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Abstract 

 

Lewis Base Complexes of Borane as Hydride Sources and  
C–B Bond Forming Reactions of the Resulting Electrophilic Boron 

by 

Timothy S. DeVries

 

Chair: Edwin Vedejs 

The last 50 years have seen great advances in the field of boron cations, but most 

reports have focused on their preparation.  Trivalent borenium and even divalent 

borinium ions have been isolated and characterized, although typically stabilized by 

bulky, electron-donating ligands.  Perhaps these limitations explain the lag in 

applications of boron cations, the most notable exception being the activated 

oxazaborolidines developed by Corey as catalysts for ketone reduction and Diels-Alder 

cycloaddition.   

The research described in this thesis was directed toward the preparation of 

relatively unstabilized borenium ions by hydride abstraction from Lewis base-borane 

complexes (L·BH3).  Borenium ions do not accumulate under these conditions due to 

subsequent rapid reaction with L·BH3 to form B–H–B bonds.  However, reversible 

cleavage of the 3c2e bond releases borenium ion equivalents, as evidenced by the 

interaction with weak nucleophiles.  This reactivity was applied to expand the scope of 

hydroboration reagents.  The reported solvent-assisted decomposition of 
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triphenylmethane indicates that the use of trityl tetrakis(pentafluorophenyl)borate for 

generation of other reactive electrophiles may warrant closer scrutiny. 

Trityl activation has also allowed a highly regioselective arene borylation under 

mild conditions using a number of different heteroatomic directing groups.  The observed 

kinetic isotope effect indicates that the presence of a Brønsted base could accelerate these 

reactions, but this would require more stabilized borenium cations than L·BH2
+.  Future 

development of this methodology could apply the trends that emerge in boron cation 

literature to find the right balance between stability and reactivity of the cationic boron 

intermediates.   

Borane complexes of unsaturated amines and phosphines were used to study 

hydride transfer to a carbocation formed by protonation of the tethered alkene, achieving 

directed ionic hydrogenation.  Cyclic borane complexes with one face of the intermediate 

carbocation accessible to the tethered hydride participate in a highly diastereoselective 

reduction.  Amine boranes react by an initial hydride abstraction by the acid, generating 

an attenuated hydride donor that still reacts with the tethered carbocation.  This initial 

reaction of the strong acid provides an opportunity to introduce a chiral substituent on 

boron, allowing enantioselective reduction of an unsaturated amine borane. 
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Chapter 1 

 
 

Recent Advances in the Formation and Application of Boron Cations
 
 
 

Introduction – Boron Compounds as Lewis Acidic Reaction Promoters 

 Boron chemistry is dominated by the concept of Lewis acidity.  That common 

reagents such as BF3 function as Lewis acids to promote reactions hardly needs to be 

mentioned, but it is worth noting that this reagent is typically purchased, purified and 

stored as a complex with the weakly Lewis basic diethyl ether.  Even two of the better 

known applications of boron reagents in synthetic organic chemistry depend on the Lewis 

acidity of neutral, trivalent boron.  First, the hydroboration/oxidation sequence developed 

by Brown (eq 1) is thought to involve coordination of the alkene π electrons to form a 

borane complex (3) from which hydroboration occurs.1  Second, Suzuki and Miyaura’s 

discovery that coordination of a base into 6 results in a borate complex (7) that undergoes 

facile transmetallation with transition metals has made possible the application of these 

mild, stable boronic acid reagents in transition metal-catalyzed cross-coupling (eq 2).2  

B H
R

R

1

R'

2

B H
R

R

R'

B
R'R

R

[O]
HO

R

3 4 5

(1)

B
OH

B
OH

OH

OH

OH
OH

X

catalyst
6 7

8

9
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Increasing the Lewis acidity at boron has proven important for developing further 

applications of boron-based reagents and catalysts in organic transformations, for 

example in the development of the potent electrophile B(C6F5)3.3  One way to increase 

the electron deficiency is to generate a cationic species.4  While progress has been made 

in preparing boron cations, the application of these species to synthetic chemistry has 

only started to see real progress in the last 10 years.  The difficulty, as is often the case in 

developing new methodology, is a question of balance.  Increasing the electron demand 

at boron encourages unwanted reaction pathways in addition to the desired 

transformations.  For example the preparation of a free, low-valent boron cation has been 

hampered by coordination of even weakly Lewis basic solvents, mirroring challenges that 

were also problematic in the search for a free silicon cation.5  Coordination stabilizes the 

boron cation, but it in turn reduces the electrophilicity at boron, negating the advantages 

of preparing cationic boron reagents.  This problem will be discussed as it applies to the 

individual classes of boron cations in the next section. 

The research for this thesis has focused on the formation of boron cations from 

stable, neutral borane complexes by in situ electrophilic activation and on selected 

applications of these cations as reagents in C–B bond-forming reactions.  

Notwithstanding our best efforts, we have been unable to isolate and fully characterize 

the cationic boron intermediates, only observing them spectroscopically in solutions.  It 

will nevertheless be useful to begin with a review of recent advances in the formation of 

boron cations, focusing on evidence for their formation and on their applications to 

synthetic chemistry. 
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Observation and Characterization of Boron Cations 

Cationic Boron Nomenclature 

 To assist in this review of cationic boron chemistry, it will be useful to first 

address issues of nomenclature that are not often encountered by the organic chemist.  

The IUPAC recommendations for boron nomenclature treat charged species as 

coordination compounds, e.g. (C5H5N)2BH2
+ would be referred to as dihydrobis-

(pyridine)boron(1+).6  However useful this may be for consistent and systematic 

nomenclature, it is somewhat awkward and does not make the coordination state at boron 

immediately obvious.  The older literature reports were not consistent in their 

nomenclature, often using the terms boronium and borenium interchangeably to denote 

cationic boron with various valencies.  In his 1985 review of the cationic boron literature 

Nöth suggested clearer definitions of these terms, boronium for tetravalent and borenium 

for trivalent boron cations (10 and 11 respectively), and he introduced the term borinium 

to refer to a divalent boron cation (12).4a  Under this sytem (C5H5N)2BH2
+, a cation of the 

type represented by 10, would be named bis(pyridine)boronium with no need to specify 

hydrogen substitution. 

Figure 1-1.  Nomenclature and Graphical Representations of Boron Cations 
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It should be noted at this point that there are a number of different ways to 

represent these cations on paper.  Formal charges (top row of Figure 1-1, 10-12) are quite 

familiar but not necessarily representative of the actual charge distribution.  The central 

boron atom of 10, for example, is drawn with a formal negative charge, but the chemistry 

of boronium ions is typical of electrophilic boron.  Formal charge representation also 

depicts the boron atom of borenium 11 as neutral, but computational work described 

below shows significant positive charge character at boron.7  Drawing the bonds between 

boron and the neutral ligands (L) as dative bonds (middle row of Figure 1-1, 13-15) 

returns the positive charge to the boron atom for boronium and borenium ions.  This is 

somewhat artificial.  While it is useful for allowing us to draw the charge where we want 

it there is no fundamental physical difference between what we refer to as a covalent 

bond and what we refer to as a dative bond.  Note that the divalent boron cation is 

represented identically in both systems where R is left unspecified, but the ligands that 

have allowed observation of borinium ions are almost all capable of stabilizing the empty 

shell on boron by resonance donation of electrons.  In these cases the formal charge could 

also be placed on the atom directly bonded to boron.  The bottom row of Figure 1-1 (16-

18) recognizes that the real charge distribution is likely somewhere inbetween and can 

vary depending on the nature of both the anionic ligands (R) and the neutral ligands (L).  

We prefer to draw boron cations in this way, as net cationic species. 

Borinium and Boronium Ions 

The simplest boron cation conceptually is the borinium ion, formed by removal of 

an anionic substituent from the neutral trivalent species.  The resulting divalent cationic 

boron is far more difficult to prepare in reality than in concept.  The few that have been 

reported in the condensed phase rely on substituents that can donate electron density to 
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boron by π-backbonding and that hinder the approach of Lewis bases by steric bulk.  For 

example, an early report of a number of well-characterized borinium ions (20), mostly 

diamidoboron cations (e.g. 20a and 20b), relies heavily on the tetramethylpiperidino 

(tmp) group for the additional lone pair on nitrogen and the steric shielding of the boron 

Table 1-1.  11B NMR Dataa for TMP-Substituted Borinium Ions 20 

N B
X

Br

Me
Me

Me
Me19

AlBr3

CH2Cl2
N B X

Me
Me

Me
Me

20

AlBr4

 

entry X δ11B for 19 δ11B for 20 
1 a: X = NMe2 NAb 36.7 
2 b: X = Net2 30.6 37.6 
3 c: X = Ph 40.4 56.0 
4 d: X = Me 41.7 59.6 

a Chemical shifts in ppm relative to BF3·OEt2, measured in 
CD2Cl2.  b Not available. 

 
center by the α-methyl groups.8  The 11B NMR signal shifts downfield on abstraction of a 

bromide from 19 (Table 1-1) as expected from other 11B NMR studies.9  The typical 

deshielding arguments apply to boron nuclei as well, such that reduced electron density at 

boron shifts the signals to lower field.  The magnitude of the shift, however, is surprising.  

The divalent boron cation was expected to be far more electron deficient than the 11B 

NMR chemical shift reveals, but this again is explained by donation of the nitrogen lone 

pair into boron.  While this is likely an important contribution to the neutral structures 19 

as well, the increased electron demand of 20 makes the B=N double bond character more 

significant.  This double bond character is also illustrated by the very short B–N 

distances in the crystal structure solved for 20a (1.30 and 1.42 Å).  The two amido 

groups were also found to be normal to each other, recalling an allene structure where 

orbital overlap at the central atom is maximized.  The difference in 11B NMR chemical 
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shifts between 19d and 20d, the only borinium ion described in this report with only one 

π-donating ligand, is much greater than for the other pairs (precursors and borinium ions 

in Table 1-1). 

A more recent report takes advantage of bulky, donating phosphinimide ligands to 

prepare 22 (eq 3), a borinium ion with an extended π-system.10  Previous studies have 

indicated that smaller substituents at phosphorus allow dimerization of the borinium 

cation or coordination of a third phosphinimide to form the neutral trivalent borane.  

While the X-ray crystal structures of both 22a and 22b show a dissociated anion and the 

free divalent boron, NMR studies in solution are harder to interpret.  The 31P NMR signal 

for 22a shifts from δ 55.7 ppm in CD2Cl2 to δ 28.5 ppm in the less polar C6D6, taken to 

indicate tight ion pairing in the less polar solvent.  The 31P NMR chemical shift for 22b is 

not solvent-dependent, rationalized by the weakly coorinating B(C6F5)4
– counterion 

(TrTPFPB = trityl tetrakis(pentafluorophenyl)borate, Ph3C+ –B(C6F5)4).  The 11B NMR 

chemical shifts, perhaps more indicative of the coordination environment at the boron 

atom, also changes for 22a based on solvent, from δ -6.1 ppm in C6D6 to δ 11.9 in 

CD2Cl2.  The chemical shift for 22b is only reported in C6D6 (δ11B = 11.1 ppm) but is 

similar to the shift for 22a in the more polar solvent.  Note that the intermediate trivalent 

species prepared as an intermediate from 23 (((tBu)3P=N)2B–H) before hydride 

abstraction displays an 11B NMR signal at δ 24.6 ppm.  This could be taken as evidence 

for a decreased electron demand on formation of the cationic species, probably due to 

increased B=N double bond character in 22b.  These surprisingly low 11B NMR chemical 

shifts indicate a fairly rich electronic environment at boron, which coupled with the steric 



 

 

7

bulk of the tri-tert-butylphosphinyl groups does not look encouraging for applications of 

structures related to 22 as Lewis acids. 

N(tBu)3P
Li

BCl3
N(tBu)3P B N P(tBu)3

21 22a: X = Cl
22b: X = B(C6F5)4

X N(tBu)3P
H

23

1) BH3·SMe2

2) TrTPFPB
(3)

 

 Moving to the other end of the spectrum, boronium ions (10) were the first boron 

cations prepared and characterized, almost certainly due to the stability imparted by 

coordinative saturation.  The earliest reported boron cations, 25, were prepared in 1905 

by the reaction of BCl3 with β-diketones (eq 4),11 but these were only characterized by 

elemental analysis until later groups studied different salts of this cation by spectroscopic 

means (R = R’ = Ph: δ11B = 9.4 ppm).12  While numerous methods have been explored to 

arrive at these cations since the original report, the complete coordination sphere makes 

them less interesting for applications as Lewis acids.  They could activate a substrate by 

substitution of a ligand at boron in an SN1 or an SN2 manner, with both pathways creating 

the same activated species.  For the analogous carbon-based electrophiles, the SN2 

pathway is only accessible to 1° or 2° electrophiles due to steric hindrance at the backside 

of the bond being broken.  Applying this analogy to boronium ions which are commonly 

substituted by more than one or two ligands other than hydride, the SN1 pathway would 

be favored.  This more likely dissociative mechanism involves intermediacy of either a 

neutral or cationic trivalent boron depending on the substituent lost. 

R

O O

R'

BX3

-2HX
B

O

O O

O

R'

R R

R'

X

(4)

24
R, R' = Me, Ph

25
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Borenium Ions 

This potential trivalent cationic boron intermediate, a borenium ion, will be 

considered next.  The methods used in the formation of borenium ions from more stable 

species can be grouped into two common classes: abstraction of an anionic group from 

neutral tetravalent boron (eq 5) or electrophilic attack at one of the ligands of neutral 

trivalent boron (eq 6).  The first pathway is the first step in the SN1 mechanism just 

mentioned for reaction of a boronium ion, and in this I include any displacement of an 

anionic group from trivalent boron (26) with a neutral one.  This likely occurs by 

complex formation to 27 followed by loss of a substituent (eq 5) rather than direct 

displacement.   

R
B

R

L R' E+

- R–E R
B

R

L
(5)

R
B

R

X E+

R
B

R

X
(6)

17

17

27

28

E

R
B

R

R

26

L

 

Although trivalent boron cations had been proposed a few years earlier, the first 

report of a borenium ion with 11B NMR evidence to confirm the coordination around 

boron was from the Ryschkewitsch laboratory in 1970.13  Chloride abstraction from 4-

picoline·BCl3 with 2 equiv aluminum chloride produces salt 30 (eq 7).  The 11B NMR 

signal at δ 47 ppm (corrected for the currently used BF3·OEt2 reference) is shifted 

downfield by 29 ppm relative to tetravalent boron in 29 (δ11B = 8 ppm).  The 1H NMR 

chemical shifts were observed to depend on the stoichiometry, and the equilibrium 

constant for eq 7 (K = 20) was approximated by conductance experiments.  Recent work 

from the Fujio laboratory has shown a similar abstraction of chloride from an adduct of 
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pyridine with chlorodiphenylborane (31), generating 32 cleanly.  The downfield shift of 

the 13C NMR signals for phenyl carbons, particularly ortho and para carbons, served as 

evidence for formation of 32, as did the 11B NMR signal at δ 58.2 ppm.14  This represents 

a downfield shift of 50 ppm relative to 31 (δ11B = 8.2 ppm)! 

 

N
B

Cl

Cl Cl

N
B

Cl

Cl

(7)

3029Me

Al2Cl7

+ Al2Cl6

Me

N
B

Cl

Ph Ph

N
B

Ph

Ph

(8)

3231

SbCl6

+ SbCl5

 

A borenium ion has been prepared by this pathway and shown to exist in the 

presence of the more strongly coordinating BF4 and even, to an extent, Cl anions by 

taking advantage of aromaticity.15  Reaction of β-diketimine 33 with BF3·OEt2 followed 

by reaction with a second equivalent of BF3·OEt2 gave aromatic borinium ion 35 

(Scheme 1-1).  The stability imparted to 35 by aromaticity is great enough that even the 

tetravalent BF3·OEt2 is sufficiently Lewis acidic to remove a fluoride ion from 34.  This 

stabilization of the trivalent boron cation is also observed by the 11B NMR shift at δ 23.1 

ppm, upfield relative to other borenium ions previously described.  Likewise, metathesis 

of aluminum complex 36 with BCl3 gives B-chloro analogue 37.  Anion metathesis with 

LiCl generates a species with a concentration-dependent 11B NMR shift, between δ 15 

and δ 30 ppm.  The concentration dependence was explained by the authors in terms of 

an equilibrium between 38a and 38b, the high end of the range of 11B NMR shifts close 

to that reported 



 

 

10

 

 

Scheme 1-1.  Preparation of Aromatic 1,3,2-Diazaborinium Ions 
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N
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ClCl 38b

BCl3

N
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N

MeMe

Ar Ar
Ph

Al2Cl7

39
Ar = 2,6-(iPr)2C6H3  

for 37 (δ11B = 32.2 ppm).  A crystalline B-phenyl analogue (39) was later reported by 

Cowley, and the planarity of the trivalent boron atom was confirmed by solving its X-ray 

crystal structure.15b 

This first pathway for borenium ion formation (eq 5) is also relevant as the mode 

of boron cation generation that was pursued in this thesis research, discussed more fully 

in Chapters 2 and 3, with R′ = H and E+ = trityl cation.  Our work focused on attempts to 

generate boronium ions with a lower substitution pattern than has yet been achieved (17, 

R = H), so the counterion was carefully chosen as the weakly coordinating B(C6F5)4 

anion already seen in connection with borinium ion 22.  The evidence for intermediacy of 

a borenium ion generated in this way will be presented in later chapters. 
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41

E
E

R
R

E = BH3, AlBr3, SnCl4  

 The other pathway for borenium ion generation (eq 6 and 9), activation by 

coordination to a boron substituent, will be discussed briefly now and again in the next 

section.  Many of the applications described in the next section take advantage of neutral 

Lewis acids to convert a trivalent nitrogen bonded to the boron atom to tetravalent 

nitrogen.  Thus structure 41 has a borenium subunit with increased electron demand at 

boron relative to 40, even though this complex is net neutral.  Only the reaction of 40 

with a cationic Lewis acid, for example a proton, generates a true borenium cation as in 

42.  For example, Nöth found that while reaction of 43 with HCl generated tetravalent 

boron products, HOTf gave the isolable salt 44.16  The X-ray crystal structure of 44b was 

solved, confirming the coordination state of boron in the solid state.  However, the 

reported 11B NMR signal, δ 24.9 ppm for 44a compared to δ 26.5 ppm for 43a,17 leaves 

some question about whether this is truly a trivalent boron cation in solution.  

Coordination of the anion or even of solvent into boron must be considered as a 

possibility, but the similarity in 11B NMR chemical shifts could mean that the remaining 

two amido groups at boron provide sufficient stabilization of the empty shell at boron to 

negate any effects of loss of stabilization from a third amido group. 

TfO

44
N

B
N
Me

Me

N
R

R

43a: R = Me
43b: R = Ph

HOTf

N
B

N
Me

Me

N
R

R

H
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A computational study7 of a simplified model of 44 (46, (H2N)2B·NH3
+) predicts 

B–N bond lengths similar to those found in the crystal structure of 44b, approximately 

1.4 Å for bonds to the trivalent nitrogen atoms but 1.6 Å for the bond to the protonated 

nitrogen (Table 1-2).  The B–NH3 bond length is similar for the series of NH3-substituted 

borenium ions in Table 1-2.  These calculations also predict a significant charge character 

at boron, a Mulliken gross charge of +0.83 at boron in 46.  This charge increases as the R 

substituent is changed to more electronegative substituents (F > O ≈ N > C), with the 

exception of oxygen-substituted 47 according to the calculations at the 6-31G* level.  

The charge variation also follows the trend of π-backbonding for the heteroatom-

substituted 46-48, with the highest p electron density at the central boron atom predicted 

for the more highly stabilized 46.  Although no lone pair is present on the methyl groups 

of 45, hyperconjugation places some p electron density at boron. 

Table 1-2.  6-31G*//6-31G* (STO-3G//STO-3G) Calculations on Borenium Ions 45-48a 

B
NH3

RR  B
NH3

CH3H3C
45  

B
NH3

NH2H2N
46  

B
NH3

OHHO
47  

B
NH3

FF
48  

B–R (Å) 1.56 (1.56) 1.39 (1.38) 1.32 (1.33) 1.28 (1.28) 
B–N (Å) 1.60 (1.59) 1.59 (1.59) 1.56 (1.58) 1.55 (1.59) 
qB

b 0.70 (0.55) 0.83 (0.64) 0.81 (0.67) 0.97 (0.76) 
pπ

c 0.10 (0.12) 0.41 (0.52) 0.33 (0.51) 0.26 (0.46) 
a All molecules optimized under CS symmetry with NH3 and CH3 groups restricted to 
local C3ν symmetry.  b Mulliken gross charge on the central boron atom.  c Mulliken 
population of the boron p orbital normal to the molecular plane. 
 
 The preceding examples demonstrate a few methods of forming boron cations and 

some evidence for the electron-deficient nature of these species.  This is not meant to be 

an exhaustive review on the topic, simply an introduction to the concept of highly Lewis 

acidic boron cations, and the challenges that must be overcome particularly in preparing 

borinium and borenium ions.  Many of the means used to obtain these low-valent boron 
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compounds, however, attenuate the Lewis acidity to an extent.  Nevertheless the next 

section will demonstrate some powerful applications of such borenium ions as catalysts 

for common organic transformations such as ketone reduction, the Diels-Alder 

cyclization and the aldol reaction. 

Applications of Activated Oxazaborolidine Catalysts 

The Dual Function of Oxazaborolidines in the CBS Reduction 

 Perhaps the first reported application of a reagent with a borenium subunit was 

not even recognized at the time as such.  In the course of studies directed toward 

enantioselective ketone reduction, Itsuno reported that a chiral amine borane complex 

derived from diphenylvalinol (49) gave highly enantioselective reduction of a number of 

different aryl ketones (94-100% ee).18  The stoichiometry of BH3·THF to 49 used (2:1) 

was noted as an important variable, but the role of a second equivalent of borane was not 

known at the time of the initial report.  During optimization of the reaction conditions, 

Itsuno later found that pretreatment of 49 or other chiral amino alcohols with 1 equiv 

BH3·THF at 0 °C allowed isolation of a chiral complex that was not well characterized.18b  

This complex could be used catalytically with stoichiometric reducing agents, including 

BH3·THF, for the enantioselective reduction of O-methyloximes.  The unidentified 

complex was proposed to coordinate to the oxime ether and accelerate the reduction, but 

the authors did not indicate activation of borane as a reductant, despite noting that “the 

reduction with sodium borohydride did not proceed due to its low reactivity.” 

 At the time of this later report on catalytic activity of the pretreated amino alcohol 

borane complex, Corey had observed a similar catalytic activity from a preformed 

catalyst.19  Corey’s closer investigation of the structure of this unidentified boron catalyst 

led to a proposal for the mode of activation of ketones toward reduction.  He identified 
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this complex as 50, assisted in part by the 11B NMR shift at δ 28.1 ppm, in the range 

expected for a trivalent boron complex stabilized by a nitrogen and an oxygen 

substituent.  Oxazaborolidine 53a, formed by the reaction of borane with 

diphenylprolinol, was a superior catalyst for the ketone reduction.  This complex could 

be used at even lower catalyst loadings (as low as 5 mol% with no change in 

enantioselectivity), still giving ketone reduction within 1 min at rt using only 0.6 equiv 

BH3·THF. 

OH
Ph

H2N

PhMe
Me

49

Ph
PhMe

Me

50

N
B

O

H

H

BH3·THF

-H2

OH
Ph

Ph

52

Ph
Ph

53a

N
B

O

H

BH3·THF

-H2N
H

H H BH3·THF
Ph

Ph

54a

N
B

O

H

H

H3B

Ph
PhMe

Me

51

N
B

O

H

BH3·THF

H
H3B

(11)

(12)

 

The structure of 53a was proposed based on IR data and high resolution mass 

spectrometry as well as NMR data, including the 11B NMR signal at δ 28.3 ppm, with a 

small amount of dimer (δ11B = 7.6 ppm).  The complex 54a was proposed based on 11B 

NMR observation of a solution of 53a in THF treated with excess BH3·THF.  Two new 

signals were observed, for the ring boron and the exocyclic N–BH3, but these signals had 

chemical shifts at 3.2 and -19.4 ppm, respectively.  The endocyclic boron in 54a would 

be expected to shift downfield from 53a if any change is observed.  This upfield chemical 

shift may imply reversible coordination of the reasonably Lewis basic THF into the 

borenium moiety to form a boronium moiety.  The 11B NMR spectrum of 50 with 

BH3·THF added showed only minor peaks corresponding to formation of the analogous 

51.  A subsequent communication from Corey described the B-methyl analogue of 53a 
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(53b).20  This oxazaborolidine has a 11B NMR shift at δ 33.5 ppm similar to 53a, but 

borane complexation to form 54b results in the expected downfield shift for the 

endocyclic boron nucleus (δ11B = 36.5 ppm) and a comparable upfield-shifted exocyclic 

N–BH3 resonance (δ11B = -15.4 ppm).  Apparently solvent does not coordinate to the 

slightly bulkier, more stabilized B-methyl derivative.  Note that 54 is described here as 

possessing a borenium subunit once the nitrogen lone pair is used to form a bond to the 

Lewis acidic BH3.  Thus 54 is net neutral and not technically a borenium ion, but the 

endocyclic boron atom is expected to be more electrophilic as a result of the decreased 

electron donation into the p orbital at boron. 

Corey proposed that catalyst 53 functions with dual purpose according to eq 13, 

activating both substrate (ketone) and reagent (borane) via complex 54.  So Itsuno’s 

original purpose of preparing a chiral amine borane was in fact realized, with reaction 

likely occuring by hydride transfer from the N–BH3 of 55.  Itsuno’s later report 

proposing activation of the ketone by coordination to an electrophilic boron promoter (as 

in 55) also seems reasonable.  Both of these effects combine to allow very fast reactions 

under mild conditions, and the intramolecular hydride transfer from 55 to 56 can be used 

to rationalize the high stereoselectivity of the reaction.  Intramolecular reaction from 55 

would only be viable if the ketone coordinates cis to the complexed BH3, and the favored 

configuration of the ketone puts the smaller substituent (RS) cis to boron to minize steric 

interactions with the rest of the oxazaborolidine.  Subsequent work has extended this 

methodology to allow facial discrimination even for ketones with sterically similar 

substituents and to a number of applications in total synthesis.21  The CBS reduction 

(Corey, Bakshi and Shibata19) has become one of the most powerful methods for 

enantioselective ketone reduction available to the organic chemist. 
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Development of Efficient Diels-Alder Catalysts 

 In further attempts to apply boron-based Lewis acids to other reactions, Corey 

focused on a different mode of decreasing electron density at boron.22-24  No specific 

mention is made of any attempts to apply the borane-activated oxazaborolidines 54 to the 

Diels-Alder reaction, but the use of BH3·THF as an additive would not be likely to 

succeed for the desired reaction where one of the substrates is a diene; hydroboration 

could compete with the cycloaddition.  Instead the initial work toward developing an 

enantioselective Diels-Alder reaction with borane catalysts applied an N-sulfonyl 

oxazaborolidine (57) from the parent amino acid.  The electron-withdrawing groups at 

nitrogen and oxygen likely play a similar role as did BH3 in the CBS reduction by 

enhancing the Lewis acidity of this catalyst (57b: δ11B = 34 ppm, close to the chemical 

shift of borane-complexed catalyst 54b but also to the parent oxazaborolidines 53).  

These oxazaborolidines are highly active catalysts, allowing reaction of 2-substituted 

acroleins with cyclopentadiene within 2 h at -78 °C. 

N
B

O

H
R

NH

O

SO2Me

nBu57a: R = H
57b : R = Me

H

O
Br
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O
N B

O

S
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OO Bu

N
H

R
H

H

O

Br
H

OHC

Br
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(14)
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The tethered indolyl group was considered important for organizing the complex, 

with charge-transfer complexation thought to occur between the dienophile and this 

electron-rich arene.  The strongest evidence for this interaction was a red-orange color 

that develops on addition of 2-bromoacrolein (58) to catalyst 57b (eq 14) and fades upon 

warming but returns on cooling the solution.23b  In the proposed conformation of 

dienophile-catalyst complex (59) the indolyl group blocks one face of the dienophile, 

directing the diene to the other face and resulting in high facial selectivity (200:1) for the 

cycloaddition with cyclopentadiene.  Additional evidence for this π -π interaction came 

from a systematic variation of the tethered arene by the Scheeren group; this study found 

the expected decrease in enantioselectivity using catalysts with less electron rich aryl 

groups.25 

A limitation of the catalyst class related to 57 was the substrate scope; most 

applications involve only cycloaddition of a dienophile with the highly reactive 

cyclopentadiene.  Surmounting this challenge required the development of a “super-

reactive” chiral Lewis acid catalyst, a borenium ion.26  To that end, Corey reported that 

reaction of the protected chiral amino alcohol 61 with BBr3 in DCM resulted in cleavage 

of the silyl ether and formation of a boracycle (62).  This tetravalent boracycle was in 

equilibrium with the cationic 63, an equilibrium that was observed to shift toward the 

borenium salt in the presence of excess BBr3 or silver tetrakis(3,5-bis-trifluoromethyl-

phenyl)borate.  The additives react with the bromide ion forming BBr4 or the 

tetraarylborate salt of 63, respectively.  Characterization of these salts was hindered by 

decomposition of the catalyst mixture at temperatures above -60 °C, even without the 

added BBr3 or silver borate.  Fortunately, either method for catalyst preparation was 

effective for promoting the Diels-Alder reaction at temperatures as low as -94 °C within  
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61, Ar = 3,5-Me2C6H3

N

OTMS
Ar

Ar

BBr3
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-78 °C
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N

O
B
Br

Br

Ar

Ar
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N
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Br

Ar

Ar

Br

(15)

 

1 h.  The substrate scope was successfully expanded to the less reactive 1,3-butadiene 

(64) and 1,3-cyclohexadiene (65) by using the tetraarylborate salt of 63 prepared by the 

addition of the silver salt to 62.  In all cases, cycloadducts were obtained in high yields 

and optical activity (eq 16). 

62/63: No reaction
62/63 + AgB(C6H3(CF3)2)4: 99% y, 93-94% ee

R
R

64: R = H
65: R = -CH2CH2-

Br
H

O

58

-94 °C, 1-2 h
(16)

R
R

Br

CHO

66: R = H
67: R = -CH2CH2-

 

Limited use was made of 11B NMR spectroscopy in this report.  It was noted that 

the addition of excess BBr3 (up to 1.6 equiv) to 61 generated BBr4
– as observed by 11B 

NMR and that the formation of this anion increased as expected with the greater amounts 

of BBr3 added.  No mention was made, however, of the 11B NMR signal for either 62 or 

63.  The chemical shift should be indicative of the coordination environment at boron and 

would have been an important piece of evidence for formation of this highly Lewis acidic 

species.  The lack of reported data for the electrophilic boron atom is not commented 

upon, but may be explained by a phenomenon that has been studied for 11B as well as 14N 

and other quadrupolar nuclei.27,28   

Nuclei with spin numbers I > 1/2 are quadrupolar, having an electric field that is 

not spherically symmetrical.  The fluctuations in the orientation of the resulting electric 

field gradient due to molecular motion in the liquid state allows a mechanism for nuclear 
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spin relaxation.  This quadrupolar relaxation can be so fast that some nuclei, such as 37Cl, 

cannot be observed by NMR spectroscopy under typical conditions because peak width is 

inversely related to relaxation time.  The relaxation time for quadrupolar nuclei has been 

demonstrated to increase with increased temperature in this way, insofar as the 

quadrupolar relaxation is the dominant relaxation mechanism.  The rate of quadrupolar 

relaxation is proportional not only to a term describing the magnitude and direction of the 

electric field gradient but also to the correlation time characterizing the reorientation of 

this gradient (related to molecular motion).  The rate of reorientation has been measured 

in certain cases27b,28 and was found to increase with temperature.  The time the molecule 

spends in any given orientation, the correlation time, thus decreases with increased 

temperature, and the rate of quadrupolar relaxation decreases with it.  This results in 

sharper 11B NMR signals at higher temperatures, or the inability to detect the often broad 

signals particularly at lower temperatures such as Corey used in his studies of 63.  The 

more symmetrical BBr4 anion is less sensitive to this quadrupolar relaxation since 

molecular symmetry results in an electric field closer to spherical symmetry.  This is the 

reason why Corey was able to observe formation of BBr4
– even at -60 °C. 

 Developing the concept of borenium ion catalysis further, Corey reported that 

activation of 53c or 53d with the strong Brønsted acid CF3SO3H (triflic acid, TfOH) gave 

a powerful catalyst for the Diels-Alder reaction.29  Even cycloaddition of acroleins to the 

less reactive 1,3-butadiene (64) and 1,3-cyclohexadiene (65) were possible at -78 °C (eq 

16), although full conversion required 24 h.  This puts the catalytic activity using TfOH 

activation between that of 62/63 (no reaction with either 64 or 65) and that of the 

tetraarylborate salt of 63 (reactions of 64 and 65 complete within 2 h at -94 °C).  

Observation of the activated catalyst by 1H NMR at low temperature (-80 °C) provided 
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evidence to rationalize this intermediate catalytic efficiency.  Peaks progressively 

downfield from the precatalyst 53 that were assigned to 68a and 69a, respectively, were 

observed in a ratio of 1.5:1 at this temperature.  Furthermore, the sharp peaks indicated 

slow interconversion that became fast on the NMR time scale at 0 °C.  No comment was 

made regarding the 11B NMR spectrum of 69a even though this catalyst did not 

decompose even at 0 °C.  The equilibrium between 68a and 69a may have hindered such 

efforts.   

 
53c: R = H
53d: R = Me

N
B

O

H
HX

Ar
Ar

68a: X = OTf
68b: X = NTf2
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Further exploration with the TfOH-activated catalyst system showed that this 

more reactive borenium ion allowed a greater reaction scope.30  Oxazaborolidinium ion 

69a was effective for cycloadditions even with somewhat less reactive dienophiles like 

α,β-unsaturated esters and ketones.  The scope was still somewhat limited to fairly 

reactive substrates.  Attempts to catalyze slower reactions with 69a at higher 

temperatures were hindered by the instability of 69a because its decomposition was 

problematic even  
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at 0 °C.  Activation with bis(trifluoromethyl)sulfonimide (HNTf2) gave a slightly higher 

ratio of 69b and 68b (1:1.2 compared to 1:1.5 for 69a/68a) by 1H NMR assay at -80 °C.31  

More importantly, this catalyst was stable even at rt, allowing the reaction of cyclic 

lactones and ketones with less reactive dienes like 2,3-dimethyl-1,3-butadiene (70, eq 

18).  The reaction of 70 with diethyl fumarate (73, eq 19) or trifluoroethyl acrylate (75, 

eq 20) was also effective with catalyst 69b.   

A carbon-based strong acid with a bulky conjugate base was also tested for 

activation of oxazaborolidine-based Lewis acids.32  Yamamoto did a direct comparison of 

four different Brønsted acids for activation of 77, proposed to form borenium ions 78 (eq 

21).  The cycloaddition of cyclopentadiene with ethyl acrylate (79) was used as a test 

reaction for this purpose (Table 1-3).  It was found that to the extent that reaction 

occurred with any of these activated catalysts, it occurred with high enantioselectivity.  

Significantly higher yields of product 80 were obtained by activation with Yamamoto’s 

acid (HC(C6F5)Tf2), consistent with previous work demonstrating that the counterion of 

78d is more weakly coordinating than TfO– or even Tf2N–.32b  No attempt to verify this 

by NMR assay was discussed however.  In fact, none of the catalysts 78 nor Corey’s 
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borenium ions 69 have been characterized by 11B NMR spectroscopy.  Perhaps the lack 

of 11B NMR data for these proposed borenium ions reflects attempts to observe cations 

such as 78 (or Corey’s 69 or 63) at low temperature, conditions that favor quadrupolar 

relaxation, while instability prevents observation at higher temperatures which might   

N
B
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Me
Me

Ph

Ph

Ph

77

HX

N
B

O
R

Me
Me

Ph

Ph

Ph 78

H

X

(21)

 

produce a sharper peak.  Also, there is no discussion of the stability of 78 at ambient 

temperature, although its use at -78 °C might imply instability at higher temperatures.  In 

contrast, 69a is observed by 1H NMR at 0 °C, and 69b is still catalytically active at 20 

°C. 

Table 1-3.  Comparison of Brønsted Acids for Activation of 77 as a Diels-Alder Catalyst 

CO2Et

79
CO2Et

77 + HX (1:1)
5 mol%

DCM, -78 °C, 1 h
80

endo/exo >99:1  

entry HX yielda eeb 
1 MsOH NRc - 
2 TfOH 30% 97% 
3 Tf2NH 43% 97% 
4 Tf2(C6F5)CH 73% >99% 

a By 1H NMR assay using MeNO2 as an internal 
standard.  b Enantiomeric excess determined by GC.  c No 
reaction. 

 
Finally, two recent reports have returned to the concept applied in the CBS 

reduction, activation of the oxazaborolidine with a neutral Lewis acid.  Again, in these 

cases the active catalyst is a neutral structure, but it includes what could be referred to as 

a borenium moiety.  Since both substrates in the Diels-Alder reaction are neutral, the lack 
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of charge in the promoter should not affect the reaction rates in any way.  Activation of 

Corey’s 53c with AlBr3 in a 1:1 stoichiometry gave a highly reactive catalyst.33  Complex 

81 was effective for promoting the Diels-Alder cycloaddition even with less reactive 

substrates, and using catalyst loadings as low as 4 mol%.  This contrasts with the 10-20 

mol% loading needed for similar substrates using 53c activated with HOTf.  The 

increased turnover of 81 was rationalized by the bulk of the AlBr3 Lewis acid preventing 

product inhibition of the catalyst.  Another interesting recent example of this concept is 

the activation of Yamamoto’s 77 with SnCl4.34  This Lewis acid was an effective 

activator even at stoichiometries as low as 1:4 (SnCl4 relative to 77).  This finding 

prompted a study of the effect of Lewis basic impurities on the catalytic efficiency of 82.  

Little change in yield or ee was observed on addition of water, iPrOH, EtOAc or even 

DMF to the reaction mixture.  Demonstrating this advantage, a number of Diels-Alder 

products were obtained in high yield and ee performing the reaction with catalyst 82 in 

unpurified DCM at -78 °C open to atmosphere.  In these cases, the active species (81 and 

82) were characterized by 1H NMR spectroscopy, but 11B NMR data corroborating the 

electron deficiency at boron were not provided. 
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The activated oxazaborolidine-based catalysts presented here are highly 

electrophilic, promoting facile reactions with carbonyl substrates at low temperatures 

with high enantioselectivity.  The Tf2NH activated catalyst (69b) has also been applied to 

the Mukaiyama-Michael reaction (eq 24),35 but related catalysts have not yet been 

reported for other reactions.  Considering the vast number of reactions of carbonyl 

substrates, and considering the well-defined manner in which carbonyls coordinate to 

borenium ion equivalents, this catalyst system is ripe for further exploitation. 

O

MeMe

TMSO OMe

69b (0.2 equiv)

Ph3PO
toluene, -20 °C

O

MeO2C

Me Me

83 84

85
91% y

90% ee

(24)

 
Other Applications of Boron Cations 

Applications of boron cations are sparse apart from the powerful oxazaborolidine-

derived catalysts presented in the previous section, but a few will be highlighted here.  

Only one other example was found of a boron cation being used catalytically.  

Protonation of neutral, tetravalent precursor complex 86 with TfOH in the presence of 

THF generates cation 87.36  The presence of bound THF was suggested by 1H NMR data 

and confirmed by elemental analysis of the salt.  The 11B NMR signal at δ 3.9 ppm is also 

consistent with a tetracoordinate boron center.  This species is novel as the first reported 

boron cation possessing a tridentate ligand, and it is also interesting as a solvent-

coordinated boronium ion that could easily lose either the weakly bound imine nitrogen 

ligand or solvent to generate a borenium intermediate.  Cation 87 is active for the 

polymerization of propylene oxide (88, Scheme 1-2), although the oligomers generated 

were of lower molecular weight than those formed by catalysis with commercially 

available Bu2BOTf or with cationic [salenAl(MeOH)2]+BPh4
–.  The authors propose 
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Scheme 1-2.  Formation of Boronium Ion 87 and Pathway for Polymerization Catalysis 
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chain propagation via 89, the product of borenium ion capture and activation of a 

propylene oxide monomer. 

Borenium ions were also implicated as intermediates in the dehydrogenative 

polymerization of ammonia borane (90).37  A solvent-coordinated cation, boronium ion 

91 (δ11B = 0.2 ppm), was isolated but its potential to lose solvent and coordinate to 

another molecule of 90 to activate it for intramolecular loss of H2 was proposed.  The 

intermediacy of hydride-bridged cation 92 was proposed by the authors, and a 

computational study of the proposed intermediates validated the proposal.  Calculations 

using DFT give a gas-phase stabilization of 47 kcal/mol on forming the hydride bridge in 

92 from 91.  This is of note in light of our discovery of similar hydride-bridge 

stabilization of boron cations to be presented in Chapter 2.  The pathway for hydrogen 

loss from ammonia borane with the more common activators TfOH and B(C6F5)3 could 

be similar to that shown in Scheme 1-3 according to the authors.  A better understanding 

of hydrogen generation could assist in the quest for alternative fuel source using 90 for 

hydrogen storage. 
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Scheme 1-3.  Proposed Pathway for Initiation of Dehydrogenative Polymerization of 90 
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One other example has been reported where a borenium subunit is proposed in the 

reaction pathway but without its direct observation.38  In a recent study on the Sc(OTf)3-

catalyzed addition of allylboronates to aldehydes it was shown that catalysis does not 

occur via carbonyl activation by Lewis acid coordination.  The reaction of (E)- or (Z)-

crotylboronates (95a or b) proceeds with high diastereospecificity even under Sc(OTf)3 

catalysis (eq 25), implying a closed transition state like that invoked for the uncatalyzed 

reaction of allylboron reagents.  The analogous addition of crotylstannanes (95c and d) 

proceeds with high diastereoselectivity but no stereospecificity, as expected for reaction 

via an open transition state with the Lewis acid coordinated to aldehyde 96.  This led the 

authors to propose closed transition state 98, in which the Lewis acid increases the 

electrophilicity of boron by coordination to one of its alkoxy substituents.  This is 

reminiscent of the activation of oxazaborolidines as Lewis acids by coordination of a 

Lewis acid to the nitrogen substituent at boron.  Additional evidence for this mode of 

activation is the failure of Sc(OTf)3 to catalyze the addition of an allylic dialkylborane 

(95e, MLn = –BBN, R1 = R2 = Me). 
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Finally, boron complex 99 is commonly used as a substrate for ring expansion to prepare 

phthalocyanines 101 with control over formation of mixed tetramers.39  Condensation of 

two different diiminoisoindoles (100) typically results in the statistical mixture of 

products.  However subphthalocyanine 99 can be prepared from three identical isoindole 

units and the reaction with a different isoindole results in controlled ring expansion to the 

phthalocyanine, potentially useful for its optical and electronic properties.  This process 

has been proposed to occur via loss of chloride and coordination of an isoindole, but no 

boronium or borenium intermediates have been observed in the course of the reaction.  

Recently Reed prepared a borenium ion (102) related to 99 with the weakly coordinating 

carborane anion.40  The solubility of 102 was too low for 11B and 13C NMR spectroscopy, 

but the formation of 102 was confirmed by solving the X-ray structure of this crystalline 

compound.  The potential reaction of 102 with an isoindole 100 was not probed, so this 

does not constitute an application of a borenium ion in synthesis.  It does support the 

proposed conversion from 99 to 101, however, and this discovery could lead to higher 

yields and better regiocontrol for phthalocyanine formation under mild conditions. 
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Summary 

 The last 50 years have seen great advances in the field of boron cations.  Most 

reports have focused on the preparation of tetravalent boronium cations, species that are 

stable due to a complete coordination sphere at boron.  Advances have been made that 

allow the isolation and characterization of trivalent borenium and even the divalent 

borinium ions.  These compounds have been stabilized by ligands which can both donate 

electron density into boron and sterically shield the boron atom.  This comes at a cost to 

reactivity, and the result is that such species will be difficult to apply as promoters of 

organic transformations.  Indeed, many of the borenium and borinium ions that have been 

characterized are of interest purely for studies of their fundamental properties, although 

these studies can provide information useful to the optimization of boron cations used as 

Lewis acids.  The applications of borenium ions which have been developed in the last 20 



 

 

29

years demonstrate that these can be powerful catalysts, providing tremendous rate 

enhancements. 
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Chapter 2 

 
 

Electrophilic Activation of Lewis Base Complexes of Borane with Trityl 
Tetrakis(pentafluorophenyl)borate and Application to Hydroboration 

 
 
 

Introduction – Trityl Activation to Generate Reactive Cationic Species

Lewis acid cocatalysts have long been employed with transition metal 

polymerization catalysts, particulary with alkyl metallocene-based systems.1  These 

cocatalysts, typically aluminum-based, were thought to enhance the metallocene’s 

activity by promoting the formation of cation-like metal centers.  The activation of 

zirconocene dimethyl complexes with B(C6F5)3 (1), a more potent Lewis acid,2 

eventually allowed the isolation and more thorough characterization of one of these 

activated, cation-like catalysts.3  The catalytic activity of complexes 2-4 for ethylene and 

propylene polymerization was demonstrated to confirm zirconocene activation by 1.  

Spectroscopic data suggested transfer of a methyl to boron with formation of cationic 

zirconium (eq 1), and crystallographic characterization confirmed this for 3, showing a 

weak interaction of the cationic zirconium center with the MeBAr3 anion via a bridging 

methyl. 

Me
Me

Zr
Me

C B(C6F5)3

H

HH

Me
Me

3

L2ZrMe2 + 1
C6H6 or

pentane
L2ZrMe MeB(C6F5)3

2: L = η5-C5H5
3: L = η5-1,2-(Me)2C5H3
4: L = η5-C5Me5

(1)
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In a study of analogous organoactinides, Marks found that a marked increase in 

catalytic activity for polymerization as well as hydrogenation resulted from using the 

very weakly coordinating B(C6F5)4 anion.4  Around the same time that Marks had 

demonstrated activation by ammonium salts of this anion, Chien reported a successful 

activation of rac-ethylenebis(indenyl)dimethylzirconium with a triphenylcarbenium salt 

of this anion (Ph3C+ –B(C6F5)4, TrTPFPB, 5).5  The zirconium precatalyst reacts with the 

trityl cation by methyl transfer in a manner analogous to activation by 1, but in this case 

forms an unreactive triphenylethane byproduct with a stable C–C bond.  The resulting 

cationic zirconium catalyst was shown to be very active for olefin polymerization.  

N
Al

N
P

Dipp Mes

Ph
Ph

R R
Dipp = 2,6-iPr2C6H3
Mes = 2,4,6-Me3C6H2
6a: R = Me, 6b: R = H

5

C6D5Br N
Al

N
P

Dipp Mes

Ph
Ph

R 7

TPFPB

Ph3C–R

PhCCPh

R = H N
Al

N
P

Dipp Mes

Ph
Ph

8b
Ph

Ph

(2)

 

Trityl cation has also been used as a potent hydride acceptor to generate reactive 

cationic species from neutral hydride donors.  For example, cationic aluminum species 7a 

and 7b were prepared by the action of TrTPFPB on methyl- or hydrido-aluminum 

complexes 6a and 6b (eq 2).6  The potential of these cationic aluminum species as 

catalysts for polymerization and other reactions was implied by the insertion of an alkyne 

into the AlH bond of 7b; the methylaluminum cation 7a was unreactive toward 

diphenylacetylene even after prolonged heating.  Hydride abstraction from M–H bonds of 

molybdenum and tungsten complexes has also been shown to generate cationic species 

that cleave H2 to generate metal dihydrides.7  These metal dihydrides are active as 
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catalysts for ketone hydrogenation by an ionic mechanism, enabling a chemoselective 

ketone reduction at low pressures (<4 atm H2). 

Hydride abstraction by trityl cation has found numerous applications in the search 

for a free tricoordinate silyl cation.8  In an early attempt by Corey to generate such a 

cation, silyl hydrides were found to react with trityl halides, but the result was formation 

of a silicon–halogen bond.9  Recent work has shown that TrTPFPB is effective for 

generating a more active silicon electrophile,10 but the B(C6F5)4 anion is still too 

coordinating to allow formation of a trialkylsilyl cation.  Ultimately it would require a 

sterically hindered silicon environment to allow the formation of a free silicon cation, but 

the trityl cation is itself too bulky to react with silicon donors like trimesitylsilane.9  

While the first crystallographically characterized free trialkylsilyl cation (12) was formed 

by allyl transfer from the neutral silane to a carborane-coordinated triethylsilyl cation 

(10, eq 4), a hydride abstraction by trityl cation was utilized in the preparation of this 

intermediate activator (eq 3).11   

Et3Si–H
[Ph3C][HCB11Me5Br6] (9)

C6H6

[Et3Si][HCB11Me5Br6]
10

(3)

Me

Me

Me Si

3

10

C6H6

[Mes3Si][HCB11Me5Br6]
12

(4)

11  

In an early example of B–H bond activation with the trityl cation, Benjamin et al. 

reported the reaction of Ph3C+ –BF4 with pyridine borane (13) in the presence of pyridine 

to give Py2BH2
+ (14, a four-coordinate boron cation, bis(pyridine)boronium according to 

the conventional nomenclature discussed in Chapter 1),12 as well as Ph3CH.13  A three-

coordinate boron cation, the (pyridine)borenium ion 15, was later proposed as an 
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intermediate,14 but no attempts to detect 15 or other primary borenium ions of the type 

L·BH2
+ have been reported.  Despite formal charge assignment in 15 to nitrogen, 

computational studies of this cation show significant positive charge character at the 

boron atom,15 belying a shortcoming of formal charge convention.  For the remainder of 

this chapter formal charges will not be drawn unless necessary for discussion. 

N
BH3

13
N

B

14
N N

B

15
H

H

N
B

16
Nuc N

B

17
Cl

Cl

N
BH3

18

H H

HH

 

The trivalent boron cation was expected to be highly electrophilic at boron 

allowing chemistry triggered by interaction with weakly nucleophilic n or π electrons, as 

in 16.  Hydroboration by both intra- and intermolecular pathways has been explored 

previously in our research group,16 involving the interaction of π electrons with an 

activated, albeit still tetravalent, boron electrophile.  Applications of TrTPFPB activation 

to olefin hydroboration will be discussed later in this chapter.  Arene borylation,17 

requiring interaction with less nucleophilic aromatic π electrons, requires the more potent 

electrophile created by the TrTPFPB activation discussed herein.18  The successful 

application to a directed electrophilic borylation will be the focus of Chapter 3.   

Hydrodefluorination19 is another interesting potential use for the highly 

electrophilic boron cations generated here.  Activation of triethylsilane by catalytic 

TrTPFPB has been shown to initiate hydrodefluorination of a number of different 

trifluoromethylarenes, generating the fully proton substituted toluene derivatives in all 

cases with fluorotriethylsilane as the byproduct.19b  A hydride-bridged disilyl cation (20), 
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formed by hydride abstraction from 19 with TrTPFPB, was also found to be effective for 

hydrodefluorination (eq 5).10  Triethylsilane regenerates 20 from the fluoride-bridged 

product 21, allowing a catalytic cycle in which triethylsilane is the terminal hydride 

source for reduction of a C–F bond.  The marked fluorophilicity of boron makes a 

cationic boron electrophile an exciting new candidate for this chemistry that has not yet 

been explored. 

20

Me2Si SiMe2
H TPFPBHMe2Si SiMe2H

19

5
(5)

21

Me2Si SiMe2
F TPFPB

R F R H
 

Observation of H-Bridged Cation 

Optimization of TrTPFPB Activation 

Borenium ion 15 is isoelectronic with benzyl cation, and should benefit from 

significant π delocalization.  We therefore attempted to observe 15 using NMR methods, 

although we recognized that this highly electrophilic species may exist as the solvent-

coordinated cation (16, Nuc = solvent), technically a boronium ion.  To avoid confusion, 

this distinction in nomenclature and structure will be generally left unspecified, and 16 

will be considered equivalent to the free borenium ion 15.  While the 11B NMR spectrum 

of 13 activated by TrTPFPB5,20 in CD2Cl2 (rt) has a major peak (among several) at δ 44 

ppm, well within the range where trisubstituted borenium ions have been reported,12 the 

signal is not coupled to protons and cannot be due to 15 nor to the solvent adduct (16, 

Nuc = CD2Cl2).  We have assigned this signal as PyBCl2
+ (17) based on 11B chemical 

shift comparisons and a pyridine quench to form the known Py2BCl2
+.21  The formation 

of this B-chlorinated byproduct will be discussed later. 
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Earlier work by Julia Clay had suggested that activation of 13 by TrTPFPB 

occurred by pyridine transfer to the electrophile rather than hydride transfer.22  The 

evidence for this was that after quenching a reaction of 13 activated by TrTPFPB with 

methanol after 1 h at rt, none of the expected Ph3CH was found in the crude product 

mixture.  However, reaction of  Et3N·BH3 (18) under the same conditions did generate 

Ph3CH, although it was isolated in only 70% yield.  This led us to suspect that the Ph3CH 

that formed, assumed to be inert, was in fact decomposing in the presence of these potent 

electrophiles.  A proposed decomposition pathway will be discussed in detail later, but 

the immediate concern was to minimize it.  Quenching either of these reactions within 1 

min after TrTPFPB addition resulted in quantitative recovery of Ph3CH, confirming that 

the absence of this product in the original experiment was due to its decomposition, not 

to activation by a pathway other than hydride transfer.  Alternatively, addition of 

TrTPFPB to either 13 or 18 cooled to -78 °C, quenching after 1 h at this temperature, also 

allowed isolation of Ph3CH in >95% yield. 

Taking advantage of the slower decomposition at lower temperatures, the reaction 

of TrTPFPB with 13 or 18 (1:1 mol ratio) was performed at -78 °C in CD2Cl2, monitoring 

by NMR spectroscopy.  This procedure gave little decomposition, and better spectra were 

acquired from activation of Et3N·BH3 (18).  Samples were allowed to warm to -20 °C for 

1H and 11B NMR analysis, conditions that reduce the line broadening observed especially 

for the 11B signals at -78 °C.23  The relaxation of the 11B nucleus (spin number I = 3/2) is 

dominated by quadrupolar relaxation, a faster process at lower temperatures23b as 

explained in Chapter 1.  This fast relaxation at low temperatures results in broader peaks 

since peak width is inversely proportional to the spin relaxation time, making their 

detection difficult.  The temperature chosen (-20 °C) was therefore a compromise 
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between minimizing line broadening (requiring higher temperatures) and minimizing 

decomposition (requiring lower temperatures) of the species we were trying to observe.   

Surprisingly, 1H NMR assay indicated complete conversion of 18 but only ca. 

50% conversion of trityl cation, as evidenced by a 1:1 ratio of Ph3CH to unreacted Ph3C+.  

A highly shielded peak appeared at δ 1H = -2.6 ppm that integrated for 1H relative to 

Ph3CH.  By 11B NMR, signals were observed for –B(C6F5)4 (sharp singlet at -17 ppm) and 

for a new broad peak at -3 ppm.  Warming the sample to rt resolved coupling to two 

protons for this peak, but did not result in greater conversion of trityl cation prior to 

quenching with methanol, and did not produce signals in the trivalent boron region. 

Qualitatively similar results were obtained when 13, 18 or other Lewis base borane 

complexes were treated with 50 mol% TrTPFPB (Table 2-1), although 13 still produced 

14 and other contaminants along with 24.  In each example, conversion to a dominant 

product having a high field 1H NMR  signal (δ 0.5 to -3.7 ppm) was observed. 

Table 2-1.  1H and 11B NMR Data for Activated Borane Complexesa 

 δ1Hb δ11B 

-2.6 -3 

-1.9 0 

0.5 -2 

0.1 -1 

-3.7 -27 

-2.2 -27 

R3N
B

H
B

NR3

HH H H 22: R = Et

Bu3P
B

H
B

PBu3

HH H H

26

Ph2P
B

H
B
PPh2

H
H

H
H

27

23: R = Me

+ X-

+ X-

+ X-

N B
H

B N

HH H H

R R

24: R = Hc

25: R = NMe2

+ X-

  
a In CD2Cl2 at -20 °C.  In all cases X- = TPFPB.  b Bridging hydride signal,  
ppm.  c Contaminated with 10 and unidentified pyridinium impurities. 
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Structural Analogies to Other H-Bridged Species 

The above data are consistent with the initial formation of transient borenium ion 

intermediates that undergo rapid capture by the B–H bond of unreacted substrate to form 

symmetrical cations 22-27.  The key event leading to 22 corresponds to overlap between 

a nucleophilic B–H σ orbital of Et3N·BH3 (18) with the empty p-orbital of [Et3N·BH2]+ 

(28a), or the equivalent displacement of dichloromethane (DCM) from the solvent adduct 

[Et3N·BH2·Cl2CD2]+ (28b, eq 6).  Coordination of B–H bonds into electrophilic centers to 

form 3-center, 2-electron (3c2e) bonds is well established,24 but cationic species with the 

B–H–B structural motif have not been reported previously.  The upfield 1H NMR signals 

for 22-27 are in the range of B–H–B bonds of the closest analogies, neutral structures 

including diborane25 as well as the B2H7
–anion26a and Katz’s hydride sponge, the anionic 

bis(dimethylboryl) analogue of 20.26b  The hydride-bridged structure 22 is also consistent 

with the -3 ppm 11B NMR chemical shift.26,27  The “dimeric” structure of 22 explains the 

stoichiometry, with 50 mol% of the TrTPFPB required for reaction with 18.  Attempts to 

confirm this structure by X-Ray crystallography were unsuccessful, possibly due to the 

highly fluorinated anion.  This anion was also suspected for difficulties encountered in 

attempts to crystallize silylium ions, apparently one of the reasons for the use of a 

carborane-based anion in the study of trimesitylsilylium.8a,11 

Et3N
B

28a
H

H

Et3N
B

28b
ClCH2Cl

HH
+ +

Et3N
B

H
B

NEt3

HH H H
+

22 18
(6)

CH2Cl2

?
 

In the absence of nucleophiles, excess TrTPFPB (beyond 50 mol%) did not react 

with the hydride-bridged products 22-27 and did not produce signals that could be 

assigned to borenium ions.28  This is in contrast to the reaction of other singly hydride-

bridged cationic M–H–M species4d,29 with trityl cation, a process that typically results in 
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full conversion to the M+ cation (M = transition metal).30  An interesting analogy can be 

drawn to methyl-bridged cation 30, part of the ongoing cationic polymerization catalyst 

studies described above.31  Initially signals in the 1H NMR spectrum were taken to 

suggest coordination of the triphenylethane byproduct to the cationic zirconium center as 

in 32.31a  In a reexamination of this work, the Bochmann group demonstrated that these 

signals were in fact unreacted trityl cation, due to incomplete conversion of methyl-

bridged 30 to free zirconium cation 31 at the low temperatures employed.31b  Warming 

the reaction to -40 °C, however, allowed complete methyl abstraction by trityl cation, 

generating 31 cleanly. 

5

CD2Cl2
-78 °C

Cp*2Zr CH3 ZrCp*2

CH3 CH3 TPFPB
30

Cp*2Zr
CH3

Cp*2Zr
CH3

CH3

CH3

Ph

Ph

TPFPB

32

31
Cp*2Zr

CH3

B(C6F5)4

5
(7)

29
Cp* = C5Me5

 

Hydridosilane activation by trityl cation also typically proceeds beyond formation 

of a hydride-bridged cation.  For example, even the internal Si–H–Si 3c2e bond of 20 

undergoes further activation, possibly to a highly reactive disilyl cation, upon treatment 

with TrTPFPB.10  The only observable products of the activation of 19 with 

stroichiometric trityl cation are B(C6F5)3 and the fluoride-bridged disilyl cation 21, 

although the only fluoride source present was the B(C6F5)4 anion.  Apart from other 

cyclic hydride-bridged disilyl cations such as 33 and 34,32 the only reported case of 

intermolecular stabilization of a silylium cation with an external Si–H bond (35) requires 

a large excess of silane, suggesting an equilibrium between 35 and solvent- and anion- 
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Me2Si SiMe2
H

SiMe2
H

Me2Si

Me2Si SiMe2

SiMe3Me3Si

R3Si H SiR3
+

33
34

35

+

+

 

coordinated species.33  In contrast, 22-27 were formed in the absence of excess borane 

complex L·BH3, and the chemical shifts were not affected by the presence of unreacted 

L·BH3.  However, the highly electrophilic cations 22-27 could not be isolated, and were 

only observed in solution. 

H/D Exchange of Hydrides with Trialkylsilanes 

Scheme 2-1.  H/D Exchange between 22 and Triisopropylsilane 

36 X= H
38 X= D

Et3N
B

X
SiiPr3

HX

37
Et3N

B
H

SiiPr3

DD

Et3N BD2

28a-d2

Et3N BD3 +

18-d3

+ +

HSiiPr3

+

Et3N
B

D
B

NEt3

DD D D
+

22-d5

 

Given the structural and electronic analogies to silylium cation chemistry,8 we 

were interested to learn whether 22 might interact with iPr3SiH as a potential 3c2e 

hydride donor.  No NMR evidence for an unsymmetrical structure 36 was obtained.  

However, when 22-d5 was generated from 18-d3 followed by exposure to iPr3SiH at rt in 

CD2Cl2 (1 h), H/D exchange was observed in 22 as well as iPr3SiH by 1H NMR, 2H 

NMR, and MS assay.  According to these results, 22-d5 dissociates reversibly to release a 

small amount of the borenium ion 28-d2.  Reversible formation of a 3c2e bond with 

iPr3SiH leads to 37, and equilibration with 38 provides the pathway for H/D exchange.  

This experiment was repeated in CH2Cl2, and deuteration of the silane was observed by 
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2H NMR as well as GC/MS.  This confirms that 18-d3, not solvent, was the deuterium 

source in these experiments.  The symmetrical cation 22 is therefore proposed to function 

as a source of the highly electrophilic borenium species 28.  We regard these data as 

strong evidence that monosubstituted borenium ions such as 28a (or the equivalent DCM 

adduct 28b) are viable intermediates. 

 Deuterium incorporation into other trialkylsilanes using 22-d5 was also 

successful, but the resulting deuterated silanes could not be verified by all the means 

described above for iPr3SiH.  Triphenylsilane was examined as a candidate for H/D 

exchange with 22-d5, and after 20 min in the presence of 22-d5 the 1H NMR peak for Si-

H had decreased in intensity while a peak for the briding hydride of 22 appeared, 

although equilibrium had not yet been attained.  Due to the proximity of the chemical 

shifts of Ph3SiH (5.5 ppm) and dichloromethane (5.32 ppm), 2H NMR could not be used 

to confirm the deuteration of the silane using CD2Cl2 as solvent.  The Ph3SiH peak was 

observed by GC/MS, and its M+1 peak was substantially increased relative to an 

untreated sample.  Triethylsilane also underwent H/D exchange at the silyl hydride on 

addition to a solution of 22-d5, which was confirmed by 1H and 2H NMR spectroscopy.  

In this case GC/MS could not be used to confirm the 2H enrichhment because of the high 

volatility of Et3SiH; conditions could not be found where this species comes off the gas 

chromatograph column sufficiently after the solvent front to allow its analysis by the 

mass spectrometer. 

Solvent-Assisted Decomposition of Triphenylmethane 

With a clear picture of the structures formed on addition of 5 to amine boranes, 

the unexpected decomposition of Ph3CH was studied more closely.  Prior literature 

implicitly assumes that Ph3CH is inert to the potent electrophiles produced by hydride 



 

 

45

abstraction using TrTPFPB, contrary to our findings at rt.  Of the few literature reports 

that mention the possibility of decomposition, most occur in the presence of a chlorinated 

solvent, usually DCM.31b,34  In one interesting example from Bochmann’s research 

group,34a a cationic yttrium complex was noted to decompose in chlorinated solvent if the 

activation was performed with TrTPFPB, but the product of B(C6F5)3 activation was 

stable.  This may be due to stabilization of the cationic yttrium product by coordination 

of the MeB(C6F5)3 anion through a bridging methyl, but it is possible that the chloride 

abstraction from solvent would occur reversibly if not for the presence of Ph3CH.  No 

mention is made of the fate of this byproduct.  

Scheme 2-2.  Decomposition of Triphenylmethane in Dichloromethane 

TrTPFPB (5)

CH2Cl2 or
CD2Cl2

Et3N BH3
Et3N

B
H

B
NEt3

HH H H
Ph3C H

CH*2Cl2

Et3N
B

Cl
CH*2Cl

HH

18
28b

18
28b

CHPh2

CH*2Cl

43

CHPh2

40
H

CH*2Cl

-H

CHPh2

CH*2Cl
41

H

CHPh2

CH*2H
42

CH*2Cl

45

H

CH*2H

46

Ph2CH
44

Ph2CH2

Et3N BH2Cl
39

(o-, m- and p-;
minor pathway)

TPFPB

22

or

H

28b

CH2Ph
CH*2Cl

49

CH2Ph

47
H

CH*2Cl
or

CH2Ph

CH*2H
48

CH*2H

46

 



 

 

46

Suspecting that Ph3CH does initially form in all cases of activation of an amine 

borane complex with TrTPFPB, we began to search for the hydrocarbon byproducts of its 

decomposition.  A reductive quench (Bu4NBH4) of the solution obtained from activation 

of 18 with TrTPFPB (CH2Cl2, 1 h, rt) gave Ph2CH2 as the major byproduct, along with a 

complex mixture of hydrocarbons.  Analysis by GC/MS revealed benzene, toluene, 

MeC6H4CH2Ph (48), and MeC6H4CHPh2 (42).  The use of CD2Cl2 as solvent increased 

the masses of toluene, 42, and 48 by 2 amu, indicating solvent incorporation.   

The formation of these hydrocarbons likely occurs from 28b-d2 by Cl–C 

heterolysis, Friedel-Crafts alkylation of Ph3CH at an ipso-carbon via Wheland 

intermediate 43,35a fragmentation to Ph2CH+ (44), and trapping by hydride to give 

Ph2CH2
 (Scheme 2-2).  The heterolytic C–C bond cleavage from 43 would also generate 

an equivalent of benzyl chloride, which could be reduced by Bu4NBH4 to produce the 

toluene impurity observed.  Alternatively, Friedel-Crafts alkylation of Ph3CH at an 

unsubstituted carbon leads to the methylated triphenylmethanes (42) by a similar 

pathway, releasing a proton instead of the diphenylmethyl cation 44.  The unusual 

selectivity of the reaction for substitution at an ipso-carbon leading to the major 

byproduct, Ph2CH2, can be explained by the relative stability of diphenylmethyl cation 

compared to a free proton in the absence of a good base.  This proton could also be 

responsible for the formation of benzene and the more stable 44 by the pathway shown in 

eq 8.  Attack of a chloromethyl cation equivalent on Ph2CH2 could lead to another 

equivalent of toluene by the ipso- substitution pathway or to the methylated 

diphenylmethanes 48 by attack at an unsubstituted carbon.   

CHPh2

H

50 + 44Ph3CH
H

(8)
 



 

 

47

The chloroborane adduct 39 was not observed after the hydride quench used here.  

This would likely be more reactive as a hydride donor toward any of the electrophilic 

species present (including the unreacted trityl cation) due to the stabilization of a 

developing empty orbital at boron by resonance donation of lone pairs on chlorine.  In the 

analogous halomethyl cation series, this stabilizing effect is more important than an 

inductive electron-withdrawing effect of the halide substituent (stability order: CCl3
+ > 

HCCl2
+ > H2CCl+ > CH3

+).35b  This could also explain the earlier observation of PyBCl2
+ 

(17) from activation of 13.  Initial formation of a chloroborane adduct of pyridine via 24 

and the solvent adduct 16 (Nuc = CH2Cl2) could be followed by another 

halogen/hydrogen exchange at boron.  The Py·BHCl2 thus formed gives the relatively 

stable PyBCl2
+ after hydride abstraction. 

Intermolecular Arene Borylation with Activated Borane Complexes 

Ph3CH
E

+

51 52

+ E+ +CHPh2 (9)CHPh2

E

 

Aromatic substitution with electrophiles other than the chloromethyl cation is 

possible under the reaction conditions (eq 9).  Demonstrating this, when the reaction 

solvent was switched to benzene or toluene, slow formation of Ph2CH2 was still 

observed, indicating the involvement of other sources of E+ in these solvents.  To test the 

possibility that 22 or 28 can act as E+, 18 was treated with TrTPFPB in the electron-rich 

arene, p-xylene, as solvent.  Oxidative workup after 20 h at rt gave the expected 2,5-

dimethylphenol, albeit in <5% yield.  This experiment raises the possibility that 

formation of 51 with E = BH2·NEt3 may also contribute to C–C bond cleavage.  

Intramolecular reactions from benzylic and homobenzylic amine boranes will be 
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discussed in the next chapter, but the initial leads for intermolecular aromatic substitution 

of electrophilic boron are discussed below. 

1) Py•BH3 (13)
1.1 equiv 5
rt, 20 h

2) NaOOH/MeOH

Me

OH

Me

Me
53 54

91% y

(10)

 

Our initial attempts at electrophilic arene borylation had seemed more promising, 

but were later shown to indicate the reaction of an impurity in the solvent.  The activation 

of pyridine borane (13) in p-xylene, chosen because all unsubstituted carbons are 

equivalent, gave just one product after oxidative workup.  Unexpectedly p-cresol (54), 

the product of demethylation, was isolated in 91% of the theoretical yield based on 13 (eq 

10).  Triethylamine and tributylphosphine boranes also produced p-cresol after TrTPFPB 

activation in p-xylene but with phenol (55) as a byproduct.  Initially, this was explained 

by substitution of triphenylmethane as in eq 9, but later investigations (vida infra) gave a 

simpler explanation.  Activation of amine boranes in mesitylene also gave mixtures of 

substitution at C–H and C–Me after oxidative workup, but in lower yields. 

During the continuing investigation into the intermolecular aromatic substitution 

reaction, the initial high yields of 54 were not reproducible.  The ratio of 55 to 54 

decreased as well as the yield of combined phenolic products.  Recrystallizing Py•BH3 

and distilling p-xylene gave little improvement to the yield and had no effect on the 

regioselectivity of the substitution, still producing 55 along with 54 in contradiction to 

the original experiments.  It was then noted that the change in regioselectivity, favoring 

formation of 55, occurred on switching to a new bottle of p-xylene.  Using the original 

sample resulted in a high yield of 54 as before even with purified Py•BH3.  A base 



 

 

49

extraction of this p-xylene revealed a p-methyl-benzyl hydroperoxide (56) contaminant 

that was present in a concentration similar to that of 13 under the conditions of the  

Me

OH

Me

OOH

56

OH
OOH

57

MeMe

55

54
90% y

1) Py•BH3 (13)
1.1 equiv 5
rt, 20 h

2) NaOOH/MeOH

1) Py•BH3 (13)
1.1 equiv 5
rt, 20 h

2) NaOOH/MeOH

(11)

(12)

 

aromatic substitution reactions.  To confirm that a benzylic peroxide impurity could 

actually be converted under the reaction conditions to a phenol as in eq 11, commercially 

available cumene hydroperoxide (57) was subjected to the reaction conditions in distilled 

p-xylene (eq 12). This reaction resulted in isolation of phenol (55) in high yield.  The 

initially reported demethylative substitution of mesitylene (58), also performed using a 

sample of this arene from an old bottle, was probably the result of similar contamination.  

Repeating the reaction with purified reagents led to the isolation of 2,4,6-trimethylphenol 

(59) in low yields without any trace of demethylative substitution product 60 (eq 13). 

OH

60

Me Me

OH
59 Me

Me

Me

Me Me

Me58

1) Py•BH3 (13)
1.1 equiv 5
rt, 20 h

2) NaOOH/MeOH
(13)

 

The phenol (55) impurity describe above was originally thought to come from 

borylation of Ph3CH at the ipso- carbon with electrophilic boron, but this was now called 

into question as well.  Closer inspection of the 1H NMR spectra showed that when phenol 

was produced it was in a 1:1 ratio with benzophenone (62).  This led to the conclusion 

that 55 was produced by oxidation of excess trityl cation via the intermediate benzylic 

peroxide 61 (eq 14), verified by exposing 5 to the oxidative workup.   
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HOO

Ph
Ph

Ph
O

61

OH
O

Ph

Ph
Ph OH

62
55

Ph Ph

Ph

5

(14)

 

One example of dealkylative substitution with electrophilic boron has been 

confirmed.  After distilling p-cymene (63) and using it as a solvent for the activation of 

recrystallized 13, p-cresol (54) was the only product observed after oxidation (eq 15).  

The most likely explanation is borylation at an ipso-carbon followed by loss of the 2-

propyl cation, but it is questionable whether this cation would be stable enough to be 

released in preference to a solvated proton.  Another mechanistic possibility is that the 

formation of 54 occurs by hydride removal from the α-carbon of 63 (the isopropyl 

methine proton) by electrophilic boron followed by oxidation of this cation in a manner 

analogous to the oxidation of trityl cation shown in eq 14. 

i-Pr

Me

OH

Me
55

23% y
63

(15)

1) Py•BH3 (13)
1.1 equiv 5
rt, 20 h

2) NaOOH/MeOH
 

Strong Acid Activation of Triethylamine Borane 

We attribute the reactivity of the hydrogen-bridged cation 22 with the weak 

nucleophiles Ph3CH and DCM as well as iPr3SiH to the presence of a small amount of 

borenium ion Et3N·BH2
+ (28) in equilibrium with 22. To gain further insight, the 

compatibility of 22 with various weakly nucleophilic counterions was explored.  No B–

H–B bonded structures were detected when Et3N·BH3 (18) was reacted with excess 

TrBF4, although Ph3CH (>95%) was formed along with Et3N·BF3;36 the formation of 

Et3N·BF3 is evidence that 22 or 28, as the free borenium 28a or the solvent adduct 

Et3N·BH2·Cl2CH2
+ (28b), can extract fluoride from BF4

–.  Activation of 18 with TrBF4 
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using approximately 3:1 stoichiometry also gave full conversion of 18 to Et3N·BF3, 

presumably via fluoroborane and difluoroborane complexes.  As described above in the 

context of chloride/hydride exchange at boron, these fluoroboranes could be more potent 

hydride donors than the parent borane 18 due to fluoride lone pair donation into a 

developing empty orbital at boron.  This would complicate the kinetic studies of hydride 

transfer from amine boranes to benzhydryl cations performed by the Mayr group, since 

many of the electrophiles used were BF4
– or PF6

– salts.37 

The compatibility of 22 with less reactive counterions was also investigated.  

Treatment of 18 with the strong acids HOTf (64a) or HNTf2 (64b) as hydride acceptors 

formed tetravalent adducts 65a,b as dominant products.  Preformed 22 with X = TPFPB 

also gave 65a,b (as well as 18) when the corresponding –OTf or –NTf2 salts 66a,b were 

added (eq 16), thereby confirming cleavage of the B–H–B bond by these anions rather 

than a simple kinetic preference to form 65 over 22.  On the other hand, 22 was only 

partly converted to 65c (ca. 1:1.1 22:65c) upon addition of 66c, or when 18 was treated 

with 0.5 equiv of the strong, bulky carbon acid HC(C6F5)Tf2 (64c)38 at rt.  In this 

reaction, Et3NH+ was a major product observed that was thought to result from water 

impurity in the commercial sample of 64c.  Confirming this supposition, Et3NH+ was still 

formed but was only a minor product from the reaction of 22 with 66c if the salt was 

dried prior to use.  In this case, unreacted 18 competes with the weakly nucleophilic 

anion –C(C6F5)Tf2 for coordination into the unoccupied orbital of borenium ion 28a. 

N HMe

tBu

tBu

+ +
18Et3N

B
X

HH

65

DCM

rt
+–X (16)Et3N

B
H

B
NEt3

HH H H
+

22

TPFPB

H3B NEt3

66a: X = OTf, 66b : X = NTf2,
66c: X = C(C6F5)Tf2  
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Since 22 was shown to survive in the presence of the weakly nucleophilic                  

–C(Tf)2C6F5, activation of 18-d3 by Yamamoto’s acid was explored for H/D exchange 

with a silane.  Unfortunately, activation by direct reaction with this acid gave an Et3NH+ 

impurity, and the 1H NMR signal for its methylene protons was too close to the hydride 

of iPr3SiH for accurate integration in the presence of more than a trace of this 

contaminant.  Exchange of the triethylsilane hydride with 18-d3 activated by 

HC(Tf)2C6F5 was therefore tested.  These conditions gave evidence of H/D exchange by 

1H NMR (decreased integral for Et3Si–H at δ 3.61 ppm) and by 2H NMR (appearence of 

a silyl deuteride peak at δ 3.67 ppm). 

 

Hydroboration by TrTPFPB Activation 

Trityl Activation of 3° Amine and Phosphine Boranes for Hydroboration 

Hydroboration, mentioned earlier in this chapter, is a potential application for the 

boron cations generated in this study.  Intermolecular hydroboration by iodine activation 

of pyridine borane was explored previously in our research group (Table 2-2).16c  The 

activation produces an iodoborane complex of pyridine (72, X = I) that undergoes an 

SN2- 

Table 2-2.  Intermolecular Hydroboration with I2-Activated Pyridine Boranes 

Ph
Me

1) L·BH3, DCM
Activation

2) NaOOH, MeOH Ph
Me Ph

Me

OH OH

67 68 69  
entry L·BH3

a activation time 68:69 yield (%) 
1 Py·BH3 (13) I2

b 2 h 15:1 92 
2 Py·BH3 (13) Br2

b 12 h >20:1 10c 
3 Py·BH3 (13) TfOHd 2 h 10:1 72 
4 Lut·BH3 (70)e I2

b 2 h 2.4:1 13c 
5 Me2S·BH2I (71)f -- 2 h 3.5:1 62 

a 1:1 ratio of L·BH3 to alkene, rt.  b 50 mol%.  c Reaction quenched prior to       
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completion.  d 100 mol%.  e 2,6-Lutidine borane.  f Preformed.39 

like displacement of iodine by the alkene for hydroboration (Scheme 2-3, Path A).  The 

drastic reduction in the rate of reaction using Br2 activation (Table 2-2, entry 2) is 

evidence that displacement of this anion is important, and different regioselectivity 

relative to using 71, a source of iodoborane (entry 5), is evidence that the pyridine ligand 

is still coordinated to boron in the actual hydroboration event, again implying halide 

displacement.  However, the dependence of regioselectivity on the halide (entries 1-3) 

implies its involvement in the regioselectivity-determining step, formation of 

intermediate π-complex 73.  This is evidence against an SN1-like mechanism (Scheme 2-

3, Path B or Path C), but a mechanism involving a tight ion pair cannot be ruled out. 

Scheme 2-3.  Pathways for Hydroboration from Activated Pyridine Borane 

R
B
H

XH
Py

B
H

XH
Py

B
H

XH
Py

Path A

Path B

Path C

H
B
H

Py

X

H
B
H

X

R
B
H

H
Py

X

R

R

H
B

R

H
X

H
B

R

H
Py

X
R

B
H

Py
X

Py

67 72 73 74 75

76 77

78 79 80  

A goal of the hydroboration study for this thesis was to eventually apply the 

activation methodology to chiral amine and phosphine boranes to effect enantioselective 

hydroboration.  An initial attempt by J. Clay to extend the iodine activation to reagents 
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other than pyridine yielded only 10% alcohol products from 67 using NH3·BH3.22  

Applying this activation to triethylamine borane or tributylphosphine borane was 

unsuccessful, producing <5% yield of alcohol products from 67, even using the more 

potent HNTf2 to activate the borane complex.  The more reactive hydroboration substrate 

α-methylstyrene (83) did not react under the same conditions.  This lack of reactivity for 

Et3N·BH2I (81, X = I) was rationalized by the SN2-like mechanism of iodide 

displacement by alkene.  The activated haloborane complex of a 3° amine or phosphine is 

sterically similar to a neopentyl halide, which is unreactive toward SN2 displacement.  

The neighboring alkyl groups on nitrogen 81 block the backside of the B–X bond as 

shown (eq 17).  In contrast, Py·BH2I (72) is structurally and electronically similar to a 

benzylic halide, an excellent substrate for nucleophilic substitution. 

N B
H

X

H

Et
Et

H
Me H

R
67

81

N B
H
HEt

Et
Et

82

+ –X

R
(17)

 

The demonstrated electrophilicity of the hydride-bridged cations (22-27) was a 

hindrance in the study of the actual activated species, but it bodes well for interaction 

with the weakly nucleophilic π electrons of an olefin.  Hydroboration by TrTPFPB 

activation of borane complexes like Et3N·BH3 (18) may conceivably proceed through an 

SN1-like pathway (Scheme 2-3, Path B or eq 18) via cation 28 that would be viable even 

for such a sterically demanding environment.  However, activation of the bulky 

tricyclohexyl-phosphine borane (85) in DCM gave no product alcohol from α-methyl- 



 

 

55

Et3N
B
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H

H +

Et3N
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H
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NEt3

HH H H
+

22 18
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Et
Et

82

+ –X

R
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styrene (Table 2-3, entry 1).  This is probably due to the decomposition of DCM 

described in Scheme 2-2.  Thus, switching to toluene, a less reactive solvent, gave high 

conversion based on TrTPFPB.  For reasons that remain unclear, tributyl- and 

triphenylphosphine boranes (86 and 87) gave lower conversion to 84 under the same 

conditions of activation in toluene.  The borane complex of a 3° amine, 18, was also 

successful for the hydroboration of 83 with TrTPFPB activation (entry 5).  Thus the 

highest conversions to hydroboration product 84 came from reaction of the most 

sterically demanding environments (entries 2 and 5).   

Table 2-3.  Hydroboration by TrTPFPB Activation of 3° Amine and Phosphine Boranes 

Ph Ph
OH

MeMe

excess
83

84

1) L•BH3
TrTPFPB (5)
PhMe, rt, 20 h

2) NaOOH/MeOH

 

entry L·BH3 (amount) conversiona 
1 Cy3P·BH3 (85, 3 equiv)b < 5% 
2 Cy3P·BH3 (85, 3 equiv) 90% 
3 Bu3P·BH3 (86, 3 equiv) 40% 
4 Ph3P·BH3 (87, 3 equiv) 40% 
5 Et3N·BH3 (18, 2 equiv) 75% 

a By 1H NMR assay, 84 relative to Ph3CH.  b DCM 
solvent. 

 
Bisborane Complexes of Chelating Ligands  

 The observation that bulkier Lewis bases led to better hydroboration conversions 

is inconsistent with an SN2-like mechanism, but could be understood in terms of a 

dissociative, SN1-like mechanism.  If reactions from the hydride-bridged cations (such as 

22) occur by prior rupture of the 3c2e bond to form borenium ion equivalents (28), then a 



 

 

56

sterically bulky amine ligand could accelerate this process.  This would most likely be 

described by 22 equilibrating with 28 and 18 (eq 19), which would be pushed toward 22  

Et3N
B

28a
H

H

Et3N
B

28b
ClCH2Cl

HH
+ +

Et3N
B

H
B

NEt3

HH H H
+

22 18
(19)

CH2Cl2

?
 

in the presence of a greater excess of reagent 18.  Confirming this proposal, the attempted 

hydroboration with 10 equiv of 18 (relative to TrTPFPB) gave only 40% conversion to 

84 (Table 2-4, entry 2), as opposed to the 75% conversion attained with 2 equiv of this 

reagent.  Likewise, the reaction employing a large excess of 86 gave a significant 

decrease in the conversion (entries 3 and 4). 

Table 2-4.  Dependence of Hydroboration on Stoichiometry 

Ph Ph
OH

MeMe

excess
83

84

1) L•BH3
TrTPFPB (5)
PhMe, rt, 20 h

2) NaOOH/MeOH

 

entry L·BH3 (amount) conversiona 
1 Et3N·BH3 (18, 2 equiv) 75% 
2 Et3N·BH3 (18, 10 equiv) 40% 
3 Bu3P·BH3 (86, 2 equiv) 45% 
4 Bu3P·BH3 (86, 10 equiv) 10% 
5 BINAP·2BH3 (88, 1 equiv) NDb 
6 DIPHOS·2BH3 (89 (1 equiv) NDb 
7 TMEDA·2BH3 (90 (1 equiv) NDb 

a By 1H NMR assay, 84 relative to Ph3CH.  b 84 Not 
detected. 

 

PPh2

PPh2

88

NMe2Me2NPh2P PPh2

89 90

BH3

BH3

BH3 BH3 BH3 BH3
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 For further evidence of a dissociative mechanism for the hydroboration, we chose 

to study bisborane complexes of chelating ligands.  Trityl activation of complex 89, for 

example, forms the internally hydride-bridged 27 shown in Table 2-1 (eq 20).  On rupture 

of the B–H–B bond in this cationic species, the L·BH3 subunit remains tethered to the  

borenium ion (91, eq 20).  The reverse reaction to reform a 3c2e bond is accelerated by 

the decreased entropy cost of an intramolecular reaction (k-1 is higher than for the 

corresponding intermolecular event), decreasing the equilibrium concentration of a free 

borenium ion (91).  In the event, 88-90 were not effective for hydroboration after 

activation with 1 equiv TrTPFPB (2:1 stoichiometry of complexed borane to trityl cation, 

as in entries 1 and 3).  This confirms our proposal that despite observation of a B–H–B 

bonded intermediate from activation of Lewis base complexes of borane, there may be a 

small equilibrium concentration of a free (or at most a solvent-coordinated) borenium 

cation responsible for the reactions observed in this chapter. 

Ph2P
B H B

PPh2

H
H

H
H

27

+ X-

PPh2Ph2P
BH3BH3

89

TrTPFPB

toluene Ph2P PPh2 91

+ X-k1

k-1

B B
HH

H
H H

(20)

 

Borane Complexes of Chiral Lewis Bases for Enantioselective Hydroboration  

 The development of conditions for trityl activation of borane complexes of 

alkylamines and -phosphines opened up new possibilities for enantioselective 

hydroboration.  Chiral phosphine borane 92 was selected as the first reagent to be tested,  

Scheme 2-4.  Possible Pathway for Hydroboration with Substoichiometric TrTPFPB. 



 

 

58

L
B
H

H

B

Me

H

LL B
H

H
HB

Me

H

L

H

96

Ph

Ph

83

9792

98
H

Me Ph

 

and it gave promising results (entry 1).  The high conversion, beyond the amount of 

TrTPFPB used in the reaction, may be evidence of the catalytic cycle depicted by 

Scheme 2-4.  The immediate hydroboration product, 97, is drawn as a borenium ion 

although it could be stabilized by interaction with a B–H bond from the excess 92.  

Cleavage of this 3c2e bond could generate either borenium ion, 96 or 97.  Although 97 is 

expected to be stabilized relative to 96 by the presence of an electron-donating alkyl 

group, cleavage to form 96 is possible.  Another explanation for the apparent turnover is 

that a second hydroboration could occur from 97, being an electrophilic species with a 

vacant coordination site at boron and a remaining B–H bond.  Regardless, lowering the 

reaction temperature lowered the conversion from 92 to <100% but did not affect 

enantioselectivity.  Another borane complex (93) of a C3-symmetric phosphine gave no 

hydroboration products at all.  The borane complex 94 of the known menthyldiphenyl- 

Table 2-5.  Enantioselective Hydroboration of α-Methylstyrene (83) 

Ph Ph
OH

MeMe

excess
83

84

1) 3 equiv L•BH3
TrTPFPB (5)
PhMe, rt, 20 h

2) NaOOH/MeOH

 
Entry L·BH3 conversiona eeb 

1 92 190% 25% 
2 92 85%c 25% 
3 93 trace NDd 
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4 94 90% 6% 
5 95 100% 4% 
6 96e NDd 26% 

a By 1H NMR assay, 84 relative to Ph3CH.  b By HPLC assay.  c 0 
°C, 72 h.  d Not determined.  eNo activation, 30 °C, in benzene.41 
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Me

P BH3

Me

PPh2

MeMe

BH3
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BH3
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BH3

Me
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B

MeMe
H

Cl

H

96   

phosphine40 gave product in high yield based on TrTPFPB, but with only 6% ee.  

Likewise amine borane 95, from the commercially available N,N,α-

trimethylbenzylamine, was effective for hydroboration but with poor enantioselectivity.  

Hydroboration of β-methylstyrene generally gave lower conversion to the product 

alcohols, and only the reaction from 92 was enantioselective (35% ee for the major 

regioisomeric product, 1-phenyl-1-propanol). 

  The substrate chosen for these studies was α-methylstyrene (83), due not only to 

its high reactivity toward hydroboration but also to the challenge it poses for 

enantioselectivity.  Highly enantioselective hydroborations of 1,1-disubstituted alkenes 

remain elusive in general, but specifically the success with 83 has been limited.  The 

highest level of optical purity for 84 obtained to date with traditional hydroboration 

reagents is only 26% ee using 29.41  Even transition metal catalysis has not been solved 

this problem; rhodium-catalyzed hydroboration with a BINAP ligand gave product with 

only 38% ee, the best result yet reported for this substrate.42   

The results in Table 2-4 implicating a free borenium ion as the active 

hydroborating species guided our selection of chiral Lewis bases to examine next.  The 

idea of a C2-symmetric Lewis base was attractive due to the planarity expected for an 
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LBH2 cation, reducing the number of potential transition states for interaction of the 

alkene with the activated reagent by a factor of two.  For example, the top and bottom 

faces of trivalent boron cation 101 are equivalent.  However, borane complexes of the 

numerous C2-symmetric chelating ligands in the literature, e.g. BINAP·2BH3 (88) were 

ruled out based on the results in Table 2-4.  We therefore returned to chiral pyridine 

borane derivative 99, prepared by J. Clay and used in an early experiment with TrTPFPB 

activation.22  This experiment gave racemic product at rt, leading to the suspicion that 

reaction with trityl cation had occurred by pyridine transfer rather than hydride transfer, 

releasing free B2H6 and BH3·DCM as the active hydroborating reagents.  However, under 

the more carefully controlled conditions for trityl activation of pyridine borane described 

above, formation of B2H6 was only a minor pathway according to 11B NMR evidence, 

and was seen only at rt.  Under these low temperature activation conditions, pyridine 

borane 13 generated fairly clean 1H and 11B NMR spectra for the hydride-bridged cation 

24 as described in Table 2-1.   

The optimal conditions of low-temperature activation (-78 °C followed by 

warming the solution to -15 °C) were applied to chiral reagent 99 in a 2:1 stoichiometry 

with TrTPFPB (5).  The activated species was effective for hydroboration of β-

methylstyrene, the substrate used in J. Clay’s studies, but only 20% conversion to product 

103 was observed.  Furthermore, the hydroboration proceeds with only modest 

enantioselectivity, giving 103 with 14% ee.  The possibility of catalyst racemization was 

then examined under the suspicion that borenium 101 could be stabilized by formation of 

an internal 3c2e bond with an activated C–H (104).  This C–H–B bond could cleave to 

generate the relative stable iminium ion 105, while the reverse reaction would occur 

without stereospecificity.  Epimerization of either stereocenter gives an achiral meso 
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stereoisomer of 101.  To rule out this possibility, the activation of 99 was performed in 

the absence of alkene, followed by quenching with Bu4NBH4 after 2 h, but 99 was 

recovered without epimerization.  The meso borane complex was prepared by the 

palladium-catalyzed reaction of 2,6-dibromopyridine with racemic α-methylbenzylamine 

followed by borane complexation to confirm its absence in the previous experiment.  It 

may be that this configurationally stable reagent simply has stereocenters too far removed 

from the reactive site to promote enantioselective hydroboration.  On the other hand, the 

relatively low conversion to hydroboration products is not consistent with the simple 

activation mechanism that was proposed (Scheme 2-5). 

Scheme 2-5.  Hydroboration and Potential Epimerization Pathways from Activated 99. 
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Summary 

To summarize, borenium ions do not accumulate under the conditions of hydride 

abstraction from Lewis base-borane complexes (L·BH3) due to subsequent rapid reaction 

with L·BH3 to form B–H–B bonds.  Hydride bridged cations such as 22 are sufficiently 

stabilized to resist abstraction of the remaining hydride by excess trityl cation.  However, 

reversible cleavage of the 3c2e bond releases borenium ion equivalents, as evidenced by 

the interaction with weak nucleophiles.  This reactivity was applied to effect 



 

 

62

hydroboration from reagents that are hindered at boron, including the complexes of chiral 

amines and phosphines albeit with modest enantioselectivity.  The isotopic exchange 

between 22-d5 and HSiEt3 suggests that borenium ions such as 28a may resemble 

silylium cations in terms of electrophilicity. Considering the solvent-assisted 

decomposition of Ph3CH reported here, the use of TrTPFPB for generation of other 

reactive electrophiles may warrant closer scrutiny, especially in cases where 

decomposition of cationic products has been noted.31b, 34 
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Experimental 

 

General Methods.  The following chemicals were commercially available and 

used as received: trityl tetrakis(pentafluorophenyl)borate (TrTPFPB, 5), trimethylamine 

borane, tributylphosphine borane, triphenylphosphine borane, trityl tetrafluoroborate 

(TrBF4), trifluoromethanesulfonic acid (TfOH, 64a), bis(trifluoromethane)sulfonimide 

(Tf2NH, 64b), 2,3,4,5,6-pentafluorophenylbis(trifluoromethane-sulfonyl)methane 

(C6F5CHTf2, 64c), (S)-2-phenyl-1-propanol, phosphorus trichloride, (–)-cis-myrtanol, 

menthol and chlorodiphenylphosphine.  The known complexes 4-dimethylaminopyridine 

borane (DMAP·BH3),43 1,2-bis(diphenylphosphino)ethane bis(borane) (89),44 

tricyclohexyl-phosphine borane (85),45 2,2’-bis(diphenylphosphino)-1,1’binaphthyl 

bis(borane) (88), tetramethylethylenediamine bis(borane) (90)46 and N,N,α-

trimethylbenzylamine borane (95) were prepared by treatment of the commercially 

available Lewis base with BH3·THF as reported.43  Pyridine borane (13) and 

triethylamine borane (18) were recrystallized from dichloromethane/hexane, isolated and 

dried under vacuum at 0 °C and -20 °C respectively.  Dichloromethane (DCM), n-hexane 

and tetrahydrofuran (THF) were dried by passing through a column of activated alumina; 

toluene and p-xylene were distilled from CaH2 under an N2 atmosphere; CD2Cl2 was 

dried by storing over activated 4Å molecular sieves.  All reactions were performed at 

room temperature under an N2 atmosphere unless otherwise stated.  Nuclear magnetic 

resonance experiments were performed on Varian Inova 500, Inova 400 and Mercury 300 

spectrometers at the following frequencies: 1H 500 MHz; {1H}11B 160 MHz; {1H}19F 

376 MHz, unless otherwise stated.  All spectra were recorded in CD2Cl2 and referenced 

to solvent unless otherwise stated. 
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Room Temperature Activation of Pyridine Borane (13) with TrTPFPB (5). 

Pyridine borane (5.0 μL, 49 μmol) was added by syringe to a stirred solution of 

TrTPFPB (50 mg, 54 μmol) in 0.6 mL anhydrous CD2Cl2 under an N2 atmosphere.  After 

1 h, the solution was transferred to an N2-flushed NMR tube capped with a rubber septum 

and the 1H and 11B NMR spectra were recorded.  The 1H NMR spectrum had no peak for 

Ph3CH, but Ph2CH2 (3.99 ppm) was observed along with a number of other peaks around 

4 ppm and 2.3 ppm.  The 11B NMR spectrum had one major peak at 43.7 ppm (PyBCl2
+, 

cf. 4-Me-C6H4NBCl2
+ –Al2Cl7 at δ11B = 47 ppm21) with other smaller, unidentified peaks 

at 47.8, 17.5 and 7.3 ppm, all broad singlets, and a sharp singlet at -16.7 ppm (TPFPB 

anion).   

Quenching the reaction by addition of pyridine (5.0 μL, 62 μmol) by syringe 

followed by stirring for 1 h before transferring to an N2-flushed NMR tube gave an 11B 

NMR peak at 8.3 ppm corresponding to the known Py2BCl2
+,47 a peak at -16.7 ppm 

(TPFPB anion), and unidentified broad singlets at 5.8, 3.8 and -3.6 ppm. 

 

Representative Procedure for Activation of Borane Complexes (Table 1): Detection 

of H-Bridged Species   

22: Triethylamine borane (8.0 μL, 54 μmol) was added by syringe to a stirred 

solution of TrTPFPB (50 mg, 54 μmol) in 0.6 mL anhydrous CD2Cl2 at -78 °C under an 

N2 atmosphere.  After a few minutes, this solution was transferred via syringe to an N2-

flushed NMR tube cooled to -78 °C, and the sample was kept in a -78 °C bath (ca. 60 

min) until allowing it to warm to -20 °C in the NMR spectrometer for data acquisition at 

that temperature.  Residual TrTPFPB: 1H NMR: δ 8.24 (3H, t, J = 7.6 Hz), 7.85 (6H, t, J 
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= 7.6 Hz), 7.65 (6H, d, J = 7.3 Hz); 11B NMR: δ -16.7 (s).  Ph3CH: 1H NMR: δ 7.28 (6H, 

t, J = 7.3 Hz), 7.21 (3H, t, J = 7.3 Hz), 7.10 (6H, d, J = 7.3 Hz), 5.55 (1H, s).  Compound 

22: 1H NMR: δ 2.88 (12H, q, J = 7.2 Hz), 2.6 (4H, br s), 1.19 (18H, t, J = 7.3 Hz), -2.6 

(1H, br s); 11B NMR: δ -3.4 (br s), -16.7 (s). 

Addition of triethylamine borane (7.2 μL, 49 μmol) to 50 mol% TrTPFPB (22 

mg, 24 μmol) in 0.6 mL anhydrous CD2Cl2 at -78 °C under an N2 atmosphere gave 

identical chemical shifts to those reported for 18 and Ph3CH but showed no remaining 

TrTPFPB.  A small amount of residual triethylamine borane was observed, as well as a 

small amount of Et3NH+ due to hydrolysis of 22 by adventitious water. 

 

23: 1H NMR: δ 2.76 (18H, s), 2.7 (4H, br s), -1.9 (1H, br s); 11B NMR: δ -0.2 (br s), -

16.7 (s). 

 

24: 1H NMR: δ 8.52 (4H, d, 5.5 Hz), 8.34 (2H, t, J = 7.8 Hz), 7.86 (4H, m), 3.3 (4H, br 

s), 0.5 (1H, br s); 11B NMR: δ -1.5 (br s), -16.7 (s). 

 

25: 1H NMR: δ 7.84 (4H, d, J = 7.5 Hz), 6.59 (4H, d, J = 7.5 Hz), 3.13 (12H, s), 3.1 (4H, 

br s), 0.1 (1H, br s); 11B NMR: δ -1.3 (br s), -16.7 (s). 

 

26: 1H NMR: δ 1.74 (12H, m), 1.5 (4H, br s), 1.40 (24H, br s), 0.91 (18H, t, J = 7.0 Hz), 

-3.7 (1H, br s); 11B NMR: δ -16.7 (s), -27.5 (br s). 
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27: 1H NMR: δ 7.69 (4H, m), 7.60 (16H, m), 2.85 (4H, m), 2.7 (4H, br s), -2.2 (1H, br s); 

11B NMR: δ -16.7 (s), -27.2 (br s). 

 

H/D Exchange between 22-d5 and iPr3SiH 

 18-d3 (5.8 mg, 49 μmol) was added by syringe as a solution in 0.2 mL anhydrous 

CD2Cl2 to a stirred solution of TrTPFPB (20 mg, 22 μmol) in 0.6 mL anhydrous CD2Cl2 

under an N2 atmosphere.  After 10 min, iPr3SiH (7.0 μL, 34 μmol, distilled from 

activated 4Å molecular sieves) was added by syringe, then the solution was transferred to 

an N2-flushed NMR tube capped with a rubber septum.  The 1H NMR spectrum acquired 

20 min after silane addition had a decreased peak for the hydride of iPr3SiH (δ 3.31 ppm, 

s, 0.40H relative to isopropyl protons) but showed peaks for terminal and bridging 

hydrides of 7 (bridging hydride: δ -2.6 ppm, br s, 0.15H relative to N-CH2-CH3), showing 

some H/D exchange.  After 60 min the exchange was essentially complete; the hydride of 

iPr3SiH integrated for 0.35H and the bridging hydride of 22 for 0.30H.  2H NMR (77 

MHz) confirms deuteration to iPr3SiD with a peak at δ 3.37 ppm.  After quenching by 

addition of NaBH4 (6.0 mg, 160 μmol) and stirring 1 h before filtering through a plug of 

silica gel and flushing with an additional 3 mL CH2Cl2, GC/MS (8 μL injection volume; 

Restek 5% PhMe siloxane column, 30 m length, 0.25 mm ID, 0.25 mm film thickness; 1 

mL/min He; hold at 30 °C for 1 min, increase by 5 °C/min to 90 °C then by 20 °C/min to 

250 °C, hold at 250 °C for 5 min; EI ionization) also confirms the deuteration to iPr3SiD 

(14.0 min; m/z = 159 (5), 158 (4) (iPr3SiH•+), 116 (13), 115 (15), 88 (16), 87 (24), 74 

(23), 73 (53), 60 (26), 59 (100), 46 (16), 45 (47), 44 (14), 43 (22)), giving a 1 : 1.09 ratio 
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of M•+ at m/z = 158.1 to (M+1)•+ at m/z = 159.1, compared to a 1 : 0.16 ratio in untreated 

iPr3SiH. 

 The above reaction was also performed in anhydrous CH2Cl2, and the {1H}2H 

NMR spectrum was recorded at 77 MHz. 

 

GC/MS Analysis of Ph3CH Decomposition Products 

 Triethylamine borane (7.2 μL, 49 μmol) was added by syringe to a stirred 

solution of TrTPFPB (50 mg, 54 μmol) in 0.6 mL anhydrous CH2Cl2 under an N2 

atmosphere.  After 1 h, the reaction was quenched by addition of Bu4NBH4 (6.0 mg, 160 

μmol) and stirred 1 h before filtering through a plug of silica gel and flushing with an 

additional 3 mL CH2Cl2, GC/MS (8 μL injection volume; Restek 5% PhMe siloxane 

column, 30 m length, 0.25 mm ID, 0.25 mm film thickness; 1 mL/min He; hold at 30 °C 

for 1 min, increase by 5 °C/min to 90 °C then by 20 °C/min to 250 °C, hold at 250 °C for 

5 min; EI ionization) gave peaks corresponding to toluene (5.1 min; m/z = 93 (2), 92 (22) 

(M•+), 91 (30), 66 (1), 65 (7), 63 (5), 52 (2), 51 (6), 50 (5), 46 (2), 45 (3), 44 (10), 40 

(100)), diphenylmethane (18.8 min; m/z = 169 (14), 168 (100) (M•+), 167 (100), 166 (13), 

165 (40), 153 (28), 152 (25), 139 (5), 115 (10), 91 (31), 90 (7), 89 (13), 83 (39), 77 (9), 

76 (6),  65 (32), 64 (5), 63 (21), 62 (6), 52 (5), 51 (36), 50 (16)), 4-

methyldiphenylmethane (48; 19.6 min; m/z = 183 (2), 182 (67) (M•+), 169 (7), 167 (100), 

165 (29), 104 (10), 91 (19), 89 (15), 77 (22), 65 (31), 63 (18), 51 (41), 50 (9), 44 (21), 41 

(9)) and triphenylmethane (22.8 min; m/z = 245 (17), 244 (86) (M•+), 243 (26), 229 (8), 

228 (5), 215 (5), 168 (11), 167 (80), 166 (48), 165 (100), 164 (9), 163 (5), 153 (6), 152 

(27), 139 (6), 119 (6), 115 (10), 107 (9), 63 (8), 51 (14)), all confirmed by spiking a 

sample with the authentic compounds.  In addition, peaks at 19.5 min and 19.6 min were 
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observed, assigned as isomers of MeC6H4CH2Ph based on the molecular ion and 

fragmentation pattern, and a set of 3 peaks at 23.3 min was assigned as isomers of 

MeC6H4CHPh2 (42; m/z = 258 (27) (M•+), 244 (15), 243 (40), 207 (20), 181 (10), 179 

(7), 167 (41), 166 (37), 165 (100), 152 (11), 115 (6), 91 (6), 78 (13), 77 (17), 65 (8), 63 

(8), 51 (39), 44 (25), 41 (11)). 

 Repeating the above experiment using CD2Cl2 as the reaction solvent gave the 

same GC peaks, but with masses increased by 2 amu for toluene (5.1 min; m/z = 94 (6) 

(M•+), 93(8), 92 (3), 91 (2), 67 (1), 66 (1), 65 (1), 44 (10), 40 (100)), MeC6H4CH2Ph (3 

peaks near 19.6 min; m/z = 185 (16), 184 (32) (M•+), 168 (15), 167 (100), 91 (6), 65 (7), 

51 (35), 44 (54), 40 (10)) and MeC6H4CHPh2 (3 peaks near 23.3 min; m/z = 260 (7) 

(M•+), 243 (21), 167 (23), 166 (22), 165 (100), 78 (7), 77 (11), 63 (7), 51 (39), 44 (21)). 

 

Representative Procedure for Aromatic Substitution/Oxidation of p-Xylene and 

Isolation of 2,5-Dimethylphenol. 

 Triethylamine borane (7.2 μL, 49 μmol) was added by syringe to a stirred 

suspension of TrTPFPB (50 mg, 54 μmol) in distilled p-xylene (0.60 mL, 4.9 mmol).  

After 1 h, H2O2 (35% aq., 0.1 mL), NaOH (20% aq., 0.2 mL) and MeOH (1 mL) were 

added as an oxidative quench.  The resulting biphasic mixture was stirred vigorously 20 

h, diluted with 5% aq. NaOH (5 mL) and washed with hexanes (2 x 5 mL).  The aqueous 

layer was acidified with 6M HCl and extracted with DCM (2 x 5 mL), the combined 

organic layers dried over Na2SO4 and reduced by rotary evaporation.  Two phenolic 

products were identified by 1H NMR in CDCl3: PhOH (peaks at δ 7.23, 6.92 and 6.81) 

and 2,5-dimethylphenol (peaks at δ 6.98, 6.65 and 6.58), confirmed by addition of an 

authentic sample.  Phenol is present as the product of oxidation of unreacted trityl cation, 
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which was verified by subjecting TrTPFPB to the oxidative workup and isolation 

conditions.  In another experiment, addition of diphenylmethane as an internal standard 

allowed quantification, showing 3.3 μmol phenol and 0.4 μmol 2,5-dimethylphenol 

(1.6% y based on 18). 

 

Reaction of Hydroperoxide 57 with Activated Pyridine Borane (13) 

 Cumene hydroperoxide (80% in cumene, 10.0 μL, 54 μmol) was added by 

syringe to a stirred suspension of TrTPFPB (52 mg, 56 μmol) in distilled p-xylene (0.50 

mL, 4.1 mmol) with vigorous gas evolution on each drop, followed after a few minutes 

by the addition of recrystallized pyridine borane (5.0 μL, 49 μmol) by syringe.  After 20 

h, H2O2 (35% aq., 0.1 mL), NaOH (20% aq., 0.2 mL) and MeOH (1 mL) were added as 

an oxidative quench, the phenolic products extracted as in the previous experiment.  Only 

a trace of 2,5-dimethylphenol was identified by 1H NMR in CDCl3; the major product 

was  PhOH (peaks at δ 7.23, 6.92 and 6.81). 

 

Reaction of TrBF4 with Et3N·BH3 (18) 

 Triethylamine borane (7.2 μL, 49 μmol) was added by syringe to a stirred 

solution of TrBF4 (18 mg, 54 μmol) in 0.6 mL CD2Cl2 with immediate loss of the yellow 

color of the trityl cation.  After 1h, this solution was transferred via syringe to an N2-

flushed NMR tube, and 1H and 11B NMR spectra were acquired.  By 1H NMR assay, 

Ph3CH, Et3N·BF3,36 Et3N·BH3 (18) and B2H6 were identified in a ratio of 26:18:5:1 based 

on signals at δ 5.55, 2.93, 2.76 and 4.0 ppm, with no trace of unreacted trityl cation.  The 

11B NMR spectrum confirmed the presence of Et3N·BF3, 18 and B2H6. 
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 In another experiment, triethylamine borane (8.0 μL, 54 μmol) was added by 

syringe to a stirred solution of 3 equiv TrBF4 (51.5 mg, 156 μmol) in 0.6 mL CD2Cl2 

with a significant decrease in the intensity of the yellow color.  After 1h, this solution 

was transferred via syringe to an N2-flushed NMR tube, and 1H NMR assay confirmed 

almost complete conversion of trityl cation, finding Ph3C+ in a ratio of <1:100 with 

Ph3CH, which was found in a ratio of 2.9:1 with Et3N·BF3. 

 

General Procedure for Reaction of 22 with 66. 

 A solution of 66c was made by addition of 2,6-di-tert-butyl-4-methylpyridine 

(106, 5.3 mg, 26 μmol) to a solution of C6F5CHTf2 (64c, 11 mg, 25 μmol) in 0.4 mL 

CD2Cl2.  For optimal results, the solution was dried over activated 4Å molecular sieves 

for 1 d before use.  Triethylamine borane (7.6 μL, 51 μmol) was added by syringe to a 

stirred solution of TrTPFPB (24 mg, 26 μmol) in 0.6 mL CD2Cl2, and after about 10 

minutes the solution of 66c was added via syringe.  The resulting solution was transferred 

via syringe to an N2-flushed NMR tube, and 1H and 11B NMR spectra were acquired.  By 

1H NMR assay, Et3N·BH2-H-H2B·NEt3  
+ (22), Et3N·BH2(CTf2C6F5) (65c), Et3N·BH3 (18) 

and Et3NH+ were identified in a ratio of 1.8:2:3:1.  The 11B NMR spectrum confirmed the 

presence of 22, 65c, 18 and the TPFPB anion.  Failure to dry the solution of 66c led to a 

greater amount of 7 and Et3NH+ but a similar ratio of 22 to 65c. 

65c: 1H NMR: δ 2.96 (6H, q, J = 7.3 Hz), 1.26 (9H, t, J = 7.1 Hz); 11B NMR: δ 0.2 (br s).  

 

 The reactions of 22 with 66a and 6b were carried out in the same way, but 65a 

and 65b were detected in a 1:1 ratio with 18 with only a trace of Et3NH+. 
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65a: 1H NMR: δ 2.87 (6H, q, J = 7.3 Hz), 1.19 (9H, t, J = 7.3 Hz); 11B NMR: δ -0.8 (t, J = 

116 Hz).  

 

65b: 1H NMR: δ 2.90 (6H, q, J = 7.3 Hz), 1.21 (9H, t, J = 7.3 Hz); 11B NMR: δ 0.6 (br s). 

 

 Due to the sensitivity of products 65, they were characterized as boronium ion 

derivatives.  Addition of triethylamine borane (18, 35 μL, 0.24 mmol) to a solution of 

Tf2NH (64b, 61 mg, 0.22 mmol) in 2.0 mL CH2Cl2 was followed by addition of N-

methylimidazole (20 μL, 0.25 mmol) and removal of solvent after 1 h.  The residue was 

washed with water and extracted with CHCl3, giving 58 mg (51% y) of the known 

boronium salt (107).48  

 The above procedure was repeated with TfOH (64a, 20 μL, 0.23 mmol), giving 

41.6 mg (53% y) of the boronium triflate.  To 7.9 mg (23 μmol) of this compound was 

added LiNTf2 (77.6 mg, 270 μmol) in 1.0 mL deionized water to effect anion metathesis.  

This also gave the known boronium salt 107 (9.0 mg, 83% y).  

NN

H2
B

Et3N Me
+ –NTf2

107  
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Preparation of Phosphine Borane 92 

 Distilled carbon tetrachloride (1.35 mL, 14.0 mmol) was added under an N2 

atmosphere to a solution of triphenylphosphine (3.72 g, 14.2 mmol) in distilled 

acetonitrile (15 mL) which had been cooled to 0 °C in a 50 mL round bottom flask fused 

to a reflux condenser.49  To this yellow mixture was added (S)-2-phenyl-1-propanol (108, 

1.00 mL, 7.1 mmol) by syringe, the color fading after the addition of a few drops of 

alcohol.  The resulting mixture was stirred at 0 °C for 1 h, then heated slowly to reflux, 

the triphenylphosphine dissolving and the yellow color returning on heating.  After 19 h, 

the solution was cooled to rt and extracted with hexanes (4 x 15 mL), and the combined 

hexanes layers were washed with water (50 mL) and brine (50 mL) then dried over 

Na2SO4.  The product was purified by flash chromatography (FC) on silica gel (15 cm x 

50 mm diameter, hexanes eluent), isolating 780 mg product 109 (71% y). 

Ph
OH

Me PPh3, CCl4

MeCN
reflux, 19 h

1) Mg0, THF

2) PCl3, rt, 18 h
3) BH3·THF

Ph
Cl

Me

108 109

Ph
P

Me
BH3

3

92  

Chloride 109 (770 mg, 5.0 mmol) was added as a solution in anhydrous THF (2.0 

+ 1.0 mL) to a suspension of magnesium (activated by grinding with a mechanical stirrer 

under N2 atmosphere,50 stored in the glovebox, 170 mg, 7.0 mmol) in THF (2 mL) at 0 

°C.  After 1 h, the mixture was warmed to rt, but still showed no signs of reaction at the 

magnesium surface, so the mixture was heated to reflux for 3 h, showing consumption of 

chloride by TLC.  The mixture was then cooled to 0 °C, and PCl3 (0.11 mL, 1.3 mmol) 

was added by syringe, allowing the mixture to warm slowly to rt after the addition.  After 

17 h, the mixture was again cooled to 0 °C and BH3·THF (1.0 M solution in THF, 2.0 

mL, 2.0 mmol) was added by syringe.  After stirring 2 h at 0 °C, the mixture was warmed 
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to rt and diluted with Et2O (10 mL) and washed with water (10 mL).  The aqueous layer 

was extracted with DCM (3 x 10 mL), and the combined organic layers were washed 

with saturated aq. NaHCO3 (20 mL) and dried over MgSO4.  The solvent was removed 

under reduced pressure and the product purified by FC on silica gel (15 cm x 30 mm 

diameter, 19:1 hexanes/acetone), isolating 458 mg tri-((S)-2-phenyl-propyl)-phosphine 

borane (92): Molecular ion calculated for C27H36BNaP: 425.2545; [M+Na], ESMS found 

m/z = 425.2550; IR (neat, cm-1) 2360, B–H; 1H NMR: δ 7.24 (6H, t, J = 7.3 Hz), 7.20-

7.14 (3H, m), 7.08 (6H, d, J = 7.3 Hz), 3.04-2.94 (3H, m), 1.48 (3H, td, J = 14.2, 8.3 Hz), 

1.28-1.20 (3H, m), 1.13 (9H, d, J = 6.8 Hz), 1.0-0.3 (3H, br m); 13C NMR: δ 146.7, 128.6, 

127.0, 126.5, 35.0, 33.3 (d, J = 32 Hz), 25.2 (d, J = 9 Hz); 11B NMR: δ -38.5 to -41.7 (br 

m); 31P NMR: δ 18.3-16.6 (br m). 

Trialkylphosphine borane 9351 and alkyldiphenylphosphine borane 9452 were 

made in a similar manner from the commercially available (–)-cis-myrtanol and menthol 

via the alkyl chlorides by the action of the respective Grignard reagents on PCl3 or 

ClPPh2. 

 

Representative Hydroboration of 83 by TrTPFPB Activation of 92 

 A suspension of 5 (12 mg, 13 μmol) in distilled toluene (3 x 0.1 mL) was added to 

a solution of 92 (18 mg, 44 μmol) in toluene (0.4 mL) under an N2 atmosphere, adding 

alkene 83 (5.5 μL, 42 μmol) quickly after.  After 20 h, the solvent was removed by a 

stream of N2 and the residue oxidized by addition of MeOH (2 mL), 20% aq. NaOH (0.5 

mL) and 35% aq. H2O2 (0.5 mL), stirring 15 min before acidifying with 10% aq. HCl (2 

mL).  The resulting mixture was diluted with H2O (5 mL) and extracted with Et2O (2 x 
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10 mL), and the combined organic layers were reduced by rotary evaporation.  Assay by 

1H NMR shows product alcohol 84 in a ratio of 1.9:1 with the Ph3CH byproduct with no 

trace of the Ph2CH2 byproduct that typically indicates decomposition.  The product was 

isolated by preparative thin layer chromatography (PLC) on silica gel (20 x 20 cm x 250 

μm, 4:1 hexanes/EtOAc), isolating only 1.8 mg (98% y based on TrTPFPB, 25% ee) of 

the product alcohol (Rf =  0.23).  Conditions for enantiomeric excess assay by HPLC 

(Chiralcel OB column, 2% EtOH/hexane, 0.5 mL/min) were optimized using achiral 84 

from hydroboration with Cy3P·BH3 (85) activated by TrTPFPB in a similar manner, with 

peaks at 29 and 32 minutes. 
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Directed Borylation by Electrophilic Activation of Borane Complexes of Lewis 
Bases with Tethered Arenes 

 
 
 

Introduction – Other Methods for Arene Borylation

Arylboron derivatives are valuable intermediates in organic synthesis due to their 

reactivity to further functionalization including C–C bond formation.1  The C–B bond is 

commonly formed by trapping an arylmagnesium or -lithium with a boron electrophile,2 

but the reaction of electrophilic boranes with unactivated arenes has also been 

demonstrated at elevated temperatures (Scheme 3-1).3  In an early example, diborane 

reacts with benzene with loss of H2 at 100 °C to form triphenylboron (1).3a  The more 

electrophilic BCl3 was found to react with unactivated arenes under milder conditions 

with aluminum metal catalysis, presumably making AlCl3 in situ.3b  The reaction of 

Scheme 3-1.  Intermolecular Borylation of Unactivated Arenes 

B2H6

100 °C
Ph3B
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toluene under these conditions gives a mixture of m- and p-substituted products 2a and 

2b in a ratio of 1:4.6; raising the reaction temperature from 35 °C to 140 °C gives a less 

selective reaction but still no ortho-substitution.  Boron substitution ortho- to an alkyl 

group was only observed for substrates such as p-xylene where there is no other 

possibility, and these reactions require higher temperatures (150 °C) for comparable 

yields.  At higher temperatures, however, the reaction was complicated by isomerization 

of p-xylene to m-xylene catalyzed by the HCl byproduct, resulting in primarily 1-

(dichloroboryl)-3,5-dimethylbenzene.3c  

Transition metal catalysis can effect arene borylation at room temperature.1a,4  

The research groups of Hartwig and Miyaura have thoroughly studied the iridium-

catalyzed reactions of diboron reagents with arenes.4a  These reactions give high yields of 

the arylboronic acid esters but suffer from poor regioselectivity and difficult ortho-

functionalization as in the case of aluminum-catalyzed reactions.  The Smith group has  

found a way around this problem in the reactions of 4-substituted benzonitriles.4b  Again 

using iridium catalysis, substitution occurs ortho- to the less sterically bulky cyano group 

with excellent regioselectivities in some cases. 

DMG

4
DMG = C(O)NiPr2,

OC(O)NEt2

1) sBuLi/TMEDA
THF, -78 °C

2) B(OMe)3
3) H3O+

DMG

5

B(OH)2 (1)

 

Directed reactions have been reported which solve these problems, giving access 

to ortho-substituted products with high regioselectivity.  Directed ortho metalation2c by 

deprotonation of an arene substituted with a Lewis basic functional group (eq 1, 4) has 

been successfully applied to the synthesis of arylboronic acids.2b  Heteroatom direction 
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has also allowed highly regioselective electrophilic borylations (Scheme 3-2).  For 

example aminoborane 6 cyclizes to 7, but only at 200 °C,5a and 2-aminobiphenyl 

complex 8a requires aluminum chloride catalysis along with high temperatures for 

formation of aromatic product 9a with a C–B bond.5b  Tosylhydrazone 10 (minor (Z)-

isomer illustrated for convenience) also undergoes selective ortho-borylation after 

exposure to BBr3 with FeCl3 catalysis, requiring slightly lower temperatures.5c   

Scheme 3-2.  Nitrogen-Directed Electrophilic Boryation 

N
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B
H H
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Direction by other heteroatoms has been successful, typically under milder 

conditions (Scheme 3-3).6  2-Hydroxy- and 2-mercaptobiphenyl both react with BCl3 to 

form compounds analogous to 8a which cyclize after exposure to catalytic aluminum 

chloride but at much lower temperatures.  The oxygen complex 8b forms product 9b in 

refluxing petroleum ether;6a sulfur complex 8c cyclizes at rt.6b  Perhaps the less donating 
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oxygen and sulfur substituents on boron result in a still more electron-deficient active 

intermediate, allowing more facile reactions with the tethered arene.  Likewise, the 

oxygen-directed reaction of benzylic ketone 16, the enol form of which is structurally 

similar to 2-hydroxybiphenyl, proceeds at rt with excess BBr3, giving product 17 after 

aqueous workup.6c 

Scheme 3-3.  Other Directed Boryations 

XCl2B XClB
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Nitrogen-directed arene borylation can occur under similarly mild conditions if  

PhBCl2 is used instead of BCl3 as the electrophilic boron reagent.  For example, the 

reaction of benzylic imine 12 is thought to proceed via an N-boryl-enamine intermediate 

similar to a B-phenyl derivative of 8a.  The further reaction to form cyclized product 13 

occurs without aluminum chloride catalysis, albeit at high temperatures.7a  Recently 14, a 

B-chloro-B-phenyl benzylic amine derivative, was reported to cyclize to the B-phenyl 

product 15 at 0 °C in the presence of stoichiometric aluminum chloride.7b  This activation 

was proposed to occur via protonation of 14 at nitrogen due to protic impurities activated 

by the Lewis acid, giving an intermediate trivalent boron cation.   
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The Lewis acid-catalyzed versions of these reactions likely proceed via cationic 

boron intermediates that may be stabilized by formation of B–H–B and B–Cl–B bonds as 

described for activation of amine boranes in the previous chapter or by interaction with a 

counterion.  The B-phenyl substituent in 14, however, may provide enough stabilization 

to allow the formation of a free trivalent boron cation as a major species, which is 

expected to be highly reactive toward interaction with nucleophiles like the arene π 

electrons.  The discussion is complicated by the stabilization that B-phenyl substitution 

should provide this borenium ion, raising the activation energy required for its further 

reaction.  However, the reaction from a B–H–B or B–Cl–B bonded intermediate may also 

occur via release of a free borenium ion, and the formation of trivalent boron could be the 

slow step in the reactions of these less substituted boron electrophiles.  Although the 

resulting borenium ions would be more reactive toward the arene, their formation in 

appreciable concentrations would be disfavored by this high reactivity.  Arene borylation 

under mild conditions apparently requires a careful balance between boron cation 

stability and reactivity. 

 Styrene derivative 18 demonstrates C-directed arene borylation via the 

hydroboration product, giving a cyclic product with two C–B bonds.8  This reaction 

proceeds at 50 °C apparently without any activation of the intermediate organoborane.  

The authors note that only sterically bulky substrates cyclize after initial hydroboration.  

This is explained by a conformational requirement for the reaction, that the intermediate 

organoborane must exist with the boron atom in close physical proximity to an aryl C–H 

bond for C–B bond formation to occur.  These bulky organoborane intermediates would 

also be more likely to exist in monomeric form, allowing reaction at electrophilic boron 

without any need for further activation. 



 

 

85

It was shown in Chapter 2 that removal of a hydride from a borane complex of a 

tertiary amine forms a cationic species 20, considered formally equivalent to the trivalent 

boron cation 21 and expected to be more reactive toward electrophilic aromatic 

substitution than the neutral species.  As shown in the next sections, activation of an 

amine or phosphine borane by a hydride acceptor does indeed promote the directed 

intramolecular electrophilic substitution of a tethered arene at room temperature.9 

R2R'N
B

H
B

NR2R'

H HHH (C6F5)4B

20 R2R'N
B

H

H TPFPB

21
(TPFPB )

 

 

Directed Borylation of Benzylamine Boranes 

Optimization of Conditions for Dimethylbenzylamine Borane Cyclization 

Optimization of directed arene borylation conditions began with activation of 

borane complex 22a using excess trityl tetrakis(pentafluorophenyl)borate (TrTPFPB) as 

the hydride acceptor (in CH2Cl2, Table 3-1, entry 1).  Considering the CH2Cl2-assisted 

decomposition of 20 with Ph3CH described in the previous chapter, this solvent was 

replaced with toluene, increasing conversion to 23a.  Bromobenzene gave still higher 

conversion and better isolated yield of the desired product (entry 3).  This more polar 

solvent helps dissolve both TrTPFPB and the activated species 20a.  Due to the low 

volatility of PhBr, PhCl and PhF were also evaluated, giving similar yields of 23a but 

with slightly more decomposition to form Ph2CH2.  On the labororatory scale the low 

volatility of PhBr is only a minor inconvenience, so it was used in further studies. 

The Bu4NBH4 workup described here has also been optimized from initial 

attempts.  An oxidative workup gave at most a 34% yield of the phenolic product 

corresponding to oxidation of the C–B bond in 23a.  These yields may have been low due 
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Table 3-1.  Optimization of Conditions for Cyclization of 22a 

NMe2

BH3

TrTPFPB
1.1 equiv, rt;

Bu4NBH4 B
H2

NMe2

22a 23a  

entry solvent time conversiona 
1 CH2Cl2 4 h 27% 
2 Toluene 4 h 48% 
3 PhBr 4 h 63%b 
4 PhBr 1 h 58% 
5 PhBr 1 hc 1% 
6 PhBr 4 hd 72%b 
7 PhBr 20 hd 52% 

a By 1H NMR spectroscopy, 23a relative to 
Ph3CH. 
b Isolated yield.  c 0 °C.  d 0.9 equiv TrTPFPB. 

 
to inefficient oxidation or to difficulty isolating the phenolic amine product.  Reductive 

workup was then examined to give the known benzazaborolidine 23a.10  The borane 

complex of 4-dimethylaminopyridine gave moderate but variable yields of 23a along 

with a number of byproducts, likely due to further reactions of borenium-like species 

generated from the reducing agent as byproducts.  Sodium borohydride was examined, an 

advantage being that the byproduct of the activation should be the volatile diborane.  

Unfortunately this required the addition of ethereal solvents to solubilize the borohydride 

salt, and these solvents seem to interact with the product of the reaction at a rate 

competitive with the hydride quench, resulting in a complex mixture.  Only a slurry of 

NaBH4 in diethylene glycol dimethyl ether (diglyme) gave acceptable yields of 23a (63% 

isolated yield under the optimized conditions in entry 6).  Finally the organic-soluble 

Bu4NBH4 was selected, combining the advantages of the other hydride sources and 

resulting in isolation of fairly clean 23a.10 

While the reaction had progressed to a significant extent after just 1 h at rt, 

cooling to 0 °C prevented C–B bond formation.  Extended reaction times (entry 7) 
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resulted in slightly lower isolated yields with a more complex product mixture.  One of 

the byproducts identified was diphenylmethane, possibly formed by interaction of an 

electrophilic species with Ph3CH as described in Chapter 2.  A benzyl cation formed by 

C–N bond cleavage from the reactive intermediate 20a was considered as a possible 

electrophile, which would yield one equivalent of diphenylmethane directly along with 

the diphenylmethyl cation 27 (Scheme 3-4).  The shorter reaction times and also use of 

TrTPFPB as the limiting reagent (entry 6) gave a cleaner crude product and higher yield 

of the aromatic substitution product.  Although using the reagent in excess would be 

desirable in more complex systems, with these relatively simple substrates the expensive 

TrTPFPB makes sense as a limiting reagent. 

Scheme 3-4.  Potential Decomposition Pathway for Formation of Ph2CH2 from 20a 

22aPh N
B

MeMe
H

B
N Ph

Me Me

H H HH TPFPB

20a Ph H

H TPFPB

N
B

H H

MeMe

Ph3CH

Ph2HC TPFPB

24a

25

Ph
26aPh2CH2

Ph Ph

H TPFPB

27a
 

Finally, the purification of product 23a along with recovery of unreacted 22a was 

optimized.  The crude residue after removal of PhBr was dissolved in CH2Cl2 which was 

then diluted with hexanes to load onto a silica gel column for flash chromatography (FC).  

The Bu4NB(C6F5)4 salt generated as a byproduct forms a sticky solid under these 

conditions, and material recovery from FC was variable.  Purification by preparative thin 

layer chromatography (PLC) gave yields comparable to FC, but the salt byproduct stayed 

at the baseline of the plate, causing uneven development in some cases and again giving 

variable recovery.  Finally, the quenched reaction mixture still in PhBr was loaded 
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directly onto a column of silica gel for FC, causing the column to crack severely but 

eliminating the inconvenience of removing this nonvolatile solvent.  The cracking led to 

poor separation of 22 and 23, particularly with some of the substrates listed in Table 3-2 

with small differences in Rf.  However this gave >95% material recovery from the 

reaction of 22a and >90% for a number of other substrates, demonstrating that over the   

4 h reaction time very little decomposition by side reactions occurred. 

 

Investigation into the Reaction Pathway 

Having demonstrated a directed aromatic substitution, we sought to elucidate the 

pathway from 22 to 23.  As mentioned earlier, activation of amine boranes with 

TrTPFPB generates cations 20 as reactive intermediates.  This was verified for borane 

complex 22a using the same conditions, activation at -78 °C in CD2Cl2.  Assay by 1H 

NMR at -20 °C showed conversion of 22a to 20a, which has an upfield peak at δ 1H = -

1.9 ppm.  This chemical shift is in the range of the reported 3-center, 2-electron B–H–B 

bonds discussed in the previous chapter.11  The hydride-bridged structure 20a is also 

consistent with the δ 0 ppm 11B NMR chemical shift.  The solution was then observed by 

1H and 11B NMR 1 h after activation of 22a at rt in C6D5Br.  A highly deshielded peak 

with proton coupling appeared at δ 11B = 59 ppm, consistent with corrected data (vide 

infra) for the stabilized trivalent boron cation 29a (Scheme 3-5).  A peak was also 

observed at δ 1H = 5.4 ppm which is coupled to boron and integrates to 1H.  By analogy 

to the typical Friedel-Crafts reaction pathway,12 the highly electrophilic boron cation 20a 

would form a σ-bonded intermediate (28a) which could lose H2 to form 29a.  Quenching 
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this cation with Bu4NBH4 would then result in hydride transfer to boron, providing the 

isolable 23a. 

Scheme 3-5.  Proposed Pathway for Cyclization to 23a 

B
NMe2
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TPFPB
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R = Me
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B
NMe2
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The spectral data observed for 29a in this study do not match those previously 

reported for this cation in earlier work from our group.10,13  Chiral borenium ion 33 was 

initially sought by Schrimpf for potential applications to enantioselective hydroboration 

of alkenes and to Lewis acid-promoted additions into imines.13a  This cation was 

surprisingly reactive toward weak nucleophiles, abstracting fluoride from the 

tetrafluoroborate counterion and even from the more weakly coordinating tetrakis(3,5-

bistrifluoromethylphenyl)borate anion.  In order to study the behavior of the free cation 

hydride abstraction from 23a was carried out with trityl cation using the still less reactive 

tetrakis(pentafluorophenyl)borate (TPFPB) as a counterion.13b  Nguyen chose to explore 

activation of the achiral 23a to facilitate interpretation of the resulting spectra.  

With only slight modifications to Nguyen’s procedure, hydride abstraction from 

23a with TrTPFPB in CD2Cl2 at rt was performed with careful exclusion of moisture.  

This experiment gave the same chemical shifts described above, confirming the current 

assignment of 29a.  Addition of 1 equiv of water produced the species previously 

observed10 as the major product (1H NMR shifts in accord with those reported; δ 11B = 39 

ppm with no proton coupling), which we now assign to structure 30 (Scheme 3-6).  

Addition of another equivalent of H2O to 30 gave the protonated boronic acid 31 (δ 11B = 

29 ppm; δ 1H = 5.29 (2H, br s, OH), 4.28 (2H, d, benzylic CH2), 2.89 (6H, d, NMe2) 
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ppm), identical to the species formed by protonation of known boronic acid 32 followed 

by anion metathesis and extraction with CD2Cl2. 

Scheme 3-6.  Assignment of Structure 30 
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Nguyen also reports isolation of the B-pyridine adduct of 29a as confirmation of 

the structural assignment;10 the formation of this adduct had to be rationalized in the 

context of our reassignment to structure 30.  Taking a fresh look at the spectra recorded 

by Nguyen revealed a number of different species present from activation of 23a.  One of 

the major species present was tentatively identified as a hydride-bridged cation 34 by the 

δ 11 ppm 11B NMR chemical shift and the 1H NMR chemical shifts at δ 4.11 and 2.84 

ppm (bridging hydride signal outside the printed region of Nguyen’s spectra), downfield 

from neutral 23a but upfield from B-hydroxyborenium cation 30.  This has now been 

prepared by the reaction of TrTPFPB with 2 equiv 23a, confirming its presence in 

Nguyen’s experiment.  Quenching this cation with pyridine would generate the adduct 

previously isolated and characterized as well as an equivalent of 23a, which was also 

isolated from Nguyen’s pyridine quench. 

To gain further insight into the formation of 29 under aromatic subsitution 

conditions, the rate-determining step was probed by a deuterium labelling study (eq 2).  
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The monodeuterated substrate 22b-d1 was prepared by ortho-lithiation of p-methyl-N,N-

dimethylbenzylamine followed by D2O quench14 and borane complexation, giving 95% 

deuterium incorporation.  The directed borylation of this substrate can occur at the 

protonated carbon with retention of deuterium in the product, while reaction at the 

deuterated site results in loss of the deuterium label.  The ratio of 23b-d1 to 23b therefore 

corresponds to the relative rate of reaction for substitution of a proton compared to 

deuterium (kH/kD).  Substrate 22b was chosen for this study rather than the simpler 22a 

because the 1H NMR signal for the ortho-C–H of 23a overlaps with another aromatic 

proton signal.  All aromatic proton signals for 22b are fully resolved in the 500 MHz 1H 

NMR spectrum.  The magnitude of the kinetic isotope effect (KIE) observed, in this case 

kH/kD = 2.8 (eq 2), indicates a primary KIE; this means that the C–H(D) bond at which 

boron substitution occurs is broken during or before the slow step.  According to the 

pathway shown in Scheme 3-5, this precludes all steps but the deprotonation of 28 from 

being rate-limiting.  Direct interaction of electrophilic boron with the C–H(D) σ electrons 

with concomitant deprotonation cannot be ruled out, but the lack of a strong Brønsted 

base in these reaction conditions is more consistent with the pathway shown.  It is also 

impossible to determine from this data whether loss of H2 occurs intramolecularly via a  

4-membered transition state or by the action of an external hydride source or other base. 

Me

NMe2
BH3

D TrTPFPB
PhBr, 1 h;

Bu4NBH4H B
H2

NMe2
Me

H(D)

(2)

 

This result was surprising since most electrophilic aromatic substitution reactions 

proceed with no KIE.12,15  In his seminal work Melander reported a negligible KIE in the 

nitration of a number of simple monotritiated substrates including benzene, toluene and 
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naphthalene.15a  These results were subsequently confirmed for nitration of benzene-d1,15b 

and similar results were obtained in a number of electrophilic aromatic substitution 

reactions.12  This was taken as evidence not only that a σ-bonded intermediate (36) was 

involved in the reaction but also that its formation was rate-limiting (eq 3).  Observation 

of a small, inverse secondary KIE in the nitration15c and bromination15d of perdeuterated 

arenes was reported as further evidence that formation of a Wheland intermediate (36) 

occurs in the slow step; this inverse KIE is consistent with the change in hybridization of 

the C–H(D) bonding orbital from sp2 to sp3 at the site of subsititution.  Recent advances 

have also allowed measurements of kH/kD equal to about 1 for AlCl3-catalyzed 

acetylation of benzene using natural abundance 2H NMR spectroscopy.15e 

R
E

E
H

R R

E
B:

B H

35 36 37

(3)

H k1

k-1 k2

 

Several cases have, however, been reported in which loss of a proton from 36 is 

the slow step.12c,16  For example, the mercuration of benzene with Hg(OAc)2 and HClO4 

is six times faster than the reaction of benzene-d6 under the same conditions; this KIE 

was attributed to a weak C–Hg bond, increasing the rate of its cleavage from 36 back to 

35 relative to deprotonation to form 37 (an increase in k-1 relative to k2[B]).16a  Similarly, 

iodinations of phenol16b and anisole16c are subject to a significant KIE (kH/kD ~ 4 in both 

cases), possibly due to a weaker C–I bond as described for mercuration but also due to 

decreased acidity of 36 afforded by oxygen stabilization of the cationic intermediate.  

The magnitude of the KIE in the reaction of an arene with p-chlorobenzenediazonium 

was found to be dependent on the concentration of added pyridine base.16d  At a pyridine 

concentration of 0.905M, kH/kD decreases to 3.62 from 6.55 in its absence, showing that 
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deprotonation to 37 is slowed relative to initial interaction of the electrophile with the 

arene.  The addition of base increases k2[B], but k-1 remains unchanged.  Similar 

conditions exist in the present study, where even the hydride acceptor’s counterion was 

chosen to be as weakly basic as possible.  Finally, this phenomenon has recently been 

observed in an acylation of toluene, for which kH/kD decreases from 1.85 in the presence 

of TfOH to 1.14 in the presence of a hindered 2,4,6-tri-t-butylpyridine base.16e  It was 

also noted that the para/ortho ratio in the product increases from 2.4 in the base-

promoted conditions to 10.4 with added TfOH.  Under the conditions of added base k2[B] 

is much greater than k-1, meaning that k1 is the rate- and also regioselectivity-

deteremining step.  Under the acidic conditions, k2[B] decreases relative to k-1; this 

reverse reaction becomes more important, allowing the intermediates 36 to equilibrate 

such that the increased steric repulsions for o-substituted 36 have a greater effect in 

determining regioselectivity. 

Substrate Scope and Limitations 

In addition to facilitating the measurement of a KIE, the reaction of 22b-d1 

demonstrates tolerance of the directed borylation to aryl substitution, warranting further 

investigation into the scope of the reaction.  Although the isolated yield of 23b from 22b 

was modest (Table 3-2, entry 2), m- and o-methyl substitution gave higher yields of 

cyclized products.  Halogen substituents were also compatible, although longer reaction 

times were required for good conversion to 23e-k (entries 5-10).  It is noteworthy that 

substrates with ortho-halogen substitution (entries 8-10) required still longer reaction 

times and gave lower yields than the corresponding para-substituted substrates (entries 5-

7), possibly indicating non-productive formation of a B–X bond between electrophilic 
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boron and the ortho-halogen.  Testing the tether length showed that even formation of the 

7-membered ring was viable (entry 12), but this required 16 h and gave only 42% of 23n. 

Table 3-2.  Scope of the Directed Borylation 

NMe2
BH3R

n

22
1.1 equiv

TrTPFPB
PhBr, rt;

Bu4NBH4

NMe2
BH2R

n

23
 

a 3:1 mixture of regioisomers. 

Although the yields from substrates 22k and 22n were low, 30-40% of the starting 

material was recovered from these reactions.  The decomposition described in Scheme   

3-4 should be disfavored from 22k due to the destabilizing effect of the strongly electron-

withdrawing ortho-fluorine on 24k.  For 22n, the C–N bond cleavage previously 

described would result in a primary carbocation; while the desired reaction is slowed in 

both of these cases, the side reactions are slowed as well.  Thus these sluggish substrates 

result in higher recovery of starting material despite the longer reaction times.  In the 

other entries 10-20% of the starting material was recovered.  

The longer reaction times required for halogen-substituted 22e-k provide 

additional evidence for a mechanism similar to the typical electrophilic aromatic 

entry substrate R n time Yield 
1 22a H 1 4 h 72% 
2 22b p-Me 1 4 h 41% 
3 22c m-Me 1 4 h 79%a 
4 22d o-Me 1 4 h 76% 
5 22e p-Br 1 8 h 53% 
6 22f p-Cl 1 8 h 73% 
7 22g p-F 1 16 h 59% 
8 22h o-Br 1 16 h 55% 
9 22j o-Cl 1 16 h 55% 

10 22k o-F 1 16 h 39% 
11 22m H 2 4 h 74% 
12 22n H 3 16 h 42% 
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substitution.12  Electron-withdrawing groups on the arene would disfavor formation of 

28, which occurs before the rate-limiting step.  Electron-donating groups should therefore  

NMe2
BH3

OMe

MeO NMe2
BH3MeO

O22r 22s  

accelerate the reaction, so a 3,5-dimethoxy substituted substrate (22r) was tested, but the 

crude product was a complex mixture with no evidence of a cyclized product.  The 

simpler monosubstituted substrate 22p was then tested to determine the compatibility of a 

methyl ether with the reaction conditions (eq 4).  After 4 h at rt no product 23p was 

detected after the typical borohydride quench.  In addition to recovered starting material 

(57%), 22q was isolated (25%).  Evidently, the methyl aryl ether is partly cleaved under  

NMe2

BH3

NMe2

BH3HOMeO

TrTPFPB
PhBr, 4 h;

Bu4NBH4
22p 22q

(4)

 

the reaction conditions, and the resulting phenol derivative interferes with subsequent 

cyclization.  An ester functionality was examined by testing 4-carbomethoxy substituted 

benzylic amine borane 22s, but this also gave a complex product mixture in which no 

cyclized product was observed.  A similar O-Me cleavage could be responsible, but 

coordination of the Lewis basic carbonyl oxygen followed by hydride transfer to the 

activated carbonyl carbon is also precedented (Scheme 3-7).13b 

Scheme 3-7.  Reduction of a Carbonyl by Hydride Bound to Electrophilic Boron 
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Reactions of Diastereomeric 2-Phenylpyrrolidine Boranes 

NMe2
BH3

Me 1) 0.9 equiv TrTPFPB
PhBr, rt, 4 h

2) Bu4NBH4

NMe2
BH2

Me

42
<5% y

41

Me

H

43

(5)

 

As part of our research group’s hydroboration efforts, it has been proposed that 

borenium ion 29 would be reactive toward an alkene.  It was hoped that cyclization of 41, 

the borane complex of commercially available (S)-N,N-dimethyl-α-methylbenzylamine, 

would finally provide access to 33 for enantioselective hydroboration, quenching the 

cyclization with an alkene instead of with borohydride.  The cyclization of 41 was tested 

by A. Prokofjevs, but unfortunately this substrate failed to cyclize, giving byproducts 

indicating C–N bond cleavage from the active intermediate (20).17  This will be a greater 

problem for the cyclization of any α-substituted substrate due to the greater stability of 

the resulting 2° benzylic carbocation (43). 

It was then proposed that a cyclic substrate, 44, prepared by methylation of (R)-2-

phenylpyrrolidine18 followed by exposure to BH3·THF, could prevent this decomposition.  

Reducing the conformational flexibility of the substrate, holding the electrophilic boron 

formed on activation in proximity to the phenyl ring as in diastereomer 44a, should 

accelerate the desired arene borylation but should not affect the rate of C–N bond 

cleavage.  Furthermore, tethering the amine to the benzylic position means that even if 

C–N bond cleavage to 47 does occur as a side reaction, the reverse reaction (Scheme 3-8) 

would be faster than in an acyclic case, perhaps faster than the subsequent interaction of 
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the benzylic cation with an external nucleophile.  Unfortunately this may also result in 

epimerization of both stereocenters. 

Scheme 3-8.  Cyclization of 44a and Possible Epimerization via 47 

1) 0.9 equiv TrTPFPB
PhBr, rt, 4 h

2) Bu4NBH4

N
H3B Me
44a

N
B

H

Me
H2

45

TPFPB

46

N
H2B Me

H
H2B

NR3

TPFPB

47
H3B NR3

H N
B

Me

HH44a

N
Me BH3

44b

 

 In the event, activation of 44a (impure with the diastereomeric borane complex 

44b in a ratio of 17:1) followed by the standard hydride quench resulted in ca. 74% 

conversion to product 45 by 1H NMR assay.  Purification gave only a 24% yield of 45; 

2D TLC confirmed decomposition of this product on silica gel.  Also recovered was a 

mixture of 44a and its diastereomer 44b.  The amount of 44b calculated in this mixture 

corresponds to 195% recovery of the 44b impurity taken in to the activation, implying its 

formation from 44a as well under the reaction conditions.  The simplest explanation is 

that formation of 47 indeed occurs as a reversible side reaction, and the reverse reaction 

occurs without stereospecificity.  However this is not a major reaction pathway, as the 

amount of 44b formed in the reaction accounts for the fate of only about 5% of 44a. 

Diastereomerically pure 44b was also subjected to the activation, but the crude 1H 

NMR spectrum showed no evidence of a C–B bonded product.  This is consistent with a 

rate enhancement for cyclization from 44a due to the cis-relationship between the phenyl 

group and borane; likewise the trans-relationship of these substituents in 44b prevents 
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interaction of the arene with electrophilic boron.  The crude product mixture contained an 

unknown byproduct but also a mixture of 44a and 4b in a ratio of ca. 1:1.  Since the 

substrate used in this experiment was diastereomerically pure, the formation of 44a is 

again taken as evidence of reversible C–N bond cleavage of the reactive intermediate to 

47.  The presence of 44b in the reaction mixture apparently interferes with formation of 

45 from 44a although the basis of this inhibition is not understood. 

In conclusion, the evidence presented above demonstrates that electrophilic arene 

borylation proceeds at room temperature following activation of benzylamine boranes 

with a hydride acceptor.  This nitrogen-directed reaction results in highly ortho-selective 

C–B bond formation, giving arylborane products without further boron substitution.  This 

regioselectivity is complementary to transition metal-catalyzed arene borylation, which 

typically gives mixtures of meta- and para-substituted products1a,4a although borylation 

ortho- to the nitrile group in 4-substituted benzonitriles has been reported.4b  The 

pathway was shown to involve a hydride-bridged cation 20, and the kinetic isotope effect 

supports rate-limiting deprotonation of the Wheland intermediate 28.  The reaction is 

tolerant of the presence of substituents at any position on the arene but is slowed by 

electron-withdrawing groups, consistent with an electrophilic aromatic substitution 

pathway. 

 

Directed Borylation of Phosphine Boranes 

Activation of a Benzylic Phosphine Borane  

After succesfully developing a nitrogen-directed arene borylation under 

conditions of trityl activation of a borane complex, out attention turned to other potential 

directing groups.  Phosphine boranes were a logical choice, having been shown to behave 
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in a manner similar to amine boranes under the activation conditions in Chapter 2.  

Therefore the borane complex of a known benzylic phosphine19 was examined (eq 6).  

Under the optimized conditions for nitrogen-directed arene borylation product 49 was 

isolated in only 38% yield, significantly lower than from the analogous benzylic amine 

borane.   

PiBu2
BH3

1) 0.9 equiv TrTPFPB
PhBr, rt, 4 h

2) Bu4NBH4

PiBu2
BH2

48 49
38% y

(6)

 

A significant amount of the typical decomposition byproduct Ph2CH2 was also 

isolated from the reaction mixture in a ratio of ca. 1:3 with Ph3CH, more than was 

observed from the reaction of 22a after 4 h.  This may have resulted from formation of a 

benzyl cation by the same pathway described earlier (Scheme 3-4).  In this case a simple 

benzyl cation is invoked as would be the case from 22a.  More facile formation of the 

benzyl cation is a result of cleavage of the weaker C–P bond, explaining the lower yields 

and increased formation of decomposition byproducts. 

Phenol-Derived Substrate 

 Since benzylic phosphine boranes suffered from problems thought to stem from a 

weakness of the bond between phosphorus and the benzylic carbon, the next generation 

replaced this carbon with a heteroatom.  This should prevent heterolytic cleavage by the 

pathway described above, forming a cationic sextet oxygen atom from 50 if 

decomposition were to occur by the same mechanism.  This borane complex of phenyl 

diispropylphosphinite20 should also benefit from an electron-donating effect of the 

oxygen substituent in the electrophilic aromatic substitution, and the phosphine might  be 

a removable directing group, making this borylation effectively hydroxyl-directed. 
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O
PiPr2
BH3

1) 0.9 equiv TrTPFPB
PhBr, rt, 4 h

2) Bu4NBH4

O
PiPr2
BH2

50 51
30% y

(7)

 

 Activation of 50 under standard conditions followed by a borohydride quench (eq 

7) resulted in 83% conversion to product 51 by 1H NMR assay, but this product was only 

obtained in about 30% yield due to instability to silica gel.  Other workup methods that 

would result in a product with an intact C–B bond were therefore examined.  The pinacol 

ester of the boronic acid in particular was sought due to demonstrated applications of the 

free phenol derivative (52) in Suzuki-Miyaura cross-couplings.   

Promising results came from an initial quench with Hünig’s base and a solution of 

pinacol followed by an aqueous quench (Table 3-3, entry 1), a procedure that had been 

optimized for formation of vinylboronates via alkyne hydroboration.21  Surprisingly, this 

gave a product mixture composed of both 52 and the reduced product 51 in a 1.5:1 ratio.  

Replacement of the water added after pinacol with 5% aq. NaOH gave traces of 52 in 

addition to isolation of a small amount of catechol, indicating oxidation of the C–B bond.  

No reduced product 51 was present to account for the remainder of the material, but 

under these conditions a deeply colored insoluble material formed during the 16 h 

exposure to NaOH, similar to the “dark polymeric material” reported from decomposition 

of o-hydroxyphenyl trifluoroborate under basic aqueous conditions.22  Using a less basic 

solution of 10% aq. Na2CO3 (entry 3) gave higher apparent conversion to 52 but with 

formation of the same insoluble material.  This 72% conversion is based on integration of 

the 1H NMR peaks relative to Ph3CH and Ph2CH2 in the crude product; since the 

composition of the insoluble material is unknown this may not be an accurate estimate of 

the actual amount of 52 recovered, but purification attempts have not been successful.  
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Therefore the lower apparent conversion using saturated NaHCO3 (entry 6) should be 

viewed in context of the absence of this insoluble material; it is a more reliable estimate.  

After the observation of catechol in entry 2, an inert atmosphere was maintained during  

Table 3-3.  Optimization of the Pinacol Workup 

O
PiPr2
BH3

1) 0.9 equiv TrTPFPB
PhBr, rt, 4 h

2) iPr2NEt, pinacol;
aqueous quench

OH

50

52

O
PiPr2
BH2

51
B
O

O

Me
Me

Me
Me  

the aqueous quench to prevent oxidation due to atmospheric oxygen (entries 4 and 7), 

again resulting in recovery of a significant amount of reduced product 51.  Some hydride 

exchange must occur between cationic intermediates of the cyclization related to 29 after 

nucleophilic attack on boron, but after exposure to air under basic conditions this product 

51 is oxidized to derivatives of 52.  These oxidation pathways may also be responsible 

for some of the insoluble material since it was minimized in entries 4 and 7 as well, with 

exclusion of air.  Likewise, 1M HCl (entry 8) resulted in a clean crude product but with a 

low ratio of 52 to 51.  Despite the success of  cyclization from 50, the challenge of 

cleaving the O–P bond and isolating an o-hydroxyphenyl boronic acid derivative, 

effecting a net hydroxy-directed borylation, remains. 

Entry aqueous quencha conv. to 52b conv. to 51b 
1 H2O 53 34 
2 5% NaOH trace NDc 
3 10% Na2CO3 72 NDc 
4 10% Na2CO3

d 26 38 
5 10% Na2CO3

e 40 38 
6 saturated NaHCO3 32 NDc 
7 saturated NaHCO3

d 47 37 
8 1M HCl 29 56 

a Standard conditions for 100 μmol scale reaction: 4 equiv iPr2NEt added to quench 
followed by 4 equiv pinacol, then after 1 h 0.4 mL H2O added, stirring open to 
atmosphere 16 h.  b By 1H NMR assay, integrated relative to sum of Ph3CH and Ph2CH2.  
c Not detected.  d Kept under N2.  e Exposed to aqueous Na2CO3 1 h. 
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Strong Acid Activation  

 Cyclization of phenyl phosphinite borane 50 under TrTPFPB activation led to a 

desire to test the added arene reactivity toward electrophilic aromatic substitution 

afforded by an oxygen substituent.  Specifically, previous attempts at strong acid 

activation for the cyclization of benzylic amine borane 22a had proven ineffective.  In all 

cases the product was simply a BH2X complex of the amine, showing that even slightly 

more coordinating anions than (C6F5)4B–, such as I–, TfO–, and even Tf2N–, were not 

good enough leaving groups for attack of the arene at boron. 

Table 3-4.  Strong Acid Activation for Cyclization of 51 

O
PiPr2
BH3

50

1) 0.9 equiv activator, 24 h

2) Bu4NBH4 B
H2

PiPr2

O

51  

 Initially, treatment of 50 with Tf2NH at rt showed only traces of cyclization 

product 51 on quenching with Bu4NBH4 even after 24 h (Table 3-4, entry 1).  Heating the 

reaction to 100 °C gave 69% conversion to 51, but attempts to improve this were 

entry activator solvent temperature conv.a 
1 Tf2NH PhBr rt <1% 
2 Tf2NH CH2Cl2 rt <1% 
3 Tf2NH PhBr 100 °C 69% 
4 Tf2NH toluene 100 °C 34% 
5 Tf2NH o-C6H4Cl2 100 °C 67% 
6 Tf2NH CH2Br2 100 °C 49%b 
7 Tf2NHc PhBr 100 °C 58% 
8 TfOHc PhBr 100 °C <1%b 
9 I2

d PhBr 100 °C 5% 
a By 1H NMR assay, integration of 51 relative to 50.  b iPr methine region 
of 
1H NMR spectrum complex.  c 1.1 equiv acid used.  d 0.6 equiv. 
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unsuccessful.  Unlike activation with TrTPFPB, this reaction is proposed to proceed via a 

neutral intermediate, the less electrophilic BH2NTf2 complex, with rate-limiting 

formation of a charged Wheland intermediate analgous to 28.  If this is true, a more polar 

solvent should accelerate the reaction by stabilizing charge development in the transition 

state.  Using the less polar toluene as reaction solvent (entry 4) did in fact result in lower 

conversion over the same time, but the more polar o-dichlorobenzene did not improve 

conversion relative to bromobenzene.  The polar aliphatic solvent dibromomethane gave 

slightly lower apparent conversion, but this may be due to side reactions involving 

relatively labile C–Br bonds.   

Activation with other strong acid sources gave only slight conversion to product 

after 24 h.  Trifluoromethanesulfonic acid (entry 8), gave only trace 51, but this slightly 

stronger Brønsted acid23 might lead to side reactions other than simple hydride 

abstraction.  Iodine activation, using a little more than half an equivalent to allow initial 

B–H bond reaction with I2 and subsequent activation with the hydroiodic acid thus 

formed as described in Chapter 2, surprisingly gave a quantifiable amount of product 51.  

However the boundaries of electrophilicity required for reaction of an oxygen-substituted 

arene are clear. 

Aniline-Derived Substrate 

 With clear evidence of the reactivity enhancement due to an oxygen substituent 

and directing group, analogous direction by aniline nitrogen was sought.  Replacement of 

oxygen in 50 with the more cation-stabilizing nitrogen was hoped to give cyclization 

under still milder conditions.  This substrate, however, proved more difficult to prepare.  

Unlike phenol, the reaction of the less acidic N-methylaniline (53) with iPr2PCl in the 

presence of Et3N did not go to conversion even in refluxing toluene.  Deprotonation of 53 
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with nBuLi led to efficient formation of 54,24 but the reaction stoichiometry had to be 

adjusted to minimize formation of an inseparable nBu(iPr)2P·BH3 side product (eq 8).  

N
H

Me 1) 0.9 equiv nBuLi
Et2O, -78 °C to rt, 1 h

2) 0.8 equiv iPr2PCl
-78 °C to rt, 18 h

3) BH3·THF53 54
96% y

N
PiPr2

Me

BH3

(8)

 

 This substrate was tested under the typical directed borylation conditions, but 

quenching after 4 h resulted in a complex crude product mixture without any trace of the 

desired product 55 but also with very little unreacted 54.  Quenching after just 1 h led to 

56% conversion to 55 by 1H NMR assay and allowed isolation of this silica gel-stable 

cyclized product in 55% yield (eq 9).  Similar conversion to 55 was observed within just 

10 min, demonstrating the pronounced reactivity of this N-substituted arene. 

N
PiPr2
BH3

1) 0.9 equiv TrTPFPB
PhBr, rt, 1 h

2) Bu4NBH4

N
PiPr2
BH2

54 55
55% y

(9)

Me Me

 

 Considering the additional activation provided by nitrogen in 54, its Tf2NH-

promoted reaction was explored.  After 24 h at 100 °C, or even at rt, no product 55 was 

obtained after reductive workup but very little 54 remained.  The major species present in 

the complex crude mixture was iPr2P(O)H, the product of hydrolysis of 54.  Using a 

shorter reaction time (1 h) allowed recovery of 54 and a smaller amount of iPr2P(O)H, 

but in no case was the desired intramolecular borylation product 55 isolated.   

Phosphorus direction has therefore been demonstrated with carbon, nitrogen and 

oxygen tethers, providing access to ortho-heteroatom borylation products.  The C–P bond 

was a liability in the benzylphosphine borane substrate 48, while phenyl phosphinite 
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borane 50 gave a product that is unstable to silica gel.  So far other workup methods have 

proven difficult to evaluate.  However, this substrate allowed us to realize the exciting 

possibility of strong acid activation albeit at high temperatures, circumventing the need 

for the expensive TrTPFPB. 

 

Attempts at C-Directed Borylation via Hydroboration of Allylic Arenes 

Inspired by the example from Knochel’s research group,8 an example of carbon-

directed arene borylation seemed a fitting conclusion to these studies.  An important 

contribution would be to address a limitation of that work in the stated need for bulky 

substituents.  In the discussion of substrate 18 in the introduction to this chapter, this 

requirement was proposed to stem from a need for dimeric hydroboration products to 

dissociate prior to aromatic substitution.  The previously developed intermolecular 

hydroboration with TrTPFPB activation (Chapter 2) is believed to yield a cationic 

trivalent boron intermediate (57).  This species is more likely to exist as a monomer due 

to charge repulsion that should discourage formation of the dimer.  Structure 57 may also 

be more reactive for subsequent electrophilic aromatic substitution due to its positive 

charge (Scheme 3-9).  

Scheme 3-9.  Proposed Pathway for Hydroboration/C-Directed Arene Borylation 

Et3N·BH3
0.9 equiv TrTPFPB,
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Application of the optimized hydroboration conditions to allylbenzene gave 3-

phenyl-1-propanol (58) in 74% yield as the only product after 4 h.  If the reaction time 

was extended to 24 h before oxidative quench, a small amount of 60 was isolated (<1%); 

similar results were obtained on replacing the solvent with DCM.  This shows that the 

hydroboration is successful under these conditions, but the C-directed arene borylation 

does not proceed at an appreciable rate at rt.  Heating the reaction mixture to 100 °C after 

adding 56 to activated Et3N·BH3 at rt gave only slightly better results, a 3% yield of 60 

along with ca. 90% conversion to 58.  A 3,5-dimethyl derivative of 56 was prepared by 

reaction of the aryl Grignard reagent with allyl bromide25 in hopes that the addition of 

two electron-donating methyl substituents would sufficiently enhance the reactivity of the 

arnene, but hydroboration of this substrate still occurred without C-directed borylation.  

The reasons for this apparently slow cyclization from 57 were not investigated in depth, 

but a possible explanation is steric interaction with the triethylamine ligand on boron 

preventing interaction with the arene.  The rest of the substrates explored in this chapter 

were substituted only by hydrides at the terminal boron.  Any sterically bulky 

substituents were in the tether, which may even enhance reactivity by a Thorpe-Ingold 

effect. 

 

Summary 

We have shown herein that a highly regioselective arene borylation can in fact be 

achieved under mild conditions with trityl activation.  This reaction occurs from borane 

complexes of a number of different heteroatomic directing groups.  While we have 

discovered much about how these reactions proceed and about the behavior of the 

reactive intermediates, examples such as the surprisingly sluggish tandem 
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hydroboration/arene borylation reveal the gaps in our understanding of these highly 

electrophilic species.  A clearer picture of the desired reaction pathway as well as the side 

reactions will aid the development of activation conditions with greater functional group 

tolerance and perhaps the development of a broader scope with respect to the directing 

group, providing ample opportunities for further development of this methodology.  From 

the observed KIE for the reaction of 22b it can be concluded that the presence of a 

Brønsted base will accelerate these reactions.  This base could take the form of 

something as simple as a more reactive counterion than B(C6F5)4
–, but a more stabilized 

borenium cation than R3N·BH2
+ will have to be found to prevent a more basic anion from 

quenching the reactive intermediate.  It would be interesting to explore the effects of 

boron substitution that emerge from analysis of the examples of electrophilic arene 

borylation in the literature.  Future development of this methodology could apply these 

trends to find the right balance between stability of the cationic boron intermediates 

while maintaining high reactivity toward the arene nucleophile, but the room temperature 

activation of stable, isolable BH3 complexes of Lewis bases described here already 

represents an improvement over similar methodologies described in the literature. 
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Experimental 

  

General Methods.  The following chemicals were commercially available and 

used as received: dimethylbenzylamine; borane tetrahydrofuran, 1.0 M solution in 

tetrahydrofuran; trityl tetrakis(pentafluorophenyl)borate (TrTPFPB); lithium tetrakis-

(pentafluorophenyl)borate, ethyl ether complex; tetrabutylammonium borohydride; 4-

methylbenzyl bromide; dimethylamine, 5.6 M solution in ethanol; 3-methylbenzyl 

bromide; 2-methylbenzyl bromide; 4-bromobenzyl bromide; 4-chlorobenzyl bromide; 4-

fluorobenzyl bromide; 2-bromobenzyl bromide; 2-chlorobenzyl bromide; 2-fluorobenzyl 

bromide; (2-bromoethyl)benzene; (3-bromopropyl)benzene.  Bromobenzene, C6D5Br and 

CD2Cl2 were dried by storing over activated 4Å molecular sieves; dichloromethane 

(DCM), ethyl ether (Et2O) and tetrahydrofuran (THF) were dried by passing through a 

column of activated alumina; toluene was distilled from CaH2 under an N2 atmosphere.  

All reactions were performed at room temperature under an N2 atmosphere unless 

otherwise stated.  Nuclear magnetic resonance experiments were performed on Varian 

Inova 500 and  Inova 400 spectrometers at the following frequencies: 1H 500 MHz; 

{1H}13C 101 MHz; 11B 160 MHz; 19F 376 MHz, unless otherwise stated.  All spectra 

were recorded in CDCl3 and referenced to the 1H signal of internal Me4Si (unless 

otherwise stated) according to recommendations,26 using a Ξ of 25.145020 for Me4Si 

(13C), a Ξ of 32.083974 for BF3·OEt2 (11B), and a Ξ of 94.094011 for CCl3F (19F). 

 

Preparation of Dimethylbenzylamine Borane (22a). 

 BH3·THF (9.0 mL, 9.0 mmol) was added by syringe under an N2 atmosphere to 

neat dimethylbenzylamine (1.2 mL, 8.0 mmol).  After 1 h, the solution was filtered 
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through a plug of silica gel, flushing with DCM and removing solvent by rotary 

evaporation.  The solid product was further dried under high vacuum, yielding 1.12 g 22a 

(94%).  1H, 13C and 11B NMR spectral data matched those reported for 22a.27 

 

General Procedure for Preparation of Borane Complexes for Directed Borylation 

(22b-n) 

 A solution of 3-methylbenzyl bromide (1.02 g, 5.5 mmol) in DCM (used without 

drying, 2 x 2 mL) was added to dimethylamine (5.6 M solution in ethanol, 2.0 mL, 11 

mmol) diluted with DCM (used without drying, 25 mL) with stirring.  After 3 h the 

reaction was quenched by addition of 5% aq. NaOH (20 mL), separating the layers and 

extracting the aqueous layer with 2 x 10 mL DCM.  The combined organic layers were 

washed with brine (25 mL), dried over Na2SO4 and reduced by rotary evaporation.  The 

crude product was dissolved in anhydrous DCM (10 mL) and reacted with BH3·THF (1.0 

M in THF, 6.0 mL, 6.0 mmol), stirring 1 h before filtering the solution through a plug of 

silica gel, flushing with 20 mL DCM.  The filtrate was reduced under a stream of N2, 

giving 395 mg 5c as a slightly yellowish oil (44% y).  3-Methylbenzyldimethylamine 

borane (22c): analytical thin layer chromatography (TLC) on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.49.  Molecular ion calculated for C10H18BNNa: 186.1430; 

[M+Na], ESMS found m/z = 186.1423; IR (neat, cm-1) 2366, B–H; 2319, B–H; 2273, B–

H; 1466, B–N; 1167, C–N; 1H NMR: δ 7.29 (1H, t, J = 7.5 Hz), 7.22 (1 H, d, J = 7.7 Hz), 

7.13-7.10 (2H, m), 3.95 (2H, s), 2.50 (6H, s), 2.38 (3H, s), 2.2-1.4 (3H, br m); 13C NMR: 

δ 138.1, 132.9, 131.1, 129.8, 129.2, 128.3, 67.4, 49.6, 21.3; 11B NMR: δ -8.2 (q, J = 94 

Hz). 
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4-Methylbenzyldimethylamine borane (22b, 54% y): TLC on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.44.  Molecular ion calculated for C10H18BNNa: 186.1430; 

[M+Na], ESMS found m/z = 186.1436; IR (neat, cm-1) 2362, B–H; 2312, B–H; 2271, B–

H; 1465, B–N; 1167, C–N; 1H NMR: δ 7.20 (4H, s), 3.95 (2H, s), 2.49 (6H, s), 2.38 (3H, 

s), 2.2-1.4 (3H, br m); 13C NMR: δ 139.1, 132.1, 129.1, 128.2, 67.2, 49.5, 21.2; 11B 

NMR: δ -8.3 (q, J = 91 Hz). 

 

2-Methylbenzyldimethylamine borane (22d, 79% y): TLC on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.39.  Molecular ion calculated for C10H18BNNa: 186.1430; 

[M+Na], ESMS found m/z = 186.1431; IR (neat, cm-1) 2364, B–H; 2315, B–H; 2271, B–

H; 1470, B–N; 1165, C–N; 1H NMR: δ 7.33-7.20 (4H, m), 4.09 (2H, s), 2.53 (6H, s), 2.43 

(3H, s), 2.2-1.4 (3H, br m); 13C NMR: δ 139.0, 133.3, 131.3, 129.8, 129.2, 125.8, 63.6, 

49.7, 20.3; 11B NMR: δ -8.0 (q, J = 95 Hz). 

 

4-Bromobenzyldimethylamine borane (22e, 77% y): TLC on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.30.  Molecular ion calculated for C9H15BBrNNa: 250.0379; 

[M+Na], ESMS found m/z = 250.0389; IR (neat, cm-1) 2366, B–H; 2321, B–H; 2269, B–

H; 1463, B–N; 1167, C–N; 1H NMR: δ 7.54 (2H, d, J = 8.8 Hz), 7.22 (2H, d, J = 8.8 Hz), 

3.93 (2H, s), 2.51 (6H, s), 2.2-1.4 (3H, br m); 13C NMR: δ 133.8, 131.7, 130.2, 123.7, 

66.9, 49.9; 11B NMR: δ -8.3 (q, J = 90 Hz). 

 

4-Chlorobenzyldimethylamine borane (22f, 91% y): TLC on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.28.  Molecular ion calculated for C9H15BClNNa: 206.0884; 
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[M+Na], ESMS found m/z = 206.0876; IR (neat, cm-1) 2368, B–H; 2315, B–H; 2279, B–

H; 1461, B–N; 1169, C–N; 1H NMR: δ 7.38 (2H, d, J = 8.4 Hz), 7.29 (2H, d, J = 8.4 Hz), 

3.94 (2H, s), 2.51 (6H, s), 2.2-1.4 (3H, br m); 13C NMR: δ 135.4, 133.5, 129.6, 128.6, 

66.8, 49.9; 11B NMR: δ -8.4 (q, J = 90 Hz). 

 

4-Fluorobenzyldimethylamine borane (22g, 91% y): TLC on K6F silica gel 60Å, 2:1 

hexanes/EtOAc, Rf = 0.47.  Molecular ion calculated for C10H19BFNNaO: 222.1441; 

[M+Na+MeOH], ESMS found m/z = 222.1435; IR (neat, cm-1) 2366, B–H; 2319, B–H; 

2277, B–H; 1468, B–N; 1162, C–N; 1H NMR: δ 7.35-7.30 (2H, m), 7.12-7.16 (2H, m), 

3.95 (2H, s), 2.51 (6H, s), 2.2-1.4 (3H, br m); 13C NMR: δ 163.2 (d, J = 249 Hz), 134.0 

(d, J = 9 Hz), 127.2 (d, J = 4 Hz), 115.5 (d, J = 21 Hz), 66.7, 49.8; 11B NMR: δ -8.5 (q, J 

= 95 Hz); 19F NMR: δ -112.2 (m). 

 

2-Bromobenzyldimethylamine borane (22h, 81% y): TLC on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.31.  Molecular ion calculated for C9H15BBrNNa: 250.0379; 

[M+Na], ESMS found m/z = 250.0373; IR (neat, cm-1) 2360, B–H; 2315, B–H; 2271, B–

H; 1465, B–N; 1167, C–N; 1H NMR: δ 7.66 (1H, dd, J = 8.1, 1.5 Hz), 7.52 (1H, dd, J = 

7.9, 1.9 Hz), 7.37 (1H, td, J = 7.8 Hz, 1.5 Hz), 7.27 (1H, td, J = 7.7, 1.9 Hz), 4.24 (2H, s), 

2.61 (6H, s), 2.2-1.4 (3H, br m); 13C NMR: δ 134.7, 133.7, 131.1, 130.8, 127.3, 127.2, 

65.4, 50.2; 11B NMR: δ -8.1 (q, J = 98 Hz). 

 

2-Chlorobenzyldimethylamine borane (22j, 73% y): TLC on K6F silica gel 60Å, 9:1 

hexanes/Et2O, Rf = 0.19.  Molecular ion calculated for C9H15BClNNa: 206.0884; 
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[M+Na], ESMS found m/z = 206.0876; IR (neat, cm-1) 2364, B–H; 2317, B–H; 2273, B–

H; 1466, B–N; 1167, C–N; 1H NMR: δ 7.49 (1H, dd, J = 7.3, 2.0 Hz), 7.46 (1H, dd, J = 

7.8, 1.5 Hz), 7.36 (1H, td, J = 7.8 Hz, 1.9 Hz), 7.32 (1H, td, J = 7.3, 1.5 Hz), 4.21 (2H, s), 

2.59 (6H, s), 2.2-1.4 (3H, br m); 13C NMR: δ 136.4, 134.8, 130.7, 130.3, 129.4, 126.7, 

63.1, 50.1; 11B NMR: δ -8.1 (q, J = 95 Hz). 

 

2-Fluorobenzyldimethylamine borane (22k, 32% y): TLC on K6F silica gel 60Å, 9:1 

hexanes/Et2O, Rf = 0.17.  Molecular ion calculated for C9H15BFNNa: 190.1179; [M+Na], 

ESMS found m/z = 190.1186; IR (neat, cm-1) 2364, B–H; 2317, B–H; 2271, B–H; 1470, 

B–N; 1169, C–N; 1H NMR: δ 7.44-7.39 (1H, m), 7.37 (1H, td, J = 7.5, 1.9 Hz), 7.20 (1H, 

td, J = 7.3 Hz, 1.0 Hz), 7.14 (1H, ddd, J = 9.8, 8.3, 1.0 Hz), 4.07 (2H, s), 2.54 (6H, s), 

2.2-1.4 (3H, br m); 13C NMR: δ 161.9 (d, J = 248 Hz), 134.6 (d, J = 4 Hz), 131.4 (d, J = 8 

Hz), 124.1 (d, J = 4 Hz), 118.6 (d, J = 15 Hz), 115.9 (d, J = 23 Hz), 60.2 (d, J = 2 Hz), 

49.9 (d, J = 2 Hz); 11B NMR: δ -8.1 (q, J = 95 Hz); 19F NMR: δ -113.7 (m). 

 

N,N-Dimethylphenethylamine borane (22m, 93% y): TLC on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.31.  Molecular ion calculated for C10H18BNNa: 186.1430; 

[M+Na], ESMS found m/z = 186.1424; IR (neat, cm-1) 2362, B–H; 2314, B–H; 2277, B–

H; 1453, B–N; 1167, C–N; 1H NMR: δ 7.31 (2H, t, J = 7.3 Hz), 7.26-7.19 (3H, m), 3.09-

2.94 (4H, m), 2.66 (6H, s), 2.1-1.3 (3H, br m); 13C NMR: δ 138.0, 128.8, 126.7, 66.1, 

51.8, 30.9; 11B NMR: δ -10.0 (q, J = 98 Hz). 
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1-(Dimethylamino)-3-phenylpropane borane (22n, 91% y): TLC on K6F silica gel 

60Å, 2:1 hexanes/EtOAc, Rf = 0.49.  Molecular ion calculated for C11H20BNNa: 

200.1586; [M+Na], ESMS found m/z = 200.1588; IR (neat, cm-1) 2366, B–H; 2319, B–H; 

2271, B–H; 1463, B–N; 1167, C–N; 1H NMR: δ 7.31 (2H, t, J = 7.8 Hz), 7.24-7.18 (3H, 

m), 2.81-2.76 (2H, m), 2.63 (t, J = 7.8 Hz), 2.56 (6H, s), 2.11-2.03 (2H, m), 2.1-1.3 (3H, 

br m); 13C NMR: δ 140.7, 128.6, 128.3, 126.3, 64.2, 51.4, 33.3, 25.5; 11B NMR: δ -9.9 (q, 

J = 95 Hz). 

 

4-Methoxybenzyldimethylamine borane (22p, 89% y): TLC on K6F silica gel 60Å, 4:1 

hexanes/EtOAc, Rf = 0.31.  Molecular ion calculated for C10H18BNNaO: 202.1379; 

[M+Na], ESMS found m/z = 202.1378; IR (neat, cm-1) 2366, B–H; 2319, B–H; 2271, B–

H; 1466, B–N; 1165, C–N; 1H NMR: δ 7.24 (2H, d, J = 8.4 Hz), 6.91 (2H, d, J = 8.4 Hz), 

3.93 (2H, s), 3.83 (3H, s), 2.48 (6H, s), 2.2-1.4 (3H, br m); 13C NMR: δ 160.2, 133.4, 

123.3, 113.8, 66.9, 55.3, 49.5; 11B NMR: δ -8.5 (q, J = 90 Hz). 

 

Representative Procedure for Directed Borylation (Table 3-2) 

 Dimethylbenzylamine borane (22a, 179 mg, 1.20 mmol) was dissolved in 

anhydrous bromobenzene (12 mL) and activated by addition of a solution of TrTPFPB 

(1000 mg, 1.08 mmol) in bromobenzene (4 + 1 mL) under an N2 atmosphere.  After 4 h 

the reaction was quenched with a solution of Bu4NBH4 (297 mg, 1.15 mmol) in 

bromobenzene (2 + 1 mL), added by syringe.  The solvent was removed by a stream of 

N2, and the residue was purified either by flash chromatography (FC) on silica gel (15 cm 

x 20 mm diameter) as in the case of 23a (4:1 hexanes EtOAc) or by preparative thin layer 
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chromatography (PLC) (K6F silica gel 60Å, 1000 μm thickness), isolating 115 mg 

product (Rf = 0.28, 72% y based on TrTPFPB) and recovering 30 mg 22a (Rf = 0.41, 

17%).  1H and 11B NMR spectral data matched those reported for 23a.10 

 

2,2,5-Trimethyl-2,3-benzazaborolidine (23b):  Purified by FC (4:1 hexanes/EtOAc, Rf 

= 0.32, 41% y of 23b, recovered 21% of 22b).  Molecular ion calculated for 

C10H16BNNa: 184.1273; [M+Na], ESMS found m/z = 184.1276; IR (neat, cm-1) 2339, B–

H; 2306, B–H; 1463, B–N; 1071, C–N; 1H NMR: δ 7.25 (1H, s), 6.97 (1H, d, J = 7.4 Hz), 

6.90 (1H, d, J = 7.4 Hz), 4.01 (2H, s), 3.2-2.4 (2H, br m), 2.76 (6H, s), 2.32 (3H, s); 13C 

NMR: δ 136.5, 135.8, 130.4, 125.6, 121.4, 69.5, 50.9, 21.5; 11B NMR: δ -1.4 (t, J = 99 

Hz). 

 

2,2,4-Trimethyl-2,3-benzazaborolidine and 2,2,6-trimethyl-2,3-benzazaborolidine 

(23c):  Purified by PLC (4:1 hexanes/EtOAc, Rf = 0.34, 79% y of 23c as inseparable 

mixture of regioisomers in a 3:1 ratio, recovered 13% of 22c).  Molecular ion calculated 

for C10H15BN: 160.1298; [M-H], EIMS found m/z = 160.1305; IR (neat, cm-1) 2341, B–

H; 2294, B–H; 1459, B–N; 1055, C–N; 1H NMR: δ 7.31 (1H-minor isomer, d, J = 7.3 

Hz), 7.04-6.97 (2H-major isomer + 1H-minor isomer, m), 6.91-6.88 (1H-major isomer + 

1H-minor isomer, m), 4.05 (2H-major isomer, s), 4.01 (2H-minor isomer, s), 3.2-2.4 (2H-

major isomer + 2H-minor isomer, br m), 2.77 (6H-major isomer, s), 2.76 (6H-minor 

isomer, s), 2.30 (3H-minor isomer, s), 2.29 (3H-major isomer, s); 13C NMR: δ 139.5, 

139.0, 138.2, 134.3, 129.5, 128.0, 127.5, 125.3, 122.4, 118.7, 69.9, 69.6, 51.1, 50.9, 21.7, 

21.3; 11B NMR: δ -1.9 (major isomer, t, J = 97 Hz). 



 

 

115

2,2,7-Trimethyl-2,3-benzazaborolidine (23d):  Purified by FC (4:1 hexanes/EtOAc, Rf 

= 0.29, 76% y of 23d, recovered 10% of 22d).  Molecular ion calculated for 

C10H16BNNa: 184.1273; [M+Na], ESMS found m/z = 184.1268; IR (neat, cm-1) 2342, B–

H; 2298, B–H; 1461, B–N; 1061, C–N; 1H NMR: δ 7.24 (1H, d, J = 7.2 Hz), 7.11 (1H, t, 

J = 7.3 Hz), 6.89 (1H, d, J = 7.2 Hz), 4.03 (2H, s), 3.2-2.4 (2H, br m), 2.77 (6H, s), 2.19 

(3H, s); 13C NMR: δ 137.4, 130.9, 127.3, 126.9, 126.1, 68.4, 51.3, 18.9; 11B NMR: δ -1.4 

(t, J = 99 Hz). 

 

5-Bromo-2,2-dimethyl-2,3-benzazaborolidine (23e):  Purified by PLC (4:1 

hexanes/EtOAc, Rf = 0.15, 53% y of 23e, recovered 15% of 22e).  Molecular ion 

calculated for C9H12BBrN: 224.0246; [M-H], EIMS found m/z = 224.0254; IR (neat,    

cm-1) 2344, B–H; 2298, B–H; 1455, B–N; 1069, C–N; 1H NMR: δ 7.52 (1H, br s), 7.20 

(1H, dd, J = 7.9, 1.9 Hz), 6.94 (1H, d, J = 7.9 Hz), 3.98 (2H, s), 3.1-2.3 (2H, br m), 2.75 

(6H, s); 13C NMR: δ 137.4, 132.5, 127.7, 123.4, 122.1, 69.1, 50.9; 11B NMR: δ -1.7 (t, J 

= 99 Hz). 

 

5-Chloro-2,2-dimethyl-2,3-benzazaborolidine (23f):  Purified by PLC (4:1 

hexanes/EtOAc, Rf = 0.14, 73% y of 23f, recovered 17% of 22f).  Molecular ion 

calculated for C9H12BClN: 180.0751; [M-H], EIMS found m/z = 180.0753; IR (neat, cm-

1) 2352, B–H; 2302, B–H; 1455, B–N; 1077, C–N; 1H NMR: δ 7.36 (1H, br s), 7.20 (1H, 

dd, J = 8.0, 1.9 Hz), 6.94 (1H, d, J = 8.0 Hz), 4.00 (2H, s), 3.1-2.3 (2H, br m), 2.75 (6H, 

s); 13C NMR: δ 136.9, 133.3, 129.6, 124.8, 122.9, 69.0, 50.9; 11B NMR: δ -1.7 (t, J = 100 

Hz). 
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5-Fluoro-2,2-dimethyl-2,3-benzazaborolidine (23g):  Purified by PLC (2:1 

hexanes/EtOAc, Rf = 0.31, 59% y of 23g, recovered 22% of 22g).  Molecular ion 

calculated for C9H12BFN: 164.1047; [M-H], EIMS found m/z = 164.1045; IR (neat, cm-1) 

2356, B–H; 2317, B–H; 1461, B–N; 1063, C–N; 1H NMR: δ 7.08 (1H, d, J = 8.9 Hz), 

7.00 (1H, dd, J = 8.2, 4.9 Hz), 6.74 (1H, td, J = 8.8, 2.5 Hz), 4.01 (2H, s), 3.1-2.3 (2H, br 

m), 2.76 (6H, s); 13C NMR: δ 162.9 (d, J = 244 Hz), 133.9 (d, J = 2 Hz), 122.8 (d, J = 7 

Hz), 116.0 (d, J = 19 Hz), 111.5 (d, J = 23 Hz), 69.0, 50.9; 11B NMR: δ -1.6 (t, J = 102 

Hz) ; 19F NMR: δ -117.0 (m). 

 

7-Bromo-2,2-dimethyl-2,3-benzazaborolidine (23h):  Purified by FC (9:1 

hexanes/Et2O, Rf = 0.24, 55% y of 23h, recovered 16% of 22h).  Molecular ion 

calculated for C9H12BBrN: 224.0246; [M-H], EIMS found m/z = 224.0255; IR (neat,    

cm-1) 2356, B–H; 2296, B–H; 1443, B–N; 1071, C–N; 1H NMR: δ 7.31 (1H, d, J = 7.4 

Hz), 7.21 (1H, d, J = 7.9 Hz), 7.06 (1H, t, J = 7.5 Hz), 4.12 (2H, s), 3.2-2.4 (2H, br m), 

2.79 (6H, s); 13C NMR: δ 138.2, 129.2, 128.2, 127.9, 117.4, 70.2, 51.2; 11B NMR: δ -1.0 

(t, J = 103 Hz). 

 

7-Chloro-2,2-dimethyl-2,3-benzazaborolidine (23j):  Purified by FC (9:1 

hexanes/Et2O, Rf = 0.24, 55% y of 23j, recovered 20% of 22j).  Molecular ion calculated 

for C9H12BClN: 180.0751; [M-H], EIMS found m/z = 180.0749; IR (neat, cm-1) 2354, B–

H; 2298, B–H; 1447, B–N; 1073, C–N; 1H NMR: δ 7.28 (1H, d, J = 7.3 Hz), 7.13 (1H, t, 

J = 7.6 Hz), 7.05 (1H, d, J = 8.1 Hz), 4.14 (2H, s), 3.2-2.4 (2H, br m), 2.78 (6H, s); 13C 

NMR: δ 136.2, 128.9, 128.3, 127.7, 125.0, 68.3, 51.3; 11B NMR: δ -1.1 (t, J = 100 Hz). 
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7-Fluoro-2,2-dimethyl-2,3-benzazaborolidine (23k):  Purified by PLC (9:1 

hexanes/Et2O, Rf = 0.19, 33% y of 23k, recovered 36% of 22k).  Molecular ion 

calculated for C9H13BFN: 164.1047; [M-H], EIMS found m/z = 164.1044; IR (neat, cm-1) 

2352, B–H; 2314, B–H; 1465, B–N; 1075, C–N; 1H NMR: δ 7.18-7.15 (2H, m), 6.79-

6.73 (1H, m), 4.13 (2H, s), 3.2-2.4 (2H, br m), 2.79 (6H, s); 13C NMR: δ 158.2 (d, J = 248 

Hz), 129.2 (d, J = 5 Hz), 125.0 (d, J = 3 Hz), 114.6 (d, J = 22 Hz), 111.3 (d, J = 19 Hz), 

65.4, 51.1; 11B NMR: δ -1.4 (t, J = 100 Hz); 19F NMR: δ -121.1 (m). 

 

2,2-Dimethyl-2,1-benzazaborinane (23m):  Purified by FC (4:1 hexanes/EtOAc, Rf = 

0.18, 74% y of 23m, recovered 17% of 22m).  Molecular ion calculated for C10H16BNNa: 

184.1273; [M+Na], ESMS found m/z = 184.1279; IR (neat, cm-1) 2314, B–H; 1436, B–N; 

1084, C–N; 1H NMR: δ 7.26 (1H, d, J = 6.9 Hz), 7.12 (1H, td, J = 6.9, 1.9 Hz), 7.08-7.01 

(2H, m), 3.07 (4H, s), 3.0-2.2 (2H, br m), 2.66 (6H, s); 13C NMR: δ 134.1, 132.9, 126.9, 

125.6, 124.5, 59.2, 50.5, 28.4; 11B NMR: δ -5.2 (t, J = 96 Hz). 

 

2,2-Dimethyl-2,1-benzazaborepane (23n):  Purified by PLC (2:1 hexanes/EtOAc, Rf = 

0.43, 42% y of 23n, recovered 31% of 22n).  Molecular ion calculated for C11H18BNNa: 

198.1430; [M+Na], ESMS found m/z = 198.1425; IR (neat, cm-1) 2329, B–H; 1455, B–N; 

1102, C–N; 1H NMR: δ 7.44 (1H, t, J = 4.1 Hz), 7.11-7.06 (2H, m), 7.02-6.97 (1H, m), 

3.1-2.3 (2H, br m), 3.08 (2H, br s), 2.97 (2H, br s), 2.52 (6H, s), 1.87 (2H, pentet, J = 5.6 

Hz); 13C NMR: δ 146.9, 137.0, 126.8, 126.0, 125.3, 67.5, 51.4, 36.5, 26.0; 11B NMR: δ -

1.8 (t, J = 93 Hz). 
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4-Hydroxybenzyldimethylamine borane (22q):  Purified by PLC (4:1 hexanes/EtOAc, 

Rf = 0.12, 25% y of 22q, recovered 57% of 22p).  Molecular ion calculated for 

C9H16BNNaO: 188.1223; [M+Na], ESMS found m/z = 188.1219; IR (neat, cm-1) 3396, 

O–H; 2371, B–H; 2323, B–H; 1466, B–N; 1165, C–N; 1H NMR: δ 7.20 (2H, d, J = 8.8 

Hz), 6.85 (2H, d, J = 8.8 Hz), 4.86 (1H, br s), 3.91 (2H, s), 2.48 (6H, s), 2.2-1.4 (3H, br 

m); 13C NMR: δ 156.3, 133.7, 123.5, 115.3, 66.9, 49.5; 11B NMR: δ -8.5 (t, J = 97 Hz). 

 

Low Temperature Activation of Dimethylbenzylamine Borane (22a) with TrTPFPB: 

Detection of H-Bridged Species 20a   

BnMe2N
B

H
B

NMe2Bn

H HHH TPFPB

20a  

A solution of 22a (9.5 mg, 64 μmol) in anhydrous CD2Cl2 (0.2 mL + 0.1 mL) was 

added by syringe to a stirred solution of TrTPFPB (23 mg, 25 μmol) in 0.6 mL anhydrous 

CD2Cl2 at -78 °C under an N2 atmosphere.  After a few minutes, this solution was 

transferred via syringe to an N2-flushed NMR tube cooled to -78 °C, and the sample was 

kept in a -78 °C bath (ca. 60 min) and was then allowed to warm to -20 °C in the NMR 

spectrometer for data acquisition at that temperature (1H spectrum referenced to residual 

CHDCl2).  Ph3CH: 1H NMR: δ 7.29 (6H, t, J = 7.3 Hz), 7.21 (3H, t, J = 7.3 Hz), 7.11 

(6H, d, J = 7.3 Hz), 5.56 (1H, s).  H-bridged cation 20a: 1H NMR: δ 7.53-7.43 (6H, m), 

7.34 (4H, d, J = 6.8 Hz), 4.00 (4H, s), 2.62 (12H, s), 3.0-2.1 (4H, br m), -1.9 (1H, br s); 

11B NMR: δ 0 (br s), -16.7 (s). 
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Room Temperature Activation of Dimethylbenzylamine Borane (22a): Detection of 

Cationic Trivalent Boron Intermediate 29a  

B
NMe2

29aH

TPFPB

 

A solution of 22a (7.3 mg, 49 μmol) in anhydrous C6D5Br (2 x 0.2 mL) was 

added by syringe to a stirred solution of TrTPFPB (51 mg, 56 μmol) in 0.6 mL anhydrous 

C6D5Br under an N2 atmosphere.  After 1 h the solution was transferred to an N2-flushed 

NMR tube capped with a rubber septum.  Assay by 1H NMR (referenced to para-C–H 

peak of solvent) shows Ph3CH, 29a and unreacted trityl cation in a ratio of 4.3:2.8:1.  

Ph3CH: 1H NMR: δ 7.47-7.41 (6H, m), 7.41-7.33 (9H, m), 5.74 (1H, s).  Trivalent boron 

cation 29a: 1H NMR: δ 7.92 (1H, d, J = 7.9 Hz), 7.72 (1H, t, 7.9 Hz), 7.47-7.41 (1H, m; 

overlaps with Ph3CH), 7.22 (1H, d, J = 7.9 Hz), 5.4 (1H, br s; shaper in a 11B decoupling 

experiment), 4.16 (2H, s), 2.64 (6H, s); 11B NMR: δ 59 (br s), -15.9 (s).  TrTPFPB: 1H 

NMR: δ 7.99 (3H, t, J = 7.7 Hz), 7.62 (6H, t, 8.1 Hz), 7.41-7.38 (6H, m); 11B NMR: δ -

15.9. 

 

Structure Assignment for 30 (B-Hydroxy Analogue of 29a)  

 A solution of TrTPFPB (52 mg, 56 μmol) in anhydrous CD2Cl2 (0.4 mL + 0.2 

mL) was added to a solution of 23a (7.4 mg, 50 μmol) in CD2Cl2 (0.6 mL) under an N2 

atmosphere.  After 30 min the solution was transferred to an N2-flushed NMR tube 

capped with a rubber septum.  Assay by 1H NMR (referenced to solvent) shows Ph3CH 

and 29a in a ratio of 1.3:1, with 30 as a minor impurity.  29a: 1H NMR: δ 8.26 (1H, d, J = 

8.3 Hz), 8.01 (1H, t, J = 8.0 Hz), 7.71 (1H, t, J = 7.6 Hz), 7.56 (1H, d, J = 7.8 Hz), 6.5-5.2 
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(1H, br m; sharper in a 11B decoupling experiment), 4.83 (2H, s), 3.27 (6H, s); 11B NMR: 

δ 61 (d), -16.7 (s).  Repeating this experiment using C6D5Br as solvent gave 1H and 11B 

NMR shifts as reported above for compound 295a in C6D5Br. 

B
NMe2

30OH

TPFPB

 

Activation of 23a (32 mg, 220 μmol) with TrTPFPB (224 mg, 243 μmol) in 

CD2Cl2 (3.0 mL total) as above, but followed by addition of water (4.0 μL, 220 μmol) 

before transferring an aliquot to an NMR tube gave 30 (11B NMR: δ 39 ppm), consistent 

with what was reported previously as 29a.10  Cation 30: 1H NMR: δ 7.93-7.83 (1H, m, 

overlaps with unreacted Tr+), 7.69-7.60 (1H, m, overlaps with unreacted Tr+), 7.49 (1H, 

d, J = 7.9 Hz), 5.4 (1H, br s), 4.67 (2H, s), 3.16 (6H, s); 11B NMR: δ 39 (br s), -16.7 (s). 

 To an aliquot of 30 from the experiment above (1.2 mL, ca. 90 μmol) was added 

an additional equivalent of water (2.0 μL, 110 μmol) before transferring to an NMR tube, 

giving major 11B NMR signals at δ 29 ppm as well as major signals by 1H NMR identical 

with chemical shifts assigned to 31 as reported below. 

31

NMe2

B(OH)2
H

32

B(OH)2

NMe2

HCl (aq.);

LiTPFPB,
CD2Cl2

TPFPB

 

The known 2-dimethylaminobenzeneboronic acid (32, 9.9 mg, 55 μmol)28 was 

protonated by addition of 0.5 M HCl (1.0 mL, 1.0 mmol) with stirring for 1 h at rt.  Next, 

solid Li(OEt2)nB(C6F5)4 (50 mg, ca. 60 μmol) was added with vigorous stirring for 10 

min followed by extraction with 0.7 mL CD2Cl2.  Assay by 1H NMR showed compound 

31 and Et2O in a ratio of ca. 1.5:1.  Ammonium salt 31: 1H NMR: δ 8.3-7.9 (1H, br m), 
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7.90-7.86 (1H, m), 7.65-7.59 (2H, m), 7.37-7.32 (1H, m), 5.9 (2H, br s), 4.28 (2H, d, J = 

5.9 Hz), 2.89 (6H, d, J = 5.4 Hz); 11B NMR: δ 29 (br s), -16.7 (s). 

 

Kinetic Isotope Effect Study: Preparation and Reaction of 22b-d1
 

Me

NMe2

BH3

D TrTPFPB
PhBr, 1 h;

Bu4NBH4 B
H2

NMe2
Me

H(D)

22b-d1 23b-d1 : 23b = 2.8 : 1

H

 

4-Methylbenzyldimethylamine (170 mg, 1.14 mmol), prepared from 

dimethylamine and 4-methylbenzyl bromide,29 was dissolved in Et2O (0.3 mL) in a 5 ML 

round bottom flask fused to a reflux condenser and reacted with n-BuLi in hexane (2.14 

M, 0.80 mL, 1.7 mmol) under an N2 atmosphere, heating to reflux (bath temperature: 75 

°C) for 2 h with stirring.30  The orange solution was then cooled to rt and diluted with 

anhydrous THF (1 mL), and the resulting reddish solution was transferred by cannula 

(rinsing the flask with 1 mL THF) to a flask containing a mixture of D2O (0.30 mL, 17 

mmol) and THF (1 mL) with vigorous stirring.  After 1 h the layers were separated, the 

supernatant was filtered, the flask rinsed with 2 x 5 mL Et2O, and the combined filtrate 

was dried over MgSO4 and reduced by a stream of N2. 

 The crude product from the deuteration was taken up in 2 mL anhydrous DCM 

and treated with BH3·THF (1.0 M, 1.5 mL, 1.5 mmol) under an N2 atmosphere.  After 2 h 

the solution was filtered through a plug of silica gel, flushing with 20 mL DCM, and the 

sample was reduced under a stream of N2, collecting 129 mg 22b-d1 (69% y over two 

steps).  The 1H NMR spectrum of a sample shows peaks consistent with the desired 

product (see spectroscopic data for 22b below), the aromatic region integrating for 

3.05H, indicating 95% deuteration. 
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 Borane complex 22b-d1 (17.8 mg, 108 μmol) was dissolved in anhydrous PhBr 

(1.2 mL) and activated with a solution of TrTPFPB (91 mg, 99 μmol) in PhBr (2 x 0.4 

mL) under an N2 atmosphere.  After stirring 1 h the reaction was quenched by addition of 

a solution of Bu4NBH4 (33 mg, 130 μmol) in PhBr (2 x 0.4 mL), and the solvent was then 

removed under a stream of N2.  The residue was purified by PLC on silica gel (20 cm x 

20 cm x 1000 μm, 4:1 hexanes/EtOAc) recovering 2.1 mg product 23b with 1H NMR 

data matching that reported earlier for 13b.  The 1H NMR peak corresponding to the 

ortho-C–H integrates for 0.27H, indicating 73% deuteration. 

 

Preparation and Reaction of trans-1-Methyl-2-phenylpyrrolidine Borane (44a) 

 According to the published procedure,31 (R)-2-phenylpyrrolidine (1.008 g, 6.85 

mmol) was dissolved in formic acid (1.5 mL, 40 mmol) and cooled to 0 °C before 

addition of formaldehyde (37% solution in water, 0.20 mL, 2.7 mmol) with vigorous 

stirring.  The resulting solution was heated to reflux, with gas evolution observed during 

heating.  After this gas evolution had seemed to subside after a few minutes at reflux, 

additional formaldehyde was added in four portions (additional 0.35 mL, 4.7 mmol), 

waiting for the now vigorous gas evolution to subside between additions.  The solution 

was heated at reflux for 17 h then cooled to rt and quenched by addition of 1.7 mL 6M 

HCl, removing the water and excess formic acid under reduced pressure.  The residue 

was neutralized with 10% aq. NaOH (2.4 mL) and extracted with Et2O (3 x 5 mL), the 

aqueous layer then made basic by the addition of 10% aq. NaOH and again extracted 

with Et2O (2 x 5 mL).  The combined organic extracts were washed with brine and dried 

over MgSO4 then reduced by a stream of N2. 
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 The residue was taken up in DCM and reacted with BH3·THF (8.0 mL, 8.0 mmol) 

as described for 22c, giving a mixture of 44a and 44b in a ratio of 1:1.8 by 1H NMR 

assay of the crude product.  These products were purified by FC (4:1 hexanes/EtOAc), 

giving 450 mg (38% yield over two steps) of diasteromerically pure cis-1-methyl-2-

phenylpyrrolidine borane 44b: TLC on K6F silica gel 60Å, 4:1 hexanes/EtOAc, Rf = 

0.31.  Molecular ion calculated for C11H17BN: 174.1454; [M-H], EIMS found m/z = 

174.1457; IR (neat, cm-1) 2362, B–H; 2314, B–H; 2265, B–H; 1455, B–N; 1164, C–N;  

1H NMR: δ 7.45-7.35 (5H, m), 4.40 (1H, t, J = 8.3 Hz), 3.40 (1H, ddd, J = 11.7, 8.8, 6.3 

Hz), 3.04 (1H, ddd, J = 11.7, 8.3, 6.8 Hz), 2.54-2.45 (1H, m), 2.38-2.29 (1H, m), 2.28-

2.18 (1H, m), 2.22 (3H, s), 2.13-2.04 (1H, m), 2.1-1.3 (3H, br m); 13C NMR: δ 135.0, 

130.2, 129.0, 128.3, 73.9, 63.0, 45.4, 28.9, 21.3; 11B NMR: δ -9.9 (q, J = 96 Hz).  FC also 

allowed isolation of 223 mg of trans-1-methyl-2-phenylpyrrolidine borane 44a (dr of 

17:1, 19% yield over two steps): TLC on K6F silica gel 60Å, 4:1 hexanes/EtOAc, Rf = 

0.26.  Molecular ion calculated for C11H17BN: 174.1454; [M-H], EIMS found m/z = 

174.1460; IR (neat, cm-1) 2362, B–H; 2323, B–H; 2279, B–H; 1455, B–N; 1171, C–N;  

1H NMR: δ 7.56-7.50 (2H, m), 7.40-7.32 (3H, m), 3.69 (1H, dd, J = 12.2, 7.3 Hz), 3.56 

(1H, ddd, J = 10.5, 8.6, 1.9 Hz), 2.84 (1H, q, J = 10.0 Hz), 2.72 (1H, qd, J = 12.0, 6.0 

Hz), 2.56 (3H, s), 2.39-2.28 (1H, m), 2.21-2.14 (1H, m), 1.97-1.88 (1H, m), 1.7-1.0 (3H, 

br m); 13C NMR: δ 133.1, 131.1, 129.2, 127.7, 75.9, 65.2, 50.7, 28.6, 20.1; 11B NMR: δ  -

14.9 (q, J = 96 Hz).  The reported stereochemistry was confirmed for 44a by a nuclear 

Overhauser effect (NOE) experiment, irradiation of the benzylic C–H peak at δ 3.69 ppm 

resulting in a 2.4% NOE enhancement of the methyl peak at δ 2.56 ppm showing the cis-

relationship between these groups; no NOE enhancement of the methyl signal in 44b (δ 
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2.22 ppm) was observed on irradiation of the corresponding benzylic proton (δ 4.40 

ppm).  A mixture of 44a and 44b in a ratio of ca. 1:1 was also isolated from mixed 

fractions from FC, yielding an additional 221 mg (18% combined yield over two steps), 

for a total recovery of 894 mg (75% yield over two steps). 

 A solution of 44a (17:1 dr, 19.8 mg, 113 μmol) in anhydrous PhBr (1.2 mL) was 

activated with a solution of TrTPFPB (95 mg, 103 μmol) in PhBr (2 x 0.4 mL), 

quenching after 4 h with a solution of Bu4NBH4 (32 mg, 120 μmol) in PhBr (2 x 0.4 mL) 

as described above for 23a.  The residue was purified by PLC on silica gel (20 cm x 20 

cm x 1000 μm, 9:1 hexanes/acetone) recovering 7.3 mg of a mixture of product 45, 

isomerized 44b and unreacted 44a in a ratio of 4.6:2.3:1 by 1H NMR assay.  This 

corresponds to 4.2 mg 45 (24% yield): TLC on K6F silica gel 60Å, 9:1 hexanes/acetone, 

Rf = 0.23.  Molecular ion calculated for C11H16BN: 172.1298; [M•+], EIMS found m/z = 

172.1301; IR (neat, cm-1) 2341, B–H; 2310, B–H; 1447, B–N; 1187, C–N;  1H NMR: δ 

7.38 (1H, d, J = 7.3 Hz), 7.18 (1H, t, J = 7.3 Hz), 7.11 (1H, t, J = 7.3 Hz), 6.99 (1H, d, J = 

7.3 Hz), 4.42 (1H, dd, J = 8.8, 3.8 Hz), 3.34 (1H, dt, J = 11.7, 7.6 Hz), 3.3-2.5 (2H, br m), 

2.93 (1H, ddd, J = 11.7, 7.3, 6.3 Hz), 2.80 (3H, s), 2.48-2.40 (1H, m), 2.22-2.14 (1H, m), 

2.13-1.97 (1H, m): 13C NMR: δ 143.3, 129.5, 127.2, 125.2, 121.4, 79.3, 61.3, 49.5, 30.8, 

24.0; 11B NMR: δ -2.2 (t, J = 99 Hz). 

 

 

 

Preparation and Reaction of Benzyldiisobutylphosphine Borane (48) 
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 According to the literature procedure,19 diisobutylphosphine (0.38 mL, 2.0 mmol) 

was added via syringe to a suspension of 4Å molecular sieves (1.0 g) and CsOH·H2O in 

anhydrous DMF (used as received, 15 mL) under N2 atmosphere.  After stirring 

vigorously 2 h benzyl bromide (0.29 mL, 2.4 mmol) was added by syringe, and the 

mixture was stirred an additional 26 h then diluted with 2% aq. NaOH (deoxygenated by 

bubbling N2 into the solution using a diffuser for 2 h, 60 mL), extracted with DCM (N2-

purged and dried by passing through a column of activated alumina, 3 x 60 mL) keeping 

it under N2 atmosphere, stirring vigorously to mix layers at all stages and transferring 

between flasks via cannula.  The combined organic extracts were washed with 2% NaOH 

(deoxygenated, 2 x 60 mL), dried over Na2SO4, decanted off the drying agent and 

reduced by a stream of N2. 

 The residue was taken up in DCM and reacted with BH3·THF (2.5 mL, 2.5 mmol) 

as described for 22c, and 118 mg of the title compound (23% yield) was isolated by FC.  

Benzyldiisobutylphosphine borane 48: TLC on K6F silica gel 60Å, 19:1 hexanes/Et2O, 

Rf = 0.30.  Molecular ion calculated for C15H28BNaP: 273.1919; [M+Na], ESMS found 

m/z = 273.1916; IR (neat, cm-1) 2362, B–H; 2339, B–H; 1H NMR: δ 7.33 (2H, t, J = 7.6 

Hz), 7.29-7.24 (1H, overlaps CHCl3), 7.18-7.14 (2H, m), 3.05 (2H, d, J = 10.3 Hz), 2.09-

1.92 (2H, m), 1.47 (2H, ABq dd, J = 14.6, 11.7, 5.9 Hz), 1.38 (2H, ABq dd, J = 14.6, 

10.3, 6.8), 1.1-0.1 (3H, br m), 1.03 (6H, d, J = 6.3 Hz), 1.02 (6H, d, J = 6.3 Hz); 13C 

NMR: δ 132.9 (d, J = 8 Hz), 129.9 (d, J = 4 Hz), 128.6 (d, J = 2 Hz), 126.9 (d, J = 2 Hz), 

33.5 (d, J = 31 Hz), 32.7 (d, J = 32 Hz), 25.0 (d, J = 9 Hz), 24.8 (d, J = 6 Hz), 24.3; 11B 

NMR: δ -39.1 (qd, J = 94, 58 Hz); 31P NMR: δ 14 (br m). 

A solution of 48 (13.3 mg, 53 μmol) in anhydrous PhBr (0.6 mL) was activated 

with a solution of TrTPFPB (47 mg, 51 μmol) in PhBr (0.3 mL), quenching after 4 h with 
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a solution of Bu4NBH4 (17 mg, 70 μmol) in PhBr (0.3 mL) as described above for 23a.  

The residue was purified by PLC on silica gel (20 cm x 20 cm x 1000 μm, 4:1 

hexanes/Et2O) recovering 5.6 mg of a mixture of product 49, unreacted 48 and Ph3CH in 

a ratio of 1.9:1:2.0 by 1H NMR assay as well as 3.7 mg of a mixture of product 49 and 

unreacted 48 in a ratio of 2.3:1 by 1H NMR assay, giving a combined recovery of 4.8 mg  

or 38% yield of 49.  Further purification by PLC increased the ratio of 49 to 48 to 7:1.  

2,2-Diisobutyl-2,3-benzophosphaborolidine (49): TLC on K6F silica gel 60Å, 4:1 

hexanes/Et2O, Rf = 0.47.  Molecular ion calculated for C15H26BP: 247.1787; [M•+], EIMS 

found m/z = 247.1794; IR (neat, cm-1) 2377, B–H; 1H NMR: δ 7.45 (1H, d, J = 6.3 Hz), 

7.12-7.05 (2H, m), 7.04-6.99 (1H, m), 3.17 (1H, d, J = 9.3 Hz), 2.5-1.7 (2H, br m), 2.05-

1.93 (2H, m), 1.76 (4H, dd, J = 10.3, 7.4 Hz), 1.04-1.00 (12H, m); 13C NMR: δ 133.2 (d, 

J = 20 Hz), 127.3 (d, J = 24 Hz), 126.4, 125.5 (d, J = 13 Hz), 124.9, 33.9 (d, J = 40 Hz), 

31.9 (d, J = 32 Hz), 25.1 (d, J = 2 Hz), 24.5 (d, J = 8 Hz), 24.4 (d, J = 7 Hz); 11B NMR: δ 

-23.3 to -25.9 (br m); 31P NMR: δ 23 (br m). 

 

Preparation and Reaction of Phenyl Diisopropylphosphinite Borane (50) 

According to the literature procedure,20 phenol (383 mg, 4.1 mmol) was 

azeotropically dried by refluxing with toluene (10 mL, distilled under an N2 atmosphere) 

for 3 h using a Dean-Stark trap; the 5 mL of solution remaining was added, rinsing with 2 

mL toluene, to chlorodiisopropylphosphine (0.60 mL, 3.8 mmol) dissolved in 3 mL 

distilled toluene in a 10 mL round-bottom flask fused to a reflux condensor.  To the 

resulting solution was added Et3N (0.64 mL, 4.6 mmol, distilled under an N2 atmosphere) 

and the resulting slurry was heated to reflux for 13 h.  After cooling the mixture it was 
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filtered under N2 pressure through a pad of Celite which had been flushed with N2, 

washing with hexanes (N2-purged, 3 x 5 mL) and reducing under a stream of N2. 

The residue was taken up in DCM and reacted with BH3·THF (5.0 mL, 5.0 mmol) 

as described for 22c, isolating 646 mg (76% yield over two steps) of title compound by 

FC.  Phenyl diisopropylphosphinite borane 50: TLC on K6F silica gel 60Å, 19:1 

hexanes/Et2O, Rf = 0.38.  Molecular ion calculated for C12H21BOP: 223.1423; [M-H], 

EIMS found m/z = 223.1429; IR (neat, cm-1) 2383, B–H; 2337, B–H; 1206, O–P; 1H 

NMR: δ 7.31-7.26 (2H, m), 7.15-7.08 (3H, m), 2.23 (2H, octet, J = 7.3 Hz), 1.31 (6H, dd, 

J = 14.1, 7.1 Hz), 1.25 (6H, dd, J = 15.9, 7.2 Hz), 0.9-0.1 (3H, br m); 13C NMR: δ 153.6 

(d, J = 6 Hz), 129.3, 124.1 (d, J = 1 Hz), 120.8 (d, J = 3 Hz), 26.3 (d, J = 37 Hz), 16.4 (d, 

J = 2 Hz), 15.8 (d, J = 2 Hz); 11B NMR: δ -43.4 (qd, J = 97, 59 Hz); 31P NMR: δ 143.6 (q, 

J = 59 Hz). 

A solution of 50 (11.7 mg, 52 μmol) in anhydrous PhBr (0.6 mL) was activated 

with a solution of TrTPFPB (47 mg, 51 μmol) in PhBr (0.3 mL), quenching after 4 h with 

a solution of Bu4NBH4 (17 mg, 70 μmol) in PhBr (0.3 mL) as described above for 23a.  

The residue was purified by PLC on silica gel (20 cm x 20 cm x 1000 μm, 4:1 

hexanes/Et2O) recovering 1.2 mg of pure product 51 as well as 2.7 mg of a mixture of 

product 51 and unreacted 50 in a ratio of 4:1 by 1H NMR assay, giving a combined 

recovery of 3.3 mg  or 30% yield of 51.  2,2-Diisopropyl-1,2,3-benzoxaphospha-

borolidine (51): TLC on K6F silica gel 60Å, 4:1 hexanes/Et2O, Rf = 0.47.  Molecular ion 

calculated for C12H20BOP: 221.1266; [M•+], EIMS found m/z = 221.1271; IR (neat, cm-1) 

2364, B–H; 1175, O–P; 1H NMR: δ 7.43 (1H, d, J = 7.0 Hz), 7.03 (1H, t, J = 7.8 Hz), 

6.94 (1H, t, J = 7.2 Hz), 6.85 (1H, d, J = 7.9 Hz), 2.4-1.6 (2H, br m), 2.34 (2H, octet, J = 
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7.3 Hz), 1.24 (6H, dd, J = 14.2, 7.3 Hz), 1.22 (6H, dd, J = 17.6, 7.3 Hz); 13C NMR: δ 

160.9 (d, J = 10 Hz), 133.5 (d, J = 15 Hz), 126.1, 122.5, 111.8 (d, J = 8 Hz), 24.2 (d, J = 

24 Hz), 15.3 (d, J = 3 Hz); 11B NMR: δ -29.8 to -32.4 (br m); 31P NMR: δ 139 (br m). 

 

Representative Procedure for Pinacol Quench for the Cyclization of 50 (Table 3-3) 

Borane complex 50 (25 mg, 112 μmol) was dissolved in anhydrous PhBr (1.2 

mL) and activated with a solution of TrTPFPB (93 mg, 100 μmol) in PhBr (2 x 0.4 mL) 

as described above for 23a, quenching after 4 h by addition of iPr2NEt (distilled, 0.07 

mL, 400 μmol) via syringe, resulting in a deep orange color, followed by a solution of 

pinacol (50 mg, 430 μmol) in anhydrous DCM with loss of the deep color.  After 1 h, 

10% aq. Na2CO3 (0.3 mL) was added and the mixture was stirred open to atmosphere for 

16 h, with a black semisolid developing.  The mixture was diluted with H2O (1 mL), 

separated (most of the dark semisolid remained insoluble), and the aqueous layer was 

extracted with DCM (2 x 1 mL).  The combined organic extracts were reduced by a 

stream of N2, the residue assayed by 1H NMR. 

  

Representative Procedure for Strong Acid Activation in the Cyclization of 50 (Table 

3-4) 

 A solution of 50 (29 mg, 131 μmol) in anhydrous PhBr (2 x 0.4 mL) was added to 

a suspension of Tf2NH (33 mg, 116 μmol) in PhBr (1.4 mL) in a 3 mL flask fused to a 

reflux condenser, with slow gas evolution observed along with slow dissolution of 

Tf2NH.  The mixture was heated to 100 °C, cooling to rt after 24 h before quenching with 
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a solution of Bu4NBH4 (34 mg, 130 μmol) in DCM (2 x 0.3 mL), removing solvent with 

a stream of N2 after 1 h.  The residue was assayed by 1H NMR. 

 

Preparation and Reaction of N-Methyl-N-phenyl-P,P-diisopropylphosphinous 

Amide Borane (54) 

According to the following modifications of the literature procedure,24 a solution 

of N-methylaniline (distilled from KOH, 0.56 mL, 5.2 mmol) in anhydrous Et2O (6 mL) 

was cooled to -78 °C then reacted with nBuLi (1.32 M in hexane, 3.1 mL, 4.1 mmol), 

warming the solution slowly to rt over the course of 1 h.  This was then cooled back to -

78 °C and neat chlorodiisopropylphosphine (0.68 mL, 4.3 mmol) was added by syringe, 

allowing the solution to warm to rt in the cold bath.  After 18 h, BH3·THF (6.5 mL, 6.5 

mmol) was added by syringe, filtering the solution through a plug of silica gel after 1 h as 

described for 22c.  The borane complex was purified by FC (9:1 hexanes/Et2O, Rf = 

0.33), yielding 969 mg (96% yield) of N-Methyl-N-phenyl-P,P-diisopropylphosphinous 

amide borane (54):  Molecular ion calculated for C13H25BNP: 237.1818; [M•+Na], EIMS 

found m/z = 237.1815; IR (neat, cm-1) 2362, B–H; 2314, B–H; 2265, B–H; 1455, B–N; 

1164, C–N;  1H NMR: δ 7.33-7.28 (2H, m), 7.17-7.09 (3H, m), 3.18 (3H, d, J = 7.2 Hz), 

2.33 (2H, dqq, J = 11.0, 7.3, 6.9 Hz), 1.23 (6H, dd, J = 15.7, 6.9 Hz), 1.16 (6H, dd, J = 

14.2, 7.3 Hz), 0.8-0 (3H, br m); 13C NMR: δ 147.3, 128.9, 124.8, 124.3, 40.8 (d, J = 5 

Hz), 26.3 (d, J = 36 Hz), 17.4 (d, J = 3 Hz), 17.0 (d, J = 1 Hz); 11B NMR: δ -43.4 (qd, J = 

96, 25 Hz); 31P NMR: δ 86 (br m). 

Borane complex 54 (27.5 mg, 116 μmol) was dissolved in anhydrous PhBr (1.2 

mL) and activated with a solution of TrTPFPB (98 mg, 106 μmol) in PhBr (2 x 0.4 mL), 



 

 

130

quenching after 1 h with a solution of Bu4NBH4 (32 mg, 120 μmol) in PhBr (2 x 0.4 mL) 

as described above for 23a.  The residue was purified by FC (4:1 hexanes/EtOAc, Rf = 

0.31) isolating 20.7 mg of a mixture of 55 and Ph3CH in a ratio of 2.0:1 by 1H NMR 

assay, giving 13.6 mg or 55% yield of 55.  1-Methyl-2,2-diisopropyl-1,2,3-

benzazaphosphaborolidine (55): Molecular ion calculated for C13H23BNP: 235.1661; 

[M•+], EIMS found m/z = 235.1661; IR (neat, cm-1) 2346, B–H; 1459, B–N;  1H NMR: δ 

7.38 (1H, d, J = 6.9 Hz), 7.04 (1H, t, J = 7.8 Hz), 6.79 (1H, t, J = 7.3 Hz), 6.49 (1H, d, J = 

7.8 Hz), 2.99 (3H, d, J = 5.5 Hz), 2.36 (2H, dqq, J = 9.3, 6.9, 6.8 Hz), 1.20 (6H, t, J = 6.9 

Hz), 1.17 (6H, dd, J = 6.8, 3.9 Hz); 13C NMR: δ 153.1 (d, J = 26 Hz), 132.7 (d, J = 18 

Hz), 125.2, 119.5 (d, J = 2 Hz), 107.0 (d, J = 8 Hz), 31.2 (d, J = 4 Hz), 23.5 (d, J = 32 

Hz), 16.5 (d, J = 3 Hz), 16.0 (d, J = 4 Hz); 11B NMR: δ -30.2 to -30.8 (br m); 31P NMR: δ 

88 (br m). 
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Chapter 4 

 
 

Directed Ionic Hydrogenation of Unsaturated Phosphine and Amine Boranes
 
 
 

Introduction – Ionic Hydrogenation Using Amine Boranes as Hydride Sources 

Since the discovery that hydroxyl groups can direct the catalytic syn-

hydrogenation of alkenes,1 this concept has been extended to the diastereoselective 

reduction of double bonds directed by a number of different Lewis basic functionalities.2  

Directed hydrogenation has only been applied to unprotected amines in a few cases, 

under heterogeneous conditions.3  While amine coordination at the metal surface does 

provide excellent stereocontrol in the alkene reduction, the amine can bind too tightly and 

poison the catalyst,4 limiting the applications of this methodology in principle.  The use 

of a separate proton source and hydride donor, referred to as ionic hydrogenation, 

circumvents the need for such catalysts.  A directed delivery of a tethered hydride was 

therefore explored to develop a highly diastereoselective alkene reduction for unsaturated 

phosphine and amine boranes. 

Kursanov’s pioneering ionic hydrogenation studies focused on CF3CO2H and 

Et3SiH,5 but numerous hydride sources have been paired with compatible acids.  Borane 

complexes of Lewis bases are orders of magnitude more reactive toward preformed 

carbocations than are trialkylsilanes,6 but not so reactive that they are sensitive to 

hydrolysis.7  For example, trimethylamine borane (1) reduces indole substrates in the 
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presence of HCl, although excess borane complex is required.8a  A similar acid-catalyzed 

reduction of an indole (2) by a tethered amine borane has been reported (Scheme 4-1).8b  

Only the trans-substituted product 4 was observed in this reaction, while ionic 

hydrogenation of 2 with Me3N·BH3 (1) also gave the cis diastereomer.  The stereocontrol 

provided by intramolecular hydride delivery from 3 to 4 is an interesting example of a 

directed reduction, but the scope was limited to relatively basic indole substrates. 

Scheme 4-1. Directed Ionic Hydrogenation of Indole 2 
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Ionic Hydrogenation of Unsaturated Phosphine Boranes 

Tuning the Acid Strength for Alkene Reduction 

Extension to the reduction of simpler alkenes is complicated by the need for a 

more acidic environment, which will require the use of a weaker hydride donor.9  For 

example, the reaction of 1 with CF3CO2H, the typical proton source in ionic 

hydrogenation using silanes, proceeds to >50% conversion within 45 min at rt with 

evolution of H2.  This side reaction destroys both acid and hydride source and could 

interfere with reduction of the alkene.  A logical starting point for the optimization of the 

directed ionic hydrogenation is therefore an unsaturated phosphine borane.  The lower 
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hydridicity of borane complexed to a phosphine is exemplified by the reaction of 

CF3CO2H with Bu3P·BH3 (5) under the same conditions as above, with less than 2% 

consumption of 5 by 1H NMR assay after 45 min.  

Ph2P
BH3

Me

TfOH, CDCl3;

H2O2, NaOH
Ph2P

O

Me

R

7: R = OH, 22% y
8a: R = H, 56% y

6

(1)

 

Another relevant observation came from previous work in our laboratory on the 

directed hydroboration of unsaturated phosphine boranes.10  Activation of 6 with 

trifluoromethanesulfonic acid (TfOH) gives product 8a with a reduced side chain in 56% 

yield after oxidative workup (eq 1).  The lower reactivity of phosphine boranes as 

hydride donors allows protonation of the alkene to occur competitively even with this 

strong acid.  However some hydride abstraction from 6 by TfOH does occur, resulting in 

the expected hydroboration and the isolation of 7 in 22% yield.   

Scheme 4-2. Reaction Pathway for Ionic Hydrogenation 
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Weaker acids were examined in an attempt to minimize hydroboration, but 6 was 

unreactive at rt (1 h) toward CF3CO2H.  The more acidic methanesulfonic acid (MsOH) 

did protonate the alkene (Scheme 4-2), although the reduction was slow with 

stoichiometric MsOH.  Using 3 equiv of acid,  the alkene was consumed within 10 min 
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according to 1H NMR spectroscopy.  The major product observed is tentatively assigned 

structure 10a, based on the downfield shift of the B–H signal (centered at δ 3.3 ppm, 

compared to δ 1.0 ppm for the B–H signal of 6) that integrates for 2H and the observation 

of a singlet integrating for 3H at δ 2.84 ppm (H3CSO3–B).  A minor phosphonium salt 

byproduct resulting from P–B bond protonolysis was also indicated by a small doublet of 

triplets at δ 7.8 ppm (1JPH = 508 Hz, 3JHH = 6.2 Hz) in the 1H NMR spectrum.  Oxidative 

workup of the reaction mixture gave 8a in 78% yield along with 12% of 7.  Substrate 11 

also reacted with MsOH via carbocation 9b, the homologue of intermediate 9a, giving 

reduction of the appended olefin within 10 min at rt. 

Directed Ionic Hydrogenation of a Cyclic Substrate 

Scheme 4-3. Diastereoselective Ionic Hydrogenation of 12 
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Phosphine borane 12 was prepared by Wittig methylenation of the known 

cyclohexanone11 to explore diastereoselective reduction of the exocylic alkene.  

Subjecting 12 to the reaction conditions optimized for 6, followed by oxidative workup, 

resulted in isolation of 14b as the sole reduction product; no trace of 14a was observed 

by 1H NMR assay (>99:1 dr).  This remarkable stereoselectivity did not erode until the 
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concentration of 12 was increased from ca. 0.1 M to 1.0 M, still giving a reasonably good 

7:1 ratio favoring intramolecular reaction product 14b.  The addition of 10 equiv 

Bu3·PBH3 (5) had no observable effect on the diastereoselectivity of the reduction of 12 

(14b was obtained with >99:1 dr).   

Protonation of the double bond of 12 gives tertiary carbocation 13; hydride 

addition to this cation could occur from either face of the ring.  Considering a possible 

intermolecular pathway, holding the bulky phosphorus substituent in a pseudoequatorial 

position (Scheme 4-3, 13a) followed by the favored axial attack12 of an external hydride 

results in cis-substituted product 14a.  A ring flip requires putting the phosphinyl group 

in a pseudoaxial position, but allows intramolecular delivery of hydride for syn-

hydrogenation of the olefin to give the trans-substituted product 14b.  The high 

diastereoselectivity is evidence that the intramolecular pathway is much faster than 

hydride abstraction from an external source by 13. 

 

Ionic Hydrogenation of Unsaturated Amine Boranes 

Intermediacy of a Mesylatoborane Complex 

NMe2
BH3

3 equiv MsOH

CH2Cl2, 1 h
BH(OMs)2

NMe2

1716

(2)

 

After demonstrating a preference for the intramolecular pathway in the ionic 

hydrogenation of unsaturated phosphine boranes, we sought to apply this methodology to 

the reduction of unsaturated amine boranes.  Tertiary amine boranes such as 16 had been 

found to be poor substrates for directed hydroboration at rt with I2 activation.13  A closer 

look at the spectra from those attempted hydroborations revealed a minor byproduct that 
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appeared to have a saturated cyclohexyl group.  Treatment of 16 with MsOH, under the 

conditions developed for 6, resulted in complete consumption of alkene within 1 h by 1H 

NMR assay.  Identification of the major product as a BH(OMs)2 adduct of the saturated 

amine by 1H NMR integration of the methyl signals was confirmed by mass 

spectrometry.  Separation of the product mixture on silica gel resulted in product with an 

inseparable impurity.  A corrected yield of 42% of theoretical was calculated based on 

the tentative assignment of this impurity as an isomeric product.  The assignment of the 

major product as structure 17 was confirmed by its independent synthesis via MsOH 

treatment of the borane complex of the known (2-cyclohexylethyl)-dimethylamine.14 

Scheme 4-4. Directed Ionic Hydrogenation of Amine Boranes 
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The order of events in the directed reduction of an amine borane with MsOH to 

form a saturated amine coordinated to BH(OMs)2 remained unknown.  Stoichiometric 

MsOH reacted with the simpler acyclic analogue 18a, by hydride abstraction as expected 

by its reaction with CF3CO2H, generating complex 19a along with H2 (Scheme 4-4).  

However, further reaction of 19a with excess MsOH was effective for reduction of the 

appended olefin, giving product 21a presumably via cationic intermediate 20a.  Although 
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the generation of H2 does remove one equivalent each of proton and hydride from the 

system, borane complex 18 has three equivalents of hydride available.  Thus ionic 

hydrogenation is still possible in the presence of excess acid.  Furthermore, 19 differs 

from 18 by the presence of an electron-withdrawing group on the boron atom that 

attenuates borane hydridicity.  While hydride abstraction from 18 by MsOH occurs faster 

than alkene protonation, this is apparently not the case for the less hydridic 19. 

Reaction of phenyl-substituted alkene 18b with MsOH occurred in a similar 

fashion.  This alkene should be more basic due to stabilization of the resulting benzylic 

carbocation, but reaction of MsOH with the first hydride was still faster.  However, 

further treatment of 19b with excess MsOH, or treatment of 18b directly with 3 equiv 

MsOH, also resulted in reduction of the double bond.  The cleavage of complex 21b to 

give the known amine 22 was also explored.  This complex was surprisingly robust, 

unreactive toward LiAlH4, Bu4NF and methanolic KHF2 at rt (16 h).  It was eventually 

found that 21b could be cleaved by refluxing in acidic MeOH for 16 h, giving the free 

amine 22 after basic workup.  Reaction with 8 equiv 4-dimethylamino-pyridine in 

refluxing MeOH or with neat pyrrolidine at reflux gave comparable yields of 22b, but 

purification was complicated by the large excess of amines in these reactions. 

Pretreatment with Chiral Acid for Diastereoselective Reduction 

Pretreatment of 18b with (+)-camphorsulfonic acid (CSA, 23), a chiral derivative 

of MsOH, allowed enantioselective reduction of the appended alkene by subsequent 

reaction with 2 equiv MsOH.  Cleavage of the product 24 with HCl in refluxing MeOH 

gave 22b with 68% ee, effecting a net enantioselective reduction of the unsaturated 

amine.   Using CSA creates a chiral derivative of 19b, imparting diastereoselectivity in 

the hydride transfer from 20b.  However CSA alone is not acidic enough for reduction of 
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the alkene; the addition of MsOH is necessary.  This is preferred in any case, avoiding 

the use of a superstoichiometric chiral additive. 

Scheme 4-5. Enantioselective Reduction of 18b with CSA 
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The reaction of CSA with 18b appeared to be more complicated than implied by a 

simple hydride abstraction from the borane complex.  The vigorous gas evolution typical 

of reactions of strong acids with amine boranes was not observed in this case, and the 1H 

NMR spectrum of the intermediate complex had an unexpected signal at δ 4.1 ppm.  A 

13C NMR peak at δ 76.4 ppm also indicated  reduction of the ketone moiety in 23 by 18b, 

and infrared spectroscopy confirmed this by the absence of a carbonyl stretch along with 

the appearance of an O–H stretch at 3496 cm-1.  The analogous reaction with 1 gave 

similar spectroscopic data, and crystalline product 25 was isolated, structure confirmed 

by X-ray crystallography.  This means that CSA is altered in the course of the reaction 

and could not be recovered, but a reduced CSA could potentially be recovered from 24 

and reused to pretreat amine borane 18b.  Ideally, a catalytic amount of some chiral 
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additive could be used along with stoichiometric MsOH or some other activator, with 

reversible substitution of –OMs from 19.  A more electron rich chiral additive would have 

to be used, creating a more hydridic species from 19 and facilitating stereoselective 

hydride transfer from a small concentration of this chiral species. 

Directed Ionic Hydrogenation of a Cyclic Substrate 

Scheme 4-6. Diastereoselective Ionic Hydrogenation of 26 
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Cyclohexenylamine borane 26 was prepared to compare the diastereoselective 

reduction via cation 27 with the reduction of phosphine borane 12 via intermediate 13.  

The free amine was made by amination of the mesylate of 3-methyl-2-cyclohexen-1-ol, 

and substrate 26 was contaminated by ca. 15% of the inseparable isomeric allylic amine 

borane 30.  An initial attempt at the directed ionic hydrogenation showed very slow 

alkene consumption even with the 3 equiv MsOH used in other cases, but the reaction 

with a larger excess of MsOH was successful.  By 1H NMR assay, the isolated product 29 

was nearly diastereomerically pure; only a trace of the upfield methyl doublet was 

observed (δ 0.97 ppm, compared to δ 1.05 ppm for 29) that indicates 28 by analogy to the 

corresponding phosphine diastereomers (NMR signal for methyl doublets of 14a: δ1H = 
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0.86, 14b: δ1H = 0.96 ppm).  The harsher conditions required for reaction of 26 are 

rationalized in the context of the requirement that the bulky amino substituent be put in a 

pseudoaxial position (conformer 27b) for directed reduction.  The free energy cost of an 

amino group in the axial versus equatorial position is expected to be higher than for a 

phosphino group due to the longer C–P bonds.  For comparison, the free energy of 

preference for the equatorial position for a diphenylphospinoyl (Ph2P(O)-) group is 2.46 

kcal/mol,15 but the borane-complexed dimethylamino group has steric bulk similar to a 

tert-butyl group, the A-value of which has been estimated to be at least 5.4 kcal/mol.16 

 

Summary 

In conclusion, ionic hydrogenation has been shown to be effective for reducing 

alkenes tethered to amine or phosphine groups via the borane complexes.  In the case of 

the less hydridic phosphine boranes this occurs by simple protonation of the double bond 

followed by hydride transfer.  For amine boranes an initial hydride abstraction by MsOH 

generates an attenuated hydride donor that is still reactive toward a tethered carbocation 

formed by protonation of the olefin with excess acid.  For cyclic borane complexes 12 or 

26 where only one face of the intermediate carbocation (13 or 27) is accessible to the 

tethered hydride a highly diastereoselective reduction follows.  The initial reaction of the 

strong acid with amine boranes provides an opportunity to introduce a chiral substituent 

on boron that can later be removed, allowing net enantioselective reduction of an 

unsaturated amine borane. 
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Experimental 

 

 General Methods.  The following chemicals were commercially available and 

used as received: trimethylamine borane; tributylphosphine borane; trifluoroacetic acid; 

methanesulfonic acid; borane tetrahydrofuran, 1.0 M solution in tetrahydrofuran; 

methyltriphenylphosphonium bromide; sodium bis(trimethylsilyl)amide; 3-

methylcyclohexanol, mixture of cis and trans; p-toluenesulfonyl chloride; 

diphenylphosphine; (+)-camphorsulfonic acid; 3-methyl-2-cyclohexen-1-ol; 

methanesulfonyl chloride; dimethylamine, 33% in absolute ethanol.  Chloroform-d and 

methylene chloride-d2 were dried by storing over activated 4Å molecular sieves; 

dichloromethane (DCM) and tetrahydrofuran (THF) were dried by passing through a 

column of activated alumina; triethylamine was distilled from CaH2 and pyridine from 

KOH under an N2 atmosphere.  All reactions were performed at room temperature under 

an N2 atmosphere unless otherwise stated.  Nuclear magnetic resonance experiments 

were performed on Varian Inova 500 and  Inova 400 spectrometers at the following 

frequencies: 1H 500 MHz; {1H}13C 101 MHz; 11B 160 MHz; 19F 376 MHz, unless 

otherwise stated.  All spectra were recorded in CDCl3 and referenced to the 1H signal of 

internal Me4Si (unless otherwise stated) according to recommendations,17 using a Ξ of 

25.145020 for Me4Si (13C), a Ξ of 32.083974 for BF3·OEt2 (11B), and a Ξ of 94.094011 

for CCl3F (19F). 
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Representative Procedure for Reaction of Me3N·BH3 (1) with CF3CO2H. 

Neat CF3CO2H (6 μL, 78 μmol) was added by syringe to a stirred solution of 1 

(4.8 mg, 66 μmol) in anhydrous CD2Cl2 (1.0 mL) under an N2 atmosphere.  After 45 min, 

this solution was transferred via syringe to an N2-flushed NMR tube.  Assay by 1H NMR 

showed ca. 45% of 1 remaining by integration of its B–H signal at δ 2.0-1.3 ppm relative 

to the methyl singlet at δ 2.61 ppm (overlapping Me3N·BH3 and Me3N·BH2(O2CCF3) 

signals).  The product trifluoroacetoxyborane complex was confirmed by reaction of 1 

with 10 equiv CF3CO2H (50 μL, 650 μmol) under the same conditions, giving 

Me3N·BH2(O2CCF3) as the major product after 1 h: 1H NMR: δ 3.1-2.0 (2H br s), 2.63 

(9H, s). 

 The reaction of Bu3P·BH3 (5, 20 μL, 75 μmol) with CF3CO2H (6 μL, 78 μmol) in 

1.0 mL CD2Cl2 was performed under the same conditions, assay by 1H NMR after 45 

min showing less than 2% conversion to Bu3P·BH2(O2CCF3) by integration of its α-CH2 

at δ 1.76-1.67 ppm relative to the α-CH2 peak for unreacted 5 at δ 1.60-1.50 ppm.  This 

product trifluoroacetoxyborane complex was also confirmed by reaction of 5 with 10 

equiv CF3CO2H (50 μL, 650 μmol) under the same conditions, giving 

Bu3P·BH2(O2CCF3) as the major product after 1 h: 1H NMR: δ 3.4-2.3 (2H br s), 1.76-

1.67 (6H, m), 1.53-1.37 (6H, m), 0.94 (9H, t, J = 7.1 Hz); 31P NMR: δ 3.1-0.4 (br m). 

 

Representative Procedure for Ionic Hydrogenation of Phosphine Borane 6 

 Neat MsOH (100 μL, 1.54 mmol) was added by syringe to a stirred solution of 6 

(138 mg, 0.51 mmol) in anhydrous DCM (5 mL) under an N2 atmosphere.  After 10 min, 

this solution was quenched by addition of 10 mL MeOH, 1 mL 20% aq. NaOH and 1 mL 
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35% aq. H2O2.  After an additional 1 h, this mixture was diluted with 10 mL H2O, 

separated and the aqueous layer extracted with 2 x 10 mL DCM.  The combined organic 

layers were dried over Na2SO4 and reduced by rotatory evaporation.  The product was 

purified by flash chromatography (FC) on silica gel (15 cm x 20 mm diameter, 19:1 

DCM/EtOH), isolating 110 mg product 8a (Rf = 0.3, 78% y) and recovering 18 mg 7 (Rf 

= 0.07, 12% y).  1H and 13C NMR spectral data matched those reported for 7 and 8a.10 

 

Preparation and Ionic Hydrogenation of Phosphine Borane 12 

Methyltriphenylphosphonium bromide (520 mg, 1.46 mmol) and sodium 

bis(trimethylsilyl)-amide (242 mg, 1.32 mmol) were transferred under an N2 atmosphere 

to an oven-dried 50 mL round-bottom flask fused to a reflux condenser and dissolved in 

anhydrous THF (20 mL).  After 30 min the now yellow solution was heated to reflux, 

cooling after 1 h and filtering through an N2-flushed fritted filter into a flask containing a 

stirred solution of 3-diphenylphosphinylcyclohexanone borane11 (355 mg, 1.20 mmol) in 

anhydrous THF (10 mL), rinsing the flask in which the phosphonium ylide was formed 

with 10 mL THF.  After 1 d the reaction mixture was washed with H2O (50 mL) and 

brine (50 mL), dried over MgSO4, and reduced by rotatory evaporation.  The product was 

purified by FC on silica gel (15 cm x 30 mm diameter, 2:1 hexanes/Et2O), isolating 337 

mg (3-Methylenecyclohexyl)-diphenylphosphine Borane (12): analytical thin layer 

chromatography (TLC) on K6F silica gel 60Å, 2:1 hexanes/Et2O, Rf = 0.53.  Molecular 

ion calculated for C19H24BNaP: 317.1606; [M+Na], ESMS found m/z = 317.1591; IR 

(neat, cm-1) 2381, B–H; 2348, B–H; 1650, C=C; 1H NMR: δ 7.78-7.70 (4H, m), 7.52-

7.41 (6H, m), 4.66 (1H, s), 4.57 (1H, s), 2.55-2.45 (1H, m), 2.31 (1H, br d, J = 13.1 Hz), 

2.28-2.17 (2H, m), 2.00 (1H, td, J = 13.4, 4.4 Hz), 1.95-1.87 (1H, m), 1.73-1.66 (1H, m), 
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1.61 (1H, qt, J = 12.7, 4.4 Hz), 1.35 (1H, qt, J = 13.0, 3.9 Hz), 1.3-0.5 (3H, br m); 13C 

NMR: δ 147.4 (d, J = 12 Hz), 132.6 (d, J = 9 Hz), 132.6 (d, J = 8 Hz), 131.2 (d, J = 2 Hz), 

131.1 (d, J = 2 Hz), 128.8 (d, J = 10 Hz), 128.8 (d, J = 10 Hz), 128.3 (d, J = 54 Hz), 128.0 

(d, J = 53 Hz), 108.6, 35.0 (d, J = 10 Hz), 34.8 (d, J = 27 Hz), 34.4 (d, J = 2 Hz), 27.9 (d, 

J = 12 Hz), 26.1; 11B NMR: δ -42.1 (qd, J = 93, 30 Hz); 31P NMR: δ 19.7-18.0 (br m). 

 

Reaction of 12 under the same conditions as for 6 above gave ionic hydrogenation 

product 14b (76% y) and hydroboration product 15 (14% y).  trans-(3-

Methylcyclohexyl)-diphenylphosphine oxide (14b): TLC on K6F silica gel 60Å, 19:1 

DCM/EtOH, Rf = 0.18.  Molecular ion calculated for C19H23NaOP: 298.1486; [M•+], 

EIMS found m/z = 298.1478; IR (neat, cm-1) 1181, P=O; 1H NMR: δ 7.82-7.74 (4H, m), 

7.52-7.41 (6H, m), 2.55-2.45 (1H, m), 2.15-2.06 (1H, m), 1.87-1.77 (1H, m), 1.71-1.40 

(6H, m), 1.38-1.30 (1H, m), 0.96 (3H, d, J = 7.1 Hz); 13C NMR: δ 132.6 (d, J = 94 Hz), 

132.4 (d, J = 94 Hz), 131.4 (d, J = 3 Hz), 131.4 (d, J = 3 Hz), 131.0 (d, J = 8 Hz), 131.0 

(d, J = 8 Hz), 128.6 (d, J = 11 Hz), 128.5 (d, J = 11 Hz), 31.7, 31.5 (d, J = 73 Hz), 31.0 (d, 

J = 3 Hz), 27.1 (d, J = 10 Hz), 25.0 (d, J = 3 Hz), 20.8 (d, J = 11 Hz), 18.5; 31P NMR: δ 

36.4. 

 

Independent Synthesis of Minor Diastereomer 14a 

Pyridine (5 mL, 62 mmol) was added to p-toluenesulfonyl chloride (1.63 g, 8.5 

mmol) at 0 °C under an N2 atmosphere to dissolve; the solution developed a yellow color.  

To this was added the commercially available mixture of cis- and trans-3-

methylcyclohexanol (30b and 30a), the yellow color fading on alcohol addition.  After 20 

h at 0 °C, the reaction was quenched by pouring onto 150 mL iced 1 M aq. HCl, 
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extracting with ethyl ether (3 x 20 mL), drying the combined organic layers over MgSO4 

before reducing by rotatory evaporation, leaving 1.74 g (88% y) of residue.  1H NMR 

assay shows a mixture of cis- and trans-3-methylcyclohexyl-p-toluenesulfonates (31b 

and 31a) in a ratio of 2.6:1 by integration of the methyl doublets at 0.89 and 0.82 ppm, 

respectively.  This crude tosylate mixture was taken on without purification. 

Me

OH

HO Me

TsCl

pyridine
0 °C, 20 h30a 30b

Me

OTs

TsO Me
31a 31b

1 : 2.6

1) Ph2PLi
THF
0 °C, 2 h

2) H2O2

H
H

:Nuc

Nuc:

Ph2P Me
14a

O

 

Diphenylphosphine (0.62 g, 3.3 mmol) was charged to a 50 mL round-bottom 

flask under an N2 atmosphere and dissolved in anhydrous THF (17 mL).  After cooling 

the solution to -40 °C, a solution of nBuLi (1.98 M in hexane, 1.7 mL, 3.4 mmol) was 

added slowly, the resulting solution developing a deep red color.  After stirring 4 h, the 

solution was warmed to 0 °C and a mixture of cis- and trans-3-methylcyclohexyl-p-

toluenesulfonate (31, 0.96 g, 3.6 mmol) was added by syringe.  After 2 h the deep red 

color had mostly faded to a light orange, and the mixture was oxidized by the addition of 

5 mL 35% aq. H2O2.  After warming to rt, the layers were separated and the aqueous 

layer washed with ethyl ether (2 x 20 mL), the combined organic layers dried over 

MgSO4 and reduced by rotatory evaporation.  Assay of the crude product mixture (1.14 

g) by 1H NMR shows unreacted tosylate further enriched in the cis-isomer (31b) and only 

the cis-diastereomer of the product (14a); no trace of trans-(3-methylcyclohexyl)-

diphenylphosphine oxide (14b) was observed.  Reaction of the cis-tosylate 31b by an SN2 



 

 

150

mechanism requires displacement of an equitorial tosylate, disfavored in cyclohexyl 

systems by steric repulsion of the incoming nucleophile by C–H bonds at the 3- and 5-

positions.  Purification of a portion of the crude product (176 mg) by preparative thin 

layer chromatography (PLC) on silica gel (20 x 20 cm x 1000 μm, EtOAc) gave pure cis-

(3-methylcyclohexyl)-diphenylphosphine oxide (14a, 23 mg, 50% y based on trans-3-

methylcyclohexyl-p-toluenesulfonate): TLC on K6F silica gel 60Å, EtOAc, Rf = 0.42.  

Molecular ion calculated for C19H23NaOP: 298.1486; [M•+], EIMS found m/z = 298.1490; 

IR (neat, cm-1) 1181, P=O; 1H NMR: δ 7.82-7.74 (4H, m), 7.54-7.43 (6H, m), 2.33-2.24 

(1H, m), 1.86-1.79 (1H, m), 1.74-1.65 (3H, m), 1.54-1.17 (4H, m), 0.92 (1H, qd, J = 12.6, 

3.7 Hz), 0.86 (3H, d, J = 6.6 Hz); 13C NMR: δ 132.2 (d, J = 94 Hz), 132.1 (d, J = 94 Hz), 

131.4 (d, J = 3 Hz), 131.4 (d, J = 3 Hz), 131.1 (d, J = 9 Hz), 128.6 (d, J = 11 Hz), 128.5 

(d, J = 12 Hz), 37.1 (d, J = 73 Hz), 36.6, 32.9 (d, J = 13 Hz), 32.7 (d, J = 3 Hz), 26.3 (d, J 

= 14 Hz), 24.3 (d, J = 3 Hz), 22.7; 31P NMR: δ 34.1. 

 

Preparation of Borane Complexes of Amines 

BH3·THF (6.3 mL, 6.3 mmol) was added by syringe under an N2 atmosphere to 

the known (3-methyl-3-butenyl)-dimethylamine18 (1.0 mL, 6.8 mmol) in anhydrous DCM 

(20 mL).  After 1 h, the solution was filtered through a plug of silica gel, flushing with 

DCM and removing solvent by rotary evaporation, yielding 0.78 g (3-methyl-3-butenyl)-

dimethylamine borane 18a (97% y): TLC on K6F silica gel 60Å, 9:1 hexanes/Et2O, Rf = 

0.26.    Molecular ion calculated for C7H17BN: 126.1454; [M-H], EIMS found m/z = 

126.1452; IR (neat, cm-1) 2366, B–H; 2319, B–H; 2273, B–H; 1650, C=C; 1459, B–N; 

1167, C–N; 1H NMR: δ 4.81 (1H, s), 4.73 (1H, s), 2.90-2.85 (2H, m), 2.61 (6H, s), 2.46-
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2.41 (2H, m), 2.1-1.3 (3H, br m), 1.77 (3H, s); 13C NMR: δ 141.9, 112.1, 63.0, 51.4, 32.1, 

22.7; 11B NMR: δ -9.9 (q, J = 98 Hz). 

 

Borane complexation from (3-phenyl-3-butenyl)-dimethylamine19 under the same 

conditions gave 18b (67% y): TLC on K6F silica gel 60Å, 2:1 hexanes/EtOAc, Rf = 0.27.  

Molecular ion calculated for C12H20BNNa: 212.1586; [M+Na], ESMS found m/z = 

212.1582; IR (neat, cm-1) 2366, B–H; 2319, B–H; 2273, B–H; 1627, C=C; 1461, B–N; 

1167, C–N; 1H NMR: δ 7.44-7.41 (2H, m), 7.37-7.33 (2H, m), 7.32-7.28 (1H, m), 5.38 

(1H, d, J = 1.0 Hz), 5.15 (1H, q, J = 1.0 Hz), 3.02-2.97 (2H, m), 2.85-2.80 (2H, m), 2.61 

(6H, s), 2.1-1.3 (3H, br m); 13C NMR: δ 144.8, 139.8, 128.6, 128.0, 126.0, 114.6, 63.6, 

51.8, 30.4; 11B NMR: δ -10.2 (q, J = 97 Hz). 

 

Borane complexation from crude (2-(1-cyclohexenyl)-ethyl)-dimethylamine, 

prepared by the reaction of the primary amine with formalin and NaBH3CN,20 under the 

same conditions gave 16 (purified by FC, 15% y over 2 steps from 2-(1-cyclohexenyl)-

ethylamine): TLC on K6F silica gel 60Å, 9:1 hexanes/acetone, Rf = 0.38.  Molecular ion 

calculated for C10H22BNNa: 190.1743; [M+Na], ESMS found m/z = 190.1739; IR (neat, 

cm-1) 2366, B–H; 2317, B–H; 2271, B–H; 1459, B–N; 1167, C–N; 1H NMR: δ 5.47 (1H, 

br s), 2.86-2.80 (2H, m), 2.59 (6H, s), 2.35-2.30 (2H, m), 2.02-1.90 (4H, m), 1.65-1.51 

(4H, m), 2.0-1.2 (3H, br m); 13C NMR: δ 133.9, 123.5, 63.3, 51.2, 32.3, 28.5, 25.2, 22.8, 

22.2; 11B NMR: δ -9.8 (q, J = 96 Hz). 

 

Representative Procedure for Ionic Hydrogenation of Amine Borane 18a 



 

 

152

 Neat MsOH (100 μL, 1.54 mmol) was added by syringe to a stirred solution of 

18a (64 mg, 0.50 mmol) in anhydrous DCM (5 mL) under an N2 atmosphere.  After 1 h, 

the reaction was quenched by addition of 5 mL 5% aq. NaOH, separated and the aqueous 

layer extracted with 2 x 5 mL DCM.  The combined organic layers were dried over 

Na2SO4 and reduced by rotatory evaporation.  The product was purified by flash 

chromatography (FC) on silica gel (15 cm x 20 mm diameter, 1:2 hexanes/EtOAc), 

isolating 71 mg (3-methylbutyl)-dimethylamine bis(methylsulfonyloxy)borane (21a, 44% 

y): TLC on K6F silica gel 60Å, 1:2 hexanes/EtOAc, Rf = 0.20.  Molecular ion calculated 

for C9H24BNNaO6S2: 340.1036; [M+Na], ESMS found m/z = 340.1027; IR (neat, cm-1) 

2508, B–H; 1484, B–N; 1318, B–O; 1173, C–N; 1H NMR: δ 3.8-2.8 (1H, br m), 3.07 

(6H, s), 2.95-2.90 (2H, m), 2.61 (6H, s), 1.65-1.52 (3H, m), 0.96 (6H, d, J = 6.4 Hz); 13C 

NMR: δ 57.8, 44.5, 38.9, 30.4, 26.6, 22.4; 11B NMR: δ 1.0 (d, J = 134 Hz). 

 

(3-Phenylbutyl)-dimethylamine bis(methylsulfonyloxy)borane was purified by reverse-

phase PLC on K18F silica gel (21b, 70% y): TLC on K18F silica gel 60Å, 4:1 

MeOH/H2O buffered with 0.5% Et3N and 0.5% CF3CO2H, Rf = 0.62.  Molecular ion 

calculated for C14H25BNO6S2: 378.1216; [M-H], EIMS found m/z = 378.1215; IR (neat, 

cm-1) 2512, B–H; 1484, B–N; 1322, B–O; 1177, C–N; 1H NMR: δ 7.33 (2H, t, J = 7.5 

Hz), 7.23 (1H, t, J = 7.3 Hz), 7.18 (2H, d, J = 7.3 Hz), 3.02 (3H, s), 3.01 (3H, s), 2.95 

(1H, td, J = 12.7, 4.9 Hz), 2.74-2.66 (1H m), 2.60 (1H, td, J = 12.7, 4.4 Hz), 2.56 (3H, s), 

2.52 (3H, s), 2.07-1.90 (2H, m), 1.32 (3H, d, J = 7.1 Hz); 13C NMR: δ 145.0, 128.9, 

126.8, 126.7, 58.3, 45.0, 44.7, 38.9, 38.9, 38.2, 30.3, 22.5; 11B NMR: δ 0.8 (d, J = 111 

Hz). 
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Purification of the product from reaction of 16 with 3 equiv MsOH gave a 55% yield of 

17 impure with what is proposed to be hydroboration byproduct 32 (ratio of 32 to 17 

about 1:3 ratio).  This corresponds to a 42% yield of 17 after correcting for this or an 

isomeric byproduct.  This impurity could not be isolated from 17, and was not reactive 

toward oxidative quench.  Analytically pure 17 was prepared by reaction of the borane 

complex of (2-cyclohexylethyl)-dimethylamine14 with 6 equiv MsOH for 5 h.  (2-

Cyclohexylethyl)-dimethylamine bis(methylsulfonyloxy)borane (17): TLC on K6F silica 

gel 60Å, 1:2 hexanes/EtOAc, Rf = 0.24.  Molecular ion calculated for C12H27BNO6S2: 

356.1373; [M-H], EIMS found m/z = 356.1373; IR (neat, cm-1) 2516, B–H; 2368, B–H; 

1482, B–N; 1324, B–O; 1177, C–N; 1H NMR: δ 3.8-2.8 (1H, br m), 3.07 (6H, s), 2.97-

2.91 (2H, m), 2.60 (6H, s), 1.75-1.52 (6H, m), 1.30-1.10 (5H, m), 0.96 (2H, q, J = 12.0 

Hz); 13C NMR: δ 57.4, 44.4, 38.9, 35.9, 33.2, 29.1, 26.2, 26.0; 11B NMR: δ 1.0 (d, J = 

123 Hz). 

B(OMs)2

NMe2

32  

 

Reaction of 18a with Stoichiometric MsOH 

 Neat MsOH (40 μL, 0.62 mmol) was added by syringe to a stirred solution of 18a 

(64 mg, 0.50 mmol) in anhydrous DCM (5 mL) under an N2 atmosphere.  After 1 h, the 

reaction was quenched by addition of 2 mL 5% aq. NaOH, diluted with 3 mL H2O, 

separated and the aqueous layer extracted with 2 x 5 mL DCM.  The combined organic 

layers were dried over Na2SO4 and reduced by rotatory evaporation.  The product was 
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purified by flash chromatography (FC) on silica gel (15 cm x 20 mm diameter, 1:2 

hexanes/EtOAc), isolating 57 mg (3-methyl-3-butenyl)-dimethylamine methylsulfonyl-

oxyborane (19a, 52% y): TLC on K6F silica gel 60Å, 1:2 hexanes/EtOAc, Rf = 0.37.  

Molecular ion calculated for C8H20BNNaO3S: 244.1155; [M+Na], ESMS found m/z = 

244.1156; IR (neat, cm-1) 2347, B–H; 2325, B–H; 1466, B–N; 1314, B–O; 1146, C–N; 

1H NMR: δ 4.85 (1H, s), 4.76 (1H, s), 3.0-2.1 (2H, br m), 2.97-2.92 (2H, m), 2.91 (3H, 

s), 2.61 (6H, s), 2.42-2.36 (2H, m), 1.77 (3H, s); 13C NMR: δ 141.1, 112.9, 59.0, 46.9, 

37.7, 30.9, 22.6; 11B NMR: δ 3.2 to -1.2 (br m). 

 

Cleavage of BH(OMs)2 Complex 21b 

 Neat MsOH (25 μL, 0.39 mmol) was added by syringe to a stirred solution of 18b 

(24 mg, 0.13 mmol) in anhydrous DCM (3 mL) in a 10 mL round-bottom flask fused to a 

reflux condenser under an N2 atmosphere.  After 1 h, the solvent was removed by a 

stream of N2, and the residue was dissolved in MeOH (3.0 mL) which was then acidified 

by addition of 0.25 mL 6M aq. HCl before heating to reflux 16 h.  The mixture was 

cooled to rt, made alkaline with 5% aq. NaOH and extracted with Et2O (2 x 5 mL), the 

organic layers dried over MgSO4 and reduced by rotatory evaporation.  The product was 

purified by PLC on silica gel (20 x 20 cm x 250 μm, 65:33:2 hexanes/acetone/Et3N), 

isolating 10 mg (3-phenylbutyl)-dimethylamine (22b, 43% y).  1H NMR spectral data 

matched those reported for 22b.21 

 

Stereoselective Reduction of 18b with CSA 
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 Solid (+)-camphorsulfonic acid (CSA, 23, 35 mg, 0.15 mmol) was added to a 

stirred solution of 21b (25 mg, 0.13 mmol) in anhydrous DCM (5 mL) which was then 

quickly capped with a septum and an N2 inlet.  After stirring 2 h, neat MsOH (15 μL, 

0.23 mmol) was added by syringe, monitoring the reaction by MS.  After 1 h, the major 

peak corresponded to 22b with a smaller peak for 24, both indicating alkene reduction.  

The solvent was then removed by a stream of N2, and the residue was dissolved in MeOH 

(1.0 mL) which was then acidified by addition of 0.10 mL 6M aq. HCl before heating to 

reflux 16 h.  The mixture was cooled to rt, made alkaline with 5% aq. NaOH and 

extracted with Et2O (2 x 5 mL), the organic layers dried over MgSO4 and reduced by 

rotatory evaporation.  The product was purified by PLC on silica gel (20 x 20 cm x 250 

μm, 65:33:2 hexanes/acetone/Et3N), isolating 12 mg (3-phenylbutyl)-dimethylamine 

(22b, 53% y, 68% ee).  Conditions for enantiomeric excess assay by HPLC (Chiralcel 

OD column, 0.1% iPrOH/hexane, 1 mL/min) were optimized using achiral 22b from the 

previous experiment, with peaks at 13 and 23 minutes (peak at 40 minutes for (3-phenyl-

3-butenyl)-dimethylamine impurity). 

 

Reaction of 1 with (–)-Camphorsulfonic Acid 

 Solid (–)-camphorsulfonic acid (ent-CSA, ent-23, 152 mg, 0.65 mmol) was added 

to a stirred solution of Me3N·BH3 (1, 43 mg, 0.59 mmol) in anhydrous DCM (2.2 mL) 

which was then quickly capped with a septum and an N2 inlet.  After stirring 4 h the 

solution was washed with H2O (5 mL), the layers separated and the aqueous layer 

extracted with 5 mL DCM.  The combined organic layers were dried over Na2SO4 and 

reduced by rotatory evaporation.  The residue was taken up in minimal DCM (ca. 1 mL) 

and hexanes was added until the solution started to turn cloudy (ca. 15 mL).  The flask 
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was left open to allow solvent evaporation, collecting the long needles that formed after 1 

d, rinsing with hexanes and collecting 41 mg trimethylamine ((1S,2R,4R)-2-hydroxy-7,7-

dimethyl-bicyclo[2.2.1]hept-1-yl)-methylsulfonyloxyborane (25, 27% y): Molecular ion 

calculated for C13H25BNO4S: 302.1597; [M-H2-H–], EIMS found m/z = 302.1595; IR 

(neat, cm-1) 3512, O–H, 2427, B–H; 2342, B–H; 1468, B–N; 1316, B–O; 1138, C–N; 1H 

NMR: δ 4.15-4.08 (1H, m), 3.44 (1H, d, J = 14.0 Hz), 3.37 (1H, d, J = 3.3 Hz), 2.93 (1H, 

d, J = 14.0 Hz), 2.90 (1H, d, J = 4.0 Hz), 2.8-2.0 (2H, br m), 2.64 (9H, s), 1.88-1.47 (6H, 

m), 1.08 (3H, s), 0.83 (3H, s); 13C NMR: δ 76.4, 50.0, 49.9, 49.7, 48.5, 44.5, 38.8, 30.5, 

27.4, 20.6, 19.9; 11B NMR: δ 3.4 to -0.2 (br m). 

 

Preparation and Ionic Hydrogenation of 26 

 Methanesulfonyl chloride (2.0 mL, 26 mmol) was added slowly to a solution of 3-

methyl-2-cyclohexen-1-ol (2.6 mL, 22 mmol) and distilled Et3N (4.1 mL, 29 mmol) in 

anhydrous DCM (100 mL) which had been cooled to -78 °C under an N2 atmosphere.  

After the addition was complete, the solution was allowed to warm slowly to -15 °C, and 

dimethylamine (ca. 5.6 M in EtOH, 40 mL, 220 mmol) was added directly to the crude 

mesylate.  The solution was allowed to warm to rt and stirred 16 h.  The reaction mixture 

was neutralized by the addition of saturated aq. NaHCO3 (100 mL) and the layers 

separated, reducing the organic layer by rotary evaporation, and the residue was taken up 

in pentane (100 mL) and washed with water (100 mL) to remove ethanol, removing 

pentane under reduced pressure (520 mg crude product).   

Half of this crude product was filtered through a plug of silica gel, eluting with 

DCM to remove nonpolar impurities followed by 99:1 DCM/Et3N to obtain the product 

amine.  Assay by 1H NMR showed the desired amine in a 3:1 ratio with a regioisomeric 
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allylic amine, 1-methyl-1-dimethylamino-2-cyclohexene, along with remaining EtOH 

and Et3N impurities, which were removed by dissolving in pentane and washing with 

water as before then coevaporating with CHCl3 under reduced pressure.  This residue 

(196 mg, ca. 1.4 mmol) was dissolved in anhydrous DCM (5 mL) and treated with 

BH3·THF (0.9 mL, 0.9 mmol), added by syringe under an N2 atmosphere.  After stirring 1 

h the solvent was removed under reduced pressure and the residue was purified by FC on 

silica gel (15 cm x 20 mm diameter, 4:1 hexanes/Et2O), isolating 118 mg of a mixture of 

ca. 5:1 26 and isomeric amine borane 30 (7% combined yield from 3-methyl-2-

cyclohexen-1-ol).  (3-Methyl-cyclohex-2-enyl)-dimethylamine borane (26) and (1-

methyl-cyclohex-2-enyl)-dimethylamine borane (30): TLC on K6F silica gel 60Å, 4:1 

hexanes/Et2O, Rf = 0.40.  Molecular ion calculated for C9H20BNNa: 176.1586; [M+Na], 

ESMS found m/z = 176.1851; IR (neat, cm-1) 2371, B–H; 2321, B–H; 2277, B–H; 1466, 

B–N; 1167, C–N.  Major peaks in NMR spectra assigned to 26: 1H NMR: δ 5.80 (1H, s), 

3.52-3.46 (1H, m), 2.52 (3H, s), 2.51 (3H, s), 2.18 (1H, q, J = 5.9 Hz), 2.08-1.80 (m, 

overlaps with 30), 1.74 (3H, s), 1.67-1.10 (m, overlaps with 30); 13C NMR: δ 140.9, 

118.2, 67.1, 48.1, 47.2, 46.8, 29.5, 24.1, 23.6, 21.7; 11B NMR: δ -10.1 (q, J = 96 Hz). 

Minor peaks in NMR spectra assigned to 30: 1H NMR: δ 6.00-5.93 (1H, m), 5.90-5.85 

(1H, m), 2.55 (3H, s), 2.54 (3H, s), 2.08-1.80 (m, overlaps with 26), 1.67-1.10 (m, 

overlaps with 26), 1.46 (3H, s); 13C NMR: δ 130.6, 128.3, 65.1, 29.8, 24.3, 22.7, 20.9; 

11B NMR: δ -12.5 (q, J = 97 Hz). 

To a solution of 26 (15 mg, impure with 30, 95 μmol combined) in anhydrous 

CD2Cl2 (1.0 mL) was added MsOH (38 μL, 590 μmol) dropwise by syringe, waiting for 

the gas evolution to subside between each drop.  A portion of the solution was transferred 
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to an NMR tube and monitored by 1H NMR spectroscopy, showing no change after 105 

min.  The NMR sample was returned to the flask and the reaction quenched by addition 

of 5% aq. NaOH (2 mL), separating the layers and extracting the aqueous layer with 

DCM (2 x 3 mL).  The combined organic layers were reduced by rotary evaporation, the 

residue purified by reverse-phase PLC on K18F silica gel, giving 6.9 mg of trans-(3-

methylcyclohexyl)-dimethylamine bis(methylsulfonyloxy)borane (29, 25% y based on 

calculated amount of 26): TLC on K18F silica gel 60Å, 2:1 MeOH/H2O buffered with 

0.5% Et3N and 0.5% CF3CO2H, Rf = 0.55.  1H NMR: δ 3.07 (3H, s), 3.06 (3H, s), 2.55 

(3H, s), 2.53 (3H, s), 1.05 (3H, d, J = 7.3 Hz). 
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Appendix A 

 

X-ray Crystal Structure of 4-25 
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Table 1.  Crystal data and structure refinement for 4-25. 
  
  
Identification code                 4-25 
 
Empirical formula                 C13 H28 B N O4 S 
  
Formula weight                     305.23 
  
Temperature                          85(2) K 
  
Wavelength                           0.71073 A 
  
Crystal system, space group        Orthorhombic,  P2(1)2(1)2(1) 
  
Unit cell dimensions                a = 6.8265(5) A   alpha = 90 deg. 
                                      b = 9.4699(8) A    beta = 90 deg. 
                                      c = 24.772(2) A   gamma = 90 deg. 
  
Volume                              1601.4(2) A^3 
  
Z, Calculated density               4,  1.266 Mg/m^3 
  
Absorption coefficient             0.214 mm^-1 
  
F(000)                              664 
  
Crystal size                        0.50 x 0.34 x 0.22 mm 
  
Theta range for data collection    1.64 to 28.34 deg. 
  
Limiting indices                    -9<=h<=9, -12<=k<=12, -33<=l<=33 
  
Reflections collected / unique     57330 / 3997 [R(int) = 0.0376] 
  
Completeness to theta = 28.34      100.0 % 
  
Absorption correction               Semi-empirical from equivalents 
  
Max. and min. transmission         0.9545 and 0.9007 
  
Refinement method                  Full-matrix least-squares on F^2 
  
Data / restraints / parameters     3997 / 0 / 190 
  
Goodness-of-fit on F^2             1.171 
  
Final R indices [I>2sigma(I)]      R1 = 0.0330, wR2 = 0.0892 
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R indices (all data)                R1 = 0.0332, wR2 = 0.0893 
  
Absolute structure parameter       0.04(6) 
  
Largest diff. peak and hole        0.356 and -0.189 e.A^-3 
 
  
 
Table 2.  Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters 
(A^2 x 10^3) for 4-25. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 
  
________________________________________________________________ 
  

     x                       y                     z               U(eq) 
________________________________________________________________ 
  
          B(1)         3664(3)    6617(2)    8546(1)   26(1) 
          N(1)         4294(2)     5263(1)  8193(1)  18(1) 
          S(1)                 502(1)          7984(1)        8102(1)        17(1) 
          O(1)             1510(2)          6860(1)        8448(1)        22(1) 
          O(2)              -633(2)          7258(2)        7697(1)        30(1) 
          O(3)             1845(2)          9044(1)        7918(1)        26(1) 
          O(4)             -708(2)       11747(1)        8363(1)        23(1) 
          C(1)             2985(3)          4063(2)        8310(1)        59(1) 
          C(2)             6321(3)          4857(2)        8345(1)        26(1) 
          C(3)             4276(3)          5583(3)       7609(1)        45(1) 
          C(4)          -1217(2)          8733(2)        8555(1)        15(1) 
          C(5)             -429(2)          9704(1)        8990(1)        12(1) 
          C(6)             1174(2)          9081(2)        9361(1)        17(1) 
          C(7)             1072(2)       10025(2)        9875(1)        22(1) 
          C(8)             -559(2)       11080(2)        9733(1)        20(1) 
          C(9)               260(2)       12077(2)        9299(1)        22(1) 
          C(10)             396(2)       11134(2)        8787(1)        16(1) 
          C(11)        -2028(2)       10165(2)        9410(1)        16(1) 
          C(12)        -3744(2)       11000(2)        9172(1)        23(1) 
          C(13)        -2899(2)          8950(2)        9737(1)        21(1) 
________________________________________________________________ 
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Table 3.  Bond lengths [A] and angles [deg] for 4-25. 
_____________________________________________________________ 
  
            B(1)-O(1)                    1.507(2) 
            B(1)-N(1)              1.610(2) 
            N(1)-C(1)              1.474(2) 
            N(1)-C(3)                1.478(2) 
            N(1)-C(2)               1.485(2) 
            S(1)-O(3)               1.4340(12) 
            S(1)-O(2)                1.4428(12) 
            S(1)-O(1)               1.5306(11) 
            S(1)-C(4)               1.7716(14) 
            O(4)-C(10)            1.4174(18) 
            C(4)-C(5)               1.5162(18) 
            C(5)-C(6)               1.5458(19) 
            C(5)-C(10)              1.5510(19) 
            C(5)-C(11)              1.5692(19) 
            C(6)-C(7)               1.556(2) 
            C(7)-C(8)                1.536(2) 
            C(8)-C(9)               1.536(2) 
            C(8)-C(11)             1.548(2) 
            C(9)-C(10)             1.554(2) 
            C(11)-C(13)            1.527(2) 
            C(11)-C(12)             1.532(2) 
  
            O(1)-B(1)-N(1)        107.18(13) 
            C(1)-N(1)-C(3)         110.3(2) 
            C(1)-N(1)-C(2)         108.39(15) 
            C(3)-N(1)-C(2)          108.03(14) 
            C(1)-N(1)-B(1)          110.15(15) 
            C(3)-N(1)-B(1)           111.43(14) 
            C(2)-N(1)-B(1)           108.48(12) 
            O(3)-S(1)-O(2)          117.10(8) 
            O(3)-S(1)-O(1)           112.21(7) 
            O(2)-S(1)-O(1)           107.45(7) 
            O(3)-S(1)-C(4)           110.20(7) 
            O(2)-S(1)-C(4)           105.97(7) 
            O(1)-S(1)-C(4)          102.78(6) 
            B(1)-O(1)-S(1)           129.38(12) 
            C(5)-C(4)-S(1)          117.27(10) 
            C(4)-C(5)-C(6)          116.26(11) 
            C(4)-C(5)-C(10)        115.32(11) 
            C(6)-C(5)-C(10)         105.60(11) 
            C(4)-C(5)-C(11)          113.19(12) 
            C(6)-C(5)-C(11)         101.81(11) 
            C(10)-C(5)-C(11)     102.98(10) 
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            C(5)-C(6)-C(7)         103.59(12) 
            C(8)-C(7)-C(6)          102.69(12) 
            C(7)-C(8)-C(9)           107.17(13) 
            C(7)-C(8)-C(11)         102.92(12) 
            C(9)-C(8)-C(11)        102.57(12) 
            C(8)-C(9)-C(10)         103.89(12) 
            O(4)-C(10)-C(5)         113.89(12) 
            O(4)-C(10)-C(9)        109.76(12) 
            C(5)-C(10)-C(9)        102.41(11) 
            C(13)-C(11)-C(12)     107.18(12) 
            C(13)-C(11)-C(8)      113.56(12) 
            C(12)-C(11)-C(8)       113.95(13) 
            C(13)-C(11)-C(5)       114.34(12) 
            C(12)-C(11)-C(5)       114.82(12) 
            C(8)-C(11)-C(5)         92.76(11) 
           _____________________________________________________________ 
  
Symmetry transformations used to generate equivalent atoms: 
           
 
Table 4.  Anisotropic displacement parameters (A^2 x 10^3) for 4-25.  The anisotropic 
displacement factor exponent takes the form:  -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* 
U12 ] 
  
    
_______________________________________________________________________ 
  
                         U11     U22       U33        U23        U13          U12 
    
_______________________________________________________________________ 
  
    B(1)      26(1)   25(1)    27(1)    -11(1)       -8(1)          9(1) 
    N(1)      16(1)   17(1)   22(1)      -3(1)         3(1)        -3(1) 
    S(1)      16(1)  20(1)    14(1)      -2(1)         2(1)          1(1) 
    O(1)      21(1)  20(1)    23(1)       2(1)         4(1)          5(1) 
    O(2)      27(1)  43(1)    20(1)    -12(1)       -1(1)        -1(1) 
    O(3)      25(1)  26(1)    28(1)       4(1)       11(1)        -1(1) 
    O(4)      25(1)  24(1)     21(1)       5(1)         2(1)          1(1) 
    C(1)      35(1)  19(1)  122(2)   -10(1)      35(1)        -9(1) 
    C(2)      25(1)   26(1)    28(1)      -4(1)       -3(1)          9(1) 
    C(3)      41(1)  76(2)    18(1)      -6(1)       -2(1)       33(1) 
    C(4)      12(1)    18(1)    15(1)      -2(1)         0(1)        -1(1) 
    C(5)      11(1)    13(1)    13(1)        0(1)        1(1)          0(1) 
    C(6)      13(1)    21(1)    16(1)      -1(1)        -2(1)          0(1) 
    C(7)      21(1)    28(1)    16(1)      -4(1)        -1(1)        -2(1) 
    C(8)      19(1)    23(1)    19(1)      -6(1)         3(1)       -3(1) 
    C(9)      22(1)    18(1)    26(1)     -5(1)         2(1)       -5(1) 
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    C(10)     14(1)    16(1)    20(1)        1(1)         2(1)       -3(1) 
    C(11)     13(1)    19(1)    18(1)      -1(1)         3(1)          0(1) 
    C(12)     14(1)   23(1)    32(1)     -1(1)         4(1)          3(1) 
    C(13)     19(1)    25(1)    20(1)       1(1)         6(1)        -4(1) 
    
_______________________________________________________________________ 
 
Table 5.  Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 
10^3) for 4-25. 
  
________________________________________________________________ 
  
                                x                 y                   z           U(eq) 
________________________________________________________________ 
  
          H(1A)        3910          6440              8934          31 
          H(1B)        4428          7456              8434          31 
          H(4A)    -190(40)     11600(30)      8054(11)    41(7) 
          H(1D)     1648          4297               8197          88 
          H(1E)       2998          3869              8699          88 
          H(1F)       3437          3227              8114          88 
          H(2B)       6381          4679              8735          40 
          H(2C)        7223          5625              8252          40 
          H(2D)        6698          3999              8150          40 
          H(3B)       4731          4756              7407          67 
          H(3C)       5145          6385              7537          67 
          H(3D)        2940          5821              7497          67 
          H(4B)      -2189          9269              8340         18 
          H(4C)      -1927          7950              8734         18 
          H(6A)        2479          9142              9189          20 
          H(6B)          892          8082              9450          20 
          H(7A)         728          9462            10198          26 
          H(7B)       2332         10514             9939          26 
          H(8A)      -1142         11572           10052         25 
          H(9A)        1567         12439             9404          26 
          H(9B)         -631         12886            9239          26 
          H(10A)       1795         11022            8675          20 
          H(12A)      -4491         10392            8927          34 
          H(12B)      -3240         11816            8972          34 
          H(12C)      -4599         11327            9464          34 
          H(13A)      -3650          9332            10041         32 
          H(13B)      -1840          8350             9874          32 
          H(13C)      -3765          8390             9505          32 
         ________________________________________________________________ 
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Table 6.  Hydrogen bonds for 4-25 [A and deg.]. 
 
_______________________________________________________________________ 
  
D-H...A                               d(D-H)      d(H...A)       d(D...A)       <(DHA) 
  
O(4)-H(4A)...O(2)#1          0.85(3)        2.04(3)     2.8228(16)       152(2) 
 
_______________________________________________________________________ 
 
  
Symmetry transformations used to generate equivalent atoms: #1 -x,y+1/2,-z+3/2     
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1H and 13C NMR Spectra of Isolated New Compounds 
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