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NOMENCLATURE

c coefficient of viscous damping

g acceleration of gravity

k spring constant

m mass

do reversal value of restoring force per unit mass = Qo/m
P,q restoring force per unit mass = Q/m

Py’qy yield or characteristic strength of spring per unit mass = Qy/m

r an exponent

t time

u x-displacement along cantilever beam relative to base
v velocity

X,2 relative displacement of mass to ground

X, extreme displacement of the restoring force

Xy s Zy yield or characteristic displacement of spring

y ground displacement

Cg seismic lateral load coefficient

D dissipated energy per unit mass due to plastic deformation
E input energy per unit mass

Ee energy loss per cycle due to viscous damping

Eq hysteresis energy dissipated per cycle

EI energy input per cycle

Es strain energy input
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NOMENCIATURE ( Continued)

F maximum amplitude of the forcing function
Ky, Kp a constant
K.E. kinetic energy per unit mass

L,L(t) energy loss per unit mass due to viscous damping

M bending moment

MY yield or characteristic bending moment

Q,Qm restoring force

Qy yield or characteristic strength of spring
Qo reversal value of the restoring force

Ry accelergtion response factor

Rd displacement response factor

Rv velocity response factor

Sq approximate maximum absolute acceleration

Sq approximate maximum relative displacement

Sv approximate maximum relative velocity

) maximum strain energy per unit mass (elastic)
Vg maximum base shear

W weight of the system

B fraction of critical damping

€ maximum strain energy input to recoverable strain energy at yield
€x excursion ratio

M ductility ratio

T,71,To & time parameter

ix



NOMENCLATURE ( Concluded)

¢ curvature
¢y yield or characteristic curvature

w frequency of input force
@] ,Wo s undamped natural frequency of a system

wn* damped natural frequency of a system

NOTE: Differentiation with respect to time is denoted by dots.



I. INTRODUCTION

A. THE EARTHQUAKE PROBLEM

It would be an ideal situation if the designer of an earthquake-resistant
frame structure could know the response of the structure to the ground motion to
which it would be subjected in its useful lifetime. This response is not pos-
sible to obtain. The nature of the ground motion encountered in earthquakes
and the type of structures the engineer has to work with are much too compli-
cated for that. On the other hand, much can be learned about structural behavior
in earthquakes by response spectrum analyses of past strong-motion earthquakes.
Moreover, the response spectrum is a powerful tool to aid the designer of earth-
quake-resistant structures.

Ly,e% gives the maximum response of a single-degree-

A linear response spectrum
of-freedom damped linear oscillator to an earthquake as a function of the natural
frequency and damping coefficient of the oscillator. The response may be ex-
pressed in terms of acceleration, veloclity or displacement, The linear oscillator

can be represented by a single mass, spring, and dashpot.

In a multistory frame structure any one mode of vibration can be represented
by an equivalent single-degree-of-freedom oscillator. To obtain the complete
response of the structure, one must consider all modes of vibration simultaneously,
using the method of superposition. Although this cannot be accomplished by re-
sponse spectrum methods, since the maximums of the individual modal responses do
not in general occur simultaneously, one can obtain the maximum response of each
mode by spectrum methods and sum these to get an upper bound to the total response.
A solution so obtained may be as useful as a precise solution, considering the
uncertain characteristics of future earthquakes, imperfect knowledge of the dy-
namic properties of a structure, nature of the soil which supports the structure,
etc. Thus the utility of the response spectrum can be extended to multistory
structures.

Response spectrum analyses of strong-motion U. S, earthquakes5 indicate
seismic lateral forces to be much greater than the accepted code values cur-
rently in use in earthquake design, even when the structure is heavily damped.

On the other hand, buildings designed in accordance with current seismic build-
ing codes have survived strong earthquakes without showing excessive structural
damage. One possible explanation is that both the structural and nonstructural
components remain active when strained beyond their elastic limits and the energy
transmitted to the structure by the earthquake is dissipated by inelastic defor-
mationou Dynamic response beyond the elastic range is therefore a topic worthy

of further investigation.

*Superscripts refer to reference numbers at the end of this report.



The elasto-plastic¢ load-displacement relation has been used in a great ma-
Jority of the studies of inelastic response to earthquake. The present study
includes the elasto-plastic relation as a special case of a more general load-
displacement relation called the Ramberg-Osgood relation,5 in which three param-
eters, a characteristic load, a characteristic displacement, and an exponent,
characterize the behavior. Experimental work in progress at the University of
California, Berkeley, on structural steel members and connections indicates that
the Ramberg-Osgood relation can provide a good approximation of actual member
behavior. A detailed discussion of the Ramberg-Osgood relation is presented
later in this report.

B. EARTHQUAKE CHARACTERISTICS

U. S. Coast and Geodetic Survey records of strong-motion earthquakes show
that during an earthquake the ground moves at random in all directions, and the
ground acceleration is extremely irregular with respect to both frequency and
amplitude. The three components of the ground motions of the earthquake recorded
at Taft, California, on July 21, 1952, are shown in Fig. 1.6 This record is typ=-
ical of "strong-motion" earthquake accelerograms. The maximum acceleration re-
corded on any U.S.C.G.S. strong-motion earthquake accelerogram to date is .50 g,
recorded at Parkfield, California, on June 28, 1966. Prior to that time, the max-
imum recorded acceleration was the .33 g acceleration recorded at El1 Centro, Cali-
fornia, on May 18, 1940. The duration of the intense portion of strong earthquakes
ranges from 7 to 30 seconds.”

C. THE PRESENT STUDY

In this report the response of a single-degree-of-freedom structure subjected
to strong motion earthquakes as well as to steady-state oscillations is studied.
The principles and construction of the response spectra, which include the linear,
the elasto-plastic and the Ramberg-Osgood systems, are discussed in detail.

The effect of shape of the force-displacement curve on the earthquake response
spectra is examined. The effect of changing the acceleration-intensity and the
time scale of a known earthquake accelerogram on the response spectra is investi-
gated. The influence of vertical dead load forces upon response of a structure
is also examined briefly.
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II. THE LINEAR OSCILLATOR

A. THE DIFFERENTIAL EQUATIONS OF MOTION

Consider a simple linear oscillator consisting of a single mass, spring,
and dashpot subjected to a sinusoidal forcing function as:-shown in Fig. 2. The
differential equation of motion for this system is

mx + cx + kx Fy sinw t

In terms of unit mass it becomes

3§'+26a)x+w2}‘{=..gsin(bt (2.1)
n n m
where
m = mass
¢ = coefficient of viscous damping
B = < = fraction of critical damping
Egk/m
k = spring constant (stiffness)
X = relative displacement of mass to ground, (function of time)
k .
wy = \g = the undamped natural frequency
w = Tforcing frequency
t = time
FO = maximum amplitude of the forcing function (a constant)

Differentiation with respect to time is denoted by dots.

The steady-state solution of Eq. (2.1) can be written as

X = §9 Ry sin (wt - §) (2.2)

1RO




Fo sin wt
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Fig. 2. Linear oscillator subjected to a sinusoidal force.



B. STEADY~STATE OSCILLATION

Curves showing Ry as a function of frequency ratio w/wn for various values
of B are plotted in Fig. 3.

The velocity and acceleration responses, obtained by differentiating Eq. (2.2)
with respect to time are

ETZ§§E = %%‘Rd cos (wt - ) = R, cos (wt - §) (2.4)
F, 0
and
FS; = -<L%%§f Ry sin (wt - 4) = -R, sin (wt - @) (2.5)
' /m 3

The response factor Ry reaches its maximum value of 1/(28 V1 - BZ) at w/wy =
L - 2B2 R, has a maximum value of 1/26 at wﬁbn = 1 and Ra has a maximum of
1/(28 V1 - B2) at wjw, = 1/ J1 - 2p2

A family of curves showing a four-way plot for response factors as functions
of w/wh for various B values is drawn in Fig. 4; the grid lines sloping upward
to the right are for Ry, the horizontal grid lines are for Ry, and the lines slop-
ing downward to the right are for Ry as indicated. The Ry curves of Fig. 4 are
the same as those of Fig. 3 except for the logarithmic scales.
C. EARTHQUAKE RESPONSE

Consider next the linear oscillator of Fig. 2 subjected to ground motion only,
as shown in Fig. 5. A simple one-story elastic frame with rigid foundations can
be represented by a linear spring-mass-damper system. The motion considered here
is translation in the direction of the spring and dashpot.

The equation of motion of the system subjected to ground motion is:

mX + ex + kx = -my (2.6)

where

y = ground displacement, a known function of time.

Equation (2.6) can be rewritten as

¥+ B wy x+wSx = -7F (2.7)

where Q) and B are the same as previously defined.
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Fig. 3. Frequency-amplitude response for steady sinusoidal load.18
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The solution of Eq. (2.7) for zero initial conditions is:

X = - 4% ft y(T)e‘ﬁuh(t - 7) sin w¥ (t-7) ar (2.8)
®y ©
where
ox = wh\/l - 62 = damped natural frequency

ct+
I

time

=
Il

a time parameter of integration

D. THE RESPONSE SPECTRUM

Let
5/ = gt (1) e~Bon(t-T) iy wf (t - T)dr (2.9)
and
C - ét #(1)eBon(t = T) g wx (t - T)ar (2.10)

The displacement response of the oscillator, from Eq. (2.8), is then
x = - L J (2.11)

Thegg/and(i integrals can be differentiated under the integral sign, leading to

=g C (2.12)

X
® 2
ey s (o) J+ o0 C (2.13)

Both and(jare oscillating functions of time, and for earthquake input they tend

to oscillate at approximately the same amplitude and about 90° out of phase.

Hence when one of the integrals is at its maximum, the other 1s nearly =zero.
Define:

Sy = l)Jlmax (2.14)

The maximum of the absolute value of X, from Eq. (2.12), is

10



5l = 18 22 -l (2.15)

Because B is small, the (2 term dominates and the right-hand side of this equation

becomes approximately equal to IC'max! which is nearly equal to |4 maxs Mmaking
%] pax = Sy ' (2.16)
Similar reasoning, and assuming small values of B, leads to
|% | pax z% = S, (2.17)
1% + Flpax = @Sy = Sy (2.18)

Note that S3 and Sy are approximately equal to the maximum relative displacement
and velocity, respectively, and Sy is approximately equal to the maximum absolute
acceleration. Combining Egs. (2.17) and (2.18) results in the simplified relation-
ship of

S .
wpSq = Sy = G (2.19)
n
Sg 1is more directly applicable to design procedures because it is directly
related to the force exerted on a structure. Sy finds more frequent application

in theoretical developments.

For a given ground motion, Sy can be calculated by numerical integration or
by analog computer for different periods and fractions of critical damping. The
plot of Sv against period T with damping ratio B as a parameter, is known as the
velocity response spectrum.l

Different definitions of velocity response spectrum have been used by differ-
ent authors. Some define it to be the maximum relative velocity, others as the
maximum relative displacement times w,, and some others as the maximum relative
displacement times wi. Unless otherwise specified, the last is the definition
used throughout this report. The real velocity spectrum is obtained by plotting
the right-hand side of Eq. (2.15) against the period. Typical examples of this
can be seen in Figs. 6a” and 6b.

Arithmetic plots of Sg, Sy, and S5 against the period T for various values
of B are shown in Figs. 7, 8, and 9, respectively and are typical. When the
fraction of the critical damping and the period for a single-degree-of-freedom
elastic system are known, values of Sg, Sy, and Sg can be obtained readily from
these plots. As an example let T = 0.5 sec and B = 0.0. The corresponding response

11
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spectra from Figs. 7 to 9 are 53 = 3.55 in., S, = Ly.Lin/sec, and Sy = L.bh g.

Figure 10 shows the same velocity spectra of Fig. 8 plotted in a log-log
scale. Because of the relationship shown in Eq. (2.19), logarithmic diagonal
scales can be constructed-—for displacement sloping up to the right, and for ac-
celeration sloping up to the left—and values of all response spectra (Sa, Svy
and Sd) read directly from the same plot. To illustrate this, let us use the
same example as before. To find the response spectra one follows, in Fig. 10,

T = 0.5 sec vertically up until the curve B = 0.0 is reached. The intersection

of a horizontal line through this point and S -axis (the vertical scale) gives

S, = bh.L in./sec, the intersection of a sloping line parallel to Sq-axis through
the same point and the S,-axis gives S, = 1.L4 g.  Similarly the intersection

of a line parallel to Sa-axis through the same point and the S_-axis give 5q =
5.55 in. These are shown by the dotted lines in Fig. 10, and, as expected, are
the same as the results obtained from Figs. 7 to 9. Thus the maximum displacement,
maximum velocity, and maximum acceleration, all three, can be obtained directly
from a single log-log plot.

The maximum base shear Vp for a simple oscillator is related to the response
spectrum as follows:

o N 2y (Svy
Vg = k |x|max ~ (m af) (;;) = m S, (2.20)
Alternatively, one may write
_ eo o Sy,
Vg=m |x +y| ~mS, = " W (2.21)

where W is the weight of the system and g is the acceleration of gravity.

The quantity Sa/g corresponds to the seismic lateral load coefficient C in
seismic building codes. Typical spectra for the latter are shown in Figs. 9 and
10. The values given by these graphs, which may be considered typical for strong
motion earthquakes, are much greater than the code values currently in use in
earthquake design.

The maximum strain energy per unit mass U, developed in the system during
the earthquake is

1 2 1l &2 .
U = 5= kxmaxz-g» i (2.22)

When a multi-degree-of-freedom system is elastic and its damping forces sat-
isfy certain requirements, the structure possesses modes of vibration equal in
number to the number of degrees of freedom. BEach mode behaves as a single-degree-
of-freedom system. Response spectrum techniques can be used to evaluate the
maximum base shear in each mode, which in turn may be used to obtain an approximate
value for maximum base shear in the structure.

17
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III. THE ELASTO-PLASTIC SYSTEM

A. LOAD DISPLACEMENT RELATTIONS

With the present trend toward lighter construction in buildings, due
mainly to architectural and economic considerations, the structural frames
may need to withstand strains beyond their elastic limit in order to survive
a strong earthquake. Response spectrum analyses of strong motion earthquakes
clearly show that elastic analysis cannot be reconciled with the observed be-
havior of actual structures in earthquakes. Invariably the elastic stresses
indicated by the spectrum far exceed the yield strength of the structural mate-
terials. In the light of this knowledge, recent efforts have been made to ex-
tend spectrum concepts to inelastic systems.

The force-displacement relationship of most structural members beyond the
proportionality limit is difficult to characterize as a mathematical model. The
model which has received the most attention in recent years, largely because of
its simplicity, has been the elasto-plastic system, shown in Fig. 11. Ordinarily
no attempt is made to account for softening or possible decaying of ultimate
strength of the member due to load reversals.

A single story frame with elasto-plastic members can be represented as an
equivalent nonlinear damped oscillator consisting of a single mass, a spring, a
dashpot, and a coulomb friction element of capacity Qy as shown in Fig. 12.

B. THE DIFFERENTTAL EQUATIONS OF MOTION FOR EARTHQUAKE RESPONSE

The equation of motion of the system when subjected to ground motion is,
m(X+¥%) +ex+Q = O (3.1)

This can be rearranged and written on a unit mass basis as
X+2Ba,k+q = -F (3.2)

where

8o

q =

and B and w, are as defined earlier. The yield level of the system Ay is defined
as the amount of force per unit mass necessary to Jjust bring the spring to its
yield strength, i.e., 4y = Qy/m.

The force-deflection relation from Fig. 11 for the equivalent unit mass sys-

19
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tem (Eq. (3.2)) obeys the relations:

] 0 if |qa] = qy and g % >0
(3.3)

. O & .
q wf x 1if la] < Qy Or q X < 0

The equation of motion (3.2), a second-order differential equation, was
rewritten for the computer solution as the following two simultaneous first-
order differential equations:

and

Vo= % = -(§+reBo, v+a) (3.1)

A Runge-Kutta fourth-order procedurelo (with the aid of a digital computer)
was used to solve Egs. (3.4).

C. ENERGY DISSIPATION

The force per unit mass exerted on the structure by the foundation is - (q +
2B wy %), and the rate at which energy is being delivered to the system is,

E = - (q + 2B (,L)n).() :;r (3.5)

The force on the damper per unit mass is 2B wu%, and the rate of energy dis-
sipation by the damper is,

L = 28w (3.6)

The kinetic energy per unit mass is,

K.E. (% +3)° (3.7)

I
-

The strain energy is made of elastic (recoverable) energy and plastic (dis-
sipated) energy.

The elastic energy per unit mass is,

8

and the rate of energy dissipation in plastic deformation is

22



D = gx if |q] = 1, and gx > 0
(3.9)
b = o if la| < q, or ax <0
The sum of the various components of energy in the structure must, of
course, equal the energy input
E = L+KE. +D+U (3.10)

This relation provides a useful check on the accuracy of the computed response.

D. GSIGNIFICANT RESPONSE PARAMETERS

Two response parameters, namely, the ductility ratio and the energy ratio,
provide a meaningful characterization of the response of an elasto-plastic system
to earthquake. The ductility ratio p is defined as the ratio of the maximum
displacement to the yield displacement, u = Xmax/xy- The energy ratio € is defined
as the ratio of the maximum strain energy input per unit mass Eg to the recover-
able strain energy per unit mass at yield, e= Q(Es)max/qyxy.

If all yielding occurred in the same direction, the two response parameters
would have the relation ¢ = 2u -1. In any case,

e>2u -1 (3.11)

E. RESPONSE SPECTRUM CONCEPTS FOR ELASTO-PLASTIC SYSTEMS
The maximum elastic spring force Qm can be expressed as
Q, = CgW (3.12)
Where the lateral load coefficient Cg corresponds to |§ + ylmax/g. For displace-
ments in excess of the limiting elastic displacement Xy, the maximum spring force
is equal to the yield strength of spring.
A plot of 1§ + ylmax against period T, for various values of ductility (or

energy) ratio, and damping parameter B, results in elasto-plastic acceleration
response spectra.

When the ductility ratio is known the real maximum relative displacement
can be obtained from the relation

Xmax
h = Xy (3.13)
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In elasto-plastic systems, because the spring force is equal to Q. when dis-
placements are in excess of Xy, as previously noted, the absolute maximum displace~
ment and the absolute maximum acceleration are related as follows,

x|

% + ¥l
max~ max (Bolll')

w, ~
n 53 (Dn
This relation is exact when P = O; otherwise it is approximate because it does
not take the damping force into account.

A plot of w, |x| ax/“ against period T on a log-log scale, for specified
ductility (or energy? and damping ratios, results in a pseudo velocity response
spectra.6’ll (Pseudo in the sense that wnlxlmax/u is not equal to the absolute
maximum velocity |k|max’ for there exists a discrepancy btetween the two and this
discrepancy increases with increasing values of u.)

From Eq. (3.14) and the pseudo-velocity concept, diagonal log scales can
be constructed on the chart as was done in the elastic case, and the maximum
displacement |x|pgx/H, and the maximum acceleration [¥ + ylmax read from the
diagonal scales directly. A typical example is shown in Fig. l3a.

The maximum recoverable strain energy of the system per unit mass can be
expressed by

F. ELASTO-PLASTIC RESPONSE SPECTRA FOR THREE STRONG-MOTION EARTHQUAKES

The input function ##(t) consisted of punched card accelerogramsl2 of the
following three strong-motion earthquakes:

El Centro, California S May 18, 1940
Taft, California S21W July 21, 1952
Olympia, Washington S86wW April 29, 1965

Figures 13a-f and lba-f show pseudo-velocity response spectra plotted on a
four-way logarithmic grid for various values of ductility ratio Ui or energy ratio
¢, and specified values of damping parameter B. This way of presenting the results,
as previously mentioned, has the advantage that values of the maximum spectral
acceleration and the maximum displacement can be read from the diagonal scales
at the same time. To obtain the true maximum relative displacement, the values
read from these plots must be multiplied by the corresponding ductility ratio p.
It was found that the maximum acceleration occurred in the short period portion
of the spectra, in contrast the displacement was maximum in the comparatively long
period zone. The maximum pseudo-velocity in general was located between the per-
iods ranging from 0.5 to 5.0 sec. The periods referred to above were computed

2l
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from the initial elastic behavior, i.e., the spring constant k.

Ductility ratios of 1.0, 1.25, 2.0, and 4.0 were considered. With no re-
versal, the corresponding energy ratios would be, respectively, 1.0, 1.5, 3.0,
and 7.0. It is found that the spectral values for these energy ratios are
much higher than those for the chosen ductility ratios. This was anticipated
because the system is expected to experience yield reversals when subjected to
an earthquake.

Figures 15 a and b show the number of yield reversals plotted against the
period of the system for a set of ductility ratios. A yield reversal is defined
as a change of restoring force from yield in the positive sense to yield in the
negative sense, or vice versa; strain reversals which do not involve going from
yield to reverse yield are not counted.

A lower bound for the maximum acceleration is obtained in terms of the energy
ratio, by combining Eqs. (3.11) and (3.14).

2
2 W
— |x| .
l+c

(3.16)

%+ F | pax 2

G. PROGRAMMING PROCEDURE

As was described earlier, the response of a given system to an earthquake
can be calculated by a numerical method. A fourth-order Runge-Kutta procedure
was used for this purpose on the 7090 digital computer at The University of
Michigan. The procedure used to obtain a response with a desired value of
ductility ratio or energy ratic was as follows:

The responses for a number of systems with arbitrarily assigned yield levels
were first computed. Then a linear interpolation method was adopted to inter-
polate between the obtained responses in order to determine the approximate yield
levels which would give the desired results. These yield levels were used as in-
put data and the corresponding responses calculated. This procedure was repeated
until the desired responses were obtained.

In the elasto-plastic system the accuracy of the final results relative to
the desired values was within half of one percent.
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IV. THE RAMBERG-0SGOCD SYSTEM

A. LOAD-DISPLACEMENT RELATIONS

Actual structural members do not exhibit ideal elasto-plastic load-displace-

ment relations; rather, the load-displacement curve has an elastic branch followed
by a transition curve that leads to a plastic branch. Upon reversed displacement,
the Bauschinger effect makes the transition more gradual. This behavior can be
represented quite closely by a relatively simple mathematical model, the Ramberg-
Osgood function, shown in Fig. 16. Three parameters are employed, a characteristic
or yield load , & characteristic or yield displacement x_, and an exponent r.
It is the exponent r that governs the sharpness of the break away from the elastic
branch. The Ramberg-Osgood function includes as special limiting cases the elastic
case, obtained by setting r = 1, and the elasto-plastic case, obtained as r tends
to infinity.

Some of the hysteresis loops obtained in recent tests of structural members
and connections at the University of Californial are shown in Fig. 17 along with
a Ramberg-0Osgood loop with the parameters Qy, Xy, and r chosen to give the best
fit in the sense of least squares. Fitting the curve to experimental data reguires
too much computation to be done by hand, but with the aid of a computer the task
is relatively simple. Curves have been fitted to other experimental load-displace-
ment data, and it is found that the closeness of fit shown in Fig. 17 is about typ-
ical. The Ramberg-0Osgood representation of the load-displacement relation is con-
sidered realistic if the structure is capable of maintaining stable, nondeteriorat-
ing hysteresis loops.15,16

B. THE DIFFERENTIAL EQUATION OF MOTION
A one-degree=-of-freedom structure with Ramberg-Osgood characteristics can be
represented by an equivalent oscillating system made of a single mass and a

Ramberg~Osgood spring as shown in Fig. 18.

The equation of motions for this system when subjected to ground motion is
given by,

m(¥+%) +Q = 0 (h.1)

which upon rearranging and expressing in terms of unit mass becomes,

where

BiO

Lo
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The relation between the restoring force g and displacement X, see Fig. 19,1is given
by,

Los e &t (4.3)
y dy Gy

where qy = Qy/m, the characteristics restoring force per unit mass.

C. STEADY-STATE OSCILLATION

The dynamic response of actual structures to steady-state sinusoidal excita-
tion can be obtained experimentally. Thus a study of the resonant amplitude, as
a function of frequency and maximum amplitude of the forcing function, equivalent
viscous damping to express inelasticity, etc., would be useful in determining the
Ramberg-0Osgood parameters of real structures.t

The steady-state oscillation of a single-degree-of-freedom system with
hysteretic force-displacement relation of the Ramberg-Osgood type, shown in
Fig. 20, has been studied both by the energy method? as well as by the method of
slowly varying parameters.5317 The energy method is limited in scope, for it
gives the response at resonance only. The results of the slowly varying parameters
method are considered in this section. The latter approach gives the steady-state
response for all values of w/@h and can be used to plot amplitude against frequency
curves.

In the absence of viscous damping, the equation of motion for this system is,
mx + Q(x) = F(t) = F_ cos wt (4.k)
where F, is the force amplitude and w is the frequency of excitation.

The equation of motion, Eq. (L4.4), in dimensionless form becomes,

i x Q x F
M_E.(__) + — (—) = == cos 7T (4.5)
Xy Gy Xy Sy
where
T = wt
n
w
L
Qa__ (L) = Q(X)/Qy
U Xy
and
Q
Wy = J E%—a, the undamped natural frequency
Y
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Let the solution for Eq. (4.5) be

;9 cos © (L.6)

S
<

where

& = (T]T"'{é))
xo/xy and ﬁ are slowly varying functions of T.

Applying the method of slowly varying parameters’ Egs. (4.5) and (L4.6) result
in the expressions,

2
(&) = ¢ (39) + - (4.7)
%y Q
where
X X
c(=2) - 2x ffff 2 (%0 cos @) cos © d © (4.8)
Xy X5 0

Qy = the extreme value of the restoring force,

and
Xy = the displacement .corresponding to Q.
Fquation (4.7) can be rewritten in the following form,
82 = ow £ () & - Ep ke - ? (4.9)
®n = Qy e r+l
where
Xy
For the elasto-plastic case, it can be shown that Egs. (4.7) and (4.8) reduce
to
2 bo(p-1)792
W\ \/(FO 1 M ]
@® = + - - | - .
((’Dn) C(H) > \Qy Eg T —ug-'—'— (LF lO)
and

c(uw) = %- l:cosml (1 - %) -2 (1 - %) VS%L_:I (L.11)



Combining which result in the simple expression of,

&2 - % [cos-l (1-2) -2(1-2 5_2_1]

Fore 1 | h(u-1 1°
[ & [ (2

In order to check the accuracy of Eq. (4.7), a numerical analysis of Eq.
(4.5) was performed on the digital computer. For given values of FO/Qy and w/wy,
values of xo/xy were found from Eq. (4.7) and used as initial starting points in
Eq. (4.5). Then Eq. (4.5) was solved numerically by using a fourth order Runge-
Kutta method. The error for each trial point was calculated from (xi + xf)2 + ifg,
where "i" and "f" stand for initial and final, respectively. With the help of a
downhill climbing method an iteration procedure was established and the error
minimized to the desired accuracy of less than 0.005. Figures 21 a-d and 22 show
the results for various values of Fb/Qy and exponent r.

D. ENERGY DISSTPATION AND EQUIVALENT VISCOUS DAMPING

Past experience with viscous damped systems has given the engineer an
intuitive feeling for the effect of viscous damping upon earthquake response.
It would help him to visualize the effect of inelasticity if he could somehow
express it in terms of an equivalent viscous damping coefficient.

Consider the steady-state oscillation of a system with hysteretic force-dis-
placement relations of the Ramberg-Osgood type. The force-displacement curve
would follow a path such as that shown in Fig. 23 which is the same loop shown
in Fig. 17 except for a change in scale. The area enclosed by the loop, Eg,
is the energy dissipated in one cycle of oscillation. It can be shown that?

B, = bxq Lot ()T (4.13)

r+1 Qy

The force-displacement curve for a viscous damped linear system oscillat-
ing at the same restoring force and displacement amplitudes, Q5 and X, respec=
tively, is shown in Fig. 24. Here the width of the loop depends upon the fraction
of critical damping B. Again, the area enclosed by the loop, E,, is the energy
dissipated per cycle of oscillation, and is given by the expression,

an
E, = [®n c¢# at (b.1%)
o
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where

2 _ k _ Y
O = 5 = mx,

On substituting Eq. (2.4) for % and 2fwm for ¢ in Eq. (4.1L4) and integrating it,
one obtains,

B, = 278 Qux, (k.15)

An equivalent viscous damping coefficient Beq can now be obtained by equating
EC to Eg. The resulting equation for equivalent viscous damping is

G WP 1A%

eq = - (4.16)

where Q_/Q_ 1is the ratio of maximum force to yield force and p = xo/xy is the
ratio of maximum displacement to yield displacement, popularly known as the
ductility ratio. For the elasto-plastic system this reduces to

= 2@-d i w1

ﬁeq— ”

and (k.17)

B = 0 if u <1

eq -
The results are shown graphically in Fig. 25. Here the difficulty of trying to
obtain an equivalent viscous damping coefficient becomes apparent. The damping
coefficient depends upon the amplitude as well as upon the characteristics of
the force-displacement relation.

It should be observed that while equivalent viscous damping is a useful con-
cept in giving the engineer an intuitive feeling for the behavior of an inelastic
system, it has little merit toward producing meaningful quantitative results.

E. RAMBERG-OSGOOD RESPONSE SPECTRA FOR TWO STRONG-MOTION EARTHQUAKES

Equation (L4.2) is evaluated, with the aid of the digital computer, for var-
ious values of dys Xy and r, through the same procedure as used inthe elasto-plastic
system. The maximum displacement, velocity, and acceleration are defined as be-
fore and the natural frequency Wy is defined as qu/xy.

The relation between wy, |x|g../u and [¥ + §| . /w established in the elasto-

plastic system 1s generally not valid for this system. Thus it is inadvisable to
make a four way log-log plot.
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The displacement and the acceleration spectra for Ramberg-Osgood systems are
plotted separately on three way log-log plots in Figs. 26 a=h and 27 a=h.

The values of r were chosen to be 5 and 10. To compare these parameters,
ductility ratios of 1.0, 2.0, 4.0, and 6.0 were considered, and the correspond-
ing spectra were computed directly by the digital computer. The spectra for
energy ratios of 1.0, 3.0, 7.0 and 11.0 were obtained by interpolating the com-
puted data above.

The accelerograms used in this analysis were:

Taft, California Se1w July 21, 1952
Olympia, Washington S86W April 29, 1965

The response spectrum curves presented were constructed throughout on the

basis of the maximum displacement or the maximum acceleration which occurred
within the 30 sec duration of the earthquake.
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Fig. 26a. Displacement spectra for Ramberg-Osgood system,
Taft, July 21, 1952, S21°W. Constant ductility ratio "u."
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Fig. 26c. Displacement spectra for Ramberg-Osgood system,
Taft, July 21, 1952, S21°W. Constant ductility ratio "p."
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Taft, July 21, 1952, S21°W. Constant energy ratio "e."
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Fig. 26f. Displacement spectra for Ramberg-Osgood system,
Taft, July 21, 1952, S21°W. Constant energy ratio "e."

6l



100
80

60

40

(IN./SEC.)

IX+y | max

r=10 (g)

PERIOD (SEC))

Fig. 26g. Displacement spectra for Ramberg-Osgood system,
Taft, July 21, 1952, S21°W. Constant ductility ratio "u."
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Flg. 27a. Displacement spectra for Ramberg-Osgood system, Olympia,
April 29, 1965, S86°W. Constant ductility ratio "u."

67



100

(IN./SEC.)

Ixlmax
M

Wn

80 |
| € =1.0
60 —_——c = 3.0
———€ =170
- mmeees € =11.0
40 |-
B r=5 (b)
20—
10f—
8|
61—
4_
2!—
: | Lo X l I N I

Ny .2 4 6 .8 1.0 2 4 6
PERIOD (SEC)

Fig. 27b. Displacement spectra for Ramberg~Osgood system, Olympisa,
April 29, 1965, S86°W. Constant energy ratio "e.”
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V. EFFECT OF SHAPE OF THE FORCE-DISPLACEMENT
CURVE UPON EARTHQUAKE RESPONSE

The elasto-plastic system has been used as the basis for a great deal of
earthquake research, and some basic concepts such as ductility ratio and energy
absorption have been related to elasto-plastic system response. However, the
actual structural members do not present ideal elasto-plastic load-displacement
relation. It was found that the actual behavior of a member can be represented
closely by Ramberg-Osgood function, thus the Ramberg-Osgood system has been
applied to earthquake study to investigate the influence of the shape of the
load-displacement curve upon the response. The results are compared for r values
of 5.0, 10.0, and infinity (the elasto-plastic case).

A. MAXIMUM DISPLACEMENT

The question to be investigated here is how the yield level affects the max-
imum displacement of the system while all other properties of the system remain
unchanged.

Typical results are presented in Fig. 28, with the yield level qy, as a
fraction of gravity, plotted against the ductility ratio i, which is Xmax/xy°
These results are for the El Centro 1940 earthquake, N-S component. There are
two sets of data with different periods as indicated to be 0.5 sec and 1.5 sec.
The ‘lines of constant maximum displacement which represent the maximum displace-
ment for elastic systems of the periods indicated are straight lines with a-1l:1
slope downward to the right, and can be determined as follows:

2
Xmax Wn Xmax
b= = (5.1)
Yy Yy
or
Hdy = a% Xnex = constant

Hence

log p + log qy = contant

It is observed that the computed maximum displacements for the inelastic
systems are generally about the same magnitude as the maximum elastic displace-
ment, often somewhat less at higher yield levels and sometimes greater at lower
yield levels. The ratio of the maximum elastic to maximum inelastic displace=-
ment was found to be greatest between u = 2 and 6, and attained a maximum value
of about 2. At very low yield levels the ductility ratios get extremely large.
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The data points for r = 5 and for r = 10 are not markedly different from those
for the elasto-plastic system. It can be concluded that the maximum displacement
is not adversely affected by yielding or by the shape of the force-displacement
curve.

B. MAXIMUM ENERGY INPUT

The maximum energy input to the system is another response parameter of
interest. This can be expressed as an energy ratio € defined as the ratio of the
maximum energy input to the recoverable strain energy at yield. The results
used in this analysis dre the same as those used in the preceding case. Sim-
ilarly, the maximum strain energy for the elastic system is a constant regard-
less of the changes of yield level.

The response points are plotted in Fig. 29 to show how ¢ is affected by vary-
ing the yield level Ay alone. Lines of equal energy which represent the maximum
strain energy for the elastic system of the periods indicated are straight lines
with a 1:2 slope downward to the right. These lines can be determined as follows:

2
2w
c - Emax - nEmax (5.2)
1 XQ: q2
o Y Y
or
2 _ —
€ qy = 2 w% Emax = constant
then
Log ¢ + 2 Log qy = constant

Figure 29 shows that the data points fall much closer here than in the Fig.
28, indicating that the maximum energy input for an inelastic system is approxi-
mately equal to the maximum strain energy for the elastic system. Thus we con-
clude that 1t is a good approximation to take the maximum energy input for inelas-
tic systems to be the same as the maximum strain energy for the elastic system
of the same period; moreover, it is independent of either yield level or the shape
of the force-displacement curve.

C. YIELD REVERSALS AND ENERGY DISSIPATION
Yield reversal was well defined in the elasto-plastic system. However,

the Ramberg-Osgood system has no single definition for yield reversal, and at
least four definitions, for yield reversal are possible, namely,

7
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(1) +Qy to -Q_ criterion, when a change from Qy in the positive sense to
Qy in the negative Sense is reached, or vice versa.

(2) +x_ to -x criterion, when a change from Xy in the positive sense to
xy in the negative sense is reached, or vice versa.

(3) sSliding 2Qy criterion, when the absolute difference between Q; (current
extreme point obtained by loading in one direction) and Qs 41 (obtained by loading
in opposite direction) is greater than twice the yield load Qy’ i.e., |2Qy| <

lQ; - Q! -

(L) Sliding 2x_ criterion, when the absolute difference between x; (current
extreme point obtained by loading in one direction) and xi+1 (obtained by loading in op-
posite-direction) is greater than twice the displacement.xy,ioeo,~[2xy| < |xi - Xi+1]
Unless otherwise specified, the last criterion is adopted in this report. A
detailed description of this criterion as well as the definition of excursion
ratio €y, are shown in Fig. 30.

A practical way to explore the question of yield reversals is to examine
the response of a particular system to an earthquake. Figure 31 shows the first
20 sec response to an elasto-plastic system to an earthquake, plotted as displace-
ment against time. It can be noted that the yield level is 0.25 g, which is in
excess of the seismic coefficients of the uniform building code, and the system
tends to oscillate at its own natural period. Moreover, it 1s seen that the sys-
tem yields not only once or twice, but twenty different times as shown.

Figure 32 shows the response of a Ramberg-Osgood system (r = 10) of the
same period and yield level subjected to the same earthquake. Although the max-
imum displacement is about the same the restoring force reaches yield only three
times according to +Q,y to ~Qy criterion.

The first few seconds of the response curve of Figs. 31 and %2 are shown in
Fig. %3, plotted as force against displacement. It can be seen that the response
follows the hysteresis loop and a complete circuit of the hysteresis loop involves
two yield reversals. The energy dissipated by inelastic deformation is the sum
of the areas enclosed by all the hysteresis loops. The effect of yield level
upon the number of yield reversals is shown in Fig. 34, and this is for the El
Centro 1940 N-S component again.

The excursion ratio €, for the Ramberg-Osgood function is defined as the sum
of all deformation in the yield regions produced during the earthquake, to the
yield deformation xy (see Fig. 30) The total energy dissipated by hysteresis in
a Ramberg-Osgood system is related to the excursion ratio. However, unlike the
‘elasto~-plastic case there is no simple way of converting hysteresis energy to ex-
cursion ratio.

If all yielding occurred in the same direction, the relation between the
energy and ductility ratios can be given as

9
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.
¢ = %{Q{ |:2r u - (r-1) i‘% (5.3)
in any case i
Qo/% % |
€ 2 —— [21‘ Moo= (I’—l) 'Q; (5‘1")

When r = w, Eq. (5.4) results in the elasto-plastic case, i.e., Egs. (5.4) and
(3.11) become identical.

The energy ratio € has been proposed as a more critical parameter in inelastic
earthquake design than the ductility ratio u, because it is felt that the energy
ratio, along with the number of times the system reverses from yield in the positive
sense to yileld in the negative sense during the earthquake will help provide indi=-
cation of how a structure would perform in a strong-motion earthquake.
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VI. INTENSITY AND TIME SCALE EFFECTS OF ACCELEROGRAM

It is of interest to consider what effect modifying an earthquake ac-
celerogram will have on the response spectra. It is assumed that spectral
response curves are available for a system to a given accelerogram. The new
accelerogram is to be prepared by multiplying either the acceleration or the
time scale of the given accelerogram by a constant.

The purpose of this section is to establish relations between response
spectra of the modified accelerograms and spectra obtained from the original
accelerogram.

Consider the differential equation,
¥ +2Ba x+q(x) = -§Ft) (6.1)

The numerical solution of this equation for various parameters, will result in
the response spectra for the given accelerogram ¥(t).

Equation (6.1) in dimensionless form becomes,

d2 X

i
Xy et (e 2y o e (6-2)
ate xy v xy 4y Xy Ay
where,
T = a)nt

£t

_ qy/xy
and

%— (-x;) = a(x)/qy

(a) Consider now another system, with damping property By, undamped natural
frequency w,, and force displacement relation p(z). It is desired to find the
response of the new system when the latter is subjected to an earthquake having
accelerations Ky times those of the original earthquake, the time characteristics
remaining unchanged.

The differential equation for the new system is,

i+ 2By + p(z) = -Kp §(t) (6.5)
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where z = relative displacement of mass to ground.

In dimensionless form this can be written as,

2 y(T1/7)
d S () + 2oy 42y + B2y o g XL
dm1=  Zy dry  zy by zy Py
where
2
ol = py/zy
and
L (2) =p(z)/
Py "7y Y

By proper choice of parameters, i.e.,

BPp = B
@y = @y
Loz = 4 (X))
Py "zy dy Xy
and
K= mley = /%

(6.1)

Equation (6.4) is made identical to Eq. (6.2). Thus at any instant the following

relations must be vglid.

2 2 2
,dTl Xy ar daT
Z-, AX
_..g'ﬁ = .}.{.;Y._._... = KI—d._X_
dTl y ar ar
z
z = El X = KI X
Y

where
T = Tl

In terms of maximum values the above expressions can be shown to become

87

(6.6)



IZImax - KI lemax
z mx - X1 l;clmax (6.7)
and
|2 + Klylmax = KI |X + y[max

The ordinates of the new response spectra are therefore Ky times those obtained
from the original accelerogram. Equation (6.7) is valid for linear as well as
non-linear systems provided Eq. (6.5) relations are satisfied.

To illustrate the preceding, it is desired to modify a given response
spectra, say Fig. lbc, in order to obtain the response spectra for an earthquake
of intensity Ky times that used in the former. This is done by multiplying the
ordinates of the curves of Fig. llc by Ki. On four-way-log plots this result
is accomplished by shifting the curves vertically by log (Ky). The dash-dot
curve in Fig. 35 shows the latter for Ky = 3 applied to curve p = 2 of Fig. lhc.
(For clearity the remaining curves of Fig. lkc are not shown in Fig. 35).

(b) As a second case consider a system with damping property B8,, undamped
natural frequency wp and a force-displacement relation p(z). It is subjected to
an accelerogram obtained by multiplying the time scale of #(t) in Eq. (6.1) by

l/KT; i.e., the duration of the modified accelerogram would be Kp times the
duration of the original accelerogram.

The equation of motion for this can be written as,
Z+2Ban z + p(z) = - ¥§ (Kpt) (6.8)

In normalized form this becomes,

Kp
Vg o)
d (z d z A _ ™ 2
(B 4oy —& (2) 4 R (2) - 22 6.
a;g Zy) + 2puwp 2arp (Zy) + oy (Zy) = (6.9)
where
o T Wt
B o=
2 Zy
and
2 (zy = pz)
by ‘zy Py

Again by proper choice of parameters, i.e.,
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B = B

Py = Yy
2 (2) = L% (6.10)
Yy Yy

and

Kp = ap/wy 2\/;37_2;

Equation (6.9) ismade identical to Eq. (6.2), and can be shown to result in the
equalities,

a2 ) 1 ar? 1 @°x
dT22 Zy K’I’EZy dq—e Xy dTE
oz 14z _ 1o
dT2 Zy Ksz ar X dar
z X (6.11)
Zy *y
where
T = Tp/Kp
The desired relations can now be found from Eq. (6.11) to be,
1
!Zlmax = Eg |X[max
m
|2l ey = = |l
Zimax = Ky X Il max
|'Z + Y'max |X. + y.lmax (6e12)

Thus to obtain the new acceleration spectra, the period scale of the original
acceleration spectrum curves are divided by Kp. The new velocity spectra are ob-
tained from the original velocity spectrum curves by dividing the period and the
velocity scales by Kp. The new displacement spectra are obtained from the original
displacement spectra by dividing the period scale by Ky and the displacement scale

by KTQ.

On four-way-log plots the modified response spectra described above are
readily obtained by shifting the original curves horizontally as well as vertically
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by log (l/KT) - The dotted line in Fig.35 shows the latter for Ky = 0.5 applied
to curve u = 2 of Fig. lbc.
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VII. EFFECT OF AXIAL LOAD

It was shown that in the absence of axial load, the force-displacement re-
lationship for structural steel members can be expressed closely by a Ramberg-
Osgood function. Likewise, the relationship between the moment, M, and the cur-
vature, ¢, of a structural member can be expressed in the same form,

_ M M r-1
@5‘ = 5 (L+ l—My—l ) (7.1)

N
where

=
]

a yield or a characteristic moment

and

1l

Py

The parameters My, ¢y, and r are chosen by means of a least square method to
give the best fit to the experimental data.

a yield or a characteristic curvature

It is known that the plastic-hinge-moment capacity of a steel member re-
duces with increase in axial load acting on the member. However, the value of -
the plastic-hinge-moment remains practically unchanged when the axial load P
is small in comparison with the ultimate or critical load P,, of the member.21
As a result the moment-curvature relationship in this case does not change
appreciably and Eq. (7.1) holds. For large values of P, the values of My,

@.., and r should be reestablished. Due to insufficient experimental data avail-
able in the literature, the latter is not possible to accomplish at this time.
Hence the analysis that follows will be limited to structural members sub-
Jected to small axial loads only.

Consider the cantilever column shown in Fig. 36, subjected to a constant
vertical load P and a variable horizontal force Q. The force-displacement re-
lationship for this column can be obtained from Egq. (7.1) as,

dgu r-1
2= g Ao+ BT (7.2)
dy? My My
where
u = ‘transverse displacement relative to base.
d2u - ¢
2
dy .
X = transverse displacement of end of cantilever relative to base.
y = length along cantilever
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Fig. 36. Loading condition for cantilever beam with axial load.
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M o= P(x -u) + QL -y) (7.3)

The numerical solution to Egs. (7.2) and (7.3) is very time consuming, hence
an approximation was made. The actual bending moment curve was replaced by
a linear moment variation as shown in Fig. 37. As a result, Egs. (7.2) and
(7.3) reduce to

2 (1 -9 (L-9) L.
fo g TTE o TR (7.
dy N& N&
wWhere
Mp = QL+ Px (7.5)

This is the moment at the fixed end of the column.

Integrating Eq. (7.4) twice and using the boundary conditions u'(0) = u(0) =
0, the following expression is obtained,

M
(1+ 2 |ZEFh (7.6)
The lateral load from Eq. (7.5) is,

Q@ = =(Mp - P x) (7.7)

Equations (7.6) and (7.7) can now be used to construct a force-displacement
curve. A comparison of the approximate method results with the exact solution
is presented in Figs. 38a and 38b. It can be seen that the deviation between
the results of the two methods depends on the value of the three parameters em-
ployed, namely, ductility ratio, exponent r and axial load ratio P/Py.

It is appropriate to investigate how axial load affects the shape of the
force-displacement hysteresis loop. The skeleton curve for this is obtained
from Egs. (7.6) and (7.7), and the branch curves are derived (see Fig. 20),
from the branch moment-curvature expression of

Prfo | MM g, Mo Ml (7.8)

2¢y oM, M,

and from which, making the same approximation for moment distribution as before,
and integrating twice over the proper limits, the branch equation for the lateral
displacement is obtained,
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Approximate

M(0) = Mg

Fig. 37. Bending moment distribution for cantilever beam with axial load.
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X - Xo 2 Mp - M 3 Mg - Mor-1
5 = ¢y EX —_EFg_— (1 + vy ]———g———l ) (7.9)

The corresponding lateral load

q, = & (M - Pxp) (7.10)

In Egs. (7.9) and (7.10), %o, My, and Q, are, respectively, the displacement,
the end moment and the lateral load at the reversal point.

The branch curves [Eq. (7.9)] are similar to the skeleton curve [Eq. (7.6)],
but twice as large. This is the same relationship that exists between Egqs. (7.8)
and (7.1).

Figures 39a and 39b show hysteresis loops computed from Egs. (7.9) and (7.6)
for various values of P/Py and exponent r. Unlike ordinary Ramberg-Osgood func-
tions, when axial load is present the maximum latersgl force does not always oc-
cur on the skeleton curve. In steady-state vibration, for (Qmax)skelet n greater
than Q,, the maximum lateral force will occur on the loop, see Fig. 59a2ﬁ0, and

is given by the relation

(Qmax)branch = Q(Qmax)skeleton - Qg (7.11)

Figure 40 shows the response of a single degree of freedom system for the
first few seconds of EL Centro earthquake using Egs. (7.9) and (7.6) as the
restoring force Q in Eq (4.1). The response is plotted as lateral force against
displacement for P = O (without axial load), and for P = 0.4 Py. 1In this case
Qmax and Xp.. are found to be greater without axial load.

Equations (7.9) and (7.6) give exact results only when the axial load is
zero. Otherwise the results obtained from them are approximate and must be used
for small values of P/P&o The presence of axial load, see Figs 38a and 58b,
seems to reduce the stiffness of the system.

When axial load 1s present, it is no longer possible to express the force-
displacement relation by ordinary Ramberg-Osgood functions as displacements
become large.

The brief discussion presented in this section seems to point out clearly

that further investigation into the subject, especially in the experimental
side, is needed.
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VIII. GSUMMARY AND CONCLUSIONS

In this report, the response of a single-degree~of-freedom structure to
strong-motion earthquake was studied. The principles and the construction of
the response spectra were discussed in detall for three different systems,
namely, the linear system, the elasto-plastic system and the Ramberg-Osgood
system. The discussion for each system generally included subjects such as
force~displacement relation, equation of motion, energy dissipation, re-
sponse spectrum concepts, steady-state oscillation, and response spectra for
strong-motion earthquakes. Also, a family of spectral curves was presented for
these systems, where the damping coefficient, the ductility and energy ratios
were the main parameters considered.

The effect of the shape of the force-displacement curve upon the maximum
displacement and upon the maximum energy input of a system was examined. Further-
more, the influence of modifying the intensity and the time scale of an earth-
quake accelerogram as well as the behavior of a structure with axial loads
were glso investigated.

From the results presented in this report the following conclusions can
be drawn:

(1) The Ramberg-Osgood representation of the force-displacement relation
is considered realistic if the structure is capable of maintaining stable, non-
deteriorating hysteresis loops. The Berkeley experiments have produced remark-
ably stable hysteresis loops at large cyclic strains17 which can be approximated
closely by a Ramberg-Osgood function.

(2) The spectral relation |x|pgy = |X|pax/0n = |X + ylmax/a% is exact for
undamped linear systems, and is a good approximation for damped linear systems
provided the damping is small. The response spectra for linear systems are rep-
regented by the top curves of Figs. 13 and 1h4. (The elasto-plastic system re-
duces to the elastic system when the ductility ratio u or the energy ratio ¢
becomes equal to 1.)

(3) 1In nonlinear systems the spectral relation above is not valid. For
the elasto-plastic systems this relation takes the form,

|%lmax %+ ¥lmax
i - W,

The expression on the left above, a pseudo velocity, is the quantity that was
plotted to obtain the response spectra in this case.
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(4) For Ramberg-Osgood systems there exists no simple spectral relation.
It is noted however that in Ramberg-Osgood systems if Vg and V5 are defined as
follows,

i
n

X + v
Vd wnl%fmax and V, l Y|max
" w,

then
Vg > Vg for p < 2

Vd. = Va

]
no

for p
vV, < Vg for up > 2

For values of ductility ratio less than two, the maximum difference between Vjy
and Vg occurs when 4 equals one. It is also observed that the difference be-
tween the displacement and the acceleration spectrum curves for constant duc-
tility ratio is constant, and thus produces only a vertical shifting of the
curves. This does not apply to curves of constant energy ratio because the
ductility ratio is not a constant in this case. For this reason, displacement
and acceleration spectra for Ramberg-Osgood systems are plotted separately.

(5) It is noticed that in the Ramberg-Osgood system, the acceleration
spectra is much more sensitive to changes in exponent r than is the displace-~
ment spectra. The spectral characteristics of the elasto-plastic system are
quite different from those of the Ramberg-Osgood system.

(6) Equivalent viscous damping is helpful to the intuition in comprehend-
ing response phenomena, but it appears ill suited to the earthquake problem for
quantitative purposes.

(7) The maximum displacement and the maximum energy input for Ramberg-
Osgood systems are comparable with those obtained for elasto-plastic systems of
the same period and yield level.

(8) TFor the steady-state vibration response, slowly varying parameter
results showed good agreement with those of "downhill-climbing-method." The
discrepancy between the two increased as exponent r and the ratio of input force
to yleld level of the system F/Qy, became large. Nelither result showed existence
of unstable zone for the Ramberg-Osgood system.

(9) When an accelerogram is modified by multiplying the acceleration read-
ings of a given earthquake accelerogram by an arbitrary constanthi, the response
spectra for the new accelerogram are Ky times the spectral values obtained from
the original accelerogram.
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If, however, the new accelerogram is obtained by multiplying the time
readings by a factor Kp, all quantities involving time must be changed ap-
propriately. The new acceleration, velocity and displacement response spectra
are obtained in this case by dividing the corresponding original spectral
values by 1, Kp, and KTQ, respectively, and multiplying the period values by

KTo

If the intensity of the accelerogram is also modified then the above two
cases must be superimposed to obtain the desired response spectra, as shown
by the dashed line in Fig. 35.

(10) When axial load is present, for large displacements, the force-dis-
placement relation of a cantilever column is no longer of the Ramberg-Osgood
type. Nevertheless, a Ramberg-Osgood curve can still be used as a good approxi-
matdon, when the axial load and the displacement are small. Figures 39a and
59b illustrate the effect of axial load upon the shape of the hysteresis loop.
It can be seen that for small values of axial load the loop is narrow. As the
axial load increases the loop broadens and the curves show an unloading region
even when the ductility ratio is small. Figures 38a and 38b show that in the
absence of axial load the approximate method yields the same results as the
exact method. With axial force present the results of these two methods no
longer coincide. The discrepancy is found to be proportional to the axial load
in the column. A column without axial load is stiffer than the same column with
axial load resulting in different response to the same earthquake.
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