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 Abstract 

The Very High Temperature Gas-Cooled Reactor (VHTR) is a promising 

candidate for Generation IV designs due to its inherent safety, efficiency, and its 

proliferation-resistant and waste minimizing fuel cycle. A number of these advantages 

stem from its unique fuel design, consisting of a stochastic mixture of tiny (0.78mm 

diameter) microspheres with multiple coatings. However, the microsphere fuel regions 

represent point absorbers for resonance energy neutrons, resulting in the "double 

heterogeneity" for particle fuel. Special care must be taken to analyze this fuel in order to 

predict the spatial and spectral dependence of the neutron population in a steady-state 

reactor configuration. The challenges are considerable and resist brute force computation: 

there are over 1010 microspheres in a typical reactor configuration, with no hope of 

identifying individual microspheres in this stochastic mixture. Moreover, when individual 

microspheres "deplete" (e.g., burn the fissile isotope U-235 or transmute the fertile 

isotope U-238 (eventually) to Pu-239), the stochastic time-dependent nature of the 

depletion compounds the difficulty posed by the stochastic spatial mixture of the fuel, 

resulting in a prohibitive computational challenge. The goal of this research is to develop 

a methodology to analyze particle fuel randomly distributed in the reactor, accounting for 

the kernel absorptions as well as the stochastic depletion of the fuel mixture.  

This Ph.D. dissertation will address these challenges by developing a 

methodology for analyzing particle fuel that will be accurate enough to properly model 



 

xiv 

stochastic particle fuel in both static and time-dependent configurations and yet be 

efficient enough to be used for routine analyses. This effort includes creation of a new 

physical model, development of a simulation algorithm, and application to real reactor 

configurations. 
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CHAPTER 1 

Introduction 

1.1 VHTR Concept and Its Design and Development  

The Very High Temperature Gas-cooled Reactor (VHTR) concept was proposed 

first by General Atomics based on its Gas Turbine-Modular Helium Reactor (GT-MHR) 

design. It was submitted to the Generation IV Roadmap technical group for consideration 

and accepted as the representative high-temperature gas-cooled reactor concept.  The 

Generation IV Roadmap project aims at designing and developing reactor system 

concepts for producing electricity and meeting the goals of improved economics, passive 

safety, sustainability, proliferation resistance, and physical security. [1,2] The VHTR is a 

design that fulfills these requirements. 

1.1.1 NGNP designs 

Recently, in order to meet the global growing demands for electric power and 

transportation fuels, many countries have turned to nuclear power for producing both 

electricity and hydrogen without the consumption of fossil fuels. In the United States, the 

Department of Energy (DOE) has launched a new project, the Next Generation Nuclear 

Plant (NGNP) project, to demonstrate emissions-free nuclear-assisted electricity and 

hydrogen production by 2015 [2]. Because of excellent characteristics such as a core 

outlet coolant temperature of 1000 °C, inherent passive safety, and a total power output 
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consistent with that expected for commercial high-temperature gas-cooled reactors, the 

VHTR system was selected by DOE for the NGNP project.  

The dissertation will address the neutronic analysis for the VHTR. 

1.1.2 Prismatic and pebble-bed designs 

There are two types of NGNP designs that are based on the VHTR concept: the 

prismatic fuel type and the pebble-bed fuel type. Both designs use Tristructural-isotropic 

(TRISO) fuel, which consists of coated microsphere fuel particles. The TRISO fuel 

particles, up to about 1mm in diameter, consist of a fuel kernel and four coating layers 

which prevent the leakage of fission products and provide structural integrity. These fuel 

particles are randomly distributed in the fuel compact for the prismatic design or in the 

fuel pebble for the pebble-bed design.  

Figure 1.1 shows the fuel configurations at different dimensional levels in a 

typical prismatic reactor core. The TRISO fuel particles are manufactured and 

consolidated into graphite matrix powders. Under high pressure and high temperature, 

they are resin molded and carburized to form cylindrical fuel compacts about 5.08cm 

high. Fuel compacts are then inserted into hexagonal fuel blocks comprised of coolant 

holes and fuel compact holes. Each fuel block is 79.3cm high. The full core consists of 

1020 fuel blocks, which are arranged in three annular fuel rings that are ten blocks high. 

The inner and outer reflector regions adjacent to the fuel blocks are hexagonal graphite 

blocks. In addition, single layers of reflector blocks comprise the top and bottom 

reflectors. Figure 1.2 shows an early version of the pebble-bed reactor design. It is a 

cylindrical core filled with two types of pebbles: graphite (moderator) pebbles and fuel 

pebbles with a specified moderator/fuel ratio. In the NGNP design for the pebble-bed 
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reactor, the core is an annular core, as with the prismatic design, and there is an inner 

solid reflector. Both the fuel and graphite pebbles have typical diameters of 6cm and are 

randomly mixed in the full core. Each fuel pebble consists of a spherical fuel zone with 

radius 2.5cm and an outer graphite shell with thickness 0.5cm. TRISO fuel particles are 

randomly distributed inside the fuel zone in the fuel pebbles. Such a design allows the 

pebbles to be dropped in at the top and removed at the bottom, providing a continuous 

online refueling mechanism. This is a unique advantage of the pebble bed design. 

 

 
 

Figure 1.1 Prismatic design 
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Figure 1.2 Pebble-bed design 
 
 

A more detailed description of the NGNP designs for the VHTR can be found in 

the Idaho National Engineering and Environmental Laboratory (INEEL) “NGNP Point 

Design” report [2]. 

1.2 Methods for Analysis of Gas-cooled Reactors 

In the design of nuclear reactors, a neutronic analysis is needed to determine and 

optimize physics quantities such as reactivity, the spatial distribution of power and 

temperature, decay heat, depletion, and fuel burn-up. Many general routine analysis 

methods have been developed for obtaining these quantities in the past half century. 

[3,40,41,43] These include several classical approximation methods in solving the 

Boltzmann transport equation, such as multi-group diffusion theory, the Sn method, Pn/Bn 

approximations, collision probability methods, and the method of characteristics. Also, 

there are many classical approximations for treating resonance absorption in the spectrum 
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calculation, such as the narrow resonance approximation (NR), the narrow-resonance 

infinite-mass approximation (NRIM), and the intermediate resonance approximation (IR). 

In addition, there are a number of techniques and methods for treating a heterogeneous 

cell by transforming it into an equivalent homogenized cell, such as equivalence theory 

and energy-dependent self-shielding factors (i.e., disadvantage factors) [3,41]. Moreover, 

as alternative to deterministic methods, the Monte Carlo method has been used but has 

not gained wide use in practice due to its extensive computational time.  

Most of these conventional methods used in the neutronic analysis for gas-cooled 

reactors were developed in the early years of gas-cooled reactor development. In general, 

reasonably good results were obtained. However, due to the unique design of the gas-

cooled reactor with TRISO fuel, substantial challenges exist for traditional methods if 

more accurate predictions of neutronic behavior are needed, such as needed to analyze 

the “deep burn” concept that involves additional complexities in the fuel design [88].  

1.2.1 Challenges for VHTR system analysis 

In VHTR systems, the microsphere fuel particles represent effective point 

absorbers for resonance energy neutrons, combining with the usual fuel rod or fuel pebble 

heterogeneity to yield the "double heterogeneity" for particle fuel. Special care must be 

taken to analyze this fuel in order to predict the spatial and spectral dependence of the 

neutron population in a steady-state reactor configuration. The challenges are 

considerable and resist brute force computation: there are over 1010 microspheres in a 

typical reactor configuration, with no hope of identifying individual microspheres in this 

stochastic mixture. Moreover, when individual microspheres "deplete" (e.g., burn the 

fissile isotope U-235 or transmute the fertile isotope U-238 (eventually) to Pu-239), the 
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stochastic time-dependent nature of the depletion compounds the difficulty posed by the 

stochastic spatial mixture of the fuel, resulting in a prohibitive computational challenge.  

The essential challenge consists in developing a methodology that can accurately 

and efficiently analyze the double heterogeneity configuration and predict the neutronic 

properties at both the microscopic and macroscopic levels in the global neutronic 

computation, as well as accounting for the nature of the stochastic distribution in the 

VHTR design.  

1.2.2 Traditional methods for analysis of gas-cooled reactors 

From a historical point of view, gas-cooled reactors appeared very early and are 

not a novel design. As early as about 1956, a prismatic design and a pebble-bed design 

were studied separately in the UK and Germany. Later from 1966 to 1968, the DRAGON 

reactor at Winfrith, the Peach Bottom reactor near Philadelphia, and the AVR pebble-bed 

reactor at Jülich were constructed and operated successfully. This experience led to the 

construction of the commercially operated high temperature gas-cooled reactor (HTGR) 

built by General Atomics (GA) at Fort St. Vrain in the U.S. and the THTR pebble bed 

reactor in Germany [3]. Nowadays, the technologies for gas-cooled reactors are being 

advanced in the GA Gas Turbine-Modular Helium Reactor (GT-MHR) Project and the 

South African Pebble Bed Modular Reactor (PBMR) Project, as well as the two currently 

operated experimental reactors: the Japanese HTTR and the Chinese HTR-10.  

In the U.S., the design and development of gas-cooled reactors pushed the 

development of reactor analysis codes to predict the neutronic properties in a doubly 

heterogeneous system. Many conventional methodologies were investigated and used in 

these codes, as mentioned in the preceding section. The essential idea among these 
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methods was development of an efficient way to calculate the shielded group constants in 

doubly heterogeneous cells accounting for resonance absorption. These group constants 

were then used for the full core global calculation with homogenized fuel assemblies. 

Two major methods were developed at Los Alamos [4]. The first method was a 

two-step method consisting of first applying Wälti’s [5] grain shielding factor calculation 

to correct point-wise cross sections, and then applying Levine’s [6] fuel pin cell space 

shielding computation to generate collapsed grain-shielded fine-group cross sections. In 

Wälti’s method, the self-shielding factors were calculated in a fine-group structure for a 

two-region microscopic cell consisting of the fuel kernel and a homogenized region 

consisting of the coating regions and the graphite matrix, employing a method used by 

Sauer [7] for fuel lattice calculations. An earlier but more accurate method, the Nordheim 

integral method (NIH) [8], was used to calculate fine-group constants for a grain cell but 

was more time-consuming compared to Wälti’s method. In Levine’s method, equivalence 

theory was used to treat the fuel compact heterogeneity. 

The second method to calculate group constants for a doubly heterogeneous cell 

utilized collision probabilities and rational approximations for escape probabilities and 

collision probabilities, resulting in an equivalence relation while accounting for both 

levels of heterogeneity for the generation of fine-group cross sections. This method 

avoids the time-consuming grain-shielding process and involves only one step to go from 

a doubly heterogeneous cell to an equivalent homogeneous cell.  

Before these two methods were developed, similar methods had been 

implemented in the General Atomics MICROX code, [3] which uses the collision 

probability method to solve the neutron slowing down and thermalization equations in 
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200 energy groups for a two-region lattice cell. The fluxes in the two regions are coupled 

by collision probabilities computed with the flat flux approximation. The grain structure 

of the fuel particle is accounted for with the method developed by Wälti [5]. A related 

General Atomics code, GAROL, [3] also considers two space regions but takes into 

account overlapping and mutual shadowing of resonances in solving the slowing down 

equations based on the collision probability method.  

Both codes are limited to two regions, but if more regions are used in the 

computation, a better approximation should be obtained because the collision 

probabilities are usually calculated assuming flat fluxes in each region. This would also 

make the Dancoff factors computation more complicated, since it requires considerable 

computational effort. However, with the increasing computing capability in modern 

computers, recent methods have included more resolution such as multiple regions and 

finer energy groups, which improve the accuracy of conventional methods for analyzing 

gas-cooled reactors. These more recent methods and associated codes are described in the 

next section. 

1.2.3 More recent methods for analysis of gas-cooled reactors 

We classify these more recent methods into two categories: Monte Carlo methods 

and deterministic methods.  

• Monte Carlo methods 
 

As a direct analog simulation method, the Monte Carlo method has the unique 

advantage of simulating neutron transport in complex geometries, including VHTR 

systems characterized by double heterogeneities and a stochastic distribution of fuel 

particles. Since many Monte Carlo methods utilize continuous energy cross sections, 
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resonance overlapping and mutual shadowing effects of resonances are automatically 

accounted for.  

The MCNP5 Monte Carlo code [9] has been frequently used to model gas-cooled 

reactors with explicit geometric representation of fuel compacts or pebbles, including the 

microscopic fuel kernels within [10,11,12,13]. However, the random locations of the fuel 

kernels present difficulties. To date, four approaches have been tried for handling the 

randomness: (1) a regular lattice arrangement, ignoring any randomness [10,11,12,13], 

(2) the chord-length sampling approach in the MVP code based on NNDs (nearest 

neighbor distribution functions) [14,15,16] and recent research based on an empirical 

chord length PDF (probability density function) [17,18], (3) the explicit approach in 

MONK using "hole geometry" with a single realization of the entire random geometry 

[19], and in VHTR full core analysis using the random sequential addition (RSA) 

algorithm to generate multiple realizations of the entire random geometry [13,20], (4) the 

“on-the-fly” approach implemented in MCNP5 by randomly jiggling fuel kernels in 

regular lattice cells every time the neutron enters a cell [20,21]. 

• Deterministic methods 
 

As routine analysis methods used widely in practice, deterministic methods for 

the analysis of gas-cooled reactors have been under continuous development, including 

efforts to improve the treatment of the double heterogeneity and stochastic geometry as 

well as the spectrum calculation in highly heterogeneous cells, especially in the 

resonance range. More recently, newer versions of codes such as WIMS and SCALES 

provide more powerful capability in modeling gas-cooled reactors, [22,23] generating 

space-dependent multi-group cross sections (few-group constants) and solving the 

transport equation in 1-D or 2-D geometries with methods including collision probability, 
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method of characteristics, Sn methods, and hybrid methods. In the WIMS code, an 

integrated Monte Carlo method (MONK) is embedded for the purpose of internal 

validation. 

Both WIMS and SCALES can be used to analyze doubly heterogeneous 

configurations and generate shielded fine or broad group cell-homogenized cross sections 

at the fuel element level for prismatic reactors or the fuel pebble level for pebble-bed 

reactors. These cross sections can then be used in a global calculation code such as 

REBUS for global depletion calculations.  

In an Argonne National Laboratory (ANL) report [22], the WIMS8 code was used 

to analyze a deep-burn gas-cooled reactor design based on the GT-MHR. A two-step 

scheme was utilized to homogenize the fuel assembly and obtain assembly-level shielded 

group cross sections. In the first step, the sequential use of the WPRES, WPROCOL and 

WRES modules performed a detailed analysis of the double heterogeneity at the 

compact-cell level. The compact-cell is composed of the fuel compact filled with coated 

fuel particles and an outer graphite region determined by the average share of the graphite 

in a fuel assembly for a fuel compact. Then shielded cell-homogenized group cross 

sections at the pin-cell level were obtained and provided to the next step of the 

calculation at the fuel element level. The CACTUS module was used to predict the fuel 

assembly group cross sections for subsequent global analysis. It should be noted that in 

the first step, before the use of the WPRES module, the shielded fine group cross sections 

for coated fuel particles in the fuel compact region had been obtained by using the 

WHEAD module based on equivalence theory. The treatment of the double heterogeneity 

in the WIMS code is quite similar to the GA MICROX code: at the grain structure level, 
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WIMS uses equivalence theory while MICROX uses Wälti’s shielding factor method; at 

the compact-cell level, both codes use collision probability methods to calculate the fine-

group flux and weighted broad group resonance cross sections.  

In another study on a pebble-bed type gas-cooled reactor for burning plutonium 

[23], both the SCALE and WIMS codes were used to analyze a unit-cell at the fuel 

pebble level, accounting for the double heterogeneity. For the WIMS code, the same 

modules were used to analyze an equivalent cylindrical model, which has a fuel particle 

region surrounded by a pebble graphite shell. For the SCALE code, the treatment of 

double heterogeneity was implemented by a two-stage calculation: grain-cell level and 

pebble-cell level. The shielded group cross sections for the fuel zone at the pebble-cell 

level were generated by the grain level calculation based on the Nordheim Integral 

Method (NIM).  

From the deterministic point of view, the treatment of the double heterogeneity 

configuration is a model that yields an equivalent homogeneous system by calculating the 

shielded cell-homogenized group cross sections through accurate or approximate 

techniques and methods. Such a homogenization process should be simple and fast. 

Those resultant group cross sections can be used for a full core computation with 

homogenized fuel assemblies in the global neutronic analysis code. Inevitably, such a 

multi-level homogenization method in the deterministic code, while simplifying and 

accelerating the global calculation, eliminates the possibility of predicting results at the 

microscopic level, such as the fuel microsphere in a VHTR. In some situations, the 

understanding of the neutronic behavior for individual fuel particles is important, such as 

in the fuel cycle analysis, where the depletion of the fuel kernel can provide useful 
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information in determining the optimum fuel cycle strategy. Also in safety analyses, the 

hot-spot analysis may require information about the stochastic nature of the distribution 

of the fuel particles and fuel pebbles. The analysis of these stochastic effects is difficult 

and perhaps impossible for deterministic codes. 

1.3 Description of Thesis Work 

1.3.1 Thesis goals and objectives 

The goal of the thesis research is to develop a methodology to analyze fuel 

particles randomly distributed in the VHTR, accounting for kernel absorptions as well as 

the stochastic depletion of the fuel mixture. This method should be accurate enough to 

properly model stochastic particle fuel in both static and time-dependent configurations 

and yet be efficient enough to be used for routine analyses. This effort includes the 

creation of a new physical model, development of a simulation algorithm, and application 

to real reactor configurations. 

1.3.2 Summary of thesis research  

The thesis consists of four major chapters: 

Chapter 2 describes the general neutronic analysis for a prismatic type VHTR 

using MCNP5 and the coupled depletion code ORIGEN (Monteburns). The VHTR is 

modeled explicitly, accounting for the double heterogeneity. The stochastic distribution 

of the fuel particles is also modeled explicitly inside the fuel compact using a RSA 

(Random Sequential Addition) algorithm [24] but only for a few realizations in full core 

analysis. The self-shielding behavior at resonance energies in the fuel kernel cell model is 

studied, and it is shown that a two-region cell model can adequately represent the six-



 

13 

region microsphere cell with MCNP5. The equivalence between the two-region and six-

region models is verified by criticality calculations at multiple levels: the microsphere 

cell level, the fuel compact cell level, and the full core model level with the fuel modeled 

as fully stochastic (RSA) and on a lattice.  Global depletion calculations yield similar 

results. The benefit of the two-region model is a decrease in the Monte Carlo simulation 

time by a factor of two compared to a six-region model. For example, a typical 

calculation of a full core prismatic VHTR, modeling the fuel kernels on a lattice, may 

require two days on a 4 CPU cluster with Mac G5 processors, using the two-region model 

and one depletion time step. 

Chapter 3 examines an alternative method, chord length sampling (CLS), to 

account for the stochastic distribution of fuel kernels in both VHTR designs. A 

theoretical derivation of the chord length PDF between two microsphere particles in an 

infinite medium is presented. The model is verified numerically by a direct Monte Carlo 

simulation at several different packing fractions and very good agreement is obtained. 

When the PDF is used for the CLS simulation in a finite medium, where overlapping of 

the kernels with the external boundaries needs to be accounted for, an effective packing 

fraction should be used in the PDF formula. This is done by a fast iteration calculation 

prior to the Monte Carlo simulation. Then the CLS Monte Carlo simulation is performed 

on two unit cells (a prismatic compact cell and a fuel pebble cell) using the analytical 

PDF with the corrected packing fraction. Excellent agreement with benchmark results are 

found in terms of resonance integrals in the fuel kernel, leakage rates from the external 

boundary, and the average scalar flux in different regions. Also, the average intra-
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compact and intra-pebble Dancoff factors for the fuel kernel are calculated by the CLS 

method, and the predicted values are very close to benchmark results. 

Chapter 4 presents a general method to derive closed form formulas for average 

Dancoff factors using the chord method in stochastic random media. The method greatly 

simplifies, mathematically and physically, existing analytical methods by replacing the 

multiple double integral calculations with multiple single integrals of the chord length 

PDF. As a typical application to VHTR analysis, two mathematical models are proposed 

to calculate average Dancoff factors for fuel compacts and fuel pebbles in infinite and 

finite geometries using the analytical chord length PDF derived in Chapter 3. Results are 

in good agreement with benchmark results. 

Chapter 5 studies the impacts on neutronic properties with different random 

packing schemes. Three random packing schemes are investigated for infinite stochastic 

mixtures: lattice structure, the RSA model, and the jiggling model. The chord length 

distribution PDFs are determined for all three schemes at 28.92% and 5.76% packing 

fractions and substantial differences are found among the different random packing 

methods. Infinite medium Dancoff factors are averaged over many realizations for each 

of the random packing schemes. The maximum discrepancy in Dancoff factors is 0.2% at 

a 28.92% packing fraction and 5% for a 5.76% packing fraction, indicating that one 

needs to pay more attention to the neutronic analysis for lower packing fractions. 
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CHAPTER 2  

Explicit Modeling of VHTR Configurations 

In the previous chapter, we described VHTR configurations for both pebble-bed 

and prismatic type designs. Since our goal is to develop an efficient and accurate Monte 

Carlo methodology to analyze TRISO fuel particles in VHTR, we will use MCNP5 [9], a 

production-level, widely-used Monte Carlo simulation code, to perform our neutronic 

analyses. These analyses are for multi-scale geometry models ranged from individual 

TRISO fuel particle cells to fuel compact cells to full core configurations in prismatic 

type VHTRs. The analyses include spectra and radial flux distributions in a TRISO fuel 

kernel, as well as criticality computations for different geometry configurations and time-

dependent depletion analyses for full core configurations.  

2.1 MCNP Model of Full Core Geometry 

Modeling the geometrical configuration of a reactor efficiently and accurately is 

critical for neutronic computations. The model should be kept as close as possible to the 

real geometry, with correct material composition and density. The model should  also 

account for the double heterogeneity and stochastic distribution of fuel particles. 

2.1.1 Microsphere cell to fuel compact cell to full core 

Taking advantage of MCNP5’s capability for modeling lattice structure geometry, 

we begin with a single TRISO microsphere cell, consisting of a cubic graphite matrix 
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containing a microsphere in the center. The cell preserves the volume packing fraction of 

microspheres in a fuel compact, i.e. 28.92% for the prismatic VHTR design. The 

microsphere, representing the TRISO fuel particle, has a fuel kernel region surrounded by 

four coating layers. The fuel kernel is the first heterogeneity. The five regions in a fuel 

particle are depicted in Figure 2.1 and the TRISO data are given in Table 2.1. The 

isotopic densities in each region are given in Table 2.2. 

 

 Fuel kernel 

Graphite matrix 

Carbon buffer 

Pyrolytic carbon 

SiC 

 
 

Figure 2.1 Heterogeneous microsphere cell for TRISO fuel 
 
 
 

Table 2.1 TRISO dimensions and compositions 
 

Region # Name Outer radius (μ) Composition Density (g/cc)

1 Uranium oxycarbide 175 UCO (UC.5O1.5) 10.5 

2 Porous carbon buffer 275 C 1.0 

3 Inner pyrolytic carbon 315 C 1.9 

4 Silicon carbide 350 SiC 3.2 

5 Outer pyrolytic carbon 390 C 1.9 
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Table 2.2 TRISO number densities 
 

Region # Isotope Number density (at/b-cm) 

1 U235 .002475 

 U238 .021143 

 C .011809 

 O .035426 

2 C .050137 

3 C .095261 

4 C .048060 

 Si .048060 

5 C .095261 
 

The next step is the fuel compact cell, which consists of the cylindrical fuel 

compact, consisting of a mixture of microspheres and the background graphite matrix, 

centered in a hexagonal graphite cell. The size of the hexagonal cell is determined by the 

amount of graphite in the fuel block that “belongs” to each fuel compact.  The fuel 

compact comprises the second heterogeneity. Table 2.3 specifies the layout for a standard 

fuel block shown in Figure 2.2. 
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Figure 2.2 A standard fuel block (from [2]) 
 
 
 

Table 2.3 Layout of regular TRISO fuel block 
 

Item Diameter (cm) Number Total area (cm2) 

Small coolant holes 1.27 6 7.60 

Large coolant holes 1.588 102 202.02 

Fuel compact holes 1.27 216 273.62 

   483.24 
 

 

The flat-to-flat dimension of the hexagonal fuel block is 35.996 cm, resulting in a 

total fuel block area 
23

2
dA =  = 1122.18 cm2, hence a total graphite area of 1122.18 – 

483.24 = 638.93 cm2 which yields the graphite (moderator) area per fuel compact AM = 

2.958 cm2. Modeling this as a hexagonal graphite region surrounding the inner cylindrical 
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fuel compact with diameter DF = 1.245 cm, we find the flat-to-flat dimension of the fuel 

compact cell to be dc = 2.1958 cm. 

Next, we need to model a hexagonal fuel block with coolant holes and fuel 

compacts filled with TRISO fuel particles. For simplicity, we ignore the large handling 

hole centered in a standard fuel block and the six small coolant holes. Instead, they are 

replaced by several large coolant holes and fuel compacts. There are 109 large coolant 

holes and 222 fuel compacts in a fuel block. Each coolant hole or fuel compact is in a 

hexagonal lattice with a flat-to-flat dimension of 1.8796 cm. The coolant hole cells and 

fuel compact cells form a hexagonal fuel block cell as shown in Figure 2.2. Each fuel 

block cell is 79.3 cm high. 

Next, a full core configuration model can be set up with a simplified fuel block 

model with fuel compacts filled with TRISO particles. The full core is modeled as a 

cylinder of hexagonal blocks with radius 341.63 cm and height 951.6 cm, equivalent to 

the height of 12 blocks (fuel and graphite blocks have the same height). The reactor is 

composed of an inner reflector region, three fuel ring regions, top and bottom reflectors, 

and an outer reflector region. The inner and outer reflector regions consist of 12 graphite 

blocks stacked axially, while the fuel rings are ten blocks with one single reflector blocks 

at both the top and bottom of the core. At each axial level, there are 30 fuel blocks in the 

inner ring, 36 fuel blocks in the middle ring, and 36 fuel bocks in the outer ring, for a 

total of 102 fuel blocks. Since there are ten axial layers of fuel blocks, the total number of 

fuel blocks in the full core is 1020.  
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Thus, a full core model accounting for the double heterogeneity configuration 

using MCNP5 is completed. Figure 2.3 shows the geometry progression from a 

microsphere cell to full core.  

 

 

Fuel compact 

Microsphere particle

Full core 

Fuel block

 
 

Figure 2.3 Cross sectional view of MCNP models from fuel particle to full core 
 
 

2.1.2 Model improvements 

The MCNP5 models in the previous section have explicitly modeled all five 

regions of the microsphere. This results in a very large number of MCNP5 regions, which 

causes the execution time to increase and could become a limiting factor due to the 

MCNP5 limit on the number of distinct regions, especially when depletion is accounted 

for. In addition, the previous models have resulted in "clipped" microspheres due to the 

fuel compact cylinder intersecting the universe (lattice) of microsphere cells. Clipped 

cells are an artifact of the geometrical modeling and are not physical and should be 

eliminated. Our previous model will be improved to reduce the number of regions and 
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eliminate clipped cells so as to improve both the efficiency and accuracy of the Monte 

Carlo model.  

2.2 Physical Geometry Simplifications  

This section addresses both of these issues. First, as a result of a thorough study 

regarding the neutronic behavior in a microsphere cell, a new two-region model has been 

developed and tested for the microsphere cell. The two-region cell reduces the region 

count by a factor of 3 and reduces the execution time by a factor of two, compared to the 

six-region cell. Secondly, the fuel region model has been modified to eliminate the 

"clipped" microspheres, and the results indicate that this is an important effect that needs 

to be included. A number of MCNP5 calculations have been performed to substantiate 

these conclusions, including simulations with randomly packed fuel compacts. 

2.2.1 Detailed neutronic analysis of TRISO microsphere cell 

First, energy spectra in the fully heterogeneous microsphere cell model (six-

region model) were calculated. The calculations were done separately for all six regions 

of the cell depicted in Figure 2.1. Figure 2.4 shows the results, and it can be seen that 

except for the neutron energies close to the resonance peaks, which Figure 2.4 does not 

resolve, the average spectra are essentially the same in all regions of the microsphere cell. 

This indicates that the TRISO fuel is effectively homogeneous for all neutrons except 

resonance energy neutrons. Additional evidence in support of this conclusion is given in 

the next section.  
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Figure 2.4 Spectra for six-region microsphere model 
 

Another important physical quantity, the energy-dependent radial flux profile in a 

six-region microsphere cell, was also calculated. The radial tally regions for the energy-

dependent track length estimator are depicted in Figure 2.5, and the results are shown in 

Figure 2.6.  

 

 

Six-region heterogeneous 

Reflecting b.c. on all sides of cube 
 

 
Figure 2.5 Tally regions for six-region microsphere cell 
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Figure 2.6 Radial neutron flux profiles in six-region microsphere cell 
 
 

From Figure 2.6, it is clear that for non-resonance energies, the flux is not 

perturbed by the presence of the fuel kernel and is essentially flat, equivalent to the flux 

in an equivalent homogenized cell. Therefore, we conclude that the double heterogeneity 

is only important for resonance-energy neutrons, and the microsphere cell is 

homogeneous for all neutrons except resonance energy neutrons. Moreover, even for 

resonance neutrons, the coating and graphite matrix regions are essentially homogeneous, 

since their radial scalar flux profiles are flat.  

2.2.2 From six-region to two-region model for microsphere cell 

The neutronic analysis in the previous section suggests a possible way to simplify 

the six-region heterogeneous microsphere cell. The approach is to keep the fuel kernel 

intact and homogenize (volume weight) the four microsphere coatings and the graphite 
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matrix. As a result, the six-region becomes a two-region microsphere cell with a fuel 

kernel surrounded by the homogenized coating-matrix region, as depicted in Figure 2.7. 

 

Reflecting b.c. on all sides of cubes

Two-region heterogeneous Six-region heterogeneous 

 
 

Figure 2.7 From six-region to two-region microsphere cells 
 

In order to show the validity of this two-region model, the same spectra and radial 

scalar flux profiles were calculated with the two-region model and compared with the 

corresponding quantities using the six-region model and are shown in Figure 2.8. Figure 

2.9 shows the tally region divisions for the radial flux profiles for the two-region model.  

Figure 2.10 compares the resultant radial flux profiles for two-region versus six-region 

calculations for the energy range centered around the 6.67 eV resonance of U-238. These 

comparisons show excellent agreement, demonstrating that for lattice geometry, the two-

region model is acceptable for the heterogeneous microsphere cell. 
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Figure 2.8 Spectra comparison between six-region and two-region models in fuel kernel 
 
 

 

Two-region heterogeneous 
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Figure 2.9 Tally regions for two-region microsphere models 
 
 



 

26 

0.0E+00

1.0E+01

2.0E+01

3.0E+01

4.0E+01

5.0E+01

6.0E+01

7.0E+01

8.0E+01

9.0E+01

1.0E+02

1.1E+02

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Radial bins (cm)

Fl
ux

 p
ro

fil
es

 (/
cm

2)

six-region model

two-region model

 
 

Figure 2.10 Radial flux profile in energy group 6.57ev-6.77ev 
 
 

Criticality calculations using MCNP5 for the two-region and six-region 

microsphere cells were performed, and the values of kinf are listed in Table 2.4 along with 

the standard deviations in the estimates of kinf. Again, excellent agreement is obtained. 

 

Table 2.4 MCNP5 simulations of microsphere cells 
 

Configuration Kernel 
location kinf Sigma 

Two-region heterogeneous cell Centered 1.1535 .0004 

Six-region heterogeneous cell Centered 1.1533 .0003 
 

2.2.3 From six-region to two-region model for fuel compact cell 

The neutronic analysis was also done at the fuel compact level using the six-

region and two-region models, as well as a homogeneous model for comparison. Figure 

2.11 shows the three different MCNP5 fuel compact models. The graphite region 
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surrounding the fuel compact is the proportional share of the graphite in a hexagonal fuel 

block that "belongs" to a fuel compact. The homogeneous model consists of a 

homogenized mixture of the fuel kernel, coating, and graphite matrix regions into one 

fuel region.  

 

 

Reflecting b.c. on all surfaces of fuel compact cell

Six-region heterogeneous Homogeneous Two-region heterogeneous 

 
 

Figure 2.11 Fuel compact cells 
 
 

Criticality computations using MCNP5 for the three compact cell models were 

also performed, and the results are tabulated in Table 2.5. The results show that the fuel 

kernel heterogeneity is important at the fuel compact level, yielding a 4% increase in 

reactivity compared to a homogenized fuel region. Again, two-region and six-region 

results show very good agreement with each other.  

 

Table 2.5 MCNP5 simulations of fuel compact cells 
 

Fuel compact filled with kinf Sigma 

Homogeneous microsphere cells 1.2885 .0004 

Two-region heterogeneous microsphere cells 1.3408 .0004 

Six-region heterogeneous microsphere cells 1.3401 .0004 
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2.2.4 Eliminating “clipping” in the fuel compact model 

A closer look at the preliminary MCNP5 models depicted in Figure 2.3 of the 

heterogeneous microsphere cells in the fuel compact shows "clipped" or partial 

microspheres at the cylindrical boundary of the fuel compact.  This is an artifact of the 

MCNP5 geometry handling routines for imbedding a universe (the lattice of 

microspheres) in an enclosing body (the outer diameter of the fuel compact). This 

unphysical anomaly is illustrated in Figure 2.12. Clipping may change the packing 

fraction; however, a more important consequence is the reduction in the self-shielding, 

since the escape probability from a partial fuel kernel will be significantly larger than for 

a full kernel, which is equivalent to a reduction in the self-shielding. This reduction in the 

self-shielding of the fuel kernel will increase the resonance absorption, resulting in a 

decrease in kinf. Even though this effect is due to only those kernels on the boundary of 

the fuel compact, this reactivity bias is noticeable in Table 2.6. 

 

 
 

Figure 2.12 Clipped model 
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In order to correct this error caused by clipping while keeping the total packing 

fraction constant, two models were investigated. These models are depicted in Figure 

2.13. 

          
Unclipped model 1               Unclipped model 2 

Figure 2.13 Unclipped models 
 
 

Both models still use simple cubic lattice structures, but the lattice cells in the x-y 

plane are adjusted to avoid clipping and preserve the packing fraction. In model 1, the z-

dimension of the "cubical" cell is reduced to preserve the overall packing fraction, but the 

x and y dimensions are left unchanged, resulting in a non-cubical cell (a cuboid), which is 

then repeated throughout the fuel compact cylinder to form a finite lattice of 

microspheres. For a packing fraction of 0.289, this results in 121 microspheres in the x-y 

plane for model 1. In model 2, the cube is uniformly squeezed in three dimensions to 

yield the desired packing fraction, and this cubical cell is then repeated throughout the 

fuel compact. There are 129 microspheres in the x-y plane for model 2. Neutronic results 

are shown in Table 2.6 for clipped cells and for unclipped cells using both models 1 and 

2. Both models 1 and 2 yield kinf higher than with the clipped model, a consequence of 

the artificial reduction in the self-shielding for the clipped fuel kernels as noted above. 

Model 2 is preferred because it preserves a simple cubic lattice while maintaining the 

correct packing fraction.  
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Table 2.6 Clipped versus unclipped fuel compact cells 
 

Fuel region modeled as kinf Sigma 

Six-region microsphere cells (clipped) 1.3401 .0004 

Six-region microsphere cells (not clipped using model 1) 1.3438 .0002 

Six-region microsphere cells (not clipped using model 2) 1.3445 .0002 

   

Two-region microsphere cells (clipped) 1.3408 .0004 

Two-region microsphere cells (not clipped using model 1) 1.3435 .0002 

Two-region microsphere cells (not clipped using model 2) 1.3447 .0002 
 

2.2.5 Lattice and stochastic models for TRISO fuel 

A lattice structure in VHTR analysis is a good model for TRISO fuel particles. 

However, in reality, the TRISO fuel particles are randomly distributed in the fuel 

compact. As a result, alternative models were explored for accurate computations.   

A straightforward way to model this stochastic distribution is to “jiggle” the 

microsphere within its cell. Every time a neutron enters a new microsphere cell, the 

microsphere in that cell is moved randomly within the cell but constrained to stay wholly 

within the cell. This method can take advantage of modeling the microspheres on a 

lattice, which is relatively easy to analyze with MCNP5. Brown et al.[12,20,21] have 

studied this model and implemented it in the new release of MCNP5. In this way, 

randomness is local, i.e. bounded only inside a cubic cell. 

Although it is a local stochastic model, the effect of such randomness on 

neutronic behavior may be modeled by comparing the radial flux profile in a microsphere 

cell with white boundary conditions (isotropic return) versus reflecting boundary 
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conditions. The white boundary condition qualitatively represents the randomness of the 

location of the microsphere within the cell. (The next section substantiates this.) The tally 

region for this case is the same as shown in Figure 2.5, except that the boundary 

condition is white. Figure 2.14 shows the comparison of the radial flux in the resonance 

energy group between reflecting boundary conditions and white boundary conditions. 
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Figure 2.14 Neutron radial flux profile in energy group 6.57ev-6.77ev 
 
 

If we assume that the slowing down source in the graphite matrix is the source for 

the fuel kernel, then the ratio of the absorption in the fuel kernel to the flux in the 

graphite matrix gives the reactivity effect. If this “absorption ratio” is high, it means that 

fewer neutrons escape the resonance. From Figure 2.14, it is seen that the white b.c. case 

yields a higher absorption ratio, hence less self shielding and if the curves were 

normalized by the level in the graphite matrix, there would be less depression in the fuel 

kernel for the white b.c. case. This makes sense physically as the white b.c. option throws 

more neutrons out of the path of the kernels, equivalent to a stochastic effect. 
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Another way to explicitly model the stochastic distribution is a model with global 

randomness. This is a more realistic model of the stochastic mixture of microsphere 

particles. As an example, it has been examined at the fuel compact level, whereby 

microspheres are randomly distributed in the fuel compact. This was studied by using the 

RSA (Random Sequential Addition) method [24] for both the six-region and two-region 

fuel compact models. This was done by taking a single fuel compact, which has an 

average of 6050 microspheres using a packing fraction of .289, and subdividing it into 50 

axial layers, each containing 121 microspheres. RSA was then used to insert the 121 

microspheres randomly within each layer. Each layer was statistically different, so this 

may be described as a "stratified" RSA approach. An MCNP5 input deck was then 

written for the compact cell, explicitly accounting for the 6050 randomly placed 

microspheres. Figure 2.15 illustrates the “stratified” RSA models and Table 2.7 compares 

two physical realizations of each of the two-region and six-region RSA models. 

 

                      

                     
 

Figure 2.15 Two-region and six-region RSA models 
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Table 2.7 Fuel compact cells with stratified RSA models 
 

Fuel region modeled as 50 layers with kinf Sigma 

Two-region RSA model (realization 1) 1.34232 .00023 

Six-region RSA model (realization 1) 1.34262 .00022 

   

Two-region RSA model (realization 2) 1.34243 .00022 

Six-region RSA model (realization 2) 1.34275 .00022 
 

 

Table 2.7 shows the equivalence of the two-region and six-region RSA models. A 

comparison of Table 2.6 and Table 2.7 shows that the stochastic effect (RSA versus a 

lattice of kernels) is small: either two-region or six-region RSA models yield ~ 0.15% 

decrease in kinf compared to the corresponding lattice models. In order to investigate the 

axial effect of this stratified model, RSA was used to generate a more random distribution 

of two-region microsphere cells by using 10 axial layers rather than 50 layers, as shown 

in Figure 2.16. The results are compared in Table 2.8, where it is seen that the stratified 

model with 10 layers yields essentially the same results (within .02% kinf) as the 50 layer 

case. 
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Figure 2.16  Fuel compact cells modeled with 50 RSA layers and 10 RSA layers 
 
 

Table 2.8 Fuel compacts modeled with 50 RSA layers versus 10 RSA layers 
 

Fuel region modeled as kinf Sigma 

Two-region fifty-layer randomly distributed 
microsphere cells (average over 19 realizations) 1.34228 .00019 

Two-region ten-layer randomly distributed 
microsphere cells (average over 2 realizations) 1.34258 .00022 

 

We have also modeled hexagonal fuel block geometry, where coolant holes and 

fuel compact cells are modeled explicitly. These calculations have been done with 

homogeneous and heterogeneous fuel compacts, but the results are not included in this 

thesis, since they are consistent with the fuel compact results and we also have full-core 

results to present. 

2.3 Comparison of Neutronic Computation Results in Full Core 

Based on the microsphere cell and fuel compact cell models, we have modeled the 

full core geometry with MCNP5 as shown in Figure 2.3.  
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2.3.1 Static criticality computation 

Early calculations were performed with MCNP5 for four different full core 

configurations, where all fuel blocks and all axial and radial reflector blocks are modeled. 

These simulations assumed 6.69 ppm boron-10 impurity in the graphite fuel blocks and 

reflector blocks in accordance with the NGNP Point Design Report [2]. This has since 

been determined to be 6.69 ppm natural boron, not boron-10, but these results will be 

presented anyway, since the relative changes in keff are of interest, not the actual value of 

keff.  For these cases, the fuel blocks were modeled as: 

(1) Homogeneous fuel blocks 

(2) Heterogeneous fuel blocks with homogeneous fuel 

(3) Heterogeneous fuel blocks with two-region heterogeneous fuel 

(4) Heterogeneous fuel blocks with six-region heterogeneous fuel.  

Case (1) does not account for either portion of the double heterogeneity, because 

both the fuel kernels and the fuel compacts are homogenized, while Case (2) only 

accounts for the fuel compact heterogeneity and Cases (3) and (4) account for both the 

fuel compact and fuel kernel heterogeneities. Table 2.9 presents the results.  
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Table 2.9 MCNP5 simulations of full core configurations 
 

Case Full core modeled with: keff Sigma 

1 Homogeneous fuel blocks 1.0153 .0002 

2 Heterogeneous fuel blocks with homogeneous fuel 
regions 1.0583 .0001 

    

 Heterogeneous fuel blocks with fuel regions modeled as:   

3 Six-region microsphere cells (clipped) 1.0949 .0002 

4 Six-region microsphere cells (not clipped using model 1) 1.0957 .0002 

5 Six-region microsphere cells (not clipped using model 2) 1.0966 .0002 

    

6 Two-region microsphere cells (clipped) 1.0952 .0002 

7 Two-region microsphere cells (not clipped using model 
1) 1.0959 .0002 

8 Two-region microsphere cells (not clipped using model 
2) 1.0965 .0002 

9 Two-region randomly distributed microsphere cells 
(RSA) 1.0948 .0002 

 
 

On the basis of the results, it is evident that modeling the double heterogeneity is 

a necessity for full core VHTR analysis. The effect of the second heterogeneity (fuel 

compact heterogeneity) is seen to be 4% by comparing Cases 1 and 2 in Table 2.9. The 

effect of the first heterogeneity (fuel kernel heterogeneity) is seen to be another 4% by 

comparing Cases 2 and 4.  

The results given in Table 2.9 corroborate the results for the fuel compact cell 

cases given in Table 2.6, showing that the two-region cells are adequate for full-core 

configurations. This can be seen by comparing Cases 4 and 7 or Cases 5 and 8. 

Therefore, the two-region microsphere cell gives acceptable results (< .02%) for all 

comparisons, from microsphere cell to full core. In addition to speeding up the MCNP5 
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calculations by a factor of two, this allows the analysis of larger systems due to the 

MCNP5 limit on the number of regions. This may be a limiting factor for full core 

depletion cases.  

A comparison of Cases 3 and 4 or Cases 6 and 7 shows that clipping the 

microsphere cells is less significant for full core (~ 0.1%) than for the fuel compact cell 

(~ 0.3%). This is consistent with previous observations regarding the effect of the double 

heterogeneity for finite geometries versus infinite geometries, because the finite 

geometries include the graphite reflectors and the increased moderation reduces the 

impact of the change in resonance absorption due to the particle fuel. Since it is easy to 

do so, clipping the cells should be avoided to eliminate the unphysical geometry. 

A comparison of Cases 7 or 8 with Case 9 shows that the effect of modeling the 

stochastic distribution of fuel particles with a lattice of fuel particles results in ~ 0.15% 

reactivity effect for a full core simulation. This is consistent with the fuel compact results, 

where the reactivity effect was ~ 0.17% from a comparison of the unclipped and RSA 

two-region models given in Table 2.6 and Table 2.7. 

The effect of fuel temperature feedback was also examined, which is important 

for the VHTR since it is operated at very high temperatures. Using the coupled 

thermal/hydraulic calculation done by Conlin et al.[25,26] and Yesilyurt et al.[27], the 

temperature distribution throughout the reactor core was obtained and is shown in Table 

2.10. It is noted that the temperature in the reflectors was assumed to be the average 

temperature in the full core. In practical computations, the highlighted numbers may vary 

according to different cases, such as choosing the temperature in the closest fuel ring 

block as the temperature in the reflector blocks. MCNP5 was then run with the fuel 
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regions modeled at the temperatures given in Table 2.10, and the results are in Table 

2.11. For these cases, the boron impurity in graphite was assumed to be 6.69 ppm of 

natural boron in graphite.  

 
Table 2.10 Temperature distribution for 30 fuel regions and reflectors 

 
Inner Reflector Inner Ring Middle Ring Outer Ring Outer Reflector

1020 K 1020 K 1020 K 1020 K 1020 K 

1020 K 889 K 891 K 882 K 1020 K 

1020 K 993 K 981 K 965 K 1020 K 

1020 K 1076 K 1058 K 1037 K 1020 K 

1020 K 1147 K 1123 K 1097 K 1020 K 

1020 K 1204 K 1175 K 1145 K 1020 K 

1020 K 1248 K 1215 K 1183 K 1020 K 

1020 K 1280 K 1243 K 1208 K 1020 K 

1020 K 1298 K 1258 K 1222 K 1020 K 

1020 K 1303 K 1261 K 1225 K 1020 K 

1020 K 1295 K 1251 K 1216 K 1020 K 

1020 K 1020 K 1020 K 1020 K 1020 K 
 

From room temperature to high temperature calculations, there is a 5% change in 

keff. Both six-region and two-region models consistently reflect this large effect. This is 

due to the Doppler broadening of the resonance capture cross sections of the fuel. Also, 

Table 2.11 indicates that a uniform temperature distribution in the fuel region yields a keff 

that is higher by 1% than the distributed temperature case with the same average 

temperature. Therefore, it is important to predict an accurate temperature distribution in 

the VHTR to get accurate simulation results. 
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Table 2.11 MCNP5 full core simulations with heterogeneous fuel blocks 
 

Heterogeneous fuel blocks with fuel regions modeled as 
six-region microsphere cells (not clipped using model 2) keff Sigma 

Room temperature 1.3190 .0002 

Uniform temperature at 1020K 1.2714 .0001 

Distributed temperature in active core and 1020K in reflectors 1.2608 .0001 

Distributed temperature in active core and in reflectors 1.2606 .0001 

   
Heterogeneous fuel blocks with fuel regions modeled as 
two -region microsphere cells (not clipped using model 2)   

Room temperature 1.3187 .0002 

Distributed temperature in active core and in reflectors 1.2622 .0001 
 

2.3.2 Time-dependent depletion computation 

Depletion analysis is another important issue that needs to be accounted for in the 

full core simulation. Depletion calculations have been performed for full core models at 

room temperature and elevated temperatures. Figure 2.17 compares the predicted keff 

rundown for room temperature and elevated temperature cases with heterogeneous fuel 

blocks with six-region microsphere cells. Figure 2.18 compares the reactivity rundown 

for six-region vs. two-region full-core models at room temperature and the difference is 

negligible.  
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Figure 2.17 Depletion comparison: room temperature versus distributed temperature 
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Figure 2.18 Depletion comparison: two-region versus six-region models 
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CHAPTER 3 

Chord Length Sampling Method with Application to VHTR Configurations 

3.1 Introduction 

The Very High Temperature Gas-Cooled Reactor (VHTR) is a potential 

Generation IV design. Two types of designs are considered for the VHTR, the prismatic 

block reactor and the pebble bed reactor [2,28]. Both designs use TRISO fuel, which is a 

stochastic mixture of coated microspheres (of diameter 0.78 mm) that are randomly 

distributed in a background graphite matrix with a volume packing fraction of 28.9% for 

prismatic fuel and 5.76% for pebble bed fuel. The TRISO fuel kernels present a 

prohibitive computational challenge to traditional neutronic analysis because they are 

strong absorbers for resonance energy neutrons, resulting in the well-known "double 

heterogeneity" caused by the fuel kernels at the first level and the fuel compacts (or fuel 

pebbles) at the second level. Methods for treating the double heterogeneity range from 

the calculation of Dancoff factors in order to augment traditional resonance integral 

calculations to detailed Monte Carlo simulations that take into account the detailed 

geometry of the VHTR including resolution of individual microspheres [12,29]. 

Explicit Monte Carlo simulation of the VHTR is very time-consuming (For 

example, a typical full core criticality calculation needs about a week on a Macintosh G5 

with a  single CPU, with 100K neutron histories per cycle with  80 inactive and 200 
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active cycles.), and may not be feasible when space-dependent phenomena are accounted 

for, such as depletion and temperature feedback.  We have studied an alternative 

methodology to analyze particle fuel that is based on chord length sampling (CLS). The 

CLS methodology is applied to general Monte Carlo simulation as well as to the 

calculation of Dancoff factors in cubical, spherical, and cylindrical geometries filled with 

stochastically distributed microspheres.  

3.2 Chord Length Sampling Methodology 

3.2.1 Historical review 

As far as the author knows, the CLS method was first studied in a 1D geometry 

[30] to avoid explicitly modeling the stochastic mixture in 1991. The basic idea of CLS is 

to treat the stochastic geometry as a binary stochastic mixture whose two components are 

characterized by chord length probability distribution functions (PDFs). The Monte Carlo 

simulation proceeds by sampling a distance to collision in the current medium and 

comparing to a distance to the medium boundary that was sampled from the chord length 

PDF for the current medium. If a neutron crosses a medium boundary, this process is 

repeated in the second medium. Figure 3.1 shows the algorithms for both the regular 

Monte Carlo random walk and the CLS random walk. 
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Figure 3.1 Random walk with regular Monte Carlo and CLS methods 
 
 

A variation on CLS, called limited chord length sampling (LCLS) [17] was 

examined in a 2D geometry for stochastic mixtures similar to TRISO fuel. For LCLS, 

chord length sampling is only done in the background medium, and conventional Monte 

Carlo is performed in the fuel region, which is a microsphere in the case of TRISO fuel. 

The results were promising, but there were several areas that warranted further 

investigation:  (1) the results were limited to 2D, (2) the chord length PDFs were based 

exclusively on empirical chord length distributions, (3) microspheres near the external 

boundary needed to be treated carefully to avoid overlap with the boundary, and (4) one 

needed to account for the fact that a neutron leaving a microsphere may preferentially 

backscatter into the same microsphere.  
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A method very similar to LCLS had been developed earlier by Murata et 

al.[15,16] for the analysis of TRISO fuel in both prismatic and pebble-bed reactors. This 

method included effective chord length sampling along the neutron flight path to find the 

next microsphere using the nearest neighbor distribution (NND) function, and then 

conventional Monte Carlo within the microsphere. The NND function N(r)dr is defined 

as the probability of finding the nearest fuel particle whose center lies at a distance 

between r and r+dr [15,16,36]. Depending on the starting point in the system, there are 

three NND functions: starting from (1) the surface of a microsphere (NND1), (2) from 

the graphite matrix (NND2), or (3) from the surface of external boundary (NND3). 

Murata et al. had examined these three NNDs and obtained them with direct Monte Carlo 

simulation of a random medium employing the collective rearrangement algorithm (see 

Section 5.2.2). These empirical NNDs were used and excellent results were obtained in 

criticality calculations. Moreover, Murata et al. had accounted for the boundary effect 

inherent in their method by proposing two solutions: (1) using NNDs generated at a 

higher packing fraction (prismatic type reactor) and (2) allowing interference to exist 

(pebble-bed reactor). Murata’s method is essentially a chord length sampling method 

with empirical NNDs, rather than analytical chord length PDFs, as we have done, to 

sample the distance to the next microsphere.  

3.2.2 Using CLS to analyze stochastic distribution of fuel kernels  

To yield a method capable of analyzing realistic TRISO fuel configurations, we 

have based the chord length PDF for the background medium on a theoretical model 

rather than an empirical model. We have validated the theoretical chord length PDFs for 

the background medium with benchmark Monte Carlo simulations. These chord length 



 

45 

PDFs were then used in a stochastic mixture representative of TRISO fuel with neutrons 

at the 6.67 eV resonance of U238. A general neutron transport analysis including leakage 

rates, flux integrals, and resonance absorption rates for different geometry configurations 

was performed using the CLS method. Also, Dancoff factors for infinite and finite media 

(sphere and cylinder) were calculated based on the CLS method. 

These calculations were performed using packing fractions ranging from pebble 

bed reactors (~ 5%) to prismatic type reactors (~ 29%), and the predictions were 

compared with the benchmark Monte Carlo results. The results are very promising and 

suggest that the CLS method with theoretical PDFs can be used to analyze TRISO fuel 

for both pebble bed and prismatic type reactors. 

3.3 CLS Probability Distribution Function 

Up till now, we have assumed that CLS consisted of a single exponential PDF to 

sample a distance to a microsphere, regardless of whether the neutron was: (1) on the 

incoming boundary of the stochastic region, (2) on the outgoing boundary of a 

microsphere, or (3) within the background portion of the stochastic region. In the current 

work, we generalize the notion of chord length sampling to include three different chord 

length PDFs: 

• fb→m – chord length PDF from the external boundary (b) to a microsphere (m) 

• fm→m – chord length PDF from the microsphere (m) to another microsphere (m) 

• fg→m – chord length PDF from the graphite (g) matrix to a microsphere (m)  

Figure 3.2 depicts a 3D binary stochastic mixture of microspheres within a box of 

background material. This is an actual realization of microspheres using the RSA 
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algorithm [24,31] to add spheres to the box. We will now derive the chord length 

distribution that characterizes the background material in Figure 3.2.  

 

 
 

Figure 3.2 A realization of microspheres randomly located inside a cube 
 

3.3.1 Theoretical derivation 

The key assumption we will make is that the distribution of chord lengths in the 

background material is exponential. This assumption will be confirmed with numerical 

results later in this chapter. The following functional form for the chord length PDF may 

then be written:  

 1 1/
1

1

1( )p e λ λλ
λ

− < >= ⋅
< >

 (3.1) 

 
where λ1 is the chord length between two microspheres and <λ1> is the mean chord 

length.  
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Figure 3.3 A neutron trajectory in an infinite stochastic medium 
 
 

Consider a neutron trajectory that crosses N microspheres and background 

material regions in an infinite stochastic medium depicted in Figure 3.3. Along this 

trajectory, the probability the neutron is in a microsphere region is given by:  

 2
2

1 2

Np
N N

λ
λ λ

⋅ < >
=

⋅ < > + ⋅ < >
 (3.2) 

 
where <λ2> is the mean chord length inside a microsphere. This is identical to the volume 

packing fraction frac if the microspheres are randomly distributed in the background 

medium:  

 2

1 2

frac λ
λ λ

< >
=

< > + < >
 (3.3) 

 
Applying the Cauchy formula for the mean chord length in an arbitrary volume, <λ> = 

4V/S [34] to a microsphere with radius R, we find <λ2> = 4R/3. Inserting this into Eq. 

(3.3), we find the following expression for <λ1>:  

 1
4 1

3
R frac

frac
λ ⋅ −

< >= ⋅  (3.4) 

 
Inserting Eq. (3.4) into Eq. (3.1), an analytical chord length PDF is obtained:  
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This is a general formula for the chord length PDF in the background medium as 

a function of the packing fraction and microsphere radius. It depends on the assumption 

of exponentially distributed chord lengths. An equivalent expression was derived earlier 

by Murata et al. [15] using the definition of the nearest neighbor distribution. 

Interestingly, the definitions of chord length distribution and nearest neighbor distribution 

are different: the former defines the distance distribution from a point on the surface of a 

microsphere to the surface of another microsphere, while the latter defines the distance 

distribution from the center of a microsphere to the center of another microsphere. The 

detailed description on these two concepts is explained in Torquato’s book [36]. 

Mathematically, the equivalence between the two expressions derived using these 

different distribution functions is due to the exponential assumption, which underpins 

both expressions. Next, the accuracy of the exponential assumption is validated by direct 

Monte Carlo simulations. 

3.3.2 Empirical estimation using Monte Carlo simulation 

A cubical box representing the background material was filled with microspheres 

according to different packing fractions: from 5.76% (pebble-bed reactor) to 28.92% 

(prismatic reactor). The microsphere radius was 0.039 cm, identical to the NGNP design 

[2]. The fast RSA (random sequential addition) algorithm [31] was used to insert 1 

million (1M) microspheres into the box for each realization, as depicted in Figure 3.2. To 

carry out a simulation for a single realization, 5M neutrons were emitted with a cosine 

current angular distribution from the cube boundary (b), 5M neutrons were emitted with a 

cosine current angular distribution from the surface of the microsphere (m), and 5M 

neutrons were emitted isotropically within the background graphite (g) region. Each 
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neutron was tracked to the closest microsphere, and the distance from emission to 

microsphere intersection was tallied. The resultant chord length histograms are the chord 

length PDFs for each of the three cases. We describe this approach as a direct ray-tracing 

simulation method, whereas other researchers have used parallel rays to tally chord 

length distributions [33,34].  

The details of our direct ray-tracing method are described here. The Monte Carlo 

simulation proceeded by first using a fast RSA algorithm [31] with computational time 

O(N) to construct a realization of a stochastic mixture of N microsphere similar to that 

depicted in Figure 3.2. For fb→m(s), a uniform plane source is located on one side of the 

cube, which emits entering neutrons with a cosine angular current distribution. For 

fm→m(s), a microsphere near the center of the cube is selected and an emission point is 

randomly chosen on the surface of the microsphere. An exiting neutron is then sampled 

with a cosine current distribution with respect to the outer normal on the microsphere. 

For fg→m(s), an emission point is uniformly sampled within the background graphite (near 

the center of the cube) and a neutron is emitted isotropically. The cube was sized to 

ensure that the first flight escape probability was less than 10-5, assuring that the PDFs 

represented an infinite stochastic medium. A total of 4,000 realizations were constructed 

and for each realization, there were 50 sampled points and 100,000 sampled directions 

for each point, yielding 20 billion sampled chord lengths. The chord length was 

determined by tracking the neutron to the next microsphere. The empirical chord length 

PDFs from these simulations were then compared with the theoretical PDF given in Eq. 

(3.5) for a range of packing fractions.   
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3.3.3 Comparisons with benchmark problem 

Figure 3.4 presents the resultant empirical chord length PDFs at packing fractions 

of 5.76% and 28.92% along with the theoretical exponential PDF given in Eq. (3.5) for 

comparison. 
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Figure 3.4 Chord length PDFs (fb→m, fm→m, and fg→m) for different packing fractions 
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It can be seen that all three PDFs approach the theoretical exponential PDF for 

large chord lengths.  In addition, the fg→m PDFs, from the graphite background region to 

a microsphere, are very close to the theoretical PDFs for all chord lengths and all packing 

fractions studied, with better agreement for smaller packing fractions. It is interesting to 

note that although this analytical result was derived for fm→m, it actually matches the 

results for fg→m far better, as discussed below. 

Both fb→m and fm→m deviate substantially from exponential behavior for small 

chord lengths. This can be explained by the observation that even if the microspheres 

touch the boundary (for fb→m) or another microsphere (for fm→m), they only touch at a 

single point, and hence the PDF must be zero at zero chord length for fb→m and fm→m. 

Moreover, this “edge effect” is seen to be more pronounced for smaller packing fractions 

since on average the microspheres will not be as close to a boundary or to another 

microsphere as the packing fraction decreases. This edge effect has also been observed by 

other researchers [37,38]. It can be seen from the plots that the rapidly increasing initial 

portion of the PDFs can be approximated reasonably well by a straight line. This is a 

direct verification of Dirac’s argument [39] that for very small chord lengths, the PDF is 

linear with the chord length. Based on this, a fully analytical formula can be determined 

by using a composite linear-exponential PDF, as long as we can determine the chord 

length that corresponds to the peak value. 

In order to observe the long-range chord length distribution, a semi-log plot of the 

empirical chord length PDF as a function of packing fraction is shown in Figure 3.5, 

along with the theoretical PDF (dotted lines) from Eq. (3.5). The comparison between 
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these two sets of results shows very good agreement with improved results for smaller 

packing fractions.  
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Figure 3.5 Comparison of theoretical and benchmark chord length distributions 
 
 

The chord length PDF given in Eq. (3.5) was then used in the CLS method to 

simulate neutron transport in a stochastic mixture of microspheres with a range of 

packing fractions. The microsphere geometry is representative of TRISO fuel for the 

NGNP [2]. The microsphere outer diameter is 0.78 mm and the fuel kernel diameter is 

0.350 mm.  The cross sections for the graphite matrix region and the microspheres were 

obtained from the Brookhaven National Laboratory (BNL) website [32] for neutrons at 

6.67 eV.  The four microsphere coatings were homogenized into a single coating. 

Although the coating region and the graphite matrix region were distinct regions for the 

Monte Carlo simulation, these regions had identical cross sections obtained by 

homogenizing the materials in these two regions [12].  
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Two types of transport problems were investigated. One is a general neutron 

transport simulation to evaluate leakage rates, flux integrals over different material 

regions, and fuel kernel absorption rates for three different geometries: a cube, a sphere, 

and a cylinder. The second problem is the calculation of Dancoff factors for an infinite 

medium and two finite medium geometries – a sphere and a finite cylinder. The 

following two sections will address how to solve these problems using the CLS method. 

The accuracy of the CLS method is established by comparison with analog Monte Carlo 

results. 

3.4 Neutron Transport in Stochastic Media Using the CLS Method 

As noted in the previous section, the CLS method is used to analyze neutron 

transport in a cube, a sphere, and a cylinder. The cube was simulated for a range of 

packing fractions from low to high. The sphere represents a fuel pebble and was 

simulated with a 5.76% packing fraction and the cylinder represented a fuel compact cell 

model and was modeled with a 28.92% packing fraction. 

3.4.1 Cubical geometry 

The stochastic mixture of microspheres and graphite matrix was contained in a 

cubical box with edge 8 cm. The microspheres were added to the box using RSA with 

packing fractions ranging from 5.76% to 29.8%. Incoming neutrons were emitted from a 

point at the center of the left side with a cosine current angular distribution, as shown in 

Figure 3.6.  
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Figure 3.6 Monte Carlo simulation in cubical geometry 
 

The average absorption rate in the microspheres and leakage rate on the left wall 

were tallied, along with flux integrals over the graphite matrix, coating, and fuel kernel 

regions.  The benchmark Monte Carlo results for the cube were based on 100 realizations 

of the stochastic geometry with 10,000,000 particle histories per realization. These 

benchmark Monte Carlo results were then compared with the results using chord length 

sampling to analyze the stochastic mixture. The results are given in Table 3.1.  

 
Table 3.1 The results for cubical geometry model 

 
(graphite matrix) Σt,1=0.4137cm-1, Σa,1=0.0cm-1, Σs,1=0.4137cm-1; 

(coatings) Σt,2=0.4137cm-1, Σa,2=0.0 cm-1, Σs,2=0.4137cm-1; 

(fuel kernel) Σt,3=228.4cm-1, Σa,3=189.7cm-1, Σs,3=38.7cm-1 

solution 
method 

absorption 
rate 

∫ ⋅Σ
3

)(
V

a drrφ  

in fuel 
kernels 
(±1σ) 

reflection 
leakage rate 

via (–z)  
(±1σ) 

flux integral 

1

( )
V

r drφ∫  

in graphite 
matrix    
(±1σ) 

flux integral 

2

( )
V

r drφ∫  

in coatings 
(±1σ) 

flux integral 

3

( )
V

r drφ∫  

in fuel 
kernels 
(±1σ) 

volume packing fraction at 5.76% 



 

55 

benchmark 
(b) 

0.668 
±.001 

0.229 
±.001 

3.08 
±.01 

0.1542 
±.0001 

3.52e-3 
±.01e-3 

CLS method 
(c) 

0.667 
±.001 

0.2287 
±.0001 

3.129 
±.001 

0.1539 
±.0001 

3.51e-3 
±.01e-3 

relative 
error (c-b)/b -0.15% -0.13% 1.59% -0.19% -0.17% 

volume packing fraction at 15.00% 

benchmark 
(b) 

0.856 
±.001 

0.133 
±.001 

1.38 
±.01 

0.1973 
±.0001 

4.51e-3 
±.01e-3 

CLS method 
(c) 

0.855 
±.001 

0.1332 
±.0001 

1.407 
±.001 

0.1969 
±.0001 

4.507e-3 
±.001e-3 

relative 
error (c-b)/b -0.12% 0.15% 1.96% -0.20% -0.07% 

volume packing fraction at 20.00% 

benchmark 
(b) 

0.8861 
±.0001 

0.1101 
±.0002 

1.02 
±.01 

0.2043 
±.0001 

4.67e-3 
±.01e-3 

CLS method 
(c) 

0.8848 
±.0001 

0.1112 
± .0001 

1.036 
±.0001 

0.2035 
±.0001 

4.66e-3 
±.01e-3 

relative 
error (c-b)/b -0.15% 1.00% 1.57% -0.39% -0.24% 

volume packing fraction at 28.92% 

benchmark 
(b) 

0.9147 
±.0001 

0.085 
±.001 

0.642 
±.001 

0.2105 
±.0001 

4.82e-3 
±.01e-3 

CLS method 
(c) 

0.9102 
±.0001 

0.089 
±.001 

0.665 
±.001 

0.209 
±.001 

4.80e-3 
±.01e-3 

relative 
error (c-b)/b -0.49% 4.71% 3.58% -0.71% -0.46% 

 

The results in Table 3.1 show very good agreement between the CLS method and 

the benchmark Monte Carlo simulations for most neutron transport results. For all 

packing fractions, the absorption rate was within 0.50%, with no apparent dependence on 
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packing fraction. For the reflection leakage rates, the agreement is within 1% for the low 

packing fractions and somewhat higher for high packing fractions, but it seems that the 

higher relative errors occur with relatively small absolute leakage rates, such as the 

reflection leakage rate for the 28.92% packing fraction.  For flux integrals, less than 

0.71% relative errors are obtained in the coating and fuel kernel regions for all packing 

fractions, but larger relative errors occur in the graphite matrix regions.  

3.4.2 VHTR cells: spherical geometry and cylindrical geometry 

As a more practical application, the CLS method was used to perform a neutronic 

analysis of two VHTR configurations.  

Figure 3.7 illustrates the two VHTR configurations: a spherical fuel pebble for a 

pebble bed VHTR and a cylindrical fuel compact for a prismatic VHTR. The CLS 

simulations assume a uniform, isotropic source in the graphite regions. Vacuum boundary 

conditions are assumed for all outer boundaries except for the upper and lower cylindrical 

faces, which are assumed to be reflecting boundaries.   

 



 

57 

 
 

Figure 3.7 Illustration of VHTR cells and TRISO fuel particles 
 
 

The average absorption rate in the microspheres and the leakage rate across the 

outer boundary were tallied, along with flux integrals over four regions: graphite matrix 

region, coating region, fuel kernel region, and graphite shell region.  These benchmark 

Monte Carlo results were then compared with the results using chord length sampling. 

The benchmark Monte Carlo results were based on 100 realizations with 10,000,000 

particle histories per realization.  

If Eq. (3.5) is used without modification within the CLS method, the results will 

underestimate the resonance absorption in the fuel region and overestimate the flux 

integral in the non-fuel region for both unit cells as shown in Table 3.2 and Table 3.3. 

A straightforward explanation for these poor estimates is that the CLS method 

based on Eq. (3.5) does not preserve the actual volume packing fraction. This is due to 

the fact that microspheres are not allowed to overlap the external boundary when the next 

microsphere is sampled with the CLS method, effectively reducing the packing fraction 
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near the boundary, hence increasing it in the interior in order to preserve the specified 

average packing fraction for the finite region. In order to preserve the average packing 

fraction, we need to replace frac with a higher packing fraction frac* in Eq. (3.5):  

 
*

1 *
3*

4 1
1 *

3( ) .
4 1

frac
R fracfracp e

R frac

λ
λ

− ⋅ ⋅
−= ⋅ ⋅

−
 (3.6) 

 

Murata et al.[15,16] first noticed this boundary interference and suggested a 

simple way to obtain frac* by shrinking the stochastic region away from each surface by 

a distance t=R, the microsphere radius, which leads to frac*= (V/V*)•frac, where V is the 

original volume and V* is the reduced volume. The choice of R is motivated physically 

by noting that the center of a microsphere cannot be placed within R of a boundary. This 

higher packing fraction frac* was then used with CLS and the results showed very good 

agreement with benchmark results in criticality calculations. 

However, when Murata’s boundary correction method is used in a general 

transport computation, the results were not always satisfactory, depending on the 

geometry, packing fraction, and microsphere radius. So shrinking the stochastic volume 

may give a first order correction but does not seem to work in general. As a result, an 

alternative approach to compute frac* was developed.   

Since the packing fraction is only a function of geometry and not a function of 

material composition, the CLS method can be used to compute the packing fraction for 

the given geometry by performing a special simulation that assumes all regions are 

voided and using the track length estimator to estimate the volumes of the microsphere 

and background regions. This yields the effective packing fraction for this geometry as 

experienced by the CLS method. This effective packing fraction is the actual packing 
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fraction seen by the CLS method for that geometry and the idea is to force this to equal 

the specified packing fraction. This is done by changing the input packing fraction for the 

special CLS calculation until the resulting packing fraction equals the desired packing 

fraction. This input packing fraction is then used in the actual CLS simulation of the 

stochastic geometry. The special CLS calculation is performed with a monodirectional 

plane source on one side of the stochastic geometry with all internal regions voided.  This 

is done for both the cylindrical and spherical VHTR cells. 

Table 3.2 and Table 3.3 show the results using the CLS method to simulate both a 

fuel pebble and a fuel compact. The CLS results are tallied for three different choices of 

the corrected packing fraction to account for the external boundary – no correction, 

Murata’s correction, and the proposed correction scheme discussed above.  The results 

contained in Table 3.2 show that both Murata’s scheme and the new correction scheme 

improve the results compared to no correction. Other cases have also been analyzed that 

are not reported here, but the results show that in general the new iteration scheme yields 

better results than Murata’s scheme for most cases except for the fuel pebble with a low 

packing fraction. 

 

Table 3.2 Transport analysis in a VHTR fuel pebble cell 
 

(graphite) Σt,4=0.4137cm-1, Σa,4=0.0cm-1, Σs,4=0.4137cm-1; 

(matrix) Σt,1=0.4137cm-1, Σa,1=0.0cm-1, Σs,1=0.4137cm-1; 

(coatings) Σt,2=0.4137cm-1, Σa,2=0.0 cm-1, Σs,2=0.4137cm-1; 
(fuel kernel) Σt,3=228.4cm-1, Σa,3=189.7cm-1, Σs,3=38.7cm-1 

packing 
fractions methods 

absorption 
rate in 
kernels 

leakage 
rate  

flux 
integral 

in 
matrix 

flux 
integral 

in 
coatings 

flux 
integral in 

kernels 
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benchmark 0.154 0.846 0.6712 0.0356 8.12E-04 
CLS based 

on Eq. 
(3.5) 

0.1475 0.8524 0.7100 0.0341 7.77E-04 

relative 
error -4.22% 0.76% 5.78% -4.21% -4.31% 

CLS with 
Murata’s 
scheme 

0.152 0.8479 0.6955 0.03517 8.01E-04 

relative 
error 0.63% -0.21% 3.27% 0.72% 0.63% 

CLS with 
iteration 
scheme 

0.1496 0.8504 0.7034 0.03461 7.88E-04 

5.76% 

relative 
error -2.86% 0.52% 4.80% -2.78% -2.96% 

benchmark 0.2806 0.7194 0.1984 0.0647 1.48E-03 
CLS based 

on Eq. 
(3.5) 

0.2794 0.7204 0.2111 0.0647 1.47E-03 

relative 
error -0.43% 0.14% 6.40% 0.00% -0.41% 

CLS with 
Murata’s 
scheme 

0.2814 0.7183 0.1995 0.0652 1.48E-03 

relative 
error 0.29% -0.15% 0.55% 0.77% 0.27% 

CLS with 
iteration 
scheme 

0.2804 0.7195 0.2065 0.0649 1.48E-03 

28.92% 

relative 
error -0.07% 0.01% 4.08% 0.31% -0.14% 

  
 

Table 3.3 Transport analysis in a VHTR compact cell 
 

(graphite) Σt,4=0.4137cm-1, Σa,4=0.0cm-1, Σs,4=0.4137cm-1; 

(matrix) Σt,1=0.4137cm-1, Σa,1=0.0cm-1, Σs,1=0.4137cm-1; 

(coatings) Σt,2=0.4137cm-1, Σa,2=0.0 cm-1, Σs,2=0.4137cm-1; 
(fuel kernel) Σt,3=228.4cm-1, Σa,3=189.7cm-1, Σs,3=38.7cm-1 

packing 
fractions methods 

absorption 
rate in 
kernels 

leakage 
rate  

flux 
integral 

in 

flux 
integral 

in 

flux 
integral in 

kernels 
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matrix coatings 

benchmark 0.0692 0.9308 0.3244 0.01598 3.65E-04 
CLS based 

on Eq. 
(3.5) 

0.065 0.9351 0.3311 0.01501 3.43E-04 

relative 
error -6.07% 0.46% 2.07% -6.07% -6.03% 

CLS with 
Murata’s 
scheme 

0.0724 0.9276 0.3213 0.01677 3.81E-04 

relative 
error 4.62% -0.34% -0.96% 4.94% 4.38% 

CLS with 
iteration 
scheme 

0.0692 0.9309 0.3254 0.016 3.65E-04 

5.76% 

relative 
error 0.00% 0.01% 0.31% 0.13% 0.00% 

benchmark 0.2002 0.7997 0.1423 0.0462 1.06E-03 
CLS based 

on Eq. 
(3.5) 

0.1948 0.8052 0.1526 0.0454 1.03E-03 

relative 
error -2.70% 0.69% 7.24% -1.73% -2.65% 

CLS with 
Murata’s 
scheme 

0.2061 0.7942 0.1347 0.048 1.09E-03 

relative 
error 2.95% -0.69% -5.34% 3.90% 2.94% 

CLS with 
iteration 
scheme 

0.1992 0.8008 0.1456 0.04638 1.05E-03 

28.92% 

relative 
error -0.50% 0.14% 2.32% 0.39% -0.47% 

 

3.4.4 Backscattering correction  

We have considered an extension to the CLS method for the analysis of TRISO 

fuel to account for the fact that a neutron exiting a microsphere in a highly scattering 

medium will have a reasonable probability of scattering back into the same microsphere. 

This was accounted for in our CLS method by “remembering” the last microsphere the 
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neutron exited and including its boundary as a potential surface to be tracked to along the 

sampled chord length. If a neutron enters a microsphere, this memory is erased. This 

results in an improvement in the range of 0.1% to 2.0% depending on the specific 

configuration. Normally, for cases with low scattering cross sections (<1.0cm-1) in 

background material, the correction is very small (< 0.5%); however, for cases with high 

scattering cross sections (>1. 0cm-1), the backscatter correction can approach 2.0%. 

3.5 Dancoff Factor Computation Using CLS Method 

The Dancoff factor is an important quantity that is needed in most reactor design 

lattice codes, including those used for VHTR analysis. It is important to have an efficient 

and accurate method for computing the Dancoff factor for TRISO fuel and this section 

will discuss the application of CLS to compute this quantity. A general definition of the 

Dancoff factor for TRISO fuel is the average probability that a neutron escaping from an 

absorber (fuel kernel) enters another absorber (fuel kernel) without having a collision in 

the moderator between. In this section, we apply the CLS method to calculate the 

Dancoff factor for an infinite medium of TRISO fuel, as well as a finite sphere and a 

finite cylinder, corresponding to a fuel pebble and a fuel compact, respectively. The 

predictions of the Dancoff factor are compared with results from analog Monte Carlo 

benchmark simulations.  

Two distinct models were developed for the application of CLS to calculate 

Dancoff factors for TRISO fuel: single-sphere model and dual-sphere model.  In each 

model, neutron emission is assumed to be uniformly distributed on the surface of the 

exiting fuel kernel with a cosine current distribution. However, the random walk process 

for each neutron is different. The dual-sphere model is based on Eq. (3.5): the distance to 
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the next microsphere fuel particle is sampled and neutrons are tracked through the 

coating regions until the neutron enters the kernel (and is tallied) or undergoes a collision, 

at which point the history is terminated. The single-sphere model treats the fuel kernels as 

stochastically distributed, rather than the microspheres, by homogenizing the coating 

regions with the graphite matrix region. Thus, the next fuel kernel is sampled during a 

random walk and the neutrons reaching the next fuel kernel without collision are tallied. 

In this case, the chord length sampling PDF is based on the following: 
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− ⋅
 (3.7) 

 
where r is the radius of fuel kernel and R is the radius of the TRISO fuel particle. 

Equation (3.7) is easily derived from Eq. (3.5) by changing the packing fraction to be the 

ratio of the fuel kernel volume to the total volume, rather than the ratio of the 

microsphere volume to the total volume. 

A comparison of the two models, based on either Eq. (3.5) or Eq. (3.7), was 

performed by first computing infinite medium Dancoff factors at different volume 

packing fractions. Then finite medium Dancoff factors based on the two approaches were 

compared for a finite sphere and a finite cylinder, representative of a fuel pebble and a 

fuel compact, respectively. 

3.5.1 Infinite medium Dancoff factors 

The infinite medium Dancoff factors were computed for a cubical geometry large 

enough to simulate resonance energy neutron transport in an infinite stochastic medium. 

Depending on the packing fraction, approximately 15-30 million TRISO fuel kernels 

were dispersed randomly in a matrix graphite background region using the RSA 
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algorithm. Neutrons were emitted uniformly from the surface of fuel kernels with a 

cosine angular current distribution. The number of neutrons that successfully reach 

another fuel kernel without having a collision in the coating and matrix graphite regions 

was tallied, and the Dancoff factor was computed as the ratio of this number to the total 

number of neutrons emitted. A total of 100 physical realizations were performed, and 

10M neutrons were emitted per realization. The final Dancoff factor was ensemble-

averaged over the 100 realizations. The results are listed in Table 3.4 and compared with 

benchmark results from an analog Monte Carlo simulation. As in the previous 

simulations, cross sections are based on 6.67 eV neutrons, and the geometry and 

composition of the microspheres and graphite matrix are based on the NGNP design.   

 
Table 3.4 Infinite medium Dancoff factors 

 

volume 
packing 
fractions 

benchmark 
(±1σ=0.0001)

CLS with 
dual-sphere 

model 
(±1σ=0.0001)

relative 
error 

CLS with 
single-sphere 

model 
(±1σ=0.0001) 

relative 
error 

5.76% 0.3478 0.3469 -0.26% 0.3515 1.06% 

10.00% 0.4820 0.4806 -0.29% 0.4857 0.77% 

15.00% 0.5838 0.5825 -0.22% 0.5874 0.62% 

20.00% 0.6527 0.6516 -0.17% 0.6559 0.49% 

25.00% 0.7029 0.7014 -0.21% 0.7054 0.36% 

28.92% 0.7325 0.7318 -0.10% 0.7354 0.39% 
 

Both CLS methods based on single-sphere model and dual-sphere model give 

very good agreement with the benchmark results. All the relative errors are within an 

absolute value of 1.06%. The dual-sphere model gives a somewhat more accurate result 

for all packing fractions; however, the simulation using the single-sphere model is about 
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three times faster than the first model. It is interesting to note that the dual-sphere model, 

based on tracking to microspheres, underestimates the Dancoff factor for all packing 

fractions, while the single-sphere model, based on tracking to fuel kernels, overestimates 

the Dancoff factor, again for all packing fractions.  

Let us now consider a finite sphere and a finite cylinder, both filled with TRISO 

microspheres that are analyzed with CLS using the two models discussed above. For 

these finite geometries, the first flight escape probability is computed as well as the 

Dancoff factors. The first-flight escape probability is defined as the average probability 

that a neutron leaving an absorber (fuel kernel) will escape the finite sphere or cylinder 

without having a collision in the moderator and without entering another absorber (fuel 

kernel). 

Since this is a finite medium, the packing fraction correction due to the 

overlapping of microspheres on the external boundary needs to be applied. Therefore, the 

dual-sphere CLS model will make use of Eq. (3.6), which accounts for this effect. The 

single-sphere CLS model for the finite geometry, corresponding to Eq. (3.7) for the 

infinite geometry case, should also be corrected for boundary overlapping, resulting in:  
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Eq. (3.8) is used as the PDF in the single-sphere CLS method for the first flight 

escape probability and Dancoff factor calculations. The same iteration scheme was used 

as in the previous section to determine the corrected packing fraction frac* in Eq. (3.8). 

For both models, a microsphere was sampled before the CLS simulation proceeds. 

The center of the microsphere was assumed to be uniformly distributed inside the finite 

medium, excluding the volume with a distance R to the medium boundary. Neutrons were 
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then emitted at the surface of the fuel kernel in that sampled microsphere with a cosine 

current distribution.  

In both geometries, the analog Monte Carlo benchmark results are based on 100 

physical realizations of the medium filled with randomly distributed TRISO fuel kernels. 

There are 10M neutron emissions per realization. The final Dancoff factor is ensemble-

averaged over the 100 realizations.   

3.5.2 Intra-Dancoff factors and first-flight escape probabilities in spherical geometry 

The Dancoff factors for the finite spheres (also called intra-pebble Dancoff factor) 

are calculated using CLS with single-sphere and dual-sphere models, and are shown in 

Figure 3.8 and Table 3.5, along with Monte Carlo benchmark results. 
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Figure 3.8 Comparison between CLS and analog Monte Carlo methods on intra-Dancoff 
factors in spherical geometry 

 
 
 
 
 



 

67 

 
 

Table 3.5 Intra-Dancoff factors in spherical geometry 
 

volume 
packing 
fractions 

benchmark 
(±1σ=0.001)

CLS with 
dual-sphere 

model 
(±1σ=0.001)

relative 
error 

CLS with 
single-sphere 

model 
(±1σ=0.001) 

relative 
error 

2.00% 0.097 0.082 -14.92% 0.085 -12.02%

4.00% 0.174 0.154 -11.51% 0.158 -9.27% 

5.76% 0.231 0.210 -9.10% 0.214 -7.32% 

6.00% 0.238 0.217 -8.91% 0.221 -7.14% 

8.00% 0.294 0.273 -7.18% 0.277 -5.69% 

10.00% 0.342 0.322 -5.77% 0.326 -4.54% 

15.00% 0.438 0.424 -3.20% 0.427 -2.38% 

20.00% 0.510 0.500 -1.90% 0.504 -1.27% 

25.00% 0.566 0.562 -0.64% 0.564 -0.30% 
 

Both models, which are based on Eq. (3.6) and Eq. (3.8), give approximately the 

same results, with slightly better results with the single-sphere model. However, the poor 

agreement with the benchmark results at low packing fractions, greater than 9% relative 

error at 5.76% packing fraction, implies there may be other factors having a dominant 

impact on the Dancoff factor calculations. Some of these possible factors are explored in 

Chapter 5, and more work needs to be done to understand this in the future. As seen with 

the infinite medium cases, the simulation process using the single-sphere CLS model is 

three times faster than with the dual-sphere CLS model since there is no need to track 

within the layers and there are fewer collisions with kernels that with microspheres. 

The first-flight escape probability results calculated using the two CLS models are 

shown in Figure 3.9 and Table 3.6, along with the Monte Carlo benchmark results. 
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Figure 3.9 Comparison between CLS and analog Monte Carlo methods on first-flight 
escape probabilities in spherical geometry 

 
 

Table 3.6 First-flight escape probabilities in spherical geometry 
 

volume 
packing 
fractions 

benchmark 
(±1σ=0.001)

CLS with 
dual-sphere 

model 
(±1σ=0.001)

relative 
error 

CLS with 
single-sphere 

model 
(±1σ=0.001) 

relative 
error 

2.00% 0.456 0.460 0.70% 0.462 1.18% 

4.00% 0.412 0.416 0.92% 0.420 1.77% 

5.76% 0.380 0.383 0.84% 0.388 2.00% 

6.00% 0.376 0.379 0.85% 0.384 1.99% 

8.00% 0.344 0.347 0.73% 0.352 2.24% 

10.00% 0.318 0.319 0.22% 0.325 1.98% 

15.00% 0.266 0.264 -0.90% 0.270 1.47% 

20.00% 0.227 0.223 -1.72% 0.229 0.97% 

25.00% 0.199 0.192 -3.22% 0.198 -0.25% 
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Generally, the dual-sphere model gives better results for packing fractions less 

than 20%, while the single-sphere model yields better results for packing fractions of 

20% and higher.   

3.5.3 Intra-Dancoff factors and first-flight escape probabilities in cylindrical geometry 

The Dancoff factors for a finite cylinder (the intra-compact Dancoff factor) 

calculated using CLS methods with single-sphere and dual-sphere models are shown in 

Figure 3.10 and Table 3.7, along with the comparisons to analog Monte Carlo benchmark 

results. 
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Figure 3.10 Comparison between CLS and analog Monte Carlo methods on intra-Dancoff 
factors in cylindrical geometry 
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Table 3.7 Intra-Dancoff factors in cylindrical geometry 
 

volume 
packing 
fractions 

benchmark 
(±1σ=0.001)

CLS with 
dual-sphere 

model 
(±1σ=0.001)

relative 
error 

CLS with 
single-sphere 

model 
(±1σ=0.001) 

relative 
error 

2.00% 0.0435 0.0434 -0.23% 0.0462 6.21% 

4.00% 0.0838 0.0837 -0.12% 0.0880 5.01% 

5.76% 0.1170 0.1169 -0.09% 0.1220 4.27% 

10.00% 0.1896 0.1899 0.16% 0.1949 2.80% 

15.00% 0.2634 0.2652 0.68% 0.2701 2.54% 

20.00% 0.3286 0.3306 0.61% 0.3349 1.92% 

22.00% 0.3518 0.3539 0.60% 0.3581 1.79% 

24.00% 0.3741 0.3762 0.56% 0.3802 1.63% 

26.00% 0.3957 0.3975 0.45% 0.4018 1.54% 

28.00% 0.4159 0.4173 0.34% 0.4215 1.35% 

28.92% 0.4244 0.4261 0.40% 0.4301 1.34% 
 

 

The results in Table 3.7 show excellent agreement between the CLS method and 

the benchmark Monte Carlo simulations for the dual-sphere model. For all packing 

fractions, the Dancoff factors are within absolute relative error of 0.68%, with no 

apparent dependence on packing fraction. The single-sphere model results show poor 

agreement at low packing fractions but reasonable agreement at high packing fractions, 

but still substantially inferior to the results obtained with the microsphere model. 

The first-flight escape probability for the finite cylinder is also calculated using 

the two CLS models, and the results are shown in Figure 3.11 and Table 3.8. 
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Figure 3.11 Comparison between CLS and analog Monte Carlo methods on first-flight 
escape probabilities in cylindrical geometry 

 
 

Table 3.8 First-flight escape probabilities in cylindrical geometry 
 

volume 
packing 
fractions 

benchmark 
(±1σ=0.001)

CLS with 
dual-sphere 

model 
(±1σ=0.001)

relative 
error 

CLS with 
single-sphere 

model 
(±1σ=0.001) 

relative 
error 

2.00% 0.7098 0.7048 -0.70% 0.7068 -0.42% 

4.00% 0.6792 0.6707 -1.25% 0.6744 -0.71% 

5.76% 0.6538 0.6431 -1.64% 0.6478 -0.92% 

10.00% 0.5980 0.5842 -2.31% 0.5910 -1.17% 

15.00% 0.5413 0.5242 -3.16% 0.5328 -1.57% 

20.00% 0.4901 0.4732 -3.45% 0.4823 -1.59% 

22.00% 0.4722 0.4550 -3.64% 0.4644 -1.65% 

24.00% 0.4547 0.4379 -3.69% 0.4473 -1.63% 

26.00% 0.4378 0.4216 -3.70% 0.4308 -1.60% 

28.00% 0.4220 0.4064 -3.70% 0.4156 -1.52% 

28.92% 0.4155 0.3997 -3.80% 0.4090 -1.56% 
 



 

72 

Contrary to the Dancoff factor computations, the results in Table 3.8 show better 

results for the single-sphere CLS method, with smaller errors by a factor of two for the 

dual-sphere model method for all packing fractions. 
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CHAPTER 4  

Application of Chord Method to Dancoff-factor Calculations in Double 

Heterogeneous Stochastic Media 

4.1 Introduction 

When neutrons slow down into the resonance energy range in the moderator, they 

may be absorbed by fuel kernels (called “fuel absorbers”) before having their next 

collision with the moderator. For a single fuel absorber, this resonance absorption is 

reduced by a certain amount due to the existence of adjacent absorbers. This is because 

the neighboring absorbers would block the path of resonance neutrons to the fuel 

absorber in question, reducing the probability that those resonance neutrons will reach 

that absorber without colliding with a moderator. This effect is equivalent to increased 

self-shielding and is called the “shadowing effect” in many references [40,41]. The 

earliest paper on this topic that could be found by the author is the classic report by 

Dancoff and Ginsburg in 1944 [42]. They derived a formula to calculate the reduction in 

surface resonance absorption due to neighboring absorbers, and this reduction is known 

as the “Dancoff-Ginsburg factor” or “Dancoff factor” [41,43].  

The Dancoff factor plays an important role in calculating collision probabilities 

and resonance integrals for reactor fuel lattices [44,45,46].  

In the Very High Temperature Gas-cooled Reactor (VHTR) analysis, it is 

essential to generate accurate few-group cross sections for use in global reactor 



 

74 

calculations [3].  In particular, one needs to account for the stochastic distribution and 

double heterogeneity of the TRISO particle fuel in order to obtain reasonable few-group 

cross sections, especially in the resonance energy range. While general purpose Monte 

Carlo codes such as MCNP5 [9] can analyze VHTR configurations from unit cell 

calculations to full-core with excellent results [12,21,25,29], the computational time is 

prohibitive, especially if one considers depletion and feedback effects. As a result, the 

conventional methodology is based on deterministic transport methods such as 

MICROX-2 [47] that include user-specified Dancoff factors to account for the double 

heterogeneity. These Dancoff factors may be calculated by Monte Carlo or semi-

analytical/analytical methods [48,49,50]. In this section, we discuss several methods that 

are used to compute Dancoff factors, and we derive an analytical formula for the Dancoff 

factor based on the chord length PDF that we have developed in the previous chapter. 

Closed form expressions for the Dancoff factor have been obtained for infinite stochastic 

geometry, for an infinite cylinder, and for a finite sphere. Closed form expressions have 

also been obtained for finite configurations of infinite cylinders and spheres, but these 

expressions include probabilities that need to be evaluated empirically due to the 

complexity of analyzing these finite geometries.    

In recent years, three papers [48,49,50] were published on analytical calculations 

of Dancoff factors for pebble-bed and prismatic type reactors. These include (1) infinite 

medium Dancoff factors, (2) finite medium Dancoff factors for an isolated fuel pebble or 

fuel compact (intra-pebble or intra-compact), and (3) finite medium Dancoff factors for a 

collection of fuel pebbles or fuel compacts (inter-pebble and inter-compact), including  

accounting for the coating region in a TRISO fuel particle [50]. In all of these works 
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regarding analytical expressions for Dancoff factors, the derivations are based on 

complicated integrations over surfaces and angles which can be avoided by using a chord 

length PDF, as discussed next. 

In this chapter, a general formulation of the Dancoff factor is given following 

Dancoff and Ginsburg’s original procedure [42]. In this derivation, the Dancoff factor is 

expressed in a simple form by introducing a chord length distribution function as Dirac 

did when he studied neutron multiplication [39]. This expression avoids the double 

integral evaluation performed by Dancoff and Ginsburg, but one needs to know the chord 

length distribution function, which we have previously determined.   

The new expression for the Dancoff factor was applied to the calculation of 

Dancoff factors for TRISO fuel in a VHTR. Two fuel particle models were investigated: 

single-sphere and dual-sphere models, which correspond roughly to either treating the 

fuel kernel by itself (single sphere) or the fuel kernel and fuel microsphere together (dual 

sphere). Analytical formulas for the Dancoff factor are derived for both models using the 

analytical chord length PDFs derived in Chapter 2. These formulas are used to compute 

Dancoff factors for an infinite medium and for finite medium configurations 

representative of both pebble-bed and prismatic type VHTRs. The numerical results from 

these formulas are compared with Monte Carlo benchmark results and the agreement is 

good:  

o within 1.1% relative error for infinite medium Dancoff factors  

o within 7.7% relative error for intra-pebble Dancoff factors 

o within 1.5% for intra-compact Dancoff factors 

o within 0.8% relative error for inter-pebble Dancoff factors 
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o within 0.5% for inter-compact Dancoff factors  

In addition, the actual chord length PDF between two fuel kernels was calculated 

by direct Monte Carlo simulation using RSA algorithms [24,31]. This empirical PDF 

replaced our analytical chord length PDF to calculate the Dancoff factors.  Agreements to 

within 0.30% relative error compared to benchmark results indicates that the chord length 

methodology is being applied correctly.  

4.2 General Formulation for Dancoff Factor 

In this section, the general formulation of the Dancoff factor for a single fuel 

lump in an infinite medium is given, along with extensions of the theory to treat finite 

media with multiple fuel regions. The derivations are applicable to fuel lumps, which 

have arbitrary shapes and are uniformly dispersed in a background moderator with 

arbitrary packing schemes. 

4.2.1 Dancoff factor of a single fuel lump in an infinite medium 

We consider the situation in which fuel lumps with arbitrary (non-reentrant) 

shapes are dispersed randomly in a background moderator. Fission neutrons are generated 

inside the fuel lumps and are slowed down in the moderator. After several scatterings in 

the moderator, some of the neutrons may enter the resonance energy range and be 

absorbed. To model this, a uniform, isotropic source of resonance-energy neutrons is 

assumed in the moderator.  

Given the source density Q neutrons/cm3-s at a point 'r
→

 in the moderator, the 

uncollided flux at the surface point r
→

 of a fuel lump due to that source is:  
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where λ is the mean free path of resonance neutrons in the moderator and it is assumed 

that no other fuel lump is between 'r
→

 and r
→

, i.e. 'r
→

 and r
→

 can see each other only 

through the moderator region. The rate that neutrons enter the fuel lump through a small 

surface element dA at r
→

is:  
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where θ is the angle between 'r r
→ →

−  and the outer normal of dA. The total rate that 

neutrons enter a fuel lump without colliding with the moderator is: 

 

 
| '|/

3 3

2
( ' ) ' cos ' .

4 4 | ' |

r rQ eJ J r r dAd r dA d r
r r

λ

θ
π π

→ →
− −→ → → →

→ →= → =
−

∫∫ ∫ ∫  (4.3) 

 

Now using a spherical coordinate transformation 3 2'd r s dsd
→

= Ω  where r
→

 is the 

origin, | ' |s r r
→ →

= − , and dΩ is a solid angle element about direction (θ, φ), we get:  

 

 / /

0

cos cos (1 ),
4 4

l
s lQ QJ dA d e ds dA d eλ λλθ θ
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− −= Ω = Ω −∫ ∫ ∫ ∫ ∫  (4.4) 

 

where l is the length of the chord through the point r
→

 in the direction (θ, φ) to the surface 

of an adjacent fuel lump. After simple manipulation, Eq. (4.4) can be written as:  
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where A is the total surface area of the recipient fuel lump. This is the equation Dancoff 

and Ginsburg obtained in their paper [42]. Now it can be easily seen that the first part in 

Eq. (4.5) is the total rate that resonance neutrons enter the fuel lump if only one fuel lump 

exists in the moderator. The second part is the reduction in the entering rate due to 

neighboring lumps. The complicated second term in the bracket is called the Dancoff 

factor C, which is the fractional reduction in surface resonance absorption due to the 

presence of the neighboring fuel regions:  

 
/cos ( )

.
cos

ldA d e
C

dA d

λθ

θ

−Ω
=

Ω
∫ ∫

∫ ∫
 (4.6) 

 
Next, we introduce the probability density function for the distribution of chord 

lengths in the moderator region, as Dirac did when he studied neutron multiplication for a 

solid of arbitrary shape [39].  According to Dirac, the chord length distribution PDF f(l) is 

defined such that for any function g(l):  

 

 
cos [ ( )]

( ) ( ) .
cos

dA d g l
f l g l dl

dA d

θ

θ

Ω
=

Ω
∫ ∫∫ ∫ ∫

 (4.7) 

 
Then Eq. (4.6) becomes:  

 /( ) .lC f l e dlλ−= ∫  (4.8) 
 

The relative simplicity of Eq. (4.8) versus Eq. (4.6) is clear – the 4D integral over 

surface and angle has been replaced by a 1D integral over the chord length distribution. 

This expression for the Dancoff factor in terms of the chord length PDF was first 

published by Sauer [53] in 1963, but with somewhat different notation. A similar result 

for the first flight escape probability was given by Case et al. [51] in 1953 but no mention 

was made of the Dancoff factor. In spite of these early references, there has been 
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essentially no mention of the use of chord length PDFs for the calculation of Dancoff 

factors in stochastic media in the past 40 years, even though many papers have been 

published on the calculation of Dancoff factors for TRISO fuel [45,48,49,50,65].  

As a result of Eq. (4.8), the calculation of the Dancoff factor is reduced to 

determining the chord length PDF between two fuel lumps in the moderator. However, 

we have already found an analytical expression for the chord length PDF in Chapter 2, 

which we will use to determine the Dancoff factor.  

Dancoff also derived Eq. (4.4) and performed the double integral over two fuel 

lump surfaces to obtain the second part. However, the chord method introduced in Eqs. 

(4.5) to (4.8) can decrease the computation cost, which is normally high for the double  

integral, and can be applied to media with any geometry distribution such as the 

stochastic distribution of fuel lumps in a VHTR. 

Also, Eq. (4.8) yields another physical explanation for the Dancoff factor. The 

original derivation was based on the physical assumption that resonance neutrons are 

created uniformly in the moderator and reach a fuel lump without collision. However, Eq. 

(4.8) suggests another physical interpretation. If resonance neutrons are emitted from the 

surface of a fuel lump and travel through the moderator towards another fuel lump, then 

f(l)dl is the probability that the distance to the next fuel lump is within (l, l+dl) and e-l/λ is 

the probability that the neutron traverses the distance l without a collision. In this sense, 

the Dancoff factor C can be defined as an average probability that resonance neutrons 

escaping from a fuel lump will reach another fuel lump without experiencing any 

collisions with the moderator in between. This definition can be found in many references 

and is equivalent to the original definition and is a consequence of reciprocity. 
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4.2.2 Average intra-volume Dancoff factors for a finite volume 

Eq. (4.8) can be used to calculate the Dancoff factor for a collection of fuel lumps 

in an infinite medium (e.g., an infinite medium of TRISO microspheres) if we set the 

upper limit to infinity in the integral. However, we would like to consider a finite volume, 

such as a cylindrical fuel compact or spherical fuel pebble that is filled with TRISO 

microspheres. In this case we want the average Dancoff factor for a TRISO microsphere 

in the finite volume in order to determine space-dependent few-group cross sections. For 

the case of a fuel lump in a finite volume, the upper limit would be a finite value related 

to the position of the fuel lump in the volume and the direction of neutron travel, as 

depicted by the chords R1, R2, R3 etc. shown in Figure 4.1 below. 

 

 
 

Figure 4.1 Fuel lumps in finite volume 
 

 
In order to obtain the average Dancoff factor for all the fuel lumps in the volume, 

the integral in Eq. (4.8) needs to be performed over the surface area of each fuel lump 

and over the entire volume accounting for every fuel lump. This would be a cumbersome 

integration. However, if we introduce the chord method to perform the calculation as we 

did in the previous section, the calculation would be much simpler. Here we take 
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advantage of the fact that the fuel lumps are randomly distributed in the volume. The 

physical process that we need to simulate is summarized as follows: A source of 

resonance-energy neutrons is uniformly distributed on the surface of a fuel lump, and a 

resonance neutron is emitted outwards with a cosine current angular distribution. The 

probability that a neutron enters another fuel lump without colliding in the intervening 

moderator is calculated and averaged over the surface neutron emissions. This average 

probability is only for a specific fuel lump at a specific location inside the solid body. 

Since the fuel lump could be anywhere in the volume, we need to average this to account 

for fuel lumps at different locations in the volume. However, we note that the assumption 

of a uniform distribution of fuel lumps with uniform cosine current surface sources is 

equivalent to a uniform, isotropic volumetric source in the moderator.  Then the 

mathematical derivation becomes equivalent to that performed by Case, Hoffmann, and 

Placzek [51] and Bell and Glasstone [43], when they calculated escape probabilities for 

finite volumes. This derivation is given below.  

A resonance neutron is generated in dΩdV with probability dΩdV /4πV, traveling 

along direction Ω. If this neutron is regarded as the one just escaping from a fuel lump, its 

maximum distance along the traveling direction to enter another fuel lump within the 

volume is l. This distance is determined by the maximum distance to the volume 

boundary along the chord determined by (r, Ω) and, strictly speaking, should be reduced 

by the average chord length in the absorber since the absorber cannot overlap the outer 

boundary. Since the probability of traversing distance l' without a collision in the 

moderator is given by e-l'/λ, we find the following expression for the Dancoff factor:  

 '/( ) ( ') ',
l

l

min_d

C l f l e dlλ−= ∫  (4.9) 
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where min_d is a problem-dependent lower integral limit parameter (such as the 

minimum distance between two TRISO fuel kernels due to the coatings). This is the 

Dancoff factor for a specific neutron emitted randomly from the surface of a random fuel 

lump within the volume. The probability of choosing this specific neutron is dΩdV ⁄ 

(4πV) hence the average Dancoff factor over all fuel lumps in the volume is given by:  

 
______ 1 ( ) .

4
intraC C l dVd

Vπ
= Ω∫∫  (4.10) 
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Figure 4.2 Volume element division 
 

From Figure 4.2, dV = (n·Ω)dAdl, so Eq. (4.10) becomes: 

______ 1 cos ( ) ,
4

L
intra

min_d

C dA d C l dl
V

θ
π

= Ω∫ ∫ ∫                                  (4.11) 

 
where min_d has the same meaning as in Eq. (4.9) and L is the maximum distance to the 

volume boundary as defined earlier. Let ( ) ( )
L

min_d

G L C l dl= ∫ and use cosdA d Aθ πΩ =∫ ∫ , 

where A is the total surface area of the solid. We then get: 
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where <L>=4V/A, the mean chord length in the solid. As we did in the previous section, 

if we introduce a chord distribution function F(L) for the finite volume, then a formula 

with a simple mathematical form is obtained: 
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or a more explicit form: 

 
______
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L
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So the complicated expression for the average Dancoff factor in a finite medium 

of fuel lumps, which consists of multiple 2D integrals over surface and angle domains, is 

reduced to a straightforward multiple integral by using two chord length distribution 

functions: one is the PDF f(l) for the distribution of chord lengths between two fuel lumps 

and the other is the PDF F(L) for the distribution of chord lengths inside the finite 

volume.  

4.2.3 Average inter-volume Dancoff factors for a collection of finite volumes 

VHTRs are characterized by the presence of the double heterogeneity, caused by 

multiple finite volumes, each of which contains a distribution of fuel lumps. When we 

calculate the Dancoff factor for a fuel lump, we need to account for not only the intra-

volume contribution from the previous section but also the inter-volume contribution 

since a neutron might exit a finite volume and stream to another finite volume without a 
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collision. Figure 4.3 shows this general configuration. We will start with this picture to 

derive the average Dancoff factor accounting for the inter-volume contribution. 

 

 
 

Figure 4.3 Distribution of finite volumes containing fuel lumps 
 

 
This Dancoff factor can be defined as the probability that a neutron escaping from 

a fuel lump in a finite volume enters another fuel lump in a different finite volume, 

known as the inter-volume Dancoff factor. We can write down this probability in terms 

of several basic probabilities:  

P1---average probability that a neutron escaping from a fuel lump in a finite 

volume leaks out without entering any other fuel lump or colliding with the moderator 

P2---average probability that a neutron escaping from a finite volume enters 

another finite volume without collision 

Pt---average probability that a neutron incident on a finite volume crosses it 

without entering any fuel lump or having a collision with the moderator 

P3---average probability that a neutron incident on a finite volume enters a fuel 

lump within that volume 
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If we consider that all the finite volumes are uniformly distributed in an infinite 

background medium, then the inter-volume Dancoff factor can be written as: 
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We will derive these probabilities using the chord method. 

To obtain an expression for P1, we proceed in a similar manner as the derivation 

of 
______

intraC . If we write down the probability that any neutron from a small element dΩdV 

escapes a finite volume along Ω without entering another fuel lump or colliding with the 

moderator (See Figure 4.2 for geometry description), 
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where l is the distance along the neutron’s traveling direction from starting point to the 

escaping point of the volume, then 

/

/
1

cos ( ') '
cos

( ') ' .
4 4 cos

L
l

min_d ll

l

dA d dle f l dl
dA dd dVP e f l dl

V V dA d

λ

λ

θ
θ

π π θ

∞
−

∞
−

Ω
ΩΩ

= =   
Ω

∫ ∫ ∫ ∫∫ ∫∫∫ ∫ ∫ ∫
 (4.18) 

 
Using the chord length distribution function in a finite body F(L): 
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For P2, if we assume H(S) is the chord length PDF between two volumes in an 

infinite background medium, then 
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/
2 ( ) SP H S e dSλ−= ∫ .                                                     (4.20) 

 
We will assume H(S) can be determined, perhaps approximately, for the given 

geometry. 

For Pt, we can write down the probability that a neutron incident on a finite 

volume through a small element dAdΩ along Ω crosses the finite volume without hitting 

any fuel lump or colliding with the moderator: 
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where L is the chord length from the incident point to the exit point along Ω. Then, 
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For P3, this may be viewed as a Dancoff factor for a neutron incident on the 

boundary of the finite volume. Therefore, using our previous results, the average 

probability that a neutron entering a finite volume will enter a fuel region without 

colliding in the moderator is: 

/
3( ) ( )

L
l

min_d

P L f l e dlλ−= ∫ ,                                            (4.23) 

 
where L is the chord length from the incident point to the exit point along Ω. This is then 

averaged over all possible chords in the finite volume, 
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Now all of the terms P1, P2, P3 and Pt have been expressed in terms of chord 

length distribution functions. Combining Eqs. (4.19), (4.20), (4.22) and (4.24), we obtain 

a complete analytical formula for 
______

interC : 
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4.2.4 Discussion 

The methodology presented in previous sections has broad application to general 

reactor physics analysis but is specifically intended for application to the neutronic 

analysis of TRISO fuel in VHTRs. This methodology can be applied to the analysis of 

both pebble-bed and prismatic VHTR designs. The chord length PDF F(L) is known 

analytically for spheres [52] and cylinders [51,56,57,58,60]. Also, the chord length PDF 

H(S) between fuel compacts and between fuel pebbles can be determined in an 

approximate analytical form with an exponential function [53]. As long as we are able to 

determine the chord length PDF f(l)  between two fuel particles in an infinite medium, the 

average Dancoff factor for fuel particles in either VHTR design is readily obtained by 

Eqs. (4.14) and (4.25). In the next section, a detailed derivation for f(l) will be given and 

average Dancoff factors will be calculated for a TRISO fuel particle in infinite medium 

and finite medium VHTR configurations. 
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4.3 Dancoff Factor Calculations for Fuel Particles in VHTR 

 In this section, we will calculate average Dancoff factors for a fuel particle in 

VHTR configurations, including an infinite medium of TRISO particles and finite 

cylinders and finite spheres filled with TRISO fuel particles. The finite volume Dancoff 

factors will include both intra-volume as well as inter-volume contributions.  

4.3.1 Simplified physical models and associated mathematical models 

Previous neutronic analysis has shown that homogenizing the four coating layer 

regions with the graphite matrix region does not affect the neutronic behavior [12]. 

Although the four coating regions and the graphite matrix region were distinct regions for 

the Dancoff factor calculation, these regions had identical cross sections obtained by 

homogenizing the materials in these five regions. Based on this, we will use the 

previously studied single-sphere and dual-sphere models.  

Analytical derivations of the chord length PDF f(l) between two fuel particles 

based on these two models are presented below along with the infinite medium Dancoff 

factor calculated with this PDF. The corresponding average Dancoff factors for a fuel 

kernel in a spherical fuel pebble and a cylindrical fuel compact with the two models are 

also given. 
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single-sphere model                                          dual-sphere model 
 

Figure 4.4 VHTR fuel particle models 
 

 

4.3.2 Analytical derivations 

We have already determined the chord length PDF fs(l) in Chapter 3:   
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 This will now be used to compute the Dancoff factor in infinite and finite geometries. 

4.3.2.1 Dancoff factor with single-sphere model 

• Dancoff Factor for Fuel Kernel in an Infinite Medium of Fuel Kernels 

Substituting fs(l) into Eq. (4.8), the infinite medium Dancoff factor with the 

single-sphere model is obtained: 
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• Average Dancoff Factor of Fuel Kernel in Finite Media (Fuel Pebble/Fuel 

Compact) 

Substituting fs(l) into Eq. (4.14) , the intra-volume Dancoff factor with the single-

sphere model is obtained:  
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L l
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where we have set min_d = 0 due to model assumptions. 

If we define an effective cross section Σ*:  
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                                                  (4.29) 

 
then after several straightforward integration manipulations, we obtain: 
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It is easy to see that λ*/<l> is just Cs,∞. It is also found with more careful 

observation that the second term in the bracket is just the first flight escape probability 

for a finite medium with a total cross section Σ* [see page 22 in ref. 51]. The effective 

cross section Σ* is identical to the modified total cross section for a two-region lattice in 

equivalence theory when the “escape” cross section 1/<l>  is added to the total cross 

section [43].  

So we have a very concise result: 

______
, *1 .intra s

escC C P∞ ⎡ ⎤= −⎣ ⎦                                                  (4.31) 
 

Thus the average intra-medium Dancoff factor is the product of the infinite 

medium Dancoff factor and the first flight collision probability for the finite medium. 
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Bende [48] and Talamo [49] also found a similar expression for 
______

intraC  for fuel pebbles 

and fuel compacts, respectively. However, their analyses are somewhat more complicated 

due to a different definition of Σ* and the complicated integral expression for P*
esc.   

The introduction of the chord length PDF F(L) in the expression of 
______

int raC  in Eq. 

(4.30) makes the formula more flexible, in that it can handle different finite media with 

arbitrary shape filled with randomly distributed fuel particles. Next, as an application to 

VHTR analysis, we use Eqs. (4.30) and (4.31) to derive intra-pebble and intra-compact 

Dancoff factors in terms of basic geometry parameters. 

 A fuel pebble is composed of two concentric spheres: an inner sphere with a 

typical radius R1 = 2.5 cm and an outer sphere with a typical radius R2 = 3.0 cm. Fuel 

particles are randomly distributed in the inner spherical region, which is called the fuel 

region. The outer spherical shell is graphite.  

The chord length PDF for a sphere of radius R1 has been obtained: (see Appendix 

of reference [52]) 

2
1

( ) ,
2

LF L
R

=    10 2 .L R< <                                           (4.32) 

 
Substituting this into Eq. (4.30) and after several algebraic manipulations, we find: 

*
escP =

1 1
* *

2 3* * *2 2

1 1 1

3 3 3 1 ,
4 4 8

R R

e e
R R R

λ λλ λ λ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦
                       (4.33) 

 
and the final results: 

 
1 1
* *

2 3______ * * *2 2
,

1 1 1

3 3 31 1 .
4 4 8

R R
intra sC C e e

R R R
λ λλ λ λ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟∞ ⎝ ⎠ ⎝ ⎠

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= − − + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

               (4.34) 

 
This may be expressed as follows: 
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1 1
* *

______ 2 3* * *2 2

,
1 1 1

3 3 31 1 .
4 4 8

R Rintra

s

C e e
C R R R

λ λλ λ λ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∞

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦
                (4.35) 

 

As verification, when 1R → ∞ , 
______

,intra sC C ∞→ . 

In prismatic VHTR, the fuel compacts are arranged in cylindrical columns of 

height 793cm. Although these are essentially infinite cylinders, we will derive an 

expression for 
______

intraC  for both infinite and finite cylinder cases. 

For an infinite cylinder region, the chord length distribution PDF was derived by 

Case et al. (page 32 in reference [51]):  

 
( )

0
2 4

03 0 2 2 2 2

1 2
16( ) , .

2/ 4 1 2

c
xc

c
c

c

L R
R x dxF L x L L RL L R x x R

π

>⎧
⎪= = ⎨ <− − ⎪⎩

∫  (4.36) 

 
Using the above PDF and results from Inglis [56] for P*

esc in terms of Bessel functions, 

we find: 

[ ] [ ]{ }* 2
0 0 1 1 0 1 1 0 1 1

2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ,
3escP t I t K t I t K t t I t K t I t K t I t K t= + + − − +  (4.37) 

 
where t = Rc/λ*. Substituting this into Eq. (4.31), we obtain the final result: 

 

[ ] [ ]{ }
______

, 2
0 0 1 1 0 1 1 0 1 1

21 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) .
3

intra sC C t I t K t I t K t t I t K t I t K t I t K t∞= − + + − − +

               (4.38) 
 
Expressing this as a ratio as before, we find  

 

[ ] [ ]{ }
______

2
0 0 1 1 0 1 1 0 1 1,

21 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) .
3

intra

s

C t I t K t I t K t t I t K t I t K t I t K t
C ∞ = − + + − − +    

(4.39) 
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As verification, when cR → ∞ , t → ∞ , so *
3

1 1 3 1 ... 0
2 32escP

t t
= − + → , hence 

______
,intra sC C ∞→ . 

For a finite cylinder region, the analytical derivation of F(L) has been studied by 

many researchers [57,58]. Formulas for right circular cylinders and general cylinders 

have been given in complicated forms. However, by using some simple mathematical 

transformations, some researchers [59,60] have derived an expression for the escape 

probability P*
esc for a finite cylinder, which can be used directly to obtain

______
intraC . 

According to Marleau et al. [60], we have the following results for the escape 

probabilities: 

( ) ( ) ( )
1/ 22 2* * 1/ 2* 2 2

, & 3 3 3 3* 2 * *0

40 ,
D

esc t b

t HH tP E E E E D t dt
H D H
λ λ

λ π λ λ

⎧ ⎫⎡ ⎤+⎡ ⎤ ⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎢ ⎥= − − − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭
∫  

(4.40) 
 
 

( )
2 2 1/ 2 1/ 22 2

*
* 2

, 2 2 2 3/ 20 0

( )exp( )4 ( ) ,
( )

D H

esc cyl

t u D t
P t dt H u du

D H t u
λ

π

+− −
= −

+∫ ∫       (4.41) 

 
 

 

( )

( ) ( )

2 2 1/ 2 1/ 22 2
*

* 2
, 2 2 2 3/ 20 0

1/ 22 2
1/ 22 2 2 2

2

( )exp( )4 ( )
( )

4 ln ,
2

D H

esc cyl

t u D t D
P t dt H u du

D H t u

D D HD H D D H D
D H H

λ
π

π

+
− − −

= −
+

⎧ ⎫⎡ ⎤+ +⎪ ⎪⎢ ⎥+ + + −⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫
 (4.42) 

 

where P*
esc,t&b is the axial escape probability across the top and bottom surfaces, P*

esc,cyl 

is the radial escape probability across the cylindrical surface, and D = 2Rc. Adding these 

two escape probabilities yields the total escape probability for a finite cylinder:   
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* * *
, & , .esc esc t b esc cylP P P= +                                                 (4.43) 

 
So the final result is: 

( )
______

, *1 ,intra s
escC C P∞= −                                       (4.44) 

 
or: 

______

*
, 1 .

intra

escs

C P
C ∞ = −                                             (4.45) 

 
 

• Average Inter-Pebble and Inter-Compact Dancoff Factors for Fuel Kernels 

As we did for 
______

intraC , we introduce the single-sphere model chord length PDF 

Eq.(4.26) between two fuel kernels into Eqs. (4.19), (4.22), (4.24) and (4.25) to obtain a 

general expression for 
______

interC . Then we use this formula to obtain inter-pebble and inter-

compact Dancoff factors. 

Substituting Eq. (4.26) into Eqs. (4.19), (4.22), and (4.24), and using the effective 

cross section Σ* defined by Eq. (4.29), we find: 

( )' *
*

/ / / *
1,

0

1 1( ) ' 1 ( ) ,
L

l l l L
s esc

l

P dLF L dle e dl e F L dL P
L l L

λ λλ∞
− − < > −= ⋅ = − =

< > < > < >∫ ∫ ∫ ∫   (4.46) 

 
' */ / *

, *

1( ) ' ( ) 1 ,
L

L l l
t s esc

L

LP dLF L e e dl dLF L e P
l

λ λ

λ

∞ −
− − < > < >

= = = −
< >∫ ∫ ∫        (4.47) 

 

( )*/ / , / , *
3, *

0

1( ) 1 ( ) .
L

l l l s L s
s esc

LP dLF L e e dl C e F L dL C P
l

λ λ

λ
− < > − ∞ − ∞ < >

= ⋅ = − =
< >∫ ∫ ∫   (4.48) 

 
Finally, substituting these results into Eq. (4.25), we find: 
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( )
( )

* / , *
______ *

/ *
*

( )
,

1 ( ) 1

S s
esc esc

inter

S
esc

LP H S e dS C P
C

LH S e dS P

λ

λ

λ

λ

− ∞

−

< >⎛ ⎞⋅ ⋅⎜ ⎟
⎝ ⎠=

< >⎛ ⎞− ⋅ −⎜ ⎟
⎝ ⎠

∫

∫
                         (4.49) 

 

which can be expressed as a ratio: 

( )
( )

* / *______
*

,
/ *

*

( )
.

1 ( ) 1

S
inter esc esc

s
S

esc

LP H S e dS P
C

LC H S e dS P

λ

λ

λ

λ

−

∞
−

< >⎛ ⎞⋅ ⋅⎜ ⎟
⎝ ⎠=

< >⎛ ⎞− ⋅ −⎜ ⎟
⎝ ⎠

∫

∫
                            (4.50) 

 
Again, it can be seen that the average inter-volume Dancoff factor for a fuel 

kernel is a relatively simple expression involving the first flight escape probability P*
esc , 

the effective cross section Σ*,  and the chord length PDF H(S) between the finite 

volumes. 

Next, we apply this formula to compute the inter-pebble and inter-compact 

Dancoff factors: 

Eq. (4.33) gives the first flight escape probability for a spherical fuel pebble. 

Using this, we can explicitly find expressions for P1,s, Pt,s and P3,s. 

 
1 1
* *

2 3* * *2 2

1,
1 1 1

3 3 3 1 ,
4 4 8

R R

sP e e
R R R

λ λλ λ λ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦
                     (4.51) 

 
1 1
* *

2* *2 2

,
1 1

1 1 ,
2

R R

t sP e e
R R

λ λλ λ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
                            (4.52) 

 
1 1
* *

2* *2 2
,

3,
1 1

11 1 .
2

R R
s

sP C e e
R R

λ λλ λ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟∞ ⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥= + − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

                     (4.53) 

 
For P2,s, we need the chord length PDF between two spherical fuel pebbles. This 

PDF H(S) could be for an infinite medium or a finite medium of fuel pebbles. For 
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simplicity, we will derive H(S) for an infinite medium since the benchmark results are for 

the infinite medium case. This will be relaxed later.  

Assuming the spherical fuel pebbles are randomly distributed in the background 

moderator, we have: 

/1( ) ,S SH S e
S

− < >=
< >

   0 ,S< < ∞                                      (4.54) 

 

where 14 (1 )
3

R FRACS
FRAC
−

< >=  and FRAC is the volume packing fraction of the spherical 

fuel region in the whole medium. Substituting Eq. (4.54) into the expression for P2,s, we 

find: 

'/ '/
2, 0

1 1' .11

S S S
sP e e dS

S S

λ

λ

∞ − < > −= =
< > + < >

∫                                (4.55) 

 
It should be noted that the model presented in Eqs. (4.54) and (4.55) to calculate 

P2,s is a crude approximation. It is only valid for high packing fractions. In order to 

predict accurate inter-pebble Dancoff factors, we need to perform a Monte Carlo 

simulation to get P2,s. We have found this simulation to be very cheap to obtain a “one 

sigma” (one relative standard deviation) result accurate to within 10-4. In the results 

comparison section later in this chapter, we will show the comparison between this crude 

model and the more precise Monte Carlo simulation for calculating P2,s. 

At this point we have obtained expressions for P1,s, Pt,s, P3,s, and P2,s. Introducing 

them into Eq. (4.49) or (4.50), we obtain 
______

,/inter sC C ∞  in terms of basic geometry quantities 

for fuel pebbles: 
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1 1
* *

1 1
* *

22* * *2 2

1 1 1______
,

2* *2 2

1 1

3 1 11 1 14 2 1
.

1 11 11 21

R R

inter s

R R

e e
R R R S

C C

e e
R RS

λ λ

λ λ

λ λ λ

λ
λ λ

λ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∞

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − − ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦ + < >⎝ ⎠

=
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟− ⋅ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠+ < > ⎣ ⎦⎝ ⎠

      (4.56) 

 
Again, expressing this as a ratio: 

1 1
* *

1 1
* *

22* * *2 2

______ 1 1 1

, 2* *2 2

1 1

3 1 11 1 14 2 1
.

1 11 11 21

R R

inter

s R R

e e
R R R SC

C
e e

R RS

λ λ

λ λ

λ λ λ

λ
λ λ

λ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∞ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − − ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦ + < >⎝ ⎠

=
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟− ⋅ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠+ < > ⎣ ⎦⎝ ⎠

         (4.57) 

 
To obtain inter-compact Dancoff factors for the prismatic VHTR, we will model 

the fuel compacts as both infinite cylinders and finite cylinders. 

For both cases, Eqs. (4.37) and (4.43) give the first flight escape probabilities 

separately. Substituting these formulas into Eqs. (4.46)-(4.48), we can easily write down 

P1,s, Pt,s and P3,s for both infinite and finite cylinders. For conciseness, we will not repeat 

these long formulas here. Only one point needs to be noted, the average chord length <L> 

appearing in P1,s, Pt,s and P3,s is different for infinite and finite cylinders: for an infinite 

cylinder, <L> = 2Rc while for a finite cylinder, 2 c

c

R HL
R H

< >=
+

. 

For P2,s, we need to obtain the chord length PDF between two cylindrical fuel 

compacts. At this point, if we look at the definition of P2,s in Eq.(4.20), we can see this is 

actually the Dancoff factor definition for  finite volumes distributed in a moderator 

background.  So the evaluation of P2,s becomes a classical problem: the calculation of the 
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Dancoff factor for cylindrical fuel rods in a hexagonal lattice, which was the original 

application studied by Dancoff and Ginsburg [42] in their classical report of 1944.   

In such a lattice structure, an accurate expression for the PDF H(S) is difficult to 

derive analytically especially for finite cylinders. Efforts to find reasonable 

approximations to H(S) for the infinite cylinder case have been made by Sauer [53] and 

Chao et al.[61]. Sauer characterized H(S) for the moderator by using a geometric index 

parameter determined by the method of logarithmic moments. Chao et al.suggested a 

moment expansion approximation scheme to transform the integral ∫ H(S) e-S/λdS into a 

summation of a finite series and keeping low order terms. Both approaches gave good 

results for lattice structures. Meanwhile, based on formulas derived by Dancoff and 

Ginsburg, Thie [62], Fukai [63] and Carlvik [64] contributed by improving the accuracy 

of the analytical formula and by using numerical integration techniques. Also, Fehér et 

al.[65] incorporated the analytical integration into a Monte Carlo simulation to calculate 

the Dancoff factor for a lattice structure.  

From our viewpoint, lattice structure, whether square or hexagonal, is a relatively 

simple geometry for calculating Dancoff factors. Taking advantage of modern day 

computing capability, this work can be done in a few seconds using Monte Carlo 

methods, yielding excellent results with a relative standard deviation less than 10-4. 

Accordingly, we use Monte Carlo simulation to obtain P2,s for infinite and finite 

cylindrical fuel compacts. 

During the writing of this thesis, a recently published paper by Talamo [49] draws 

our attention. Talamo utilized an equivalent unit cell of concentric cylinders to study the 

inter-compact Dancoff factor. A white outer boundary condition was applied, implying 
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that the fuel compact is randomly distributed inside the lattice, although this is not the 

case in reality. However, this is an interesting alternative model to the Monte Carlo 

calculation. That is, we can calculate P2,s using the chord length H(S) between two fuel 

compacts, hence assuming a stochastic distribution of fuel compacts. We have already 

done this for the inter-pebble Dancoff factor analysis, although this is a more realistic 

assumption in this case. 

As we did for fuel pebbles, if we regard the fuel compacts as being randomly 

distributed in background moderator (all the axes are kept vertical and parallel), we can 

make an assumption that the chord lengths between fuel compacts follow an exponential 

function,  

/1( ) ,S SH S e
S

− < >=
< >

   0 ,S< < ∞                                       (4.58) 

 

where 2 (1 )cR FRACS
FRAC

−
< >=  and FRAC is the volume packing fraction of the cylindrical 

fuel compact region in the whole medium. Introducing Eq. (4.58) into the P2,s expression, 

we then obtain, 

'/ '/
2, 0

1 1' 11

S S S
sP e e dS

S S

λ

λ

∞ − < > −= =
< > + < >

∫                                (4.59) 

 
It is noted that Eq. (4.59) only applies to the infinite cylinder case. For a finite 

cylinder, H(S) would be related to the height of the cylinder and would not be such a 

simple exponential relation. In order to calculate P2,s, for a finite cylinder, we will need to 

resort to the Monte Carlo method.  

Now we have obtained analytical expressions for P1,s, Pt,s and P3,s. By simple 

Monte Carlo simulations, we can obtain numerical values for P2,s, or we can use Eq. 
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(4.59) to obtain an approximate value for P2,s. Introducing this into Eq. (4.49) or (4.50), 

we obtain either an analytic formula or a numerical estimate for Cinter in terms of basic 

geometry quantities of fuel compacts.  

4.3.2.2 Dancoff factor with dual-sphere model 

• Dancoff Factor of Fuel Kernel in an Infinite Medium 

For the dual-sphere model, the derivation starts with the single-sphere model 

result and takes into account the coating region. The chord length PDF with dual-sphere 

model can be derived from Eq. (4.26) by a small correction: 

( 2 ) /

2

( ) 1( ) ,
( )

l d ls
d

s
d

f lf l e
l

f l dl

− − < >
∞= = ⋅

< >
⋅∫

      2 .d l< < ∞            (4.60) 

 
Substituting fd(l) into Eq. (4.8), the infinite medium Dancoff factor with the dual-

sphere model is obtained: 

 

, / ( 2 ) / 2 / 2 /
3

2
3

1 1 1 .1 1 4 1 ( / )1 1
3 ( / )

d l l d l d d

d

C e e dl e e
r frac r Rl l

frac r R

λ λ λ

λ λ

∞
∞ − − − < > − −= ⋅ ⋅ ⋅ = ⋅ = ⋅

− ⋅< > + ⋅ < > + ⋅ ⋅
⋅

∫

(4.61) 
 

The rest of this section will be the same as the previous section. For conciseness, 

we ignore the detailed derivations and directly list the final important results, which can 

be compared with the single-sphere model results. 

 
• Average Dancoff Factor of Fuel Kernel in a Finite Medium (Fuel Pebble/Fuel 

Compact) 

Substituting fd(l) into Eq. (4.14) and setting min_d = 2d, the intra-volume Dancoff 

factor with the dual-sphere model is obtained: 
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* *

______ * *
int , 2 / * 2 / 21 .ra d d d

esc
dC C e P e

L L L
λ λλ λ∞ ⎡ ⎤

= − + − −⎢ ⎥< > < > < >⎣ ⎦
                (4.62) 

 
 

The average intra-pebble Dancoff factor is then found and expressed as a ratio: 

1 1
* ** *

______ 2 3int * * *2 22 2

,
1 1 1 1

3 2 3 3 31 1 .
4 4 4 8

R Rd dra

d

C d e e e e
C R R R R

λ λλ λλ λ λ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∞

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦
 (4.63) 

 
The average intra-volume Dancoff factor for an infinite cylinder can be obtained 

by substituting Eq. (4.37) into Eq. (4.62) and replacing <L> by 2Rc; while for a finite 

cylinder by substituting Eqs. (4.40)-(4.43) into Eq. (4.62) and replacing <L> by 2 c

c

R H
R H+

. 

 
• Average Dancoff Factor of Fuel Kernel between Finite Media (Fuel Pebbles/Fuel 

Compacts) 

Following the same procedure as for the single-sphere model by setting min_d = 

2d, the average inter-volume Dancoff factor with the dual-sphere model is found and 

expressed as a ratio: 

( )

( )

* * *

*

2 2 22*
* / *

* *int

,
/ 2 / * 2 /

*

1 ( )
.

1 ( ) 1

d d dd
S

esc escer

d
S d d

esc

L Le P e e H S e dS e P
LC

LC H S e dS e P e

λλ λ λ λ

λ λ λ

λ
λ λ

λ

− −

∞
− −

⎡ ⎤ ⎛ ⎞< > < >
− + ⋅ ⋅⎜ ⎟⎢ ⎥ ⎜ ⎟< > ⎣ ⎦ ⎝ ⎠=

< >⎛ ⎞− ⋅ −⎜ ⎟
⎝ ⎠

∫

∫
  (4.64) 

 
By substituting appropriate expressions for <L>, P*

esc and H(S) for fuel pebble 

and fuel compact geometries, the average inter-pebble and inter-compact Dancoff factors 

can be obtained. 
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4.3.3 Early calculations of Dancoff factors for infinite stochastic media 

The earliest papers that discussed the evaluation of the Dancoff factor for an 

infinite medium with grain structure are those by Lane et al. and Nordheim in 1962 

[66,67]. These papers gave a result similar to Eq. (4.27), but with a different mean chord 

length <l> = 4r/3·(1/frac'). Since they used a classical atomic structure model to obtain 

the mean chord length, which assumes the fuel kernels are infinitesimal, the mean chord 

length was overestimated. Their derivations miss the factor (1-frac'), which accounts for 

the finite size of the grains hence leading to an incorrect homogeneous limit [67,68]. 

Although Nordheim had pointed out this homogeneous limit inconsistency, he did not 

give a solution to solve it. Lewis also noted this [68] and used an alternative result due to 

Bell [69] to obtain the correct homogeneous limit. It is clear that this inconsistency was 

due to the incorrect evaluation of the mean chord length in the moderator. This has been 

corrected in our expression for the infinite medium Dancoff factor in Eq. (4.27), which 

yields the correct homogeneous limit for the escape probability. 

Also, Lane et al. [66] suggested a method to account for the coating region by 

changing the lower integral limit from 0 to 2d in Eq. (4.27). However, this treatment gave 

poor results since the chord length PDF should also be changed if a coating region was 

added to the fuel kernel, but this was not done by Lane. We need to simultaneously 

change the PDF to account for the coating region as well as the lower limit. This is what 

the dual-sphere model accomplishes. 
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4.3.4 Monte Carlo simulations  

In order to verify the analytical formulas derived for Dancoff factor computations, 

Monte Carlo benchmark simulations were performed to compare with numerical and 

analytical results. These benchmark calculations cover the following aspects:  

• Dancoff factors for fuel kernels in an infinite medium as a function of volume 

packing fractions 

• Determination of the chord length PDF between two fuel kernels in an infinite 

stochastic medium generated by the RSA sphere packing method for different 

volume packing fractions.  

• Average intra-pebble and inter-pebble Dancoff factors for fuel kernels in pebble-

bed VHTRs 

• Average intra-compact and inter-compact Dancoff factors for fuel kernels in 

prismatic VHTRs 

Monte Carlo simulations employed conventional ray tracing to directly track 

neutron trajectories and used a modified fast RSA algorithm [31] to generate multiple 

realizations of the stochastic media.  

4.3.4.1 Benchmark calculations for Dancoff factor of fuel kernel in an infinite 

medium 

A Monte Carlo code was written to simulate the transport of resonance energy 

neutrons in a stochastic medium. Depending on the packing fraction, approximately 5-10 

million TRISO fuel particles are dispersed randomly in a graphite background region 

using the RSA algorithm. Neutrons are emitted uniformly from the surface of fuel kernels 

with a cosine current distribution. The number of neutrons that successfully reach another 
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fuel kernel without having a collision in the graphite region was tallied, and the Dancoff 

factor was then computed as the ratio of this number to the total number of neutrons 

emitted. A total of 100 physical realizations were performed, and 10M neutrons were 

followed per realization. The final Dancoff factor was ensemble-averaged over the 100 

realizations.   

4.3.4.2 Chord length PDF simulations in an infinite medium 

In order to verify the applicability of Eq. (4.8), the chord length PDF between two 

fuel kernels, a Monte Carlo simulation was performed at different volume packing 

fractions. The same geometry and source distribution were used as in the previous section 

except that the number of fuel particles was 10-20 million, and 500,000 neutrons were 

emitted per realization. Figure 4.5 shows the results with different volume packing 

fractions from 5.76% (pebble bed reactor) to 28.92% (prismatic type reactor).  
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Figure 4.5 Chord length PDFs between two absorbers 

 

All the PDFs start from chord length 2d = 2(R-r) = 0.043 cm, which is as 

expected.  They quickly increase to a peak value and then decay exponentially for long 
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chord lengths. The log scale plot verifies that the chord length PDF is well approximated 

by an exponential distribution and may be used for the calculation of the Dancoff factor.  

4.3.4.3 Benchmark calculations for intra- and inter-pebble Dancoff factors for 

pebble-bed VHTRs 

Two concentric spheres (Figure 4.6) were set up to model the fuel pebble in the 

pebble-bed reactor. The inner sphere represents the fuel region filled with stochastically 

distributed fuel particles. Its radius is fixed at R1=2.5cm. The outer spherical shell 

represents the moderator region with outer radius R2 that is approximately 3.0cm but may 

change depending on the ratio of the fuel region and moderator region in a pebble-bed 

reactor. This geometry is used to calculate both the intra-pebble and inter-pebble Dancoff 

factors.  

For the intra-pebble Dancoff factor, from 5K to 70K fuel particles were packed 

inside the fuel region using the RSA algorithm, the actual number dependent on the 

packing fractions which range from 2.00% to 25.00%. Neutrons are emitted uniformly 

from the surface of 1000 sampled fuel kernels with a cosine current distribution. The 

number of neutrons that successfully reach another fuel kernel without having a collision 

was tallied, and the Dancoff factor is the ratio of this number to the total number of 

neutrons emitted. Neutrons leaking out of the fuel region without a collision were 

rejected. A total of 100 physical realizations were performed, and 10M neutrons were 

emitted per realization. The final Dancoff factor was ensemble-averaged over the 100 

realizations.   

For the inter-pebble Dancoff factor, the same configuration was set up as for the 

intra-pebble calculation, except that a white boundary condition was set on the outer 
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spherical surface. The packing fraction was fixed at 5.76%, but R2 was adjusted from 

3.0cm to 6.0cm. Neutrons were emitted from the surface of fuel particles and traveled 

through the fuel region and moderator shell region. Only those neutrons that reentered the 

fuel region at least once and encountered another fuel particle without colliding with a 

moderator were tallied. The ratio of this number to the total number of neutrons emitted 

is the inter-pebble Dancoff factor.   

4.3.4.4 Benchmark calculations for intra-compact and inter-compact Dancoff 

factors for prismatic VHTRs 

A hexagonal lattice structure was set up to model a fuel compact cell in the 

prismatic VHTR (Figure 4.6). The cylindrical fuel compact region has radius Rc = 0.6225 

cm and the outer hexagonal graphite region has a flat-to-flat distance 2P = 2.196 cm. 

Both infinite cylinders and finite cylinders were modeled.  

For the infinite cylinder, the height was H = 200 cm with reflecting boundaries on 

the top and bottom. Fuel particles were randomly packed inside the cylinder with packing 

fractions from 2.00% to 28.92%. The packing fraction 28.92% was chosen for the inter-

compact Dancoff factors. Only P was adjusted, from 1.098cm to 2.0cm. Then 10M 

neutrons were emitted per realization and 100 realizations were simulated, similar to the 

pebble-bed analysis. 

For the finite cylinder, the packing fraction was fixed at 28.9% and H was 

adjusted from 2cm to 100cm for both intra-compact and inter-compact Dancoff factor 

computations. The other settings were the same as for the infinite cylinder case. 
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Figure 4.6 Monte Carlo simulation models for fuel pebble and fuel compact cells 
 

4.3.5 Analytical Dancoff factors and comparison with benchmark results 

Geometry and composition quantities used in the analytical calculations and 

Monte Carlo simulations are listed in Table 4.1. The geometry quantities are from a 

NGNP report [2], and cross section data are from the BNL website [32] evaluated at 

resonance energy 6.67ev.  

Table 4.1 Quantities of parameters 
 

Parameters Quantities Unit 

r 0.0175 cm 

R 0.0390 cm 

2d = 2(R-r) 0.043 cm 

1/λ 0.4137 cm-1 

 

4.3.5.1 Analytical infinite medium Dancoff factors   

• Using single-sphere model 

Table 4.2 includes Dancoff factors predicted with Eq. (4.27), which is the single-

sphere model. The results are surprisingly good being within 1.1% for all volume packing 

R1
R2 

Rc 

P

H
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fractions, with somewhat better results for higher packing fractions. Interestingly, all the 

predicted Dancoff factors are higher than the benchmarks. 

 
Table 4.2 Analytical results with single-sphere model compared to benchmark results 

 

Volume 
Packing 

Fractions 

Analytical 
Formula Results 

Cs,∞  
Eq. (4.27) 

Monte Carlo 
Benchmark 

Results CB (1σ) 

Differences 
Cs,∞- CB 

Relative 
Error 

(Cs,∞- CB)/ 
CB 

0.0576 0.3515 0.3477 (.0002) 0.0038 1.09% 
0.10 0.4857 0.4820 (.0002) 0.0037 0.77% 
0.15 0.5873 0.5841 (.0002) 0.0032 0.55% 
0.20 0.6559 0.6534 (.0001) 0.0025 0.38% 
0.25 0.7054 0.7029 (.0001) 0.0025 0.35% 

0.2892 0.7353 0.7331 (.0001) 0.0021 0.30% 
 
 

• Using dual-sphere model  

Table 4.3 includes results for the same cases as in Table 4.2, but using the dual-

sphere model, Eq. (4.61) for the Dancoff factor. Contrary to the results in Table 4.2, the 

Dancoff factors are all under-estimated (within 1.5%) with the dual-sphere model and the 

results are better for low volume packing fractions. 

 
Table 4.3 Analytical results with dual-sphere model compared to benchmark results 

 

Volume 
Packing 

Fractions 

Analytical 
Formula Results 

Cd,∞ 

Eq. (4.61) 

Monte Carlo 
Benchmark 

Results CB (1σ) 

Differences 
Cd,∞- CB  

Relative 
Error 

(Cd,∞- CB)/ 
CB 

0.0576 0.3453 0.3477 (.0002) -0.0024 -0.69% 
0.10 0.4772 0.4820 (.0002) -0.0048 -1.00% 
0.15 0.5770 0.5841 (.0002) -0.0071 -1.22% 
0.20 0.6444 0.6534 (.0001) -0.0090 -1.38% 
0.25 0.6929 0.7029 (.0001) -0.0100 -1.42% 

0.2892 0.7223 0.7331 (.0001) -0.0108 -1.47% 
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4.3.5.2 Calculation of Dancoff factors with empirical chord length PDFs 

The introduction of the chord length PDF makes the Dancoff factor calculation 

succinct and mathematically simple. However, it is still worth studying the accuracy of 

this approach, i.e. how accurate is Eq. (4.8) if a known PDF is used. To address this, a 

separate calculation was performed to verify the consistency of the Dancoff factor 

calculation and the simulated chord length PDFs. Eq. (4.8) is an exact expression for the 

Dancoff factor in term of the fuel particle chord length PDF. Therefore, if the empirical 

PDF was used in Eq. (4.8), the resultant Dancoff factor should be equal to the benchmark 

Dancoff factors obtained by Monte Carlo simulation.  

Table 4.4 compares these two estimates of the Dancoff factors and the agreement 

is within 0.3%, with no observable trend with packing factor. We conclude that our 

methodology for estimating Dancoff factors and estimating chord length PDF’s, is 

reasonable and self-consistent. 

 
Table 4.4 Analytical results from Eq. (4.8) using simulated PDF compared to benchmark 

results 
 

Volume 
Packing 

Fractions 

Analytical Formula 
Results ,AC ∞  

Eq. (4.8) 

Monte Carlo 
Benchmark Results 

,BC ∞ (1σ) 

Differences 
, ,A BC C∞ ∞−  

Relative 
Error 
, ,

,

A B

B

C C
C

∞ ∞

∞

−

 
0.0576 0.3471 0.3477 (.0002) -0.0006 -0.17% 

0.10 0.4810 0.4820 (.0002) -0.0010 -0.21% 

0.15 0.5827 0.5841 (.0002) -0.0014 -0.24% 

0.20 0.6516 0.6534 (.0001) -0.0018 -0.27% 

0.25 0.7014 0.7029 (.0001) -0.0015 -0.21% 

0.2892 0.7316 0.7331 (.0001) -0.0015 -0.20% 
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4.3.5.3 Analytical intra-pebble and inter-pebble Dancoff factors 

In this section, analytical intra-pebble and inter-pebble Dancoff factors are 

compared with Monte Carlo benchmark simulations.  

• Intra-pebble Dancoff factors 

Results are compared at different volume packing fractions ranging from 2.00% 

to 25.0%. Numerical data for both single-sphere and dual-sphere models are plotted in 

Figure 4.7, along with the Monte Carlo benchmark results. 
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Figure 4.7 Comparison between analytical and Monte Carlo intra-pebble Dancoff factors 
 

 
Figure 4.7 shows that the single-sphere model gives better results than the dual-

sphere model over the range of volume packing fractions. At lower packing fractions, 

however, both models give poor results. With increasing packing fraction, the single-

sphere model gives better results especially beyond 20.0%.   

• Inter-pebble Dancoff factors 
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For inter-pebble Dancoff factors comparisons, we fixed the volume packing 

fraction at 5.76%. The outer radius R2 of the fuel pebble was varied by changing the ratio 

R2/R1 from 1.2 to 2.4. The results are plotted in Figure 4.8. 
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Figure 4.8 Comparisons between analytical and Monte Carlo inter-pebble Dancoff factors 
at packing fraction 5.76% 

 
 

It can be seen that both models give excellent results, with good agreement with 

Monte Carlo results for different values of R2/R1. It should be noted that this agreement is 

partly due to an accurate calculation of P2, which is the average probability that a neutron 

escaping from the fuel region in a pebble enters the fuel region in another pebble without 

collision. We used direct Monte Carlo simulation to get P2. To illustrate the importance 

of this, we also used an approximate expression given in Eq. (4.55) to calculate P2 and 

the results are compared in Table 4.5. 
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Table 4.5 Comparisons of P2 using Eq. (4.55) and Monte Carlo method 
 

R2/R1 (R1=2.5cm) P2 [from Eq. 
(4.55)] P2 [from Monte Carlo] 

1.2 0.4990 0.4406 

1.4 0.2937 0.1996 

1.6 0.1898 0.0945 

1.8 0.1305 0.0466 

2.0 0.0939 0.0238 

2.2 0.0699 0.0125 

2.4 0.0535 0.0067 
 
 

Although a white boundary was set on the outer surface of the fuel pebble, the 

assumption of an exponential distribution function for H(S) does not give a correct value 

of P2 using Eq. (4.55). When we studied the microsphere particles distributed 

stochastically in the moderator, the assumption of an exponential chord length PDF 

between microspheres yields very good results for infinite medium Dancoff factors. 

However, when we used the same assumption for fuel pebbles within a VHTR core, 

inaccurate results were obtained, which indicates that the assumption of an exponential 

chord length PDF between two pebbles is not valid. 

4.3.5.4 Comparison of fuel pebble Dancoff factors with Bende’s results  

• Intra-pebble Dancoff factors 

We also used Monte Carlo benchmark results from Bende et al. (see Fig. 7 in 

reference [48]) to verify the analytical results from Eq. (4.35) (single-sphere model) and 

Eq. (4.63) (dual-sphere model) to calculate average inter-pebble Dancoff factors for fuel 
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kernels in a fuel pebble. The parameters used by Bende are listed in Table 4.6 and the 

results are presented in Table 4.7. 

 
Table 4.6 Quantities of parameters used by Bende et al 

 

Parameters Quantities Unit 

r 0.01&0.025 cm 

2d = 2(R-r) 0.021 cm 

(R1)nom 2.5 cm 

1/λ 0.4097 cm-1 

 
 
 

Table 4.7 Results comparison for average Dancoff factor in a fuel pebble 
 

1 1/( )nomR R  1R  (cm) 

Results with 
single-sphere 

model 
______

,/intra sC C ∞  

Results with 
dual-sphere 

model 
______

,/intra dC C ∞  

Benchmark 
results from 

Bende
______

,/intra dC C ∞  
0.01r cm=  1.65%frac =  

2.00 5.0 0.75 0.74 0.72 

1.00 2.5 0.57 0.56 0.55 

0.50 1.25 0.37 0.36 0.34 

0.25 0.625 0.22 0.20 0.19 

0.025r cm=  8.59%frac =  

2.00 5.0 0.89 0.88 0.88 

1.00 2.5 0.79 0.77 0.79 

0.50 1.25 0.62 0.60 0.61 

0.25 0.625 0.42 0.39 0.39 
 

Generally speaking, both single-sphere and dual-sphere models give good results. 

It is interesting to see that although the benchmark results were obtained from an MCNP 
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lattice model [48], while our analytical results are based on a stochastic distribution 

model, they are reasonably close to each other. However, when we compare our 

analytical results with our Monte Carlo benchmark results based on a RSA stochastic 

model, the agreement is not very good for the lower packing fractions. This contradiction 

indicates that the Dancoff factor is very sensitive to the packing scheme when the fuel 

particles in a fuel pebble are modeled at realistic lower packing fractions. This in turn 

indicates that the simulation results will depend on the fuel pebble manufacture process. 

• Inter-pebble Dancoff factors 

We will use the Monte Carlo benchmark results of Bende et al. (see Fig. 8 in 

reference [48]) to verify our analytical results for average inter-pebble Dancoff factors for 

fuel kernels  using single-sphere and dual-sphere models. Bende used a fuel pebble model 

with a white boundary to represent randomly packed fuel pebbles in an infinite medium. 

For each fuel pebble, the radius of the fuel region was fixed at R1=2.5cm, and the radius 

of the fuel pebble R2 was adjusted to be 1.0R1, 1.1R1, 1.2R1, 1.5R1 and 3.0R1. Within a 

fuel pebble, the fuel particles were modeled as a lattice structure. The average Dancoff 

factor normalized to the infinite medium Dancoff factor /C C∞  is given as a function of 

2 1/R R  and 
______ ______

intra interC C C= + . The analytical results for both single-sphere and dual-

sphere models were compared with these benchmark results in Table 4.8.  
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Table 4.8 Results comparison for average Dancoff factor between fuel pebbles 

 

R2/R1 

Analytical 
results using 
single-sphere 

model 
______ ______

,

intra inter

s

C C
C ∞

+  

Analytical 
results using 
dual-sphere 

model 
______ ______

,

intra inter

d

C C
C ∞

+  

Benchmark 
results from 

Bende  
______ ______

intra interC C
C∞

+  

0.01r cm=  1.65%frac =  

1.0 1 0.97 1 

1.1 0.84 0.82 0.84 

1.2 0.76 0.74 0.72 

1.5 0.65 0.63 0.605 

3.0 0.58 0.56 0.55 

    

0.025r cm=  8.59%frac =  

1.0 1 0.98 1 

1.1 0.93 0.92 0.935 

1.2 0.89 0.88 0.87 

1.5 0.83 0.82 0.84 

3.0 0.79 0.78 0.8 
 
 

It can be seen that both models give good agreement. It is worth discussing the 

case when R2/R1 = 1.0. This corresponds to the infinite medium case, i.e. fuel particles 

are distributed in an infinite background medium. In this case the sum of the intra-pebble 

and inter-pebble Dancoff factors should equal the infinite medium Dancoff factor, or 

______ ______

( ) / 1intra interC C C∞+ = . The single-sphere model predicts this value exactly while the 

dual-sphere model does not. If we look back at the definitions of 
______

,/intra xC C ∞ , P1,x, P2,x, 

P3,x, and Pt,x (x = s or d), some relations among them should hold. In particular,  
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______

1,, 1
intra

xx

C P
C ∞ = −  (4.65) 

 
and  

 3,
,, 1x

t xx

P
P

C ∞ = −  (4.66) 

  
The single-sphere model preserves these relations by inspection of Eqs. (4.31), 

(4.46), (4.47) and (4.48). However, it can be shown that the dual-sphere model does not 

satisfy these relations exactly, indicating that the expression for the Dancoff factor based 

on the dual-sphere model may not be accurate. Eqs. (4.65) and (4.66) suggest an 

approach to improve the dual-sphere model or develop alternative models accounting for 

the coating regions. Future research will focus on this topic. 

4.3.5.5 Analytical intra-compact and inter-compact Dancoff factors 

According to the description of the previous section, intra-compact and inter-

compact Dancoff factors were calculated by Monte Carlo simulation and compared to our 

analytical results. Results will be given for infinite cylinder and finite cylinder 

configurations. 

4.3.5.5.1 Infinite cylinder 

Results are shown for infinite cylinder Dancoff factors in this section. 

• Intra-compact Dancoff factors 

Results are compared at different volume packing fractions ranging from 2.00% 

to 28.92%. Numerical data in both single-sphere and dual-sphere models are plotted in 

Figure 4.9, along with the Monte Carlo results. 
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Figure 4.9 Comparison between analytical and Monte Carlo intra-compact Dancoff 
factors for infinite height compacts (nominal packing fraction is 28.9%) 

 
 

It is interesting to see that the single-sphere model underestimates the results and 

dual-sphere model overestimates the results compared to the benchmark Monte Carlo 

simulations over all packing fractions. This is similar to the results for the infinite 

medium Dancoff factors. The dual-sphere model yields better results than the single-

sphere model for lower packing fractions but is worse at higher packing fractions. In 

general, the single-sphere model gives good acceptable results for the entire range of 

packing fractions.  

• Inter-compact Dancoff factors 

The volume packing fraction of the fuel particles is fixed at 28.92% for the inter-

compact Dancoff factor computation, while the flat-to-flat distance of the hexagonal 

moderator cell was varied. The results are presented in Figure 4.10. 
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Figure 4.10 Comparisons between analytical and Monte Carlo inter-compact Dancoff 
factors at packing fraction 28.9% 

 

Similar to what we have seen with the inter-pebble Dancoff factor results, both 

models predict the inter-compact Dancoff factors reasonably well and the single-sphere 

model gives better results overall. It is noted that the analytical results calculate P2 from 

an inexpensive Monte Carlo simulation. To assess the validity of our analytical 

expression for P2, Table 4.9 compares P2 as from Eq. (4.59) with the Monte Carlo results. 

 
Table 4.9 Comparisons of P2 using Eq. (4.59) and Monte Carlo method 

 

P(cm) P2 [from Eq. 
(4.59)] P2 [from Monte Carlo] 

1.097875 0.4442 0.4022 

1.2 0.3853 0.3334 

1.4 0.2978 0.2295 

1.6 0.2360 0.1607 

1.8 0.1911 0.1140 

2 0.1575 0.0820 
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The results in Table 4.9 indicate that the exponential assumption for the chord 

length PDF H(S) between two fuel compacts, which leads directly to the expression for 

P2 in Eq. (4.59), is questionable. This assumption leads to a large overestimation in P2, 

especially when the ratio of the fuel compact region to the lattice region is large. 

Although these results are not reported here, the inter-compact Dancoff factors using the 

analytical expression for P2 are consistent with the poor estimation of P2. This shows that 

an accurate estimation of P2 plays an important role in the inter-compact Dancoff factors 

as it did earlier with the calculation of inter-pebble Dancoff factors. 

4.3.5.5.2 Finite cylinder 

Let us now consider the calculation of Dancoff factors for finite cylinders. In this 

section, we will show the results of intra-compact and inter-compact Dancoff factors for 

finite cylindrical compacts using analytical and Monte Carlo methods. For both Dancoff 

factor calculations,  the volume packing fraction of fuel particles is fixed at 28.92% 

within the compact and the height of the hexagonal cell is varied from 2*D to 100*D, 

where D is the diameter of the fuel compact. 

 
• Intra-compact Dancoff factors 

The following Figure 4.11 shows the results for the intra-compact Dancoff factors 

as a function of compact height. Similar to the intra-compact Dancoff factor for an 

infinite medium, the single-sphere model overestimates and the dual-sphere model 

underestimates the results, over the range of heights. Overall, the single-sphere model 

gives significantly more accurate results than the dual-sphere model, as can be seen from 

the plot. 
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Figure 4.11 Comparisons between analytical and Monte Carlo intra-compact Dancoff 
factors for finite height compacts 

 
 
• Inter-compact Dancoff factors 

Results are shown in Figure 4.12. We can see when the ratio of height to diameter 

is small, less than 10, both the single-sphere and dual-sphere model give very poor 

results, significantly overestimating the inter-compact Dancoff factor. Once this ratio 

becomes larger than 20, the agreement is much better and the single-sphere model gives 

excellent agreement with Monte Carlo simulations. In practice, when we analyze the fuel 

compact, the ratio is normally about 64 and within the accurate results range.  
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Figure 4.12 Comparisons between analytical and Monte Carlo inter-compact Dancoff 
factors at packing fraction 28.92% 

 
 

4.3.5.6 Final remarks on Dancoff factor models 

In section 4.3.5, numerical results based on the analytical formulas for Dancoff 

factors derived in section 4.3.2 were compared with Monte Carlo benchmark results 

based on the RSA algorithm. Those comparisons are for both pebble-bed and prismatic 

VHTRs.  

Overall, the single-sphere model gives better accuracy than the dual-sphere 

model, especially in predicting the intra-pebble and intra-compact Dancoff factors. This 

was explained by noting that basic collision probability relationships were satisfied by the 

single-sphere model but not the dual-sphere model. However, the single-sphere model 

does not account for the coating regions, which would seem to be important. This 

indicates a potential line of inquiry to improve the existing dual-sphere model, which is 

physically more satisfying than the single-sphere model, or to find another model which 
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does satisfy the basic collision probability relationships and accounts for the presence of 

the coating regions. 

The importance of the actual packing geometry was seen in the analysis of the 

intra-pebble Dancoff factors. Our analytical model, predicated on the PDF for a 

stochastic medium, gave worse results than a lattice-based Monte Carlo simulation, when 

compared to a Monte Carlo benchmark of the stochastic medium. This phenomenon 

suggests that the packing schemes for stochastic media have a strong impact on the 

simulation and this in turn implies that the manufacturing process, if it affects the packing 

geometry, may have a strong impact on the simulation results. Determination of how to 

set up a benchmark simulation model which is closest to the actual packing geometry 

would be very helpful for obtaining accurate simulation results and would be useful for 

assessing the analytical model. 

In predicting the inter-pebble and inter-compact Dancoff factors, both single-

sphere and dual-sphere models give good agreement with benchmark results. This is due 

to the minor impact of the coating region of fuel particles on the inter-volume 

computations. In this case, the first-flight escape probability (P2) for a pebble or compact 

plays a much more important role. 
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CHAPTER 5 

Random Packing of Microspheres  

5.1 Introduction 

In previous chapters, the RSA algorithm has been used to generate physical 

realizations of a stochastic medium filled with randomly dispersed TRISO fuel particles, 

or microspheres. Those physical realizations were used for benchmark computations. 

Some comparisons between analytical and Monte Carlo results have indicated that 

different packing schemes can give markedly different Monte Carlo simulation results. 

For instance, when we compared the intra-pebble and inter-pebble Dancoff factors with 

the Monte Carlo benchmark results, the analytical results gave poor agreement with our 

own benchmark based on an RSA-based simulation model, but there was good agreement 

with the benchmark results of Bende et al. [48] based on a lattice structure simulation 

model.  

The discrepancy of benchmark results using different packing models indicates 

the need for research on packing schemes for stochastic media and their impact on the 

neutronic analysis. This is particularly true for VHTR designs, where the different 

methods for packing identical microspheres yield different statistical properties and give 

different simulation results. From an engineering point of view, the experimental result is 

the most important benchmark. In this sense, the study of stochastic packing of fuel 

particles is important for finding the most suitable model that matches the real 
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distribution of fuel particles in the stochastic media and also gives the closest results to 

experimental measurements if those data can be obtained.  

The study of randomly packed microsphere is a very general broad topic covering 

many fields in science and engineering such as crystallography, biology, statistics, solid 

physics, and chemistry [36], going well beyond the field of nuclear engineering 

applications. In the dissertation, we only explored some basic properties and simple 

packing models closely related to VHTR neutronic analysis. The following is a general 

literature review conducted with the hope that it will be a good source for future research 

work in packing schemes for stochastic media. 

In this chapter, different packing schemes, based on lattice structure, jiggling 

algorithms, and RSA structure, are examined. The latter two are referred to as stochastic 

distribution packing schemes. In each structure, two volume packing fraction (VPF) cases 

are investigated: 28.92% and 5.76%, corresponding to prismatic and pebble bed VHTRs. 

The chord length PDF between two microspheres is obtained as a statistical 

measurement that shows the differences among different packing schemes. The impact of 

packing on the neutronic analysis is also studied in terms of infinite medium Dancoff 

factor calculations for a single fuel kernel. These benchmark results may be very useful 

for checking the computational accuracy of approximate models, such as chord length 

sampling [17,55], used to analyze VHTR configurations. 
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5.2 Review of Previous Work Related to Random Packing of Equal Spheres 

5.2.1 Random packing and description of geometrical statistics  

Research on the random packing of hard spheres was originally performed when 

people studied geometrical models to represent the structure of liquids 

[70,71,72,73,74,75]. Many important concepts were proposed in early years but are still 

significant today in research on stochastic media. The basic quantities that describe a 

random system include: average density (especially the upper limit in random close 

packing), the distribution of numbers of neighbors (or the average number of contacts) in 

random close/loose packings, radial distribution functions (now superseded by the term 

“nearest-neighbor function”), pair correlation function (it equals the nearest-neighbor 

function minus one), and the chord length probability density function. Detailed 

definitions of these distributions can be found in the early papers mentioned above and a 

recent book written by Torquato [36]. The early pioneer J.D. Bernal gave a classical 

lecture [76] summarizing the experimental and theoretical progress made through 1964, 

which drew people’s attention to a new subject he called “statistical geometry”. In his 

works, only the high-density state or random close-packing was thoroughly studied from 

a pure geometrical perspective. No physical or thermodynamic considerations were 

accounted for. Later, Finney [77] presented a polyhedral analysis of the random packing 

model using basic statistical descriptors and took a further step towards establishing the 

new science “statistical geometry”. Subsequently, many researchers followed these early 

works to expand the basic ideas of stochastic modeling into many science and 

engineering fields, such as the modeling of the atomic arrangements for noncrystalline 
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metallic solids [78], amorphous metals [85], and stochastic fuel for nuclear reactor cores 

[15].  

5.2.2 Computer simulation of random packing 

Corresponding to the development of experimental work and geometrical 

statistical analysis on random media, computer simulation experienced a long 

development period and is playing an important role today in modeling and studying 

stochastic structures. Generally speaking, two types of random packing schemes exist: 

sequential deposition schemes and collective rearrangement schemes. In sequential 

deposition packing, each hard sphere is placed randomly in a container one at a time and 

all the previous spheres previously placed in the container will affect the placement of the 

new sphere, in addition to other constraints imposed by the size of the container or 

gravity, for example. According to the restrictions placed on the new sphere, several 

algorithms exist in the sequential deposition schemes and will be explained below. In 

collective rearrangement packing, the center points of all the spheres are generated 

randomly at the start of the process and then a collective rearrangement procedure is 

performed to eliminate overlapping among all the spheres generated initially and to 

satisfy other constraints as needed. Several algorithms exist which typically are different 

due to the different procedures to eliminate overlapping spheres, and these will be 

explained later.  

In 1959, in one of the earliest applications, Bernal tried a Monte Carlo approach 

to model close-packed liquids created by compression from gas [70]. This was the first 

example of a collective rearrangement method. In 1967, Mason presented some statistical 

results from using this simulation approach [79]. The process to eliminate overlapping 
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was a little more complex, manipulating two overlapped spheres to move apart along the 

line between their centers or to increase the sphere size slightly after the elimination 

procedure. The elimination and size change procedures were alternately repeated until a 

high volume packing fraction was reached. Finney used the same algorithm to give more 

interesting results in 1976 [83]. In 1985, a new algorithm was proposed by Jodrey and 

Tory [84] based on the previous collective rearrangement process. The major change is 

that during each step only the worst overlap was removed between two spheres and a 

subtle radius shrinking process was indirectly applied to facilitate the removal of 

overlaps. Before that work, overlapping removal and radius change were separate steps. 

Two years later, Clarke and Wiley [85] published another collective rearrangement 

algorithm. In this algorithm, the moving direction of a sphere to eliminate overlapping 

was the vector sum of all the coordinates of spheres with which the moving sphere is 

overlapped, and a vibrating (jiggling) process was utilized to prevent convergence to a 

low-density packing. This new algorithm was successfully applied to equal and unequal 

spheres. Based on Clarke and Wiley’s work, Murata et al.[15] employed a random vector 

synthesis method to calculate the moving direction of a sphere in removing the 

overlapping and successfully obtained a high packing density in modeling the spherical 

fuel particles in a high temperature gas-cooled reactor fuel. 

For sequential deposition packing, several algorithms were proposed by many 

researchers as early as 1960. All the algorithms start with a seed cluster (the first 

deposited sphere or several spheres on the vertices of a polyhedron structure) and then the 

other spheres are brought in one at a time according to some criteria. In 1972, Bennett 

[80] studied two models of deposition depending on two criteria: the first is a “global” 
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criterion that a new sphere should be deposited at a site nearest to the original starting 

seed cluster center and the second is a “local” criterion that the new sphere should be 

deposited at a site which has the least distance to the three other contacted spheres. In 

either criterion, three contacts were required for each new sphere. Meanwhile in another 

paper, Visscher and Bolsterli [81] presented a different algorithm in which the additional 

deposition was influenced by a vertical gravitational force. The new sphere position was 

randomly selected at the top and dropped down following a vertical path to the stable 

position, which has stable contacts with three other spheres already packed. Later this 

method was called the “ballistic deposition model”. In the same year, a very interesting 

deterministic algorithm was given by Adams and Matheson [82] using a tetrahedral 

structure to admit new spheres on vertices. Although the approach is deterministic, the 

packing shows the same statistical properties as the close random packing. In 1992, 

Jullien et al. [86] published a paper summarizing all the previous sequential deposition 

models and gave a comparison among them in terms of several basic statistical quantities 

such as density and radial distribution functions.  

The above algorithms, categorized as either collective rearrangement or sequential 

deposition, are mainly for random close packing, which means at very high packing 

density up to 63%-64%. In some practical applications, random close packing is only the 

first step, and then additional steps need to be taken to decrease the packing density, such 

as done by Murata for modeling particle fuel in a VHTR [15]. For low packing density 

systems, say less than 30%, can we directly use some algorithm to generate a random 

system? The answer is definitely YES. As early as 1962, Bernal [76] introduced a method 

to generate sequentially coordinates of sphere centers at random, but each new sphere 
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was prohibited from overlapping with others already generated. As he said, the method 

was a random model, but it was far from being a close packing. However, this gave a 

good indication that we may use it to generate low packing density random systems. 

Later people called this sphere packing process “Random Sequential Addition” (RSA). In 

1966, Widom [24] compared the system generated using RSA with a system in 

thermodynamic equilibrium. The highest packing density (“jammed density”) was given 

analytically. The RSA algorithm is still used widely because of its simplicity. It is worth 

mentioning that Brown [31] proposed a fast RSA algorithm that requires a computing 

time of O[N], where N is the total number of spheres. 

5.3 Impact of Random Packing on Benchmark Calculations 

In VHTR analysis, random mixtures of identical spheres are encountered because 

the fuel particles are hard spheres and are randomly distributed in a graphite matrix. 

Many simulation packing methods have been proposed to model the arrangement of these 

fuel particles, including lattice and random structures. [11,12,20,21].  

In the introduction to this chapter, we mentioned three major packing structures 

were used for the analysis of particle fuel: body-centered lattice structure, a “jiggled” 

lattice structure, and a random RSA structure. These models were compared using two 

quantities: the chord length PDF between two fuel particles and the infinite medium 

Dancoff factor for a fuel particle.  

Among these three structures, we believe the jiggled model would be the one 

closest to the real structure if the fuel particle distribution is deemed homogeneous and 

isotropic in the graphite matrix background. For example, Murata [15] associated the 

modeling of fuel particles with the manufacturing process with two steps. The first step 
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was modeling a random close packing of graphite overcoated fuel particles, and the 

second step was to shrink the oversized fuel particles back to normal size by removing 

the graphite and letting it become part of the matrix. According to Murata, the resultant 

distribution was more homogeneous and more isotropic. A jiggled lattice structure can 

produce a similar distribution and to some extent mimics the manufacturing process. The 

detailed description is given in the following sections. 

5.3.1 Alternative packing structures for stochastic mixtures of microspheres 

Figure 5.1 illustrates the basic procedure used to realize different packing 

structures. A small cubic lattice element consisting of a microsphere fuel particle at the 

center was sized to preserve the packing fraction of fuel particles in the graphite matrix. 

About 20M fuel particles are modeled in the configuration. In order to realize a random 

distribution, each fuel particle is jiggled a little from its original position for each 

realization of the stochastic geometry. As shown in Figure 5.1, the random displacement 

is controlled by a series of local sampling processes, i.e. the position of the center of each 

fuel particle is uniformly sampled within a spherical region with radius R in each 

realization. The process sweeps over every fuel particle, and no overlapping is allowed. 

By adjusting R (typically a multiple of R) from small values to large values, the 

distribution of fuel particles will look more random and homogeneous. With increasing 

R, a fuel particle may cross the boundary of a lattice box. 
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Figure 5.1 From lattice to jiggled lattice structure 
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Lattice Structure                 Jiggling within 1.0*Rs                  RSA Structure  
 

Figure 5.2 Microsphere distribution in different packing schemes 
 

Figure 5.2 shows a direct visual comparison among lattice, jiggling and RSA 

structures in a 3D physical realization. It is clear from the Figure 5.2 that jiggling makes 

the distribution more homogeneous and isotropic than RSA. In particular, the RSA model 

results in clumping of the fuel particles while the jiggling process inhibits this from 

occurring. 

Lattice, jiggled lattice, and RSA structures were compared by analyzing a fuel 

particle geometry including fuel kernel and coating regions taken from the NGNP report 

[2]. Two packing fractions were studied, 28.92% and 5.76%.  A ray-tracing method was 

employed to calculate both the chord length PDFs and the infinite medium Dancoff 

factors for each of the structures. For the random structures (jiggled lattice and RSA), a 
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total of 100 realizations were generated, and the chord length PDF and Dancoff factor 

results were ensemble-averaged over the 100 realizations.  

5.3.2 Chord length PDFs between microspheres 

Figure 5.3 shows the PDFs of chord length between fuel particles at 28.92% and 

5.76% packing fractions, corresponding to prismatic and pebble bed VHTRs. 
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Figure 5.3 PDF of chord length between microspheres 
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It is interesting that all the curves behave like a damped oscillator except the RSA 

model. The lattice model has the most oscillatory curve and the oscillations are damped 

as the amount of jiggling increases, converging to the RSA curve in an oscillatory 

manner. 

Another interesting phenomenon is that for increasing chord length, all the PDFs 

tend to the RSA curve. We have shown earlier [87] that the decaying part of the RSA 

curve is exponential, so we can conclude that for large chord lengths with packing 

fractions characteristic of VHTR particle fuel distributions, the PDF is an exponential 

function regardless of the packing scheme. 

5.3.3 Infinite medium Dancoff factors for microspheres 

Table 5.1 presents the resultant Dancoff factors for each of the three packing 

structures at the two packing fractions.  

 
Table 5.1 Dancoff factors for different packing schemes 

 

Packing Scheme  Dancoff Factor (1 σ) 

5.76% VPF 

Lattice Structure  0.3299 (0.0001) 

0.5Rs 0.3324 (0.0001) 

1.0Rs 0.3363 (0.0001) 

2.0Rs 0.3375 (0.0001) 
Jiggled Lattice Structure  

3.0Rs 0.3386 (0.0001) 

RSA Structure  0.3477 (0.0002) 

28.92% VPF 

Lattice Structure  0.7314 (0.0001) 

Jiggled Lattice Structure  .25Rs 0.7291 (0.0001) 
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.33Rs 0.7284 (0.0001) 

.40Rs 0.7279 (0.0002) 

.50Rs 0.7275 (0.0001) 

RSA Structure  0.7331 (0.0001) 
 

The results show that the fuel particle arrangement has a significant effect on the 

neutronic analysis. For example, for 5.76% VPF, the Dancoff factor increases by 3% 

from a lattice to a highly jiggled lattice, but this is still 3% less than the RSA value. On 

the other hand, the opposite trend is observed for the 28.92% VPF case where the 

Dancoff factor decreases by about .5% with increasing jiggling in the lattice structure. 

Since the Dancoff factor has a strong effect on the resonance self-shielding, these 

changes will have a significant effect on keff for a VHTR configuration. This implies that 

the manufacturing process for packing the fuel particles into the fuel compact or fuel 

pebble has a strong effect on the neutronic analysis of the reactor. Modeling fuel particles 

in VHTR using a realistic packing scheme that represents the manufacturing process 

would yield more accurate neutronic analyses.   
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CHAPTER 6 

Summary and Conclusions 

6.1 Summary and Conclusions 

For the analysis of VHTR systems, the well-known “double heterogeneity” and 

the stochastic distribution of fuel microspheres present substantial challenges to the 

conventional neutronic analysis methods. In this dissertation, these challenges are 

addressed by developing a methodology for analyzing microspheres that will be accurate 

enough in both static and time-dependent configurations and yet efficient enough to be 

used for routine analyses. This effort includes creation of a new physical model, 

development of a simulation algorithm, and application to real reactor configurations 

with comparison to benchmark results. 

The thesis starts with a general neutronic analysis for a prismatic type VHTR 

using the MCNP5 Monte Carlo code and the coupled depletion code ORIGEN 

(Monteburns). The explicit modeling of VHTR configurations with these tools has been 

performed for configurations ranging from a microsphere cell to a fuel compact cell to 

full core. The following conclusions are made:  

(1) The effect of the double heterogeneity needs to be accounted for by explicitly 

modeling the fuel microspheres.  
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(2) It is acceptable to model the particle fuel as a lattice of microsphere cells that 

preserves the packing fraction. Moreover, one can place the microspheres at the center of 

the cubical cells with acceptable results.  

(3) Satisfactory results are obtained by using a two-region model to represent the 

six physical regions in the microsphere cell.  

(4) It is important (and straightforward) to avoid clipped cells for both the fuel 

compact calculations and full-core calculations.   

(5) The random distribution of fuel particles has a small effect on the criticality 

for full core calculations (~ 0.15% Δk) with packing fractions characteristic of prismatic 

VHTRs (28.92%) hence the impact of different random packing schemes is small. The 

consequence of this is that the microspheres can be modeled on a lattice with acceptable 

results. In pebble-bed reactors, however, the low packing fraction (~5.76%) will result in 

the random packing scheme having a larger impact on the results. In any event, it is 

essential to model the stochastic distribution of fuel particles to obtain an accurate 

neutronic analysis of a VHTR. 

(6) The analysis of the VHTR with full heterogeneous geometry with MCNP5 is 

computationally expensive. Even with a two-region microsphere model, a full-core 

MCNP5 calculation is time-consuming. If depletion is added, the computational demand 

increases rapidly, and traditional Monte Carlo methods are not practical for routine 

analysis. To address this computational challenge, new models and algorithms need to be 

developed for VHTR neutronic analysis.  

As a result, an alternative method, chord length sampling (CLS), was examined to 

reduce the computational burden associated with analog Monte Carlo simulation, yet 
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retaining its accuracy. We have improved on the existing CLS method, developed for 1D 

and 2D geometry, and have used it to analyze stochastic media representative of VHTR 

cells: a fuel compact cell and a fuel pebble cell. These analyses include general neutron 

transport analyses as well as the calculation of Dancoff factors.  

The first step was to obtain a chord length PDF for a stochastic medium. Based on 

the assumption that the PDF is an exponential function, a theoretical chord length PDF 

was derived and validated by comparison with direct Monte Carlo simulation results at 

different packing fractions. This chord length PDF was then used to analyze a number of 

stochastic media (cube, sphere, and cylinder) that were constructed using the RSA 

(Random Sequential Addition) algorithm. The results are promising and suggest that the 

theoretical chord length PDF can be used instead of a full Monte Carlo random walk 

simulation in the stochastic medium, saving orders of magnitude in computational time 

(and memory demand) to perform the simulation. The results also indicate that the 

improved CLS method can be used for realistic VHTR configurations for either pebble 

bed or prismatic reactors. 

A similar methodology was developed by Murata [15,16] but his work was based 

on an empirical distribution of microspheres found by a sphere packing algorithm that 

was designed to mimic the manufacturing process for TRISO fuel. We have used a 

theoretical PDF for a stochastic medium. 

The Dancoff factor plays an important role in computing accurate resonance 

integrals for nuclear reactor lattices, hence has a large impact on the generation of few-

group cross sections for routine neutronic analysis of reactors. In this thesis, a new 

formulation of the Dancoff factor is derived by introducing the chord length PDF. This 
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led to relatively simple expressions for both infinite medium and finite medium Dancoff 

factors. Using the new expressions, the calculation of Dancoff factors for microsphere 

fuel particles randomly distributed in prismatic and pebble-bed VHTRs is studied. Two 

fuel particle models are developed and closed form Dancoff factor expressions for both 

models are derived based on the assumption that the chord length PDF is exponential, 

which is the basis for our chord length sampling method. The numerical results from the 

formulas are compared with Monte Carlo simulation results, and excellent agreement is 

obtained for a range of parameter values. 

When analyzing fuel particles in VHTR, it is found that different packing 

schemes yield different statistical properties, such as the chord length PDF, and different 

neutronic behavior in terms of the Dancoff factor. This suggests that accounting for the 

manufacturing process when modeling the fuel particle distribution in a VHTR would 

increase the accuracy of the neutronic results. One approach that may model the 

manufacturing process is the jiggled lattice model presented in the last part of the thesis, 

which has been compared with both lattice and RSA models. The results show that the 

jiggled lattice model gives a better visual distribution, i.e. more homogeneous and 

isotropic than either lattice or RSA models. Moreover, the jiggled lattice algorithm is 

simpler and uses less machine memory and CPU time than RSA.  

6.2 Suggestions for Future Work 

Several aspects of this thesis work still need further investigations and are 

mentioned below: 

(1) A simple iteration scheme is suggested to obtain the effective packing fraction 

used in the theoretical chord length PDF when we use the CLS method to perform 
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the neutronic analysis of a finite medium. This scheme appears to be a promising 

method for correcting for boundary interference but is still not optimal for all 

VHTR configurations and packing fractions. Additional study is warranted for 

this method in the future. 

(2) Although the single-sphere model yields very good results for infinite-medium 

and finite-medium Dancoff factors for VHTR configurations, it does not account 

for the coating regions of the microsphere fuel particles. This indicates a potential 

line of inquiry to improve the existing dual-sphere model, which is physically 

more satisfying than the single-sphere model though it gives poorer results. The 

alternative is to find another model which satisfies the basic collision probability 

relationships and also accounts for the presence of the coating regions.  

(3) The jiggled lattice model suggests a simple way to model a more homogeneous 

and isotropic stochastic system. This gives the possibility to yield a fuel particle 

distribution in a VHTR that is close to the actual distribution obtained via the 

manufacturing process. The jiggled lattice model mimics to some extent the same 

steps as the fuel particle manufacturing process and is close to the scheme 

introduced by Murata [15]. In order to give the closest results to the actual fuel 

particle distribution, it would be beneficial to determine an appropriate lattice 

structure and an optimal displacement parameter that best reproduces the actual 

distribution obtained as a result of the manufacturing.  
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