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CHAPTER 1

Introduction to quantum computation

As the size of transistors quickly and inevitably approaches the atomic scale as

predicted by Moore’s law [1], quantum effects become more relevant and will subse-

quently hinder further progress in classical computation. The concept of the quantum

computer embraces the physics that governs the quantum mechanical nanoscale world.

Rather than adhering to the notion that a computational bit must be either 0 or 1,

the quantum bit (qubit) can be 0, 1, or any superposition thereof. This results in

a massive parallelism in computation that makes certain quantum algorithms excel

above their classical counterparts. For a few important algorithms, a quantum com-

puter with only a handful of qubits can complete the desired task billions of times

faster than the most powerful conventional supercomputer.

A working quantum computer must be capable of handling at least 104 logic gate

operations on individual and any entangled pairs of qubits within the lifetime of the

qubits [2]. The zero-dimensional semiconductor quantum dot (QD) is among the

most popular candidates for the implementation of a practical quantum computer.

These artificially fabricated “atoms” have discrete energy states much like their nat-

ural counterparts, which can be mapped directly into the states of a qubit. Their

semiconductor nature also allows for easy integration with the hardware of modern

day computers.

In this thesis, the main focus is on using coherent optical excitation to investigate

zero dimensional semiconductor structures, such as neutral and charged quantum

dots, for the implementation of physical qubits for quantum information processing

1
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devices.

This chapter provides an overview of the history of computation and the emerging

crisis in modern classical computation that drives the thriving field of quantum infor-

mation theory. The basic requirements for the construction of a practical quantum

computer are enumerated and the concepts of quantum bits and quantum gates are

presented. A few exemplary quantum algorithms are also briefly discussed to showcase

the superior computational power a quantum computer possesses. Lastly, we briefly

review the promising quantum systems considered for the physical implementation of

a quantum computer with an emphasis on quantum dot systems.

1.1 From classical to quantum computation

The field of computer science started with the advent of the Turing machine.

The Turing machine is a conceptual machine with infinite memory and infinitely-

sized variables. It has been shown that any classical algorithm, regardless of the

physical system on which it is performed, can eventually be simulated by a Turing

machine. Therefore, the Turing machine is also regarded as a universal machine for

classical computation. Since the algorithms are universal, the limitation of classical

computation ultimately lies in the physical systems used, which will always have

limited memory and size of the input variable.

The first physical manifestations of a programable digital computer such as the

Electronic Numerical Integrator And Computer (ENIAC) utilized nearly twenty thou-

sand vacuum tubes. The vacuum tube is a voltage-controlled device that provides a

unidirectional current flow from a heated cathode filament to an anode plate. How-

ever, the cumbersome size of the vacuum tubes posed an immediate problem as the

ENIAC weighed nearly 30 tons and took up an entire 680 ft2 room. In addition, the

power consumed by the ENIAC was 150 kW. With the added issue of constant tube

failures leading to prolonged computational downtime, increasing the computation ca-

pability of such design by adding more tubes was highly unlikely. As the development

of the physical computer seemingly came to a halt, the discovery of the semiconductor
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and the subsequent invention of the transistor launched the revolutionary leap into

modern day digital computating.

Atom, 0.1 nm 

Figure 1.1: Moore’s law showing the feature size of the transistor versus year. The figure is taken

from Reference [3]. ITRS stands for International Technology Roadmap for Semiconductors.

The transistor functions similar to the vacuum tube with a size on the µm scale

and power consumption in the mW range. Over the years, advances in semiconductor

fabrication techniques and the vast infrastructure dedicated to the manufacturing

of state-of-the-art integrated micro-circuits have created an invisible force steadily

shrinking the cost and size of the transistor to vanishingly small values. In 1965,

Gordon Moore noticed the correlation and stated that the number of the transistors

on a chip will roughly double every two years while maintaining the same production

cost [1]. This extrapolation was later extended to the size of the individual transistors

on a chip as shown in Figure 1.1 [3]. Astonishingly, Moore’s simple law has thus

far accurately predicted the situation in reality. If this trend continues, in the near

future classical computation will face a new crisis as the size of the transistor becomes

comparable to the size of individual atoms where quantum mechanical effects begin

to blur the well-defined classical bit values of 0 and 1.

Instead of despairing, physicists embraced the quantum challenge, and the field

of quantum information took form. The inspiration for the discipline came from
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the independent realization by Richard Feynman and Paul Benioff in 1982 that if

information is but a recording of the states of a physical system and computation is

a designed manipulation of the same physical system, then there must be a means of

information storage and computation in a physical quantum system as well. What

is most alluring about the prospect of quantum computation is the possibility of an

enormously more powerful form of computation altogether. As Richard Feynman

had stated in his 1959 American Physical Society lecture, there’s plenty of room at

the bottom [4], the Hilbert space of a quantum system is unimaginably large and the

level of quantum complexity embedded in a quantum system has the potential of

enabling a new class of computation unfathomable in a classical system, even beyond

the capability of the universal Turing machine.

The probabilistic nature and the non-local correlation (ability of entanglement)

of a quantum system are what lead to the massive-parallelism property unique to

quantum information processing. Simply put, it allows for the processing of multi-

ple inputs states simultaneously through quantum entanglement. It is true that a

classical computer can simulate parallel operations with multiple systems, but the

definitive advantage lies in the number of operations required to accomplished the

task. Powered by this massive-parallelism, a quantum computer can complete a cal-

culation in much fewer operations than multiple classical computers. A few examples

showcasing this power are the Deutsch-Jozsa algorithm [5] discussed in Section 1.2,

Shor’s factoring algorithm [6], and Grover’s search algorithm [7]. Exactly how much

better is quantum computation compared to classical computation? The previous

description of “much fewer operations” is not a satisfactory answer. In order to truly

quantify the computation power of a given computation system, we must look at

how the number of operations grows as a function of the size of the problem. For

an efficient algorithm, the growth is polynomial in time (e.g. Nx, where N denotes

the number of bits in the input and x is a fixed constant). On the other hand, an

inefficient algorithm will grow as a superpolynomial function with respect to N (e.g.

xN , where x is some constant), although it is sometimes more generally referred to

as exponential growth. It is also important to keep in mind that the definition of
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“efficiency” is machine-independent, meaning that an efficient quantum algorithm

should perform on the order of polynomial time in any physical quantum system.

This is analogous to the idea of the Turing machine for classical algorithms. The

algorithms mentioned above are examples of efficient quantum algorithms that have

yet to be matched in the classical computation regime.

In the computational sense, the probabilistic nature of the quantum system is

tremendously advantageous. However, when measurement of the output is consid-

ered, this quantum property leads to detrimental results. The entanglement leading

to massive-parallelism is fragile against any external disturbance, including measure-

ment. Once the quantum system is subject to such a disturbance, the massively

entangled state collapses to one of its component states, and all the information

stored is lost. Another obstacle threatening the applicability of a quantum computer

is the inevitable quantum error. Even without the intentional disturbance of mea-

surement, any perturbation from the environment can lead to error in the quantum

system. Classically, errors are corrected by having backup copies of the same bits,

but the quantum no-cloning theorem [8] forbids the duplication of any pure arbitrary

quantum state.

The pressing issues of measurement and error correction are not so threatening if

we learn to change our point of view and approach the problems quantum mechani-

cally. Ultimately, the key is to be able to distinguish between a classical question and

a quantum mechanical question. In the next section, we present the quantum basics

of bits, gates, and algorithms in an effort to provide some insights into the realm of

quantum computation. This section is only a brief overview of the broad subject of

quantum information processing. For more in depth information and instruction on

this topic, Reference [9] and [10] are both excellent sources.

1.2 Quantum computing basics: bits, gates, algorithms

The abundance of success in the theoretical development of quantum information

processing aroused a tidal wave of eagerness in the experimental community to make
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physical quantum computer a reality. In 2000, David DiVincenzo established a set of

basic criteria that a physical quantum computer must satisfied in order to be deemed

practical [2]. This set of criteria consist of five fundamental requirements as listed in

Reference [2]:

1. A scalable physical system with well characterized qubits,

2. The ability to initialize the state of the qubits to a simple fiducial state,

3. Long relevant decoherence times, much longer than the gate operation time,

4. A “universal” set of quantum gates,

5. A qubit-specific measurement capability.

The first and third requirements are mostly imposed on the intrinsic properties of

the quantum system chosen. A well characterized qubit means a well-isolated two-

level system capable of interacting predictably with the designated means of external

manipulation (quantum operations). Such a two-level system must also possess a long

decoherence time within itself and with other qubits so that an entangled state can

reliably accommodate a complete algorithm before it dephases. The third requirement

also implies the inclusion of error correction algorithms for fault-tolerant quantum

computation. If the qubit cannot exist long enough to allow for error correction, then

it is not practical for quantum computation. With the inclusion of error correction

codes, the minimum requirement on the decoherence time of a qubit is that it must be

at least 104-105 times the duration of a single quantum operation. The scalability part

of the first requirement is usually the deciding factor for the practicality of a particular

quantum system, since a non-scalable system is practically useless. Accomplishing

scalability often requires clever structural engineering because the design of the system

must allow for mutual interaction between qubits while maintaining the individuality

of each qubit. Most importantly, the complexity of entangling qubits in a successfully

scaled system should not increase exponentially with respect to the number of qubits

involved.
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The second, fourth and fifth requirements are all related to the mode of quantum

operation chosen for the quantum system. State initialization, single and two-qubit

operations, and individual qubit readout are merely different manners of exciting and

interacting with the quantum system of choice with precision and control. The rest of

this section will cover all aspects of these three requirements in the order of increasing

structural complexity. We will start with the concept of a single qubit, then advance

to two-qubit quantum gates, and conclude the discussion with multi-gate quantum

algorithms.

The qubit is the fundamental logical unit for quantum computation. Unlike the

classical bit, which takes on a discrete value of 0 or 1, a qubit is a vector spanning

the entire Hilbert space of a two-level quantum system. The general form of a qubit

is written as a superposition of states |0〉 and |1〉,

|qubit〉 = α |0〉+ β |1〉, (1.1)

where α and β are the probability amplitudes of being in the qubit state |0〉 and |1〉,
respectively. The state and evolution of the qubit can also be described in the Bloch

sphere representation which will be introduced in later chapters.

Controlling the qubit is equivalent to performing arbitrary unitary rotations in the

Hilbert space of the two-level system. Any such unitary rotation of the qubit state

constitutes a single qubit operational gate, including Rabi oscillation of the states. A

frequently used single qubit gate is the Hadamard gate (UH)

UH =
1√
2


 1 1

1 −1


 . (1.2)

The Hadamard gate is similar to a π
2

rotation. It is often used in combination with

other gates to initialize and prepare the input state prior to an algorithm and control-

lably collapse the output into a measurable state upon completion of an algorithm.

In order to accomplish universal quantum computation, quantum operations in-

volving multiple qubits are also necessary. Physically, these multiple qubit gates re-

quire interaction between individual qubits. The nature of the interactions can take

on many forms, such as the Coulomb force, collective quantized vibrational modes of
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particle motion, or the spin-spin interaction. In practice, it is desirable to be able to

turn these interaction forces on and off at will, adding another obstacle in the design

of a scalable system. Much like the single qubit gates, multi-bit gates are merely

unitary operations on multiple qubit states.

Examples of simple two-qubit gates are the controlled-NOT gate and the SWAP

gate represented by the gate operation matrices in Table 1.1. The input states for

these gates are |00〉, |01〉, |10〉 and |11〉. For the controlled-NOT gate, the first

qubit is the control, which conditionally flips the second qubit if its value is 1 and

does nothing if its value is 0. For the SWAP gate, the values of the two qubits are

swapped. When paired with a single qubit rotational gate, each of these two-qubit

gates can form a universal set of quantum gates which can be used to construct any

quantum operations or algorithms. Other universal sets of gates also exist, including

the single-set Deutsch gate [11] and the the controlled-phase gate. The choice between

different sets of universal gates rests in their convenience in the particular physical

system. For example, in the spin-based qubit system in a quantum dot, the SWAP

gate set is the most obvious choice due to the spin-spin nature of the inter-qubit

interaction.

controlled-NOT gate SWAP gate

|00〉 |01〉 |10〉 |11〉
|00〉 1 0 0 0

|01〉 0 1 0 0

|10〉 0 0 0 1

|11〉 0 0 1 0

|00〉 |01〉 |10〉 |11〉
|00〉 1 0 0 0

|01〉 0 0 1 0

|10〉 0 1 0 0

|11〉 0 0 0 1

Table 1.1: Gate operation matrices of the controlled-NOT gate and the SWAP gate. For the

controlled-NOT gate, the first qubit acts as the control for the second qubit.

Now that we have a fair understanding of simple quantum gates, we can advance to

the more complicated logical structure of quantum algorithms. The most simple yet

most defining quantum algorithm is the Deutsch-Josza (DJ) algorithm [5]. Although

it serves no practical purpose, the DJ algorithm epitomizes the incredible capacity
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of massive-parallelism in a quantum computer. The problem posed by Deutsch is

the “easy” task of distinguishing whether an unknown function inside a black box

is constant (f(0) = f(1)) or balanced (f(0) 6= f(1)). In a classical computer, the

solution to the DJ problem is to process f(x) for both inputs 0 and 1, then compare

the two results. Whether one chooses to compute f(x) serially with one computer or

in parallel with two computers, the number of operations required is always two.

In the quantum computer, we can immediately take advantage of the quantum

parallelism in a single qubit. Instead of processing the input twice, the input qubit

is prepared in a superposition of |0〉 and |1〉. The quantum DJ algorithm, Uf(x),

designed around the function f(x) is

Uf(x) : |x〉|y〉 → |x〉|y ⊕ f(x)〉, (1.3)

where ⊕ represents the exclusive OR (XOR) logical operation. The two-qubit to two-

qubit transformation is to maintain the unitary property of the quantum operation.

Qubit |y〉 acts as an axillary bit, which transfers information from the calculation to

qubit |x〉 and returns to its initial value,

Uf(x) : |x〉 1√
2
(|0〉 − |1〉) → |x〉 1√

2
(|f(x)〉 − |1⊕ f(x)〉)

= |x〉(−1)f(x) 1√
2
(|0〉 − |1〉).

(1.4)

For |x〉 = 1√
2
(|0〉+ |1〉), qubit |x〉 acquires a relative phase shift of π between its qubit

states if f(x) is a balanced function and no relative phase shift if f(x) is a constant

function. If we perform a Hadamard operation on qubit |x〉 to read out the result,

we will measure UH |x〉 = |1〉 for a balanced function and UH |x〉 = |0〉 for a constant

function. In only a single quantum process of the function f(x), the problem is solved.

The true power of this quantum algorithm becomes more prominent as the number

of qubits involved increase to an arbitrary large N . The number of possible inputs

for N bit is 2N , and the classical computer will have to make the same number of

evaluations of f(x) for each input in order to draw a conclusion on the function.

On the other hand, utilizing the massive-parallelism of a quantum computer, we can

simply create a superposition state of all possible inputs which still only takes one

computation of the function f(x) to acquire the solution as shown in Figure 1.2.
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Figure 1.2: Schematic of the multi-qubit Deutsch-Jozsa algorithm. UH is the unitary operation of

the Hadamard gate and Uf(x) is the unitary operation related to the function f(x). The xN ’s are

the input bits and y is the auxiliary bit. For a balanced function, the sum at the output on the right

will be 0.

The DJ problem illustrates a few important aspects of quantum computation. The

advantage of massive parallelism is exemplified as a quantum algorithm solves an ex-

ponentially hard classical problem in polynomial time. In this case, it is a polynomial

of order 0. In addition, it stresses the reward of thinking quantum mechanically.

The classical way of thinking would naturally lead us to first concentrate on the so-

lutions of f(x), then analyze their equality and inequality. Alternatively, thinking

quantum mechanically, we put the emphasis on the inherent difference between the

two functions and how it can be employed by the quantum system to give an imme-

diate result. Furthermore, transferring the embedded information in the massively

correlated quantum state to a measurable result is not trivial. In the case of the

DJ problem, a simple Hadamard gate can make that transfer from the superposition

state in Equation 1.4 to the measurable qubit state of |0〉 or |1〉. But in general,

formulating the measurement process requires ingenuity.

In addition to the simple DJ algorithm, there are more complex and applica-

ble quantum algorithms such as Shor’s factoring algorithm [6]. Shor’s algorithm is

designed to factor the products of two extremely large prime numbers (N À 400

digits) using a quantum Fourier transform (QFT) technique. The best classical

factoring algorithm is the “number field sieve” [12] with a performance time of
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Tclassical ' exp[1.9(ln N)1/3(ln ln N)2/3]. For 400 digits, the factoring time is 1010

years, the age of the universe. The same 400 digit number factored using Shor’s algo-

rithm which operates in polynomial time (O [(ln N)3]) would take less than 3 years.

The details of both algorithms are beyond the scope of this thesis, nevertheless, the

comparison in performance speed is convincing evidence of the spectacular advantages

a quantum computer could have over a classical computer.

1.3 Physical implementations of quantum computation

The tremendous successes enjoyed in the theoretical development of quantum in-

formation processing inspired a soaring response from the experimental community,

which announced several quantum systems as promising candidates for the physi-

cal realization of the quantum devices for quantum information processing. A few

common proposals are single photons (quantum optics), superconductors, nuclear

magnetic resonance (NMR) systems, atoms, and quantum dots.

The qubit states in single photons can be the orthonormal polarizations states.

Single photon quantum information processing excels in the area of quantum commu-

nication and quantum networking [13, 14]. Long distance quantum key distribution

in 148 km of optical fiber [15] and in 144 km of free space [16] have been successfully

demonstrated in recent years. Quantum cryptography systems using photons are also

commercially available. However, the lack of a steady supply of true single photons

makes this pure optical scheme unsuitable for quantum computation.

Qubit states in superconductors can be charge-based (the presence or absence

of Cooper pairs) [17–19], flux-based (flux quanta) [20–22] or a hybrid of both. The

quantum operation used in the the superconductor regime is electrostatic in nature.

Qubit states in NMR are not well-defined pure states but rather an ensemble of spins

in a mixture of pure and maximally mixed states [23,24]. Qubit states |0〉 and |1〉 are

read out as an absorption and an emission in the NMR spectrum. Quantum opera-

tions in NMR quantum computation are done using radio frequency (RF) fields. Both

systems have shown considerable progress towards physical quantum computation by
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demonstrating quantum gates and multi-bit quantum algorithms. Nevertheless, elec-

trostatic and RF quantum operations are limited in speed by the electronics used. In

order to make the most of the decoherence time of a given quantum system, optical

quantum systems are desirable where ultrafast optical pulses can be considered as a

means of quantum manipulation.

The atom is an optical system with well-defined discrete energy states. The atomic

qubit states of choice are the spin states of a single electron, due to its stability against

long range Coulomb interactions. The atom has the advantage of an extensive liter-

ature base dedicated to the subject of optical properties and transitions between the

atomic energy states. Therefore, the optical manipulation of an atom is relatively

easy. However, capturing a single atom long enough to perform the manipulations

is difficult. In fact, the cooling and trapping of atoms with coherent laser light was

such an extraordinary feat that it earned Steven Chu, Claude Cohen-Tannoudji and

William D. Phillips the Nobel prize in 1997 [25]. Laser cooling is but one step in a

rigorous cooling scheme [26–29] to prepare the atom in a state fit for quantum com-

putation. Nevertheless, once atom trapping was established, quantum computing

in atomic systems began to show rapid progress. Single and multiple qubit quan-

tum gates were executed with high fidelity which demonstrated a universal set of

gates [30]. The intrinsic coherence time of an atomic state can be as long as a few

minutes. The limiting factor for the qubit lifetime is usually related to the insta-

bility of the traps. Initialization of the qubit states is accomplished through optical

pumping, and measurements are enhanced using an optical cycling scheme. In ad-

dition, entanglement within a trap system using quantized vibrational modes of the

trap [31] was achieved in a spatial “cat-state” [32]. Entanglement of the atom with a

photon [33] and with an atom in another trap [34] were also demonstrated signifying

the feasibility of a quantum network. Lastly, the scalability issue was addressed with

the conception of an atomic shuttling trap on a chip [35]. Overall, the atomic system

satisfies the DiVincenzo criteria and is one of the leading candidates in the field of

quantum application.

The semiconductor quantum dot system is another highly promising optical sys-
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tem that satisfies all five of DiVincenzo’s basic criteria for the physical implementa-

tion of quantum computation. Moreover, the quantum dot system does not rely on

the cumbersome traps required for the atomic systems since the dots are embedded

on the semiconductor itself. Another added benefit of the quantum dot structure

is the advanced integrated circuits fabrication technology. The available fabrication

infrastructure allows for the ease in designing and manufacturing low-cost, scalable

systems consisting such structures. This entire thesis is dedicated to the optical coher-

ent manipulation of semiconductor quantum dot structure with the goal of realizing

a practical quantum computing device.

1.4 Thesis chapter outlines

The subject of quantum information processing is a vast interdisciplinary field

interconnecting computer science, information science and physical science. This

chapter has only skimmed the surface of the topic to provide a sense of the awe-

some computing power a quantum system can offer and the motivation behind the

research conducted in this thesis. The remaining chapters are dedicated more specif-

ically to the optical coherent control of semiconductor quantum dot systems, which

serves to highlight the unique optical properties of semiconductor quantum dots and

to demonstrate the capabilities of such systems in the physical implementation of

quantum information processing.

Chapter 2 is dedicated to the background physics and structures of the semi-

conductor quantum dot systems, which are our chosen quantum hardware for the

implementation of a physical quantum computing device. We launch the discussion

with an overview of general bulk semiconductor theory and introduce the concepts

of energy bands and optically excitable quasi-particles such as excitons. This un-

derstanding of the higher dimensional semiconductor bulk is applied to the lower

dimensional semiconductor quantum dot to explain the energy level structures in the

valence and conduction bands. The three specific types of quantum dot systems pre-

sented in this chapter are the neutral and charged GaAs interface fluctuation quantum
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dots and the voltage gated InAs self-assembled quantum dots. Their respective dot

structures, optical properties and roles towards quantum information processing are

explored and compared.

Chapter 3 provides a theoretical treatment of the optical interactions between the

coherent light source of a laser and the energy states in a quantum dot. The inter-

actions are calculated in both probability amplitude and density matrix approaches.

The detectable classical signal field in the laboratory is linked to the quantum me-

chanically derived polarization source through the Maxwell-Bloch equations. This

chapter also describes the differential transmission detection technique using modu-

lated optical pump and probe beams, which allows for detection of weak signals in

the presence of a noisy background from scattering and diffraction. This particular

method is the main detection technique for the major experiments in this thesis.

Chapters 4-6 are the main experimental chapters. In Chapter 4, picosecond pulses

are used to perform quantum operations. We show that by using an actively stabi-

lized optical phase-locking scheme, phase information from one optical pulse can be

written onto an exciton-based qubit in a neutral single GaAs quantum dot system

and then successfully transferred to a subsequent pulse at some delay. This experi-

ment demonstrates consecutive phase dependent qubit rotations and proves that the

exciton quantum system has the ability to maintain coherent information during its

decoherence lifetime.

Chapter 5 applies the phase dependent qubit rotations technique in the tomo-

graphic reconstruction of the density matrix of a single qubit. The controlled rota-

tion is utilized to change the basis of measurement, which enables the measurement

of both real and imaginary parts of the off-diagonal coherence terms. Although the

measured density matrix deviates from the ideal case, we have complete knowledge of

the sources of the error, and hence complete control of our quantum dot system. The

main sources of errors are attributed to the intrinsic decay parameters of the quantum

system and the finite pulse width of the laser pulses. In fact, the simulated density

matrix including the experimental parameters agrees excellently with the measured

density matrix.
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Experiments in chapters 4 and 5 are all performed on the exciton-based qubit

in a single neutral GaAs quantum dot system. Chapter 6 explores the more robust

spin-based qubit in charged GaAs quantum dot systems. Here we demonstrate ul-

trafast spin manipulation utilizing an upper charged exciton (trion) state in pursuit

of arbitrary spin rotation. Due to complications not completely understood in the

interface fluctuation charged QD, a complete spin rotation is not observed. However,

the result obtained in this chapter sets the stage for future work on ultrafast arbitrary

spin rotations in InAs self-assembled quantum dots.

Finally, Chapter 7 will highlight a few future directions towards the ultimate goal

of realizing a physical quantum computation device using quantum dot systems. The

summary will include brief descriptions of current experiments on the spin-based

qubit in gated InAs self-assembled quantum dots and some preliminary results on

quantum dot molecules. These efforts are aimed towards accomplishing arbitrary

single electron spin rotation (single qubit rotation) and ultimately creating a scalable

quantum dot system with the possibility of performing qubit entanglement.



CHAPTER 2

Theory and characterization of semiconductor quantum dot structures

Quantum dots (QDs) are essentially three dimensionally confined structures that

exhibit a discrete density of states. This distinctive characteristic earns QDs the

informal title of “artificial atoms”. The QD’s unique optical properties have generated

a great deal of interest in their potential applications in novel devices such as quantum

dot lasers [36–42] and single photon source [43–49] for quantum communication. In

recent years, the increasing flexibility and precision control in the engineering and

fabrication of semiconductor nanostructures have also excited a vast effort towards

physical implementation of quantum information processing using QD systems [50–

55].

The three dimensional confinement necessary for a quantum dot can be fabricated

using various methods. Spherical semiconductor nanocrystal QDs are chemically

synthesized and passivated to produce a core-shell structure [56–59]. They are used

in biological labelling [60, 61] due to their small sizes, typically on the order of 2-

10 nm, and the fact the dots are individually separable. Lithographically etched

QDs are formed by various artificial patterning and etching techniques directly on

epitaxially grown semiconductor quantum wells [62–67]. The size of the lithographic

dots, limited by the resolution of the patterning techniques, such as electron beam

and laser etching, tends to be large with an in-plane dimension reaching 100 nm.

The size and shape of the nanocrystal [68–71] and lithographically etched QDs can

be fully controlled during fabrications.

The two species of QDs studied in this thesis work are naturally and spontaneously

16
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formed during the molecular beam epitaxy (MBE) growth process. The first type of

dot is the interface fluctuation QD (IFQD) formed by monolayer fluctuation of the

semiconductor interface [72–75]. This type of dot form irregular islands with an

average lateral scale of 50 nm, and has a large optical dipole moment around 100

D [76, 77]. The second type of dot is the self-assemble QD (SAQD) resulting from

the strain of lattice mismatch between the two semiconductors [78–81]. The dot sizes

of SAQDs are around 15 nm, which leads to stronger spatial confinement but also a

smaller optical dipole in comparison to the IFQDs. The optical dipole moment of the

SAQD is measured by our group to be around 30 D [82].

In this chapter, we begin the discussion with the semiconductor physics that

governs the behavior of particles inside a QD in Section 2.1. Then, the three major

species of dots under investigation (neutral and charged IFQDs and gated SAQDs) are

compared in Section 2.2- 2.4 in terms of their fabrication process, sample structures

and physical parameters, optical polarization selectivity, optical characterizations and

practicality in the physical implementation of quantum information processing.

2.1 Semiconductor theory of quantum dots

Most optical behavior of particles inside a single QD can be predicted and de-

scribed astoundingly well using only simple energy level models borrowed from atomic

physics. However, there exist more differences than similarities between a single QD

and an atom. One important contrast to the atom is the breakdown of spherical

symmetry in a QD, which voids spin and orbital angular momenta as valid quantum

numbers for describing the QD system. Therefore, in order to correctly apply the

more simple atomic treatment on a QD system, we need to understand the more

complex semiconductor physics that actually governs the behaviors of particles inside

a single semiconductor QD.

To fully appreciate the idea that a semiconductor QD comprised of 103-106 [83]

of atoms can behave as a single atom, we must first grasp the concept of how in-

dividual atoms are arranged to define a semiconductor crystal structure. Excellent
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detailed discussions of semiconductor materials can be found in References [84, 85].

The following is a brief overview of the subject.

In a single atom, the energy levels are discrete with inter-level transitions in the

range of optical frequencies. In a solid, atoms are packed close to each other. While

the tightly bound electrons in the inner shells experience negligible effect from other

atoms, the weakly bound electrons in the outer shells of neighboring atoms strongly

interact with each other through Coulomb exchange. These inter-atomic Coulomb

interactions lift the degeneracies of the electron spatial energies. As a result, discrete

energy levels are replaced by energy bands as shown in Figure 2.1, and the ener-

getically forbidden regions formed between the energy bands are called bandgaps.

The filling status of the last occupied energy band determines the properties of the

solid. A solid with an incompletely filled energy band is a metal, while that with

a fully occupied energy band characterizes both insulator and semiconductor. The

distinction between pure insulators and semiconductors is often blurred. The primary

difference lies in the bandgap energy between the last occupied band (valence band)

and the first available band (conduction band). This bandgap energy is larger in

insulators. In general for semiconductors, this energy separation is accessible using

optical frequencies around and below the visible spectrum.

Discrete Energy States

in a single atom

Energy Bands 

in a Solid

Conduction Band

Valence Band

B
a

n
d

g
a

p
s

Figure 2.1: Pictorial comparison between discrete energy states in a single atom and energy bands

in a solid.
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The energy bands of a solid are not in a simple one-to-one correspondences with

the original discrete atomic states, but rather, they are the results of coupling and

mixing of multiple atomic energy states. Therefore, the behavior of electrons in a

given energy band does not follow a straightforward atomic model. Nevertheless, in

a periodically arranged crystalline bulk semiconductor structure, the wavefunctions

of the electrons can be qualitatively modelled using the Schrödinger equation with a

periodic potential W (~r):

[
− ~

2

2m
∇2 + W (~r)

]
ψnk(~r) = En(~k)ψnk(~r). (2.1)

The form of ψnk(~r) in a given energy band n with reciprocal lattice vector ~k accord-

ing to the Bloch theorem consists of a plane wave component, ei~k·~r, and an atomic

component, unk(~r),

ψnk(r) =
ei~k·~r
√

V
unk(~r), unk(~r + ~R) = unk(~r), (2.2)

where unk(~r) has full translational symmetry between Brillouin zones and V is the

crystal volume. The energy term En(~k) describes the dispersion within a band, and

also gives rise to the notion of the effective mass, which is inversely proportional to

the curvature of En(~k).

Calculating the exact forms of the electron wavefunction, ψnk(r), and the energy

band structure, En(~k), is tedious and requires a significant amount of work. The

exact approach becomes especially dreadful considering that both functions need to

be redetermined in different solids. Hence, it is much more desirable to use some forms

of general approximation on the periodic potential, W (~r), which can qualitatively

summarize different structures with similar electron binding behaviors. Two of such

approximations exist in the extreme cases of weak periodic potentials, where electrons

are essentially free with wavefunctions of modified plane waves, and tight-binding

potentials, where electrons are essentially bound to a single atomic site and retain

some of their atomic orbital characteristic [84,85].

Similar III-V semiconductors band structures, such as that of GaAs and InAs

forming our QD structures, can be described using the tight-binding potential model.
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Figure 2.2: Expanded view of the III-IV semiconductor energy band dispersion near ~k ∼ 0. The

bandgap energy is Eg, and the spin-orbital coupling energy between the split-off (SO) band and the

light hole (LH) and heavy hole (HH) bands is Eso. CB and VB are the conduction and valence

band, respectively.

In a single molecule, the outer shell electrons from each atom hybridize to form molec-

ular bonds. As a result, the highest s and p energy states of these electrons are also

mixed to form bonding and anti-bonding energy states. In the crystal structure, the

bonding and anti-bonding levels become the valence and conduction bands, respec-

tively. Near the center of the Brillouin zone where ~k ∼ 0, the conduction band has

the properties of an s-orbital with a two-fold degeneracy due to spin. The valence

band, on the other hand, has the properties of a p-orbital. Due to spin-orbital inter-

action, the six-fold degeneracy in a p-orbital is lifted to create a doubly degenerate

band with j = 1
2

and two doubly degenerate band with total angular momentum of

j = 3
2

as illustrated in Figure 2.2. The j = 1
2

band is separated from the j = 3
2

bands

by the spin-orbital coupling energy, Eso. At ~k = 0, the valence band maximum,

Eso = 0.34eV in GaAs and Eso = 0.41eV in InAs. Due to this separation, the j = 1
2

band is often called the split-off (SO) band. The j = 3
2

bands are degenerate at ~k ∼ 0,

but this degeneracy is quickly lifted at non-zero values of ~k due to anisotropy. The

band with the larger curvature (smaller effective mass) is appropriately referred to as
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the light-hole (LH) band with mj = ±1
2
, and the smaller curvature (larger effective

mass) band is the heavy-hole (HH) band with mj = ±3
2
. Since our ultimate concern

is the optical transition inside a QD, where three dimensional confinements restrict

~k to be near zero, the dispersion of the bands can be neglected, and we can use the

language of angular momentum to describe optical transitions. If necessary, a good

approximation of the dispersion can be calculated using the Luttinger parameters

derived from the ~k.~p perturbation theory [86,87].

Density of States as a F unction of Dimension
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Figure 2.3: Energy density of states as a function of reduced dimension. The orange spheres are

representatives of excitons where the size of the sphere is approximately the Bohr radius.

Confinements imposed in a semiconductor can lead to two dimensional structures

of quantum wells, one dimensional quantum wires, or zero dimensional quantum dots

as shown in Figure 2.3. The confinements change the density of state profile of the

semiconductor and also drastically alter the optical properties of the semiconductor.

Equations 2.4- 2.6 list the energy density functions for bulk, quantum well, quantum
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wires and QDs,

3D Bulk : g3d(E) =
1

2π2

(
2m

~2

) 3
2 √

E, (2.3)

2D Well : g2d(E) =
m

π~2

∑
i

Θ(E − Ei), (2.4)

1D Wire : g1d(E) =
1

π

( m

2~2

) 1
2
∑
ij

1

E − Eij

, (2.5)

0D Dot : g0d(E) = 2
∑

ijk

δ(E − Eijk), (2.6)

where Θ is the heavy-side step function and δ is the delta function. As the dimension-

ality decreases in the semiconductor, abrupt features begin to appear in the energy

density, signifying energy quantization in some form, which is especially apparent in

the discrete δ function density states of the zero dimensional QDs as presented in

Figure 2.3.

As previously mentioned, QDs typically consist of 103-106 atoms, which means the

confinement is much larger than the size of an atom and, therefore, unk(~r), the atomic

part of the Bloch wavefunction that is mainly defined within one Brillouin zone, is still

valid in QDs. However, the plane wave envelope of the wavefunction, ei~k·~r, covering

the entire semiconductor, is no longer an appropriate form of the wavefunction within

the QDs in the presence of new boundary conditions. In place of a plane wave, the

new wavefunction envelope inside a QD is in the form of a wave packet constructed

by linear superpositions of multiple plane waves. An immediate analogy is “particle-

in-a-box”. Due to the three dimensional spatial confinement, electrons in the QDs are

localized at ~k = 0, and the language of dispersion and energy band becomes irrelevant

to dynamics inside a QD. Nevertheless, the angular momentum assignments to the

conduction band and the LH and HH valence bands in bulk are still suitable labels

for describing optical transitions in a QD, since they are defined for ~k ∼ 0.

Optical transitions in semiconductors can be categorized as either direct bandgap

or indirect bandgap transitions. Since both GaAs and InAs are direct bandgap mate-

rials, we will concentrate on the direct bandgap type, which means both the maximum

of the valence band and the minimum of the conduction band are located at the same

position in ~k. During optical excitation, electrons are promoted to the conduction



23

band, leaving vacancies, i.e. holes, in the valence band. Since the electron is nega-

tively charged and the hole is positively charged, an attractive Coulomb interaction

binds the two particles together to form an exciton, analogous to positronium. Due

to this binding energy, exciton absorption is observed below the bandgap energy,

distinguishing the excitons from non-interacting electron and hole pairs.

Behaviorally, the exciton is often considered as a quasi-particle with its center-

of-mass and relative motions described by the envelope part of the excitonic wave-

function. The relative orbital motion of the electron and hole determines the exciton

energies, and the center-of-mass motion expresses the movement of the exciton as a

whole inside the semiconductor. In bulk, the center-of-mass motion is that of a plane

wave, which result in excitonic energy bands. In a dot, the exciton is localized with

quantized energy states, and the bands vanish. In the relative coordinate, the exciton

envelop function can also have s- and p- type orbital behavior associating with the

different exciton states. The relative motion also reveals information on the exciton

Bohr radius, the separation between the electron and hole, which ultimately decides

the binding energy of the exciton. Excitons that have large binding energies with

Bohr radii on the order of or smaller than the lattice spacing are called Frenkel exci-

tons. Weak binding excitons with Bohr radii larger than the lattice spacing are called

Wannier excitons. Our interest lies in the Wannier type specie, commonly occurring

in most III-V semiconductors, whose Bohr radii are on the order of the size of the

dots leading to localization and quantization of the exciton energy states.

The semiconductor at thermal equilibrium without any optical excitation is said

to be at its crystal ground state. In this thesis, we are mostly focusing on the optical

transitions between the crystal ground state and the lowest energy exciton state inside

a single QD. In this section, we gained a general understanding of the properties of a

QD. In the next two sections, we will take a more specific look at various dots studied

in our laboratory, namely neutral and charged GaAs IFQDs and InAs SAQDs in

semiconductor heterostructures.
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2.2 Neutral interface fluctuation quantum dots

The first detailed discussion is on the neutral GaAs interface fluctuation quantum

dots (IFQDs). These dots are formed spontaneously during MBE growth of the

GaAs/Al0.3Ga0.7As quantum wells in the form of interface monolayer fluctuations [74,

75, 88–91]. The bandgap energy for GaAs is Eg = 1.52 eV, and for Al0.3Ga0.7As is

Eg = 1.95 eV, leading to a bandgap difference of 0.43 eV. The well confinement,

as a result of the bandgap difference, is along the [001] growth direction (ẑ). The

lattice mismatch between lattice constants of GaAs and Al0.3Ga0.7As is less than 0.1 %

(5.6533 Å for GaAs and 5.6556 Å for Al0.3Ga0.7As [92]), which greatly reduces strain

in the hetero-interfaces. Instead, the lateral confinement of the QD comes from the

monolayer high islands at the quantum well interface caused by growth interruption.

Because the fluctuations at the interface occurr as a result of thermalization, which

is statistical in nature, the spatial distribution and the size of the islands are not

well defined. However, as shown in the image obtained by the scanning tunnelling

microscope (STM) in Figure 2.4(a) [88], there is a general tendency for the dot to be

elongated along the [1̄10] direction (ŷ - x̂), and that the average size of the dots is on

the order of 60 nm. Even though the lateral confinement is only one monolayer high,

it is sufficient to localize the excitonic wavefunction as seen in a near-field scanning

optical microscope (NSOM) image in Figure 2.4(b) [93, 94]. Overall, the quantized

energy level of the confined exciton in a dot is mostly determined by the stronger

confinement along ẑ from the narrow quantum well.

The particular IFQD sample studied is a multi-well sample labelled as NRL-

1197King. The structure contains quantum wells with different well widths (28Å,

42Å, 62Å, 85Å, 142Å, and 100nm) grown on a 100nm thick GaAs buffer and capped

with another 50nm GaAs layer as illustrated in Figure 2.5(a). The growth interruption

procedure is performed between each GaAs/Al0.3Ga0.7As quantum wells interface. As

shown in the STM images in Figure 2.4(a), the monolayer fluctuations form dark

regions representing “valleys” (lower monolayers) on the well surface, and bright

regions representing “hills” (upper monolayers). In the schematic illustration of the

cross-section view of the quantum well in Figure 2.4(c), the upper (lower) monolayer
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Cross-section View of the Quantum Well

Figure 2.4: (a) STM image of the GaAs IFQDs [88] and (b) NSOM image of a single GaAs IFQD

(courtesy of Dr. J. R. Guest [93, 94]). The vertical and horizontal directions in (a) are [1̄10] and

[110], respectively, with a scale of 0.1 µm. (c) represents the cross-section view of the quantum well

from (a) with indications of upper and lower monolayers (ML). (d) Photoluminescence (PL) of a

42Å quantum well with two distinct exciton energy from the upper and lower monolayers.

regions are associated with narrower (wider) well widths, and hence, has stronger

(weaker) confinement. The difference in confinement strength give rise to two distinct

excitons energy states in each quantum well corresponding to the two regions, where

the higher (lower) energy state is located in the upper (lower) monolayer region. In

the 42Å quantum well of interest, the energy separations between the lower and upper

monolayer excitons is around 10 meV. The inhomogeneous broadening observed in

the two main exciton peaks is due to the distribution of dot sizes.

In order to observe exciton states from a single dot, optical excitations and de-

tections are performed through micron-sized apertures in a 100 nm thick aluminum

mask deposited on the sample [75]. The advantage of these small apertures is the

convenience of studying single dots using a far-field optical setup. The sizes of the

apertures range from 0.5 µm to 25 µm as shown in Fig 2.5(b). The locations of each
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Figure 2.5: Neutral GaAs IFQD sample structure and aperture map of NRL-1197King. The

individual apertures in (b) are labelled as (r,c) by the row (r) and column (c) positions. The red

circle marks aperture (2,6) where the single dot experiments in later chapters are conducted.

aperture are labelled as (r,c) by their row (r) and column (c) positions . The single

dot studied in Chapter 4 and 5 is located in aperture (2,6). The average dot density

for NRL-1197King is approximately 100/cm2. Through the 25 µm apertures, the

laser beams are accessible to an order of 105 dots, making these large apertures ideal

for ensemble studies such as that in Figure 2.4(d). For single dot studies, however,

the spatial selectivity of the smaller 0.5 µm apertures are needed, through which the

number of dots visible to the optical excitation is drastically reduced to around 10-20.

Further selectivity is enabled by the spectral resolution of the excitation laser.

In a quantum dot, the energy degeneracy of the HH and LH at ~k ≈ 0 is lifted due

to confinement and strain. For the GaAs dots, the HH has a higher energy than the

LH and becomes the valence band. The lowest energy exciton contains a single s-type

electron (|j, mj〉 = |1
2
,±1

2
〉) and a p-type hole from the HH band (|j, mj〉 = |3

2
,±3

2
〉).

There are four possible transition combinations as shown in Figure 2.6(a), of which

two are optically allowed (4mj = ±1) and two are optically forbidden (4mj = ±2)

according to angular momentum conservation. Due to asymmetry of the dot shape

and spin-dependent exchange interactions [88, 90, 91, 95–99], all four transitions are
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non-degenerate in energy resulting in fine structures of the lowest exciton energy state.

The optically forbidden states are separated from the optically allowed states by the

short-range exchange interaction [99,100] where energy separation is typically around

160 µeV [90]. The splitting within the pair of optically allowed states arise from the

long-range exchange interaction [101–103] mostly due to the lateral asymmetry of

the dots, which result in a much smaller energy difference of 25 µeV [88]. Instead of

being circularly (σ+ and σ−) polarized, the optically allowed transitions are orthogonal

and linearly polarized (Πx and Πy), parallel ([1̄10]) and perpendicular ([110]) to the

elongation direction, due to the mixing between the two exciton states. In the presence

of a magnetic field in the combined Faraday (parallel to the growth direction ẑ) and

Voigt (perpendicular to the growth direction ẑ) geometries, all four fine structure

transitions can be observed [90]. Bound biexcitons are also observed to form in the

GaAs dots with a binding energy of 3.5 meV [104]. For the concern of this thesis, we

focus only on the two optically allowed exciton transitions in zero magnetic field in

this sample.

|-1> |+1>

|+2>|-2>

|0>

Π
y

Π
x

Figure 2.6: Energy level diagram in a single neutral GaAs IFQD. The states are labelled by their

total angular momentum, mj . The middle transitions are the two optically allowed states with

horizontal (Πx) and vertical (Πy) polarizations. The two side transitions are optically forbidden due

to angular momentum conservation.

The quantum bit (qubit) in quantum information processing in a GaAs dot is

represented by the two-level system of the crystal ground state (|0〉) and an exciton

state(|1〉). The exciton decay time in the GaAs dots, which sets the limit of the qubit
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lifetime, is nominally around 100 ps due to the weak lateral confinement. This short

time scale, even with ultrafast excitation pulses, implies that an IFQD is still a long

stretch from a practical physical implementation for quantum information processing.

However, the large dipole moment of these dots is advantageous for conducting ini-

tial studies on the optical properties of similar semiconductor nanostructures, where

the obtained knowledge can be readily applied towards the more feasible spin-based

systems in SAQDs. A few milestone experiments done on the IFQDs include single

qubit rotations through exciton Rabi oscillations [76] and a two-qubit controlled-ROT

gate through a biexciton [104]. It has also been shown that coherence exists between

two excitons within one dot [105] suggesting the possibility of qubit entanglement. In

Chapter 4 and 5, we further demonstrate the potential of the optically driven IFQDs

in the coherent control and density matrix tomography experiments.

2.3 Charged interface fluctuation quantum dots

The qubit states in a neutral GaAs IFQD include an optically excited state, the

exciton. Even though the exciton is overall-neutral, its electron and hole constituents

are charged, which are subject to Coulomb interactions with the semiconductor envi-

ronment. Such interactions are shielded and reduced within the confinement of a QD.

However, in the IFQD where the exciton is weakly confined laterally, the Coulomb

interactions lead to a short exciton recombination time. Consequently, the desire for a

new qubit basis robust against Coulomb disturbances excited a large amount of inter-

est towards the electron spin. The lifetime of the spin up and down states of a single

electron spin confined in a QD are not limited by radiative decays. The spin relax-

ation time in a single dot has been measured to reach orders of milliseconds [106–108].

In addition, the spin coherence time is at least of order 100 µs and mainly influenced

by the hyperfine interactions between nuclear spins [109, 110]. Furthermore, the op-

tically driven spin-based system addresses the scalability issue through the potential

application of the RKKY scheme for entangling spins in multiple dots [111]. Natu-

rally, a good prototype for the preliminary testing of a optically driven spin-based
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qubit system is a singly charged GaAs IFQD, taking advantage of the large optical

dipole.

Semi-insulating GaAs substrate (100) surface

500 nm GaAs buffer

20 nm AlAs stop-etching layer

100 nm GaAs buffer

25 nm Al0.3Ga0.7As barrier layer

14.2 nm GaAs IFQDs layer

50 nm Al0.3Ga0.7As barrier layer

8.5 nm GaAs IFQDs layer

Si Doping Layer
10 nm

50 nm Al0.3Ga0.7As barrier layer

6.2 nm GaAs IFQDs layer

Si Doping Layer
10 nm

50 nm Al0.3Ga0.7As barrier layer

4.2 nm GaAs IFQDs layer

Si Doping Layer
10 nm

50 nm Al0.3Ga0.7As barrier layer

2.8 nm GaAs IFQDs layer

Si Doping Layer
10 nm

50 nm Al0.3Ga0.7As barrier layer

5 nm GaAs Capping layer

Si Doping Layer
10 nm

Figure 2.7: Charged GaAs IFQD sample structure.

The sample structure of charged GaAs dots is similar to that of the neutral GaAs

dots as shown in Figure 2.7. The charging of the dots are accomplished by the

introduction of a silicon δ-doping layer in the Al0.3Ga0.7As barrier layer [112]. The

excess donor electrons tunnel from the barrier into the quantum well and subsequently

trapped by the QD potentials. The doping density controls the level of the Fermi

energy, and hence, the average number of electron inside a single dot. The doping

density that results in approximately one electron per dot is 1010/cm2.

The crystal ground state of the sample is modified by the presence of the confined

electron in the QD. In the absence of optical excitations, the states of the QD are

defined by the two spin states of the confined electron quantized along the ẑ direction

(|z±〉 = |±1
2
〉). A bound negatively charged exciton (trion) resulting from the binding

of the neutral exciton and the confined electron can be optically generated through

on-resonant excitation. The binding energy of the trion is around 3.7 meV. The trion

can also be distinguished from the exciton through temperature dependent PL studies,

which found that the trion vanished at 37 K while the exciton remains unaffected by
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the increasing temperature [113].

The three-particle trion complex has eight possible states with different angular

momentum combination of the electrons and heavy hole. However, six of those states

involve the electrons in the triplet states due to the Pauli exclusion principle and

will not be the focus of this thesis. As a result, the two lowest trion states have the

configuration of an electron pair with opposite spin in the singlet states with hole spin

pointing either up or down as shown in the energy level diagram in Figure 2.8(a).

The exchange interaction is cancelled in the trion system because of the opposite spin

pairing configuration of the electrons.

In the absence of magnetic field, angular momentum conservation restricts the

excitation of each electron spin ground state to a different trion state. Therefore, the

spin ground states are not optically coupled. In order to couple these spin ground

states through the trion states, a magnetic field in the Voigt geometry ( ~B = Bxx̂) is

applied. The Hamiltonian, HBx , in the |z±〉 ↔ |t±〉 basis of the spin-trion subspace

with magnetic field coupling is,

|z−〉 |z+〉 |t−〉 |t+〉

HBx =

〈z−|
〈z+|
〈t−|
〈t+|




Ez− −ge⊥µBBx 0 0

−ge⊥µBBx Ez+ 0 0

0 0 Et− −gh⊥µBBx

0 0 −gh⊥µBBx Et+




,
(2.7)

where µB is the Bohr magneton, ge(h)⊥ is the in-plane g-factor for the electron (hole).

The new eigenstates of the spin ground states are |x±〉 = 1√
2
(|z+〉 ± |z−〉) with a

Zeeman splitting of ∆ = 2ge⊥µBBx. Detailed magnetic field dependent studies reveal

that the electron in-plane g-factor is |ge⊥| = 0.13 [90, 114]. The trion states, on the

other hand, are defined by the hole spin and have negligible g-factor (i. e. gh⊥ ≈ 0).

This is due to the large spin-orbital coupling in the quantum well direction leading

to little mixing between the LH and HH [90,115], which in turn pinning the hole spin

along the ẑ direction. The final energy diagram of the optically driven spin-based

system in the applied Voigt magnetic field is represented by two coupled Λ systems

as illustrated in Figure 2.8(b).
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Figure 2.8: Energy level diagram in a singly charged GaAs IFQD in the (a) absence and (b)

presence of a magnetic field in the Voigt geometry (x̂). ∆ is the Zeeman splitting.

The optical selection rules of this system can be calculated in the irreducible

spherical tensors basis, where the optical dipole interaction, ~µ · ~E ∝ ~r ·~̂ε, is rewritten

as a dot product of two rank-one tensors (q = 1, k = −1, 0, 1):

~r · ε̂ = −r−1ε+1 + r0ε0 − r+1ε−1, (2.8)

where in general

~A =
∑

k

(−1)kA−kε̂k, ~A · ~B =
∑

k

(−1)kA−kBk, (2.9)

and

ε̂±1 = ∓ x̂ + iŷ√
2

= ∓σ̂±, ε̂0 = ẑ. (2.10)

The interaction density matrix elements are determined by 〈m|~r · ε̂|n〉, where |m〉 and

|n〉 are the final and initial angular momentum states. The term 〈m|~r · ε̂|n〉 is only

nonzero when m−n = ±1, 0. The polarization of each transition in Figure 2.8(b) are

listed in Table 2.1

The charged GaAs IFQD sample produces great results in ensemble studies, such

as in spectral hole burning experiment in Reference [116], amplitude and phase studies

of spin quantum beats [114,117], and the spin coherence control studies in Chapter 6.

However, the weak confinement of the GaAs IFQDs is inhibiting studies of single

QD. Since the lateral confinement is weak, the electron can easily tunnel in and out

of the dot, resulting in unstable single dot spectroscopy and especially unpredictable
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Transition Nonzero element of ~r · ε̂ Associated polarization

|x+〉 → |t+〉: 〈+3
2
| − r+1ε−1|12〉 −ε̂+1 = σ̂+

|x+〉 → |t−〉: 〈−3
2
| − r−1ε+1|−1

2
〉 -ε̂−1 = −σ̂−

|x−〉 → |t+〉: 〈+3
2
| − r+1ε−1|12〉 −ε̂+1 = σ̂+

|x−〉 → |t−〉: 〈−3
2
|r−1ε+1|−1

2
〉 −ε̂−1 = σ̂−

Table 2.1: Polarization selection for transitions in the spin-trion system under a magnetic field in

the Voigt geometry

time-domain spin coherence studies. In the next section, a practical solution to these

issues is discussed in the more strongly confined SAQDs with active electrical gates

controlling the charging of the dots.

2.4 Gated self-assembled quantum dots

The growth of self-assembled quantum dots (SAQDs) can be classified by the sur-

face energy and lattice mismatch of the semiconductor materials used. The InAs/GaAs

SAQDs studied in Chapter 7 are grown by the Stranski-Krastanow (S-K) method

which combines layer-by-layer and island growths. The bandgap energy for GaAs is

Eg = 1.52 eV, and for InAs is Eg = 0.43 eV, leading to a bandgap difference of 1.09

eV. Hence, the vertical confinement of the InAs SAQDs is more than twice as strong

compared to the GaAs IFQDs. The lattice constant is 5.6533 Å for GaAs and 6.0584Å

for InAs. The lattice mismatch is nearly 7%. As more layers of InAs are deposited on

the GaAs, the strain buildup results in the spontaneous formation of coherent (defect

free) islands on the epitaxial surface. The height of the dots can be controlled through

a cap-and-flush procedure which involves partially capping the grown dots with GaAs

and then applying an indium flush technique to remove the uncapped portion of the

dots [118–120] as illustrated in Figure 2.9(a). This method allows some freedom in

engineering the vertical size and, in turn, the optical transition energies inside the

dots.

The size of the InAs dots studied in this thesis are 3 nm in the growth direction
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Figure 2.9: Charged InAs IFQD sample (a) growth (Courtesy of Dr. Dan Gammon, Naval Research

Laboratory), (b) structure and (c) charging scheme, CB and VB stand for conduction band and

valence band, respectively.

and around 20 nm laterally. In comparison, the lateral spatial confinement of the

SAQDs is much stronger than the monolayer confinement of the IFQDs. The overall

stronger confinement in all directions also leads to a smaller optical dipole moment

in a SAQD, which has been measured to be around 30 D in one particular dot [82].

Additional studies of multiple dots in the laboratory have extracted dipole moments

values ranging from 10-30 D.

The sample structure of the dots are shown in Figure 2.9(b). The n-doped Te

layer provides excess electrons for the charging of the QDs. A bias voltage is applied

to the sample in a Schottky diode configuration. By changing the voltage across

the semiconductor, the applied electric field modifies the dot potential with respect

to the Fermi energy level, and controls the precise charging of individual dots as

illustrated in Figure 2.9(c). Voltage dependent PL studies of the gated dot sample

reveal multiple species of exciton appearing at different voltage ranges. The most

prominent features are from neutral excitons (X0), negative trions (X−), positive

trions (X+), and doubly negative excitons (X2−) [119]. More exotic complexes such

as neutral biexcitons (XX0), negative biexcitons (XX−), and triply negative excitons
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(X3−) are also observed. An example of the voltage dependent PL study is presented

in Chapter 7. Since our goal is to perform optical manipulation of a single electron

spin, we are mainly interested in the voltage range that produces the negative trion.

The binding energy between the trion and neutral exciton in the InAs dots ranges

from 5-7 meV depending on the dot size.
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Figure 2.10: Energy level diagram in a singly charged InAs SAQD in the (a) absence and (b)

presence of a magnetic field in the Voigt geometry (x̂). ∆ is the Zeeman splitting of the electron

states and ∆t is the Zeeman splitting of the trion states.

At zero magnetic field, the energy levels of the optical transition in an InAS dot are

exactly the same as in an IFQD (Figure 2.10)(a). As we turn on the Voigt magnetic

field, the electron states become mixed and their energy degeneracy is lifted by the

Zeeman splitting, similar to the IFQD case, as predicted in Equation 2.7. However,

in the InAs dots, the hole spin g-factor is no longer negligible due to considerable

LH and HH mixing in the stronger lateral confinement [121], which leads to mixing

and splitting of the trion states as well. The new eigenstates of the electron and

trion are |x±〉 = 1√
2
(|z+〉 ± |z−〉) and |t±〉 = 1√

2
(|tx+〉 ± |tx−〉). In a magnetic field

dependent study, the in-plane electron and hole g-factors are respectively extracted

to be |ge⊥| = 0.48 and |gh⊥| = 0.31 [122]. The polarizations of the optical transitions

between the spin and trion states are no longer purely circular due to the mixing

of the states. Upon preliminary optical studies of these InAs dots [82, 122], the

polarizations for the optical transitions are found to be orthogonally linear as labelled

in Figure 2.10(b).
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This point of the thesis marks the earlier stage investigation of these InAs dots.

Nevertheless, promising results such as the observation of the complex Mollow ab-

sorption spectrum [82] and optical spin cooling [122] in a single InAs dot have begun

to unveil the vast potential of these well-isolated SAQDs. Recently, great efforts have

been devoted to obtaining time-domain signal from a single InAs dot in pursuit of sin-

gle spin rotation. Concurrently, collaborators in the Naval Research Laboratory are

realizing the possibility of a QD molecule to achieve inter-dot entanglement. These

near future directions will be discussed briefly in Chapter 7.

2.5 Chapter summary

This chapter provided a general theoretical discussion of the semiconductor physics

of a QD and a more specific look at the structures, optical properties and roles in

quantum information processing of the different QD samples studied in this thesis,

namely neutral and charged GaAs IFQDs and voltage gated InAs SAQDs. In the next

four chapters, demonstrations of optical coherent controls on the different QDs will

be elaborated through various experimental techniques. Chapters 4 and 5 will prove

the ability of a single GaAs IFQD to maintain and propagate coherent information

in the density matrix tomography measurement. Chapter 6 will extend the coherent

control idea to an ensemble of charged GaAs IFQDs. Chapter 7 will deal with the

current accomplishments and future goals in the InAs SAQDs.



CHAPTER 3

Theory and experimental methods of nonlinear spectroscopy

While the photoluminescence (PL) technique is excellent for the initial characteri-

zation of the energy states of a quantum system, due to the far off-resonant excitation

condition the signal detected is limited to that of recombination emission. In order to

truly explore the richness of higher order nonlinear optical properties in a quantum

system, near or on-resonant excitations are often required.

In a system with spherical spatial symmetry such as an atom, it is possible to still

use luminescence as a means of background-free detection, where the emission signal

is collected away from the excitation beam path. It is, however, more difficult to do

so in a semiconductor system, where the artificially grown structure usually limits

the physical separation between the paths of the excitation beams and the signal,

making background-free luminescence detection nearly impossible. Recently, through

the clever use of a microcavity, background-free luminescence signals from quantum

dots (QDs) were obtained by exciting through the non-cavity mode and detecting

in the cavity mode direction [123]. This setup enables the rare observation of the

emission spectra of the Mollow triplets in semiconductor structures. Nevertheless,

for general semiconductor systems that are not specially engineered for such a task,

more encompassing techniques are adapted.

In experimental works presented in this thesis, two particular techniques are used

that allow for differential signal detection, even when the signal is propagating in the

same direction as the excitation beams. One such technique is phase-sensitive homo-

dyned differential transmission (DT). This is a pump-probe method that measures

36
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the nonlinear signals of the quantum system. The two optical beams are modulated

such that the co-propagating excitation beam enhances the homodyne signal while

suppressing the undesired background signal. Another technique is voltage modu-

lated absorption, which utilizes the electrically induced DC Stark shift to measure

directly the absorption profile of a quantum system. The voltage modulation method

was used to obtain the complex Mollow absorption spectrum [82], which contains

different and richer physics not visible in its emission counterpart.

In this chapter, we begin by introducing the density matrix master equations

(DMMEs) for the two-level and three-level Λ systems in the normal and field rep-

resentation pictures. The DMME describe both linear and nonlinear responses of

an optical system at the microscopic quantum level. The close relationship between

these density matrix elements and the macroscopic radiating signal fields are dis-

cussed using the Maxwell-Bloch equations. And finally, we conclude the chapter by

describing in detail the methodologies of the differential signal detection technique

used in relevant experiments presented in this thesis.

3.1 Master equations of density matrix elements

As presented in Chapter 2, due to the three dimensional confinement provided

by the QD structure, the density of states exhibit discrete δ-function-like features

similar to that of atomic systems. Therefore, it is valid to approximate the optical

transitions involved in the exciton and trion systems inside a QD using simple two-

level and three-level formulism, respectively.

The following discussion concentrates on the general case of the three-level Λ

system in the presence of a single optical field. The general case for a two-level

system can be recovered by setting appropriate terms in the three-level equations

to zero. In the normal representation, which is the laboratory frame, an arbitrary

superposition state |ψ〉 of a three-level is written as

|ψ〉 = a1|1〉+ a2|2〉+ a3|3〉, (3.1)

where the an’s are normalized state probability amplitudes for state |n〉. The optical
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Figure 3.1: Diagram of a general open three-level Λ system. ω12 (ω23) is the transition frequency

between states |2〉 and |1〉 (|3〉). ω13 = ω23 − ω12 is the frequency difference between states |1〉 and

|3〉. E(t) is the excitation field with frequency ω. δ12(23) = ω12(23) − ω is detuning of the field from

the state |1〉 (|3〉). Γij (γij) is the population decay (decoherence) rate between states |i〉 and |j〉 for

a closed system. Γn is the population decay of state |n〉 in an opened system.

field in this representation is ~E(t) = 1
2

[
ε̂E(t)e−i(ωt−~k·~r) + c.c.

]
, where “c.c.” denotes

the complex conjugate term, and ε̂ is the polarization direction of the field. Since the

QDs under study satisfy the condition of ~k · ~r ¿ 1 for the dipole approximation, the

value of the spatial component, ei~k·~r, can be set to unity. The Schrödinger equation

for the Λ system with |1〉 and |3〉 as ground states is then

i~~̇a = H~a, H = ~




−ω12 X12 0

X21 0 X32

0 X23 −ω23


 , (3.2)

where Xij = −µij ·~E(t)

~ = χije
−iωt+c.c. and µij is the dipole moment between transition

i ↔ j. The energy of the excited state |2〉 is arbitrarily set to zero for convenience (i.e.

ω2 = 0), and the transition frequency between state |1〉 and |2〉 is ω12(23) = |ω2−ω1(3)|.
The probability amplitude picture is great for modelling and understanding the

underlying physics behind optical excitations. However, in this picture, it is difficult

to take into account decay processes if the specific detail of the interactions leading
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to decay is unknown. Therefore, the amplitude picture is in general only useful for

describing the evolution dynamics of a pure state system. In order to calculate the

actual signal output from a realistic quantum system, we must take into account the

associated decay and decoherence times and the possibility of a mixed state system.

To do so, we must look into the density matrix picture. The general expression for

the equation of motion of the density matrix is

i~ρ̇ = [H, ρ] + i~ρ̇|relaxation, (3.3)

where H is the Hamiltonian. For the Λ system represented in Figure 3.1, the ex-

panded equations of motion for all the density matrix elements in the normal density

representation are

ρ̇11 = −iX12ρ21 + iX12ρ12 + Γ21ρ22 − (Γ13 + Γ1)ρ11 + Γ31ρ33

ρ̇22 = iX12ρ21 − iX12ρ12 − iX23ρ23 + iX23ρ32 − Γ2ρ22

ρ̇33 = −iX12ρ23 + iX12ρ32 + Γ23ρ22 − (Γ31 + Γ3)ρ33 + Γ13ρ11

ρ̇12 = ρ̇∗21 = −iX12 [ρ22 − ρ11] + iX23ρ13 − (γ21 − iω12)ρ12

ρ̇23 = ρ̇∗32 = iX23 [ρ22 − ρ33]− iX12ρ13 − (γ23 + iω23)ρ23

ρ̇13 = ρ̇∗31 = −iX12ρ23 + iX23ρ12 − [γ13 − i(ω12 − ω23)] ρ13.

(3.4)

The decay parameter Γij (γij) is the population decay (decoherence) rate between

states |i〉 and |j〉. These doubly indexed decay parameters characterize the relaxation

within the closed three-level Λ system. Γn denotes the population decay of state |n〉 in

an open system. Since the QDs studied in the work of this thesis are basically closed

quantum systems, the open system decay terms are set to zero in later calculations.

In the normal representation, the field related term Xij contains oscillations of

e−iωt and eiωt associated with χij and χ∗ij, respectively. Solving the density matrix

equations with these rapid oscillating phases can sometimes be complicated. To

simplify the process, it is more convenient to remove these oscillations by going into

the rotating frame of the quantum system (interaction picture) or the field (field

interaction picture). Since we are only concerned about single optical field excitations

here, it is appropriate to convert to the field interaction picture.
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In the field interaction picture, the ground state probability amplitudes, a1 and

a3, in Equation 3.1 are rewritten as products of an amplitude component and an

oscillating component with the optical field frequency, ω,

a1 = c1e
iωt

a2 = c2

a3 = c3e
iωt.

(3.5)

By applying the substitutions in Equation 3.5 appropriately to Equation 3.4, the

master equations in terms of ρFI
ij = c∗jci are,

ρ̇FI
11 = −iX12e

−iωtρFI
21 + iX12e

iωtρFI
12 + Γ21ρ

FI
22 − (Γ13 + Γ1)ρ

FI
11 + Γ31ρ

FI
33

ρ̇FI
22 = iX12e

−iωtρFI
21 − iX12e

iωtρFI
12 − iX23e

−iωtρFI
23 + iX23e

iωtρFI
32 − Γ2ρ

FI
22

ρ̇FI
33 = −iX12e

−iωtρFI
23 + iX12e

iωtρFI
32 + Γ23ρ

FI
22 − (Γ31 + Γ3)ρ

FI
33 + Γ13ρ

FI
11

ρ̇FI
12 = ρ̇FI∗

21 = −iX12e
−iωt

[
ρFI

22 − ρFI
11

]
+ iX23e

−iωtρFI
13 − (γ21 − iδ12)ρ

FI
12

ρ̇FI
23 = ρ̇FI∗

32 = iX23e
iωt

[
ρFI

22 − ρFI
33

]− iX12e
iωtρFI

13 − (γ23 + iδ23)ρ
FI
23

ρ̇FI
13 = ρ̇FI∗

31 = −iX12e
−iωtρFI

23 + iX23e
iωtρFI

12 − [γ13 − i(δ12 − δ23)] ρ
FI
13 ,

(3.6)

where δ12(23) = ω12(23) − ω. Further simplification can be achieved by applying the

rotating wave approximation (RWA). This approximation is applied to the terms

Xije
iωt = χij + χ∗ije

i2ωt and Xije
−iωt = χije

−i2ωt + χ∗ij. The validity of the approxi-

mation lies in that the frequency of the rapid oscillating terms are much larger than

that evolution time scales of the density matrix elements (i.e. |χij/2ω| ¿ 1 and

|δij/2ω| ¿ 1). If these conditions are satisfied, then the terms e±i2ωt average to zero

in a short time scale and can be neglected. The density matrix master equations with

RWA are

ρ̇FI
11 = −iχ∗12ρ

FI
21 + iχ12ρ

FI
12 + Γ21ρ

FI
22 − (Γ13 + Γ1)ρ

FI
11 + Γ31ρ

FI
33

ρ̇FI
22 = iχ∗12ρ

FI
21 − iχ12ρ

FI
12 − iχ∗23ρ

FI
23 + iχ23ρ

FI
32 − Γ2ρ

FI
22

ρ̇FI
33 = −iχ∗12ρ

FI
23 + iχ12ρ

FI
32 + Γ23ρ

FI
22 − (Γ31 + Γ3)ρ

FI
33 + Γ13ρ

FI
11

ρ̇FI
12 = ρ̇FI∗

21 = −iχ∗12

[
ρFI

22 − ρFI
11

]
+ iχ∗23ρ

FI
13 − (γ21 − iδ12)ρ

FI
12

ρ̇FI
23 = ρ̇FI∗

32 = iχ23

[
ρFI

22 − ρFI
33

]− iχ12ρ
FI
13 − (γ23 + iδ23)ρ

FI
23

ρ̇FI
13 = ρ̇FI∗

31 = −iχ∗12ρ
FI
23 + iχ23ρ

FI
12 − [γ13 − i(δ12 − δ23)] ρ

FI
13 .

(3.7)
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In the rest of this thesis, all calculations are completed using this set of master

equations in the field interaction representation (Equation 3.7). For simplicity, the

superscript “FI” will be omitted in future chapters.

Exact solutions to these density matrix equations are in general not available.

However, there are always assumptions one can make to obtain valuable information

from these density matrix master equations without solving them completely. For

the case of time independent χij’s, the time derivative on the left hand side can be

set to zero in a steady state approximation, and the calculation process is reduced

to coupled algebraic equations instead of coupled differential equations. For a more

general treatment regardless of the form of χij’s, a perturbation approach with respect

to the field is used. Basically, in the perturbation approach, any density matrix

elements (ρij) can be written as

ρij =
∑

n

ρ
(n)
ij , ρ

(n)
ij ∝

∑
p.c.

(
κp.c.

∏
n

Ek

)
, (3.8)

where n denotes the nth order in the perturbation chain, κp.c. is a value determined by

the dipole and polarization dot-product, and “p.c.” means all possible combinations

of n fields. For example, for n = 2,
∑

p.c.

∏
n Ek = κ11E1E1 + κ22E2E2 + κ12E1E2 +

κ21E2E1. The higher order density matrix elements (ρ(n)) can be solved from lower

order density matrix elements (ρ(n−1)) by using simple perturbation theory calcula-

tions. The higher the number of terms used in the summation, the more precise ρij

will become. In the weak field regime, a third order (n = 3) approximation of the den-

sity matrix elements is sufficient to accurately describe the dynamics of the quantum

system. Even in the strong field regime, where an exact treatment to Equation 3.7 is

required to see phenomena such as Rabi oscillations, the third order approximation

can still provide extremely insightful information on the quantum system. Subsec-

tion 6.1.2 in Chapter 6 gives an in depth discussion and comparison between the exact

solution and the third order approximation of a three-level Λ system.

3.2 Maxwell-Bloch equation

The density matrix elements in previous section describe the evolution dynamics
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of the system quantum mechanically. However, none of these quantities are directly

measurable. The experimentally obtainable value of a given physical observable in

a quantum system is actually the expectation value of the related quantum opera-

tor. The expectation value depends highly on the condition of the quantum state,

thus gaining insightful information on the density matrix elements in Equation 3.7 is

important.

In the optical measurements in this thesis, the physical observable of interest is

the dipole moment, µ. The dipole moment of a single quantum system leads to an

overall macroscopic polarization, ~P , which in turn produces radiating electromagnetic

fields that can be measured in a laboratory. The macroscopic polarization has the

expression of total dipole moment per unit volume,

~P =
∑

k

〈µk〉 =
∑

k

Tr(µkρ) =
∑

k

∑
ij

(µk
ijρji + c.c.) (3.9)

where the sum over k depends on the spatial locations of the dipoles within the

unit volume, and i 6= j. In a nonlinear medium with instantaneous response, the

polarization can be broken down into contributions from different orders of nonlinear

susceptibility of the medium,

~P =
∑

i

ε0χ
(1) ~Ei +

∑
ij

ε0χ
(2) ~Ei

~Ej +
∑

ijk

ε0χ
(3) ~Ei

~Ej
~Ek + ..., (3.10)

where ε0 is the permittivity of free space. The χ(n)’s here represent the nth order

of nonlinear susceptibility, and are in general tensors. They are closely related to

the density matrix elements. The relationship is apparent by comparing same order

terms in Equation 3.10 and Equation 3.9 with the substitution of Equation 3.8.

The real part of the first order susceptibility, χ(1) leads to the linear refractive

index, n2 = 1 + χ(1), and the imaginary part leads to linear absorption. The second

order term, χ(2), is responsible for phenomena such as second harmonic generation,

sum frequency generation and difference frequency generation. There are a wide

range of applications using the second order effect including tunable laser sources

such an optical parametric amplifier (OPA) and optical parametric oscillator (OPO).

Our optical measurement technique, which is a specific form of the four-wave mixing
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(FWM), relies on the third order susceptibility, χ(3). Other well-known applications

associated with χ(3) are third harmonic generation, intensity dependent refractive

index effects, and stimulated Raman scattering effects.

The quantum mechanically derived polarization, ~P , is related to the classical

signal field, ~Esig, through Maxwell’s equations where ~P enters in as a source term.

Maxwell’s equations for the case of no free charges (ρ = 0) and no current sources

(J̃ = 0) are

∇ · (ε~Esig + ~P ) = 0, (3.11)

∇× ~Esig = −∂ ~B

∂t
, (3.12)

∇× ~B = µ
∂(ε~Esig + ~P )

∂t
, (3.13)

∇ · ~B = 0, (3.14)

where ε and µ are the permittivity and permeability in a medium. By taking the curve

of the left-hand side of Equation 3.12 (∇×∇× ~Esig) and substituting Equation 3.13

to the right-hand side, we obtain an expression for the relationship between ~Esig and

~P :

∇(∇ · ~Esig)−∇2 ~Esig = − 1

c2

∂2 ~Esig

∂t2
− 1

c2ε

∂2 ~P

∂t2
, (3.15)

where c = 1√
µε

is the speed of light. Equation 3.15 is the Maxwell-Bloch equation.

In general, it is not trivial to solve the Maxwell-Bloch equation exactly. However,

if certain preconditions are assumed, then some approximations can be made to allow

for analytical solutions of the differential equation. The first approximation is that

∇· ~Esig ≈ 0, which is valid in vacuum, or when transverse effects due to bound charges

in a medium is negligible. Without transverse effects, the signal field maintains its

propagating direction, say ẑ, and can be represented by plane waves. The double

spatial derivative in Equation 3.15 is then simplified to only contain the z component:

∂2 ~Esig

∂z2
=

1

c2

∂2 ~Esig

∂t2
+

1

c2ε

∂2 ~P

∂t2
. (3.16)

We can assume a solution of the form ~Esig( ~P ) = Ẽ(P̃ )e−i(ωt−kz) + c.c.. For con-

venience, we concentrate only on the Ẽ(P̃ ) term since the complex conjugate term
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can be solved in exactly the same manner. Substituting the solution form into Equa-

tion 3.16 gives time derivatives of the field envelopes that are proportional to
∂2Ẽsig

∂t2
,

∂Ẽsig

∂t
, ∂2P̃

∂t2
and ∂P̃

∂t
. For most optical fields, such as those used in our experiment,

the field envelopes vary much slower in time than the optical oscillations, ω−1, and

these terms are all negligible as a result in this slowly varying envelope approximation

(SVEA). Furthermore, the spatial field envelopes are slowly varying compared to the

optical wavelength λ = 2π/k, and the second order spatial derivative term
∂2Ẽsig

∂z2 ,

can also be omitted using SVEA. The final wave equation with the above applied

simplifications is then

i2k
∂Ẽsig

∂z
− k2Ẽsig = −ω2

c2
Ẽsig +− ω2

c2ε
P̃ . (3.17)

Since ω = kc, Equation 3.17 has an even more simplified form of

∂Ẽsig

∂z
= i

k

2ε
P̃ . (3.18)

For the case of our semiconductor QD samples, Equation 3.18 might not describe

the complete picture in these complicated structures. For example, in the case where

a single dot is considered, we can no longer use plane waves to approximate the fields

in solving Equation 3.15 since the field propagation profile is governed by the dipole

radiation pattern. However, these complications only affect the angular distribution

of the propagating fields. The most important information that we are interested in is

the interaction between the quantum system and the optical fields. This information

is embedded in the density matrix elements and is the same across the angular dis-

tribution of the field in the case of a single dot. Therefore, Equation 3.18 is sufficient

in terms of providing a helpful insight to our measured signal.

3.3 Differential transmission detection using phase-sensitive optical mod-

ulation

In a practical experimental measurement, the signal fields and the excitation fields

often overlap in propagation direction. In single dot measurements, diffraction from

the sub-micron apertures erases the information of the original propagation directions
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of the optical beams. Even in ensemble type measurement where apertures are absent,

scattering from the sample itself still causes the same issue. It is useful then, to devise

detection techniques that will enable the detection of weak signal fields in the presence

of strong excitation fields. In this section, one such method discussed in detail is the

phase-sensitive optical modulation, which is used in the main experiments in this

thesis. In Chapter 7, a similar method will be discussed, which uses the DC Stark

shift as a form of modulation.

The phase-sensitive optical modulation method in general uses a two-beam pump-

probe configuration. It is essentially a specific form of four-wave mixing technique.

In order to understand the more complicated setup used in the experiment which

modulates both pump and probe beams, we start with the more straightforward

concept of single beam modulation. In the simplest picture of a standard pump-

probe experiment, the pump beam usually has a stronger optical power than the

probe beam. The strong pump beam interacts with and excites the quantum system

leading to changes in the complex refraction index of the excited medium, which is

determined by the matrix elements in Section 3.1. The change in the real component

of the refraction index produces a phase shift in the propagating field, whereas the

change in the imaginary component of the index affects the absorption, and hence,

attenuation of the field. In turn, these changes affect the propagation of the optical

field of the probe beam, which is kept at a much weaker power and does not impose

further perturbation on the quantum system. For a system with a weak optical

response, isolating the small changes in the probe beam from the background of the

original excitation fields can be a difficult task, because the signal is overwhelmed

by contributions from other sources such as scattering and diffraction. However, if

we modulate the amplitude of the pump beam at a frequency of Ω, this modulation

will be transferred through the quantum system and, in turn, appear in the probe

beam. The signal extracted from the probe beam at this modulation frequency is

a direct measurement of the interaction between the pump field and the quantum

system. The single modulation signal can simply be considered as the differential

signal between the two conditions of pump on and pump off.
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In order to pursue a complete treatment of optical modulation mathematically,

we need to solve the density matrix equations by including the modulations in the

electric field terms [116]. However, for the purpose of understanding the basic ideal of

modulation, we can model the single modulation scheme with a simple rate equation

picture, with Q representing the quantity of interest in the measurement

Q̇ =
I1

2
(1 + α cos Ωt)− ΓQ, (3.19)

where I1 is the intensity of the pump field, α is the modulation depth where α = 1

represents 100% modulation, Ω is the modulation frequency, and Γ is any character-

istic decay rate in the quantum system. The solution to the rate equation in Equa-

tion 3.19 has the form Q = Q0 +Q1 cos Ωt+Q2 sin Ωt, where Q0 = I0
2Γ

, Q1 = ΓI0
2(Ω2+Γ2)

,

Q2 = ΓI0
2(Ω2+Γ2)

. A more compact form of the solution can be written as

Q =
I1

2

[
1

Γ
+ cos (Ωt− φmod)

]
, (3.20)

where

φmod = tan−1 Q1

Q2

= tan−1 Ω

Γ
. (3.21)

The value φmod is a measurable quantity in a phase-sensitive experiment. It represents

the electronic phase shift between the original modulation reference frequency and

the modulated signal. For a decay rate much larger than the modulation frequency

(Ω
Γ
→ 0), the phase, φmod, approaches 0, meaning there is no considerable phase lag

between the modulation reference and the signal. However, when the modulation

frequency is comparable to the decay rate (Ω
Γ
→ 1), the phase shift will be φmod ∼ π

4
.

Likewise, for Ω
Γ
→∞, the signal is completely out of phase from the original reference

with a phase shift of φmod = π
2
. The well-defined relationship between these three

quantities in Equation 3.21 can be utilized to extract useful relaxation time scales in

a quantum system, such as the spin relaxation rate in a single quantum dot [116].

In the case where the signal and the modulated pump beams cannot be spatially

separated, such as in the detection configurations in Chapters 4- 6, modulation on

both pump and probe beams are required to isolate the signal. Returning to the

simple rate equation expression, the mathematical form for the the double modulation
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scheme where the pump beam (I1) is modulated at Ω1 and the probe (I2) at Ω2 is

simply Q with an additional modulation,

Q = I1I2
4

[
1
Γ

+ cos (Ω1t− φ)
]
(1 + cos Ω2t)

= I1I2
4

[
1
Γ
(1 + cos Ω2t) + cos (Ω1t− φmod) + 1

2
cos(Ω+t− φmod) + 1

2
cos(Ω−t− φmod)

]
,

(3.22)

where Ω± = Ω1±Ω2 are the sum and difference frequencies. As long as Ω± 6= Ω1, Ω2,

the differential signal can be detected either at the sum (Ω+) or difference (Ω−)

frequency of the original modulations where background signals due to the pump or

the probe fields are eliminated.
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Figure 3.2: Diagram of the double optical modulation setup.

In the actual experimental setup shown in Figure 3.2, the modulations on the

pump and probe beams are applied by using IntraActionTM travelling-wave acousto-

optic modulators (AOMs). The signal is detected using a HamamatsuTM avalanche

photodiode (APD) in the far field regime and processed using a Stanford ResearchTM

model 830 phase-sensitive lock-in amplifier. The frequencies of the modulations are

Ω1 = 1.05MHz and Ω2 = 1MHz provided by two NovatechTM signal generators phased

locked to each other. These frequencies are chosen so that they are large enough to

suppress 1
f

noise, yet still smaller than the repetition rate of the pulsed Ti:Saphire

laser (76 MHz) to effectively modulate the pulse trains. The outputs from the signal

generators are mixed with the RF driving frequencies of the AOMs (70 MHz) to

create two modulated driving fields at 1.05MHz and 1MHz, which are connected to
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the respective AOMs. The optical beams passing through the driven AOMs are Bragg

diffracted at the modulation frequencies. The optical frequency of the +1(-1) order of

the diffracted beam is increased (decreased) by the amount of the driving frequency

(70 MHz). The opposite orders are usually chosen for the pump and probe beams

to avoid optical interference on the detector in the case of degenerate frequencies

between the pump and the probe. The signal is detected at the difference frequency

of Ω1 − Ω2 = 50KHz, which is chosen to be within the detection frequency range of

the lock-in amplifier. The phase-sensitive lock-in amplifier is specially designed to

measure both the in-phase and out-of-phase component of the signal, in other words,

it can measure φmod from Equation 3.22.

The transmission collected on the APD from the QD sample often contains both

signal and excitation fields. The detection of the signal field propagating along with

the excitation fields is a special form of heterodyne detection. In a heterodyne detec-

tion setup, an external reference beam is introduce along the signal field to enhance

signal detection. In homodyne detection, the reference beams are the original exci-

tation beams. The signal and the excitation fields experience the same optical phase

shift (independent of the electronic modulation phase of φmod) inside the medium

and are propagating in phase. Since the phase shifts are the same, this method does

not measure changes in the real component of the refraction index, but rather the

imaginary component that leads to absorption. Therefore, in a homodyne setup, the

differential modulation signal between pump on and pump off is a measurement of the

effect of the pump field on the absorption of the probe field, or rather, the differential

transmission (DT) of the fields. The homodyne signal on the APD is given by

IAPD = |Esig + Eex|2 = |Esig|2 + |Eex|2 + 2Re{EsigEex}, (3.23)

where Esig is the signal field, and Eex = E1 + E2 is the sum of the pump (E1) and

probe (E2) fields. The first term in Equation 3.23 is the intensity related to the pure

signal. Because Esig is in general much weaker in comparison to Eex, this term can be

neglected. For a detectable DT signal at the difference frequency, IAPD must contain

terms that are proportional to the product of the pump and probe field intensities as
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suggested in Equation 3.22. This means the non-signal term, |Eex|2, is not detected

and can also be omitted. The dominant DT signal (IDT ) selected by the lock-in

amplifier is the homodyne term

IDT
∼= 2Re{EsigEex}. (3.24)

The frequency filtering of the lock-in amplifier eliminates the first order linear

absorption signal, making this phase-sensitive optical modulation detection technique

an excellent tool for studying the third order nonlinear effects of a quantum system.

Higher odd order terms from Esig also have frequency components at the modulated

frequency, and thus, are detected as well. These higher order signals are responsible

for the observations of Rabi oscillations in Chapter 4 and 5.

This section gave a detailed explanation of a two-beam optically modulated de-

tection technique. However, modulation techniques are in general used to eliminate

undesired background signals. Once the fundamentals are understood, we can expand

the technique to multiple-beam modulation, or voltage modulation such as that used

in Chapter 7.

3.4 Chapter summary

This chapter provided a theoretical treatment of the origin of the signal field

using a quantum mechanical approach to derive the macroscopic polarization field.

Through the Maxwell-Bloch equation we established the relationship between the

quantum derived polarization and the classical signal field. Finally, a background

free detection method of the signal field was introduced using modulated optical

pump and probe beams. The experimental method described in this chapter will be

used as the main detection technique for the major experiments in this thesis.



CHAPTER 4

Phase-Sensitive Consecutive Qubit Rotations

in a Single Semiconductor Dot

The two key elements of a family of universal gates in quantum information pro-

cessing are the arbitrary single qubit rotational gate and the two-qubit control-NOT

gate [2]. The fundamental building blocks behind these constituent gates and all

quantum algorithms constructed from them are single Rabi rotations between the

qubit states. However, the successful execution of an actual quantum algorithm is

more than a matter of performing individual Rabi rotations perfectly. It is imperative

that consecutive rotations also communicate with each other throughout the entire

algorithm. This communication relies heavily on maintaining the coherence between

the Rabi rotations and the quantum system, meaning that information imprinted

by the first rotation is maintained and propagated via the quantum system to the

subsequent rotation and so forth.

In semiconductor heterostructures, a set of universal gates has been demonstrated

successfully in a single QD using qubits based on exciton pseudo-Bloch vectors [76,

104]. The Rabi rotations are performed using ultrafast optical pulses with well-

defined pulse areas. The significance of this accomplishment is the suppression of

higher dimensional scattering effects in a zero-dimensional QD system, which in turn

allows the system to respond coherently during the optical excitations. Questions still

remain, such as whether the QD system can communicate this coherent information

from one optical Rabi rotation to another.

In this chapter, we investigate the ability of the QD system to perpetuate coher-

50
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ent information between consecutive optical rotations by using a two pulse phase-

locking technique. The phase-locked two-pulse configuration is analogous to the pair

of Hadamard gates required to prepare and collapse the qubit in many quantum logic

operations, including error correction codes [9], the Deutsch-Josa (DJ) algorithm [5]

and Grover’s search algorithm [7]. The execution of this pair of gates greatly influ-

ences the accuracy of the final outcome of the quantum operations. In addition, it

plays a critical role in single qubit density matrix tomography discussed [124] (also

see detail discussion in Chapter 5). Furthermore, the pair of phase-locked pulses are

valuable in the measurement of the coherent lifetime of a quantum system [125].

This chapter begins with a theoretical discussion on the transient optical excitation

of a simple two-level system. It is followed by the experimental setup with details

on the phase-locking of two optical pulses. This technique is then applied to a single

semiconductor QD to explore the dynamics of the exciton system under excitations

of the phase-locked pulse pair with different relative phases. The experimental result

is compared to the theoretical simulation taking into account system dephasing and

finite pulse width, where errors and discrepancies are analyzed and discussed.

4.1 Theory of transient excitation in a closed two-level system

|1>

|2>

E(t),  ω 

γ, Γω
12

Figure 4.1: Diagram of a simple closed two-level system. ω12 is the transition frequency between

states |2〉 and |1〉. E(t) is the excitation field with frequency ω, and γ (Γ) is the decoherence

(population decay) rate between the states.

Optical transitions in a single QD between the crystal ground states and an exciton

state can be closely modelled by physics of a simple two-level system seen in Figure 4.1.

This approximation is valid as long as the three-dimensional quantum confinement
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of the dots produces discrete energy states that are well-isolated from the higher

dimensional scattering states. The excitation of the ground-exciton transition in a

single QD by a strong transient optical field can be explained mathematically through

the use of Pauli matrices and pictorially in the Bloch sphere representation.

4.1.1 Two-level systems and the Pauli matrices

The general state of a two-level system can be expressed in the Dirac notation

as |ψ〉 = a1|1〉+ a2|2〉, where a1 and a2 are probability amplitudes for states |1〉 and

|2〉 in the normal representation, respectively. In the field interaction representation

(see conversions and definitions in Chapter 3) with the rotating wave approximation

(RWA) and the absence of decays, the Schrödinger equation of motion, i~ ~̇c(t) =

H ~c(t), for the probability amplitude state vector (~c) of a two-level system [126–128]

is simply 
 ċ1(t)

ċ2(t)


 = −i


 − δ

2
χ∗(t)

χ(t) δ
2





 c1(t)

c2(t)


 , (4.1)

where δ = ω12 − ω is the detuning of the excitation field (ω) from the transition

resonance frequency (ω12), and χ(t) = −µ12·E(t)
2~ is related to the time dependent

envelop of the field amplitude, E(t), and the dipole moment, µ12, of the transition

between the two levels. Decays of the system are neglected here for simplicity. A

full treatment including population decay and dephasing is evaluated numerically in

Section 4.3.

The solution of Equation 4.1 does not have a general analytical form for arbitrary

E(t). However solutions are available for select conditions on the detuning, δ, and

the pulse shape, E(t). For δ 6= 0, analytical solutions are possible for hyperbolic

secant pulses and square pulses. Since our interest focuses on the dynamics of the

state of the quantum system after the pulse excitation and not during, we choose the

more simple solution of the square pulse. The resultant final state after the excitation

would be the same as long as the square pulse has the same pulse area as the actual

hyperbolic secant pulse used in the experiment. For a more rigorous approach to

the exact solution using the actual pulse shape, Rosen and Zener provide a detail
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derivation in Ref. [129].

The square pulse solution to Equation 4.1 is

~c(tp) = T(tp) ~c(0) = e−i
Θ(tp)

2 ~c(0), (4.2)

where

Θ(tp) =
Htp
~

=


 −δtp θ∗(tp)

θ(tp) δtp


 . (4.3)

The general value of θ(tp) = 2
∫ tp
−∞ χ(t′) dt′ is denoted as the time-dependent pulse

area of the pulsed excitation field, E(t). For a square pulse, θ(tp) = 2χtp where χ is

a constant and tp is the pulse duration. The term T(tp) = e−i
Θ(tp)

2 in Equation 4.2

is the unitary time evolution operator for the initial state vector ~c(0) [127], which

describes how the state vector evolves from its initial value in time. This operator

can be rewritten in terms of the Pauli spin matrices to further examine the details of

the time evolution.

The Pauli spin matrices are normally associated with the two-level spin-1
2

system.

This set of 2× 2 orthogonal unitary matrices is the followed,

σx =


 0 1

1 0


 , σy =


 0 −i

i 0


 , σz =


 1 0

0 −1


 . (4.4)

They each corresponds to a physical observable of the spin system, namely, the spin

angular momentum projection onto each of the three spatial coordinates (x̂, ŷ, and

ẑ) as labelled. Because the Pauli spin matrices are the generators for the SU(2) Lie

group [130], in combination with the identity matrix, I, they form a complete set

that can express any 2× 2 complex matrix, including the Hamiltonian of a two-level

quantum system.

Equation 4.3 rewritten in terms of the Pauli spin matrices is then

Θ(tp) = Re{θ(tp)} σx + Im{θ(tp)} σy + δtp σz = Θ(tp)n̂ · ~σ, (4.5)

where Θ(tp) =
√

(δtp)2 + |θ(tp)|2 is the amplitude of the field-associated vector in the

direction of n̂ = [Re{θ(tp)}x̂ + Im{θ(tp)}ŷ + δtẑ] /Θ(tp), and ~σ = σxx̂+σyŷ+σzẑ is
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the Pauli spin vector. By substituting the term from Equation 4.5 into Equation 4.2,

the rewritten solution is

~c(tp) = T(tp) ~c(0) = e−i
Θ(tp)

2
n̂·~σ ~c(0). (4.6)

The unitary time evolution operator, T(tp), is now in the form of the generator of

infinitesimal rotation. Further simplification of T(tp) using the identity expression

e−i~a·~σ = cos aI − i sin a(n̂ · ~σ) brings the solution in Equation 4.6 to its final form,

 c1(tp)

c2(tp)


 =


 cos Θ(tp)

2
+ i δtp

Θ(tp)
sin Θ(tp)

2
−i θ∗(tp)

Θ(tp)
sin Θ(tp)

2

−i θ(tp)

Θ(tp)
sin Θ(tp)

2
cos Θ(tp)

2
− i δtp

Θ(tp)
sin Θ(tp)

2





 c1(0)

c2(0)


 .

(4.7)

For the spin-1
2

system, the time evolution operator, T(tp), is associated with phys-

ical rotation of the initial spin around the applied field in Cartesian coordinate space.

In a general two-level system, the rotation occurs in the abstract Hilbert space. In

both cases, the dynamics of the rotation becomes more apparent as we translate the

results obtained here to the Bloch sphere representation covered in the next subsection

(Subsection 4.1.2).

4.1.2 Rotations in the Bloch sphere representation

The Bloch sphere representation is a useful tool in visualizing the evolution of a

two-level quantum system during free induction decays and excitation by an external

field. While mathematically, we need to solve the Schrödinger equations exactly

to extract information on the time evolution of the state of the system, pictorially

through the Bloch sphere such information is easily obtained even when analytical

solutions are impractical.

The Bloch sphere representation is derived from the field interaction density ma-

trix formulism of the two-level system. The density matrix master equations including

general decay parameters are derived in Section 3.1 of Chapter 3. For this subsection,

decays are neglected to emphasis the excitation aspect of the dynamics.

The axes of the Bloch sphere are generally denoted by û, v̂, and ŵ as seen in

Figure 4.2. Two important definitions in the Bloch sphere representation are the
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Figure 4.2: Bloch sphere representation of a general two-level system. The bases of the sphere

are û, v̂ and ŵ. The thick red (blue) solid line represents the Bloch (pseudo-field) vector, ~U ( ~R).

The dotted orange line represents the path and direction of ~U ’s precession around ~R. The angle,

θ, traced out by the precession represents the pulse or transition area. The angle, φ, represents the

overall phase of the field.

Bloch vector (~U ) and the pseudo-field vector ( ~R), where

~U =




Uû

Uv̂

Uŵ


 =




2Re{ρ12}
−2Im{ρ12}
ρ22 − ρ11


 , ~R =




Rû

Rv̂

Rŵ


 =




2Re{χ}
−2Im{χ}

δ


 . (4.8)

The Bloch vector (~U ) contains density matrix elements describing the initial state of

the system, including both state populations (ρ11 and ρ22) as well as the coherence

between the states (ρ12). The pseudo-field vector ( ~R), on the other hand, discloses

information on the detuning (δ) of the field from the resonance frequency of the

system, and the coupling strength and relative phase between the field and the system

through the term χ. The interaction dynamics between the excitation field and the

system is characterized by the cross-product of the the two vectors,

~̇U = ~R× ~U , (4.9)

which illustrates the precession of the Bloch vector, ~U , about the pseudo-field vector,

~R, as shown in Figure 4.2. The angle, θ, swept out during the precession is the
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area of the excitation pulse field and also the corresponding transition. The angle, φ,

represents the overall phase of the field.

The advantage of the Bloch sphere is evident in the fact that the final state of

the system can be extracted from the pictorial representation without the need for

solving Equation 4.9. For example, given the knowledge of the excitation field with a

pulse area of θ and the initial conditions of the system, we can construct two vectors

( ~R and ~U ) in the Bloch sphere. The next step is simply precessing ~U about ~R by an

angle of θ and reading out the final state of the system by examining the projection

of ~U onto each axes of the sphere.

The discussion in this section provides the basic physical model for a general two-

level system. To customize the solution for the experiments presented in this thesis,

we apply the experimental parameters to the matrix solution in Equation 4.7, namely,

δ = 0 for on resonance excitation. The solution then has the following simplified form,

 c1(tp)

c2(tp)


 =


 cos |θ(tp)|

2
−ieiφ sin |θ(tp)|

2

−ie−iφ sin |θ(tp)|
2

cos |θ(tp)|
2





 c1(0)

c2(0)


 , (4.10)

where φ is the overall phase of the excitation field. This substitution corresponds to

the pinning of the pseudo-field vector, ~R, on the u− v plane of the Bloch sphere.

For rotations by more than one pulse, the multi-pulse time evolution operator of the

initial state is simply the product of the representing time evolution operators for each

pulse, T =
∏

Tn(θn, φn). The expression for consecutive rotations by two distinct

pulses is written out for the convenience of later discussion,

T = T2(θ2, φ2)T1(θ1, φ1)

=


 cos α cos β − ei4φ sin α sin β −i(ei4φ sin β cos α + sin α cos β)

−i(e−i4φ sin β cos α + sin α cos β) cos α cos β − e−i4φ sin α sin β


 ,

where 4φ = φ2 − φ1, α = |θ1|
2

, and β = |θ2|
2

.

For the remainder of the thesis, Equation 4.10, Equation 4.11, and their corre-

sponding Bloch sphere representation will be referred to for future physical discussions

on two-level transitions in exciton (Chapter 4, Chapter 5), trion and spin (Chapter 6)

systems.
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4.2 Experimental setup and phase-locking two optical pulses

The semiconductor sample studied in this experiment is NRL-1197King. It con-

sists of interface fluctuation GaAs/Al0.3Ga0.7As QDs [75,88,90] as presented in Chap-

ter 2. The sample is mounted inside a continuous flow liquid helium cryostat (Janis

ResearchTM10DT) and stabilized at 7 K to inhibit acoustic phonon modes. Opti-

cal excitations and detections are performed through the 0.5 µm aperture located at

(r,c) = (2,6), where “r” and “c” represent the row and column positions, respectively.

The sub-micron aperture provides the necessary spatial filtering needed to excite and

detect individual quantum dots.

The experimental setup is shown in Figure 4.3. The optical pump and probe pulses

are derived from a single 702 series dye laser synchronously pumped by a 76 MHz

mode-locked, doubled Nd-YAG Antares laser, both from CoherentTM. The pump

and probe beams are each modulated by a travelling wave acousto-optic modulator

(AOM) at Ω1=1.05 MHz and Ω2=1 MHz, respectively. A three-plate birefringent

filter inside the 702 laser cavity produces a pulse width of 5 ps, corresponding to a

spectral bandwidth of 0.37 meV.

To achieve two pump pulses with tunable coarse (on orders of ps) and fine (on order

of fs) delays for consecutive qubit rotation, the pump beam is split by a 50/50 beam

splitter and sent through a Michelson interferometer. One arm of the interferometer

is controlled by a micro-translation stage for the picosecond coarse delay (τ) between

the pulses. The other arm is modified by a piezoelectric translation stage (PZT) which

provides high resolution temporal control on the order of sub-femtosecond. This delay

path is used to control the optical phase (φ) between the two pump pulses. For on

resonance transitions in this particular sample, the excitation wavelength is around

760 nm. Even a slight movement of the order of micrometers can disrupt the stability

of the optical phase between pulses. To counteract this problem, an active feedback

loop stabilizes the PZT to eliminate disturbances from air currents and other causes

of micro-motions. The stabilization circuit is presented in Appendix A.

The nonlinear differential transmission (DT) signal is obtained by scanning the

delay of the probe pulse through the time scale of interest covering the double-pump
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Figure 4.3: Experimental setup of the phase-locking experiment. The micro-translation stage (TS)

controls the coarse delay (τ) while the the piezoelectric translation stage (PZT) controls the optical

phase delay (φ) between the two pump pulses. ω is the center frequency of the laser pulse.

pulsed excitation and the subsequent decay. The signal is detected optically by a

silicon avalanche photodiode (APD) and processed through a lock-in amplifier and

computer at the reference frequency of Ω1 − Ω2=50 KHz.

4.3 Consecutive rotations of an exciton-based qubit

The physical structure of the interface fluctuation dots allows for the confinement

of two linear-orthogonally polarized (Πx and Πy) excitons inside a single dot [88]. For

two uncoupled excitons, the energy level diagram is two separate two-level systems

each representing one exciton transition as shown in Figure 4.4(a). In these dots,

however, the excitons are Coulomb coupled, which leads to an intertwined energy

level diagram of a four-level system as shown in Figs. 4.4(b). The lower state is the

crystal ground state, the intermediate states are the two nearly degenerate linear-

orthogonally polarized excitons, and the upper state is the biexciton. Since the laser
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pulse bandwidth (0.37 meV) is much smaller than the binding energy of the biexci-

ton ∆XX ∼ 3.5 meV) [104], we can safely neglect transitions to the biexciton and

concentrate on the reduced three level V system in the dashed boxes illustrated in

Figs. 4.4(b).

(a) (b)

|X
1
>  (|1>)

|0>

|X
2
>  (|R>)

Πy

|XX>

Πx

Πx Πy

|X
1
> |X

2
>

|0>|0>

Two two-level One Four-level

∆
XX

Figure 4.4: Energy level diagram of excitons. (a) Two uncoupled excitons (|X1〉 and |X2〉). (b)

Two coupled excitons make up a four-level system. |0〉 is the crystal ground state and one of the

qubit state, |X1〉 (|X2〉) also serves as qubit state |1〉 (read out state |R〉), and |XX〉 is the biexciton

state. The binding energy for the biexciton is ∆XX ∼ 3.5 meV. Πx (Πy) is the polarization of the

transition along the x̂ (ŷ) direction.

For the control-ROT experiment in Reference [104], both exciton transitions con-

stitute qubits. Here, we define one polarized transition of the exciton (Πx, horizontal)

as the qubit and the orthogonally polarized transition (Πy, vertical) as the readout

for the purpose of this measurement. The qubit states are |0〉 and |1〉 and the state

|R〉 is the readout exciton as labelled in Figs. 4.4(b).

Through the spatial filtering of the sub-micron apertures, the number of excitable

dots is decreased from order of millions to order of tens (Chapter 2). Further se-

lectivity relies on the spectral resolution of the optical excitation field. A narrow

band continuous wave (cw) laser (bandwidth ∼ 300 KHz) is first used to resolve and

characterize single exciton states under each small aperture. Both pump and probe

beams are linearly co-polarized and degenerate in frequency. Their powers are kept at

a linear response regime in third order of the field to avoid saturating the states. The

frequency of the laser beams are then scanned to obtain the DT spectra. The average
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linewidth of an exciton state is around 30 GHz. Once the true single exciton states

are verified, the 5 ps pulsed laser is setup in the same configuration to reproduce the

energy spectra and determine the state best suited for the experiment. An example of

a good candidate is highlighted in the spectra in Figure 4.5, which has the signature

of a clear single exciton state in the cw spectrum and also appeared well-isolated in

the pulsed spectrum.
D

T
 (

a
. u

.)

13050 13060 13070 13080 13090 13100

Coarse CW DT

Fine CW DT

PS DT

Wavenumber (cm-1)

Figure 4.5: Degenerate DT measurements by ps pulsed (red) and cw (blue) lasers through aperture

(2,6) on NRL-1197King. The lighter blue data points are a cw rough scan and the dark blue data

points are the fine scan over the single states. The highlighted exciton state is the state used in the

consecutive rotation experiment.

In contrast to the frequency domain measurements, which use optical fields in

the weak field regime, the time domain measurements use a strong pump field with

pulse area θ > π/2 to actually rotate the qubit. In addition, for the time domain

measurements in the rest of the discussion, the pump and probe beams are cross-

polarized. The pump beam is tuned on resonance to the transition of the qubit

states, |0〉 and |1〉, and the probe is tuned on resonance to the transition to the

readout state, |R〉, as indicated in Figure 4.4. The crossed-polarization of the beams

ensure that the state preparation and manipulation are solely due to the pump pulse
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or pulses, and the probe pulse is only responsible for measuring the outcome. The

DT signal is detected along the probe through a polarizer that eliminates the pump

beam after the sample. The response of the system is attributed to all orders of the

pump and first order of the probe. The DT pump on minus pump off signal, to first

order of the probe, is proportional to ρ
(1)
0R,

DT ∝ (ρ
(1)
0R)on − (ρ

(1)
0R)off ∝ (ρ

(0)
RR − ρ

(0)
00 )on − (ρ

(0)
RR − ρ

(0)
00 )off , (4.11)

where ρ
(0)
RR and ρ

(0)
00 are the density matrix elements after solving for all orders of the

pump. Since the pump pulse is not coupled to state |R〉, and all the state population is

initially in state |1〉 without any excitation, (ρ
(0)
RR)on = (ρ

(0)
RR)off = 0 and (ρ

(0)
00 )off = 1.

Furthermore, for a closed system, ρ
(0)
00 + ρ

(0)
11 + ρ

(0)
RR = 1. With these substitutions, the

expression in Equation 4.11 is simplified to

DT ∝ (ρ
(1)
0R)on − (ρ

(1)
0R)off ∝ (ρ

(0)
11 )on. (4.12)

This signifies that the DT signal is proportional to the populations in the qubit state

|1〉.
The excitons in each single dot have an average lifetime of 60 ps with negligible

pure dephasing effects inferred from nonlinear spectroscopy studies [125, 131]. The

lifetime of the the selected state in Figure 4.5 is measured in Figure 4.6 to be 60 ps

using a single π
2

pump pulse. The pulse area is determined by optical Rabi oscillation

measurements [76,132–134] which correlates pulse areas to average laser powers. The

details of obtaining Rabi oscillations are described in Reference [76] and will not

be discussed here. Since the 5 ps pulse is short compared to the 60 ps population

decay time, it is an appropriate compromise between operational speed and spectral

selectivity.

Single qubit rotations are performed by applying single pump pulses with cor-

responding pulse areas from 0 to π, which create arbitrary superposition states of

|0〉 and |1〉 from the initial state |0〉. Phase sensitive consecutive qubit rotations are

performed by two phased-locked pump pulses. We chose each pump pulse area to

be θ = π/2 because this creates a quantum state with maximum coherence. Such a
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Figure 4.6: Time domain DT measurement of exciton T1 on linear and semi-log scales. The pulse

area used is π
2 and the pump and probe are linearly cross-polarized. The blue lines are fits to the

decay parts of the scans, which measures a population decay time of T1 ∼ 60 ps.

state is most affected by the changes in the relative phase, 4φ, between the pulses.

The pump pulses are separated by τ = 23 ps to ensure that the final qubit state is

due to two distinct optical pulses, and not the product of optical interference. This

τ is chosen to sufficiently reduce optical interference while minimizing system decay

during the separation. Using Equation 4.11, we can predict the outcome of the state

after two consecutive π
2

pulses with varying the relative phase, 4φ, through the PZT

stage, for an exciton system initially at the crystal ground state |0〉,

 c0

c1


 =




1
2
(1− ei4φ) − i

2
(1 + ei4φ)

− i
2
(1 + e−i4φ) 1

2
(1− e−i4φ)





 1

0


 . (4.13)

The corresponding density matrix elements of the final state are

ρ00(4φ) = sin2 4φ
2

,

ρ11(4φ) = cos2 4φ
2

,

ρ01(4φ) = 1
2
sin4φ,

Equation 4.14 shows that by varying 4φ, we are changing the effective pulse area of

the pulse sequence. These changes in 4φ are reflected in the sinusoidal oscillations of

the |1〉 state population as illustrated by the quantum interferograms in the insets of

Figures 4.8(c) and (d). The maxima of the interferogram correspond to constructive

interference (4φ = 2π, effective θ = π) while the minima correspond to destructive

interference (4φ = π, effective θ = 0).

To break down the dynamics of the two-pulsed phase-locked qubit rotation, we

examine two extreme cases in the time domain measurement, 4φ = π and 4φ = 2π,
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with the aid of the Bloch sphere representation. The component of the Bloch vector

projected onto the u-v plane represents the coherence, and the projection onto the ŵ

axis represents the population difference of the quantum system. The |0〉 (|1〉) state

is represented by the Bloch vector pointing down (up). Since all the excitations are

on resonance, the representing pseudo-field vectors are strictly on the u-v plane.

The phase φ1 of the first optical pulse is irrelevant and can be set to zero, which

means the first pseudo-field vector is real and aligned along the û axis (see Subsec-

tion 4.1.2). Ideally, for two pump pulses each at θ = π
2
, the qubit state is initially

driven from the |0〉 state to the (|0〉 − i|1〉)/√2 state. This is described by the Bloch

vector rotating around the field vector from a down position to the u-v plane along

the v̂ axis following Equation 4.9. By setting 4φ = π, the pseudo-field vector of the

out-of-phase second pulse lies along the −û axis. Precession around this field rotates

the Bloch vector an angle of π
2

back to down position, which translates to driving the

quantum state back down to |0〉 as shown in Figure 4.7. This two-pulse combination

acts with an effective pulse area of θ = 0, and the corresponding DT signal after the

full rotations of the two pulses are anticipated to be zero.

In contrast, for 4φ = 2π, the pseudo-field vector of the in-phase second pulse

is in the same direction as the first pulse, and continue to rotate the Bloch vector

to the up position. This corresponds to driving the quantum state up to |1〉 as

shown in Figure 4.7. This combination acts is with an effective pulse area of θ = π,

and the DT signal after the rotations should be equivalent to that of a single π

pulse. Hence, phase control between consecutive quantum operations is critical since

two consecutive rotations with the same magnitudes but different phases can lead

to profoundly different outcomes, a result well known in atomic type systems. The

ability to control this phase then ensures control for consecutive and arbitrary qubit

rotations as well as accuracy of the operation output, all of which are necessary for

practical quantum information processing.

The experimental data are taken by fixing the pump pulses temporally and scan-

ning the probe delay to observe the dynamics of the system. Because of decay in

the physical system, experimental results deviate from the ideal case. Despite the
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Figure 4.7: Ideal Bloch representation of the two consecutive π
2 rotations at 4φ = π and 2π. The

blue, green and purple solid lines are the pseudo-field vectors. The red lines are the Bloch vectors.

The dashed curves represent the the precession paths around the pseudo-field vectors with respective

colors. The blue color scheme is depict the first pump pulse, the purple depict the second pump

pulse with 4φ = π, and green depict the second pump pulse with 4φ = 2π.

decay, we see clearly that in the case of 4φ = π (Figure 4.8(c)), the population is

being driven back down to state |0〉 by the second pulse. Due to the population decay

from the |1〉 state, part of the population lost the phase information between the two

pulses and is not affected by the second pulse in a coherent manner. Hence, the signal

does not diminish after the second pulse, and the non-zero signal is largely due to

the incoherent population. Similarly, in the case of 4φ = 2π (Figure 4.8(d)), the

population is being driven up to state |1〉, but the decay process prevents the signal

from reaching the same strength as that created a single π pulse. The fast popula-

tion decay leads to the loss of coherence between the two qubit states and limits the

accuracy of coherent control by laser pulses.

Pure population decay in the Bloch sphere is represented by the Bloch vector

rotating from its original position back down toward the -w direction. In this case,

the Bloch vector strays from its position on the u-v plane after the first π
2

rotation

and decay towards -w, reducing the angle between the two directions. Recalling the
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Figure 4.8: Experimental results of two consecutive π
2 rotations of a qubit at 4φ = π and 2π.

(a) and (b) are Bloch representation of the rotations in a physical qubit system. The red arrows

represent population decay. (c) and (d) are the experimental data where the purple (green) plot

corresponds to a relative phase of 4φ = π(2π) between the two pump pulses. The blue plots are the

same single π/2 decay, which serves as a comparison. The lines are guides to the eye. The insets are

interferograms. (e) and (f) are theoretical simulations of the experimental data taking into account

all the experimental parameters.

meaning of each axis for the Bloch vector in Equation 4.8, this means it is loosing

coherence component and gaining population in the |0〉 state. As the second π
2

pulse

arrives, the rotation overshoots the -w direction and gains a |1〉 component (Fig-

ure 4.8(a)), which is the source of the non-zero signal in the case of 4φ = π. In the

case of 4φ = 2π, the rotation of π
2

is insufficient for the Bloch vector to be com-

pletely aligned in the w direction (Figure 4.8(b)), and causes the deviation from the

DT signal.

Another contribution to the discrepancy is due to the temporal overlap of the two

pulses. Although the pulses are separated by 23 ps, the tail of the first pulse and front

of the second pulse are still overlapped in time. In the Bloch sphere representation,
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this signifies the simultaneous rotation of the Bloch vector by the two pulses during

the overlap. We simulate the data in Figures 4.8(e) and (f) by numerically solving the

Schrödinger equations for the exciton system using all the experimental parameters.

The results reproduce the data excellently.

We can avoid errors caused by simultaneous rotation of the Bloch vector by sepa-

rating the two pulses further to eliminate overlaps, but the short decoherence between

the qubit states |0〉 and |1〉 will begin to introduce greater error as the measurement

is made at a larger delay. It may be that the discrepancies can be minimized by using

a combination of pulse-shaping techniques on shorter pulses to avoid exciting nearby

states [53, 135, 136]. Quantum systems with longer decay times, such as the spin

qubit system in charged QDs (see Chapter 6), would also minimize this error.

4.4 Chapter summary

In this chapter, we have demonstrated consecutive phase dependent qubit rota-

tions. This accomplishment proves that the exciton quantum system has the ability to

maintain coherent information during its lifetime. This technique is extremely useful

in density matrix tomography of the single qubit (Chapter 5), where the phased-

locked pulses are acting as coherent rotations of the measurement axes. Improved

performance in optically driven spin based systems [111] is anticipated because spin

lifetimes are expected to be four orders of magnitude longer than the exciton sys-

tem [106,107,109,137].



CHAPTER 5

Density Matrix Tomography of a Single Exciton-Based Qubit

Many critical milestones toward practical quantum computation have now been

achieved in exciton based quantum bit (qubit) systems including single qubit rota-

tion [76], a two-qubit controlled-NOT gate [104] and a two-qubit population swap [138].

The next practical step would be to quantify the performance (fidelity) of these op-

erations mentioned above [9] using density matrix tomography. In other words, we

need to be able to measure the values of the population and coherence terms of all

the qubits involved after the quantum operations. The comparison of the physical

density matrix to the ideal density matrix of the result qubit states can then be used

to decide the appropriate error corrective actions needed in the quantum operations.

In this chapter, we demonstrate density matrix tomography of a single exciton-

based qubit in a single semiconductor quantum dot (QD) [124]. The density matrix

tomography technique combines procedures of signal calibration and optical phase

control on an exciton-based qubit in a single QD. The key ingredient of this technique

is the controlled rotation of the measurement basis of the qubit. This approach is

commonly used in nuclear magnetic resonance (NMR) [139] and atomic [140] systems,

and it enables us to measure both the real and imaginary components of the coherence

term as well as the population terms.

In the exciton-based qubit system, the basis rotation is achieved by phase-locking

the optical rotation pulse to the quantum state being measured (details in Chap-

ter 4). The new measurement basis is determined by the relative phase between the

preparation pulse and the rotation pulse.

67
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The chapter begins with a theoretical interpretation of the physics behind rotating

a measurement basis. Then the experiment divided into two parts: 1) Calibration and

renormalization of the differential transmission (DT) signal, and 2) The reconstruction

of the density matrix of a single exciton-based qubit after a π
2

pulse excitation. The

experimental result is then analyzed and compare to the ideal case and the fidelity of

the measurement process is extracted.

5.1 Theory on the rotations of the measurement basis

Classically, a single bit can only retain one discrete value at a given time, 0 or

1, obtaining information on the bit is simply a matter of measuring which state

it currently occupies. Quantum mechanically, however, since a qubit can be in a

superposition of the qubit states, α|0〉 + β|1〉, obtaining information on the true

state of the system becomes nontrivial, especially when the measurement process

also destroys the prepared state.

The measurable physical quantities for a qubit state of α|0〉 + β|1〉 are not the

state amplitudes, α and β, but rather the population of each state, ρ00 = α∗α and

ρ11 = β∗β, and the coherence between the two states, ρ01 = α∗β, with ρ01 in general

being a complex number with both real and imaginary terms. By only measuring the

population terms, ρ00 and ρ11, we cannot distinguish between a pure state (α|0〉+β|1〉)
and a mixed state (α|0〉 and β|1〉). Therefore, a fully characterized qubit state requires

all four pieces of information, two population terms, and the real and imaginary

components of the coherence term. These quantities can be summarized into a single

2× 2 density matrix,

ρ0 =


 ρ00 ρ01

ρ10 ρ11


 =


 α∗α αβ∗

βα∗ β∗β


 . (5.1)

In general, the population terms, ρ00 and ρ11, can be extracted directly from the

optical signal, provided that there is a way to calibrate and renormalize the DT signal.

Obtaining the coherence term, on the other hand, is not as straightforward. Most

optical measurement processes detect optical intensities. The coherence term, being
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a complex number, contains phase information that needs to be detected through

interference measurements, where the phase can be converted into detectable quan-

tities, in other words, into population terms. This process of converting phase to

population can also be considered as changing the measurement basis.

The measurement basis can be changed through active or passive rotations. A

passive rotation is done by fixing the position of the state vector of the quantum

system and physically altering the geometry of the measurement device to align the

detection axis with the state vector (Figure 5.1(a)). A example of passive rotation is

the use of the Stern-Gerlach apparatus [141]. Although passive rotations might seem

more straightforward and less intrusive for the quantum system being measured, it is

in general difficult to change the axis of measurement.

Passive Rotation Active Rotation

Measurement Axis
Measurement Axis

(a) (b)

State Vector

State Vector

Figure 5.1: Passive and active rotations to change the measurement basis. (a) Passive rotation

rotates the measurement axis while leaving the state vector (solid red line) fixed. (b) Active rotation

rotates the state vector itself while leaving the measurement axis fixed.

An alternative and more practical method to change the measurement basis is

through the active rotation of the state vector of the quantum system. Active rotation

is achieved by fixing the measurement axis while rotating the state vector to the axis

of measurement (Figure 5.1(b)). Physically, this rotation is performed by an external

excitation field phase-locked to the quantum state being rotated. The technique of

phase sensitive rotations discussed in Chapter 4 is an essential tool for this task.
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The mathematical representation of the active rotation can be derived using the

same formulism presented in Section 4.1 of Chapter 4. The transformation from an

initial density matrix state, ρ0, to its final state, ρr, by an resonant (δ = 0) optical

pulsed field with pulse area θ and relative phase φ is described by

ρr = T(θ, φ)ρ0T
†(θ, φ), (5.2)

with

T(θ, φ) =


 cos θ

2
−ieiφ sin θ

2

−ie−iφ sin θ
2

cos θ
2


 , (5.3)

where T(θ, φ) is the unitary transformation matrix representing the optical pulsed

field. The expanded and simplified expression of ρr is

ρr =


 ρr

00 ρr
01

ρr
10 ρr

11


 =


 C2ρ00 + S2ρ11 − SCIm{e−iφρ01} C2ρ01 + ei2φS2ρ10 + iSCeiφ(ρ00 − ρ11)

C2ρ10 + e−i2φS2ρ01 − iSCe−iφ(ρ00 − ρ11) C2ρ11 + S2ρ00 + SCIm{e−iφρ01}


 ,

(5.4)

where C = cos θ
2

and S = sin θ
2
. Equation 5.4 is used in the next section to calculate

the real and imaginary components of the coherence term, ρ01, for specific values of

θ and φ.

5.2 Density matrix tomography of a single exciton-based qubit

The density matrix tomography experiment is conducted on the sample NRL-

1197King, which contains the same interface fluctuation dots used in the phase sen-

sitive rotation experiment discussed in Chapter 4. The exciton state described in

Chapter 4 is a good candidate for the tomographic measurement since it exhibits a

predictable optical response in the presence of coherent pulsed excitation. Further-

more, it shows the capability for sustaining coherence information imprinted by the

optical field.

The laser system used in this experiment is the Mira system from CoherentTM.

The Mira laser system consist of a passively modelocked Ti:Saphire laser (MIRA)
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pumped by a diode laser (Verdi-10). The MIRA laser operating in the fs mode

produces 130 fs pulse at a 76 MHz repetition rate. This ultrafast pulse has wide

spectral bandwidth which is well-suited for the application of pulse shaping.
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Figure 5.2: (a) Pulse shaper in 4-f configuration. The higher frequency is represented by the color

blue, and the lower frequency is represented by the color red. (b) Spectrum of the shaped pulse

after the pulse shaper. The FWHM is 6 cm−1, corresponding to a energy bandwidth of 0.75 meV.

(c) Cross-correlation of the shaped pulse after the pulse shaper. The fit function to the pulse shape

is a Gaussian function. The FWHM of the pulse is 4 ps.

The train of 130 fs pulses is passed through a beam splitter, and each beam is

then sent through a pulse shaper in the 4-f configuration [142, 143] as illustrated in

Figure 5.2(a). The pulse shapers give the advantage of both tunable pulse width and

wavelength. In addition, the two pulse shaper configuration allows for degenerate and

non-degenerate frequency domain studies. The full-width-half-maximum (FWHM) of

the pulse used in the tomography experiment is 4 ps as shown in the cross-correlation

measurement in Figure 5.2(c). The corresponding FWHM bandwidth of the pulse is
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6 cm−1 in wavenumber and 0.75 meV in energy. The abrupt drop-off of the spectral

tails in the frequency spectrum is due to the sharp edges of the slit on the mask in

the Fourier plane. The Fourier transform of this spectral profile leads to fringes in

the temporal tails, which are visible in the cross-correlation scan.

The rest of the experimental setup after the pulse shapers is identical to the setup

in the phase-sensitive rotation experiment in Chapter 4. The two pulses derived from

the Michelson interferometer with tunable temporal delay, τ , and phase delay, φ, are

assigned as the preparation pulse and the rotation pulse. The single probe pulse then

measures the exciton-based qubit system throughout the preparation and rotation

process. .

The reduced three-level V system approximation used in Chapter 4 remains valid

with the newly adapted pulse width of 4 ps. Since the bandwidth of this 4 ps pulse

is ∼0.75 meV, which is still smaller than the binding energy of the biexciton (∼3.5

meV) [104], we can neglect transitions to the biexciton in this experiment as well,

and focus on the transitions to the two exciton states.

We define the horizontally (Πx) polarized transition of the exciton as the qubit

and the vertically (Πy) polarized transition as the readout state. The qubit states

are labelled as |0〉 and |1〉, respectively, and the readout state is labelled as |R〉 in

Figures 5.3(a) and (b).

5.2.1 Calibration and renormalization of the differential transmission sig-

nal

Before the tomography measurement can be made, we need to first establish a

relationship between the DT signal and the populations of the qubit states, |0〉 and

|1〉. A direct correspondence between these two quantities is completed through a

calibration scheme implemented with the readout state |R〉.
Theoretically, the calibration process can be achieved simply using a pair of pump

and probe pulses. We first resonantly excite transitions between the qubit states with

a pump pulse of known pulse area, θ. The weak probe (θ < π
2
) then measures the
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Figure 5.3: (a) and (b) Four-level representation. (a) Two-beam setup. (b) Three-beam setup.

|0〉 and |1〉 are the crystal ground state and the qubit exciton, respectively, while |R〉 is the readout

exciton. The arrows in (a) and (b) denote the laser pulses, where the dashed lines are the probes, the

normal solid lines are the pumps and the thick solid line is the pre-pump. (c) DT signal obtained by

using the two-beam (blue open circle) and three-beam (red solid circle) setups. The state where the

pre-pump is fixed is highlighted in green. We indicate that a π pulse inverts 88% of the population

to state |1〉, leaving 12% in state |0〉.

population of the |0〉 state. The DT signal, which is the signal with the pump off

minus the signal with the pump on, is proportional to 1−ρ00 (Chapter 4, Section 4.3).

Since the two-level qubit system in a single dot is shown to be a closed system [131],

which means ρ11 + ρ00 = 1, the signal is linearly proportional to ρ11. Without decay,

this is sufficient to completely calibrate the DT signal. However, in a physical system,

due to the finite pulse width of 4 ps and the short relaxation time of the exciton at

60 ps, a π pulse does not invoke a complete population inversion from state |0〉 to |1〉.
Hence, we must take the reality of the experiment into consideration.
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A pair of experiments is conducted to measure the actual amount of population

transferred to state |1〉 for a π pulse. First, a two-beam setup is used to drive transi-

tions between states |0〉 and |R〉 [thin blue solid and dashed arrows in Figure 5.3(a)],

where the solid (dashed) arrow represents the pump (probe). The pump and probe

with the same optical frequency are scanned in frequency, where the pump is set at

a pulse area of π and the probe is kept weak below a pulse area of π/2. The pump

and probe are temporally separated by 10 ps to avoid any contribution from coherent

artifacts. The DT signal is recorded as the blue open circle plot in Figure 5.3(c),

where the exciton transition of interest is highlighted in green. We denote the signal

strength of this measurement as A. This two-beam experiment can be viewed as a

measurement of remaining population in |0〉 when a θ = 0 pulse is used to excite the

qubit states.

To measure the signal due to the remaining population in |0〉 after a θ = π pulse

excitation, a three-beam setup is used. A pre-pump with pulse area π is fixed in

frequency at the |0〉 to |1〉 transition [thick green solid arrow in Figure 5.3(b)], and

transfers the maximum population to state |1〉. A pump and probe pair similar to the

two-beam experiment [thin red solid and dashed arrows in Figure 5.3(b)], is delayed

10 ps from the pre-pump and scanned in frequency to read the population in state

|0〉 by driving transitions to state |R〉. The result is recorded as the red solid circle

plot in Figure 5.3(c). The signal strength of the highlighted state in this experiment

is denoted as B.

The value of A represents signal corresponding to remaining population in |0〉 of

ρ00 = 1, since the pre-pump pulse area is θ = 0. On the other hand, the value of

B corresponds to a remaining population of ρ00 = ζ in |0〉 after a θ = π pre-pump

pulse. The percentage of remaining population in |0〉 after a π pulse excitation is

then simply the ratio of B
A
× 100 = ζ × 100 = 12%. Therefore, we conclude that

the maximum population transferred by a 4 ps wide π pulse is 1− B
A

= 88± 1%. A

simulation using the experimental parameters gives the result of an 85% population

transfer, which is in excellent agreement with the data.

The calibration result obtained in this section is used to renormalize the DT signal
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in the remainder of the chapter.

5.2.2 Reconstruction of the single qubit density matrix

We demonstrate the ability to measure the off-diagonal matrix elements (ρ01, ρ10)

as well as the diagonal density matrix elements (ρ00, ρ11) of a closed two-level system,

which leads to a complete mapping of the density matrix of a qubit in a single QD. To

obtain the coherence terms, we use the active rotation method discussed in Section 5.1

to rotate the components in the u-v plane onto the measurement axis ŵ through an

optical excitation of θ = π/2. By choosing the right phase of this optical rotation

field, we can easily extract both the real and imaginary parts of the coherence terms.

From the equation of motion, the time evolution of the Bloch vector ~U is a

precession around the field vector ~R by an angle of the pulse area of the field. We

utilize this precession in a controlled manner to extract the real and imaginary parts

of the coherence terms. From the Bloch sphere representation, we can clearly see

that the real (imaginary) components of the field and coherence lie on the û (v̂) axis.

A purely real field rotates only the imaginary part of the coherence to the ŵ axis

for measurement (Figure 5.4(a)). Similarly, a purely imaginary field (φ = π/2) only

measures the real part of the coherence (Figure 5.4(b)).

Mathematically, we refer to the Equation 5.4 in Section 5.1. For θ = π
2
, the

new density matrix elements are simple expressions of the original density matrix

elements. The simplification of this equation takes into account the closed system

relation of ρ11 + ρ00 = 1. The simplified expression of the new density matrix, ρr, is

 ρr

00 ρr
01

ρr
10 ρr

11


 =




1
2
− Im{e−iφρ01} 1

2
[ρ01 + ei2φρ10 + ieiφ(ρ00 − ρ11)]

1
2
[ρ10 + e−i2φρ01 − ie−iφ(ρ00 − ρ11)]

1
2

+ Im{e−iφρ01}


 .

(5.5)

Since the DT signal is calibrated to the density matrix element of ρ11, we only need

to concentrate on ρr
11, where

ρr
11 =

1

2
+ Im{e−iφρ01}. (5.6)
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Figure 5.4: Rotating and measuring the coherence components of a Bloch vector (red), ~U . (a)

At φ = 0, the pseudo-field vector (blue), ~R is aligned along the û (real) direction, and rotates

the imaginary component of ~U (pink) to the ŵ (measurement) axis. Similarity, (b at φ = π
2 , the

pseudo-field vector, ~R is aligned along the v̂ (imaginary) direction, and rotates the real component

of ~U (pink) to the ŵ (measurement) axis.

For φ = 0, ρr
11 = 1/2 + Im[ρ01]. Similarly, for φ = π

2
, ρr

11 = 1/2 − Re[ρ01]. From

these two values of φ, the real and imaginary components of the coherence term of the

original density matrix, ρ01, can be extracted directly from the DT signal calibrated

and renormalized to ρr
11.

Experimentally, we demonstrate the application of single qubit density matrix

tomography on the maximum coherent state of a two-level system, |ψπ/2〉 = (|0〉 −
i|1〉)/√2, created by a π/2 pulse. For a delta function pulse excitation and no de-

coherence presence, the ideal value of the density matrix, ρideal, of this maximum

coherent state is

ρideal =


 0.5 i0.5

−i0.5 0.5


 . (5.7)

In the Bloch sphere representation, the Bloch vector, ~U , for this state lies along the

v̂ axis, with only imaginary component in the coherence term.

The population terms of state |ψπ/2〉, ρ00 and ρ11, are directly measured through

a two-beam experiment, where the preparation pulse of θ = π
2

prepares the state and

the probe reads the value of ρ11 = 0.36± 0.05 through calibrated DT signal as shown
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Figure 5.5: Decay plots of single π/2 pulse and interferogram taken at 10 ps delay from the creation

pulse. The horizontal dash lines mark the values of each population readout. X gives ρr
11 = 0.73, Y

gives ρr
11 = 0.42 and Z gives ρ11 = 0.36.

in Figure 5.5. The ground state population of ρ00 = 0.64 ± 0.05 is inferred for this

closed system.

To measure the coherence terms (ρ01 and ρ10), a π/2 rotation pulse is inserted

after the preparation pulse to rotate the coherence components to the measurement

axis ŵ. The preparation pulse is temporally separated from the other pulses by

10 ps to avoid interfering with the preparation of the original state. The values of

ρr
11 = 0.73± 0.03 at φ = 0 and ρr

11 = 0.42± 0.03 at φ = π/2 can be obtained through

the calibrated interferogram shown in Figure 5.5. Using Eq. 5.6 and values from

Figure 5.5, the imaginary part of ρ01 of state |ψπ/2〉 is simply 0.23± 0.03 and the real

part is 0.08 ± 0.03. The reconstruction of the measured density matrix, ρmeas, for

|ψπ/2〉 is then

ρmeas =


 0.64± 0.05 0.08 + i0.23(±0.03)

0.08− i0.23(±0.03) 0.36± 0.05


 . (5.8)

This density matrix is also presented in pictorial form in Figure 5.5(d) along side the

ideal density matrix in Figure 5.5(a). We can see that the values are notably different

in the two matrices, especially the appearance of the non-zero real component of the

coherence term in the measured density matrix, ρmeas.

To trace the source of the large discrepancies, two theoretical simulations are
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culated density matrices with decays excluding (including) rotation and probe pulses. (d) Measured

density matrix from experiment.

performed The first simulation is of the actual experiment, which takes into account

the entire process of preparation, rotation and measurement, as well as the decay

parameters of the exciton quantum system. The density matrix, ρexpsim, from the

simulation result is

ρexpsim =


 0.60 0.08 + i0.21

0.08− i0.21 0.40


 , (5.9)

and displayed in Figure 5.6(c). The excellent agreement between ρmeas and ρexpsim

signifies that we have complete knowledge of the quantum system used and that its

behavior under optical excitation is completely theoretically predictable.

Based on the conclusion from the comparison between the first simulation and the

actual experiment data, the following simulation result is a valid gauge for the actual

density matrix of the exciton qubit created by a 4 ps π
2

pulse. This second simulation

models the density matrix without the measurement process, i.e. the rotation and

probe pulses. However, parameters of the preparation pulse and the exciton system

are still used in the calculation. The value of the density matrix, ρprepsim, created



79

with only the preparation pulse, is

ρprepsim =


 0.59 i0.47

−i0.47 0.41


 , (5.10)

and is shown in Figure 5.6(c). The values of the matrix elements are much closer to

the values of the ideal matrix. As a result, we can attribute the large discrepancies

between the coherence terms in these density matrices to the measurement process

represented by the rotation and measurement pulses.

We observe that the population terms of all three non-ideal density matrices are

essentially the same. However, the coherence terms of the density matrices with

the inclusion of the rotation pulse stray from their ideal values. Specifically, in the

presence of the rotation pulse, the coherence terms have non-zero real components,

while in the absence of a rotation pulse, they are purely imaginary regardless of the

qubit lifetime. This apparent discrepancy arises from the short decoherence of the

system and the temporal overlap of the first and the second pump pulses. Although

the two 4 ps wide pump pulses are separated by 10 ps, the pulse tail of the first

pulse and the pulse front of the second pulse overlap. The amount of overlap, though

small, can still affect the accuracy of the measurement of the coherence terms. In

the Bloch sphere representation, we can attribute the error to population decay and

the simultaneous rotation of the Bloch vector by the preparation and rotation pulses,

both of which lead to a non-zero real component in the measured coherence terms.

A single parameter defined as the fidelity, F , can be used to quantify and com-

pare the performance of the preparation and measurement process in each of the four

different situations under which ρideal, ρmeas, ρexpsim, and ρprepsim are obtained.

The fidelity, F , is normally use to describe the effectiveness of quantum gate oper-

ations [104]. The mathematical definition of the fidelity is F = Tr[ρpρI ], where ρp

is the density matrix of the physical result, and ρI is the density matrix of what is

ideally expected. The highest fidelity obtainable is unity.

Two values of the fidelity are calculated for each density matrix. The first value

is a calculation of the fidelity using ρI = ρidesl. This value considers the entire

process of preparation, rotation and measurement. The second calculation of the
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fidelity uses ρI = ρprepsim, which only considers performance of the the rotation and

measurement process. The different values are listed in Table 5.1, and it is clear that

the majority of the errors are introduced in the measurement process including the

rotation and measurement pulses.

ρp

F = Tr[ρpρI ] ρideal ρprepsim ρexpsim ρmeas

ρI = ρidesl 1 0.97 0.71 0.73 ± 0.03

ρI = ρprepsim – 1 0.72 0.74 ± 0.02

Table 5.1: Fidelities of single qubit density matrix tomography with ρI = ρidesl, which measures

the fidelity of the entire preparation and measurement process, and ρI = ρprepsim, which measures

the fidelity of only the measurement process.

We can minimize errors by following the same suggestions at the end of Section 4.3

in Chapter 4. The remedies include shorter pulses and quantum system with longer

decoherence time, such as the spin system (see Chapter 6), which has decoherence

time of four orders of magnitude longer [106,107,109,137].

5.3 Chapter summary

In summary, we have demonstrated the tomographic reconstruction of the den-

sity matrix of a single qubit as well as consecutive arbitrary qubit rotations. These

measurements can be easily extended to map the complete physical density matrix of

multi-qubit systems as in reference [104]. Even though the measurement accuracy is

limited by the intrinsic decay parameters of the quantum system, the technique itself

is proven to be suitable and practical for the purpose of density matrix tomography.

Improved performance in optically driven spin based systems [111] is anticipated. The

next chapter (Chapter 6) provides a glimpse into the ample potential of electron spin

based qubits in QDs.



CHAPTER 6

Selective Optical Control of Electron Spin Coherence

in Singly Charged Quantum Dots via Optically Dark and Bright States

In the previous chapters (Chapters 4 and 5), we have demonstrated the ability of

the exciton-based quantum bit (qubit) to maintain and propagate quantum informa-

tion to a high order of accuracy during its lifetime. These preliminary results prove

that single qubit manipulation in a semiconductor quantum system is indeed achiev-

able. Although the exciton-based system itself decays too fast for practical quantum

information processing and is non-scalable, it sets the stage for the more robust and

scalable spin-based system, represented by a single electron spin confined in a single

quantum dot (QD).

Unlike the qubit states of the exciton-based system, which consist of a ground state

and an excited state, the qubit states of a spin-based system are the two orthogonal

spin states of an electron, which are both in the ground states. The advantage of

having two ground states as qubit states is that the lifetime of the qubit is not

limited by radiative decay of an excited state. In fact, the lifetime of the spin has

been measured to be on the order of milliseconds [106–108], making the electron spin

an ideal realization of a qubit.

Electron spin rotations have already been demonstrated in surface gated dots

using electrical gates [144], but the operation time is limited to a few microseconds

by the microwave control on resonance with the spin states. Alternatively, ultrafast

optical pulses are readily available. Manipulating the spin states with these pulses

increases the gate operation speed and hence the number of operations during the spin

81
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coherence lifetime. Fast operation rates are crucial for practical quantum information

processing. Especially when fault tolerant quantum computation is considered, the

successful execution of error correction procedures require a minimum of 104 − 105

quantum gate operations within the decoherence time of the quantum system [2].

With ultrafast optical pulses on orders of picoseconds, a spin system with decoherence

time of milliseconds can easily accommodate 108−109 operations, and is well-qualified

for implementing the fault tolerant quantum computation scheme.

In this chapter, we demonstrate phase sensitive partial rotations of the electron

spin vector in an ensemble of singly charged QDs using picosecond pulses [145]. Sim-

ilar rotations have been performed on electrons in quantum wells [146, 147]. The

rotations are achieved through dark and bright spin ground states created by opti-

cally coupling to the charged exciton (trion) state. The properties of dark and bright

here are not absolute but rather depends on the characteristics of the optical field

used, in this case, the polarization of the field. This terminology originated from

the field of atomic physics [148–151], and thus it is also appropriate for the atomic-

like system in a single QD. Accomplishing the partial rotations prepares the way for

the demonstration of complete rotations of a single spin, which would encompass

arbitrary qubit rotations.

We start the chapter by discussing the theory of stimulated Raman transitions

in a Λ three-level system used to model the spin-trion complex. Both probability

amplitude and density matrix approaches are used to derive the spin coherence term

responsible for the quantum beat phenomenon observed in the spin system. Concur-

rently, the creation and definition of optically bright and dark spin states are also

brought into attention to aid later understanding of the partial rotation experiment.

Following the theoretical derivation of the spin quantum beats, we review the experi-

mental measurement process of the spin coherence signal via ultrafast optical pulses.

And finally, we conclude by analyzing the experimental data on the initialization and

partial rotation of the electron spin.
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6.1 Theory on stimulated Raman transitions and ground state coherence

in a Λ system

|1>
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E(t),  ω 
ω
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|3>

ω
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Figure 6.1: Diagram of a closed three-level Λ system. ω12 (ω23) is the transition frequency between

states |2〉 and |1〉 (|3〉). ω13 = ω23 − ω12 is the frequency difference between states |1〉 and |3〉. E(t)

is the excitation field with frequency ω. Γ2 (γ2) is the population decay (decoherence) rate between

the excited state and the ground states, and it is assumed to be equal for both transitions. Γsp (γsp)

is the population decay (decoherence) rate between the ground states.

In a singly charged QD, the optical transitions between the two spin ground states

and a excited trion state can be modelled by a three-level Λ system. This energy

level configuration can be viewed as two two-level systems sharing an excited state

as shown in Figure 6.1. Astonishingly, the simple addition of a second ground state

brings forth a new class of physical phenomena nonexistent in the two-level system.

A few well-known phenomena observed in a Λ system include coherent population

trapping [128, 152, 153], electromagnetically induced transparency (EIT) [154–158],

and lasing without inversion [159–164]. These phenomena are direct results of a

dark state generated by the coherence between the ground states through stimulated

Raman transitions. In Section 6.2, we demonstrate the importance of this optical

dark state in the coherent control of a spin state.

This section explores the physics of a three-level Λ system, with a focus on the

generation of ground state coherence, using the exact solutions in the probability

amplitude picture (Subsection 6.1.1) and the perturbative solutions in the density

matrix picture (Subsection 6.1.2). In Subsection 6.1.1, the mathematical derivation
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of an optically dark state is shown under specific excitation condition. In Subsec-

tion 6.1.2, we analyze the perturbation pathways that give rise to the experimental

signals using the density matrix equations.

6.1.1 Exact solutions in the probability amplitude approach

A general state in the three-level Λ system in Dirac notation is |ψ〉 = a1|1〉 +

a2|2〉+a3|3〉, where a1, a2 and a3 are probability amplitudes for states |1〉, |2〉 and |3〉,
respectively. With the application of the rotating wave approximation (RWA) and the

absence of decays, the Schrödinger equations of motion for the probability amplitudes

in the field interaction representation, are c1(t), c2(t) and c3(t) (see conversion and

definitions in Chapter 3), where

ċ1(t) = −iχ∗(t)c2(t)− iω13

2
c1(t)

ċ2(t) = −iχ(t) [c1(t) + c3(t)]

ċ3(t) = −iχ∗(t)c2(t) + iω13

2
c3(t).

(6.1)

The single optical field E(t) with frequency ω is tuned to the excited state |2〉 from

the halfway point of states |1〉 and |3〉. The frequency difference between states |1〉
and |3〉 is ω13 = ω23 − ω12. The optical field related term is χ(t) = −µ2·E(t)

2~ , with the

same dipole moment, µ2 = µ12 = µ32, for both 1 ↔ 2 and 2 ↔ 3 transitions.

For a real optical square pulse, χ(t) = χ∗(t) = χ, Equation 6.1 can be rewritten

in a more simple and solvable form as followed,

ċ+(t) = −i
[√

2χc2(t) + ω13

2
c−(t)

]

ċ2(t) = −i
√

2χc+(t)

ċ−(t) = −iω13

2
c+(t),

(6.2)

where c±(t) = [c1(t)± c3(t)] /
√

2, with corresponding states of |±〉 = (|1〉 ± |3〉)/√2.

A closer look at Equation 6.2 reveals that the equation of motion for c−(t) does

not contain the optical field term, χ. This observation indicates that the state is

not directly coupled to the optical field, but is rather driven indirectly through the

directly coupled state |+〉. We show later in this discussion how state |−〉 can become

an optically dark state under certain conditions of the optical field.
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The general solution to Equation 6.2 is derived in Appendix B. The probability

amplitudes from Equation B.7 are,

c+(t) = cos Ωt c+(0)− iω13

2Ω
sin Ωt c−(0)− i

√
2χ
Ω

sin Ωt c2(0)

c2(t) = −i
√

2χ
Ω

sin Ωt c+(0)−
√

2χω13

Ω2 sin2 Ωt
2

c−(0) +
[

ω2
13

4Ω2 + 2χ2

Ω2 cos Ωt
]
c2(0)

c−(t) = −iω13

2Ω
sin Ωt c+(0) +

[
2χ2

Ω2 +
ω2

13

4Ω2 cos Ωt
]
c−(0)−

√
2χω13

Ω2 sin2 Ωt
2

c2(0),

(6.3)

where Ω =

√
2χ2 +

ω2
13

4
. This set of general solutions provides the ability to investigate

behaviors of the Λ system under various excitations and initial conditions.

One particular interesting combination of excitation and initial parameters is from

the spin control experiment in Section 6.2. The optical field used in the experiment

consists of ultrafast pulses, where the bandwidth of the pulses is much greater than

the energy separation between states |1〉 and |3〉 (i.e. 4ω À ω13). As a result, both

states are excited resonantly, and terms related to ω13 are negligible. Consequently,

Equation 6.3 can be written in a more simple form,

c+(t) = cos Ωt c+(0)− i sin Ωt c2(0)

c2(t) = −i sin Ωt c+(0) + cos Ωt c2(0)

c−(t) = c−(0),

(6.4)

with Ω =
√

2χ. It is immediately apparent that c−(t) is independent of any field

related terms and maintains its initial value of c−(0). Such behavior is indicative

of an optically dark state. In this case, the dark state associated with c−(t) is |−〉.
The emergence of this dark state reduces the three-level Λ system to a simple two-

level system between states |+〉 and |2〉. This simplification enables the extraction of

three-level physics of a Λ system through the less complicated formulism of a two-level

system.

For the convenience of later discussion, Equation 6.4 is rewritten in the matrix

form of ~c(tp) = T(θ(tp)) ~c(0) with the unitary time evolution operator T(θ(tp)),




c−(tp)

c+(tp)

c2(tp)


 =




1 0 0

0 cos θ(tp)

2
−i sin θ(tp)

2

0 −i sin θ(tp)

2
cos θ(tp)

2







c−(0)

c+(0)

c2(0)


 , (6.5)
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where θ(tp) = 2Ωtp = 2
√

2χtp is the pulse area for a square pulse with pulse duration

tp. The pulse area θ(tp) here is a factor of
√

2 larger than that of a true two-level

system. The factor of
√

2 comes from the fact that the “ground state” of the reduced

two-level system actually consists of two states, |1〉 and |3〉. Similar to the two-level

calculations in Chapter 4, the pulse area θ in Equation 6.5 can be the generalized

pulse area of any well-defined pulse shape, as long as the duration of the pulse is

much shorter than the characteristic time scales of evolution in the quantum system.

In order to apply the general initial conditions for both mixed and pure states, we

must do so in the density matrix picture. The initial values of the populations and

coherence are chosen to match that of the spin-trion system in the experiment. Under

no optical excitation, the system is in a completely mixed state of the two ground

states, |1〉 and |3〉, meaning ρ11(0) = ρ33(0) = ρ++(0) = ρ−−(0) = 1
2
, and ρ22(0) =

ρ13(0) = ρ32(0) = ρ12(0) = ρ+−(0) = 0. It is also inferred that ρ11(0) + ρ33(0) =

ρ++(0) + ρ−−(0) = 1 for a closed system. The density matrix elements, taking into

account the above initial conditions and given values of probability amplitudes from

Equation 6.5, are

ρ++(tp) = c∗+(tp)c+(tp) = cos2 θ(tp)

2
ρ++(0)

ρ22(tp) = c∗2(tp)c2(tp) = sin2 θ(tp)

2
ρ++(0)

ρ−−(tp) = c∗−(tp)c−(tp) = ρ−−(0)

ρ+−(tp) = c∗−(tp)c+(tp) = 0

ρ13(tp) = c∗3(tp)c1(tp) = 1
2
[ρ++(tp)− ρ−−(tp)] ,

(6.6)

With ρ−−(tp) being a constant, the magnitude of the ground state coherence ρ13 in-

creases as more population in state |+〉 is being excited to state |2〉 (Figure 6.2(b)).

This dependence of the coherence on the difference of the |±〉 state population be-

comes physically significant in the spin control experiment discussion in Section 6.2.

In the normal representation, ρnorm
13 (t) = ρ13(tp)e

−iω13t oscillates at the difference fre-

quency ω13 of the ground states. This oscillation gives rise to the quantum beat

signals observed in later experiments.

Another method for generating the ground state coherence is through the adiabatic

approach [165–170]. This approach relies on a strict excitation scheme to adiabati-
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Figure 6.2: Density matrix elements as a functions of pulse area in (a) two-level and (b) three-

level Λ systems with resonant ultrafast optical coupling. In both cases, ρ13 is purely imaginary, so

|ρ13| = Imρ13.

cally eliminate the excited state in order to isolate the ground states as a two-level

system. Such a scheme usually requires slow narrow-band pulses, which sacrifice

speed of operation to satisfy the adiabatic conditions. Moreover, the coupling scheme

is characterized by an unitary transformation for the two ground states, which means

it is ineffective for a completely mixed initial state. The ultrafast method used here,

on the other hand, actually utilizes the excited state and performs better for faster

pulses [171]. In addition, since the ultrafast excitation couples to state |2〉, it is not

an unitary transformation for the ground states, and coherence is created even for

a completely mixed state. The maximum magnitude of the coherence reached for a

completely mixed state is 0.25. To achieve the the ultimate maximum value of 0.5,

the system needs to be completely initialized in either state |1〉 or |3〉 (one method of

initialization is discussed in Subsection 6.2.1). Figure 6.2 gives a graphical summary

of the populations and coherence of the ground states, |1〉 and |3〉, in an isolated

two-level system (Figure 6.2(a)), and in a three-level system with an intermediate

excited state, |2〉, and a resonant ultrafast pulsed optical field (Figure 6.2(b)).

In this section, all discussions were mathematical. In later sections, we extend

the discussion by assigning physical meanings to the mathematical entities using the

spin-trion Λ system.
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6.1.2 Perturbative solutions in the density matrix approach

In the previous subsection, the Schrödinger equations of motion for the Λ system

are solved exactly to all orders for a resonant ultrafast pulse under no decay. In reality,

the differential transmission (DT) technique used in the experiment only selectively

measures terms that satisfy the modulation conditions used during signal processing,

specifically, terms proportional to the third order susceptibility of the system. In

order to pinpoint which terms are detected in the DT signal, we calculate the result

using the perturbation process in the density matrix equations. For a complete study,

population decays and coherence dephasing terms are included.

The density matrix equations in the field interaction picture under similar real

square pulsed excitation conditions as in the previous subsection are

ρ̇11(t) = −iχ [ρ21(t)− ρ12(t)] + Γ2

2
ρ22(t)− Γspρ11(t)

ρ̇22(t) = iχ [ρ21(t)− ρ12(t)] + iχ [ρ23(t)− ρ32(t)]− Γ2ρ22(t)

ρ̇33(t) = −iχ [ρ23(t)− ρ32(t)] + Γ2

2
ρ22(t) + Γspρ11(t)

ρ̇12(t) = ρ̇∗21(t) = −iχ [ρ22(t)− ρ11(t)] + iχρ13(t)− γ2ρ12(t)

ρ̇23(t) = ρ̇∗32(t) = iχ [ρ22(t)− ρ33(t)]− iχρ13(t)− γ2ρ23(t)

ρ̇13(t) = ρ̇∗31(t) = −iχ [ρ23(t)− ρ12(t)]− γspρ13(t),

(6.7)

where Γ2 and γ2 are the population relaxation and decoherence rates of the excited

state |2〉, which decays equally into states |1〉 and |3〉. The spin population decay and

decoherence rates are characterized by Γsp and γsp, respectively.

In the DT experiments, signals are often obtained using a pump (E1) and probe

(E2) pair. The third order signal using two distinct optical fields contains many

possible combinations of the two fields. The modulation configuration of the optical

fields narrows the number of terms down to 24 as shown in Chapter 3. For time do-

main excitation using ultrafast pulses, the time ordering of the pulses puts additional

constraints on the detectable terms. The term that satisfies all the above conditions

is E∗
1E1E

∗
2 . This singular term contains information from two distinct perturbation

pathways. One is a coherent path, which creates the second order ground state co-

herence (ρ
(2)
13 ), and the other is a step-wise path, which creates the second order state
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populations (ρ
(2)
11 , ρ

(2)
33 ),

Coherent :
ρ

(0)
11

ρ
(0)
33

−−−→
E∗

1

ρ
(1)
12

ρ
(1)
23

−−−→
E1

ρ
(2)
13 −−−→

E∗
2

ρ
(3)
12

ρ
(3)
23

Step− wise :
ρ

(0)
11

ρ
(0)
33

−−−→
E∗

1

ρ
(1)
12

ρ
(1)
23

−−−→
E1

ρ
(2)
11

ρ
(2)
33

−−−→
E∗

2

ρ
(3)
12

ρ
(3)
23

.

(6.8)

In the following discussion, we concentrate on the coherent pathway which gives rise

to signal from the ground state coherence, ρ13.

The zeroth order values of the density matrix elements are the initial conditions

of a completely mixed state, where ρ
(0)
11 = ρ

(0)
33 = 1

2
while all the others are zero. To

first order of the pump field (E∗
1), the only nonzero density matrix elements given the

initial conditions are the coherence between the excited state and the ground states,

ρ
(1)
12 and ρ

(1)
23 . For the ultrafast pulse excitation assumed here, it is valid to represent

the field envelope with a delta function, χ = χn δ(t− τn), where n = 1, 2 denotes the

pump and probe fields, respectively. The first order solution is then

ρ
(1)
12 (t) = iχ1ρ

(0)
11 e−γ2(t−τ1) Θ(t− τ1)

ρ
(1)
23 (t) = −iχ1ρ

(0)
33 e−γ2(t−τ1) Θ(t− τ1)

(6.9)

where the unit step function

Θ(t− τ1) =





0, t < τ1

1, t ≥ τ1

. (6.10)

To second order of the pump field, coherence is created in the ground state,

ρ
(2)
13 (t) = −|χ1|2 e−γsp(t−τ1) Θ(t− τ1), (6.11)

and decays at the rate of γsp. In the normal representation, ρ
(2)
13 (t) oscillates at ω13

as shown in Subsection 6.1.1, which is usually not in the optical detection frequency

range. However, this coherence can be detected through optically radiative terms of

ρ
(3)
12 (t) and ρ

(3)
32 (t) using a probe field (E2). In the coherent pathway, only the ρ

(2)
13 (t)

contribution to the third order radiative terms is considered. Because the probe pulse

is delayed from the pump pulse, and the oscillation period of ρ
(2)
13 (t) is on the order
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of the temporal separation between the two pulses (τ = τ2− τ1), the oscillation must

be considered during the integration in the third order calculation. The final third

order signal takes the form of

E
(3)
sig ∝ ρ

(3)
12 (t) + ρ

(3)
32 (t) = −i2|χ1|2χ2 cos ω13 (τ2 − τ1)e

−γsp(τ2−τ1)e−γ2(t−τ2). (6.12)

By varying τ = τ2 − τ1, which is the delay between the pump and probe pulses, the

dynamics of the oscillation and decay of the ground state coherence can be monitored

optically.

In the following experimental section, the exact solutions in the probability am-

plitude approach are used to explain the physics of the dynamics in the spin-trion

system. The perturbation paths in the density matrix approach are used mainly to

distinguish and assign the measured signals to corresponding system dynamics.

6.2 Optical coherent spin control experiment in singly charged quantum

dots

6.2.1 Experimental setup and quantum beat signals

The sample used in the coherent spin control study is the 612F-2(ensemble), which

is similar to the exciton sample in Chapter 4 and 5. It contains an ensemble of

GaAs/Al0.3Ga0.7As interface fluctuation QDs [75, 88, 90]. The essential difference is

that these dots are charged with single electrons through silicon δ-doping. The num-

ber of electrons trapped in the dot is determined by the doping density of the sample.

In this case, the doping density is 1010/cm2, which gives an average of one electron

per dot [112]. The sample is placed inside a Janis ResearchTMsuperconducting mag-

neto cryostat, which cools the sample to 5 K. The magnetic field (Bx) applied in the

experiments is aligned in the Voigt geometry (x̂), perpendicular to the sample growth

axis, which is in the ẑ direction.

The laser system used for the experiment is the CoherentTMAntares system as in

Chapter 4, which gives 5 ps pulse duration. The experimental setup is similar to that
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Figure 6.3: (a) Ensemble spectra of the 612F-2 sample in DT and photoluminescence (PL). The

trion (X−1) and exciton (X) peaks are separated by a binding energy of 3.7 meV. The blue arrow

indicates the energy position of the laser for the spin coherent control experiment. (b) Energy level

diagrams of a charged QD at Bx = 0 T and Bx 6= 0 T in the Voigt geometry. The blue and red

arrows indicate the polarization selections of the transitions.

in Figure 4.3 in Chapter 4 without the Michelson interferometer. The pump and probe

are each modulated at 1 Mhz and 1.05 Mhz. The energy spectrum of the ensemble

sample can be either obtained through photoluminescence (PL) or nonlinear DT as

shown in Figure 6.3(a). Two ensemble peaks shows up in both spectra. The higher

energy peak is due to excitons and the lower energy peak is due to trions, and they

are separated by a binding energy of 3.7 meV. For the transient DT experiments in

this section, both pump and probe laser frequencies are tuned to the lower energy tail

of the ensemble trion spectrum, as indicated by the blue arrow, to avoid simultaneous

excitation of excitons.

The energy structure of the singly charged QD at Bx = 0 T can be described by

two degenerate two-level systems each consisting of one spin ground state and one

trion excited state, as shown in Fig. 6.3(b). The total angular momentum projections

along the ẑ axis of the spin ground states |z±〉 are ±1
2
, defined by the electron spin,

while those of the singlet trion states |t±〉 are ±3
2
, defined by the hole spin. The

electron spins do not contribute to the total angular momentum of the trion due to
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the anti-pairing. The allowed optical transitions are then restricted to 4m = ±1 for

σ± polarized excitations. This angular momentum restriction inhibits optical coupling

between the two spin states.

Stimulated optical Raman coupling between the spin states via the trion states

is enabled by applying a magnetic field in the Voigt geometry. This magnetic field

also produces two new eigenstates of the electron spin, |x±〉 = (|z+〉 ± |z−〉)/√2

parallel or antiparallel to ~x, the magnetic field direction (Fig. 6.3(b)). The in-plane

electron g-factor in this sample is ge = 0.13 [90,117] and thus the Zeeman splitting is

approximately ∆ = 2geµBBx ∼ 50µeV at 6.6 T, where µB is the Bohr magneton.

In contrast, the highly suppressed mixing of the light and heavy hole states at

even 6.6 T by the strong spin orbital coupling in this particular sample leads to a

negligibly small in-plane hole g-factor [90]. This causes the hole spins to be pinned

along the ẑ axis. Consequently, the trion states remain unaffected by the magnetic

field. The spin ground states are now optically coupled through the trion states by

either σ+ or σ− polarized optical pulses (derivation of the transition selection rule

is in Section 2.3, Chapter 2). Since the two Λ systems are essentially equivalent,

without loss of generality we concentrate on the σ+ polarized Λ system highlighted

in Fig. 6.3(b).

The 5 ps σ+ pulses have a bandwidth of Ω ∼ 0.37 meV À ∆, the Zeeman split-

ting, which couple both spin states (|x±〉) to the trion state (|t+〉) simultaneously

and equally. Consequently, as discussed in Section 6.1, a pair of optically bright and

dark states, |z±〉 = (|x+〉 ± |x−〉)/√2, are formed for the σ+ excitation. The trans-

formation of the spin-trion Λ system under the σ+ optical pulses with pulse area θ,

can then be described by the unitary time evolution operator,

Tσ+(θ) =




1 0 0

0 cos θ
2

−i sin θ
2

0 −i sin θ
2

cos θ
2


 , (6.13)

in the |z±〉 basis, where the optically coupling is between the bright state |z+〉 and

the trion state |t+〉.
The initial state of the system is largely determined by the sample temperature
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of 5 K. At a temperature of 5 K, the thermal excitation energy is kbT = 430 µeV ,

which is an order of magnitude larger than the electron Zeeman splitting energy, ∆, at

6.6 T. According to the MaxwellBoltzmann distribution, this results in a completely

mixed state of the electron spin, which also means equal population in both spin

ground states and zero spin coherence in any basis. The mixed initial state can only

be represented with a density matrix,

ρ0 =




ρz−,z− = 1
2

0 0

0 ρz+,z+ = 1
2

0

0 0 ρt+,t+ = 0


 . (6.14)

This completely mixed spin subspace is unaffected using only unitary transformations

within this two-level system, such as that of the applied magnetic field Bx, where

TBx(ωL)ρ0T
†
Bx

(ωL) = ρ0, and

TBx(ωL) =




cos ωLt
2

−i sin ωLt
2

0

−i sin ωLt
2

cos ωLt
2

0

0 0 1


 , (6.15)

with ωL = ∆
~ is the Larmor precession frequency of the electron spin. Although in the

experiment the static magnetic field is on at all time, because the state is mixed there

is no net spin polarization to interact with the field, and therefore, no spin quantum

oscillations.

Ultimately, the initialization of the spin out of the completely mixed state relies

on an excitation outside of the spin subspace, in this case, the σ+ polarization pulse.

The final initialized state immediately after the optical excitation is given by

ρI = Tσ+(θ)ρ0T
†
σ+

(θ) =




1
2

0 0

0 1
2
− ξ ϕ

0 ϕ∗ ξ


 , (6.16)

where ξ = 1
2
sin2 θ

2
is the population excited to the trion state |t+〉. ξ ranges from

0 to 1
2

depending on the optical pulse area θ. The coherence term is represented by

ϕ = i
4
sin θ. The initialized density matrix ρI shows that there is a net population
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difference of magnitude ξ, in the optically dark state |z−〉. This population difference

in the spin subspace signifies a net spin polarization in the −~z direction and does in

fact interact with the static magnetic field. The time evolution of the initialized

system immediately after the initialization pulse at time τ0 = 0 is then

ρI(τ0) = TBx(ωL)ρIT
†
Bx

(ωL) (6.17)

=




1
2
− ξ sin2 ωLτ0

2
i ξ
2
sin ωLτ0 −iϕ sin ωLτ0

2

−i ξ
2
sin ωLτ0

1
2
− ξ cos2 ωLτ0

2
ϕ cos ωLτ0

2

iϕ∗ sin ωLτ0
2

ϕ∗ cos ωLτ0
2

ξ


 .

The discussion so far has treated the optical excitations and precession dynamics

in the magnetic field separately. The assumption is valid since the temporal pulse

width (3 ps) is much shorter than the oscillation period of the quantum beats (83

ps). Therefore we can approximate the excitation to the trion state as instantaneous,

so that precession around the magnetic field during the optical pulse duration is

negligible.

For τ1 À 1
Γt
∼ 30 ps, where Γt is the trion population decay rate, the trion state

decays incoherently and equally into the two ground states, and {ρt+,t+, ϕ} → 0. The

decayed population only appears as a decaying background signal and does not affect

the initialized coherence. This explanation is only appropriate when spontaneously

generated coherence (SGC) [114] is negligible during the decay. This is true in the

case of Bx = 6.6 T. The density matrix after the decay at τ1 can be written as a

sum of two separate contributions from a completely mixed component (ρmixed
I+ ) and

a completely pure component (ρpure
I+ ),

ρI(τ1) = ρmixed
I + ρpure

I (6.18)

=
1− ξ

2




1 0 0

0 1 0

0 0 0


 + ξ




cos2 ωLτ1
2

i1
2
sin ωLτ1 0

−i1
2
sin ωLτ1 sin2 ωLτ1

2
0

0 0 0




The pure component of the density matrix shows that the populations in the |z±〉
states are oscillating at the Larmor frequency, ωL. The physical interpretation of

the oscillations is obtained through calculating the expectation values of the three
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spin components, 〈sx〉, 〈sy〉, and 〈sz〉, which correspond to the direction of the spin

polarization. The initialized spin polarization with unit ~
2

in Cartesian coordinates is

then given by

〈~sI〉 = ξ (0,− sin ωLτ1, cos ωLτ1) (6.19)

representing the precession of the spin vector on the z− y plane around the magnetic

field along the x̂ axis.
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Figure 6.4: (a) Balanced detection setup for the initialization experiments. Π denotes linear

polarization, QWP indicates a quarter wave plate, PBS is a polarization selective beam splitter and

PD denotes photodiode. (b) and (c) Two-beam (pump and probe) quantum oscillation signals of

the initialized spin polarization at Bx = 6.6 T. (b) The blue (red) quantum beats signal is obtained

using σ+ polarized pump pulses and σ+ (σ−) polarized probe pulses. (c) The difference of the two

beat signals in (b), where the pink curve is a fit using a decaying Cosine function.

The spin precession is measured through the quantum oscillation of the DT signal

in a two-beam pump and probe experiment. In the |z±〉 basis, the σ+ polarized pump

creates the net spin polarization in the spin ground states by exciting population

from the bright state, |z+〉, to the trion. A probe pulse is then scanned in time to

measure the initialization process and the subsequent spin polarization oscillations.

The experimental setup is configured to excite and measure along the ẑ axis, and

hence, all signals represent projections of the spin polarization along the ẑ axis.
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Specificially, a σ+ polarized probe (co-polarized) measures the population in state

|z+〉 while a σ− probe (cross-polarized) measures the population in state |z+〉. Since

the changes of the population in states |z±〉 are out of phase from each other, the beat

signals from the corresponding probes are also out of phase. We can take advantage

of this situation to enhance our beat signal and eliminate noise through a balanced

detection technique shown in Figure 6.4(a).

The probe pulse is linearly polarized so that both co-polarized and cross-polarized

signals are extracted simultaneously through a polarization beamsplitter cube. The

co- and cross-polarized signals are each detected and processed using a set of pho-

todiode and lock-in amplifier at each arm. The signals detected from both arms are

presented as individual scans in Figure 6.4(b). Because these scans are taken simul-

taneously, they are subjected to the same common mode noise of the experimental

setup, and only the signal is out of phase due to the intrinsic physics of the quantum

system. Therefore, when the difference of these signals are taken in Figure 6.4(c),

the resulting signal is twice as robust as the original and free of common mode noise.

A decaying cosine function fit to the difference signal gives a spin dephasing time of

T ∗
2 = 396 ps limited by inhomogeneous broadening of the electron g-factor in the en-

semble and spectral diffusion processes. The peaks and troughs of the beats represent

net spin polarization pointing along the −~z (spin population in the |z−〉 state) and

+~z (spin population in the |z+〉 state) directions, respectively. For the remainder of

the chapter, all the the spin quantum beat data are presented as the difference signal

between the co- and cross-polarized detection channels.

With one initialization pulse, the maximum initialized population is 1
2

via a π

pulse excitation to the trion. With multiple initialization pulses configured in the

right time sequence, more population of the spin can be initialized. The multiple

pulsed initialization process has been reported theoretically [172] and demonstrated

experimentally [117] using two pump pulses. The experimental result is shown in

Figure 6.5, where the increase in the initialized population is evidence in the substan-

tial increase of the oscillation amplitude. For n π initialization pulses, the initialized

population is 1 − 1
2

n
, which approaches unity rapidly. Optical cooling of the spin
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Figure 6.5: (Data curtesy of Dr. M. V. Gurudev Dutt [117]) Demonstration of two-pulse spin

polarization initialization. The blue plot is the result of one initialization beam and the red plot

is the result of two initialization beams. The shaded dark blue areas indicate the net gain in the

initialized spin population when using two beams. The time delay between the two initialization

pulses is τ . The inset is a Feynman diagram of the two-pulse initialization process.

states using CW laser is also an option for spin initialization where the initialization

rate depends on the decay mechanisms of the optical pumping states [122,173].

The Feynman Diagram associated with the two-pulse initialization process is

shown in the inset of Figure 6.5. It basically represents an interference of two inde-

pendent paths. In the two-pulse initialization experiment, both initialization pulses

are modulated at the same frequency. This detail on the modulation is crucial in

distinguishing signals due to further initialization of the spin system from signals due

to control of the initialized spin system (Subsection 6.2.2).

The creation of the spin coherence in the |x±〉 basis by changing the relative pop-

ulations in the |z±〉 basis is yet another good demonstration of the interchangeability

of population and coherence between different measurement bases discussed in Chap-

ter 5. In the next subsection, we will further explore this relationship between the
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different spin bases and its role in implementing ultrafast arbitrary spin rotations.

6.2.2 Coherent control of the initialized spin

The initialized spin polarization described by ρpure
I in Subsection 6.2.1 can be

controlled through an ultrafast optical pulse arriving after the initialization pulse with

tunable delay (τc) and pulse area (θc). Analogous to arbitrary rotations in the three

dimensional Cartesian coordinate, any arbitrary rotations in the spin subspace can be

written as a combination of rotations around two fixed orthogonal axes. The two fixed

orthogonal axes of rotation in the spin coherent control experiment are determined

by the directions of the applied magnetic field (~x) and the effective magnetic field

induced by the optical excitation (~z).

The general form of the pure spin state |ψ〉sp in the |z±〉 basis is

|ψ〉sp =
√

ξ
[
eiφ cos

ωLτ

2
|z+〉 − i sin

ωLτ

2
|z−〉

]
, (6.20)

with amplitude of
√

ξ, where ξ is the initialized spin population, and φ is the net

phase between the dark and bright states |z±〉 induced by the control pulse. Control

of this spin state is accomplished through the manipulation of two variables. The first

variable is the relative state probability amplitude, or population, between the two

states |z±〉. The changes in this quantity is represented by the controlled rotations

around ~x, the external magnetic field direction. The second variable is the relative

phase, φ, between the two states. This quantity is controlled by the rotations around ~z

through a well-engineered optical pulse. By perfecting both rotations simultaneously,

the spin state |ψ〉sp can be rotated from any initial position to any final position

covering the entire spin Hilbert space. For example, when ωLτ = π
2

and φ = ∓π
2
, the

spin state |ψ〉sp is proportional to |x±〉 along the x̂ axis. Similarly, a zero or π value

of φ puts the spin state in |y±〉 along the ŷ axis.

In the experiment, the population control aspect is automatically given in the

presence of the Bx field. Because the initialized pure spin state is in |z−〉, which is

not an eigenstate of the magnetic field, Bx, the initialized spin polarization precesses

around the field. The demonstration of control is achieved through selective excita-
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tions at different positions on the z − y plane during the precession of the net spin

polarization. For a control pulse area of θc = π, the optical pulse performs a Rabi

rotation from state |z+〉 to the trion state |t+〉. The rotation is followed by the trion

decaying equally to the |x±〉 states thus annihilating a portion of the spin coherence.

The net result is a rotation together with a reduction of the magnitude of the spin

vector. This is a partial rotation.

The density matrix after the π control rotation on the initialized spin from Sub-

section 6.2.1, and after the trion decays and redistributes in the spin ground states,

is given by

ρc(τc) = TBx(ωL)Tσ+(π)ρpure
I (τ1)T

†
σ+

(π)T†
Bx

(ωL)

= sin2 ωLτ1
2




1
2

0 0

0 1
2

0

0 0 0


 + cos2 ωLτc

2




cos2 ωLt
2

i1
2
sin ωLt 0

−i1
2
sin ωLt sin2 ωLt

2
0

0 0 0




(6.21)

where t starts at τc. There are two terms as a result of the control optical pulse.

The first term on the right hand side of Equation 6.21 is an incoherent term with

amplitude sin2 ωLτ1
2

, and the second term is a coherent term with amplitude cos2 ωLτc

2
.

The amplitudes of both terms depends on the delay of the control pulse, τc.

To explore the physics behind the control, we consider three particular values of τc

during the Larmor precession. When the control pulse arrives at τc = τ+z = π
ωL

, the

entire initialized spin population ξ is in state |z+〉 as shown in Figure 6.6(a). The π

pulse excites all of ξ from the bright state |z+〉 to the trion state |t+〉. After the decay

of |t+〉, the system returns to the completely mixed state, as the excited population

ξ redistributes equally and incoherently between the two spin ground states. As a

result, the quantum beats are annihilated and the simulated signal exhibits a flat line

following the control pulse at τc = τ+z as shown in Figure 6.6(d).

By moving the control pulse to τc = τ0 = 3π
2ωL

, where the optical signal or the

ẑ component of the spin polarization is zero as shown in Figure 6.6(b), the spin

polarization is along −~y, and states |z±〉 have equal populations. The oscillation

amplitude is decreased by half after the control pulse as expected in Figure 6.6(e),

because half of ξ is being “protected” in the dark state |z−〉 and is not destroyed by
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Figure 6.6: Evolution of the spin polarization vector at control pulse delay of(a) τc = τ+z, (b)

τc = τ0, and (c) τc = τ−z. The upper orange (lower blue) sphere is the trion-spin (spin) subspace.

The red zig-zagged lines represent the σ+ polarized optical control field. The green solid arrows

indicate the magnetic field directions and the green dotted curves are the paths of the precession of

the spin polarization vector prior to the arrival of the control pulse. The red solid bars represent the

spin polarization alignment. (d), (e) and (f) are simulated quantum oscillation signals before and

after the control pulse at the different τc indicated in (a), (b) and (c), respectively.

the decay and redistribution process.

Finally, when the spin polarization is along −~z at τc = τ−z = 2π
ωL

, all of ξ is

preserved in the optically dark state |z−〉 as illustrated in Figure 6.6(c). The quantum

beats are unaffected by the control pulse and continue to oscillate uninterrupted as

pictured in Figure 6.6(f).

Overall then, as this delay τc of the control optical pulse is scanned, the beat

amplitude, which is also the magnitude of the spin polarization |〈~sτc〉| from Eq. 6.19

after the control pulse at τc, follows an oscillatory behavior

|〈~sτc〉| =
ξ

2
(1 + cos ωLτc). (6.22)

Experimentally, due to the unmodulated control beam, we need to consider the

effect of the control on the uninitialized population (ρmixed
I+ in Equation 6.19) in



101

addition to the initialized population (ρpure
I+ in Equation 6.19). In the two-frequency

modulation spectroscopy used, the DT signal detected at the difference modulation

frequency is equivalent to the signal taken with the pump pulse on minus pump pulse

off. When the pump beam is off, the θc = π control pulse produces quantum beats

with an amplitude of |〈~soff〉| = 1
2

from the completely mixed spin states, regardless of

the control delay τc. However, when the pump pulse is turned on, the position of the

control delay τc becomes significant. The beat amplitude after both the pump and

control pulses consists of two terms, where the first is a τc dependent controlled term,

|〈~sτc〉|, due to both the pump and control pulses as described in Equation 6.22, and

the second term is a non-controlled term, ||〈~smixed〉|| = 1−ξ
2

, due to the redistributed

uninitialized spin population. The final amplitude of the normalized quantum beat

signal detected after the control pulse, determined by the function Ion−off indicating

pump pulse on minus off, is the sum of the controlled (|〈~sτc〉|) and non-controlled

terms (|〈~smixed〉|) minus the |〈~soff〉| term,

Ion−off (τc) =
ξ

2
cos ωLτc (6.23)

Data of the three-beam control experiment are shown in Figure 6.7(a). The

cos ωLτc dependence observed in the signal beat amplitudes after τc (black solid line)

in Figure 6.7(a) is in contrast with the 1 + cos ωLτc dependence of the physical pic-

tures in Figures 6.6(d),(e),and (f) as anticipated in Equation 6.23. For example, at

τc = τ+z, Figure 6.6(d) shows vanishing quantum beats after τc, while the quantum

beat signal corresponding to τc = τ+z in Figure 6.7(a) persists due to the non-zero

Ion−off . Numerical simulations in Figure 6.7(b) take into account the experimental

parameters, such as the pulse width, beam modulations, and decoherence times of the

system. The theoretical results are in excellent agreement with the experiment. An

uninterrupted mathematical recap of the entire spin control process of initialization,

control and measurement is covered in Appendix C.

We note that unlike the work in Ref. [117], where the observed signal is a result

of the quantum interference between two independently initialized spin coherences

induced by the two pump pulses, the behavior described here is due to the subsequent
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Figure 6.7: (a) Experimental result of the three-beam (initialization, control and probe) quantum

oscillation signal at different control delay τc and control pulse area θc π. The black solid line

indicates the position of the control pulse. (b) Theoretical simulations of the same experimental set

up in (a) (Courtesy of our Collaborator, Dr. Sophia Economou). (c) Feynman diagram of the spin

control experiment.

rotation by the control pulse of the initially pump-induced spin coherence. The

Feynman diagram for the control sequence is a single continuous path, shown in

Figure 6.7(c) as opposed to the sum of two paths as shown in the inset of Figure 6.5.

By comparing the two diagrams, it is clear that controlling and rotating the spin is

a higher order process than the multiple pulsed initialization of the spin. In terms of

optical pulses as transformation matrices for the state vector of the quantum system,

the former is a sum of two matrices while the latter is a product.

To completely control the rotations of the electron spin in the spin subspace

without populating the trion, we need to use a “transitionless” θc = 2π pulse to

control the relative phase φ between states |z±〉 in addition to the populations. This

phase control is responsible for the rotation around the ~z axis. In the presence of

this control pulse, the population in the bright state |z+〉 is unaffected, but the state

acquires an overall phase depending on the detuning of the pulse from the trion

state [171]. For example, the overall phase gained for an on resonance 2π control
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pulse is φ = π. At τc = τ0, the spin state is rotated from |y−〉 to |y+〉, representing

a spin flip. Similarly, φ = π
2

rotates the spin state from |y−〉 to |x+〉. The detail of

the net phase gained relies on the specific pulse shape used. For a secant-hyperbolic

pulse (χ(t) = χ0sech(Ωt)) used in the experiment, our collaborator in Reference [171]

provide a detail derivation of the expression of φ given by

φ = 2 arctan
Ω

δ
, (6.24)

where Ω is the bandwidth of the pulse, and δ is the detuning from the trion state.

In addition, the “transitionless” condition is met by requiring χ0 = Ω, which indeed

translates to a 2π pulse for the Sech pulse.

The 2π rotation on the |z+〉 state via the trion required for the phase control

are not observed in the interface fluctuation QDs studied. Possible reasons for this

difficulty could be the weak confinement potentials and the charged nature of these

dots, which allow for interactions between the supposedly closed spin-trion Λ system

and its semiconductor environment. The exact nature of the interactions is not fully

understood, especially in light of the fact that Rabi oscillations in neutral interface

fluctuation QDs have been observed [76]. Nevertheless, the demonstration of Rabi

oscillations in a trion ensemble [108] and, more profoundly, in a single trions (recent

result obtained in our laboratory) in the self-assembled QD shows that the result in

this experiment should be readily applicable in those structures.

Technically, the magnetically induced Larmor precession about ~x and optically

induced rotation about ~z are sufficient for creating any arbitrary spin state. For an

all-optical ultrafast spin rotation scheme desired by quantum information processing,

optically induced rotation around ~x [174] can replace the Larmor precession.

6.3 Chapter summary

In summary, we have demonstrated ultrafast spin manipulation utilizing the up-

per trion state. Although a complete spin rotation is not observed in the interface

fluctuation charged QD, this work lays the foundation for ultrafast arbitrary spin ro-

tations in self-assembled QDs, which have much stronger confinement. The potential
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of these dots is explored further in the next chapter.



CHAPTER 7

Summary and Future Directions

The experimental research described in this thesis is part of an ongoing effort

striving for the ultimate realization of a physical quantum computing device in a

semiconductor quantum dot (QD) system. The attraction of the QD system lies not

merely in its atomic-like discrete states, but more valuably in the flexibility with

which the optical properties of these states can be engineered. The energy range of

the QD states can be manipulated through bandgap engineering, which allows the QD

system to take advantage of a wide range of laser sources available as opposed to being

restricted to only atomic transition wavelengths. In addition to the freedom in energy

selection, the polarization of optical transitions can also be manipulated. Because

spherical symmetry in a QD is not an intrinsic property, parity is not conserved.

Utilizing this property, the polarization selection rule of an optical transition can be

engineered to deviate from the atomic rules by changing the amount of strain in a dot

and the asymmetry of the dot shape. In fact, it was the nonconventional polarizations

that led to the observation of spontaneously generated coherence (SGC) [114] in a QD

Λ system. The fact that the semiconductor QD is an artificially fabricated structure

means that many aspects of the QD can be engineered. In addition to being able to

control the energies and polarizations of the optical transitions in a QD, we can also

influence the optical dipole moment and the effective carrier g-factors in a dot [175].

The level of flexibility and control in engineering a dot according to specification

is evident in the progression of dot samples used in experiments. In the prototypical

GaAs interface fluctuation QDs, the large optical dipole was extremely convenient

105
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for the preliminary studies of the optical properties of the dot relevant to quantum

computation. In this type of dot, a set of universal quantum gates were accom-

plished using exciton-based qubits [76, 104]. This thesis extended the demonstration

by showing the dot’s ability to propagate coherent information and the tomographic

construction of a single qubit density matrix in Chapters 4 and 5. The fast 100 ps

decoherence time of the exciton-based qubit is impractical for the purpose of quan-

tum computation, which encouraged the adaptation of a spin-based qubit possessing

a long decoherence time of at least 100 µs. The doped GaAs interface fluctuation QD

(IFQD) sample fabricated for the initial study of a single spin in a QD maintained

the advantage of the large optical dipole and while introducing single electrons to

the neutral dot. The combination produced an excellent medium for understanding

the optical and spin properties in a single QD, which aided the speedy formulation

of a optical manipulation scheme for a single spin trapped inside a dot discussed in

Chapter 6.

Owing to the weak confinement potential of interface fluctuation dots, stability of

the electron in the dot is greatly diminished due to tunnelling. The new species of dot

is the InAs self-assembled QD (SAQD), modified to address this issue with a stronger

confinement and a controllable charging mechanism for the dots via the Schottky

diode configuration. One slightly inconvenient consequence of a stronger confinement

is the smaller optical dipole moment, and hence, weaker optical signal, which leads to

difficulties in detection using the differential transmission (DT) technique presented

in Chapter 3.

The next section (Section 7.1) introduces a novel voltage modulation technique for

detecting the optical signal from a single InAs dot and some initial characterization

results of the dot. Subsection 7.2.1 will highlight a few ground breaking results

currently being produced on these dots in our laboratory in both frequency and

time domain studies. The results and knowledge gained in the older generations

of dot samples formed the foundation necessary for performing coherent single spin

rotations in the newer InAs QD samples. The future initiative on an entangled

scalable system is being pursued with InAs double-dot molecules by our collaborators
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at the Naval Research Laboratory (NRL). Their highly promising work is summarized

in Subsection 7.2.2.

7.1 Voltage dependent PL and modulated absorption of a single InAs dot

The sample structure and general optical properties of the InAs SAQDs are dis-

cussed in Section 2.4 of Chapter 2 and will not be reiterated here. The Schottky

diode structure on the surface of the sample is employed to change the electric field

across the semiconductor along the growth direction. The DC Stark shift induced by

this electric field tunes the internal energy levels of the dot with respect to the Fermi

energy of the electron sea in the doped layer. When the dot energy is above the Fermi

energy, the dot is neutral, and excitons (X0) dominate in the optical transitions. As

the dot energy is tuned closer and closer to the Fermi level, the electrons can begin to

tunnel into the dots. The right voltage will charge the dot with exactly one electron,

and the optical excitations will generate negatively singly charged excitons (negative

trions, X−). The Schottky voltage can be continuously tuned to produced more and

more exotic quasi-particles in the dot, such as the positive trion (X+), doubly charged

excitons (X±2), etc. Our ultimate interest rests in the negative trion, which is the

intermediate state for optically coupling the two spin ground states for the purpose

of manipulating the single spin qubit.

The primary method used for the initial characterization of the sample is a volt-

age dependent photoluminescence (PL) mapping of the voltage ranges of different

quasi-particles in the InAs dots. The PL map shown in Figure 7.1(a) is from aper-

ture A6(7) of sample R041230F taken using a pump laser at 780 nm. The PL map

was constructed by combining many individual PL spectra taken at different fixed

Schottky voltages within the range of -1.5 V to 0.5 V. One instance of such a PL

spectrum at -1 V is shown in Figure 7.1(b). In this PL map, we can clearly identify

the exciton and negative trion transitions separated by a binding energy of approxi-

mately 5 meV. The PL map is an excellent tool for identifying different energy states
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in a single dot and the respective voltage range in which they occur. However, the PL

technique is a non-resonant excitation process, and it does not necessarily reflect the

same spectrum as an on-resonance excitation process, such as absorption. In order

to probe the on-resonant optical properties of the trion state, which mainly appears

in the range of -1.25 V and -1 V, we need to resonantly excite the state.
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Figure 7.1: Voltage dependent PL map and absorption of a single InAs SAQD from sample

R041230F, aperture A6(7). (a) X0 represents the neutral exciton, X− is the negative trion, and

X−2 is the doubly negative exciton. The 5 meV difference is the binding energy between the exciton

and its respective trion, where the trion is the line at lower energy. (b) Cross-section of the PL map

taken at -1 V. (c) Pictorial depiction of the voltage modulation absorption scheme. δω is the Stark

shift amount, 2δV is the modulation depth, and γ is the intrinsic linewidth of the state. (d) The

two voltage modulation absorption scans are taken at different modulation depths of 0.1 V and 0.02

V. X and Y are the two channels of the lock-in amplifier.

The small optical dipole of the InAs SAQDs previously mentioned considerably

decreases the strength of the third order signal predominantly detected by the on-
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resonance DT technique used in previous experiments on the GaAs IFQDs. The

average dipole moment of the GaAs dots is around 100 D while the average dipole

for the InAs dots is 5 times smaller at approximately 20 D. The measured third order

DT signal is proportional to µ4 (see Chapter 3 for derivation), which means that the

same DT signal in InAs dot would be roughly 625 times smaller. Of course, this

is a very crude estimation. Nevertheless, the effect of the small optical dipole was

hindering the data taking process because the third order optical signal was too weak

to be observed. A new resonance manipulation and detection technique is required

to circumvent the problem of small optical signal.

The novel technique of voltage modulated absorption that enables the observation

of the pure absorption signal was inspired by the Schottky voltage induced DC Stark

shift. After the general energy range of the optical transition of the trion is obtained

from the PL map, the frequency of a CW laser is tuned to the trion energy at the

middle of the voltage range. To extract only the absorption signal from the exciting

CW laser, we applied a square modulation to the DC Schottky voltage with a small

modulation depth (2δV ). The voltage modulation periodically shifts the energy of

the trion state by an amount ±δω with respect to the fixed laser frequency (ω0) as

shown in Figure 7.1(c). As the DC offset portion of the voltage is being scanned, the

lock-in amplifier detects the absorption signal at the modulation frequency. Examples

of such voltage modulation absorption spectra are shown on Figure 7.1(d) with two

modulation depth values. For the bottom spectrum, the modulation depth voltage

of 0.02 V induced a DC Stark shift smaller than the linewidth (γ) of the trion state,

resulting in a differential lineshape of the actual absorption profile. As we increase

the modulation depth voltage to 0.1 V for the top spectrum, the induced DC Stark

shift is larger than the linewidth of the trion state and two out-of-phase peaks are

observed with each peak representing the actual absorption profile.

The voltage dependent PL map and the voltage modulation absorption method is

part of a set of routine characterization measurements for finding suitable states for

further investigation of their magnetic field dependence, transient quantum coherence,

and high optical power properties.
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7.2 Future directions in InAs self-assembled quantum dots

Since voltage modulation is a single beam experiment and does not rely on ptical

modulation of the excitation field, the absorption signal obtained is to all orders of the

optical field and is much stronger than the third order signal from the DT detection

technique. Using this simple yet hugely efficient method, we were able to observe in

the frequency domain (CW lasers) spin initialization through optical pumping [122]

and the first complex absorptive Mollow spectrum in a single quantum dot [82]. At

the same time, through careful and relentless experimental efforts, the elusive time

domain (pulsed laser) single dot trion signal was also attained and confirmed. This

breakthrough sets a milestone in the course of progress towards ultrafast single spin

qubit manipulation.

7.2.1 CW and transient efforts on single dots

The atomic qualities of the quantum dot have once again been beautifully demon-

strated in a set of high field CW experiments on a single exciton state. The strong

confinement of the InAs dot provides excellent isolation of the dot states from the ef-

fects of delocalized scattering states. The exciton and trion systems in such isolation

remain truly closed systems. Under high optical field excitations, the states involved

are dressed by the quantized optical fields. In the three-level exciton V system, a

pair of cross-polarized strong pump and weak probe beams were used to detect the

famous Autler-Townes doublet in the absorption spectrum. When the pump and

probe are co-polarized and exciting the same two-level exciton system, an interesting

phenomenon appears in the form of a complex absorption Mollow spectrum as a result

of a combination of the optically dressed states and energy transfer between the two

beams. This impressive work is described in detail in Reference [82]. Similar features

were also observed for the trion state.

Another important accomplishment towards quantum computation is the near

unity initialization of the spin-based qubit states via optical pumping through the

trion state [122]. When the Voigt geometry magnetic field is turned on, the spin state
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is mixed as shown in Figure 2.10(b) in Chapter 2. By tuning the CW laser to the

V 1 transition, the spin population in state |x+〉 is transferred to the trion state and

decays with equal probability to both spin states. Since the pumping is only on the V 1

transition, the all the spin population in spin state |x+〉 will eventually be pumped

into the |x−〉 state, hence initializing the spin. The reverse pumping direction is

equally achievable by tuning the CW laser to the V 2 transition. The initialized spin

would then be in the |x+〉 state. The pumping rate is ultimately limited by the

decay rate of the trion state to approximately 1 Ghz. The pumping rate in the Voigt

configuration is 103 orders larger than that in the Faraday configuration where the

spin states are not mixed and the rate is limited by the hole spin flip [176]. The final

initialization is 99% corresponding to a spin temperature of 0.06 K.

Concurrently, for transient measurements using ultrafast optical pulses, the volt-

age modulation absorption technique was modified to obtain the absorption signal.

Since the time domain pulse has a large bandwidth, the small modulation depth used

in CW experiments is no longer useful in extracting the absorption signal. Instead,

a large modulation depth is used to switch between voltage values in and out of the

range of the trion. Using this method, the population decay time of the trion in zero

magnetic field was measured to be around 800 ps and Rabi oscillations of a single

trion were confirmed with an extracted dipole moment of approximately 8 D. Fur-

thermore, in the presence of the Voigt magnetic field, preliminary results of single

spin quantum beats were also detected with beat frequencies matching the respective

electron and hole splittings obtained at equal field in the CW absorption spectra.

The future goal of single spin manipulation (spin Rabi rotation) requires the joint

efforts of both frequency and time domains. Advancing from the successes of the

exciton and trion Mollow spectra, a frequency domain experiment is underway to ob-

tain the spin Mollow spectrum from which the spin Rabi frequency can be extracted.

Meanwhile, pulse excitation will be combined with CW initialization and detection

to demonstrate arbitrary rotations of a completely initialized spin qubit.
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7.2.2 InAs double-dot molecules

While the dynamics and control in a single InAs dot are under intense inves-

tigation in our laboratory, our collaborators at NRL are devoting a vast amount of

attention to the construction and study of double-QD molecules [118,177]. Their cur-

rent efforts involve understanding and deciphering the complex optical features in the

voltage dependent PL map of a single QD molecule. The presence of anti-crossing

is highly suggestive of forms of inter-dot coupling. This is an extremely exciting

development for the prospect of multi-qubit entanglement and a scalable quantum

computing system.
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Figure 7.2: InAs double dot molecule growth, structures, and voltage dependent PL map. (a) The

double dots growth procedure. (b) Scanning tunnelling microscope (STM) image of the vertically

stacked double dots. (c) Charging scheme of the dot. (d) Voltage dependent PL map of the double

dots, where X0 (X+) denotes the neutral (positive trion) exciton and XX0 denotes the neutral

biexciton (positively charged biexciton). Images in (b) and (d) are taken from Reference [118],

courtesy of Dr. Dan Gammon from the Naval Research Laboratory (NRL).

The InAs QD molecules are grown with a similar method as the single InAs dots

discussed in Section 2.4 of Chapter 2 and shown in Figure 7.2(a). The second layer of

dots has a nearly perfect vertical alignment with the first layer due to the effects of the

strain induced by the first layer of dots on the diffusion and nucleation of the second

layer dots [178,179]. The energy separation between the two dots in the dot molecule
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can be controlled by manipulating the relative height of each dot. Additionally, the

coupling strength between the dots is regulated by the GaAs barrier between the dots.

An example of a double-dot molecule is shown in the scanning tunnelling microscope

image in Figure 7.2(b), where the dot size and the separation between the dots can

be clearly measured.

Schematically, as shown in Figure 7.2(c), the charging of the double-dot molecule

is no different from the single dot. However, the resulting states in the double-dot

molecule are not only more complicated, but are also much more intriguing. The

voltage dependent PL map of a double-dot molecule can be seen in Figure 7.2(d).

The crisscrossed patterns in the PL map are results of the coupling between the dots.

The horizontal lines are the intra-dot transitions within a single dot as the DC stark

shift induced by the Schottky voltage is small compared to the energy scale of the PL

map. The diagonal lines can be attributed to the inter-dot transitions which have a

large voltage dependence. As the voltage tunes the energy of the inter-dot transition

to approximately that of the intra-dot transition, tunnelling of carriers between the

dots gives rise to the anti-crossing features seen in Figure 7.2(d). The crisscrossed

patterns occur when both the ground and excited states involved in the transitions

contain anti-crossing features, such as the transitions of trions (X±). The details

and physics behind the labelling of these complicated transition lines can be found in

References [118,177]. Further studies of the double-dot molecules also demonstrated

the capability of engineering the carrier g-factor [175] and led to further understanding

of the spin fine structures in the presence of inter-dot coupling [180].

7.3 Summary

Although there are still many obstacles on the path to achieving a true physi-

cal realization of a practical quantum computer, what has been accomplished is still

undeniably valuable not only to the field of quantum computation but also to the

further understanding of the incredible structure of the semiconductor quantum dot.

As we progress forward towards the optically manipulated double-dot molecular sys-
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tem, we are optimistic that quantum information processing is a tangible reality in

the foreseeable future.
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APPENDIX A

Interferometer stabilization circuits

In order to achieve optical phase stability for experiments in Chapters 4 and 5, the

Michelson interferometer must be stabilized to within fm. The stabilization circuits

for the Michelson interferometer shown on Figure A.1 is designed for such task.

The reference signal is provided by a green helium neon (HeNe) laser following

the same path of the laser beam from the 702X dye laser. The interference signal

from the green HeNe is detected on a photodiode (PD) and the current is changed

into a voltage source for the feedback circuit. This voltage signal is compared to

an adjustable precision voltage reference source provided by an operational amplifier

(Op-Amp). The difference of the PD voltage and the reference is outputted as an

error voltage, Verr, to the input of the summing circuit. The summing circuit combines

Verr with a constant background voltage provided by the Lock-in amplifier’s auxiliary

output. The sum of these two voltages are amplified to provide the driving voltage

for the piezoelectric mirror mount (PZT) and completing the feedback loop.

The integration time, feedback speed, of the circuit can be adjusted by choosing

the desired capacitor in the feedback circuit. Although a fast integration time is

normally desired for faster error correcting rate, we must keep in mind the load on

the PZT and its natural resonate frequency and choose a compromising time for the

circuit.
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Figure A.1: Stabilization scheme for the Michelson interferometer in the coherent control and

density matrix tomography experiments in Chapters 4 and 5. The triangular symbols represent

operational amplifiers. PZT is the piezoelectric mirror mount and TS is the coarse micro-translation

stage. HeNe stands for helium neon.



APPENDIX B

Derivation of square pulse solution in three-level Λ system

For the three-level Λ system presented in Figure 6.1 of Chapter 6, the rewritten

equations of motion (Equation 6.2) under a square pulse excitation are

ċ+(t) = −i
[√

2χc2(t) + ω13

2
c−(t)

]

ċ2(t) = −i
√

2χc+(t)

ċ−(t) = −iω13

2
c+(t),

(B.1)

where χ = −µ2·E
2~ with a constant field, E. The dipole moment is µ2, and ω13

is the frequency difference between state |1〉 and |3〉. The probability amplitudes

c±(t) = [c1(t)± c3(t)] /
√

2 correspond to states of |±〉 = (|1〉 ± |3〉)/√2.

Since c2(t) and c−(t) only depends on c+(t) and not on each other, we can isolate

and solve for c+(t). By taking a derivative of ċ+(t) and substituting values of ċ2(t)

and ċ−(t), we get a second order differential equation of c+(t),

c̈+(t) + Ω2c+(t) = 0, (B.2)

where Ω =

√
2χ2 +

ω2
13

4
. The general solution to Equation B.2 is then

c+(t) = A cos Ωt + B sin Ωt. (B.3)

Consequently, we can solve for c2(t) and c−(t) by substituting the solution of c+(t)

into the first order differential equations and obtain,

c2(t) = −i
√

2χ
Ω

(A sin Ωt−B cos Ωt) + α

c−(t) = −iω13

2Ω
(A sin Ωt−B cos Ωt) + β.

(B.4)
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The next step is to calculate the four unknown constants (A, B, α and β) in terms

of the initial values of the system at t = 0. At t = 0, we have four equations for four

unknowns,

c+(0) = A

c2(0) = i
√

2χ
Ω

B + α

c−(0) = iω13

2Ω
B + β

ċ+(0) = ΩB = −iω13

2
c−(0)− i

√
2χc2(0).

(B.5)

After some simple algebra, the solutions of the constants are

A = c+(0)

B = −iω13

2Ω
c−(0)− i

√
2χ
Ω

c2(0)

α =
ω2

13

4Ω2 c2(0)− χω13√
2Ω2 c−(0)

β = 2χ2

Ω2 c−(0)− χω13√
2Ω2 c2(0).

(B.6)

The final form of the solutions to the equations of motion in terms of the initial

values are

c+(t) = cos Ωt c+(0)− iω13

2Ω
sin Ωt c−(0)− i

√
2χ
Ω

sin Ωt c2(0)

c2(t) = −i
√

2χ
Ω

sin Ωt c+(0)−
√

2χω13

Ω2 sin2 Ωt
2

c−(0) +
[

ω2
13

4Ω2 + 2χ2

Ω2 cos Ωt
]
c2(0)

c−(t) = −iω13

2Ω
sin Ωt c+(0) +

[
2χ2

Ω2 +
ω2

13

4Ω2 cos Ωt
]
c−(0)−

√
2χω13

Ω2 sin2 Ωt
2

c2(0).

(B.7)

In the original basis of |1〉 and |3〉, the solutions are

c1(t) =
[(

1
2

+
ω2

13

8Ω2

)
cos Ωt− iω13

2Ω
sin Ωt + χ2

Ω2

]
c1(0)− 2χ2

Ω2 sin2 Ωt
2

c3(0)

− [
i χ
Ω

sin Ωt + χω13

Ω
sin2 Ωt

2

]
c2(0)

c2(t) = −i χ
Ω

sin Ωt [c1(0) + c3(0)]− χω13

Ω2 sin2 Ωt
2

[c1(0)− c3(0)] +
[

ω2
13

4Ω2 + 2χ2

Ω2 cos Ωt
]
c2(0)

c3(t) =
[(

1
2

+
ω2

13

8Ω2

)
cos Ωt + iω13

2Ω
sin Ωt + χ2

Ω2

]
c3(0)− 2χ2

Ω2 sin2 Ωt
2

c1(0)

− [
i χ
Ω

sin Ωt− χω13

Ω
sin2 Ωt

2

]
c2(0).

(B.8)



APPENDIX C

Complete process of the spin coherent control

I. Relationship between the x and z bases of the spin states

The relationship between the x and z bases are given by the followed equations,

|z+〉 =
|x+〉+ |x−〉√

2
, |z−〉 =

|x+〉 − |x−〉√
2

. (C.1)

In the form of the density matrices elements, the two bases are related as followed,

ρz+z+ =
1

2
(ρx+x+ + ρx−x− + ρx+x− + ρx−x+) (C.2)

ρz−z− =
1

2
(ρx+x+ + ρx−x− − ρx+x− − ρx−x+) (C.3)

ρz+z− =
1

2
(ρx+x+ − ρx−x− − ρx+x− + ρx−x+). (C.4)

To change from the x basis back to the z basis, we simply need to swap the notations

x and z in the above equations.

In the Voigt geometry magnetic field along the x̂ direction, the electron spin is

quantized along the magnetic field in the x̂ direction. The spin Zeeman splitting

energy is much smaller than the thermal excitation energy as indicated in the main

text of Chapter 6, which results in a nearly completely mixed initial state in both x

and z bases,

ρ(z)
o = ρ(x)

o =




1
2

0 0

0 1
2

0

0 0 0


 (C.5)
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II. Evolution of the spin system through the pulse sequence

The following calculations are all done in the z basis in the density matrix pic-

ture. We use one polarization of light (σ+) to excite the system, which means it only

couples the |z+〉 state to the |t+〉 trion state. The spontaneous generated coherence

(SGC) is not included in the calculations, which is valid in this case assuming that

the Zeeman splitting is much large compared to the trion decay linewidth.

A. Initialization pulse + free evolution

The excitation of the system by the σ+ initialization pulse with pulse area θ can

be describe by the unitary transformation matrix Uσ+ ,

Uσ+ =




1 0 0

0 cos θ
2

−i sin θ
2

0 −i sin θ
2

cos θ
2


 . (C.6)

The density matrix of the system after the initialization pulse is described by

ρ
(z)
I = U †

σ+
ρ(z)

o Uσ+ =
1

2




1 0 0

0 cos2 θ
2

−i
2

sin θ

0 i
2
sin θ sin2 θ

2


 . (C.7)

For a initialization pulse area θ = π, all the population in the |z+〉 state is excited to

the |t+〉 state,

ρ
(z)
I(π) =

1

2




1 0 0

0 0 0

0 0 1


 . (C.8)

From this point on, we will assume a initialization pulse area of θ = π for calcula-

tion convenience. Before the initialization pulse, the unitary rotation of the magnetic

field has no affect on the completely mixed spin states. After the π initialization

pulse, half of the spin population is initialized as pure population in the |z−〉 state

as shown above, which is now subjected to the unitary rotation UBx by the magnetic
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field along x̂,

UBx =




cos δt
2

−i sin δt
2

0

−i sin δt
2

cos δt
2

0

0 0 1


 , (C.9)

where δ is the splitting between the spin states in the x basis. The free evolution of

the density matrix in the magnetic field is

ρ
(z)
I(π)+ = U †

Bx
ρ

(z)
I(π)UBx =

1

2




cos2 δt
2

−i
2

sin δt 0

i
2
sin δt sin2 δt

2
0

0 0 1


 . (C.10)

After the population from the trion state |t+〉 decays equally into the two spin

states while neglecting SGC, the density matrix is,

ρ
(z)
I(π)+ =

1

2




cos2 δt
2

+ 1
2

−i
2

sin δt 0

i
2
sin δt sin2 δt

2
+ 1

2
0

0 0 0


 , (C.11)

where the red fonts keep tracks of the decayed population.

B. Control pulse + free evolution

The unitary transformation matrix for the control pulse is exactly the same as

the initialization pulse. At t = tc, the density matrix of the system after the control

pulse is given by

ρ
(z)
I(π)+C = U †

σ+
ρ

(z)
I(π)+Uσ+ = 1

2




cos2 δtc
2

−i
2

sin δtc cos θ
2
−1

2
sin δtc sin θ

2

i
2
sin δtc cos θ

2
sin2 δtc

2
cos2 θ

2
−i
2

sin2 δtc
2

sin θ

−1
2
sin δtc sin θ

2
i
2
sin2 δtc

2
sin θ sin2 δtc

2
sin2 θ

2




+1
2




1
2

0 0

0 1
2
cos2 θ

2
−i
4

sin θ

0 i
4
sin θ 1

2
sin2 θ

2


.

(C.12)
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For θ = π again, we have maximum effect on the spin states

ρ
(z)
I(π)+C(π) =

1

2




cos2 δtc
2

+ 1
2

0 −1
2
sin δtc

0 0 0

−1
2
sin δtc 0 sin2 δtc

2
+ 1

2


 . (C.13)

Since the population from the trion will decay equally into the two spin states, it will

not be subject to the unitary rotation of the magnetic field. Hence, the trion popu-

lation will be neglected here. The density matrix after the decay with the neglected

trion population is

ρ
(z)
I(π)+control(π) =

1

2




cos2 δtc
2

+ 1
2

0 0

0 0 0

0 0 0


 . (C.14)

The free evolution induced by the unitary rotation of the magnetic field at t = tc

gives

ρ
(z)
I(π)+control(π)+ =

1

2




(cos2 δtc
2

+ 1
2
) cos2 δ(t−tc)

2
−i
2

(cos2 δtc
2

+ 1
2
) sin δ(t− tc) 0

i
2
(cos2 δtc

2
+ 1

2
) sin δ(t− tc) (cos2 δtc

2
+ 1

2
) sin2 δ(t−tc)

2
0

0 0 0




(C.15)

C. Probe pulse signal to the first order

To first order of the probe, the signal is proportional to ρ
(1)
x+t+ +ρ

(1)
x−t+. The zeroth

order is solutions to the density matrix equations due to all order of the initialization

and control pulses.

ρ
(1)
x+t+ ∝ ρ

(0)
x+x+ + ρ

(0)
x+x−, ρ

(1)
x−t+ ∝ ρ

(0)
x−x− + ρ

(0)
x−x+ (C.16)

From section I, neglecting the red decay terms because they were not operated on
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by both initialization and control pulses, we get

ρ
(0)
x+x− = ρ

(0)
x−x− =

1

2
(C.17)

ρ
(0)
x+x− = −1

4
[cos2 δ(t− tc)− i sin2 δ(t− tc)] cos2 δtc

2
= −1

8
(cos δtc + 1)e−iδ(t−tc),

(C.18)

which leads to the final signal from the probe to be

signal ∝ ρ
(1)
x+t+ + ρ

(1)
x−t+ ∝ 1− 1

4
(cos δtc + 1) cos δ(t− tc) (C.19)

III. Calculation signal vs. Data signal

The calculated signal and the signal from experimental data do not agree with each

other as seen in Figure 6.7 in Chapter 6. For example, according to the calculation

the signal diminishes when tc = π
δ
, which is in agreement with the physical picture.

However, in the data, the signal diminishes when tc = π
2δ

. This discrepancy can be

explain by accounting for the beam modulations used in our experiment.

In the experiment, the initialization and probe are each modulated at Ω1 and Ω2,

respectively, and the control is unmodulated. We can think of the control and probe

together as one PROBE. The differential transmission (DT) signal is then

signalDT ∝ signalIon − signalIoff , (C.20)

where the signalIon is shown in Equation C.19. The signalIoff is signal due to the

control and the probe without the initialization and it is given by

signalIoff ∝ 1− 1

4
cos δ(t− tc). (C.21)

From Equation C.19 and Equation C.21, we conclude that

signalDT ∝ cos δtc cos δ(t− tc), (C.22)

which does indeed agree with the experimental data.
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