimentalcsesses include that of Collins, Wisse,
and Ruina where a 3D fully passive walker was able to walklgtdown a slope of 3.1 degrees
[39].

Extensions have been made to add minimal actuation to tkeligan of passive dynamic walk-
ing, allowing walking on flat ground. A biped similar to the 3@lker of [39] was later constructed
by Collins [37] and featured minimal actuation in the formaafinding and releasing toe-off spring.
The biped was able to walk stably on flat ground at a rate of /lwith an energetic cost of
transport similar to that of a human. In a similar effort, ¥éshas produced a number of minimally
actuated bipeds, many with small pneumatically poweregbsaaots called McKibben muscles [144].
A 3D biped with yaw and roll compensation was simulated in/[1&ably walking at 0.5 m/s on

flat ground. A key conclusion of passive planar walking isegivn [156] by the simple rule “You

15



will never fall forward if you put your swing leg fast enougifront of your stance leg. In order to
prevent falling backward the next step, the swing leg shoulzk too far in front.” The concept was
tested on a planarized walker called Mike, showing this &napntrol law to dramatically enlarge
the basin of attraction over that of a passive walker. Seg][th$ Wisse and [38] by Collins, Ruina,
Tedrake, and Wisse for additional examples of walkers ttigteiminimalist control and actuation
for walking on flat ground.

Passive dynamics can also be used as a point of departunertioerfinvestigations. Elements
of passive dynamics are tied with learning control in Tedi®l8D biped Toddler [139, 140]. In a
similar marriage of fields, Kuo et al. examine the energatickipedal walking in relation to the
metabolic cost of human walking [91, 93]. A recent articlekayo highlights the tradeoffs between

performance and versatility in legged locomotion [92].

2.4 Marc Raibert

No review of locomaotion literature would be complete withmentioning Raibert’s fundamen-
tal contributions. First at the CMU Leg Lab and then at the NMldg Lab, Marc Raibert was a
pioneer in the use of natural dynamics in the design and @ootrlegged machines. Raibert de-
signed machines with light legs, prismatic knees, and aritajof body mass concentrated at the
hips. His controllers focused on the regulation of phys$jcaiotivated, intuitive quantities such
as hopping height, touchdown angle, and body angle. Withghilosophy of design and control,
Raibert successfully demonstrated running on his 2D and@ipér prototypes. The top recorded
speed of the 3D hopper was an impressive 2.2 m/s. His widtdy di986 book [114] is a corner-
stone of legged locomotion.

When robots have favorable natural dynamics and an appteprmorphology, use of Raibert's
controllers (or a variant thereof) could be applied to aghistable running. However, in the case
that a robot’s natural dynamics or its morphology are shgtiifferent (either by the use of electric
motors for actuation or the introduction of massive legs,ifistance) Raibert’s controllers are no
longer sufficient to provide stability. In many ways they @avwo obviousextensions to bipeds
with more general mass distributions or link morphologiBgspite what is claimed in [110], the

problem of running was not “mostly solved” by Raibert. Whileir usefulness is remarkable,
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Raibert's methods have their limitations, as do all appneado bipedal locomotion. As a whole,

the field of legged locomotion is relatively new, largely opalways ripe for new results.
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CHAPTER 3

Technical Background

The development of provably stable controllers requiredigiency in a basic set of mathemat-
ical tools. In preparation for the analysis of later chagtétis chapter reviews technical material in
five areas: the formalism of systems with impulse effectspdee orbits within such systems, the

definition of the Poincaré return map, principles of hytnihriance, and notions of relative degree.

3.1 Systems with Impulse Effects

Systems with impulse effects will be used to model the inhigydnybrid nature of walking and
running in legged machines. Systems with impulse effecte laacontinuous phase, described by
the flow of a differential equation, and a discrete phasegried by an instantaneous state reset
event. See [12] for a more detailed description. To defiag aontrol system with impulse effects,

consider a nonlinear affine control system

&= f(x) +g(x)u, (3.1)

where the state manifold is an open connected subsetlBf', the control input: takes values in
U C IR™, andf and the columns of areC'! vector fields ont'. An impact (or switching) surface,
S, is a codimension on€! submanifold withS = {z € X | H(z) = 0, Ho(z) > 0} where
Hy: X — Ris continuousH : X — RisC', S # 0, andvVz € S, 2 () # 0. Animpact (or
reset) map is & functionA : S xV — X,V C IR, p > 0 whereSN A(S x V) = 0, that is,

where the image of the impact map is disjoint from its doma&nC! control system with impulse
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effectshas the form

i = fla)+glau ¢S
DI (3.2)
xt = A(x™,v) x~ €8,
wherev € V is a control input for the impact map, and andx™ are the left and right limits of the

solution of the system. A system with inputs into the vecteldfbut not into the impact map,

T = f(z)+glx)u 2= ¢S
xt = Ax7) x~ €8,

can be written as a special case of (3.2) with= (). Replacing the control system (3.1) with an

autonomous System
i = f(x) (3.3)

and taking) = () leads to aC'' autonomous system with impulse effects

_ i o= flz) a7 ¢S
O (3.4)
xt = Ax7) 2” €S8.
For compactness of notation, an autonomous system withlgamifects (3.4) will be denoted as
a4-tuple,s = (X, S, A, f), while a control system with impulse effects (3.2) will bendeed as a
7-tuple,X = (X, S, VU, A, f,g).

Denote the solution of a system with impulse effects (3.21304) as (¢, to, zo), for t > tg
andzg € X. The solution is specified by the flow of the differential e (3.1) or (3.3) until
its state intersects the hypersurfagat some time;. At ¢;, application of the impact model
results in a discontinuity in the state trajectory. The istpaodel provides the new initial condition
from which the differential equation evolves until the nerpact withS. In order to avoid the state
having to take on two values at the impact time, the impacihterge roughly speaking, described
in terms of the state just prior to impaet = lim, ~;, (7,0, z¢) and the state just after impact
T =lim,\, ¢(7, o, ¥o). From this description, a formal definition of a solution istten down
by piecing together appropriately initialized solutiorfs(®.1) or (3.3); see [160, 60, 103, 27]. A
choice must be made whether a solution is a left- or a rightieoous function of time at each

impact event; here, solutions are assumed to be right conim

1The solution will sometimes be denotedt, z:9) where it is implicitly assumed thag = 0.
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3.2 Periodic Orbits

Cyclic behaviors such as walking and running are repredeaseperiodic orbits of systems
with impulse effects. A solutiorp(t, ¢, z) of is periodicif there exists a finitd" > 0 such that
o(t + T, tg,x0) = @(t,to,z0) for all t € [ty,00). A setO C X is aperiodic orbitif O =
{o(t,to,z0) | t > to} for some periodic solution (¢, ty, x¢). While a system with impulse effects
can certainly have periodic solutions that do not involvgdat events, they are not of interest here
because they could be studied more simply as solutions &f ¢8.(3.1). If a periodic solution has
an impact event, then the corresponding periodic @i not closed; see [60, 100]. Lé denote
the set closure af. A periodic orbitQ is transversatlto S if its closure intersects in exactly one
point, and forz* = O N S, LyH(z*) = 2L (2*) f(2*) # 0 (in words, at the intersectiod) is not
tangent taS).

Notions of stability in the sense of Lyapunov, asymptotabgity, and exponential stability of
orbits follow the standard definitions; see [87, p. 302], [B03]. For convenience, these definitions
are reviewed here. Given a noiim || on X, define the distance between a poinand a set to
be distz,C) = inf,cc ||z — yl||. A periodic orbitO is stable in the sense of Lyapunov (i.silfor
everye > 0 there exist9 > 0 such that such that,t > 0,

dist(p(t, x¢), O0) <e,
whenever didtr, O) < §. A periodic orbit isasymptotically stablé it is stable i.s.L and
tli)ngo dist(¢(t, x0), 0) =0,
whenever distzg, O) < 6. A periodic orbit isexponentially stablé there existsd > 0, N > 0,

andy > 0 such that/ ¢ > 0,
dist(p(t, z0), 0) < Ne " dist(xg, O),

whenever digtz, O) < 6.

3.3 Poinca€ Return Map

The method of Poincaré sections and return maps is widedg ts determine the existence

and stability of periodic orbits in a broad range of systemdels, such as time-invariant and
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periodically-time-varying ordinary differential equaitis [106, 62], hybrid systems consisting of
several time-invariant ordinary differential equatiomskéd by event-based switching mechanisms
and re-initialization rules [60, 103, 120], differentidgabraic equations [69], and relay systems
with hysteresis [53], to name just a few. While the analytitetails can vary significantly from one
class of models to another, on a conceptual level, the mathBdincaré is consistent and straight-
forward: sample the solution of a system according to antdvased or time-based rule, and then
evaluate the stability properties of equilibrium pointis¢ecalled fixed points) of the sampled sys-
tem, which is called the Poincaré return map. To define antev@sed sampling rule, a Poincaré
sectionS is chosen, and the value of the Poincaré return map is dedimsdbsequent intersections
of the system solution with the Poincaré section; see Eigut and Figure 3.2. Fixed points of the
Poincaré map correspchitb periodic orbitsof the underlying system.

The advantage of the method of Poincaré is that it reduaesttidy of periodic orbits to the
study of equilibrium points, with the latter being a moreeamdively studied problem. The analyt-
ical challenge when applying the method of Poincaré liesaigulating the return map, which, for
a typical system, is impossible to do in closed form becalusgjuires the solution of a differential
equation. Certainly, numerical schemes can be used to dertipireturn map, find its fixed points,
and estimate eigenvalues for determining exponentiallisgakHowever, the numerical computa-
tions are usually time intensive, and performing them tteedy as part of a system design process
can be cumbersome. A more important drawback is that the meceheomputations are not insight-
ful, in the sense that it is often difficdlto establish a direct relationship between the parameters
that a designer can vary in a system and the existence olitst@bbperties of a fixed point of the
Poincaré map.

In the study of periodic orbits in systems with impulse effed is natural to select the impact
surface as the Poincaré section. To define the return mag(tler) denote the maximal solution

of (3.3) with initial conditionz at timet, = 0. Thetime-to-impacfunction,7; : X — IRU {o0o},

2Fixed points ofP* = P o --- o P k-times also correspond to periodic orbits. The associatatysis problems for
k > 1 are essentially the same as fo= 1 and are not discussed further.

30f course, “difficult” does not mean “impossible”. There baveen success with numerical implementations of
Poincaré methods in the passive-robot community in tefifiading parameter values—masses, inertias, link lengths—
for a given robot that yield asymptotically stable periodibits [54, 141, 90, 39].
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Figure 3.1: Geometric interpretation of a Poincaré retnap for an ODE (non-hybrid) system. The
return map is an event-based sampling of the solution neariadic orbit. The Poincaré section,

S, can be any codimension oG¢" hypersurface that is transversal to the periodic orbit.

o(t, Az7))

Figure 3.2: Geometric interpretation of a Poincaré remap for a system with impulse effects. The
Poincaré section is selected as the switching surfacé, periodic orbit exists whe®(z~) = =~
Due to right-continuity of the solutiong;~ is not an element of the orbit. With left-continuous

solutions,A(z~) would not be an element of the orbit.
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is defined by

inf{t > 0|¢(t,x9) € S} if It suchthawp(t,zp) € S
Tr(zo) =
00 otherwise.

The Poincaré return map, : S — S, is then given as the partial map
P(x) = ¢(Ty o Az), A(x)). (3.5)
For convenience, define the partial mapping
o1, () = ¢(T1(x), )
so that the Poincaré return map can be written as
P(z) = ¢1, o A(x).

For aC'!' system with impulse effects? is differentiable at:*, so long as the orbit is transversal to
the impact surface. Indeed, the differentiability@f is proven in [106, App. D] at each point of
S={r e8| Ti(x) <ocoandL;H(P(z)) # 0}. From this, the differentiability of\ and f prove
that P is differentiable onS. Hence, exponential stability of orbits can be checked bgdrizing
P atz* and computing eigenvalues. The following theorem, difiéreersions of which appear in
[106, 60, 103, 100], relates the stability of fixed points lod return map (3.5) to the stability of

periodic orbits in systems with impulse effects.

Theorem 3.1 (Method of Poincaré Sections for Systems with Impulse &g If the C' au-
tonomous system with impulse effefts= (X, S, A, f) has a periodic orbitO that is transversal

to S, then the following are equivalent:
i) x* is an exponentially stable (resp., asymp. stable, or stadle.) fixed point of?;

i) O is an exponentially stable (resp., asymp. stable, or stable.) periodic orbit.

3.4 Hybrid Invariance and Restriction Dynamics

The notion of continuous phase zero dynamics, forward iamamanifolds, and functional

equivalents thereof are relatively common in the locommoliterature [23, 77, 22, 123, 47]. A
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novel contribution of the work of Westervelt, Grizzle, anddftschek in [153] is the coupling of
this idea with the concept dfmpact invarianceto form the principle othybrid invariance Types
of invariance (for autonomous systems with impulse efjestsl controlled invariance (for control
systems with impulse effects) will now be reviewed.

For an autonomous system with impulse effects= (X, S, A, f), a submanifoldZ C X is
forward invariantif for each pointz in Z, f(x) € T, Z. A submanifoldZ is impact invariantin
an autonomous system with impulse effeEts= (X, S, A, f) or in a control system with impulse
effects¥ = (X,S,0,U, A, f,g), if for each pointz in SN Z, A(x) € Z. A submanifoldZ is
hybrid invariantif it is both forward invariant and impact invariant. In a ¢mi system with impulse
effects¥ = (X, S,V,U, A, f, g), a submanifoldZ is controlled forward invariantf there exists a
C! mappingu : X — U such that for each pointin Z, f(x) + g(z)u(x) € T, Z. A submanifold
Z is controlled impact invariantf there exists aC' mappingv : S — V such that for each point
inSNZ, A(z,v(z)) € Z. A submanifoldZ is controlled hybrid invariantf it is both controlled
forward invariant and controlled impact invariant.

If a C' embedded submanifolg is hybrid invariant in an autonomous system with impulse

effectsY andS N Z is C'* with dimension one less than that &f then

2 = flz(2) 2~ ¢€8SNZ2
Yz (3.6)
zF = Algrz(z7) z7eSNZ

is called ahybrid restriction dynamicsf the autonomous system, wheref|z andA|snz are the
restrictions off andA to Z andS N Z, respectively. If, in addition, the systemhas a periodic
orbit O C Z, thenQ is a periodic orbit of the hybrid restriction dynamics. Tlystem (3.6) will
sometimes be denoted 8%z = (2,5 N Z, Alsnz, f|z) . Hybrid invariance ofZ implies that the

Poincaré return map has the property that
PSNnZ)cSnZ. (3.7)

On the basis of (3.7), theestricted Poincaé mapp: SNZ — SN Z, is defined agp = P|z, or

equivalently,

p(z) = ¢|z(T1|z 0 Alsnz(2), Alsnz(2)) = ¢11|z 0 Alsnz(2). (3.8)
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3.5 Notions of Relative Degree

The differential geometric concept of relative degree [l be important for the derivation
of a manifoldZ having appropriate invariance properties. Associate goubwvith a given system

with impulse effects

&t = f(x)+gx)u 2= ¢S
Yig ot = A(xT,v) x~ €S (3.9)
y = h(x)

whereh : X — IR?. Recall thatu takes values i/ C IR™. A system with impulse effects
is squareif the number of inputs equals the number of outputs. For @leviing definition, let
h; : X — IRwith 1 < ¢ < q refer to the individual scalar entries of the vector-valfigaiction £,

and letg; : X — IR" refer to the columns qf.

Definition 3.2. (Modified from [78]) The outpuf of a square systen(B.9) has relative degree
{ri,...,rn} atapointz® € X if ngLfchi(x) =0foralll <j <m,forall & <r; —1, for

all 1 < ¢ < m, and for allz in a neighborhood o’ containingz®. Define the decoupling matrix as

Ly L ha() oo Ly, L ()
Ly L ho(x) ... Ly, L'P 'ho(x)
Loy Ly hin(x) oo Loy L™y ()

If the decoupling matrix is invertible, then the outputis said to have vector relative degree
{r1,...,mm} at the pointz°. If in addition all valuesr; are equal to a single value, then the
outputh is said to have uniform vector relative degreat the pointz° and the decoupling matrix

is equal toL, L~ ' h(z).

Unless otherwise stated it is assumed in the following arapthat the relative degree is the
same for each output component. The developed results camtbeded to systems with gen-
eral vector relative degree, or to systems for which a vedative degree is achievable by dy-
namic feedback; see [78]. If desired, the Lie derivativesduim the above definition can be ex-
panded to a more familiar notation using the relationstips(z) = (&h(z)) f(z), Lih(z) =

Ox
(%th(ac)) f(x), LgLsh(x) = (a%th(m)) g(x), etc.
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Notation Introduced in Chapter 3

Symbol Meaning Defined

x state of a system with impulse effects Section 3.1
X state manifold of a system with impulse effects Section 3.1
U vector of control inputs to the continuous flow Section 3.1
u set of valid control inputs to the continuous flow Section 3.1
f drift vector field of a system with impulse effects Section 3.1
g control vector fields of a control system with impulse effeciSection 3.1
S switching surface of a system with impulse effects Section 3.1
H, Hy functions used in the definition of a switching surface Section 3.1
A impact map of a system with impulse effects Section 3.1
v vector input to the impact map Section 3.1
1% set of valid control inputs to the impact map Section 3.1
by a control system with impulse effects Section 3.1
by an autonomous system with impulse effects Section 3.1
tr time until the next impact event Section 3.1
T~ state of a system with impulse effects “just prior to impagt"Section 3.1
x T state of a system with impulse effects “just after impact” | Section 3.1
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Symbol Meaning Defined

»(t,to, o) | the solution of a system with impulse effects Section 3.2

(@] a periodic orbit of a system with impulse effects Section 3.2

O set closure of a periodic orhi? Section 3.2

dist(zo,C) | distance between a point € X and aset C X Section 3.2
solution of the autonomous systeim= f(x)

B(t, o) Section 3.3
initialized atty, = 0 with initial statexo

Tr the time to impact function (a partial mapping) Section 3.3
function returning the system state at the next impact

o1, Section 3.3
(a partial mapping)

P the Poincaré return map (a partial mapping) Section 3.3

Z A manifold potentially having invariance properties Section 3.4

flz the drift vector restricted to the domain Bf Section 3.4

Alsnz the impact map restricted to the domainzHf Section 3.4

B the autonomous system with impulse effeEtsestricted to

Y|z Section 3.4
the domain of2

p the Poincaré map restricted #(a partial mapping) Section 3.4

y = h(x) output vector of a system with impulse effects Section 3.5

hi(x) reference to the'™® entry of h(x) Section 3.5

g;(x) reference to thg'" column ofg(x) Section 3.5

L¢h(x) Lie derivative ofh(z) w.r.t. the drift vector field Section 3.5

L3h(z) Lie derivative ofL s h(z) w.r.t. the drift vector field Section 3.5

LyLyh(xz) | Lie derivative ofL;h(x) w.r.t. the control vector fields Section 3.5
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CHAPTER 4

Models of Walking and Running in Planar Bipeds with Rigid Lin ks

Following earlier derivations in [153] and [31], this chaptderives models of walking and
running in N-link rigid planar bipeds with one degree of underactuatidfurther assumptions
are made as to the biped’s morphology, the type and locafiactaators, the ground model, and
definitions of what it means to walk and run. The biped RABBpic{ured in Figure 5.1(a)), is
one real-world example of the models of this chapter. Housedrenoble France, RABBIT has
been used to experimentally verify the hybrid zero dynarfrmmework for the systematic design,
analysis, and optimization of provably stable walking coltérs [60, 153]. Although the class
of models considered here have pivot feet, understandieg ih a relevant first step in achieving
anthropomorphic walking motions in robots with non-trhvi@et and actuated ankles [33, 34, 41].
Similarly, the models of this chapter are a necessary psecuo controller development for the
compliant model of Chapter 9.

Guided by a set of detailed modeling hypotheses, the faligwgiections derive the differential
equations of stance and flight and the algebraic maps offifemding, and double support. Coor-
dinate relabeling, although counterintuitive at first, giifies the stability analysis of later chapters.
The chapter concludes by assembling the stance and flighépliato control systems with impulse

effects—open-loop plant models of walking and running fgidrplanar bipeds.
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4.1 Model Hypotheses

The bipeds under consideration consist\dfinks connected in a planar tree structure to form
two identical legs with knees, but without fégtvith the legs connected at a common point called the
hips. Other limbs such as a torso or arms can be connecteg Toafiguration at or above the hips.
All links have mass, are rigid, and are connected by revgdutés. The careful choice of a measure-
ment convention will simplify subsequent analysis—thaf@nglesg, = (¢1,¢2,...,qn-1), are
to be measured relative to other links and a single globdkang, is to be measured against a fixed
global frame. The position of the center of mass will be refieed by the vectQi., = (Tem, Yem)-

Actuation is provided by ideal motors (that is, ideal torqoeirces) connected to the relative
joint angles either directly or through rigid, losslessnmissions. The body coordinates are
actuated but the global angjer and the position of the COM are unactuated. Hence, fa¥dmk
biped there aré N — 1) torque inputs. The vector of generalized coordinates- (g1, ¢n, Pem)
will be used to represent the full configuration of the roboflight. In stance, the location of
the center of mass is given as a functign, = Y. (g1, gn), meaning that the stance phase will
have two fewer degrees of freedom. The vector of generalibeddinates;; = (qi, gn) Will be
used to represent the full configuration of the robot in sar8ee Figure 4.1 for examples of robot
morphology and coordinate conventions.

The robot is said to be in thiéght phasewhen neither leg is in contact with the ground, and in
the stance phasghen one leg is in stationary contact with the ground and therswings freely
under the influence of gravity and the actuators. If bothdeeion the ground, the robot isdiouble
support During stance, the leg contacting the ground is calledstaece legand the other is called
theswing leg The transition from stance to flight is calléakeoff or liftoff and the transition from
flight to stance is callethnding In this context, steady-statenningis defined as a sequence of
alternating stance and flight phases that is symmetric wghect to the left and right legs stride-to-
stride? Steady-statevalkingis a sequence of alternating phases of stance and doublersitipgt

is symmetric with respect to the left and right legs stridestride.

Although the models described here do not have feet per sh, leg terminates in a single pivot point that will
informally be called a foot.

2The chosen definition of running is fundamental to subsegmalel and controller development. Other authors
have defined running based on the motion of the center of nmdke ceaction force profile on the stance leg, for example
see [97].
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(z1,91) = (0,0)

Figure 4.1: A simplifying coordinate convention. All but ®mf the generalized coordinates of
stance are measured as the relative angles between two lnkstly one coordinate is measured

globally.

4.2 Phases of Motion

4.2.1 Flight Dynamics

In the flight phase, the robot h&d” + 2) DOF with generalized coordinates = (qy, gn, Pem)-

The equations of motion for flight can be written as

Di(qr)Gs + Ct(qt, G¢)gr + Gt (qr) = Bru, (4.1)

where Dy is the inertia matrix, the matri’s contains Coriolis and centrifugal terms, a64 is
a vector of conservative forces. Let the configuration sp@gcef the robot in flight be a simply
connected open subset&f¥ 2 corresponding to physically reasonable configuratione@fobot.

Introducing the state vector
z = (qr,dr) € Xp = Qp x RN*T?
the flight model is easily expressed as
ir = fr(ze) + ge(@e)u,

with f; and columns o beingC'! vector fields on¥;.

4.2.2 Stance Dynamics

In the stance phase the stance leg end is fixed, and therbfotecation of the center of mass

is given as a functiop.,, = Yem(gn, gn). As a result, the robot in stance phase ha®OF with
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generalized coordinateg = (g1, qn ). Similar to the flight phase, the equations of motion can be

written as

Ds(Qs)q's + Cs(q57 QS)QS + GS(QS) = Bsu- (42)

Note that (4.2) can be obtained by subjecting (4.1) to thesttaimt that one leg end is in con-
tact with the ground. Let the configuration spa@gbe a simply-connected, open subsetit’

corresponding to physically reasonable configurations@fobot. Introducing the state vector
Ls = (QSa(js) € Xy = Qs x RY

the stance model is written as

is = fs(xs) + gs(zs)u,

with f, and the columns af beingC' vector fields on¥,.

4.2.3 Landing Map

During running the transition from the flight phase to thensephase is calle@nding and
is modeled as an inelastic collision between the robot aadytbund. During this instantaneous
event impulsive reaction forces from the ground bring thieaigy of the tip of the advancing leg
to zero without causing it to rebound or slip. In addition tls# moment of landing, the robot's
configuration remains unchanged, but joint velocities geanstantaneously [74]. The post-impact
joint velocities are given by a function [31, Eq. (21)] that is based on thelrlgpdy collision
results of [74].

Let Y r2(gr) be the function that gives the in-flight location @fs, y2). At landing, impulsive
reaction force® f at the end of the swing leg induce impulsive torquest each of the joints by a

relationship found using the method of virtual work

5t — (M) / Sf.
dqr

A momentum balance illustrates the effect of the impact amt @ngular velocities

2+ L
Dx(gr)gs _Df(Qf)Qf = 0T.

*The termse; = (g; ,¢; ) andz = (g7, ¢;") refer to the system state just before and just after the tanevent.
The termse; = (g5, 45 ) andz; = (q;, ¢;") refer to the system state just before and just after the thkeent. The
addition of the superscript™ (such asz;*) indicates reference to the valaesteady-state.e., on the periodic orbit.
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By definition of the impact event, the end of the swing leg maestat rest after the impact, and

therefore

.. O0Tpa(qr) -+
(T2, 92) = el (0,0).

Together these can be written as a single matrix equation

/ 2+ .
Dy(qr) —Lp2la) ds Di(ar)qg
0Y pa(qr) a
PLpalye) 0 S5f 0

When the required matrix inverse exists, solving for thetyoopact angular velocities is straight-

forward: .
q-
Df((]f) CAICD) T
a4 0 .
4 = [ 10 ] i Di(qr)dy -
Y pa(gr) 0 0

gt

Recall that the generalized coordinates of flight= (g1, gn, pem ) are a superset of the generalized
coordinates of staneg = (q1,, gn). As aresult, the angular velocities at the beginning of thece
phasej;” can be found by simply choosing the appropriate elemenf§+oas found above.

With this in mind, the overall flight-to-stance transitiorapcan be put into the form

This transition operator is applied when the end of the acimanleg touches the ground, that is,
wheny, = 0 (see Figure 4.1). Define the functiof;_.,) : Xt — IR by H;_ (z¢) = y2, SO that

Hs_¢ (z¢) = 0 characterizes the transition hypersurface surfage) within A;.

4.2.4 Liftoff Map

During running the transition from stance to flight is calléff and is modeled as an instanta-
neous event on which joint angles and angular velocitiesiathanged. Recall that when the robot
is in the stance phase,, = Tem(gs)- In this case, the pre-transition velocity of the center abm
(Lo Uon) IS €asily found as

y - _Tcm s .s .
(xcmaycm) aq (q )q

S

By hypothesis, all positions and velocities of the robot@stinuous across the liftoff event, mak-

ing the post-liftoff values of the generalized coordinaded velocities trivial to find. The transition
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model for takeoff will be written as

m?_ = A(s—»f) (ms )

The transition from stance to flight occurs when the vertieattion force on the stance leg goes
to zero. This force is a function of the generalized coorgisaf stance, their angular velocities,
and (potentially) the torque vectar In the case that the vertical toe force is dependent on thha¢o
vector, a feedback law for the stance phase must be knowmnebafivansition hypersurface can be
defined for the liftoff event.

Let Hs_p)(zs) : X — IR represent the (perhaps closed-loop) expression for thigalecom-
ponent of the stance leg reaction force as a function of teeststate vector so thBf, ) (zs) = 0
characterizes the transition hypersurface surégger) within X;. If the vertical component of the
reaction force is dependent on the control law, then thesitian surfaceS,_.;) must also be de-

pendent on the control law.

4.2.5 Double Support Phase

During walking, the robot progresses from stance, to dosbfgport, to stance, etc. without
going through an intermediate flight phase. Although no fligiase is present, the impact map
for the double support phase of walking can be written as gposition of the liftoff and landing
events,

As(ws) = A(f—>s) © A(s—»f) (‘TS)

This transition operator is applied when the end of the sv&ggtouches the ground, that is,
whenys = 0. Define the functiorfl; : X; — IR by Hy(xs) = y2 so thatH(zs) = 0 characterizes
the transition hypersurface surfaSgwithin X;. An occasionally useful property of the impact map

of the double support phase is that

@ = Aulg)
G = Ag(gs)ds

whereA,, andA,, are implicitly defined.
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(z1,91) = (0,0)

Figure 4.2: An illustration of leg swapping. The model at lisfpictured at the end of a stance
phase. The greyed leg is the stance leg of the recently ctedpbtance phase. The model at right
is in the same configuration, but the roles of the legs have b&apped. The greyed leg is now the

stance leg of the upcoming stance phase.

4.2.6 Coordinate Relabeling

As a result of previous assumptions on symmetry, the bipdidhewe quantitatively the same
behavior whether the “left” leg is acting as the stance lether“right” leg is acting as the stance
leg. At the moment of impact, the roles of the legs are swapihedold stance leg becomes the new
swing leg and vice versa. To mathematically account forchange in roles, a coordinate relabeling
operator is used. Such a construction allows normal, igffttrsymmetric walking or running to
be analyzed as a period-one gait, rather than a period-twto §ae Figure 4.2 for a graphical
illustration of the leg swapping operator. Rather than antfor the coordinate relabeling operation
explicitly (which would lead to cumbersome notation and &ttl insight) we will assume that
coordinate relabeling has been implicitly carried out imderivation of the landing event of running

and the double support phase of walking.
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4.3 Open-Loop Models of Walking and Running

Having derived the stance and flight phases, the open-loatehud walking is written as a

system with impulse effects

‘%:s = fs(xs) + gs(ws)u Ts Q Ss
Vg : (4.3)

xsT = Ag(xsT) xs~ € S

or, in an alternative notation as
%o = (%800, RN A, f,94)

The open-loof model of running is written as a discrete event system withdharts (terminology

taken from [63])

. tr = fr(vr) +gr(@e)u xp & Si—g)
£
rf = Agg(ey) Ty € S(ios)
(4.4)
5 Ty = fs(xs) +gs(ws)u w5 & S(s—>f)
w? = A(S_ﬁ)(xs_) T, € S(S_>f)

or, in an alternative notation as
Y= (Xf7 S(f—>s)7 (2)7 R(N_1)7 A(f—»s)a ffa gf)

Y = (XS>S(S—>f)7@>IR(N_1)’A(S_’f)’fs’gs) ’

Walking and running motions are modeled as periodic orlitsining in the state manifolds of
(4.3) or (4.4). Having rigorously derived models of walkiaigd running, attention is turned toward
the derivation of stabilizing model based controllers. Bg tefinitions presented in Chapter 3,
asymptotic stability is interpreted as the property of @etloop walker or runner to asymptotically
reject arbitrarily small disturbances and converge oveetto a periodic gait. Note that stability
is not to be confused with robustness, which is the abilityeject large disturbances. Although
robustness implies stability, stability does not implyustness. Furthermore, neither stability nor
robustness in the given sense should be confused with tipegyocof “not falling down”, which is

a more general concept addressed by Yang, et al. in [159].

“Recall that the definition of the liftoff surfac®_.r) may require a priori knowledge of control law. We prefer this
slight abuse of notation in favor of a more involved modeidgion that would provide little additional insight.
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The derivations of this chapter have produced open-loogiagbnd running models for a class
of rigid planar bipeds with one degree of underactuatiore fblowing chapters present additional
results for bipeds in this class. Chapter 5 contains expariah results from the control of model
based running in RABBIT, and Chapter 6 analytically exptarelationships between HZD control
and passive walkers. And, chapters 7 and 8 derive consdled stability tests that are applicable

either to the models of this chapter, or to the model of coamplivalking in Chapter 9.
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Notation Introduced in Chapter 4

Symbol Meaning Defined

N number of (rigid) links in a planar biped Section 4.1
o vector of actuated body coordinates Section 4.1
qN the unactuated absolute coordinate Section 4.1
Pem location of the center of mass Section 4.1
qr generalized coordinates of flight Section 4.1
s generalized coordinates of stance Section 4.1
Dy inertia matrix of flight Section 4.2.1
Ck matrix of centrifugal and Coriolis terms of flight Section 4.2.1
Gt conservative forces of flight Section 4.2.1
Or configuration space of the flight phase Section 4.2.1
T state of the robot in flight Section 4.2.1
X state manifold for the flight phase Section 4.2.1
fe drift vector of the robot in flight Section 4.2.1
gt control vectors of the robot in flight Section 4.2.1
Dy inertia matrix of stance Section 4.2.2
Cs matrix of centrifugal and Coriolis terms of stance Section 4.2.2
Gs conservative forces of stance Section 4.2.2
Os configuration space of the stance phase Section 4.2.2
Ts state of the robot in stance Section 4.2.2
Xy state manifold for the stance phase Section 4.2.2
fs drift vector of the robot in stance Section 4.2.2
Js control vectors of the robot in stance Section 4.2.2
Yem function returning the position of the center of mass Section 4.2.2
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Symbol Meaning Defined

Ty state of the robot in flight, just before landing Section 4.2.3

x; state of the robot in flight, just after takeoff Section 4.2.3
state of the robot in stance, just before liftoff

Ty Section 4.2.3
(or just before double support)
state of the robot in stance, just after landing

xT Section 4.2.3
(or just after double support)

Y ro flight phase function returning the location of the swingtfocSection 4.2.3

S(i—s) transition surface of landing Section 4.2.3

Ar—g) landing map of flight Section 4.2.3

S(s—1) transition surface of liftoff Section 4.2.4

A liftoff map of stance Section 4.2.4

Ss transition surface of double support Section 4.2.5

Ag impact map of the double support phase Section 4.2.5
open-loop model of the stance phase of flight (or the open-

s Section 4.3
loop model of walking, depending on context)

pIT open-loop model of the flight phase of running Section 4.3
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CHAPTER 5

Running Experiments with RABBIT: Six Steps toward Infinity *

In March 2003, the French robot RABBIT achieved robust wajkunder a provably stable
hybrid zero dynamics controller [149]. Walking controfidor RABBIT acted by enforcingirtual
constraints which are holonomic constraints used to coordinate linkeneents throughout a gait.
The stability properties of such walking motions were amaty on the basis of thieybrid zero
dynamics of walkingwith the conclusions of theory supported by experimergsalits.

In September 2004, similar experiments were conducted|idata the hybrid zero dynamics
theory of running presented in [31]. In a number of experitheRABBIT achieved five or six
running steps before tracking errors exceeded softwaredmiut stable running (that is, an exper-
iment resulting in a potentially unbounded number of steyes$ never observed. One experiment
where RABBIT took six steps is examined in detail. The obsémyait was remarkably human-like,
having long stride lengths (approx. 50 cm or 36% of body lehdtight phases of significant dura-
tion (approx. 100 ms or 25% of step duration), an uprightyrestand an average forward rate of 0.6
m/s. A video is available at [59]. Details of the online catigr and the offline gait optimizer are
discussed along with hardware modifications leading upgcstmple experiment in which RAB-
BIT took six consecutive running steps. An additional dsstan about some unmodeled dynamic

and geometric effects that contributed to implementatifficdlties is given.

*The contents of this chapter are taken, with minimal modifica from the book chapter [101] entitled “Achieving
Bipedal Running with RABBIT: Six Steps toward Infinity” by Bdorris, E.R. Westervelt, C. Chevallereau, G. Buche,
and J. W. Grizzle. Co-authored material used by permission.

39



(i) (ii) (iii)

(a) RABBIT (b) Phases of running and coordinate conventions.
Figure 5.1: Phases of running and coordinate conventiorssichfigure of RABBIT is shown (i) at
the end of the stance phase with the stance leg in bold; (iingdlight with the previous stance leg
in bold; and (iii) at the beginning of the stance phase jurdanding and coordinate swap, with
the stance leg of the upcoming stance phase in bold. To aldtigr; the coordinate conventions
have been spread out over the stance and flight phases. Amglpssitive in theounterclockwise

direction.

The remainder of this chapter is a self-contained desoripif the theoretical development and
hardware modifications leading up to one example of an exygst in which RABBIT took six con-
secutive running steps. To facilitate implementation,dbetroller hypotheses of [31] are slightly
relaxed, leading to controllers that are easier to design those proposed in [31] but which still
lend the closed-loop system to a reduced dimensionalityilésyatest. Philosophy and motivation
of the modified control law are given in Section 5.1.1 with &aded development of the hybrid
controller in Sections 5.1.3 to 5.1.7. The resulting clelm model of RABBIT and its stability
properties are discussed in Sections 5.1.8 and 5.1.9. Beh®) Section 5.2 outlines a method for
the design of stable gaits using constrained nonlineamiguition and includes a numerical exam-
ple. Section 5.3 presents results from the first experinh@nfdementation of running on RABBIT
and a discussion outlining a number of possible reasons tahjesrunning was not observed. Con-
clusions are drawn in Section 5.4. Supplemental materialappearing in [101] is provided in

Section 5.5.
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5.1 Controller Derivation

5.1.1 Summary and Philosophy

The overall philosophy of HZD control is to use the freedomaikable in feedback design
to achieve a parameterized family of closed-loop systemsselstability analysis is analytically
tractable. This allows the use of humerical optimizatiosé¢arch among the family of closed-loop
systems to find those that yield a desired behavior, suctabesunning at a pre-determined speed
with upper bounds on peak actuator power and the coefficfestatic friction between the leg end
and the ground.

Parameterization is achieved through the use of virtuasttaimts in both the stance and flight
phases. Perfect enforcement of virtual constraints egullow dimensional surfaces that are in-
variant under the differential equations of the closeglooodel and are also invariant under the
transition maps. To achieve the invariance at landing, dlokst action is incorporated in the flight
phase controller that steers the robot to land in a pre-uted configuration, while respecting
conservation of angular momentum about the robot’s cetfiterass. This hybrid controller creates
a 1DOF HZzD that allows the stability of a running motion to bealgzed in closed form on the

basis of a one-dimensional Poincaré map.

5.1.2 Parameterized Control with Impact Updated Parametes

In the first running experiment attempted on RABBIT, thereswat sufficient tim&to imple-
ment completely the controller of [31]. The controller thats implemented used virtual constraints
in both the stance and flight phases, but the deadbeat aétioa ftight phase controller was not im-
plemented to regulate the final configuration of the robobathdown. Instead, to account for the
changing configuration of the robot at touchdown, the ttarsicontroller of [152] was adoptéd

Key points of the related analysis are highlighted in Secid..9.

1A total of two weeks were available to perform the experiraent

2The transition controller of this chapter takes into ac¢dha joint angles of the robot at touchdown but not the joint
angular velocities. As a result a true HZD of running is n&ated, and the resulting analysis of Section 5.1.9 (based on
[60]) is modified accordingly.
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5.1.3 Parameterized Virtual Constraints

For notational convenience, the stance phase and fligheplirasal constraints will be parame-
terized separately by, anda;, respectively. These parameter sets, which lie in the peterspaces
As = IR™ and Ay = IR™, can be updated at takeoff and landing events but are otbeeinstant.

With this notation, the virtual constraints for stance aightlare, respectively,

Yy =dqgp — hd,s(es(QS)a as) (513.)

y = qp — hat(0r(qr, ar), ag). (5.1b)

5.1.4 Stance Phase Control

The controller for the stance phase acts by updating thermessas and by enforcing the
virtual constraints (5.1a). As a result of enforcing theéual constraints, in stance phase, the robot
behaves as an unactuated 1 DOF system whose properties taretdeby choosing different con-
straint parameters. Apart from different boundary coodgion the virtual constraints, this control
is identical to the walking controllers developed in [1589]. The stance phase parameter vector,

as, can be expressed as

as = (as,05 Gs,1,-- -5 Gsme—1, Qs mg, O 01), (5.2)

wherems > 3, as; € R fori € {0,1,...,ms — 1,ms}, andé;,0F € IR. Note thatns =
4(ms + 1) + 2. The termd); andf;" are the values of the functidh(gs) evaluated at the end and
the beginning of the stance phase. In [153, 149]is expressed in terms of Bézier polynomials.
Here, a slightly different class of polynomiéls used that satisfy the following:
has(0F,as) = ago d;‘(gshdﬁ(ﬂs_, as) = Qgme—1
(5.3)
d-has(0F,as) = asy has(0s,as) = asm,.

The stance phase virtual constraints are imposed on therdgsay using a contral, : X, x A, —

IR* that drives (5.1a) to zeria finite time The specific assumptions are as in [60, 153].

3Terms that are constant during the continuous phases obmatind potentially updated at phase transitions, will be
consideregarameters
4Any class of smooth functions satisfying these propertigstie used to define virtual constraints.
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5.1.5 Flight Phase Control

The development of the flight phase controller is similarhat tof the stance phase controller.
The key difference is the choice éfin (5.1b) to be a function of the position of the center of mass

The flight phase parameter vectay, is defined as

_ + -+
af = (af,Oy Af 15y Qf me—15 Qf my :Ecmf’ xcm,f’ Tf)> (54)

wherem; > 3, ar; € R*fori € {0,1,...,my — 1,m}, anda . i@t . T € IR. Note that

cm,f? ““em,f

ng = 4(ms + 1) + 3. The termsz ¢, 7 ., andT; are, respectively, the horizontal position of
the center of mass at the beginning of the flight phase, thedrdal velocity of the center of mass
at the beginning of the flight phase, and the estintatiedation of the flight phase. The flight phase

virtual constraints (5.1b) are given by

+
1 [ Tem — X ¢
Hf(qfvaf) = T (4.7%) ; (55)
f xcm,f
andhg ¢, which, as in the stance phase, is a smooth, vector-valuedidn that satisfies
hae(0,a¢) = agg digfhd,f(lyaf) = Qfm—1
(5.6)
ar-has(0,ar) = ap, hat(1,at) = agm,.

For a given stride, let; denote the elapsed time within the flight phase. By conservaff linear
momentum,i/,  is constant during flight, which implies that = (zem — 2, ¢)/d0, - AS @
result,f; = t¢/Tt is a valid substitute for (5.5), and for this reason, the wiflght phase virtual
constraints are said to iene scaled Flight phase virtual constraints are enforced using argatm
state feedback controlles; : X; x A; — IR* that drives (5.1b) to zero exponentially quickly.
Note that finite time convergence is not used in the flight phasfinite time controller is used
in the stance phase to render the stance phase constrdadestinite time attractive so that the
analysis of running will be similar to that of walking [60]oFfurther discussion of this point, refer

to Section 5.1.9.

SCalculation of7} requires the height of the center of mass at Iandng‘,,f, to be knowna priori, which is only
possible if the virtual constraints are exactly enforcadulghout the flight phase.
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5.1.6 Transition Control: Landing

In the event that landing occurs with the state of the robbdsatisfying the virtual constraints,
the control parameters of the subsequent stance phgsare updated to ensure that the config-
uration of the robot satisfieg, — hq (05, as) = 0.5 The parameter updates are governed by the

S

differentiable functionu_) : Ss_s) — As, such that fous = w_g) (7; ),

aso = qu
as,1 = a*71
° 9;_ = 95((];_)
(5.7)
i} 0; = 6;F
Asms—1 = Ogme—1
as,ms = a;ms‘
In the aboveg is calculated using\ s (z; ), and the term8_ andag; € R ic{l,..., ms—

1, mg} are constant parameters chosen during design.
If the stance phase finite time controller can satisfy théuslrconstraints (5.1a) before the
liftoff event occurs, and the parameter updates obey (&) the stance phase will terminate with

qp — has(05, as) = 0, or equivalently, withy~ = ¢~*.

5.1.7 Transition Control: Takeoff

At takeoff, the parameters of the flight phase virtual caists, af, are updated so that the
duration of the planned motion of the robot is equal to thereded flight time. Parameter up-

dates are governed by a continuously differentiable foncti_.¢) : Sis—.ry — Ay, such that for

af = W(s—f) (xs )'

®0ur velocity estimates were rather noisy, so we did not wpdat. Updatingas,o andas,: would allow that just
after landing, the full state satisfied the virtual consiisi
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afo = a%k,o
agy = a%k,l
a = af
fme—1 = fome—1
*
Afmy = f,ms

Temg = T:vcm(qS_)
) OV ) —\ o
Tt = g ()4 (5.8)

Tt

. ¥ - +
y:_m,f + \/(ycmvf)2 o 2g(ycr:;,f B ycm,f)

g

g

where, g is the magnitude of the acceleration of gravity Qngif is the height of the center of

mass at the end of the flight phase, on the limit cycle. Thestwj;\ € R*ic{0,1,...,ms —

1,ms} are parameters chosen during design. Initiation of theofflevent is a control decision,

designated to occur whefi(¢q) = 65 . In the closed-loop model the switching hypersurface is

Ss—f) = { (w5, a5) € X X Ag | Higp) (5, a5) = 0} whereH ) (x5, as) = 0s(gs) — 05 .

5.1.8 Resulting Closed-Loop Model of Running

To form the closed-loop model of running, the state spacéhefdpen-loop model, (4.4), is

enlarged to include the parameters of the flight and stanesgsh Define the augmented state

spaces
Xte
Xse
with elements given by
Tfe
Tse

XfXAf

XSXAS

(qf> q.f> af)

(qS7QS7aS)'

The closed-loop dynamics can then be written as

]Ffe(xfe)

fse(wse)

fe(@e) + ge(we)u(zr, ar)
Onex1
fs(s) + gs(ws)u(zs, as)

Ongx1
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The zero vectors reflect that the virtual constraint pararsedo not change during the continuous

phases of running. The closed-loop impact maps includedrenpeter update laws,

_ A(f—»s)(xf_)
A(f—»s)e(xf_e) -
i w(f—»s)(wf_) ]

_ A(s—»f)(xs_)
A(s—»f)e(ws_e)

L w(s—»f)(ms_) ]

The closed-loop hybrid model is then

_ ite = [fie(Tte) Tio & S(t—s),

Yte o (5.9a)
ac;; = A(f_)s)e(l'fe) Teo € S(f_,s)e

_ Tse = fse(xse) Tse ¢ S(s—»f)e

S - (5.9b)
:U;; = A(s—»f)e(xse) T € S(S_)f)e,

which may be written as

ife = (Xfea S(f—>s)e>z(f—>s)e> ffe)

ESe = (Xsea S(S—»f)ea Z(s—>f)e7 fse) .
5.1.9 Existence and Stability of Periodic Orbits

The first step to evaluate the stability of a running gait gdiine method of Poincaré is to
construct a system with impulse effects (that is, a singkrchybrid model) that has the same

Poincaré map as (5.9). Following [31, Eq. (62)], define

)]

A (O
T = A7) €S,

wherez = Zse, f = foer A = A(rog), © 175 © Ds—p),, aNdS = Si_y),. In words, this

system consists of the differential equation of the cldseg- stance phase model of (5.9) and a

generalized impact map that includes the transition map from stance to flight, thghfliphase

dynamics, and the impact map from flight to stance. The gémedaimpact map is the result of

event-based sampling of the solution of (5.9) at takeofhesze
Because the virtual constraints in the stance phase arecedfasing a continuous finite time

controller [17], the reduction technique of [60, Thm. 2] jpécable. Because the parameter updates
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in the stance phase can be computed in terms of the state oblibe at takeoff, the analysis of
periodic orbits can be reduced to the computation of a omedsional restricted Poincaré map,

havingS_.r), as a Poincaré section.

5.2 Design of Running Motions with Optimization

5.2.1 Optimization Parameters

To design a running motion, a numerical routine is used tockethe parameter spacek
and A; for a set of parameters that results in a desirable gaitqgieriorbit of (5.9)). Common
requirements on the gait are achieved by incorporatingt@ings into the numerical search. Such
constraints address actuator limits, allowable joint spaad unilateral ground contact forces. For
the experiments reported here, the gait was designed usiogtanization approach that combined
the ideas of [30] and [153]; the optimization was performadally on the parameters of the virtual
constraints in order tgsimultaneouslydetermine a periodic running motion and a controller that
achieves it. This is in contrast with the approach of [31] mehartual constraints are designed by
regression against optimal, pre-computed, periodicdtajes.

Virtual constraints are assumed to be satisfied on the permtit, which has two conse-
guences: first, the integration of the closed-loop systemadycs can be performed using the
stance and flight phase zero dynamics (see [31] for detadsylting in short computation times;
and second, the virtual constraint parametergnda¢, are not independent. Once the independent
parameters have been identified, standard numerical @gatiioin routines can be used to search for

desirable gaits. The implementation of such a proceduratiged in the following subsections.

5.2.2 Boundary Conditions of the Virtual Constraints

The transition maps of takeoff and landing can be used tatifgeredundancies between the
virtual constraint parameter vectarsandas. Given the state corresponding to the end of the limit
cycle stance phase, * = (¢ *, 45 ), the state at the beginning of the subsequent flight phase can

be computed as{™ = (¢;*, ¢;) = A (z5™). For bothz;* andz;™ to satisfy the virtual
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constraints of their respective phases, the followingtieala must hold,

W1 = s /05 afy = qyf
(5.10)

Aims = Qys af, = g4y If,

which are derived by applying (5.3), (5.5), (5.6), and (38}5.1). These are the boundary condi-
tions associated with the liftoff event of the periodic orbihe state of the robot at the beginning
of the stance phase/™* = (¢;*, ¢1*), can be related to the state at the end of the previous flight
phase,z; " = (¢; *,¢; *), by the landing mapz™* = A_q (z; "), to yield the following addi-
tional design constraints,

_ ot -
Gso = qb,s* Of 1 = qb,f* '
(5.11)

agy = qus*/eer>k a}k,mf = qb_f*

The update law presented here enforces fewer boundarytmmsdihan the update law of [31].
The extra boundary conditions associated with takeoff &eady satisfied by (5.10), but those
of landing are not met by (5.11); they are more difficult tassitdue to conservation of angular
momentum in the flight phase. The main theoretical resulhigf¢hapter is that invariance of the
flight and stance phase constraint surfaces over the lamdieigt is not a necessary condition for
achieving provably stable running. As noted earlier, relgthis condition makes running motions

significantly easier to design.

5.2.3 Optimization Algorithm Details

Trial gaits for the running experiments were generatedgutiie constrained nonlinear opti-
mization routinef m ncon of MATLAB’s Optimization Toolbox. Three quantities are wived in
optimization:J, a scalar cost function to be minimized on the periodic b, a vector of equality
constraints, and N E(Q), a vector of inequality constraints. The following is a dgstton of the op-
timization procedure that was implemented. The indeperaimhdependent terrhsf optimization
are given in Table 5.1. Note that when the optimizer terngimatith the constraints satisfied*
will be a point located on a closed-loop periodic orbit and Wirtual constraints will be given by

(5.2) and (5.4).

"“Terms” is used to describe those variables used in optiivizathese are different from the “parameters” of the
virtual constraints.
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Algorithm

1.

2.

10.

. Calculates; , af ; by (5.10);a5 ,,,. 1, a5 ,,,, DY (5.11); andel: ¢, & 0>

Selectr; " = (¢; *,4; ), the state corresponding to the end of the flight phase.

Using the flight-to-stance transition functiafy;_), calculatez* = (¢*, ¢ "), the state

corresponding to the beginning of the subsequent stancepha

S

Calculated* by (5.7) anduf , a; , by (5.11).

. Selectag,, ..., a5, , andfg " to complete the stance phase parameter vegtor

» Ysmg

. Using parameters, and the initial condition:]*, integrate the equations of motion of stance

and apply the stance-to-flight transition operatby, ), to obtainz;™ = (¢, ¢;™).

andT} by (5.8).

cm,f? ““em,f?

. Selectsf o, ..., af,, _, to complete the flight phase parameter veator

. Using parameters;, and initial conditiomc;r*, integrate the equations of motion of flight to

obtainz; .

. Evaluate] EQ, andI N EQ.

Iterate Steps 1 to 9 untilis (approximately) minimized, each entry B is zero, and each

entry of INEQ is less than zero.

5.2.4 An Example Running Motion

A sample running gait designed by the above algorithm is nmsgnted. A stick diagram of

this motion is given in Figure 5.2(a). The stability anadysutlined in Section 5.1.9 was applied to

the resulting running motion. Figure 5.2(b) gives the fettd Poincaré map, which indicates that

the motion is locally exponentially stable. The gait wasgiesd to minimize the integral of torque

squared per distance traveled, with the following constsai

Equality constraints, EQ

e error associated with finding a fixed point, — ;||
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Terms of Optimization

Independent Dependent
" € RY 0% € R
* * c R4 * * c R4
as,Z’ ce ’a’s,mS as,O' as,l
07 € IR rI* € RY
* * 4 * * 4
Aoy Of g € R afgr G5q € R

* * 4
af,mf—l’ af,mf € R

—+x
xcm,f’

it LT € R

cm,f?

xy € R

Table 5.1: Independent and dependent terms used in optionizal he choice of the independent
terms is non-unique and depends on the specific optimizgiiocedure. The parameters below
correspond to the algorithm in Section 5.2.3, which is omaightforward method to ensure the

boundary conditions of the virtual constraints are met.

e deviation from the desired running rate
e required frictional forces at the leg ends are zero justiegiakeoff and just after landing (to
prevent slipping at these transitions)
Inequality constraints, INEQ
e magnitude of the required torque at each joint less than 180 N

e knee angles to lie if0°, —70°) and hip angles to lie i11130°, 250°) (see Figure 5.1(b) for

measurement conventions)
e minimum height of the swing foot during stance greater tham7
e required coefficient of friction of the stance phase lesa tha
¢ flight time greater than or equal to 25% of total gait duration

¢ landing foot impacts the ground at an angle of approach tessiH° from vertical

joint angular velocities less than 5 rad/s
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Figure 5.2: Stick diagram and Poincaré map for the examphming motion (rate 0.58 m/s).
Poincaré map constructed by evaluatiig= (o, 1)?/2 at the end of successive stance phases,
whereo_; is the angular momentum about the stance leg end just befmié | The fixed point,

¢* = 303, is located at the intersection pfand the identity mag; = (;+1, and corresponds to
an equilibrium running rate of 0.58 m/s. The slope of the frap* is dp/d¢ ~ 0.67, indicating

exponential stability.
5.3 Experiment

5.3.1 Hardware Modifications to RABBIT

Prior to the experiment reported here, only walking experita had been performed with RAB-
BIT. To prepare for the task of running, four hardware modiitans were made.

The first modification was the inclusion of prosthetic shobkabers in the shanks. It was
speculated that with shock absorbers the landing wouldeckass wear and tear on the harmonic
drive gear reducers that form RABBIT'’s hip and knee jointsheTinclusion of shock absorbers
added approximately 5 cm to each shank.

The second modification was the installation of force saasitesistors into RABBIT’s point
feet. These devices allowed for more accurate measureméne couchdown time than did the
previously installed mechanical contact switches. Sihesé sensors suffer from significant drift,
their signals were numerically differentiated to make easie detection of impact events.

The last two modifications were the bolting of aluminum usuel stock along each thigh and

51



the widening of the hips. Both of these changes were madelpopnevent flexing of the legs in
the frontal plane. Significant flexing was withessed durimg first several experimental trials of
running. This problem was more pronounced in running thawaiking because of the greater
impact forces associated with landing. On several occasiABBIT “tripped itself” during a
stance phase of running when the swing leg passed by theed&n(the legs knocked against each
other). This came about because RABBIT was designed to lsvegs close together to better

approximate a planar biped.

5.3.2 Result: Six Running Steps

After completing hardware modifications and successfpyroducing previous walking exper-
iments, running experiments were conducted. A number aérxqental trials resulted in RABBIT
taking several human-liRerunning steps. One such trial, which was an implementatfothe
example running motion of Section 5.2.4, will be discusseith

For this experiment, motion was initiated by an experimemnteo pushed the robot forward,
into the basin of attraction of a walking controller that uced walking with an average forward
walking rate of 0.8 m/s. RABBIT then achieved stable walkifajowed by a transition to running
in a single step, followed by six running steps. After thdlsistep, the experiment was terminated
by the control software when the tracking error limit of CaBlians was exceeded for the stance knee
angle. Examination of collected data suggests that trgaiiror resulted from actuator saturation.
Data also show the swing leg extremely close to the grountieatrtoment the experiment was
terminated, suggesting the swing leg may have, in factclkttiie ground contributing additional
tracking error.

A plot of estimated® foot height is given in Figure 5.3. Average stride durationthe steps was
431 ms. Flight times, observed as those portions of FigiBevbere neither leg is at zero height,
lasted an average of 107 ms (25% of the stride). Videos ofbtherament and many additional data

plots are available at [59].

8A human-like gait is considered to be characterized by aighpposture, a torso leaning slightly forward, and a
long step length.

°See [149] for a description of the PD controllers used to mefthe virtual constraints.

When RABBIT is in flight, there is no accurate way to deterntifigheight. A sensor was mounted to record boom
pitch angle, but due to flexing of the boom, these data werimate. During the stance phase this lack of sensing is not
a problem because the end of the stance leg is always at Zgid.he
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Figure 5.3: Estimated height of RABBIT's point feet duritngtreported running experiment. RAB-

BIT’s left foot is indicated in bold. Flight phases occur whaeither foot is at zero height.

Several problematic issues related to RABBIT’s hardwack rdit appear until running was
attempted. (For a discussion of general implementatiomes®f walking including unmodeled
effects of the boom, gear reducers, and an uneven walkirfgceusee [149].) Future running
experiments—whether on RABBIT or another, similar meckiari-should take into account the

following issues.

Boom dynamics

The perturbing effects of the boom were found to be much migreéfieant during flight phases
than during stance phases. When RABBIT is modeled as a ptgstam, an analysis of the three-
dimensional mechanics shows that the contribution of thmrbto the center of mass dynamics is
significant. Specificallygs is no longer, in general, a cyclic variable during flight. Hawer, if boom
masses are appropriately distributed, the parabolic matfche center of mass, as modeled in a
planar system, is recovered. Unfortunately, this specedswistribution was impossible because

RABBIT does not have a counterweight system.

Walking surface

The walking surface was also a source of problems. Thisae#faonsisting of rubber over el-
evated plywood supported on the edges by a wood frame—wgisalty built to provide a uniform,
level surface. Although the surface appears uniform, waglléxperiments demonstrated otherwise.

It was found that the surface has “fast” and “slow” areasesponding to varying floor stiffness
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and coefficient of friction.

Limited joint space

For safety, RABBIT’s joints have hard stops that limit iténjospace, which, for example, pre-
vent the shank from contacting the thigh. Although the amd joint space was sufficient for
walking, it became a significantly limiting factor in the égs of running gaits. These hard stops
prevented the swing leg from being folded close to the higclvis a natural and desirable motion

that minimizes the leg’s rotational inertia.

5.4 Conclusion

A novel approach to the control of running in planar bipedd &g first experimental imple-
mentation on RABBIT have been presented. The control lawlsiti, consisting of continuous
actions in the stance and flight phases and discrete actidhe artansitions between these phases.
In the stance and flight phases, the controller coordinatesslative motions of the robot’s links by
imposing virtual constraints at the actuated joints. Attifamsition from stance to flight, the con-
troller adjusts the virtual constraints for the flight phasea function of estimated flight duration
to ensure that the former swing leg is advanced properlyki® tg its role as the next stance leg.
At the transition from flight to stance, the controller uggathe virtual constraints of the stance
phase to account for the orientation of the robot at landiay. the nominal periodic running mo-
tion, the parameters of the virtual constraints are detezthby numerical optimization in order to
meet actuator power limits, friction bounds, joint limittc. For running experiments, RABBIT’s
mechanical and electrical systems were modified: shockrabsowere added to the shanks; the
ground contact sensors were improved; the stiffnessegsfitethe frontal plane were increased,;
and the hips were widened.

The main theoretical result of this chapter was the devetoyinof a running controller that
is based on the HZD methodology, but easier to design andemmgit while still resulting in a
reduced dimensionality stability test. The main experitakresult of this chapter was the physical
realization of six consecutive running steps with a humla-gait and identification of hardware

difficulties of running with RABBIT that were not present iralking.
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Takeoff Time | Landing Time | Flight Phase Duration
19.5465 s 19.6470 s 0.1005 s
19.9545 s 20.0835 s 0.1290 s
20.4255 s 20.5215 s 0.0960 s
20.8695 s 20.9715 s 0.1020 s
21.3045 s 21.3945 s 0.0900 s
21.6990 s 21.8205 s 0.1215 s

Table 5.2: Flight phase durations for the six running st@pset = 0 s corresponds to the initiation

of the experiment.
5.5 Supplemental Material

To support the conclusions of this chapter, several additidata plots are provided here that
did not appear in [101]. Figure 5.4 shows the value of a ndeedlgait parameter as a function of
time. Values from 0 to 1 indicate the completed fraction & fanned stance phase, and values
from 1 to 2 indicate the completed fraction of the plannechflighase. Power was automatically
cut after the sixth step due to high joint tracking error. I€sponding takeoff times, landing times,
and flight phase durations are given in Table 5.2. Plots afatot saturation are shown in Figure
5.5 where the provided torque and the commanded torque degethown in fractions of motor
capacity. Flattened peaks atand —1 indicate the controller commanded more torque than the
motors could output. Data suggests that torque saturatiangithe flight phase caused a buildup
of tracking error across the six running steps. The trachlots of Figure 5.6 show how closely the
local PD joint controllers enforced the virtual constraiat each joint, indicating that actual joint
trajectories were ordinarily very close to their desiretlga. The experiment was terminated by

the accumulation of tracking error in the right knee joinshswn in Figure 5.7.
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Figure 5.4. Normalized gait parameter showing the exigaicsix running steps. Values from 0
to 1 indicate the completed fraction of the planned stanes@hand values from 1 to 2 indicate the

completed fraction of the planned flight phase.
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Figure 5.5: Actuator saturation during running. The preddctuation is shown as a solid line.
The actuation requested by the controller is shown by adigldiashed line. Flat peaksiaand—1

indicate the controller required more torque than the nsotould safely provide.
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Figure 5.6: Joint tracking performance during running. dheerved trajectory is shown as a solid

line, the reference trajectory, by a lighter, dashed line.
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Figure 5.7: Joint tracking error during running. An accuatiain of error in the outer knee triggered

safety conditions that automatically terminated the expent.
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Notation Introduced in Chapter 5

Symbol Meaning Defined

As parameter space of the virtual constraints of stance Section 5.1.3
A parameter space of the virtual constraints of flight Section 5.1.3
ha,s, 0s functions defining the virtual constraints of stance Section 5.1.3
ha,s, Of functions defining the virtual constraints of flight Section 5.1.3
W(f—s) parameter updates at landing Section 5.1.6
W(s—t) parameter updates at liftoff Section 5.1.7
KNse state manifold of the closed-loop stance phase Section 5.1.8
Xeo state manifold of the closed-loop flight phase Section 5.1.8
Tse state of the robot in closed-loop stance Section 5.1.8
Tfe state of the robot in closed-loop flight Section 5.1.8
fee vector field of the closed-loop stance phase Section 5.1.8
fee vector field of the closed-loop flight phase Section 5.1.8
Aty closed-loop liftoff map Section 5.1.8
Z<fﬂ)e closed-loop landing map Section 5.1.8
Yo model of the closed-loop stance phase Section 5.1.8
Yte model of the closed-loop flight phase Section 5.1.8
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CHAPTER 6

Sample-Based HZD Control for Robustness and Slope Invariace of

Planar Passive Bipedal Gaits

To explore potential connections between passive dynaraikens and hybrid zero dynamics
controllers, this chapter presents new analysis resutisaois for the HZD framework. These in-
clude (i) analysis of the effects of walking on a slope, (iiab/sis of dynamic singularities resulting
from enforcing virtual constraints, and (iii) an alternatimethod for designing virtual constraints.
Extensions are motivated by a desire to make the gaits ofveasslkers robust to disturbances.
As noted in Chapter 2, passive bipedal walkers have thdyatolivalk stably down a slope without
the use of actuation [96] and typically suffer from sengiito initial conditions and to external
disturbances. The new results and tools facilitate thegdesi controllers to make such passive
gaits robust.

The first result, analysis of walking on a slope, is an extansif [153, 149] in which compo-
nents of the closed-loop system dynamics are examinedéaonligte the overall effects of changing
ground slope. Results make indirect use of observatiorengiv[133] regarding the fact that planar
rotations of the robot are a group symmetry of the robot’stmnenergy but not of its potential
energy.

The second result sheds light onto the condition of decogptatrix invertibility. For an HZD

controller to be valid, the decoupling matrix associatethwerforming input-output linearization of

*The contents of this chapter are taken, with minimal modifice from the journal article [154] entitled “Analysis
Results and Tools for the Control of Planar Bipedal Gaitagisiybrid Zero Dynamics” by E. R. Westervelt, B. Morris,
and K. D. Farrell. Co-authored material used by permission.
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the robot’'s dynamics must be invertible [78, Chp. 5]. Thesetbloop system is said to encounter a
dynamic singularityat points where the decoupling matrix is noninvertible.sldgfinition is used to
parallel the notion of a kinematic singulafityDynamic singularities, like kinematic singularities,
represent configurations of the robot at which there is aatémhu in the number of DOFs. But,
unlike kinematic singularities—which arise from the meukan’s kinematics and involve only its
kinematic parameters—dynamic singularities involve Hatlematic and inertial parameters. One
type of dynamic singularity related to bipedal walking itwes the decoupling matrix used in HZD
feedback controllers. Other types of dynamic singulaxitiéll not be considered. It is shown that
decoupling matrix singularities can be computed with atiredly simple, closed form expression.
Interpretations of dynamic singularities are given as aeglanalysis of the effects of approaching a
singularity.

The third result, an alternative method for designing akonstraints, expands the set of refer-
ence gaits controllable within the HZD framework, sepa@atiait design and controller design into
two distinct steps. In previous work, the virtual consttaiwere chosen using numerical optimiza-
tion over a pre-chosen, finitely parameterized family ofstmaints. This technique is acceptable
when the objective of controller design is to find a gait widntain stability and energetic proper-
ties. However, when the goal is to exactly achieve a givet) gaiisting techniques can do no better
than to project the motion onto the closest member of thenpatierized family of constraints. The
alternative method, termeshmple-based HZD contiolloes not use a pre-chosen family of virtual
constraints. In essence, a given (period-one) gait is saiplobtain full state information at cho-
sen instants of time. Certain normalized quantities arepetied from this full state information
and are used to define the virtual constraints of an HZD clbetroThe sampled gait can be ob-
tained from, for example, a gait induced by a potentiallynown control strategy, or a gait whose
corresponding control strategy is not equivalent to impggiolonomic constraints. An example
of the latter is the work of [30] where joint motions were dgsd to be polynomial functions of
time rather than of state. By using this approach, it is usuallypossible ta@xplicitly represent the
motions as following holonomic constraints [28].

With regard to passive gaits, sample-based HZD controlleadhe design of controllers that

!For other definitions of dynamic singularities relating pasecraft manipulators, see [105, 158].
2What this section provides is a computationally tractatplicit representation of the holonomic constraints that
correspond to such motions.
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can (i) render a stable, passive gait robust and (ii) sysieally modify a given gait’s characteris-
tics. The sample-based HZD controller method combinesridnaple stability properties and large
basins of attraction of HZD controllers with the energy éfitcy of passive or nearly passive gaits.
The theory differs from the work of [133], [9], and [137] inahfull actuation is not assumed and
a means to systematically modify the gait is given. The thadso differs from the work of [56] in
that a given passive gait is enforced (with arbitrary accyrarather than inducing a gait that does
not correspond to one that is passive.

The theoretical results of the chapter are illustrated via éxamples. Although the developed
theory applies taVv-link planar bipeds with point feet, for presentation simipy all examples use
the two-link walker depicted in Figure 6.1. The dynamicstod biped during the single support
phase is that of the Acrobot [132].

The content of the remainder of the chapter is as follows.ti@e6.1 presents the model for
walking on sloped ground. Section 6.2 reviews the concdpistoal constraints and HZD control
in the context of walking on a sloped surface. Section 6.8gjitie analysis of dynamic singularities
followed by an example. Section 6.4 develops sample-bastlconstraints and augmentation
functions, and includes an application to the design ofrodiets for torque specified gaits. Sec-
tion 6.5 contains three examples that apply the tools ofi@eét4 to the design of controllers that

make passive gaits robust. Conclusions are drawn in Se@iton

6.1 Model of Walking on Sloped Ground

6.1.1 A System with Impulse Effects

The biped is assumed to be comprised\ofigid links connected by revolute joints such that
() there are no closed kinematic chains; (ii) there are tworaetric legs and, possibly, a torso; and
(i) the leg ends contact the ground at a single point. Thetds said to be in single support (or in
the swing phase) when exactly one leg is in contact with tbergt. The leg contacting the ground

is called the stance leg and the other is called the swinglteg.assumed that all of the biped’s

3In the HZD framework, the biped is assumed to have point @ntith the ground and is therefore underactuated.
With this assumption, the effective underactuation thégtexvetween the biped and the ground—because of unilateral
constraints due to finite foot size—is made explicit. If adalpn question is, in fact, fully actuated, the HZD framework
still applies. First an HZD controller is designed, and themouter-loop control is designed that makes use of the ankle
torque [34].
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(¥5.p3)

\

Figure 6.1: Diagram of a two-link planar biped walking dowslape. The dynamics during the

single support phase is that of the Acrobot [132].

internal degrees of freedom (DOFs) are actuated, but thatagree of freedom associated with the
robot’'s absolute orientation is unactuated (i.e., no tercgn be supplied between the robot and the
ground). The swing phase model is therefore underactuated.

The generalized coordinates of the biped @re (¢4, q.,) € Q, whereQ is an appropriate sub-
set of RV, ¢, is the column vector of the relative, actuated coordinaes,q, is the unactuated
coordinate. It is assumed that the unactuated coordinateasured relative to the walking surface.

The swing phase equation of motion of the biped is
D(q)i + Flal(q.¢) = Bu, (6.1)

with B = [T 0] and wheré « is the ground slope; for example, see Figure 6.1. Let the sfahe

biped ber = (q,¢) € TQ. Then, (6.1) can be written as
i = flol(z) + g(x)u. (6.2)

The walking gait is assumed to be symmetric with respectadwo legs so that, in particular, the
same swing phase model can be used irrespective of which thg stance leg.

Swing phases are separated by phases of double supportingevhen both feet are in contact
with the ground. This transition is modeled as an instargasgerigid body collision [74] that occurs

whenz € S = {z € TQ | pj(z) = 0}, wherepy is the vertical height of the swing leg end. The

“Throughout this chapter, dependence on the ground slopengter is emphasized by the use of square brackets.
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transition model, which includes a permutation of the comtes to account for the swapping of

the legs’ roles, is algebraic and can be written as

T = Az7), (6.3)

where the superscript+” (resp. “—") refers to the value at the beginning (resp. end) of a step.
The overall model is expressed as a single-charted systdnmimpulse effects:
i = flo)(2) +gl@)u, =~ ¢S
3 (6.4)
T =Az7), r” €8S.
Walking gaits will be analyzed as periodic orbits of (6.4jthnstability of a walking gait referring to

stability of the corresponding periodic orbit. For formafiaitions of solutions, orbits, and stability

relating to (6.4), see [60].

6.1.2 Example Model: A Two-Link Walker

For presentation simplicity, the results of this chaptelt b illustrated on a two-link biped
walker—a biped with the fewest number of links to which thsutes apply. The biped is depicted
in Figure 6.1, and its parameters are given in Table 6.1. &hmag of the equations of motion for

the walker are as follows. The (symmetric) mass inertia iméatr

Di(qp)=010-1)>m+J (6.5a)
Dia(q1) = mi(l — 1) cos(q) — (I —1)*m — J (6.5b)
Dos(q1) = —2m (1 — ) cos(q1) + (2(12 +1*) — 21.1) m+2.J. (6.5¢)

The vector of Coriolis, centrifugal, and gravity terms is

Fila](q,q) = —mIsin(q)(l = lc)d3 + mgosin(qr — g2 — a)(I — L) (6.6a)
Fy[a)(q,q) = —mIsin(q1)(l = I)(¢1 — g2)d1 +misin(q1)(l — lc)d1go

+mgo((le — ) sin(q1 — g2 — @) — sin(gz2 + @) (lc +1)). (6.6b)

Leg scuffing that necessarily occurs during the swing phatieedwo-link walker is ignored.
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Parameter Units | Value

Leg length m 1.0
Leg COM location/. m 0.8
Leg massm kg 0.3

Leg inertia about leg COMJ | kgm? | 0.03

Acceleration due to gravity | m/s® 9.81

Table 6.1: Parameters of the two-link model. (Parameté&entérom [48, Tab. 4.1].)

6.2 HZD Framework for the Control of Walking on Sloped Ground

6.2.1 Defining Virtual Constraints

Virtual constraints are holonomic constraints that areasgal on the robot’'s configuration by
feedback. These constraints are parameterized by a soaletioh of the robot’'s configuration,
and, when enforced by feedback, effectively reduce theedkdsop DOFs of the robot. When
virtual constraints satisfying certain invariance prajesrare exactly enforced, the HZD of walking
results.

To formally define virtual constraints, consider the follog output on (6.2),

0(q): Q— Ry CR (6.7a)
s(0) : Ry — [0,1] (6.7b)
hg(s) :[0,1] — RN-1 (6.7¢)

y =h(q) =qa —hqoso0(q) (6.7d)

wheref(q) is a function that is monotonic over a step and has a compaageRy, s(f) is a
bijection with respect tdzy and normalize® to the unit interval, and,(s) is a twice continuously
differentiable function that gives the actuated coordisadf the robot. For notational simplicity,

definehy(6) = hy o s(#) so that (6.7d) can be written
Y =qa—haob(q). (6.8)
Let#™ andd~ denote, respectively, the valuesidfy) at the beginning and the end of a step. Then,
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a valid choice fors, is s(0) = (6 — 61)/(0~ — 67) with
0 =cq, (6.9)

wherec = (c1, ¢3), c1 € RV~tandey € R with ¢ nonzero. This choice will be assumed for the
remainder of the chapter. Virtual constraints are said tedtisfied or enforced when= 0. The

constraint surface is defined as the subset6f) where the virtual constraints are satisfied,
Z={2e€TQ|h(x)=0,Lsh(x) = 0}. (6.10)

Note that it can be easily verified thagh(xz) = 0 for all z € T'Q.

When viewed within the context of the hybrid model (6.4), tdual constraints are required
to have two types of invariance: forward invariance (or sardus phase invariance) and impact in-
variance (or invariance across the impact event). Contisyiase invariance refers to the property
that once a solution of (6.4) is within the constraint sugfaibe solution remains in the constraint
surface until the end of the single support phase. This typevariance is achieved by the appro-
priate design of a feedback controller. The virtual corstsaare invariant across the impact event if
lying within the constraint surface before impact guarastat the solution will lie within the con-
straint surface after impact. This type of invariance is @pprty of virtual constraints themselves

and is independent of the feedback controller.

6.2.2 A Feedback yielding Continuous Phase Invariance

Assume a constraint of the form (6.7), which may or may notfygeict invariant. The controller
given in this subsection will render it continuous phaserant. The controller’s development

begins by taking the first two derivatives of the constraint,

. Oha(0) ;
da = —5p 0, (6.11a)
-
j = T(H)(j—aggge) 62, (6.11b)
- Oha(0)
() = [H— 5 c}, (6.12)

H = (6.13)

[ Inv—nxv=1) Owv—1)x1 } '
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With (6.1), (6.11b) can be expressed as

ij = L3h[a)(q,4) + LgLsh(q)u. (6.14)
where
,
Ihlo)(a,4) = ~X @D @Flolia.a) ~ o i (6.15)
LyLh(q) = Y(6)D~}(q)B. (6.16)

The termLyL;h(q) is known as the decoupling matrix from the inputto the outputy. See
Section 6.3 for explicit calculation and interpretationtbé decoupling matrix’s singularities as

well as an example. With the application of the input-oulmeéarizing pre-feedback
u= (LyLsh(q))™* (v — L3h[a)(q.4)) | (6.17)
the error dynamics (6.14) becomgs= v. Thus, choosing to be a PD controller,
v=—-K,y— K3y (6.18)

with poles sufficiently fast [100], the virtual constrair{&8) will be asymptotically enforced and

continuous phase invariant.

Remark 6.1. The control law, (6.17) and (6.18), requires measuremeraf) and computation
of LyL¢h(q) and Lfch[a](q,q'). While D(q), F[a](g, ), and B can be readily obtained from the
system dynamics, the functiohg(d), dhy(0)/00, and 9*h4(0)/06* depend upon the choice of

virtual constraints.

6.2.3 The HZD of Walking

The HZD of walking is a subdynamic of the full hybrid walkingoafel (6.4) that corresponds
to the dynamics that are “left over” once the virtual constsahave been imposed. Like the full
hybrid model, the HZD of walking is also a single-chartedtegswith impulse effects, but of lower
dimension. The HZD resulting from virtual constraints lwhea (6.7) are developed next.

The angular momentum about the stance leg end contact piimthe ground is
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whered,, is the last row ofD. In a neighborhood of any point where the decoupling magix i
invertible, (y,v,0,0) is a valid change of coordinatesn 7'Q. Furthermore, the inverse of the

coordinate change is given by

q=24(0,v) (6.20a)
Gg=24(0,0,y,7), (6.20b)
where
-1 B
H ha(0) +y
,(0,y) = (6.21a)
c 0
-1
_ T(0) Y
4(0,0,y,9) = : (6.21b)
dn(‘]) g
q:q)q(@,y)

Assuming that the decoupling matrix is invertible, the zéynamics manifold can be written as

q=24(0,0), ¢ =P4(0,0,0,0),
2={(q,d) €TQ . (6.22)
el0t,07],0 eR

With the output given by (6.7), and a few additional techhassumptions (see [153, Thm. 1]), the

swing phase zero dynamics—the maximum dynamics that areaiiste withy = 0—are

. 1
6 = 60" (6.23a)
0 = My go Tem[](0,0), (6.23b)
where
1(0,y) = (c®4(0,1,y,0)) " (6.24)

and wherel; is the total mass of the bipeg; is the magnitude of the acceleration of gravity, and
zem|a] (0, y) is the horizontal position of the center of mass measurel igpect to the stance leg
end [29, Eg. (15)]. It can be shown that if the virtual constiaare impact invariant, then at an
impact,

ot = Ogero 0, (6.25)

®Note that a valid change of coordinates@ris (6, y), regardless of decoupling matrix invertibility. This fastused
in Theorem 6.7.
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whered, .., IS a constant readily computed using the definitioa f6.3), (6.20), and (6.21). Taking

z = (0, 0) as a state vector, the single-charted HZD is,

2= frerol](2), 27 €SNZ
Ysero - (6.26)
2T = Apero(27), 27 €SN Z.

The HZD is said to bevell-definedf the virtual constraints are both forward and impact imvar
ant. Forward invariance means that solutions of the HZD @ solutions of the full system (6.4),
which, in the context of this chapter, is equivalent to theadgpling matrix,L, L ¢h(q), being in-
vertible along solutions of the HZD. If an HZD is well-defingdend will be a monotonic quantity,
either increasing or decreasing along the continuousgr@tof a walking gait [153, Prop. 1]. For

the remainder of the chapter it will be assumed that< 6, or equivalently, thaé is monotoni-

cally increasing along the continuous phase of the orbit.

6.2.4 Gait Stability

A primary benefit of the HZD approach to the control of bipedalking is the simple stability
metric that it affords: the stability of a walking gait (pedic orbit of (6.4)) can be verified by
checking two inequality constraints. Assume that the HZDv@al-defined and that the virtual

constraints are perfectly enforced. Sime) is monotonic over a step, the coordinate change
(==0> (6.27)

allows (6.23) to be integrated and rewritten as

C(0) = ¢ — Vierola](0) (6.28a)
o(6) = signum(c™) /2 ((0) (6.28b)
where
0
Vyerolal (0) = — / 1(9,0) M go zem[a] (9, 0)d (6.29)
o0+

[153, Thm. 3]. With the impact mag, is related ta_* by
(" = Grerol (6.30)
The step-to-step evolution gf —the restricted Poincaré map—is therefore given by
¢k +1) = 0roC ™ (K) = Vierola] (07) (6.31)
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The fixed point of this map is

- Vaero[a](07)
e 6.32
C 1 - 6361‘0 ( )
as long as
—x o Vaero |

> 52—” (6.33)

whereV, 0% = maxgp+ <g<p- Viero(6). The fixed point is exponentially stable if
620 < 1. (6.34)

Hence, a stable gait will exist in the full model (6.4) if th&HB is well-defined, if (6.33) and (6.34)
hold, and if the virtual constraints are enforced by a swfitly fast controller (6.18).
6.2.5 Effects of Varying Ground Slope

The effects of varying the ground slope on the existencetabls) gaits are now presented. The

presentation begins with two propositions summarizingsshimportant facts.

Proposition 6.2. Under the assumption that the unactuated coordinate is aredgselative to the

walking surface, the following functions and surfaces adependent of ground slope;
i) the transition modelA(z),
i) the restricted switching surface N Z,
iii) the restricted impact coefficient,..., and
iv) the decoupling matrixyL rh(q).

Proof. Proof of part (i) is trivial by inspection of [153, Eqns. 6 afid Condition (ii) holds since&
is independent af,, which is trivial by inspection, and because the output)(®.thdependent of.

Condition (iii) holds by (i) and becaugseand (6.20) are independent @f Part (iv) is trivial. [

Proposition 6.3. Under the assumption that the unactuated coordinate is miedgelative to the
walking surface, if