
THE EFFECTS OF A NATURALLY OCCURRING GENETIC 
POLYMORPHISM ON THE CATALYTIC PROPERTIES OF HUMAN 

CYTOCHROME P450 2B6 
 
 

by 
 
 

Namandjé N. Bumpus 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy 
(Pharmacology) 

in The University of Michigan 
2008 

 
 
 
 
 
 
 
 
 
 
 

 
Doctoral Committee: 
 
 Professor Paul F. Hollenberg, Chair 
 Professor Yoichi Osawa 
 Professor William B. Pratt 
 Professor Lucy Waskell 
 



 ii

TABLE OF CONTENTS 
 

LIST OF TABLES          vii 
 
LIST OF FIGURES         viii 
 
CHAPTERS 
  
 1. INTRODUCTION          1 
 
  THE CYTOCHROMES P450        1 
 
  P450 REDOX PARTNERS         5 
 
  MECHANISM-BASED INACTIVATION       7 
 
  CYTOCHROMES P450 POLYMORPHISMS    10 
 
  CYTOCHROMES P450 2B6 AND P450 2B6.4     11 
 
  REFERENCES        16 
 
 2. THE NATURALLY OCCURRING P450 2B6.4 MUTANT OF P450 
     2B6 EXHIBITS ALTERATIONS IN SUBSTRATE METABOLISM 
     AND INACTIVATION        23 
 
  INTRODUCTION        23 
 
  EXPERIMENTAL PROCEDURES      27 
 
   MATERIALS        27 
 
   STATISTICAL ANALYSIS      27 
 
   SITE-DIRECTED MUTAGENESIS     27 
 
   EXPRESSION AND PURIFICATION OF P450S AND NADPH- 
   CYTOCHROME P450 REDUCTASE (REDUCTASE)   28 
 
   BUPROPION METABOLISM      28 
 



 iii

   BENZPHETAMINE METABOLISM    12 
 
   INACTIVATION OF P450S 2B6 AND 2B6.4   29 
 
   17EE METABOLISM      30 
 
  RESULTS        31 
 
   HYDROXYBUPROPION FORMATION BY P450S 2B6 AND 
   P450 2B6.4       31 
 
   BENZPHETAMINE METABOLISM BY P450S 2B6 AND P450 
   2B6.4        31 
 
   INACTIVATION OF P450S 2B6 AND 2B6.4 BY TTEPA, 
   BERGAMOTTIN AND 17EE.     35 
 
   METABOLISM OF 17EE BY P450S 2B6 AND 2B6.4  39 
 
  DISCUSSION        39 
 
  REFERENCES       46 
 
 3. METABOLISM OF EFAVIRENZ AND 8-HYDROXYEFAVIRENZ 
     BY P450 2B6 LEADS TO INACTIVATION BY TWO DISTINCT 
     MECHANISMS        49 
 
  INTRODUCTION       49 
 
  EXPERIMENTAL PROCEDURES     51 
 
   MATERIALS       51 
 
   STATISTICAL ANALYSIS     52 
 
   SITE-DIRECTED MUTAGENESIS, EXPRESSION AND   
   PURIFICATION OF P450S AND REDUCTASE   52 
 
   EFAVIRENZ METABOLISM     52 
 
   INACTIVATION OF P450S 2B6 AND 2B6.4   53 
 
   REVERSIBILITY OF INACTIVATION OF P450S 2B6 AND 
   2B6.4 BY EFAVIRENZ      54 
 
   DETERMINATION OF SPECTRAL INTERMEDIATE 
   FORMATION       54 
 
  RESULTS        55 



 iv

 
   FORMATION OF 8-HYDROXYEFAVIRENZ BY P450 2B6 
   AND P450 2B6.4       55 
 
   INACTIVATION OF P450 2B6 BY EFAVIRENZ   55 
 
   REVERSIBILITY OF EFAVIRENZ-MEDIATED 
   INACTIVATION OF P450 2B6     59 
 
   INACTIVATION OF P450 2B6 AND P450 2B6.4 BY 
   8-HYDROXYEFAVIRENZ     62 
 
   IRREVERSIBILITY OF THE INACTIVATION OF P450 2B6  

AND P450 2B6.4 BY 8-HYDROXYEFAVIRENZ   68 
 
  DISCUSSION        69 
 
  REFERENCES       74 
 
 4. INVESTIGATION OF THE MECHANISMS UNDERLYING THE  
     DIFFERENTIAL EFFECT OF THE K262R MUTATION IN P450  
     2B6 ON CATALYTIC ACTIVITY     78 
 
  INTRODUCTION       78 
 
  EXPERIMENTAL PROCEDURES     81 
 
   MATERIALS       81 
 
   SITE-DIRECTED MUTAGENESIS, EXPRESSION AND 
   PURIFICATION OF P450 AND REDUCTASE   81 
 
   N-PHENYLPROTOPORPHYRIN IX REGIOISOMER 
   FORMATION       82 
 
   SPECTRAL BINDING      83 
 
   ALTERNATE OXIDANT STUDIES    84 
 
   REACTION STOICHIOMETRY     84 
 
   INACTIVATION OF P450 2B6.4 IN THE PRESENCE OF 
   CYTOCHROME B5      85 
  
   17EE METABOLISM      85 
 
  RESULTS        86 
 
   P450 2B6 AND P450 2B6.4 ACTIVE SITE TOPOLOGY  86 
 



 v

   SPECTRAL BINDING OF BENZPHETAMINE AND  
   EFAVIRENZ TO P450 2B6 AND P450 2B6.4    89 
 
   INACTIVAITON OF P450S BY 17EE AND EFAVIRENZ 
   USING AN ALTERNATE OXIDANT     89 
 
   DETERMINATION OF THE APPARENT KD OF REDUCTASE 
   BINDING TO P450S 2B6 AND 2B6.4      91 
 
   REACTION STOICHIOMETRY       94 
 
   INACTIVATION OF P450 2B6.4 BY 17EE AND EFAVIRENZ 
   IN THE PRESENCE OF CYTOCHROME B5      94 
 
   METABOLISM OF 17EE BY P450 2B6.4 REQUIRES 
   CYTOCHROME B5        97 
 
  DISCUSSION          97 
 
  REFERENCES       107 
 
 5. CROSS-LINKING OF CYTOCHROME P450 2B6 TO NADPH- 
     CYTOCHROME P450 REDUCTASE: IDENTIFICATION OF A  
     POTENTIAL SITE OF INTERACTION    112 
 
  INTRODUCTION       112 
 
  EXPERIMENTAL PROCEDURES     114 
 
   MATERIALS       114 
 
   EXPRESSION AND PURIFICATION OF P450 2B6 AND 
   REDUCTASE       114 
 
   CROSS-LINKING REACTIONS     114 
 
   ACTIVITY ASSAY      115 
 
   PROTEOLYTIC DIGESTIONS     115 
 
   DATA ANALYSIS      116 
 
  RESULTS        116 
 
   P450 2B6 AND REDUCTASE COMPLEX FORMATION  116 
 
   DETERMINATION OF THE CROSS-LINKED P450 2B6- 
   REDUCTASE COMPLEX AS FUNCTIONALLY ACTIVE  116 
 
   MASS SPECTROMETRIC ANALYSIS OF PEPTIDES  118 



 vi

 
  DISCUSSION        125 
 
  REFERENCES       128 
 
 6. SUMMARY AND FUTURE DIRECTIONS 
 
  SUMMARY        130 
 
  FUTURE DIRECTIONS      136 
 
  REFERENCES       138 
 
 



 vii

LIST OF TABLES 
 

Table 
 
 2.1  Metabolism of benzphetamine by P450s 2B6 and 2B6.4  34 
 
 2.2  Effect of bergamottin, tTEPA, and 17EE on the bupropion  

       hydroxylation and 7-EFC activities of P450s 2B6 and 2B6.4  38 
 
3.1 Kinetic constants for the formation of 8-hydroxyefavirenz by  
       recombinant P450 2B6 and P450 2B6.4     57 
 
3.2 Effect of pre-incubation with efavirenz on the bupropion and    
       cyclosphosphamide hydroxylation activities of P450 2B6  60 
 
3.3 Effect of efavirenz on P450 2B6 catalytic activity, P450 content  
       as measured by the reduced CO spectrum and heme, before and  
       after 24 hr dialysis       61 
 
3.4 Effect of incubation with 8-hydroxyefavirenz on the bupropion  
       and cyclophosphamide hydroxylation activities of P450 2B6 and  
       P450 2B6.4        66 
 
3.5  Irreversibility of 2B6 inactivation by 8-hydroxyefavirenz  67 
 
4.1 Spectral binding of benzphetamine and efavirenz to P450  2B6  
       and P450 2B6.4        90 
 
4.2 Inactivation of P450s 2B6 and 2B6.4 using tert-butylhydroperoxide  
       to support the reaction       92 
 
4.3 Determination of the apparent Kd of reductase binding to P450s  
       2B6 and 2B6.4        93 
 
4.4 Stoichiometry for the metabolism of 17EE and efavirenz by  
       P450s 2B6 and 2B6.4       95 
 
4.5 Improvement of P450 2B6.4 reaction coupling upon reconstitution  

           with cytochrome b5       96 
 
 5.1  Determination of cross-linked P450 2B6 and reductase activity           119 



 viii

LIST OF FIGURES 
 

Figure 
 
 1.1  Phase I metabolism of xenobiotics       3 
 
 1.2  The P450 catalytic cycle         4 
 
 1.3  Electron transfer pathways to the P450 in the endoplasmic  

       reticulum           6 
 

1.4 Spatial relationships between the open P450 2B4 and closed  
       P450 2B4         14 
 
2.1  Chemical structures of the mechanism-based inactivators  
       N,N’,N” triethylenethiophosphoramide (tTEPA),  bergamottin,  
       and 17-α-ethynylestradiol (17EE)     24 
 
2.2 Chemical structures of bupropion and the primary metabolites  
       of bupropion        26 
 
2.3 Metabolism of bupropion to hydroxybupropion by P450 2B6  
       and P450 2B6.4        32 
 
2.4  Metabolism of benzphetamine by P450 2B6 and P450 2B6.4  33 
 
2.5  Inactivation of P450 2B6.4 by tTEPA     36 
 
2.6  Inactivation of P450 2B6.4 by bergamottin    37 
 
2.7  Metabolism of 17EE by P450s 2B6 and 2B6.4    40 
 
3.1 Chemical structures of efavirenz and the two primary  

          metabolites formed through hydroxylation by P450 2B6  50 
 

3.2 Metabolism of efavirenz to 8-hydroxyefavirenz by P450 2B6  
       and P450 2B6.4        56 
 
3.3. Inactivation of P450 2B6 by efavirenz     58 
 



 ix

3.3 Formation of a spectral intermediate during the inactivation  
of P450 2B6 by efavirenz      63 

 
 3.5  Inactivation of P450 2B6 by 8-hydroxyefavirenz   64 
 
 3.6  Inactivation of P450 2B6.4 by 8-hydroxyefavirenz   65 
 
 4.1  Chemical structures of efavirenz and 17EE    80 
 
 4.2  P450 2B6 N-phenylprotoporphyrin IX regioisomers formation  87 
 
 4.3  P450 2B6.4 N-phenylprotoporphyrin IX regioisomers formation 88 
 

4.4 Inactivation of P450 2B6.4 by efavirenz in the presence of  
cytochrome b5        98 

 
4.5 Inactivation of P450 2B6.4 by 17EE in the presence of  

cytochrome b5        99 
 

4.6 Metabolism of 17EE by P450 2B6.4 in the presence of  
cytochrome b5                 100 

 
 5.1  SDS-PAGE analysis of cross-linked complexes             117 
 
 5.2  UV spectra of cross-linked P450 2B6-reductase peptides  

         reconstituted in 16O-water or 18O-water              121 
 
5.3  Total ion chromatograms of digested cross-linked P450  
        and reductase                 122 
 
5.4 Co-elution of the quintuply charged ion at m/z 762.6 and  

m/z 763.8                  123 
 
 5.5  MS/MS spectrum of the precursor ion [M+5]5+ = 762.0            124 

 
    
 
 

 
    

 
 
 
    



 1

CHAPTER 1 

 

INTRODUCTION 

 

The Cytochromes P450 

The cytochromes P450 (P450) are a superfamily of heme-containing 

monooxygenases that play a major role in the oxidative metabolism of a number of 

exogenous and endogenous compounds [1]. Substrates of P450s include xenobiotics, 

pesticides, vitamins and hormones [2]. P450s catalyze a variety of reactions; however, 

the most common is substrate oxidation by the insertion of one oxygen atom. Most P450-

mediated reactions result in the detoxification of exogenous compounds via the formation 

of hydrophilic metabolites that can be readily excreted from the body. Because 

metabolism by P450s leads to a decrease in plasma concentration of the parent drug, 

P450s play an important role in drug bioavailability. Poor bioavailability is a major 

reason why compounds generated in the discovery phase fail to make it to the market. 

Thus, there is considerable interest in better prediction of clinical outcomes by using in 

vitro approaches to understand P450-catalyzed reactions.  

The completion of the sequencing of the human genome has revealed that there 

are 57 human P450s [3], which are grouped into families (1, 2, 3, …) and subfamilies (A, 

B, C, …) based upon sequence homology. Individual P450s are then given a second 
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number, resulting in a unique name for each enzyme, e.g., 1A1, 1B1 or 2C9. The 

majority of P450s in humans are believed to be involved in the biosynthesis of 

endogenous compounds. The remaining P450s, in families 1-3, are involved the 

metabolism of xenobiotics. Figure 1.1 illustrates the relative contributions of P450s in 

drug metabolism overall. The majority of drug-metabolizing P450s are found in the liver 

embedded in the membrane of the endoplasmic reticulum; however, there are a number 

of P450s that are also expressed in extrahepatic tissues [4]. 

Unlike many enzymes which have strict substrate selectivity, P450s can bind and 

metabolize a diverse group of substrates which differ in size, shape and stereochemistry. 

A major challenge is to understand how individual P450s accommodate structurally 

unrelated substrates and oxidize these substrates in a stereo- and regio-specific manner 

[5]. Individual P450s have been shown to adopt multiple conformations in response to 

various ligands [6]. The structures of a number of mammalian and bacterial P450s have 

been solved and reveal that P450s contain several common structural elements including 

a series of helices denoted by letters A through L [7]. The A helix is closest to the N-

terminus of the catalytic domain [7]. Site-directed mutagenesis studies have indicated that 

residues in helices B, F and I contact the substrate [8]. There are also six well-conserved 

substrate recognition sequences that are present in most P450s [9].   

The major events involved in the P450 catalytic cycle are shown in Figure 1.2. At 

the beginning of the cycle, the P450 heme iron is in the ferric state (A). In the first step, 

the substrate binds to the P450, resulting in the transition of the iron from a low-spin to a 

high-spin state (B). An electron is then transferred from NADPH via NADPH-P450 

reductase (reductase) and the iron is reduced to the ferrous state (C). The ferrous  



 3

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 1.1 – Phase I metabolism of xenobiotics [10]. The percentage of phase I 
metabolism of drugs that each enzyme contributes is estimated by the relative size of 
each section of the corresponding chart. P450s (denoted as CYPs in the figure) constitute 
the majority of phase I metabolism of xenobiotics. 
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Figure 1.2 – The P450 catalytic cycle. The steps of the catalytic cycle are shown as 
described in the text including heme spin state in the substrate-free and substrate-bound 
form.   
 
 
 
 
 
 
 
 
 
 
 

FeIII
N N

N N
S

Cys

A

H2O

FeIII
N N

N N
S

Cys

B

R H

FeII
N N

N N
S

Cys

C

R H

e

O2

FeIII
N N

N N
S

Cys

D

R H
O

Oe

FeIII
N N

N N
S

Cys

E

R H
O

OH+

FeIII
N N

N N
S

Cys

E

R H
O

OH

FeV
N N

N N
S

Cys

R H
O

F

H+

H2O

R OH R H

Low spin (1/2) High spin (5/2)



 5

iron can then bind O2 (D). However, this complex is unstable and can lead to the 

formation of superoxide anion and ferric iron. A second electron is then transferred from 

reductase, or, in certain instances, it has also been shown that this electron can come from 

cytochrome b5. A proton is then added (E’), followed by cleavage of the O-O bond, 

generating H2O and the FeV=O complex. Activated oxygen is then inserted into the 

substrate and the product is released (F) [8]. 

 

P450 Redox Partners 

Figure 1.3 shows the electron transfer pathway from redox partners reductase and 

cytochrome b5. The reductase transfers two electrons derived from a hydride ion of 

NADPH via FAD and FMN to P450s in one-electron transfer steps. In the liver, P450s 

are present in large excess over reductase, with the ratios ranging from 10:1-20:1. Despite 

this ratio, P450s have been shown to form 1:1 complexes with reductase [11]. 

Metabolism studies can be carried out in vitro by reconstituting P450 and reductase in a 

1:1 or 1:2 ratio depending upon the P450 being utilized in the study [12, 13]. In certain 

instances, cytochrome b5 has been shown to donate the second electron to the P450. 

Cytochrome b5 is thought to be involved only in the transfer of the second electron, 

because it is very inefficient at delivering the first electron. This may be due to the fact 

that the second reduction is more thermodynamically favorable than the first [14]. 

Cytochrome b5 is a 17-kDa heme-containing protein that is located in the 

membrane of the endoplasmic reticulum [15], and it functions as an electron donor in a 

number of reactions, including cholesterol biosynthesis and certain P450-catalyzed 

reactions [16]. Depending upon the P450 isoform and the substrate being investigated, 
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Figure 1.3 – Electron transfer pathways to the P450 in the endoplasmic reticulum 
[15]. In vivo, cytochrome b5 can receive an electron from NADH via cytochrome b5 
reductase. In the reconstituted system, the P450 is incubated with reductase and NADPH 
is the sole source of electrons. In the presence of cytochrome b5, the second electron in 
the catalytic cycle can be transferred from reductase to reduce cytochrome b5, then 
donated to the P450.  
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cytochrome b5 has been shown to increase, inhibit, or have no effect on P450 activity 

[17]. Studies on the effects of the b5 protein on P450 2B enzymes began in the early 

1980’s with the observation by Canova-Davis and Waskell that metabolism of 

methoxyflurane by P450 2B4 in the reconstituted system exhibited an absolute 

requirement for cytochrome b5 [18, 19]. Interestingly, cytochrome b5 had no effect on 

P450 2B4-mediated metabolism of benzphetamine [20]. There are two primary 

hypotheses to explain the stimulatory effect of cytochrome b5 on some P450-mediated 

reactions. The first is that reduced cytochrome b5 donates the second electron in the 

catalytic cycle to the P450 [21-23]. This is supported by studies showing electron transfer 

from cytochrome b5 to P450 as well as the observation that “uncoupling” is decreased in 

the presence of the b5 protein [24]. The second hypothesis is that cytochrome b5 

physically interacts with the P450 causing a conformational change that facilitates 

interaction with the substrate or reductase. This notion is supported by studies where the 

apo-cytochrome b5, which cannot be reduced and donate the second electron, was able to 

stimulate P450-catalyzed reactions [25]. However, the exact role of cytochrome b5 in 

P450-dependent hydroxylation and oxidations is unclear. Again, it appears that the effect 

is highly dependent upon the substrate and the isoforms being studied. 

 

Mechanism-Based Inactivation 

In the clinical setting, P450 inhibition can result in elevated plasma levels of other 

drugs that are primarily metabolized by the particular P450 being inhibited. As a result, 

inhibition of P450s has the potential to cause severe adverse events. For instance, studies 

with patients that are receiving warfarin along with 5-fluorouracil (a P450 inhibitor) to 
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treat a cancer have exhibited altered coagulation parameters, bleeding, and even death in 

some cases [26]. P450 inhibition may also result in decreased metabolism of prodrugs, 

such as cyclophosphamide, that have to be metabolically activated [27]. Alternatively, 

P450 inhibition can be used to increase the bioavailablity of a compound. For example, 

ritonavir, a potent inhibitor of P450 3A4 [28], has been co-formulated with lopinavir, a 

novel protease inhibitor with relatively low bioavailability [29]. The combined drug 

formulation was shown to significantly improve the pharmacokinetic properties and 

hence the activity of lopinavir against HIV-1 protease [30]. In vitro, P450 inhibition is a 

useful tool to help elucidate the relative contributions of particular P450s in the 

metabolism of a substrate. 

There are three steps in the P450 catalytic cycle that appear to be susceptible to 

inhibition: 1) substrate binding, 2) binding of molecular oxygen to the ferrous enzyme, 

and 3) transfer of activated oxygen from the heme iron to the substrate [31]. Inhibitors 

can then be divided into three categories based upon their mechanism of action: 1) 

reversible, 2) quasi-irreversible, and 3) irreversible. Reversible inhibition, or competitive 

inhibition, most often occurs when there is structural similarity between the inhibitor and 

the substrate(s) of the P450 [31]. The inhibitor itself may be a substrate for the P450; 

however, this is not necessarily required. Competitive inhibition is considered to be 

solely dependent upon concentration, as opposed to quasi-irreversible inhibition and 

irreversible inhibition, which are both time- and concentration-dependent. 

Quasi-irreversible inhibition occurs when a compound is metabolized to an 

intermediate that then binds tightly to the heme or the P450, resulting in inhibition of 

enzymatic activity. This phenomenon has been described for a variety of compounds, 
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including erythromycin where a metabolite intermediate (MI) complex is formed with the 

P450 heme iron, resulting in inhibition. The formation of this complex can be observed 

spectrally at a maximum absorbance of 455 nm [32-34]. Blobaum et al. [35, 36] have 

described a second type of reversible intermediate (maximum absorption at 485 nm) that 

can be observed during inactivation of P450 2E1 T303A by tert-butyl acetylene. 

Irreversible inhibition in which metabolism of the compound leads to covalent 

binding to the heme or protein, is also termed “mechanism-based inactivation”.  

Mechanism-based inactivation is defined as the process in which a substrate is 

metabolized and converted to a reactive intermediate that binds irreversibly to the active 

site of the P450, thereby rendering it inactive [37]. 

The criteria employed to identify a mechanism-based inactivator in vitro are as 

follows [38]: 

1) the inhibition is time-, concentration- and NADPH-dependent; 

2) addition of exogenous nucleophiles, such as glutathione, does not protect the 

enzyme from inactivation; 

3) the inactivation is irreversible, and the activity cannot be recovered after dialysis 

or gel filtration; 

4) the decrease in activity exhibits pseudo-first order kinetics; 

5) addition of a substrate with high affinity for the P450 can protect against 

inactivation; 

6) total P450 content is reduced; 

7) 1:1 stoichiometry is observed with complete inhibition of enzymatic activity. 
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Investigation of mechanism-based inactivators can lead to useful information for 

understanding the architecture of the P450 active site. Further, increased knowledge 

about mechanism-based inactivators has the potential to aid in the prevention of certain 

drug-drug interactions. 

 

Cytochromes P450 Polymorphisms 

Inter-individual variability in P450 activity is a major reason for failure of drug 

therapy [39]. Variability in P450 activity can be caused by a number of factors, including 

age, gender, morbidity and disease state, as well as concurrent medications, diet, alcohol 

and smoking. However, genetic polymorphisms appear to play the largest role in 

variability observed in patients [40]. Mutations have been found in all genes encoding 

P450 enzymes in families 1-3, although the functional importance of the variant alleles 

differs along with the frequencies of their distribution [41]. P450 activity for certain 

metabolic reactions has been shown to vary up to fifty-fold between individuals [42]. The 

wild-type alleles of P450s where genetic mutations have been found are denoted as “*1” 

and the allelic variants (containing one or more single nucleotide polymorphism(s)) are 

sequentially numbered as they are identified (i.e., *2, *3). Polymorphic P450s play a 

large role in adverse drug reactions. It has been estimated that 56% of drugs that are cited 

in adverse drug reaction studies are primarily metabolized by polymorphic phase I 

enzymes, of which 86% are P450s [43]. The costs associated with treating patients who 

express variant forms of P450s are significantly greater than those required to treat 

patients expressing wild-type P450s [44]. The majority of investigations into the effects 

of P450 polymorphisms are done by genotyping patients and correlating the genetic 
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differences to phenotypic differences. Ingelman-Sundberg has suggested that information 

gained from fundamental studies of the effects of P450 polymorphisms could result in a 

10-20% improvement of clinical efficacy of all drug therapy and a 10-15% reduction of 

the frequency of adverse drug reactions [41]. With this in mind, studies investigating the 

mechanisms behind phenotypic differences, which are currently lacking, are necessary to 

aid in safer and more efficacious drug development. 

 

Cytochromes P450 2B6 and P450 2B6 K262R 

P450 family 2 enzymes collectively catalyze over 54% of all phase I oxidations of 

drug substrates [45]. P450 2B6 is a polymorphic human P450 that is expressed in a 

variety of tissues including the liver, skin [46], kidney [47], heart [48], brain [49] and 

larynx [50]. P450 2B6 is involved in the metabolism of about 3% of clinically used drugs 

including sertraline, a selective serotonin reuptake inhibitor [51, 52]; cyclophosphamide, 

a prodrug that is an anticancer agent [27]; and propofol, an anesthetic [53, 54]. P450 2B6-

specific substrates include efavirenz, a non-nucleoside transcriptase inhibitor [55] and 

bupropion, an anti-depressant and smoking cessation aid [56, 57]. This enzyme has been 

shown to play a role in the activation of a number of procarcinogens, including aflatoxin 

and tobacco-specific nitrosamines [58, 59]. In addition, P450 2B6 can activate certain 

centrally active drugs, such as cocaine [60] and amphetamines [61], to neurotoxic 

intermediates. P450 2B expression is induced by a number of compounds, including 

phenobarbital and nicotine, which primarily increases P450 2B expression in the brain 

[62]. 
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 A number of single nucleotide polymorphisms have been found in the P450 2B6 

gene that encode variant alleles currently denoted as 2B6*2 through 2B6*25. In vivo 

studies have suggested that these variant alleles exhibit phenotypic differences when 

compared to the wild-type [63-65]. P450 2B6 polymorphisms have differential effects on 

the metabolism of P450 2B6 substrates. The P450 2B6 lysine 262 to arginine mutant 

[2B6*4 (2B6.4 when referring to the purified enzyme; K262R), 785A>G, exon 5] is of 

particular interest because it has been reported to have a 5-9% allele frequency and up to 

an overall 50% mutation frequency since it is present in multiple variant alleles [66-68]. 

In a clinical study, P450 2B6*4 was associated with an increased clearance of bupropion 

and higher plasma levels of the hydroxybupropion metabolite in German males [69]. 

Bupropion, a widely used anti-depressant and smoking cessation aid, acts by inhibiting 

the reuptake of norepinephrine and dopamine [70, 71]. P450 2B6 is the primary enzyme 

catalyzing the hydroxylation of bupropion to form hydroxybupropion, the 

pharmacologically active metabolite that plays a role in the antidepressant and, 

presumably, anti-smoking activity of bupropion [70]. Elevated plasma concentrations of 

hydroxybupropion are thought to be associated with seizures, the most severe side effect 

of bupropion treatment, occurring in 1 in 1000 patients [72]. Therefore, patients 

expressing this variant allele who take the standard therapeutic dose of bupropion to treat 

depression or nicotine addiction may have an increased risk of side effects. Since this 

mutation occurs with such a high frequency, a better understanding of the mechanisms of 

its effects are critical to understanding and predicting adverse drug reactions. 

The x-ray crystal structure of P450 2B6 has not yet been solved, however the 

structure of the rabbit isoform is available in both an open and closed confirmation [73, 
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74]. Since P450 2B4 and P450 2B6 are members of the same subfamily, the x-ray crystal 

structure of P450 2B4 can be used a model to help understand the architecture of P450 

2B6. The P450 2B4 structure reveals a large open cleft, approximately 15Å wide, 

between the α-helical and β-rich domains that extends directly to the heme and originates 

from the distal surface of the protein [73]. The cleft is composed of helices F, F’, G’ and 

G on one side and by the B’/C loop and the C helix on the opposite side. The C helix is 

on the proximal side of the protein and contains a strong electropositive potential that can 

interact with the negatively charged surface of redox partners, reductase and/or 

cytochrome b5. Mutation of residues R122 and F126 in helix C have been shown to effect 

association with both redox partners [75]. When the open structure of P450 2B4 is 

superimposed with the closed structure (Figure 1.4), one of the regions with the highest 

root mean square difference is the G/H loop, the site of residue K262. Substrate binding 

has been demonstrated to enhance redox partner binding and P450 2B4 reduction [76]. In 

the substrate bound structure of P450 2B4, portions of the G/H loop interact with residues 

in the C/D loop, which causes a 4Å shift when compared to the open conformation. This 

interaction significantly alters the orientation of helix C, suggesting that, when the 

substrate is bound, the G/H loop may provide a physical mechanism for conformational 

change that facilitates electron transfer from redox partners [74]. The G/H loop of the 

closed structure is relatively small consisting of only eight residues.  

With this in mind, it is reasonable to hypothesize that mutating lysine 262 in the 

G/H loop to an arginine, which is slightly larger, could result in altered interaction with 

redox partners. Further, since the interaction with redox partners is effected by substrates, 

the consequences of this mutation may be substrate dependent. A similar phenomenon 
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Figure 1.4 - Spatial relationships between the open P450 2B4 (blue) and closed P450 
2B4 (yellow) [74]. The G/H and C/D loops are regions with high root mean square 
differences between the two structures. The interaction of these loops with other areas of 
the protein and the flexibility of these loops facilitates the repositioning of the C helix, 
which is involved in redox partner binding. Residues shown by site-directed mutagenesis 
to be involved in redox partner binding are R133, R126 and R122 (green sticks). 
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has been described where a lysine to arginine mutation of the estrogen receptor-α on the 

border of the hinge-region of the hormone binding domain affects the binding of co-

activators [77]. Strobel and colleagues have reported that mutating a lysine residue in the 

G/H loop of P450 1A1 altered the ability of the P450 to metabolize substrates in the 

presence of reductase [78]. In subsequent studies, the use of cumene hydroperoxide as an 

oxidant in a reductase-free system resulted in the ability of the mutant to metabolize the 

substrate similar to the wild-type enzyme, suggesting that the mutation interrupted 

electron-transfer [78]. The studies in this thesis were designed to test the functional 

consequence of the P450 2B6 K262R mutation in vitro on the catalytic activity of the 

enzyme, with a particular focus on mechanism-based inactivation. Because of the 

location of the mutation, the effects of the presence of cytochrome b5 have also been 

examined in order to test the hypothesis that the K262R mutation exhibits differences in 

catalytic activity as a result of altered interaction with redox partners when compared to 

the wild-type enzyme. 
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CHAPTER 2 

 

THE NATURALLY OCCURRING P450 2B6.4 MUTANT OF P450 2B6 EXHIBITS 
ALTERATIONS IN SUBSTRATE METABOLISM AND INACTIVATION 

 

 

Introduction 

A number of single nucleotide polymorphisms (SNPs) have been found in the 

P450 2B6 gene [1]. However, the ability of these variants to metabolize other substrates 

and the response of these variants to known inactivators of P450 2B6 have not yet been 

examined. P450 2B6 K262R (2B6*4, 785A>G, exon 5; 2B6.4) is associated with 

increased clearance of bupropion and higher levels of the hydroxybupropion metabolite 

in German males [2].  This chapter details our investigations of the effects of this SNP on 

the metabolism of several P450 2B6 substrates including bupropion and the ability of 

P450 2B6.4 to become inactivated by three structurally unrelated mechanism-based 

inactivators of P450 2B6 (Figure 2.1).       

Bupropion is a widely used anti-depressant and smoking cessation aid that acts by 

inhibiting the reuptake of norepinephrine and dopamine [3, 4]. Bupropion has also been  
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Figure 2.1 - Chemical structures of the mechanism-based inactivators N,N’,N” 
triethylenethiophosphoramide (tTEPA),  bergamottin, and 17-α-ethynylestradiol 
(17EE)
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shown to be effective in the treatment of attention deficit/hyperactivity disorder (ADHD) 

in adults [5]. In humans, bupropion is extensively metabolized to give three primary 

metabolites: erythrohydrobupropion, threohydrobupropion, and hydroxybupropion 

(Figure 2.2) [6]. P450 2B6 catalyzes the hydroxylation of bupropion to form 

hydroxybupropion, which is the pharmacologically active metabolite that plays a role in 

the antidepressant activity of bupropion [3]. Side effects of bupropion include seizures 

and even death [7]. It has been reported that approximately 1 in 1000 subjects treated 

with bupropion experience seizures [8]. Elevated plasma level concentrations of 

hydroxybupropion are thought to be associated with poor clinical outcomes and seizures 

[7, 9, 10]. 

N, N’, N” -triethylenethiophosphoramide (tTEPA), bergamottin and 17-α-

ethynylestradiol (17EE) are all mechanism-based inactivators of  P450 2B6 in a 

reconstituted system with reductase [11-16].  Mechanism-based inactivation occurs when 

the enzyme converts the substrate to a reactive intermediate that binds covalently to a 

moiety in the active site and thereby inactivates the enzyme.  tTEPA is an anti-neoplastic 

agent used in the treatment of breast, bladder and ovarian cancers [17].  Bergamottin, a 

furanocoumarin found in grapefruit juice, inactivates P450s 3A4 [18], 2B6, and 3A5 [15]. 

17EE, a major component of many oral contraceptives is also a mechanism-based 

inactivator of P450 2B6 [12, 14].  Because these compounds all inactivate the wild-type 

form of P450 2B6, their use may be problematic in the clinic when given in combination 

with a drug that is primarily metabolized by this enzyme. The effects of these substrates 

and inactivators on the allelic variant P450 2B6.4 reported here show significant 

differences in metabolism and in the ability to inactivate this mutant. 
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Figure 2.2 - Chemical structures of bupropion and the primary metabolites of 
bupropion. 
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Experimental Procedures 

Materials.  Bupropion hydrochloride, triprolidine hydrochloride, NADPH, BSA, 

benzphetamine, catalase and 17EE were purchased from Sigma Chemical Co. (St. Louis, 

MO). tTEPA was purchased from U.S. Pharmacopeia (Rockville, MD) and bergamottin 

from Indofine Chemical Co. (Hillsborough, NJ). 7-Ethoxy-4-(trifluoromethyl)coumarin 

(7-EFC) was obtained from Molecular Probes (Eugene, OR). Hydroxybupropion was 

purchased from BD Biosciences (San Diego, CA). The P450 2B6 plasmid was a generous 

gift from Dr. James Halpert, University of Texas Medical Branch, Galveston, Texas. This 

P450 2B6 had amino acids 3-21 deleted and minor changes made to increase expression 

and solubility [19]. Purified benzphetamine and D-norbenzphetamine were a gift from 

Dr. Haoming Zhang, Department of Anesthesiology, Veteran Affairs Health Service, Ann 

Arbor, Michigan.  

 

Statistical analysis. Graphs and the two-tailed unpaired t-test were performed using 

GraphPad Prism version 3.00 for Windows (GraphPad Software, San Diego, California). 

Km and Vmax values were determined using EZ-Fit ™: Enzyme kinetic analysis (Perrella 

Scientific Inc., Amherst, NH). Data were fit using the Michaelis-Menten & unstable 

enzyme kinetics routine.   

 

Site-directed mutagenesis. Construction of the P450 2B6.4 mutant was performed with 

Stratagene’s Quik-Change site-directed mutagenesis kit (Stratagene, La Jolla, CA) using 

primers: 5’ GACCCCAGCGCCCCCAGGGACCTCATCGACACCTAC3’ (upstream) 

and 5’ GTAGGTGTCGATGAGGTCCCTGGGGGCGCTGGGTC3’ (downstream). The 
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mutation was confirmed by DNA sequencing carried out at the University of Michigan 

Core Facility (Ann Arbor, MI).  

Expression and purification of P450s and NADPH-cytochrome P450 Reductase 

(Reductase).  P450 2B6, P450 2B6.4 and NADPH-P450 reductase were expressed in E. 

coli Topp 3 cells and purified according to published protocols [19-21] except that  P450 

2B6.4 was recovered from the cytosol rather than the microsomal fraction after the cell 

lysis step.  Therefore, the cytosol was applied to the Ni++-agarose column and the P450 

was purified as previously described [19, 20]. 

 

Bupropion metabolism.  Purified P450s were reconstituted with reductase at a 1:2 ratio 

of P450 to reductase for 45 min at 4 °C. The reaction mixture consisted of 1 μM P450, 2 

μM reductase, 110 U catalase and bupropion (concentrations ranging from 0 μM to 960 

μM). NADPH was added to initiate the reactions and the mixtures were incubated for 30 

min at 37 °C.  The reaction was quenched by the addition of 125 μL of ice-cold 

acetonitrile containing 0.1% formic acid.  The samples were then placed on ice and 

centrifuged at maximum speed for 10 min in an Eppendorf microcentrifuge at 4 °C.  The 

method used to determine the concentration of hydroxybupropion was adapted from 

Faucette et al. [22].  Triprolidine (2 µl of a 20 mg/ml stock) was added as an internal 

standard and the samples were resolved on  a 5 μm Waters Symmetry 15 x 3.9-mm C18 

column (Millipore Corp., Milford, MA) at a flow rate of 1 ml/min, with the detector set at 

214 nm.  A gradient  was generated with mobile phases A (0.25% triethylamine and 0.1% 

formic acid) and B (100% acetonitrile) that ranged from 13% B at 0 to 15.5 min, 25% B 

at 16 to 23 min, and 13% B at 23.5 to 35 min.  The retention times were approximately 
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4.5 min for hydroxybupropion and 22 min for triprolidine. Hydroxybupropion formation 

was quantified from a standard curve generated by injecting increasing concentrations of 

authentic hydroxybupropion onto the HPLC column.    

 

Benzphetamine metabolism. The P450s were reconstituted as above and the formation 

of formaldehyde via N-demethylation of benzphetamine was measured as previously 

described [23]. A saturating concentration of benzphetamine (2mM) was added to all 

samples. The amount of formaldehyde formed was determined using an excitation 

wavelength of 410 nm and an emission wavelength of 510 nm using a RF-5310 

Spectrofluorophotometer (Shimadzu Scientific Instruments, Inc., Wood Dale, IL) and 

quantified from a standard curve. The individual metabolites of benzphetamine were also 

identified after adding the internal standard D-norbenzphetamine and after extraction of 

the metabolites with ethylacetate followed by separation and detection using ESI-LC-MS 

according to a previously published procedure [24].  Because this ESI-LC-MS analysis 

did not allow for precise quantitation of each metabolite, the area under the peak of the 

metabolite was integrated and used for comparison purposes only between the two 

enzymes. 

 

Inactivation of P450s 2B6 and 2B6.4.  The purified P450s were reconstituted with 

reductase for 45 min at 4 °C.  The primary reaction mixture contained 1 μM P450, 2 μM 

reductase, 110 U catalase and either tTEPA (100 µM), BG (10 µM) or 17EE (100 µM) in 

50 mM potassium phosphate buffer, pH 7.4.  The primary reaction mixtures were then 

incubated for 10 min at 30 °C prior to initiating the reactions by adding NADPH to a 
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final concentration of 1.2 mM.  After the addition of NADPH, 12 μL aliquots were 

removed from the primary reaction mixture at the times indicated and transferred to 990 

μL of the secondary reaction mixture which contained 100 μM 7-EFC, 1mM NADPH 

and 40 μg BSA/mL in 50 mM potassium phosphate buffer, pH 7.4.  The reaction 

mixtures were incubated for 10 min at 30 °C, and then quenched with 334 μL of 

acetonitrile. The amount of 7-hydroxy-4-(trifluoromethyl) coumarin formed was 

measured at room temperature at an excitation wavelength of 410 nm and an emission 

wavelength of 510 nm using a RF-5310 Spectrofluorophotometer (Shimadzu Scientific 

Instruments, Inc., Wood Dale, IL). The amount of hydroxybupropion formed was 

determined as indicated previously for bupropion metabolism. For the tTEPA kinetic 

experiments, the primary reaction mixtures contained tTEPA concentrations ranging from 

0 μM to 240 μM. The bergamottin kinetics experiments were performed using 

concentrations ranging from 0 μM to 12 μM. Aliquots (12 µL) were removed and added 

to the secondary reaction mixture at the indicated times.  

 

17EE metabolism. P450 2B6 or P450 2B6.4 were reconstituted together with reductase 

as described above.  The primary reaction mixtures contained 1 μM P450, 2 μM 

reductase, 200 μg/ml ascorbate, 110 U catalase, 40 μM 17EE and 50 mM potassium 

phosphate buffer, pH 7.4.  The metabolites were resolved by reverse-phase HPLC 

according to a published protocol [14]. 
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Results 

Hydroxybupropion formation by P450 2B6 and P450 2B6.4. Metabolism of the P450 

2B6 specific substrate bupropion to hydroxybupropion was examined using HPLC. 

Figure 2.3 shows the rate of formation of hydroxybupropion produced by P450 2B6 and 

P450 2B6.4 at substrate concentrations ranging from 0 µM-960 µM. Buproprion was 

poorly soluble at concentrations higher than 960 μM. The Km value for P450 2B6 was 

approximately 8.8 µM while the Km value for P450 2B6.4 was approximately 54 µM. The 

Vmax of the variant was approximately 6.9 nmol hydroxybupropion/nmol P450/min 

whereas the Vmax of the wild-type was 2.6 nmol hydroxybupropion/nmol P450/min. The 

Vmax/ Km for P450 2B6 was approximately 0.30 while the Vmax/ Km for P450 2B6.4 was 

approximately 0.13.  Therefore, the catalytic efficiency (Vmax/ Km) of the variant for 

buproprion was approximately 40% less than that of the wild-type enzyme.  

 

Benzphetamine metabolism by P450 2B6 and P450 2B6.4. The enzymatic activities of 

P450 2B6 and P450 2B6.4 were compared using benzphetamine as a substrate. The 

ability of each enzyme to metabolize benzphetamine to formaldehyde was determined 

first. P450 2B6.4 N-demethylated benzphetamine to produce 9.4 ± 0.9 pmol 

formaldehyde/pmol P450/min while the wild-type P450 2B6 generated 16.3 ± 1.3 pmols 

formaldehyde/pmol P450/min (Figure 2.4). The individual metabolites norbenzphetamine 

(N-demethylation), amphetamine (N-demethylation and N-debenzylation), 

methamphetamine (N-debenzylation), hydroxynorbenzphetamine (N-demethylation and 

aromatic hydroxylation) and hydroxybenzphetamine (aromatic hydroxylation) were also 

separated and the amounts estimated by LC-MS and the results are shown in Table 2.1.  
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Figure 2.3 - Metabolism of bupropion to hydroxybupropion by P450 2B6 and P450 
2B6.4. Samples were reconstituted as described in Experimental Procedures and 
incubated with bupropion ranging from 0 μM to 960 μM.  Hydroxybupropion formation 
by P450 2B6.4 ( ) and P450 2B6 ( ) was measured by integrating the area under the 
HPLC peak and comparison to areas from a standard curve generated by injecting 
different amounts of authentic hydroxybupropion on the HPLC column. The data 
represent the means and standard deviations of 3 separate experiments using duplicate 
samples. 
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Figure 2.4 - Metabolism of benzphetamine by P450 2B6 and P450 2B6.4. N-
demethylation of benzphetamine to formaldehyde was measured as described in the 
Experimental Procedures.  
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Table 2.1 - Metabolism of benzphetamine by P450s 2B6 and 2B6.4. P450s were 
reconstituted in the presence of reductase as described in Experimental Procedures. A 
saturating concentration of benzphetamine was used and samples were incubated for 30 
min at 30°C.  Metabolites were isolated and analyzed by ESI-LC-MS.  Standard error of 
the mean (SEM) is shown.  
 
 

                                                   2B6                       2B6.4                          2B6/2B6.4 

Area under the peak 

Norbenzphetamine 13 ± 0.13 7.6 ± 0.12 1.7 

Amphetamine 0.17 ± 0.01 .06 ± 0.001 2.9 

Methamphetamine N.D.1 N.D. - 

OH-norbenzphetamine 5.8 ± 0.03 1.0 ± 0.02 5.8 

OH-benzphetamine 0.72 ± 0.02 0.31 ± 0.01 2.3 

1Not detected 
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It can be seen that the mutation caused a decrease of approximately 50% or greater in the 

formation of most of the metabolites except for OH-norbenzphetamine, where it’s 

formation by the mutant was less than 20% of that formed by the wild-type enzyme. 

 

Inactivation of P450s 2B6 and 2B6.4 by tTEPA, bergamottin and 17EE. The 

inactivation of P450 2B6.4 by these three mechanism-based inactivators was performed 

as described in the Experimental Methods. P450 2B6.4 was inactivated by both tTEPA 

(Figure 2.5) and bergamottin (Figure 2.6). The inactivation  was time- and concentration-

dependent with both compounds and displayed an absolute requirement for NADPH. The 

approximate KI value for the tTEPA-mediated inactivation of the variant determined from 

the inset of Figure 4 was 210 µM with a t1/2 of 18.6 min and a rate of inactivation of 0.04 

min-1 as measured using the 7-EFC O-deethylation assay. The approximate KI value for 

the inactivation of P450 2B6.4 by bergamottin determined from the inset of Figure 5 was 

8.2 µM, the rate of inactivation was 0.23 min-1 with a t1/2 of 3.01 min as determined using 

the 7-EFC O-deethylation activity assay. 17EE has previously been shown to be a 

mechanism-based inactivator of the P450 2B6 wild-type enzyme [14]. In contrast to the 

wild-type enzyme, 17EE had no effect on the 7-EFC activity of the P450 2B6.4 mutant. 

In order to see if the loss in enzymatic activity observed with 7-EFC was substrate-

dependent, each of the samples incubated with the three inactivators and NADPH was 

also analyzed simultaneously using the bupropion hydroxylation assay (Table 2.2). 

Bergamottin had the greatest effect on both P450 2B6 and P450 2B6.4 leaving 

approximately 30% and 31% bupropion hydroxylation activity remaining, respectively,  
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Figure 2.5 - Inactivation of P450 2B6.4 by tTEPA. The time- and concentration-
dependent inactivation of P450 2B6.4 was measured by determining the 7-EFC O-
deethylation activity. After initiation of inactivation by the addition of NADPH, aliquots 
were removed from the primary reaction mixture at 0, 5, 10, 16 and 21 min. The 
concentrations of tTEPA were ( ) 0 μM, ( ) 80 μM, ( ) 120 μM, ( ) 160 μM, ( ) 
200 μM and ( ) 240 μM.  The data show the means and standard deviations from 4 
separate experiments using duplicate samples.  The inset represents the double reciprocal 
plot of the rates of inactivation as a function of the tTEPA concentrations. 
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Figure 2.6 - Inactivation of P450 2B6.4 by bergamottin. The time- and concentration-
dependent inactivation of P450 2B6.4 was measured by determining the 7-EFC O-
deethylation activity. After the addition of NADPH, aliquots were removed from the 
primary reaction mixture at 0, 2, 4, 6, and 8 min. The concentrations of bergamottin were 
( ) 0 μM, ( ) 1 μM, ( ) 2 μM, ( ) 4 μM, ( ) 8 μM, and ( ) 12 μM. The data show 
the means and standard deviations from 3 separate experiments using duplicate samples. 
The inset depicts the double reciprocal plot of the rates of inactivation as a function of the 
bergamottin concentrations.  
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Table 2.2 - Effect of bergamottin, tTEPA, and 17EE on the bupropion 
hydroxylation and 7-EFC activities of P450s 2B6 and 2B6.4. P450s 2B6 and 2B6.4 
were reconstituted with reductase as described in Experimental Procedures. Bergamottin, 
tTEPA and 17EE were present in the primary reaction mixture at concentrations of 10 
μM, 100 μM, and 100 μM, respectively.  NADPH was added to the primary reaction 
mixture to initiate the reaction.  

 
 

 

Percentage of control activity remaining 
 

 Bupropion assay 7-EFC assay 

 

2B6 Bergamottin 30 ± 1 34 ± 2 

2B6.4 Bergamottin 31 ± 1 40 ± 3 

 

2B6 tTEPA 51 ± 2 55 ± 3 

2B6.4 tTEPA 62 ± 3 81 ± 4 

 

2B6 17EE 61 ± 4 23 ± 3 

2B6.4 17EE 101 ± 2 103 ± 1 
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and similar effects were seen using both assays. tTEPA inactivated the wild-type enzyme 

to a greater extent than the variant. There was a very significant difference between the 

inactivation of the mutant enzyme by tTEPA as determined by the bupropion assay when 

compared to the 7-EFC assay (p=.0028), although no significant difference was seen with 

the wild-type enzyme. 17EE inactivated the wild-type P450 2B6 leaving 61% activity 

remaining with bupropion as the probe substrate  while the P450 2B6.4 was not 

inactivated at all by 17EE. There was also a significant difference between the 

inactivation of the wild-type enzyme by 17EE when measured by the bupropion assay as 

compared to the 7-EFC assay (p=.0002). 

 

Metabolism of 17EE by P450s 2B6 and 2B6.4. In order to see if the lack of inactivation 

of 2B6.4 by 17EE was due to an inability of the enzyme to catalyze the metabolism of 

17EE, the metabolism of 17EE by the two P450s was investigated. 17EE was incubated 

with the reconstituted P450s in the presence or absence of NADPH and the metabolites 

analyzed using reverse phase HPLC as shown in Figure 2.7. P450 2B6 metabolized 17EE 

to give a number of major metabolites denoted as A, C, D and E as well as numerous 

other minor metabolites as previously described [14] (Panel A). However, as shown in 

Panel B, P450 2B6.4 did not produce any metabolite of 17EE above the levels of the 

control incubations incubated in the absence of NADPH.  

 

Discussion 

 These studies comparing the metabolic activities of purified P450 2B6 and P450 

2B6.4 in the reconstituted system show that a single mutation at position 262 to give the  
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Figure 2.7 - Metabolism of 17EE by P450s 2B6 and 2B6.4. Samples were reconstituted 
and incubated with 17EE in the presence or absence of NADPH as described in 
Experimental Procedures. The metabolites of 17EE produced by P450 2B6 (Panel A) and 
P450 2B6.4 (Panel B) were separated as described in Experimental Procedures. The 
identities of metabolites labeled  A1, A2, and C have not yet been determined.  Metabolite 
D corresponds to 2-hydroxy-17EE, metabolite E corresponds to estrone and F 
corresponds to the substrate, 17EE [14]. 
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K262R variant results in a dramatically different ability of the mutant to metabolize a 

number of P450 2B6 specific drugs compared to the wild-type enzyme. Though regarded 

as a relatively minor component of the P450 family in the liver, P450 2B6 has been 

shown to play a significant role in the metabolism of many xenobiotics and in the 

activation of a number of pro-carcinogens including 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK) [25-27]. A number of chemotherapeutic drugs such as 

tTEPA are substrates for 2B6 and they are often given in combination with other drugs 

[13, 16, 17]. As a result, there is a significant potential for interactions with other drugs 

that are also metabolized by this enzyme (particularly in instances where this isoform is 

induced by other xenobiotics). Because P450 2B6 is polymorphic, drug interactions may 

be more detrimental for certain patients than for others, depending on the genotype. P450 

2B6 has previously been shown to be responsible for the interindividual variability of 

propofol hydroxylation in liver microsomes [28]. A recent study demonstrated higher 

mean plasma concentrations of efavirenz in patients homozygous for P450 2B6*6 

(Q172H, K262R) when compared to wild-type [29]. The K262R SNP is thought to be 

particularly important as it was found to have an allele frequency of approximately 5% in 

German males and a SNP frequency of 30%  since it is present in three different P450 

2B6 allelic variants (2B6*4, 2B6*6 and 2B6*7) [1, 2]. 

The studies presented here have focused on the potential effect of the K262R 

mutation in substrate metabolism and inactivation of this mutant in a reconstituted system 

by drugs that have been well characterized with the wild-type enzyme. Bupropion, a drug 

that is widely used to treat depression and aid in smoking cessation, is hydroxylated 

primarily by cytochrome P450 2B6 [22, 30]. Our findings suggest that P450 2B6.4 
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produced the hydroxylated product at a rate that was significantly greater than the wild-

type enzyme. The Km of wild-type P450 2B6 for bupropion in this study is one-tenth that 

previously reported in human liver microsomes [30]. This observation may be due to the 

differences in the protein or lipid composition between the reconstituted system 

employed in these studies and liver microsomes. It was not possible to use lower 

concentrations of bupropion in the kinetics studies because the amount of 

hydroxybupropion produced from lower bupropion concentrations was below the limits 

of detection of our assay. Because of the variability in expression of wild type P450 2B6 

or that of the naturally occurring mutant, it is difficult to extrapolate our in vitro data 

directly and to draw clinical implications. However, our results with bupropion are 

consistent with the findings in a population of German males, where subjects expressing 

the P450 2B6*4 allele displayed higher levels of hydroxybupropion as well as moderately 

increased clearance of bupropion [2]. 

Benzphetamine was readily metabolized by both P450 2B6 and P450 2B6.4 with 

the wild type enzyme generating approximately twice the amount of formaldehyde seen 

with the mutant.  When individual metabolites of benzphetamine were analyzed by ESI-

LC-MS, norbenzphetamine was found to be the primary metabolite produced by both 

enzymes, however the wild-type enzyme produced norbenzphetamine at levels 

approximately 1.7-fold greater than what was observed with P450 2B6.4. This 

observation is consistent with what was found using the formaldehyde assay, because 

norbenzphetamine is generated via N-demethylation with the release of formaldehyde, 

suggesting that N-demethylation is the primary route of metabolism of benzphetamine by 

the mutant as well. Amphetamine, which is the result of N-demethylation and N-



 43 
 

debenzylation, was formed in small quantities by the mutant and wild-type. However, the 

wild-type enzyme produced amphetamine at a rate that was 2.9-fold greater than the 

variant. Interestingly, neither P450 2B6 or P450 2B6.4 metabolized benzphetamine to 

methamphetamine in the reconstituted system. This result, along with the low amounts of 

amphetamine produced, suggests that the N-debenzylation pathway is compromised in 

both of these enzymes. This is not due to truncation, as the full-length P450 also did not 

metabolize benzphetamine to methamphetamine (data not shown). In contrast, rat enzyme 

P450 2B1, produces significant amounts of methamphetamine and amphetamine [24]. 

These results demonstrate that there is a marked difference in specificity between the 

human and rat enzyme and that previous data obtained with the rat isofom may not be 

applicable for the human enzyme. P450 2B6.4 also preferentially metabolized 

benzphetamine via N-demethylation rather than aromatic hydroxylation. 

Hydroxynorbenzphetamine formed as a result of both N-demethylation and aromatic 

hydroxylation was produced at higher levels than hydroxybenzphetamine, which is 

generated solely by aromatic hydroxylation.  

The decrease in the ability of both enzymes to catalyze bupropion hydroxylation 

as well as 7-EFC O-deethylation when inactivated by tTEPA is shown in Table 2. This 

finding is consistent with a recent study that demonstrated that tTEPA inhibits bupropion 

hydroxylation in human liver microsomes [31]. The estimated KI value for the 

inactivation of P450 2B6.4 by tTEPA as measured using the 7-EFC activity assay was 

approximately 4-fold greater than the value previously reported for full-length P450 2B6 

[13]. The rate of inactivation of the mutant was approximately 3-fold less than what has 

been reported for the full-length wild-type enzyme [13]. tTEPA inactivated the variant 
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and reduced hydroxylation of bupropion by 40% and O-deethylation of  7-EFC  by  20% 

at 100 µM. The estimated KI value for the bergamottin-mediated inactivation of P450 

2B6.4 and the rate of inactivation were approximately 2-fold greater and 3-fold greater, 

respectively, than what was observed with the wild-type enzyme [15], but the KI value of 

the mutant is similar to the value previously determined for P450 3A4 of 7.7 µM [18]. 

17EE is metabolized by P450 2B6 to give several metabolites and has been shown to be a 

mechanism-based inactivator for 2B enzymes [14]. Surprisingly, in contrast to other 

inactivators or the wild type enzyme, P450 2B6.4 was not inactivated by 17EE when 

incubated under identical conditions. Our inability to observe metabolites of 17EE 

suggests that the binding of this particular substrate to the mutated protein may be 

compromised by the mutation. The single mutation may have resulted in a significant 

structural alteration of the enzyme as may be suspected from the observation that this 

mutant was localized in the bacterial cytosol in contrast to the wild type enzyme of P450 

2B6 which is membrane-bound.  

Significant differences in the levels of inactivation were observed for both the 

wild-type P450 2B6 and the P450 2B6.4 mutant when different probe substrates were 

used to determine catalytic activity remaining. For example, P450 2B6 was inactivated to 

~80% when activity was measured using the 7-EFC O-deethylation assay whereas only 

40% inactivation was observed using the bupropion hydroxylation assay. P450 2B6.4 

was inactivated ~40% by tTEPA as determined using the 7-EFC assay but only ~20% 

based on the bupropion assay. Thus, the levels of inactivation differed not only between 

the wild-type and mutant enzymes, but also depended significantly on the substrate that 

was used to assay activity remaining. The differences in the levels of inactivation when 
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the same protein is assayed using different substrates may be due to the fact that the 

covalently bound inactivator in the active site interferes more with the binding of one 

substrate than with the binding of another.  This may be due to differences in the sizes of 

the substrates, their binding orientations in the active site, or the presence of multiple 

potential binding regions in the active site having preferred binding for different 

substrates.  The differences observed between wild-type and mutant enzyme may be due 

to differences in the active site architectures of the two proteins.  It is of interest that 

bergamottin and tTEPA have greater effects on bupropion metabolism whereas 17EE 

exhibited a greater effect on 7-EFC metabolism.  

 In this study we have shown that P450 2B6.4 in the reconstituted system 

metabolized bupropion to hydroxybupropion at a faster rate than P450 2B6. The P450 

2B6.4 mutant was inactivated by tTEPA and bergamottin similarly to the wild type 

enzyme. In contrast, 17EE was not metabolized by the mutant under identical conditions 

and did not inactivate it. Our studies with this single P450 2B6 variant underscore the 

importance of investigating the functional consequences of genetic polymorphisms at the 

level of the proteins in order to be able to predict the potential consequences to the 

patient.  The results of these types of functional studies are of critical importance for the 

development of a comprehensive database for predictive genotyping in the clinic that 

could be used to increase the efficacy of some treatment regimens and decrease the extent 

and severity of adverse drug reactions. 
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CHAPTER 3 

 

METABOLISM OF EFAVIRENZ AND 8-HYDROXYEFAVIRENZ BY P450 2B6 
LEADS TO INACTIVATION BY TWO DISTINCT MECHANISMS 

 

 

Introduction  

 Efavirenz is a non-nucleoside reverse transcriptase inhibitor used in the treatment 

of human immunodeficiency virus-1 (HIV-1). Efavirenz is prescribed as part of a 

combination therapy and is particularly effective due to its long half-life of 40-55 hours 

following multiple doses [1].  P450 2B6 has been shown to be primarily responsible for 

the hydroxylation of efavirenz to 8-hydroxyefavirenz and 8,14-hydroxyefavirenz (Figure 

3.1) [2]. In vivo and in vitro studies have shown that 8-hydroxyefavirenz is formed 

rapidly and is the major metabolite formed [2, 3]. Polymorphisms of P450 2B6 may have 

a significant effect on efavirenz metabolism since it has been shown that patients 

genotyped as P450 2B6 *6/*6 (Q172H and K262R) have significantly higher mean 

plasma efavirenz concentrations than patients that are *6 heterozygous or that do not 

have *6 alleles [4]. Efavirenz has also been shown to inhibit bupropion hydroxylation in 

human liver microsomes [5].    

 In this study, we used recombinant N-terminally truncated P450 2B6 and P450 

2B6.4 to 1) evaluate the effect of the K262R mutation on the hydroxylation of efavirenz 

to 8-hydroxyefavirenz, 2) to investigate the ability of efavirenz to inactivate both 
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Figure 3.1 - Chemical structures of efavirenz and the two primary metabolites 
formed through hydroxylation by P450 2B6. 
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enzymes, and 3) to investigate the ability of 8-hydroxyefavirenz , a major metabolite of 

efavirenz, to act as a mechanism-based inactivator of both enzymes.  We found that the 

mutant was able to metabolize efavirenz to 8- hydroxyefavirenz. In addition, efavirenz 

inactivated the wild-type 2B6 but not the mutant and the inactivation of 2B6 was 

reversible after dialysis.  In contrast to the results observed with the parent compound, 

incubations with the 8-hydroxy metabolite resulted in the irreversible inactivation of both 

enzymes. These studies provide valuable information regarding the effect of the K262R 

mutation on P450 2B6 catalytic activity.  In addition, these results show that 

hydroxylation of a substrate can lead to marked differences in the mechanism of 

inactivation.  These studies also suggest that efavirenz and 8-hydroxyefavirenz may be 

useful tools for studying the structure of the active site of P450 2B6. 

 

Experimental Procedures 

Materials.  Efavirenz was purchased from Toronto Research Chemicals (Ontario, 

Canada). 8-hydroxyefavirenz was a generous gift from Bristol-Myers Squibb. Bupropion 

hydrochloride, triprolidine hydrochloride, NADPH, BSA and catalase were purchased 

from Sigma Chemical Co. (St. Louis, MO). 7-Ethoxy-4-(trifluoromethyl)coumarin (7-

EFC) was obtained from Molecular Probes (Eugene, OR).  Barium hydroxide, 3-

aminophenol and hydroxylamine hydrochloride were purchased from Aldrich Chemical 

Co. (Milwaukee, WI). The P450 2B6 plasmid was a generous gift from Dr. James 

Halpert, University of Texas Medical Branch, Galveston, Texas. All other chemicals 

were of the highest grade commercially available.    
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Statistical analysis. Statistical analysis was performed using GraphPad Prism version 

3.00 for Windows (GraphPad Software, San Diego, California).   

 

Site-directed mutagenesis, expression and purification of P450s and NADPH-

cytochrome P450 Reductase (reductase).  Construction of the P450 2B6.4 mutant was 

performed as described previously [6]. P450 2B6, P450 2B6.4 and NADPH-P450 

reductase were expressed in E. coli Topp 3 cells and purified as previously described [7-

9] except that  P450 2B6.4 was recovered from the cytosol rather than the membrane 

pellet after the cell lysis step.  Therefore, the cytosol was applied to the Ni++-agarose 

column and the P450 was then eluted and purified as previously described. 

 

Efavirenz metabolism.  The method used to determine efavirenz metabolism was 

adapted from Ward et al.[2]. The purified P450s were reconstituted with reductase at a 

ratio of 1:2 of P450 to reductase for 45 minutes at 4 °C. The reaction mixtures consisted 

of 1 μM P450, 2 μM reductase, 110 U catalase and efavirenz (concentrations ranging 

from 0 μM to 60 μM). NADPH was added to initiate the reactions and the mixtures were 

incubated for 30 min at 37 °C.  The reactions were quenched by adding 500 μL of ice-

cold acetonitrile containing 0.1% formic acid.  The samples were then placed on ice and 

centrifuged at maximum speed for 10 min in an Eppendorf microcentrifuge at 4 °C.  The 

supernatants were placed in clean tubes and 500 µL of 0.5M NaOH, pH 10, was added.  

Testosterone (2 µL of a 20 µM stock) was added as an internal standard. The samples 

were extracted twice with ethyl acetate and dried under a stream of nitrogen. 200 μL of 

mobile phase was added and the samples were resolved on a Varian Microsorb-MV 250 x 
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4.6-mm C18 column (Varian Inc., Palo Alto, CA) at a flow rate of 0.8 ml/min with the 

detector set at 247 nm.  Isocratic conditions were used consisting of 55% mobile phase A 

(water, 0.1% trifluoroaceticacid) and 45 % mobile phase B (acetonitrile, 0.1% 

trifluoroaceticacid).  The retention times were approximately 13 min for the internal 

standard testosterone, 23.5 min for 8-hydroxyefavirenz, and 42 min for efavirenz.     

 

Inactivation of P450s 2B6 and 2B6.4.  The purified P450s were reconstituted with 

reductase for 45 minutes at 4 °C. The primary reaction mixtures contained 1 μM P450, 2 

μM reductase, 110 U catalase and efavirenz (0-50 µM) or 8-hydroxyefavirenz (0-120 

µM) in 50 mM potassium phosphate buffer, pH 7.4. The primary reaction mixtures were 

then incubated for 10 min at 30 °C prior to initiating the reactions by adding NADPH to a 

final concentration of 1.2 mM.  After the addition of NADPH, 12 μL aliquots were 

removed from the primary reaction mixtures at the times indicated and transferred to 990 

μL of the secondary reaction mixtures which contained 100 μM 7-EFC, 1 mM NADPH, 

and 40 μg BSA/mL in 50 mM potassium phosphate buffer, pH 7.4.  The secondary 

reaction mixtures were incubated for 10 min at 30 °C, and then quenched by the addition 

of 334 μL of acetonitrile. The amount of 7-hydroxy-4-(trifluoromethyl) coumarin formed 

was measured at room temperature using an excitation wavelength of 410 nm and an 

emission wavelength of 510 nm using a RF-5310 Spectrofluorophotometer (Shimadzu 

Scientific Instruments, Inc., Wood Dale, IL). The amount of 8-hydroxybupropion formed 

was determined as previously described [6]. To measure the effect of efavirenz on the 

cyclophosphamide (CPA) hydroxylation activity of the P450s, the primary reaction 

mixtures were incubated with 20 μM efavirenz at 37°C. After the addition of NADPH, 
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aliquots were removed at the times indicated. The secondary reaction mixtures contained 

100 µM CPA, 1 mM NADPH, and 40 µg BSA/mL in 50 mM potassium phosphate 

buffer, pH 7.4. CPA hydroxylation was determined using the procedure of Roy et al. 

[10].  

 

Reversibility of inactivation of P450s 2B6 and 2B6.4 by efavirenz. P450s were 

reconstituted and incubated with 50 µM efavirenz or 20 µM 8-hydroxyefavirenz (80 µM 

for P450 2B6.4) in the presence or absence of NADPH as described above. Aliquots were 

removed at 0 and 20 minutes to determine the amount of 7-EFC O-deethylation activity 

remaining as described above. Each sample was further analyzed for P450 remaining 

using the reduced CO spectral assay and intact heme by HPLC as described by Harleton 

et al. [11]. The remainder of each of the control and inactivated samples was dialyzed 

separately for 24 hours at 4°C in Slide-A-Lyzer cassettes (Pierce Chemical, Rockford, IL) 

against 2 x 500 mL dialysis buffer (50 mM potassium phosphate buffer, pH 7.4, 

containing 20% glycerol and 100 µM EDTA).  After dialysis, the samples were incubated 

with or without fresh reductase at 4°C for 15 minutes and catalytic activity, heme and 

reduced CO spectra analysis were again carried out as described above. 

 

Determination of spectral intermediate formation. P450s were reconstituted as 

described above and incubated with 10 µM efavirenz at 30°C for 10 min.  NADPH (0.6 

mM) was added to the sample cuvette and an equal amount of water was added to the 

reference cuvette.  Difference spectra were recorded from 350 to 700 nm using a DW2 

UV-Vis spectrophotometer (SLM Aminco, Urbana, IL) that was equipped with an OLIS 
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spectroscopy operating system (On-Line Instrument Systems, Inc., Bogart, GA). Scans 

were taken continuously at 2 minute intervals. 

 

Results 

Formation of 8-hydroxyefavirenz by P450 2B6 and P450 2B6.4. The metabolism of 

efavirenz to 8-hydroxyefavirenz by 2B6 and 2B6.4 was measured by HPLC. The rates of 

formation of 8-hydroxyefavirenz by P450 2B6 and P450 2B6.4 using concentrations of 

efavirenz ranging from 0 µM to 100 µM are shown in Figure 3.2. The kinetic constants 

for these reactions are shown in Table 3.1.  The approximate Km value for wild-type P450 

2B6 (14.3 µM) was very similar to the approximate Km for the variant (15.9 µM). The 

Vmax for 8-hydroxyefavirenz formation by P450 2B6 was approximately 4.3 pmol 

formed/pmol P450/min, whereas the Vmax of P450 2B6.4 was approximately 2-fold 

higher (8.1 nmol formed/nmol P450/min). The catalytic efficiency (Vmax/Km) of P450 

2B6.4 was approximately 66% greater than that of P450 2B6 (approximately 0.3 for 2B6 

as compared to approximately 0.5 for the mutant). 

 

Inactivation of P450 2B6 by efavirenz.  Inactivation of the wild-type enzyme was 

measured using the 7-EFC O-deethylation assay. The wild-type enzyme was inactivated 

by efavirenz (Figure 3.3) in a time- and concentration-dependent manner and the 

inactivation exhibited an absolute requirement for NADPH.  The activity loss followed 

pseudo first order kinetics. Linear regression analysis was performed and the kinetic 

constants for the efavirenz- mediated inactivation of the wild-type enzyme were 

determined from the inset of Figure 3.3. The KI was approximately 30 µM and the Kinact
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Figure 3.2 - Metabolism of efavirenz to 8-hydroxyefavirenz by P450 2B6 and P450 
2B6.4. Samples were reconstituted as described in Methods and incubated with efavirenz 
at concentrations ranging from 0 μM to 100 μM.  8-Hydroxyefavirenz formation by P450 
2B6 ( ) and P450 2B6.4 ( ) was measured by HPLC by integrating the area under the 
metabolite peak and comparing it to a standard curve generated by injecting known 
amounts of authentic 8-hydroxyefavirenz onto the HPLC. The data shown are 
representative of the means and standard deviations from 4 separate experiments done in 
duplicate. 
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Table 3.1 - Kinetic constants for the formation of 8-hydroxyefavirenz by 
recombinant P450 2B6 and P450 2B6.4. Kinetic constants were determined from the 
data shown in Figure 3.2 as described in Experimental Procedures. 
 

Enzyme  
Kinetic Constant    P450 2B6             P450 2B6.4 

 
Km (μM) 14.3 15.9 

Vmax (pmol/pmol P450/min) 4.3 7.9 

Vmax/Km .30 .51 
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Figure 3.3 - Inactivation of P450 2B6 by efavirenz. The time- and concentration-
dependent inactivation of P450 2B6 was measured by determining the 7-EFC O-
deethylation activity as described in Methods. After initiation of inactivation by the 
addition of NADPH, aliquots were removed from the primary reaction mixture at 0, 5, 
10, 15 and 20 min. The concentrations of efavirenz were ( ) 0 μM, ( ) 5 μM, ( ) 10 
μM, ( ) 20 μM, ( ) 40 μM and ( ) 50 μM.  The data show the means and standard 
deviations from 4 separate experiments done in duplicate. In some cases the standard 
deviations were less than the size of the symbols. The inset shows the double reciprocal 
plot of the rates of inactivation as a function of the efavirenz concentrations. 
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was 0.04 min-1 giving a t1/2 of 16 min.  In contrast to the wild-type enzyme, the variant 

form of 2B6 was not inactivated by efavirenz at concentrations up to 200 μM as 

measured by the 7-EFC O-deethylation activity of the variant enzyme (data not shown). 

The effect of mechanism-based inactivation by efavirenz on the metabolism of other  

structurally unrelated P450 2B6 substrates was also determined to investigate the 

possibility that the inactivation of wild-type 2B6 and the observed lack of inactivation of 

the variant might be due to the 7-EFC substrate that was chosen to measure activity. P450 

2B6 samples that had been pre-incubated with efavirenz and NADPH were assayed for 

bupropion and cyclophosphamide hydroxylation activities (Table 3.2). Pre-incubation 

with efavirenz decreased the ability of the wild type P450 2B6 to hydroxylate both 

substrates. Approximately 45% of the initial bupropion hydroxylation activity and 42% 

of the CPA activity remained following incubation with 20 μM efavirenz. These values 

were similar to the activity remaining when 7-EFC was used as the substrate (Figure 3.2, 

and data not shown). As seen with 7-EFC, pre-incubation of the variant enzyme with 

efavirenz did not result in inactivation as measured by the hydroxylation of bupropion or 

CPA (data not shown). 

 

Reversibility of efavirenz-mediated inactivation of P450 2B6. As shown in Table 3.3, 

the inactivation of P450 2B6 by efavirenz was reversible after overnight dialysis and the 

enzymatic activity, reduced CO spectra and heme remaining were completely restored. 

Control and efavirenz inactivated samples were analyzed for activity, CO spectral and 

heme loss before and after 24 hours of dialysis at 4°C. Table 3.3 shows that prior to
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Table 3.2 - Effect of pre-incubation with efavirenz on the bupropion and 
cyclosphosphamide hydroxylation activities of P450 2B6. The P450s were 
reconstituted with reductase as described under Experimental Procedures. The primary 
reaction mixture contained the concentrations of efavirenz indicated.  NADPH was added 
to the primary reaction mixture to initiate the reaction. 
 

Percentage of Control Activity Remaining  
Primary Reaction Conditions              Bupropion                 Cyclophosphamide 

 
-NADPH + 10 μM Efavirenz 100 100 

+NADPH + 10 μM Efavirenz 62 ± 3 67 ± 5 

-NADPH + 20 μM Efavirenz 100 100 

+NADPH + 20 μM Efavirenz 45 ± 2 42 ± 4 
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Table 3.3 - Effect of efavirenz on P450 2B6 catalytic activity, P450 content as 
measured by the reduced CO spectrum and heme, before and after 24 hr dialysis.  
The assays were performed as described under Experimental Procedures. Samples were 
incubated for 15 min in the presence or absence of NADPH and the data are represented 
as percentages of the control samples incubated in the absence of efavirenz.  Samples 
were then dialyzed for 24 hrs.  The data represent the means and standard deviations of 3 
separate experiments. 
 

Percentage of Control  
Primary Reaction Conditions   Activity                    Reduced CO          HPLC 

Remaining                 Remaining              Heme 
 

Before dialysis                               

-Efavirenz + NADPH 100 100 100 

+Efavirenz + NADPH 32 ± 3 35 ± 4 31 ± 2 

After dialysis    

-Efavirenz + NADPH 100 100 100 

+Efavirenz + NADPH 98 ± 5 96 ± 4 101 ± 3 
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dialysis there was a 68% loss in activity, a 65% CO spectral loss and 69% heme loss.  

After dialysis for 24 hours, catalytic activity, reduced CO spectrum and the heme 

remaining had all returned to levels commensurate with the control samples. To 

determine if the reversibility observed was the result of MI complex formation, as has 

been observed with other reversible inactivators [12], difference spectra for efavirenz- 

inactivated versus control samples were determined. As shown in Figure 3.4, there is a 

peak with a maximum absorbance at 435 nm in the difference spectrum. This peak does 

not appear to be representative of a MI complex since MI complexes normally exhibit a 

characteristic peak absorbance at 455 nm, not at 435 nm. The addition of ferricyanide 

results in the loss of the peak that we observe at 435 nm suggesting that it is an 

intermediate. Additionally, this peak is not observed in the absence of NADPH. 

 

Inactivation of P450 2B6 and P450 2B6.4 by 8-hydroxyefavirenz. The ability of 8-

hydroxyefavirenz, the primary metabolite of efavirenz, to inactivate the wild-type and 

variant enzymes was also investigated.  Interestingly, inactivation by 8-hydroxyefavirenz 

was markedly different from the inactivation by the parent. Incubation of both enzymes 

with 8-hydroxyefavirenz led to inactivation in time-, concentration-, and NADPH-

dependent manners. The approximate KI value for the inactivation of 2B6 by 8-

hydroxyefavirenz was 6.4 µM, with a t1/2 of 11 min, and a rate of inactivation of 0.06 

min-1, as measured by 7-EFC O-deethylation activity remaining Figure 3.5.  In contrast to 

what had been observed with efavirenz, the P450 2B6 variant was also inactivated by 8-

hydroxyefavirenz although the estimated KI was approximately 10-fold higher than for 

the wild-type enzyme (75 µM) and the  t1/2 was 17 min with a rate of inactivation of 0.04 
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Figure 3.4 - Formation of a spectral intermediate during the inactivation of P450 
2B6 by efavirenz. Reconstituted P450 2B6 was incubated with efavirenz and difference 
scans were recorded between 350 and 700 nm for 20 minutes (the traces obtained 
between 400-500 nm are shown here).  After a baseline scan at 20 minutes, NADPH was 
added to the sample cuvette and water was added to the reference cuvette. Spectra were 
taken every 2 min. The absorbance at 400 nm was maximal at 0 time and decreased with 
successive scans. The star indicates peak maximum absorption observed at 435 nm. 
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Figure 3.5 - Inactivation of P450 2B6 by 8-hydroxyefavirenz. P450 2B6 was 
inactivated by 8-hydroxyefavirenz and the activity remaining was measured using the 7-
EFC O-deethylation assay. After the addition of NADPH, aliquots were removed from 
the primary reaction mixture at 0, 5, 10, 15, and 20 min. The concentrations of 8-
hydroxyefavirenz were ( ) 0 μM, ( ) 4 μM, ( ) 5 μM, ( ) 6 μM, ( ) 8 μM, and ( ) 
10 μM. The data show the means and standard deviations from 3 separate experiments 
done in duplicate. The inset shows the double reciprocal plot of the rates of inactivation 
as a function of the 8-hydroxyefavirenz concentrations.  
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Figure 3.6 - Inactivation of P450 2B6.4 by 8-hydroxyefavirenz. Samples were 
reconstituted and incubated with 8-hydroxyefavirenz in the presence or absence of 
NADPH as described in Methods. Inactivation was measured by determining 7-EFC O-
deethylation activity remaining. The concentrations of 8-hydroxyefavirenz were ( ) 0 
μM, ( ) 40 μM, ( ) 60 μM, ( ) 80 μM, ( ) 100 μM, and ( ) 120 μM. The data show 
the means and standard deviations from 3 separate experiments done in duplicate. The 
inset shows the double reciprocal plot of the rates of inactivation as a function of the 
8-hydroxyefavirenz concentrations. 
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Table 3.4 - Effect of incubation with 8-hydroxyefavirenz on the bupropion and 
cyclophosphamide hydroxylation activities of P450 2B6 and P450 2B6.4. Assay 
conditions were described under Methods. Data are representative of the mean and 
standard deviations of 3 separate experiments done in duplicate.  Primary reaction 
mixtures contained 8-hydroxyefavirenz at a concentration of 20 µM. 
 

Percentage of Control Activity 
Remaining 

 
Primary Reaction Conditions 

   Bupropion        Cyclophosphamide 
 

2B6 -NADPH + 8-hydroxyefavirenz 100 100 

2B6 +NADPH + 8-hydroxyefavirenz 32 ± 1 39 ± 2 

2B6.4 -NADPH + 8-hydroxyefavirenz 100 100 

2B6.4+NADPH + 8-hydroxyefavirenz 81 ± 5 84 ± 2 
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Table 3.5 - Irreversibility of 2B6 inactivation by 8-hydroxyefavirenz. Assay 
conditions were as described as under Experimental Procedures. Data are representative 
of the means and standard deviations of 3 separate experiments done in duplicate. P450 
2B6 was incubated with 20 µM 8-hydroxyefavirenz for 15 min. P450 2B6.4 was 
incubated with 80 µM 8-hydroxyefavirenz for 15 min. 
 

Percentage of Control  
Primary Reaction Conditions   Activity                    P450                    HPLC 

Remaining                Remaining            Heme 
 

P450 2B6                            

+8-OHefavirenz + NADPH (B.D.) 37 ± 3 41 ± 5 35 ± 2 

+8-OHefavirenz + NADPH (A.D.) 46 ±  3 53 ± 4 43 ± 2 

P450 2B6.4    

+8-OHefavirenz + NADPH (B.D.) 47 ± 6 53 ± 5 44±5 

+8-OHefavirenz + NADPH (A.D.) 51 ± 4 55 ± 3 47 ± 4 

B.D., before dialysis 

A.D., after dialysis 
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min-1 Figure 3.6. Because the KI for inactivation of the wild-type enzyme by efavirenz (30 

μM) was greater than the KI for inactivation by 8-hydroxyefavirenz (6.4 μM), it 

suggested that the 8-hydroxy metabolite was a more potent inactivator than the parent 

compound.  Pre-incubation of the wild type and the variant enzyme with 8-

hydroxyefavirenz in the presence of NADPH also resulted in marked decreases in the 

bupropion and cyclophosphamide hydroxylation activities of both enzymes Table 3.4. 

The decrease in the enzymatic activity of the P450 2B6 that had been pre-incubated with 

8-hydroxyefavirenz when measured by its ability to hydroxylate bupropion or 

cyclosphosphamide (CPA) was reduced to 32% and 39% activity remaining, respectively.  

The decrease in the catalytic activity of the variant enzyme that had been pre-incubated 

with 20 µM 8-hydroxyefavirenz and NADPH when measured by its ability to 

hydroxylate bupropion was 81% and for CPA it was 84% as compared to untreated 

controls. The losses in bupropion and CPA hydroxylation activities were similar to the 

activity decreases observed using the 7EFC assay.  

 

Irreversibility of the inactivation of P450 2B6 and P450 2B6.4 by 8-

hydroxyefavirenz.  The changes in enzymatic activity and the losses in the CO spectra 

and heme were measured before and after overnight dialysis in samples inactivated by 8-

hydroxyefavirenz. In complete contrast to what had been observed with efavirenz, the 

inactivation of both enzymes by 8-hydroxyefavirenz was irreversible (Table 3.5).  The 

percentage of activity remaining after dialysis and after incubation with fresh reductase 

increased only slightly for both enzymes suggesting that although there may be a small 



 69

portion of the population of enzyme that is reversibly inactivated by 8-hydroxyefavirenz, 

the inactivation is essentially irreversible.  

 

Discussion 

 P450 2B6 is expressed in a number of organs including the liver, heart and brain, 

and has been shown to have widely variable expression levels [13-15].  P450 2B6 plays 

an important role in the metabolism a growing list of clinically important substrates 

which include bupropion, an anti-depressant and smoking cessation aid [16, 17] and 

cyclosphosphamide, an important chemotherapeutic agent [18]. Bupropion has been used 

previously as a tool to study the inactivation and inhibition of P450 2B6 [19]. It has 

recently been shown that a P450 2B6/reductase fusion protein catalyzed the metabolic 

activation of the pro-drug cyclophosphamide and markedly increased the 

cyclophosphamide-dependent cytotoxicity [20]. A number of SNPs have been found in 

the P450 2B6 gene [21] and some of these have been shown to have effects on the 

catalytic activity of the enzyme. P450 2B6*4, which corresponds to a K262R mutation of 

the protein, has recently been shown to have close to a 50% mutation frequency in 

Ghanians and close to 30% in African-Americans and Caucasians [13].  We have 

previously shown that the K262R mutant of P450 2B6 has significant effects on the 

metabolism of the P450 2B6 specific substrate bupropion [6]. In this study we have 

compared the abilities of purified P450 2B6 and its K262R mutant, 2B6.4, to metabolize 

efavirenz to 8-hydroxyefavirenz in the reconstituted system. Our data indicate that P450 

2B6.4 hydroxylates efavirenz to 8-hydroxyefavirenz at a rate almost two-fold greater than 

that of the wild-type enzyme.  The Km of the wild-type enzyme for efavirenz in the 
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present study was similar to that reported previously [2].  However, because of the 

marked variability in the expression levels of P450 2B6 in the human population, it is not 

possible to directly draw clinical conclusions based upon our current data.  In patients, 

P450 2B6 polymorphisms have been shown to have an effect on plasma levels of 

efavirenz as patients homozygous for 2B6*6 (Q172H, K262R) had higher mean plasma 

concentrations of the parent drug [4].  Two other groups have recently reported similar 

findings in patients homozygous for the 516G>T mutation (Q172H) [22, 23]. 

Because many drugs, including efavirenz, are prescribed as part of a combination 

therapy, it is important to determine which substrates may have inhibitory effects on the 

enzyme. Adverse drug reactions are a major source of hospitalizations and even mortality 

[24-26], and are defined as “an appreciably harmful or unpleasant reaction, resulting from 

an intervention related to the use of a medical product, which predicts hazard from future 

administration and warrants prevention or specific treatment, or alteration of the dosage 

regimen, or withdrawal of the product” [27].  Polymorphisms appear to play an important 

role in adverse drug reactions since many of the drugs that are frequently cited in these 

studies are metabolized by at least one polymorphic enzyme [26, 28].  We have 

previously shown that the K262R mutation protected the enzyme against inactivation by 

17-α-ethynylestradiol, which readily inactivates the wild-type enzyme [6, 29].  In the 

present study pre-incubation with efavirenz decreased the ability of P450 2B6 to catalyze 

the hydroxylation of bupropion and cyclophosphamide as well as decreasing 7-EFC O-

deethylation activity. In contrast, no effect on the above mentioned activities was 

observed with the P450 2B6.4 mutant.  The reason for the inability of the mutant to 

become inactivated by efavirenz is not clear but does not appear to involve the absence of 
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reversible binding and metabolism of efavirenz because the primary metabolite 8-

hydroxyefavirenz was generated by the mutant. We are currently investigating this 

functional difference between the wild-type and the K262R mutant enzyme, and the 

affect that this mutation has on the ability of P450 2B6 to form a reactive intermediate 

from ethynyl-containing compounds capable of inactivating the wild-type enzyme.  

Another interesting finding was that the inactivation of P450 2B6 by efavirenz 

was completely reversible after 24 hours of dialysis. A similar recovery of enzymatic 

activity has been described with purified rat P450 2B1 where the initial loss in activity 

was due to the formation of a metabolic intermediate (MI) complex [12].  MI complex 

formation results in the appearance of a characteristic maximum absorbance peak at 455 

nm in the difference spectrum [30].  A second mechanism for reversible inactivation has 

recently been described for the inactivation of P450 2E1 T303A by tert-butyl acetylene. 

In this case, the inactivation was accompanied by the appearance of a spectral 

intermediate at 485 nm [31].  Difference spectra of efavirenz-inactivated samples versus 

controls exhibited a new peak with a maximum absorbance at 435 nm.  This spectral 

intermediate formed during the inactivation by efavirenz is different than the 

intermediates reported previously. The reasons for this difference are under investigation. 

 Surprisingly, when 8-hydroxyefavirenz, the major metabolite of efavirenz, was 

used instead of efavirenz, both P450s were inactivated in a mechanism-based manner and 

the inactivation was irreversible. With either enzyme and 8-hydroxyefavirenz, we were 

unable to observe a spectral intermediate similar to that seen during the inactivation of 

the wild type enzyme by efavirenz (data not shown). These data suggest that the 

inactivation of P450 2B6 and the variant by efavirenz and 8-hydroxyefavirenz occurs 
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through two distinctly different mechanisms. Even though 8-hydroxyefavirenz is formed 

during efavirenz metabolism by both enzymes and the KI value for the hydroxylated 

product with the wild-type enzyme is approximately 4-fold lower than the KI value for 

efavirenz, the concentration of 8-hydroxyefavirenz required to achieve irreversible 

inactivation does not appear to have been achieved during the incubations. Therefore, we 

believe that during the metabolism of efavirenz in the reconstituted system, the 

concentrations of 8-hydroxyefavirenz produced contribute only negligibly to the 

inactivation. Further, the spectral intermediate that is formed during the reversible 

inactivation of P450 2B6 may be formed prior to the production of significant amounts of 

8-hydroxyefavirenz. In contrast, incubations of 2B6 with 8-hydroxyefavirenz alone may 

lead to the formation of a reactive intermediate that is not produced during incubations of 

2B6 with efavirenz alone. Our data suggest that efavirenz is initially bound in the P450 

active site in an orientation that facilitates oxidation at or near the 8-hydroxy position. 

Once the 8 position is hydroxylated, the preferred orientation of the substrate in the active 

site may bring the ethynyl moiety into closer proximity to the heme iron with the 

activated oxygen. This could then result in the generation of the reactive intermediate 

which could be responsible for the irreversible inactivation. Studies are currently 

underway to attempt to trap the reactive intermediate formed during the metabolism of 8-

hydroxyefavirenz and to obtain structural information of this intermediate. 

We also observed a difference in inactivation of P450 2B6 by 8-hydroxyefavirenz 

when compared to P450 2B6.4. The approximate KI for the wild-type enzyme was 6.4 

µM, whereas it was 75 µM for the mutant. The 12-fold greater KI for the mutant once 

again suggests that this mutation has a significant effect on the catalytic properties of the 
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enzyme. This effect was not substrate dependent as we have reported previously for 

inactivation of the mutant enzyme [6]. Similar levels of inactivation were seen with 7-

EFC, cyclophosphamide, and bupropion.  

 These studies demonstrate that the K262R mutant of P450 2B6 catalyzes the 

metabolism of efavirenz to 8-hydroxyefavirenz at a significantly greater rate than the 

wild-type enzyme. P450 2B6 in the reconstituted system was inactivated by efavirenz, 

while P450 2B6.4 was not inactivated.  Interestingly, the efavirenz-mediated inactivation 

of the wild-type enzyme was completely reversible after dialysis.  The primary 

metabolite of efavirenz, 8-hydroxyefavirenz, inactivated both enzymes and the 

inactivation was irreversible. Since the inactivation by 8-hydroxyefavirenz was 

irreversible whereas the inactivation by efavirenz was reversible, these two closely 

related compounds inactivated the enzymes through mechanisms that are completely 

different from each other. This study has further shown a difference in the catalytic 

properties of the wild-type enzyme and K262R mutant. Efavirenz and 8-

hydroxyefavirenz may prove to be useful tools for probing the structure of the P450 2B6 

active site.  
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CHAPTER 4 

 

INVESTIGATION OF THE MECHANISMS UNDERLYING THE 
DIFFERENTIAL EFFECTS OF THE K262R MUTATION OF P450 2B6 ON 

CATALYTIC ACTIVITY 
 

 

Introduction 

The cytochromes P450 (P450) are a superfamily of heme-containing 

monooxygenases that catalyze the oxidative metabolism of a number of endogenous and 

exogenous compounds, including clinically relevant drugs, pesticides and carcinogens. 

The P450 catalytic cycle consists of a number of steps including: substrate binding to 

ferric P450; reduction, as a result of the transfer of an electron from NADPH via 

NADPH-cytochrome P450 reductase (reductase); binding of molecular oxygen to ferrous 

P450, leading to the formation of oxyferrous P450; transfer of a second electron to 

oxyferrous P450 from NADPH via reductase, or in some instances cytochrome b5; 

formation of the oxygenating species; and subsequent oxidation of the substrate followed 

by product release. In addition, hydrogen peroxide can be formed via the decomposition 

of the oxyferrous complex or by autooxidation of the two-electron reduced P450 [1]. This 

phenomenon is referred to as “uncoupling”. 

Human P450 2B6 plays a major role in the metabolism of a growing list of 

compounds including bupropion, an anti-depressant and smoking cessation aid; 
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efavirenz, a non-nucleoside HIV-1 reverse transcriptase inhibitor; and cyclophosphamide, 

a chemotherapeutic prodrug that requires metabolic activativation [2-5]. Certain 

substrates of P450 2B6, such as efavirenz, are also mechanism-based inactivators of the 

enzyme. Mechanism-based inactivation occurs when a substrate, in the process of 

metabolism, is converted to a reactive intermediate that binds covalently to the active site 

of the P450, rendering it inactive [6]. A number of single nucleotide polymorphisms have 

been found in the P450 2B6 gene [7]. Recent studies in patients have demonstrated that 

some of these mutations can have significant effects on clinical outcomes [8, 9]. 

However, studies investigating the mechanisms underlying these effects are lacking. In 

order to address this issue, we have used recombinant P450 2B6 and a mutant P450 2B6 

K262R (2B6.4), which corresponds to the P450 2B6*4 variant allele observed in humans 

(785A>G, exon 5), to investigate the functional consequences of this amino acid 

mutation.  

Previously, we demonstrated that efavirenz and 17EE (Figure 4.1), which both 

inactivate P450 2B6, do not inactivate P450 2B6.4 in the reconstituted system [10, 11]. 

Further, in those studies the mutant enzyme was not able to metabolize 17EE, a substrate 

readily metabolized by the wild-type enzyme. In this study, we have systematically 

investigated some of the aspects of P450 catalytic function that could potentially be 

altered by the K262R mutation.  Therefore, we conducted studies to elucidate whether 

differences in the catalytic activities of P450 2B6 and P450 2B6.4 are related to: 1) active 

site topology; 2) substrate binding; 3) interaction with reductase; 4) reaction coupling. 

Our approach included the use of phenyldiazene to probe the active site of the P450, and 

the use of an alternate oxidant to support catalytic activity in the absence of reducing  
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Figure 4.1 - Chemical structures of efavirenz and 17EE. 
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equivalents from NADPH. The results presented here suggest that there may be some 

differences in the active site topologies of the two enzymes, although the binding 

constants derived from spectral binding studies were similar. Interestingly, reaction 

stoichiometry experiments revealed that the reactions catalyzed by the mutant were more 

uncoupled than the reactions catalyzed by the wild-type enzyme. The addition of 

cytochrome b5 improved the coupling of P450 2B6.4 and facilitated inactivation of the 

enzyme by both compounds. 

 

Experimental Procedures 

Materials. Benzphetamine, BSA, 17EE, catalase and NADPH were purchased from 

Sigma (St. Louis, MO). Efavirenz was purchased from Toronto Research Chemicals 

(Ontario, Canada). 7-Ethoxy-4-(trifluoromethyl)coumarin (7-EFC) was obtained from 

Molecular Probes (Eugene, OR). Phenyldiazene was purchased from Research Organics 

(Cleveland, OH). The P450 2B6 plasmid was a generous gift from Dr. James Halpert, 

University of Texas Medical Branch, Galveston, Texas. All other chemicals were of the 

highest grade commercially available.    

 

Site-Directed mutagenesis, expression and purification of P450s and Reductase.  

Construction of the P450 2B6.4 mutant was performed as described by Bumpus et al. 

[11]. P450 2B6, P450 2B6.4, and NADPH-P450 reductase were expressed in E. coli 

Topp 3 cells and purified according to published protocols [12-14]. Cytochrome b5 was 

purified from liver microsomes of phenobarbital-treated Long-Evans rats. 
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N-phenylprotoporphyrin IX regioisomer formation. The procedures used in these 

studies was adapted from published protocols [15, 16]. The phenyldiazene stock used in 

these experiments was prepared by adding 2.5 μl of neat phenyldiazene to 200 μL of 1N 

KOH. For the myoglobin experiments, 5 nmol of myoglobin in 100 mM KPi, pH 7.4, was 

placed into a 1 ml cuvette and the absorbance spectrum from 400 to 500 nm was 

recorded. Then, 3 μl of the phenyldiazene stock was added to the cuvette and the 

absorbance spectrum was once again determined. A peak was observed at 430 nm, which 

is characteristic of a myoglobin phenyl-iron complex. Once the peak reached a maximum 

(approximately 10 min), the protein was denatured by adding the contents of the cuvette 

to 5 ml of 5% sulfuric acid (aq). After sitting for 2 hours the sample was extracted twice 

with an equal volume of methylene chloride. The extract was then dried down under a 

stream of nitrogen. For the P450 experiments, 2 nmol of P450 in 100 mM KPi, pH 7.4, 

was placed into a 1 ml cuvette and the absorbance from 400-500 nm was measured. 

Then, 1.5 μl of the phenyldiazene stock solution was added to the cuvette and peak 

formation at 478 nm was monitored. After the peak formation reached a maximum 

(approximately 10 min) 3 μl of potassium ferricyanide [50 μM] was added to the cuvette 

and the contents of the cuvette were mixed and allowed to sit for 3 minutes. This was 

repeated twice to induce migration of the phenyl group from the iron to the porphyrin 

nitrogens. The sample was then denatured and extracted with methylene chloride as 

described above for myoglobin. After being dried under nitrogen, the N-

phenylprotoporphyrins were reconstituted in 150 μl of solvent A (40% water, 59.5% 

methanol, .5% acetic acid). The samples were analyzed by HPLC LC-MS using a 

Phenomenex phenyl-hexyl column under isocratic conditions with 70% A and 30% B 
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(99.5% methanol, .5% acetic acid). The area under the curve was determined for each of 

the four resulting regioisomers. These data were then expressed as a percentage of the 

total sum of the areas under the curve of all four peaks. 

 

Spectral binding. Spectral binding experiments were performed by titrating 1 μM of 

P450s 2B6 and 2B6.4 with either benzphetamine (dissolved in water) or efavirenz 

(dissolved in ethanol) at room temperature. Samples were brought to a total volume of 1 

ml using 100 mM KPi, pH 7.4, and placed into a cuvette. The reference cuvette also 

contained 1 μM of the P450s in 100 mM KPi, pH 7.4. Vehicle solvent was added to the 

reference cuvette immediately following the titration of either benzphetamine or 

efavirenz into the sample cuvette. UV-visible spectra were recorded from 350-500 nm 

following the addition of each aliquot of the ligand to the sample cuvette and an equal 

volume of the vehicle solvent to the reference. The absorbance differences between the 

maximum and minimum absorbencies observed in the difference spectrum following 

each addition were recorded and plotted against the concentrations of benzphetamine or 

efavirenz added using GraphPad Prism (GraphPad software, San Diego, CA). Spectral 

binding studies to determine the apparent Kd of reductase binding to P450 were 

performed in a similar fashion by titrating 1 μM P450 with reductase (0–8 μM) as 

previously described by French et al., [17]. Ks of benzphetamine or efavirenz binding and 

the apparent Kd value of reductase binding values were approximated by plotting the 

inverse of the absorbance changes between 390 nm and 420 nm (type I) as a function of 

the concentration of either benzphetamine or reductase, and between 436 nm and 416 as a 

function of the efavirenz concentration. 
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Alternate oxidant studies. The alternate oxidant tert-butyl hydroperoxide (tBHP) was 

used to support P450 catalytic activity in place of NADPH, reductase and molecular 

oxygen. P450s 2B6 or 2B6.4 were placed in 50 mM KPi, pH 7.4, to a final volume of 200 

μl. An aliquot (12 μl) of this primary mixture was transferred into 990 μl of assay mixture 

that contained 100 μM 7-EFC and 40 μg BSA/ml in 50 mM potassium phosphate buffer, 

pH 7.4. The assays were performed as previously described [18]. The concentration of 

tBHP (2.5 mM) used in experiments to test for inactivation was determined to be optimal 

by measuring 7-EFC O-deethylation activity at concentrations of tBHP ranging from 0 to 

5 mM.  The presence of 2.5 mM tBHP resulted in maximum formation of the 7-EFC O-

deethylated product, with no measurable inhibition of enzyme activity. 

 

Reaction stoichiometry. P450 2B6 or P450 2B6.4 (65 pmol) was incubated with 

reductase at a 1:2 molar ratio of P450:reductase for 45 min at 4ºC. In the experiments in 

the presence of cytochrome b5, samples were reconstituted in a 1:2:1  molar ratio of 

P450:reductase:cytochrome b5. P450 and reductase were incubated together on ice for 5 

min prior to the addition of cytochrome b5. The sample was brought to a total volume of 

1 ml using 100 mM potassium phosphate buffer, pH 7.4 and placed into a cuvette. The 

sample was allowed to sit at room temperature for 3 min before the addition of NADPH 

to a final concentration of 200 μM. NADPH consumption was measured continuously, 

both in the presence and absence of substrate (10 μM 17EE or efavirenz), by monitoring 

the absorbance at 340 nm over 4 min. The concentration of NADPH was determined 

using an extinction coefficient of 6.22 mM-1cm-1 [19]. To measure product formation, 700 

μl of the sample was removed and the reaction was quenched by the addition of 300 μl of 
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acetonitrile. Since the metabolism of both efavirenz and 17EE leads to the formation of 

multiple products, substrate depletion was used to quantify product formation. For this 

reason substrate concentrations were used where depletion could be readily determined. 

The samples were analyzed by HPLC as previously described [10, 20]. The remaining 

300 μl of the sample was used to determine the amount of hydrogen peroxide formed 

using the ferrithiocyanate method [21]. 

 

Inactivation of P450 2B6.4 in the presence of cytochrome b5.  The purified P450 was 

reconstituted with reductase and cytochrome b5 as described above for 45 minutes at 4 

°C. The primary reaction mixtures contained 1 μM P450, 2 μM reductase, 1 μM 

cytochrome b5, 110 U catalase and efavirenz (0-50 µM) or 17EE (0-160 µM) in 50 mM 

potassium phosphate buffer, pH 7.4. The primary reaction mixtures were then incubated 

for 10 min at 30 °C prior to the addition of NADPH to a final concentration of 1.2 mM.  

Following the initiation of the reaction by the addition of NADPH, 12 μL aliquots were 

removed from the primary reaction mixtures at the times indicated and transferred to 990 

μL of the secondary reaction mixtures which contained 100 μM 7-EFC, 1 mM NADPH, 

and 40 μg BSA/mL in 50 mM potassium phosphate buffer, pH 7.4.  The secondary 

reaction mixtures were incubated for 10 min at 30 °C, and then quenched by the addition 

of 334 μL of acetonitrile. The amount of 7-hydroxy-4-(trifluoromethyl) coumarin formed 

was measured at room temperature using an excitation wavelength of 410 nm and an 

emission wavelength of 510 nm on a RF-5310 Spectrofluorophotometer (Shimadzu 

Scientific Instruments, Inc., Wood Dale, IL).  
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17EE metabolism. P450 2B6.4 was reconstituted together with reductase and 

cytochrome b5 as described above. The primary reaction mixture contained 1 μM P450, 2 

μM reductase, 1 μM cytochrome b5, 200 μg/ml ascorbate, 110 U catalase, 40 μM 17EE 

and 50 mM potassium phosphate buffer, pH 7.4.  The metabolites were resolved by 

reverse-phase HPLC according to a published protocol [20]. 

 

 Results 

P450 2B6 and P450 2B6.4 active site topology. Phenyldiazene forms a σ-bonded 

complex with the heme iron of the P450, resulting in the formation of a phenyl-iron 

complex. Oxidation facilitates the migration of the phenyl group to an available pyrrole 

nitrogen belonging to rings A, B, C or D. The ratio of formation of the resulting N-

protoporphyrin IX regioisomers, denoted as NA, NB, NC and ND, allow for inferences to 

be made regarding the accessibility of each of the four pyrrole rings [15, 16, 22]. 

Phenyldiazene was added to P450s 2B6 and 2B6.4, and formation of the phenyl-iron 

complex was determined spectrally by monitoring the peak formation at 478 nm and a 

concomitant decrease at 418 nm (data not shown). Following oxidation using 

ferricyanide, the samples were analyzed by LC-MS and all four N-phenylprotoporphyrin 

IX regioisomers were observed. The elution times of the resulting regioisomers were 

compared to the standards produced from the incubation of phenyldiazene with 

myoglobin (data not shown). The major product formed by the wild-type enzyme was 

NC, which accounted for 46 ± 2 % of the total regioisomer formation.  NA, NB and ND 

were also detected, and accounted for 10 ± .7 %, 7 ± .5 % and 37 ± 1 % respectively 

(Figure 4.2). Interestingly, there were some differences observed between the mutant and 
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Figure 4.2 – P450 2B6 N-phenylprotoporphyrin IX regioisomers formation. P450 
2B6 was incubated with phenyldiazene and phenyl-iron complex formation was observed 
spectrally as described under Experimental Procedures. Oxidation caused migration of 
the phenyl to the porphyrin nitrogens. The individual peaks represent migration of the 
phenyl to pyrrole rings A (NA), B (NB), C (NC) or D (ND). The chromatogram is 
representative of 3 separate experiments. 
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Figure 4.3 – P450 2B6.4 N-phenylprotoporphyrin IX regioisomers formation. P450 
2B6.4 was incubated with phenyldiazene and phenyl-iron complex formation was 
observed spectrally as described under Experimental Procedures. Oxidation caused 
migration of the phenyl to the porphyrin nitrogens. The individual peaks represent 
migration of the phenyl to pyrrole rings A (NA), B (NB), C (NC) or D (ND). The 
chromatogram is representative of 3 separate experiments. 
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the wild-type enzyme. The reaction of phenyldiazene with P450 2B6.4 also resulted in 

the formation of all four N-phenylprotoporphyrin IX regioisomers (Figure 4.3). However, 

NC only represented 37 ± 1 % of the overall formation, while NA, NB and ND constituted 

15 ± .5 %, 11 ± 3 % and 38 ± 4 %, respectively. These data suggest that there may be 

differences in the active site topologies of the two enzymes. 

 

Spectral binding of benzphetamine and efavirenz to P450 2B6 and P450 2B6.4. 

Spectrophotometric titrations were performed to investigate whether these two substrates 

of P450 2B6 and P450 2B6.4 showed differences in binding affinity to the two enzymes. 

The dissociation constants (Ks) were determined from the titration curves. Benzphetamine 

was chosen because it produces a prominent type I spectral change in P450 2B6. 

Efavirenz caused a type II spectral change, which is characteristic of a nitrogen atom 

coordinating to the heme. Both enzymes showed similar affinities for both of the 

substrates. The Ks values for benzphetamine binding to P450s 2B6 and 2B6.4 were 18 

μM and 17 μM, respectively (Table 4.1). The efavirenz spectral dissociation constants 

were also similar between the two enzymes, with a value of 85 μM for the wild-type 

enzyme and 123 μM for the variant enzyme (Table 4.1). The Ks values for 17EE binding 

could not be determined since 17EE does not induce measurable spectral shifts. These 

data on the binding of benzphetamine and efavirenz suggest that P450 2B6 and P450 

2B6.4 are able to bind substrates in a similar manner. Therefore, the differences in 

catalysis may not be directly related to substrate binding. 
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Table 4.1 - Spectral binding of benzphetamine and efavirenz to P450 2B6 and P450 
2B6.4. P450s were titrated with benzphetamine or efavirenz until the maximum type I 
(benzphetamine) or type II (efavirenz) spectral shift was observed as described under 
Experimental Procedures. The ks values were estimated by plotting the inverse of the 
absorbance changes (average of 3 separate experiments done in duplicate) associated 
with either type I or type II binding as a function of the concentration of benzphetamine 
or efavirenz. The data are representative of 3 separate experiments performed in 
duplicate. 
 

 Substrate Ks 

2B6 Benzphetamine 18 μM 

2B6.4 Benzphetamine 17 μM 

2B6 Efavirenz 85 μM 

2B6.4 Efavirenz 123 μM 
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Inactivation of P450s by 17EE and efavirenz using an alternate oxidant. We used 

tert-butyl hydroperoxide as an activated oxygen surrogate to investigate whether the 

wild-type and/or mutant enzymes could become inactivated by 17EE or efavirenz in a 

reductase and electron-free system. tBHP produces an active iron-oxygen species with 

the P450 that can support P450 catalytic activity in the absence of molecular oxygen and  

reducing equivalents from NADPH [23]. Both P450 2B6 and P450 2B6.4 were 

inactivated by 17EE and efavirenz when tBHP was used as an oxidant. P450 2B6 7-EFC 

O-deethylation activity remaining was 52 ± 2 % when the concentration of efavirenz was 

50 μM and 32 ±1% when incubated with 80 μM efavirenz (Table 4.2). P450 2B6 was 

also inactivated by 17EE in the presence of tBHP in a concentration-dependent manner 

(Table 4.2). Interestingly, tBHP was also able to support the inactivation of P450 2B6.4 

by both compounds (Table 4.2). Thus, in a system that is not dependent upon reductase, 

NADPH and oxygen, the variant enzyme behaved in a manner similar to the wild-type 

enzyme. These data suggest that the ability of P450 2B6.4 to interact with reductase may 

be compromised. 

 

Determination of the apparent Kd of reductase binding to P450s 2B6 and 2B6.4. To 

determine whether the lack of inactivation of the mutant enzyme by 17EE and efavirenz 

in the reconstituted system was the result of impaired interaction with reductase, complex 

formation of the P450s with reductase was measured spectrophotometrically. The binding 

of reductase to P450s results in a low to high spin shift in the heme iron, characterized 

spectrally by a decrease in the absorbance at 418 nm and an increase in the absorbance at 

385 nm [17]. The apparent Kd for the interaction of the reductase with P450 2B6.4 was  
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Table 4.2 - Inactivation of P450s 2B6 and 2B6.4 using tert-butylhydroperoxide to 
support the reaction. P450s were incubated with tBHP and the inactivators indicated as 
described in the Experimental Procedures section. Activity remaining was determined 
using the 7EFC O-deethylation assay. The data are presented as percent activity 
remaining as compared to control sample incubated with tBHP in the absence of 
efavirenz or 17EE.   
 

  

Inactivator 

Percent activity remaining 

50 μM inactivator           80 μM inactivator 

2B6 Efavirenz 52 ± 2 32 ± 1 

2B6.4 Efavirenz 66 ± 3 48 ± 1 

2B6 17EE 33 ± 1 21 ± 2 

2B6.4 17EE 81 ± 4 70 ± 2 
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Table 4.3 - Determination of the apparent Kd of reductase binding to P450s 2B6 and 
2B6.4. P450 (1 μM) was added to 100 mM KPi (pH 7.4) to a final volume of 1 ml. 
Reductase (0 – 8 μM) was titrated and readings were taken following each addition. The 
apparent dissociation constant was determined by plotting the inverse of the absorbance 
changes (average of 3 separate experiments done in duplicate) between 390 nm and 420 
nm (type I) as a function of the reductase concentration.   
 

 Apparent Kd 

2B6 240 nM 

2B6.4 918 nM 
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almost 4-fold greater than the value obtained from experiments with the wild-type 

enzyme (Table 4.3). This difference does not seem to be marked enough to solely account 

for the differences in catalytic activity we observed between the two enzymes since we 

routinely used reductase concentrations in excess of P450. To gain a more complete 

understanding of the catalytic activities of the two enzymes, the reaction stoichiometry 

for the metabolism of 17EE and efavirenz by P450 2B6 and P450 2B6.4 was determined.  

 

Reaction stoichiometry. As shown in Table 4.4, NADPH consumption was not 

increased by the presence of substrate when measured for either of the enzymes. During 

the metabolism of 17EE and efavirenz by P450 2B6, hydrogen peroxide was formed at a 

rate similar to the rate of product formation. In contrast, the majority of NADPH 

consumed by P450 2B6.4 resulted in the formation of hydrogen peroxide (Table 4.4).  

These data indicate that the metabolic reactions of P450 2B6.4 with 17EE and efavirenz 

are more uncoupled than the metabolism of these compounds by P450 2B6. 

 Several studies have demonstrated that cytochrome b5 can increase the coupling 

of P450 catalyzed reactions, including those involving P450 2B enzymes [24, 25]. With 

this in mind, we measured NADPH consumption, hydrogen peroxide formation and 

product formation in the presence of cytochrome b5. Reconstitution of P450 2B6.4 with 

cytochrome b5 as well as reductase dramatically improved the coupling of both reactions 

(Table 4.5). Interestingly, cytochrome b5 only had a minimal effect on the coupling of the 

wild-type reactions (Table 4.5). Further, P450 2B6.4-mediated 17EE product formation, 

as measured by substrate depletion, was observed when cytochrome b5 was present in the 

reconstitution mixture (Table 4.5). In light of these findings, we went on to test whether  
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Table 4.4 - Stoichiometry for the metabolism of 17EE and efavirenz by P450s 2B6 
and 2B6.4. P450s were reconstituted with reductase as described under Experimental 
Procedures. NADPH oxidation was measured spectrally by monitoring absorbance at 340 
nm. Portions of the sample were then used to determine hydrogen peroxide and product 
formation. Product formation was measured by substrate depletion. All of the values are 
presented as nmol/nmol P450/min. 
 

P450 Substrate NADPH 

oxidation 

H2O2 formed Product 

formed 

 

2B6 No substrate 15.7±.5 2.2±.1 0  

2B6 Efavirenz 16.2±.9 6.3±.1 6.8±.2  

2B6 17EE 15.1±.6 7.8±.3 7.3±.4  

2B6.4 No substrate 14.7±.6 7.2±.3 0  

2B6.4 

2B6.4 

Efavirenz 

17EE 

16.3±.5 

16.9±.4 

10.1±.4 

12.6±.6 

3.8±.1 

.78±.2 
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Table 4.5 - Improvement of P450 2B6.4 reaction coupling upon reconstitution with 
cytochrome b5. P450s were reconstituted with reductase and cytochrome b5. The assay 
was performed as described under Experimental Procedures. NADPH oxidation was 
measured for 4 min then the sample was used to determine both hydrogen peroxide 
formation and product formation. All values are presented as nmol/nmol P450/min. 
 

P450 Substrate NADPH 

oxidation 

H2O2 formed Product 

formed 

 

2B6 No substrate 14.3±.4 1.8±.2 0  

2B6 Efavirenz 15.8±.7 5.6±.3 9.6±.6  

2B6 17EE 15.0±.7 6.5±.1 8.2±.4  

2B6.4 No substrate 13.1±.2 5.1±.1 0  

2B6.4 

2B6.4 

Efavirenz 

17EE 

15.4±.5 

15.0±.3 

5.2±.2 

6.9±.1 

7.7±.2 

5.3±.3 
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inactivation of P450 2B6.4 by efavirenz and 17EE could occur in the presence of 

cytochrome b5.  

 

Inactivation of P450 2B6.4 by 17EE and efavirenz in the presence of cytochrome b5. 

We previously reported that P450 2B6.4 is not inactivated by 17EE and efavirenz when 

reconstituted with reductase alone [10, 11]. Inactivation of the mutant enzyme by 17EE 

and efavirenz in the presence of cytochrome b5 was measured using the 7-EFC O-

deethylation assay. P450 2B6.4 was inactivated by efavirenz (Figure 4.4) and 17EE 

(Figure 4.5) in a time- and concentration-dependent manner and the inactivation 

exhibited an absolute requirement for NADPH.  The activity loss followed pseudo first 

order kinetics. Linear regression analysis was performed and the kinetic constants for the 

efavirenz- mediated inactivation of the mutant enzyme were determined from the inset of 

figures 4 and 5. The KI values for inactivation of P450 2B6.4 by efavirenz and 17EE 

were 30 μM and 113 μM respectively.   

 

Metabolism of 17EE by P450 2B6.4 requires cytochrome b5. Studies were conducted 

to determine which 17EE metabolites were formed during metabolism by P450 2B6.4 in 

the presence of cytochrome b5. 17EE was incubated with P450 2B6.4 that was 

reconstituted with reductase and cytochrome b5 in the presence or absence of NADPH. 

The metabolites were analyzed using reverse phase HPLC as shown in Figure 4.6. P450 

2B6.4 metabolized 17EE to give a number of major metabolites denoted as C, D and E as 

well as a minor metabolites, such as A and B. Metabolite B was not present in the 

profiles of the wild-type enzyme in our previous studies [11, 20]. 
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Figure 4.4 – Inactivation of P450 2B6.4 by efavirenz in the presence of cytochrome 
b5. The time- and concentration-dependent inactivation of P450 2B6.4 by efavirenz in the 
presence of cytochrome b5 was measured by determining the 7-EFC O-deethylation 
activity. After initiation of reaction by the addition of NADPH, aliquots were removed 
from the primary reaction mixture at 0, 5, 10, 16 and 21 minutes. The concentration of 
efavirenz were ( ) 0 μM, ( ) 10 μM, ( ) 20 μM, ( ) 40 μM, and ( ) 50 μM. The data 
show the means and standard deviations from 4 separate experiments done in duplicate. 
In some cases the standard deviations were less than the size of the symbols. The inset 
shows the double reciprocal plot of the rates of inactivation as a function of the efavirenz 
concentrations. 
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Figure 4.5 – Inactivation of P450 2B6.4 by 17EE in the presence of cytochrome b5. 
The time- and concentration-dependent inactivation of P450 2B6.4 by 17EE was 
measured by determining the 7-EFC O-deethylation activity. After initiation of reaction 
by the addition of NADPH, aliquots were removed from the primary reaction mixture at 
0, 5, 10, 16 and 21 minutes. The concentration of efavirenz were ( ) 0 μM, ( ) 40 μM, 
( ) 80 μM, ( ) 120 μM and ( ) 160 μM. The data show the means and standard 
deviations from 4 separate experiments done in duplicate. In some cases the standard 
deviations were less than the size of the symbols. The inset shows the double reciprocal 
plot of the rates of inactivation as a function of the 17EE concentrations. 
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Figure 4.6 – Metabolism of 17EE by P450 2B6.4 in the presence of cytochrome b5. 
Metabolites A, A1, and C are mono-hydroxylated metabolites, though the exact identities 
have not yet been determined.  Metabolite D corresponds to 2-hydroxy-17EE, metabolite 
E corresponds to estrone and F corresponds to the substrate, 17EE. We previously 
showed that in the absence of cytochrome b5 P450 2B6.4 does not readily metabolize 
17EE [11].  
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Discussion 

P450 2B6 is involved in the metabolism of a growing number of substrates 

including drugs, pesticides and procarcinogens [26, 27] and is expressed in a number of 

organs including the liver, kidney, skin, heart and brain [28-31]. Clinical studies have 

demonstrated a large degree of inter-individual variability in the metabolism of P450 2B6 

specific substrates. Genetic polymorphisms appear to play a major role in this variability 

and a number of single nucleotide polymorphisms have been found in the P450 2B6 gene 

[32]. Several studies have shown that these polymorphisms can have clinical 

consequences. The majority of studies regarding P450 polymorphisms have focused on 

correlating patient genotypes to a particular phenotype. However, there are very few in 

vitro studies investigating the mechanisms underlying effects of these mutations. The 

goal of our studies has been to understand how a particular naturally occurring genetic 

mutation can affect the structure and function of the P450. 

We have previously demonstrated that the mutation of lysine 262 of the P450 2B6 

protein to arginine can result in marked changes in catalytic activity [10, 11]. Our 

findings that P450 2B6.4 was not inactivated by efavirenz and 17EE, known inactivators 

of the wild-type enzyme, were the most intriguing [11]. This mutant, which corresponds 

to the P450 2B6*4 variant allele of the P450 2B6 gene, is of particular interest because it 

is present in at least 3 variant alleles and has a high mutation frequency. This mutation 

has been found across all ethnic groups genotyped for P450 2B6 polymorphisms and has 

been shown to have nearly a 50% mutation frequency in Ghanians and a frequency of 

nearly 30% in African-American, Caucasian, Japanese and Taiwanese populations [32].  
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Previous studies using a number of P450s have demonstrated that phenyldiazene 

is a useful tool for gaining information about the topology of the P450 active site [22, 33, 

34]. Phenyldiazene forms a σ-bonded complex with the heme iron of the P450, resulting 

in the formation of a phenyl-iron complex. Oxidation results in the migration of the 

phenyl group to an available pyrrole nitrogen belonging to rings A, B, C or D. The ratios 

of formation of the resulting N-protoporphyrin IX regioisomers, denoted as NA, NB, NC 

and ND, allow for inferences to be made regarding the accessibility of, or open space 

above, each of the four pyrrole rings. In the case of bacterial P450 isoforms, the 

information gained using phenyldiazene has been consistent with X-ray crystallography 

data [35]. In the present study, we used phenyldiazene to investigate whether the K262R 

mutation leads to significant changes in active site topology. Although the overall 

profiles for the formation of the regioisomers were similar between the two enzymes, 

there was a difference in the migration of the phenyl group to the nitrogen of the pyrrole 

ring C. In the experiments with the wild-type enzyme, the NC regioisomer accounted for 

46% of the total formation. However, in the case of the mutant, NC formation only 

accounted for 37% of the total. Though this difference is small, it suggests that the active 

site topologies of the two enzymes differ to some extent.  

To further investigate whether there were differences in the active sites of the two 

enzymes, spectral binding studies were performed. Benzphetamine and efavirenz were 

chosen because these two substrates result in pronounced spectral changes. Other 

substrates were tested, such as 17EE, and spectral changes were not detected when these 

substrates were added to P450 2B6. The Ks values determined by measuring spectral the 

changes resulting from titration of P450s 2B6 and 2B6.4 with benzphetamine and 
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efavirenz were similar between the two enzymes, suggesting that the K262R mutation 

does not significantly affect binding. The ΔA values were similar in all cases. 

According to the P450 2B4 crystal structure, the only structure of a P450 2B 

family member currently available, residue 262 is in the G/H loop [36, 37]. Although this 

region is not in close proximity to the active site, it could potentially play a role in the 

interaction with reductase. To test whether the K262R mutation alters the ability of the 

enzyme to interact with reductase, we performed experiments to measure the ability of 

each P450 to associate with reductase. Spectral studies to investigate the association of 

the P450s with reductase suggested that the mutant may have a somewhat lower affinity 

for reductase, however, the difference between the mutant and wild-type enzymes in 

reductase binding did not seem profound enough to account for the marked differences in 

catalytic activity. In addition, we used tBHP as an oxidant to determine if the mutant 

enzyme would be catalytically similar to the wild-type in the absence of the requirement 

to interact with reductase. Interestingly, in the presence of alternate oxidants the mutant 

was readily inactivated by 17EE and efavirenz suggesting that electron transfer to P450 

2B6.4 may be compromised during these reactions when using the reconstituted system.  

In order to gain a comprehensive understanding of a particular reaction it is 

necessary to determine the stoichiometry of the reaction. Investigation of the 

stoichiometry for metabolism of 17EE and efavirenz by the two enzymes indicated that 

the mutant appeared to be more uncoupled. Coupling can be defined as the fraction of 

electrons used towards the formation of monooxygenated metabolites. Therefore, 

uncoupling refers to a decrease in monoxygenated metabolite formation and a 

concomitant increase in non-productive metabolite product formation, namely the 
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autooxidation of the oxyferrous P450 to superoxide which is converted to hydrogen 

peroxide, as well as the release of hydrogen peroxide from the peroxo-iron intermediate. 

Reaction stoichiometry relates NADPH and oxygen consumption with hydrogen peroxide 

and metabolite formation. The mutant produced more hydrogen peroxide than the wild-

type both in the presence and absence of substrate. In an attempt to improve the coupling 

of the P450 2B6.4 reactions, cytochrome b5 was added to the reconstitution mixture. The 

presence of cytochrome b5 improved the coupling of the mutant enzyme, and the 

hydrogen peroxide levels were closer to those observed for the reactions catalyzed by the 

wild-type enzyme. Further, the addition of cytochrome b5 to the reconstitution mixture 

resulted in the inactivation of P450 2B6.4 by efavirenz and 17EE.  

Cytochrome b5 is a 17-kDa heme-containing protein that is located in the 

membrane of the endoplasmic reticulum [38], and it functions as an electron donor in a 

number of reactions, including cholesterol biosynthesis and certain P450-catalyzed 

reactions [39]. Depending upon the P450 isoform and the substrate being investigated, 

cytochrome b5 has been shown to increase, inhibit, or have no effect on P450 activity 

[40]. Studies on the metabolism of methoxyflurane by P450 2B4, the rabbit isoform of 

P450 2B6, in the reconstituted system revealed that cytochrome b5  was absolutely 

required [41, 42]. Interestingly, cytochrome b5 had no effect on P450 2B4-mediated 

metabolism of benzphetamine [43]. There are two primary hypotheses to explain the 

stimulatory effect of cytochrome b5 on some P450-mediated reactions. The first is that 

reduced cytochrome b5 donates the second electron in the catalytic cycle to the P450 [44-

46]. This is supported by studies showing electron transfer from cytochrome b5 to P450 as 

well as the observation that “uncoupling” is decreased in the presence of the b5 protein 
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[25]. In the latter instance, the presence of cytochrome b5 results in a decrease in 

hydrogen peroxide formation and a subsequent increase in product formation, possibly by 

stabilizing the oxyferrous P450 complex, leading to a decrease in release of superoxide 

[25]. The second hypothesis is that cytochrome b5 physically interacts with the P450 

causing a conformational change that facilitates interaction with the substrate or 

reductase. This notion is supported by studies where the apo-cytochrome b5, which 

cannot be reduced and donate the second electron, was able to stimulate P450-catalyzed 

reactions [47]. However, the exact role of cytochrome b5 in P450-dependent 

hydroxylation and oxidations is unclear. In our studies, cytochrome b5 improved the 

coupling of the mutant enzyme, facilitating metabolism of 17EE by the mutant and 

inactivation by both compounds. This suggests that for these particular reactions the 

former hypothesis may be true. We performed studies using both apo-cytochrome b5 and 

Mn-cytochrome b5, which cannot act as an electron donor, and did not see any 

improvement in the catalytic activity of P450 2B6.4 (data not shown). Studies performed 

by Zhang et al., under single turnover conditions demonstrate that cytochrome b5 and 

reductase donate the second electron to the P450 (in this case P450 2B4) at a similar rate, 

however catalysis occurs faster in the presence of cytochrome b5 [48]. These authors 

hypothesize that the conformation of the oxyferrous P450 may be different in the 

presence of cytochrome b5 and reductase. This proposal is a potential explanation for the 

findings reported in the present study. However, it is also possible that the oxyferrous 

P450 2B6.4 and/or peroxo-iron intermediate in the presence of 17EE and efavirenz are 

less stable than the same complexes formed by the wild-type enzyme. Further studies are 

necessary to elucidate the precise mechanism by which cytochrome b5 increases the 
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catalytic activity of P450 2B6.4. These studies could potentially include measuring the 

formation and stability of the oxyferrous complex of P450 2B6.4 versus P450 2B6.  

In summary, we have investigated the effects of the K262R mutation on active 

site topology, substrate binding, interaction with reductase and reaction stoichiometry. 

The inactivation of P450 2B6.4 by efavirenz and 17EE showed an absolute requirement 

for cytochrome b5. In the presence of cytochrome b5, the reactions catalyzed by the 

mutant enzyme exhibited improved coupling. These studies provide evidence that the 

differences in the catalytic properties of P450 2B6 and P450 2B6.4 are related to 

uncoupling of P450 2B6.4 mediated metabolism. 
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CHAPTER 5 

 

CROSS-LINKING OF CYTOCHROME P450 2B6 TO NADPH-CYTOCHROME 
P450 REDUCTASE: IDENTIFICATION OF A POTENTIAL SITE OF 

INTERACTION 
 

 

Introduction 

The cytochrome P450 (P450) enzymes belong to a family of heme containing 

proteins that catalyze the metabolism of a wide range of endogenous and exogenous 

substrates. P450s are involved in the oxidative, peroxidative, and reductive metabolism of 

a variety of structurally diverse compounds. All P450s share a common catalytic 

mechanism which involves the two-electron reduction of molecular oxygen resulting in 

the formation of a reactive oxygen intermediate and water [1]. Electrons are transferred 

from NADPH to the P450 via NADPH-P450-reductase (reductase), which leads to the 

reductive activation of molecular oxygen followed by the insertion of one oxygen atom 

into the substrate [1]. 

Human P450 2B6 has received increased attention in recent years in part due to its 

expression in a number of extrahepatic tissues, as well as its role in the oxidative 

metabolism of a growing list of xenobiotics. However, as the crystal structure of P450 

2B6 is yet to be solved, structural information regarding this enzyme is lacking. Many of 

the inferences that have been made relating to P450 2B6 structure and function have 
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been drawn from knowledge of the rabbit isoform P450 2B4. Crystal structures of both 

the open and closed forms of P450 2B4 are available and these data have helped to 

confirm mutagenesis data that identified residues of the P450 reported to be responsible 

for the interaction with reductase [2, 3]. The interaction between P450 and reductase is 

electrostatic, involving basic residues on the P450 and acidic residues on the surface of 

reductase [4, 5]. Mutation of 25 amino acids on the surface of P450 2B4 to alanines by 

Bridges et al., revealed that residues in the C helix, as well as R422 near the β bulge and 

R443 in the L helix play a role in the interaction of the P450 with reductase [6]. 

Unfortunately, similar studies have not been performed for P450 2B6. Therefore, we 

aimed to identify the P450 2B6 residues that may be involved in the interaction with 

reductase. To approach this, we used the water soluble carbodiimide, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) as a crosslinker. EDC has been shown to be a 

useful tool in the identification of sites of interaction between proteins in a number of 

protein-protein complexes, including reductase-cytochrome c and P450 2E1-b5 [7, 8]. 

However, a previous attempt to cross-link P450 2B4 to reductase using EDC was 

reported to be unsuccessful [9]. In the present study, we were able to cross-link P450 2B6 

to reductase and to structurally characterize this complex. EDC covalently links lysine 

residues to either aspartic or glutamic acid residues, making this an appropriate cross-

linker to use in these studies since the interactions between the P450 and reductase are 

believed to be electrostatic.  

In order to identify P450 2B6-reductase cross-linked peptides we used 18O-water 

to isotopically label cross-linked peptides. Proteolysis by an enzyme such as trypsin, 

results in the ability of the tryptic peptides to specifically exchange oxygen atoms from 
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water with the two oxygen atoms of the carboxyl terminus [10].  By comparing the 

masses of proteolytic peptides after exchange with either 18O-water or 16O-water, cross-

linked peptides can be identified based on the magnitude of the mass shift due to the 

incorporation of two 18O atoms. The incorporation of two 18O atoms into the carboxyl 

terminus of a peptide will result in a 4 Da mass shift. Therefore, if two peptides are cross-

linked, the observed mass shift would be 8 Da, since the complex should consist of two 

linked peptides, each with a C-terminus capable of incorporating two of the 18O atoms. 

Also, incomplete incorporation can occur where cross-linked peptides may only 

incorporate three 18O atoms. In this case a 6 Da mass shift would be observed. This 

method has been used previously to identify cross-linked peptides [7, 11, 12]. The studies 

reported here detail the use of this method to identify a P450 2B6-reductase cross-linked 

peptide. 

 

Experimental Procedures 

Materials. EDC was purchased from Pierce (Rockford, IL). Efavirenz was purchased 

from Toronto Research Chemicals (Toronto, Canada). 

 

Expression and purification of P450 2B6 and reductase. P450 2B6 and NADPH-P450 

reductase were expressed in E. coli Topp 3 cells and purified according to published 

protocols [13-15].  

 

Cross-linking reactions. P450 2B6, reductase and DLPC were reconstituted by 

incubating all three components at 4ºC for 45 minutes using a molar ratio of 1:1:600, 
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respectively. The components were then allowed to sit at room temperature for 10 

minutes. EDC was added to a final concentration of 10 mM from a 100 mM stock made 

fresh just prior to the experiment. After 2 hours, the reaction was quenched by dialysis 

against 100 mM ammonium bicarbonate buffer, pH 8.5 at 4ºC. 

 

Activity assay. In order to isolate the cross-linked complex, the free P450 as well as free 

reductase had to be removed from the sample. To do this, we used affinity purification 

techniques. The P450 2B6 used in these studies was his-tagged; therefore, we applied the 

cross-linked sample to a nickel column. Only P450 2B6 or the P450 2B6-crosslinked 

complex should bind to the column. Therefore, once the column was eluted and the 

contents collected, free reductase was absent from the sample. In order to remove the free 

P450 2B6, the sample was then bound to an ADP-sepharose column which binds 

NADPH binding domains. Following the use of both of these columns, only the cross-

linked complex was present. The efavirenz metabolism assay was then carried out 

according to Bumpus et al., 2006 [16]. 

 

Proteolytic digestions. The in-gel digestions as well as analyses using MALDI 

TOF/TOF were performed by the Michigan Proteome Consortium (Ann Arbor, 

Michigan) according to the protocol posted on their website 

(www.proteomeconsortium.org). For the in-solution digests and isotopic labeleling, the 

cross-linked sample was dialyzed against 100 mM ammonium bicarbonate, pH 8.5, twice 

for four hours. Trypsin was then added such that the amount of protein from the EDC 

reaction was in 50-fold molar excess. The digestion was allowed to proceed for 24 hours 
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at 37ºC. Subsequently, the samples were divided into two portions and dried using a 

SpeedVac. The resulting peptides were then reconstituted using either 16O-water or 18O-

water and analyzed using a LTQ mass spectrometer (ThermoElectron Finnigan) in the 

University of Michigan Biomedical Mass Spectrometry Facility. 

 

Data analysis. Data were analyzed using the Pro-CrossLink Version 1 suite of software 

tools developed by Gao et al., at the University of Washington (Seattle, Washington) 

[17]. 

 

Results 

P450 2B6 and reductase complex formation. Cross-linking of P450 2B6 to reductase 

was analyzed using SDS-PAGE. Upon incubation with EDC, reductase and P450 form a 

1:1 complex as illustrated by a band at approximately 130 kDa in the sample containing 

both enzymes (Figure 5.1, circled). This complex was absent in the control samples 

consisting of P450 or reductase (Figure 5.1) alone incubated with EDC. Interestingly, 

P450 2B6-P450 2B6 complexes were also observed as well as reductase-reductase 

complexes (Figure 5.1). However, in the absence of EDC none of the abovementioned 

complexes were formed (data not shown). The presence of both P450 2B6 and reductase 

in the 130 kDa complex was confirmed unequivocally following digestion of the excised 

band. Polypeptide chains from both P450 2B6 and reductase were identified in the digest 

by searching the MASCOT database (Matrix Science, London, UK).  
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Figure 5.1 – SDS-PAGE analysis of cross-linked complexes. P450 2B6 (54 kDa), 
reductase (77 kDa) and P450 2B6 reconstituted with reductase in the presence of lipid 
(this sample was divided in half) were all incubated separately with EDC as described 
under Experimental Procedures. The gel was stained with Sypro Ruby. The circled band 
represents the cross-linked P450 2B6-reductase complex at approximately 130 kDa. This 
band was excised, digested and analyzed by mass spectrometry, which confirmed the 
presence of both P450 2B6 and reductase based upon a database search using MASCOT.  
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Determination of the cross-linked P450 2B6-reductase complex as functionally 

active. In order to determine whether the cross-linked P450 2B6-reductase complex 

observed exists in a functional conformation, the complex was separated from the non-

cross-linked proteins by column chromatography and activity assays were performed. 

SDS-PAGE followed by coomassie staining showed that the cross-linked complex was 

the only protein remaining in the sample following the separation procedures (data not 

shown). As shown in Table 5.1, the isolated cross-linked complex was able to metabolize 

the P450 2B6 substrate efavirenz. The data obtained were normalized to total protein in 

the sample using a BCA protein assay (Pierce).  However, the metabolite formation by 

the isolated cross-linked complex was approximately 30% less than that of reconstituted 

P450 2B6 and reductase that were not incubated with EDC. The 8-hydroxyefavirenz 

formed by the non-crosslinked sample was approximately 3.7 pmol 8-

hydroxyefavirenz/mg protein, while product formation by the cross-linked sample was 

approximately 2.6 pmol 8-hydroxyefavirenz/mg protein.  

 

Mass spectrometric analysis of peptides. The identification of the cross-linked peptides 

from the P450 2B6-reductase was approached in two ways. First, peptides resulting from 

the in-gel digests of P450 2B6 alone, reductase alone and P450 2B6-reductase all 

incubated with EDC were analyzed using a MALDI TOF/TOF mass spectrometer. Since 

inter- and intra-molecular cross-links between P450 and reductase are possible, the 

peptide masses found in the P450 2B6 and reductase alone samples were subtracted from 

the peptide masses present in the P450 2B6-reductase cross-linked  
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Table 5.1 – Determination of cross-linked P450 2B6 and reductase activity. P450 
2B6 and reductase were reconstituted in the presence of lipid as described under 
Experimental Procedures. 8-hydroxyefavirenz formation was measured and normalized 
to total protein as determined by performing a BCA protein assay. 
 

          pmol 8-hydroxyefavirenz/mg protein 

2B6 + reductase - EDC 3.7 ± 0.5 

2B6 + reductase +EDC 2.6 ± 0.3 
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sample. The tandem mass spectra (MS/MS) of the peptides present in the P450 2B6-

reductase sample and not in the controls, were input into the Pro-CrossLink software 

which subsequently identified a peptide with a mass of 3809.4 Da as a cross-linked 

peptide (data not shown). To confirm this identification, we took a second approach 

where we isotopically labeled the peptides with 18O water following proteolytic digestion, 

as described under Experimental Procedures. The samples were then analyzed using an 

LTQ equipped with a photodiode array detector. Figures 5.2 and Figure 5.3 show the 

respresentative UV spectra (280 nm) and total ion chromatograms, respectively, of 

peptides reconstituted in either 16O-water or 18O-water. Under electrospray ionization 

conditions, peptide ions can exist in multiple charge states. In this case, the expected 

mass shift of the precursor ion is dependent upon the charge state of the ion. For instance, 

a singly charged ion upon the incorporation of four 18O atoms would have a mass shift of 

8 Da. However, a mass shift of 4 Da would be observed for a doubly charged ion. 

Through the use of the Pro-CrossLink software, as well as manually searching through 

the mass spectra, a cross-linked peptide candidate was identified with its quintuply 

charged ion at m/z 762.6 in the 16O-water samples and at m/z 763.8 in the 18O-water 

samples; an ion at m/z 763.8 was not observed in the 16O-water sample. Figure 5.4 shows 

the co-elution of these ions in the total ion chromatograms. This mass shift of 1.2 for the 

quintuply charged ion indicates the incorporation of three 18O atoms at the C-terminus of 

this peptide. Since incomplete incorporation and/or back exchange can occur, peptides 

with a mass shift commensurate with the incorporation of three or four 18O atoms were 

considered cross-linked peptide candidates. The measured peptide mass matched the 

mass of the peptide previously identified from the in-gel digest using MALDI TOF/TOF. 
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Figure 5.2 – UV spectra of cross-linked P450 2B6-reductase peptides reconstituted  
in 16O-water or 18O-water. P450 2B6 and reductase were reconstituted, then incubated 
with EDC as described under Experimental Procedures. In-solution digests were then 
performed and the samples were dried down using a SpeedVac. The dried peptides were 
there reconstituted in either 16O-water or 18O-water. The figure shows the peptides 
monitored at 280 nm. 
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Figure 5.3 – Total ion chromatograms of digested cross-linked P450 and reductase.  
P450 2B6 and reductase were cross-linked as described under Experimental Procedures. 
In-solution digests were then performed and the samples were dried down using a 
SpeedVac. The dried peptides were there reconstituted in either 16O-water or 18O-water. 
The figure shows co-elution of the ions present in the sample analyzed on a LTQ mass 
spectrometer. 
 

 

 

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6
T i m e  ( m i n )

0

1

2

3

4

5

6

7

8

9

1 0

1 1

R
el

at
iv

e 
A

bu
nd

an
ce

2 1 . 7 1

5 5 . 3 03 . 0 2
2 5 . 8 2

3 1 . 9 5

3 0 . 9 5

3 7 . 7 3
3 5 . 8 1 6 0 . 5 31 9 . 0 7

1 6 . 0 3
5 1 . 0 4 6 0 . 2 5

4 9 . 1 2
4 4 . 5 41 2 . 7 4 5 9 . 5 4

3 . 2 8

1 1 . 4 28 . 9 2

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0
T i m e  ( m i n )

0

1

2

3

4

5

6

7

8

9

1 0

1 1

R
el

at
iv

e 
A

bu
nd

an
ce

2 1 .7 1

3 1 .9 82 5 .8 4
3 .0 0

3 7 .7 42 8 .9 4
1 4 .9 1 3 5 .8 0

1 9 .1 4 6 4 .5 66 0 .5 0
1 3 .3 0

5 9 .9 34 7 .0 0 4 9 .1 44 4 .5 31 2 .7 9 5 7 .3 1

8 .9 17 .3 0

18O-water digest 

16O-water digest 



 123

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5.4 – Co-elution of the quintuply charged ion at m/z 762.6 and m/z 763.8. 
Mass spectra of cross-linked peptides were analyzed manually and using the Pro-
CrossLink software to determine mass shifts between the 16O-water and 18O-water 
reconstituted samples. The mass shift of 1.2 Da for the quintuply charged ion indicates 
the incorporation of three 18O atoms at the C-terminus of this peptide. The ion at m/z 
763.8 was not present in the 18O-water sample. 
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Using the Pro-CrossLink software, the cross-linked peptide (P450 2B6: DFGMGKR)-

(reductase: RHILAILQDCPSLRPPIDHLCELLPR) was identified based upon the mass 

and charge state of the monoisotopic peak at m/z 762.6, as well as the MS/MS spectrum 

of this ion. De novo sequencing of the peptide using the MS/MS spectrum suggests that 

this may be the identity of the peptide (Figure 5.5). 

 

Discussion 

Structural information pertaining to P450 2B6 is seriously lacking, particularly 

with regard to interactions with redox partners. To address this, we have cross-linked 

P450 2B6 to reductase and have structurally characterized the resulting complex. Cross-

linking coupled with mass spectrometry is a powerful tool for elucidating sites of 

interaction between two proteins. The use of isotopic labeling during this process assists 

in unambiguous identification of cross-linked peptides. To facilitate the identification of 

as many peptide candidates as possible, conditions for 18O incorporation were optimized. 

During preliminary experiments it was determined that in-solution proteolysis resulted in 

more complete incorporation of 18O atoms compared to in-gel digestion. Further, instead 

of using the isotopic label during proteolysis, we performed the proteolysis in 16O water, 

dried the sample down using a SpeedVac and reconstituted the sample in 18O water [10]. 

This resulted in increased incorporation of 18O atoms, and potentially less back exchange.  

We have used two different approaches to identify the potential sites of 

interaction between P450 2B6 and reductase. Since EDC covalently links basic and 

acidic residues that come into very close proximity, it is an appropriate cross-linker to use  
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Figure 5.5 – MS/MS spectrum of the precursor ion [M+5]5+ = 762.0. The cross-linked  
candidate ion was fragmented for MS/MS using an LTQ mass spectrometer. De novo 
sequencing was used to determine the potential amino acid sequence of the peptide as 
shown above. Y and b ions identified in the spectrum are shown above. The ions denoted 
as α refer to P450 from P450 2B6 peptide D134-R140. The ions denoted as β are derived 
from the reductase peptide R428-R453. Residues underlined and in bold above the figure 
represent amino acids identified in the spectrum. 
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for the identification of amino acids involved in an electrostatic interaction. Further, we 

performed the cross-linking reaction in the presence of lipid using both full-length P450 

2B6 and reductase in order to simulate the actual physiological interaction as closely as 

possible. However, it is possible to generate false-positive cross-linked peptides which 

may not actually represent the binding orientations of the two proteins. For this reason, 

we attempted to isolate the complex and perform an activity assay to determine whether 

or not this complex was functional. Oxidative metabolism of efavirenz was observed, 

however, we cannot be certain that the cross-linked population is homogenous with 

respect to the sites of cross-linking and that the product formation can actually be 

attributed to the complex that was bound through the regions found in our studies. 

 The peptide that we have identified in the present study includes P450 2B6 

residues believed to be in the C-helix (based upon the P450 2B4 crystal structure) and 

reductase residues that lie in the connecting domain between the FAD and FMN domains. 

The same residues in the C-helix of P450 2B4 have been demonstrated by Bridges et al., 

to be involved in the interaction between the P450 and reductase [6]. When these authors 

mutated lysine 139 to alanine, the apparent Kd for reductase binding increased 23-fold. 

Since EDC cross-linked lysines to glutamic or aspartic acid residues, we propose that 

K139 is the P450 residue that is cross-linked residue in our system. Several reductase 

residues have been proposed to interact with P450s based upon mutagenesis data; 

however, all of these residues are located within the FMN domain [4, 18]. During 

reductase-mediated reduction of P450, the electrons are believed to be transferred via the 

FMN domain to the P450. Other proteins that are reduced by reductase, such as heme 

oxygenase, interact with regions of reductase other than the FMN domain [19]. With this 
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in mind, it is plausible that the specificity for the site of interaction of the reductase with 

the P450 may be more related to the structure of the P450 than that of reductase. The 

reductase amino acids (428-453) identified by our cross-linking studies are within the 

connecting domain. Although the connecting domain has not been shown to interact with 

P450, the residues do appear to be on the surface of the protein based upon the reductase 

crystal structure and, thus, would be logical candidates for interaction [20]. However, it is 

possible that this cross-linked peptide was simply more abundant, or perhaps ionized 

more readily, than other existing cross-linked peptides.  

During our analysis, two other precursor ions were identified as potential cross-

linked peptides as a result of their mass shifts in the 18O sample; unfortunately, we were 

not able to generate MS/MS data regarding these peptides. However, since the peptide 

data for the P450 cross-linking site coincides precisely with the mutagenesis data, it is 

possible that the complex characterized is biologically relevant. Further, multiple binding 

orientations may have the ability to facilitate electron transfer. Subsequent studies, such 

as mutagenesis of lysine 139 in P450 2B6, are necessary to determine whether the 

identified residues actually play a role in the interaction between the two proteins. 

Ultimately, co-crystallization of P450 with reductase may provide the most useful 

insights into the sites of interaction. 

 In summary, we have identified a P450 2B6-reductase cross-linked peptide using 

mass spectrometry coupled with isotopic labeling. This study provides the first direct 

information regarding potential sites of interaction between P450 2B6 and reductase. 
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CHAPTER 6 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 

Summary 

In the clinical setting, P450 inhibition can result in elevated plasma levels of other 

drugs that are primarily metabolized by the particular P450 being inhibited. As a result, 

inhibition of P450s has the potential to cause severe adverse events, particularly if the co-

administered drug has a narrow therapeutic index. Since mechanism-based inactivation of 

P450s is irreversible, in order to regain catalytic activity, the inactivated P450 has to be 

replaced by newly synthesized P450. The mechanism-based inactivation has a much 

greater potential to lead to drug-drug interactions than reversible inhibition [1]. A number 

of clinically relevant drugs and dietary components have been shown to be mechanism-

based inactivators in vitro. Clinical studies have confirmed that some of these 

mechanism-based inactivators affect the pharmacokinetics of co-administered drugs. 

Certain mechanism-based inactivators of P450 2B6 have been shown to cause drug-drug 

interactions including, bergamottin and 17EE. The effect of grapefruit juice on the 

pharmacokinetics of prescription drugs has received significant attention, since patients 

who ingest grapefruit juice as part of their diets exhibit significantly greater mean oral 

bioavailability of drugs belonging to several different classes, including lipid-lowering 
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drugs, calcium channel blockers and immunosuppressive agents [2, 3]. An effect of 

grapefruit juice has been reported on both the pharmacokinetics and metabolism profiles 

of more than 40 drugs [4]. These effects have been attributed to mechanism-based 

inactivation of P450s, including P450 2B6, by bergamottin a furanocoumarin present in 

grapefruit juice. The P450 2B6 inactivator 17EE has been reported to interact with a 

variety of co-administered drugs; however, the most striking interaction described thus 

far comes from a study with selegiline [5]. Selegiline is a selective, irreversible inhibitor 

of monoamine oxidase-B used in the treatment of Parkinson’s disease, and is extensively 

metabolized by P450s 2B6 and 2C19 [6]. Healthy female volunteers taking 17EE and 

selegiline concomitantly exhibited a 20-fold increase in the selegiline AUC and a 

decrease in the formation of metabolites [5]. Although, a two-fold or greater increase in 

drug plasma concentration significantly increases the risk of adverse events [7], less 

dramatic changes in plasma concentrations may still be clinically relevant if the co-

administered compound has a narrow therapeutic index. Further, the outcomes of drug-

diet and drug-drug interactions may vary depending on the age of the patient, gender, 

pathological conditions and genetic polymorphisms. With this in mind, the effects of a 

prominent P450 2B6 polymorphism (K262R; P450 2B6.4) on mechanism-based 

inactivation were studied. 

 Initial studies to investigate the effects of the K262R mutation were performed 

using bupropion as a probe substrate, since there was clinical evidence that this mutation 

caused an increase in plasma concentrations of hydroxybupropion, the pharmacologically 

active metabolite of bupropion [8]. Our studies, summarized in Chapter 2 were thus 

commensurate with the clinical data in demonstrating that the purified enzyme in the 
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reconstituted system could potentially mimic catalytic activity observed in humans [9]. 

To further probe the effects of this mutation, several structurally unrelated mechanism-

based inactivators were used. To our knowledge, the studies in this thesis were the first to 

examine the effects of a P450 genetic polymorphism on mechanism-based inactivation 

either in vitro or in vivo. The mutant enzyme was inactivated by tTEPA and bergamottin 

with KI values that were very similar to those observed for the wild-type enzyme. 

Interestingly, P450 2B6.4 was not inactivated by 17-α-ethynylestradiol, which readily 

inactivates wild-type P450 2B6 [10]. Subsequent metabolism studies revealed that the 

mutant enzyme did not metabolize 17EE. This finding led us to question whether the lack 

of inactivation of the mutant enzyme by 17EE was specific for 17EE, or whether there 

were other inactivators that would produce similar results. 

 Efavirenz, which has been shown to be a P450 2B6 specific substrate, was shown 

to inhibit P450 2B6 activity in human liver microsomes in studies using only one 

concentration and one time point [11]. Therefore, we investigated efavirenz as a 

mechanism-based inactivator of P450 2B6 and/or P450 2B6.4. As described in Chapter 3, 

efavirenz inactivated P450 2B6 in a time-, concentration-, and NADPH-dependent 

manner and the losses in activity exhibited pseudo-first order kinetics [12]. However, one 

of the generally accepted hallmarks of mechanism-based inactivation is that it is 

irreversible and the efavirenz-dependent inactivation observed in the present studies was 

reversible after 24 hours of dialysis. P450 2B6.4 was not inactivated by efavirenz, 

although the mutant enzyme metabolized efavirenz to its primary metabolite, 8-

hydroxyefavirenz. These data suggested that P450 2B6.4 was not able to produce the 

metabolite or “inactivating intermediate” responsible for the inactivation of the wild-type 
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enzyme. A number of experiments were performed in attempts to identify the reactive 

metabolite responsible for inactivation including analyzing metabolites formed during 

inactivation using an Orbitrap mass spectrometer, which provides exact mass information 

and is a powerful tool for metabolite identification. Using this instrument, a di-

hydroxylated metabolite was detected; however, the tandem mass spectrometry data was 

inconclusive, leading to the use of liquid chromatography NMR in an attempt to obtain 

precise identification of the reactive intermediate. Unfortunately, enough metabolite 

could not be collected to permit unequivocal identification of the metabolite. Since the 

metabolite of efavirenz, 8-hydroxyefavirenz was available in the lab, we also investigated 

whether the metabolite itself could inactivate the P450s. Similar to the parent compound, 

8-hydroxyefavirenz inactivated the wild-type enzyme in a time-, concentration-, and 

NADPH-dependent matter. However, in this instance the inactivation was irreversible. 

This finding was significant, since it demonstrates for the first time that a metabolite can 

inactivate a P450 through a different mechanism than the parent compound. In addition, 

the mutant enzyme was inactivated by 8-hydroxyefavirenz, suggesting that the 

inactivation occurs by a mechanism distinct from that by which the parent compound 

caused inactivation. 

  Since P450 2B6.4 exhibited marked differences in catalytic activity from the 

wild-type P450 2B6, the experiments in Chapter 4 were designed to try to elucidate the 

mechanism(s) underlying the observed differences. We systematically investigated the 

individual steps in the P450 catalytic cycle in order to determine which one(s) might be 

affected during catalysis by the mutant enzyme. Since the data from our studies with 

17EE and efavirenz were the most intriguing, we focused our mechanistic studies on 
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these two compounds. The first step was to determine whether the effects of the mutation 

could be related to changes in the active site structure. Studies using phenyldiazene to 

label the heme and spectral binding studies, respectively, indicated that both the active 

site topology and substrate binding to the active site were similar between the two 

enzymes. Analysis of the crystal structure of P450 2B4, the rabbit isoform of P450 2B6, 

suggests that the K262R mutation may lie in the G/H loop [13, 14]. It has been postulated 

that the G/H loop may be involved in the interaction between the P450 and its redox 

partners, suggesting that this mutation could affect the binding of reductase to the P450. 

However, spectral studies measuring the low to high spin shift that results from reductase 

binding indicated that P450 2B6.4 associates with reductase in a manner similar to P450 

2B6 and exhibits a similar binding affinity. In order to gain a more complete 

understanding of the similarities and differences between the two enzymes, we 

determined the reaction stoichiometries for the metabolism of efavirenz and 17EE. These 

data revealed that the mutant enzyme was more uncoupled than the wild-type. Coupling 

is generally defined as those electrons from NADPH that are used by the enzyme to 

produce monooxygenated metabolites. Conversely, uncoupling refers to those electrons 

from NADPH that are consumed and do not lead to the formation of monooxygenated 

metabolites but result in the formation of non-monoxygenated metabolite products, such 

as superoxide, hydrogen peroxide and water. The primary product produced during the 

metabolism of 17EE and efavirenz by the mutant was hydrogen peroxide. The hydrogen 

peroxide can either originate from the decomposition of the oxyferrous P450 or from 

hydrogen peroxide shunting from the peroxo-iron intermediate. Interestingly, the addition 

of cytochrome b5 resulted in increased coupling of the P450 2B6.4-catalyzed reactions, 
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with little effect on the coupling of the P450 2B6 wild-type-catalyzed reactions. Alhough 

the mechanism by which cytochrome b5 enhances reaction coupling is unclear, studies 

performed by Zhang et al. under single turnover conditions demonstrate that cytochrome 

b5 and reductase donate the second electron to the P450 (in this case P450 2B4) at a 

similar rate, however catalysis occurs faster in the presence of cytochrome b5 [15]. These 

authors hypothesize that the conformation of the oxyferrous P450 may be different in the 

presence of cytochrome b5 and reductase thereby favoring the formation of 

monoxygenated metabolites as opposed to the products associated with uncoupling. This 

hypothesis could potentially explain the findings in the present study. Taken together, 

these data demonstrate that P450 2B6.4 exhibits differences in catalytic activity from the 

wild-type and that these differences are substrate dependent. Further, the results 

presented here demonstrate for the first time the effect of a genetic polymorphism on 

individual steps in the P450 catalytic cycle.  

 Although it is believed that proximal surface residues of P450s are involved in 

interactions with the reductase, studies have not been performed to determine the specific 

site(s) of interaction between P450 2B6 and reductase [16, 17]. The studies described in 

Chapter 5 were designed to investigate the site(s) of interaction between P450 2B6 and 

reductase using the cross-linker EDC. The resulting cross-linked complex was 

structurally characterized using mass spectrometry. With this approach, we have 

identified a cross-linked peptide that appears to contain residues that lie within the C-

helix of P450 2B6 and residues from the reductase connecting domain. The spatial 

locations of these residues in the proteins are based upon the crystal structures of P450 

2B4 and reductase [13, 14, 18]. Although the reductase connecting domain has not 
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previously been implicated in its interaction with P450s, the P450 residues identified 

coincide with amino acids that have been previously shown to interact with reductase 

[16]. In order to determine whether the binding orientations of P450 2B6 and reductase in 

the cross-linked complex were physiologically relevant, we performed the cross-linking 

in the presence of lipid and isolated the cross-linked complex to assay for activity. The 

cross-linked P450 2B6 and reductase readily metabolized efavirenz to 8-

hydroxyefavirenz, indicating that P450 2B6-reductase cross-linked species that we 

identified exists in a functional conformation. These studies provide the first information 

about the potential site(s) of interaction between P450 2B6 and reductase. 

 

Future directions 

 The work in this thesis has raised a number of interesting questions that should be 

addressed in the future. Of particular interest will be determining whether the amino acids 

in the peptide identified through the cross-linking studies are actually involved in the 

interaction with reductase. These studies could include mutagenesis and competition 

studies using synthetic peptides. Also, we believe that there are potentially other cross-

linked complexes yet to be identified. To address this, studies should be performed to 

optimize cross-linking efficiency. The use of higher concentrations of P450 2B6 and 

reductase could also increase the abundance of other cross-linked complexes. It would 

also be interesting to repeat these studies using cytochrome b5 to determine whether the 

binding sites to both the P450 and reductase overlap. 

 The mechanistic studies suggested that the formation of the oxyferrous and/or 

peroxo-iron intermediates may be different between the K262R mutant and the wild-type 
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P450 2B6. Stopped flow spectroscopy studies investigating the rates of decomposition of 

the oxyferrous intermediate may help to answer this question. Ultimately, more detailed 

structural characterization of the two proteins using various techniques such as 

crystallization, hydrogen/deuterium exchange and in-solution NMR will be necessary to 

provide more conclusive insights into the differences between the two enzymes.  

 Finally, since very little information is currently available regarding the P450 2B6 

active site, the identification of the site of adduct formation and the reactive intermediate 

responsible for the inactivation of P450 2B6 could be very useful. Since efavirenz and 8-

hydroxefavirenz appear to inactivate the enzyme through distinct pathways, more 

detailed information regarding the amino acid modified and mechanisms underlying the 

inactivation by these two compounds could lead to the generation of improved P450 2B6 

active site models. 
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