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ABSTRACT 

Semiconductor fabrication is one of the most complicated manufacturing 

processes, in which the current prevailing maintenance practices are preventive 

maintenance, using either time-based or wafer-based scheduling strategies, which may 

lead to the tools being either “over-maintained” or “under-maintained”. In literature, 

there rarely exists condition-based maintenance, which utilizes machine conditions to 

schedule maintenance, and almost no truly predictive maintenance that assesses 

remaining useful lives of machines and plans maintenance actions proactively. 

The research presented in this thesis is aimed at developing predictive modeling 

methods for intelligent maintenance in semiconductor manufacturing processes, using the 

in-process tool performance as well as the product quality information. In order to 

achieve an improved maintenance decision-making, a method for integrating data from 

different domains to predict process yield is proposed. The self-organizing maps have 

been utilized to discretize continuous data into discrete values, which will tremendously 

reduce the computational cost of Bayesian network learning process that can discover the 

stochastic dependences among process parameters and product quality. This method 

enables one to make more proactive product quality prediction that is different from 

traditional methods based on solely inspection results. 
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Furthermore, a method of using observable process information to estimate 

stratified tool degradation levels has been proposed. Single hidden Markov model 

(HMM) has been employed to represent the tool degradation process under a single 

recipe; and the concatenation of multiple HMMs can be used to model the tool 

degradation under multiple recipes. To validate the proposed method, a simulation study 

has been conducted, which shows that HMMs are able to model the stratified 

unobservable degradation process under variable operating conditions. This method 

enables one to estimate the condition of in-chamber particle contamination so that 

maintenance actions can be initiated accordingly. 

With these two novel methods, a methodological framework to perform better 

maintenance in complex manufacturing processes is established. The simulation study 

shows that the maintenance cost can be reduced by performing predictive maintenance 

properly while highest possible yield is retained. This framework provides a possibility of 

using abundant equipment monitoring data and product quality information to coordinate 

maintenance actions in a complex manufacturing environment. 
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CHAPTER 1  

INTRODUCTION 

1.1. Motivation 

Modern complex manufacturing processes are often characterized by a large 

number of processing steps, long duration of processing time, dynamic interactions 

among different tools, and complex interrelations between tool performances and product 

qualities. The semiconductor manufacturing is one of the examples of such processes, 

which usually involves hundreds of processing steps, months of processing time, re-

entrant process flows, and unpredictable relationships between tools performances and 

yield [1, 2].  

Semiconductor manufacturers are facing increasingly competitive market 

environment. Improving microchip productivity has always been a priority. New 

microchips need to reach the market in adequate quantity, quality and reasonable price in 

order to attain and maintain the market share. In addition, with the use of 300mm wafer 

production, automation level in the fabrication facility (fab) also increased with a larger 

number of in-situ sensors embedded in the equipment. Furthermore, since the majority of 

the equipment is relatively new, there is not much established historical reliability data. 

Moreover, high mix and low volume production demands require tighter controls on 
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reducing the downtime and increasing the yield. Therefore, wafer fabrication facilities all 

around the world have been looking into methods and techniques to:  

1) Increase the wafer yield so that more qualified products can be shipped out;  

2) Achieve near-zero-downtime in the fabrication system so that all machines in 

the fab are spending more of their life creating values rather than idling; 

3) Realize shorter cycle time.  

However, several existing issues set barriers to accomplish these goals: 

• Fragmented data and information domains with limited information sharing 

between inspection, maintenance and process control operations; 

• Limited and unreliable in-chamber contamination monitoring information; 

• Limited or non-existent linkage of equipment/station specific information with 

that corresponding to preceding and succeeding equipment; 

• Limited amount of historical reliability data on equipment due to frequent 

introduction of new equipment and changes in process parameter settings. 

Currently, the majority of maintenance operations in the semiconductor industry 

are still based on either historical reliability of fabrication equipment, or on diagnostic 

information from equipment performance signatures extracted from in-situ sensors. Such 

a fragmented, “diagnosis-centered” approach leads to mostly preventive maintenance 

along with reactive maintenance policies that use neither abundant product quality, 

equipment condition, equipment reliability information, nor the temporal dynamics inside 

that information in order to anticipate future events in the system and thus facilitate a 

more proactive maintenance policy. Sloan et al. [3] used in-line equipment status 

information and yield measurements to improve maintenance and job dispatching in 
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high-mix, high volume semiconductor plants. However, this work assumed an analytical 

character of yield and equipment degradation, without explicitly describing how to obtain 

this description of the degradation process. Yang et al. [4] proposed a novel method for 

proactive maintenance operation scheduling that used simulation-based maintenance 

evaluation tools and evolutionary algorithm optimization in order to obtain the most cost-

effective maintenance schedules. Even though this approach showed strong promise to 

improve maintenance operations in semiconductor industries, it was mainly designed to 

accommodate traditional, sequential production processes. A review of literature 

published in this field shows that there rarely exists condition-based maintenance (CBM) 

utilizing equipment condition as indicator, and almost no predictive maintenance (PdM) 

utilizing the prediction of future states of the equipment [5]. 

From the elaboration above, one can conclude that there is a need to develop 

systematic methods, which will be based on simultaneous analysis and inference from 

inspection stations, historical records of maintenance activity and equipment performance 

indicators from in-situ sensors to accurately predict the deterioration of the process and 

the product quality. The improved predictive capabilities will enable the fabrication 

facility to proactively allocate limited maintenance resources to the right location at the 

right time and thus maintain the high yield while achieving a high system uptime. 

1.2. Research Objectives 

Several research challenges have prevented the semiconductor manufacturing 

industry from achieving a more proactive, “prediction-centered” maintenance approach 
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based on the available on-line sensing, quality control, and reliability data collected 

across a fab: 

First, due to the high system complexity, it is almost impossible to observe any 

analytical or deterministic phenomena in the fab. Inherent stochastic nature of a 

semiconductor fab, in which production and maintenance operations are constantly 

interacting, needs to be modeled and then used to predict equipment behavior and 

facilitate a proactive maintenance.  

Second, the unobservable equipment condition is a challenge. The most reliable 

degradation indicator in chamber tools is particle counts, which is the key element 

enabling the CBM and PdM in the semiconductor industry. This indicator, however, is 

hard to be cost-effectively and reliably observed using current monitoring techniques. On 

the other hand, the research in modeling particle counts using available process and 

product measurements did not give satisfactory results. 

Third, the complex interaction between equipment degradation, product quality, 

maintenance operations and production process is a challenge. Achieving a truly 

proactive maintenance requires that currently fragmented and separately considered 

maintenance, production and inspection databases should be considered simultaneously. 

This requires collaboration and infrastructure connecting maintenance, production and 

quality control personnel. 

The objectives of the research presented in this thesis can be illustrated in Figure 

1.1, which shows that the ultimate goal of this research is to develop a methodological 

framework using in-process monitoring and product quality information to make 

improved maintenance decisions. In order to achieve this, two modeling components 
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must be developed, which in turn will enable an improved maintenance decision-making, 

namely, the capability of modeling multivariate stochastic dependences in a complex 

manufacturing environment, and the capability of predicting unobservable tool 

degradations under variable operating conditions. Each of these objectives will be 

described as follows. 

 
Figure 1.1 Illustration of research objectives 

 
1. Modeling of multivariate stochastic dependencies. The Bayesian network will 

be used to develop predictive modeling methods for complex manufacturing 

processes in order to discover the stochastic dependencies among data from 

diverse sources, such as maintenance databases (reliability and maintenance 

activities), equipment monitoring databases (databases of in-situ sensor 

readings, which themselves could be very different from one station to 
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another) and inspection databases (quality inspection data). This modeling 

tool is designed to facilitate rapid and accurate yield prediction. 

2. Prediction of tool degradation under variable operating conditions. A hidden 

Markov model based method will be employed to model the stratified 

progression of unobservable degradation in chamber tools using the 

observable process information and product quality information under 

variable operating conditions, caused by the fact that multiple recipes will be 

executed in the same chamber tool. This modeling tool will enable one to 

track and predict the stratified levels of particle contamination and proactively 

clean the chamber exactly when maintenance is required. 

3. Improved maintenance decision using predicted process condition and 

product quality information. The Bayesian network inference and hidden 

Markov model prediction results from all stations will be coordinated to 

provide thorough information that will be used to make dynamic and cost-

effective maintenance decisions. The discrete event simulation and 

optimization algorithms that can facilitate maintenance policy generation and 

evaluation will be involved in this methodological framework to demonstrate 

the improved maintenance decision making, however, the simulation and 

optimization will not be in the scope of this research. 

1.3. Organization of Dissertation 

The rest of this thesis is organized as follows. A literature review of predictive 

maintenance research and practices in semiconductor industry is given in Chapter 2. 
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Chapter 3 presents the method of modeling multivariate stochastic dependencies in 

complex manufacturing processes. The simulation study and industrial data application 

have been used to illustrate and validate the proposed method. Chapter 4 discusses the 

method of using observable process parameters to predict unobservable chamber tool 

degradation. The hidden Markov model based modeling techniques have been utilized to 

represent the progression of tool degradation under variable operating conditions. 

Chapter 5 illustrates the methodological framework of making improved maintenance 

decisions by using available inference and prediction results obtained from the methods 

presented in Chapter 3 and Chapter 4. Chapter 6 gives conclusions of the work presented 

in this thesis, as well as the original scientific contributions. Guidelines for potential 

future work beyond this thesis are also discussed in Chapter 6. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1. Introduction 

A complex manufacturing system, such as semiconductor fabrication facility, 

usually consists of hundreds of manufacturing steps and numerous tools. The capital cost 

for individual tool could be millions of dollars. Equipment downtime may result in a 

substantial loss of productivity and profit. Additionally, the manufacturing process is so 

complex that the downtime on a single tool can cause disruptions and idle time on many 

other fabrication tools [6]. Therefore, maintenance is essential to keep tools running at 

their peak performance levels. 

In general, maintenance strategies can be divided into three categories based on 

the underlying principles employed, i.e., reactive maintenance, age (or usage) based 

maintenance (ABM), and condition-based maintenance (CBM), as shown in Table 2.1. 

Maintenance Strategy Basic Principle 
Reactive Maintenance Use machine to failure, then repair 
Age/Usage-Based Maintenance Periodic component replacement 
Condition-Based Maintenance Maintenance based on sensing of 

machine condition 
Table 2.1 Category of maintenance strategies 
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Reactive maintenance is based on the ‘run-to-failure’ principle, where 

maintenance is performed on the equipment only when it fails. Such an approach is 

simple to implement but may result in long equipment downtime and high inventory 

costs for spare parts. ABM is based on maintaining equipment in regular time/production 

intervals, which are determined from empirically or historically inferred reliability 

information. Since ABM is mainly used to schedule regular maintenance to prevent the 

equipment from catastrophic failure, it is also called preventive maintenance (PM). 

However, such an approach does not take the current equipment condition into 

consideration, and it may lead to the equipment being either “over-maintained” (wasting 

remaining useful life of parts and components) or “under-maintained” (resulting in 

unexpected failures depending on variability in equipment usage patterns and inherent 

differences that exist between individual piece of equipment of the same type). On the 

other hand, CBM is based on sensing and interpreting the indicators of equipment 

performance, and is thus able to deal with equipment degradation, and it allows one to 

make maintenance decisions based on both current and past equipment behaviors. 

In certain literature, the entire area of CBM is referred as predictive maintenance 

(PdM). For example, according to Mobley [7], PdM is that “regular monitoring of the 

actual mechanical condition, operating efficiency, and other indicators of the operating 

condition of machine-trains and process systems will provide the data required to ensure 

the maximum interval between repairs. It would also minimize the number and costs of 

unscheduled outages created by machine-trains failure”. However, the truly ‘predictive’ 

aspect of maintenance decision-making consists of anticipating and predicting future 

states of the equipment, which does not always exist in CBM. The ‘strictly PdM’ 
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employs artificial intelligence (AI) and/or other predictive methods to assess the 

remaining useful life of equipment based on current and past equipment/process 

conditions, which allows one to schedule maintenance actions just before they are 

required [8, 9]. In this thesis, the term ‘Predictive Maintenance’ will be used to refer to 

both traditional CBM and strictly PdM. 

The PdM methodology and techniques have been extensively researched and 

widely used in a variety of application areas, such as rotating machinery (see [9-21]), 

aerospace system (see [22-32] ), chemical manufacturing (see [33-41]), electronic and 

electrical component (see [42-49]), etc. In some of aforementioned areas, the PdM has 

been successfully implemented and its technological maturity has brought significant 

benefits to those industries. 

Nevertheless, in today’s semiconductor manufacturing, PM practice using either 

time-based or wafer-based scheduling strategies is prevalent. Results of a questionnaire 

survey of the best practices in PM scheduling in the semiconductor industry are reported 

by Fu et al. [50]. More recently, a questionnaire survey of current maintenance and PdM 

practices in the semiconductor industry has been conducted, which reveals a clear need 

for PdM in the semiconductor manufacturing [5]. Survey results also highlighted many 

challenges that both industrial and academic researchers must face in implementing PdM 

in this area. These challenges include: 

• Choosing and installing appropriate and reliable sensors; 

• Developing appropriate monitoring techniques; 

• Developing or adopting predictive methods for forecasting equipment 

behavior; 
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• Optimally scheduling maintenance so that maintenance operations are 

synchronized with equipment conditions, work-in-progress (WIP), 

maintenance resources and production demand. 

All of these challenges call for an better understanding of the PdM research and 

current practices in the semiconductor industry. Therefore, a literature survey has been 

performed to collect information about the major methods and concepts being explored 

through the research and practices in PdM. The material in this chapter is mainly 

gathered from publications, while information is also obtained from various company or 

university websites, as well as through discussions and correspondences with experts in 

relevant areas.  

The rest of this chapter is organized as follows: section 2.2 outlines the open 

system architecture for condition-based monitoring (OSA-CBM) standard; section 2.3 

reviews methods, techniques and practices in the semiconductor industry addressing each 

functional layer of the OSA-CBM; section 2.4 concludes the chapter with a summary of 

potential research directions of PdM in the semiconductor manufacturing industry. 

2.2. OSA-CBM Standard 

Maintenance based on equipment condition monitoring has been standardized by 

the open system architecture for condition-based monitoring (OSA-CBM) standard, 

which is a non-proprietary standard proposal to provide an open architecture for 

integrating the techniques, algorithms, and machinery into an effective maintenance 

system [51, 52]. Figure 2.1 shows the seven layers of the OSA-CBM. Each layer 
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represents a collection of similar tasks or functions at different levels of abstraction. The 

function of each layer is briefly described as follows [53, 54]. 

Presentation layer is the man/machine 
interface. May query all other layers.

Decision support utilizes spares, logistics, 
manning etc. to assemble maintenance options

Prognostics considers health assessment, 
operational schedule that are able to predict 
future health with certainty levels and error 

bounds

Health assessment is the lowest level of goal 
directed behavior. Users historical and CM 

values to determine current health.

Condition monitoring gathers SP data and 
compares to specific predefined features. 
Highest physical site specific application.

Signal processing provides low-level 
computation on sensor data.

Transducers converts some stimuli to electrical 
signals for entry into system. Data acquisition 
converts analog outputs from transducers to 

digital record. 
 

Figure 2.1 OSA-CBM overview 
 

• Sensor Module Layer includes the transducer and data acquisition elements. 

The transducer converts stimuli to electrical or optical energy, while data 

acquisition converts the analog output from the transducer into a digital 

format.  

• Signal Processing Layer processes digital data from the sensor module and 

converts the data into a desired form highlighting specific features.  

• Condition Monitoring Layer determines the current system, subsystem, or 

component condition indicators based on algorithms and output from the 

signal processing and sensor module layers.  
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• Health Assessment Layer determines the health of the monitored systems, 

subsystems or components based on the output of the condition monitoring 

layer, historical condition data, and assessment values. Its purpose is also to 

generate diagnostic records and propose fault possibilities. 

• Prognostics Layer utilizes the system, subsystem, or component health 

assessment, the operational schedule (predicted usage – loads and duration) 

and models/reasoning capability in order to predict health states of subject 

equipment with certainty levels and error bounds. 

• Decision Support Layer integrates information to support maintenance 

decisions based on 1) the health and predicted health of a system, subsystem 

or components, 2) a notion of urgency and importance, 3) external constraints, 

4) mission requirements, and 5) financial incentives. This layer provides 

recommended actions, possible alternatives, and the implications of each 

alternative. 

• Presentation Layer formats the results of the lower layers to present the 

results to the user (e.g., maintenance and operations personnel) in a 

manageable way. This level also formats the user inputs to make them 

understandable to the system. 

2.3. Predictive Maintenance in Semiconductor Manufacturing 

In the semiconductor industry, improving factory productivity is critical to 

maintaining leadership in an increasingly competitive market place. Currently, since 

majority of the semiconductor manufacturing equipment is relatively new, there is not 
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enough historical data to accurately establish reliability characteristics. This is usually 

compensated for by considering very conservative reliability estimates when maintenance 

decisions are made, thus making sure that no equipment failure occurs, but also resulting 

in overly intensive PM schedules. The fact motivates a clear need for PdM, which can 

reduce equipment downtime and production costs, while improving yield. Moreover, 

PdM can reduce the operating cost of semiconductor fabs by replacing parts ‘just-in-time’ 

and thereby extending the useful life of parts as well as lowering the number of spare 

parts in stock. 

In this section, PdM research and practices in the semiconductor industry are 

reviewed. The section is organized according to the seven functional layers defined in the 

OSA-CBM standard, reviewing sensing, signal processing, condition monitoring, health 

assessment, prognostics, decision support, and presentation methods in the semiconductor 

manufacturing environment. 

2.3.1. Sensing 

Sensing transforms physical variables to electrical signals, and is the first layer of 

the OSA-CBM standard. It is a major enabling technique for PdM. In general, sensors 

used in semiconductor fabs can be categorized into two groups, as shown in Table 2.2. In 

this subsection, we review the sensing techniques for these two groups of sensors. One 

should note that this subsection is not an extensive review covering all the existing 

sensors used in the semiconductor industry. Instead, this subsection only serves as an 

overview to present some up-to-date information about sensing technology obtained from 

relevant literature. 
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Sensors Functionality Example 
Process 
state sensor 

Monitor process 
conditions 

In-situ particle monitor, residual gas 
analyzer, endpoint, plasma 

Product 
state sensor 

Monitor product status Wafer identification, in-situ interferometer, 
in-situ ellipsometer 

Table 2.2 Sensor categories in semiconductor fabs 

a) Process Sensors 

Process sensors, such as in-situ particle monitoring or residual gas analyzer, 

monitor process conditions. The in-situ particle monitoring techniques published in the 

literature up to 1996 were reviewed by Takahashi and Daugherty in [55], including in-

situ particle monitoring examples in a variety of equipment. Because of continuously 

changing requirements for monitoring particular processes or equipment, new sensors 

keep emerging. Miyashita et al. [56] developed in-vacuum and out-of-vacuum particle 

monitoring sensors, and evaluated them by installing them onto vacuum tools, e.g., 

plasma chemical vapor deposition (CVD), etching tool and sputtering tool. Perel et al. 

[57] described a method for in-situ detection of particles and other features during 

implantation operations to avoid additional monitoring tools before and/or after 

implantation. Grählert et al. [58] reported using the Fourier Transform Infrared (FTIR) 

spectroscopy sensor in CVD process for continuous monitoring in order to obtain wide 

pressure measurement range as well as short processing intervals. Williams et al. [59] 

reported a novel particle sensor that detected particles immediately adjacent to a wafer 

during processing. Ito et al. [60] reported an application of in-situ particle monitoring for 

extremely rarefied particle clouds grown thermally above wafers. Yan et al. [61] 
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developed a sensor to monitor the rinsing of patterned wafers during wafer cleaning and 

rinsing processes.  

In addition to the particle monitoring techniques, a great deal of process sensors 

has been reported in literature. Morton et al. [62] developed an ultrasonic sensor to 

monitor photoresist processing. The monitoring was achieved by measuring thickness 

changes in the resist as it was removed. Cho et al. [63] proposed a method for measuring 

the real-time concentration of etching chemicals in a bath. Tanaka et al. [64] used optical 

emission spectroscopy for end point detection in dry etching processes. In Tanaka et al. 

[64], endpoints were detected based on changes in the spectrum of radiation emitted by 

the plasma from the dry etching process. Johnson [65] presented a technique for using 

thermography to monitor the temperature of CVD equipment. Cho et al. [63] used a 

residual gas analyzer to measure gas phase product generation and reactant depletion. 

The residual gas analyzer data were used to indirectly measure film thickness for a CVD 

process. Karuppiah et al. [66] summarized in-situ, extended in-situ, and integrated 

metrology sensors employed in chemical mechanical planarization (CMP) machines. 

Karuppiah et al. also specified the critical parameters to monitor to properly assess the 

health of a CMP machine. Tang et al. [67] correlated the acoustic emission (AE) signal 

from a CMP machine with the microscratches on a wafer surface. Lee et al. [68] also 

reported the use of an AE signal to monitor the CMP process. In addition to the 

equipment sensor development and applications, Suchland [69] discussed the critical 

issues in integrating the add-on sensors to the equipment, which is intended to provide 

unified sensor data and process data facilitating the fabrication process control. 
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b) Product Sensors 

Product sensors monitor the actual product status. Gittleman and Kozaczek [70] 

proposed and demonstrated that x-ray diffraction (XRD) could be used as a real-time, 

high-throughput, automated metrology tool. This XRD-based metrology tool had been 

used to develop metrics for qualification and monitoring of critical fabrication processes, 

such as Cu seed deposition and TaNx/Ta barrier layer deposition. Wang et al. [71] 

presented a fully automated metrology tool, based on an electrospray ionization time-of-

flight mass spectrometer, to detect and measure organic and molecular contamination 

present in semiconductor process solutions. Freed et al. [72] explored the feasibility of 

building an autonomous sensor array on a standard silicon wafer. This sensor array 

included integrated electronics, power, and communications. Using the same concept, a 

semiconductor equipment wireless diagnostics systems, including a wafer handling 

analyzer, an equipment-leveling wafer, and a temperature-measurement wafer was 

developed and described by Tomer et al. [73]. 

2.3.2. Signal Processing and Feature Extraction 

The signal processing and feature extraction layer of the OSA-CBM standard is 

responsible for converting the sensor data into useful information that characterizes 

specific features of the process or system that is being monitored or controlled. In 

general, the following techniques have been widely accepted as general signal processing 

methods for manufacturing data [74]: 

• Time domain methods: statistical parameters, event counting, the energy 

operator, short-time signal processing, synchronized averaging. 



18 

• Frequency domain methods: cepstrum analysis, hilbert transforms, the SB 

ratio, residuals, FM0, FM4, NA4, NB4, bicoherence, cyclostationarity. 

• Time-frequency methods: spectrograms, wavelet transforms, the Wigner-Ville 

distribution, the Choi-Williams distribution. 

• Model-based methods: wideband demodulation, virtual sensors, embedded 

models. 

(For information about the aforementioned methods, please refer to [74] and references therein) 

 

Process Node 
(nm) 

Polished 
Layer 

Process 
Monitoring 

Process Parameter 
Monitored 

Metrology/Process 
Control Solution 

Bulk 
copper 
removal 

90 
Copper, 
1-2 
microns 

In-situ Eddy 
current, charge 
control 

Top layer thickness Eddy current detector, 
Charge integration 

65-45 
Copper, 
0.5-2 
microns 

FI Eddy current, 
in-situ Eddy 
current, charge 
control 

Top metal layer 
thickness 

Eddy current detector, 
Charge integration 

Copper 
removal 
(stop on 
barrier) 

90 
Copper, 
<0.5 
microns 

Charge control, 
optical in-situ 
(copper and 
barrier thickness) 

Top layer thickness, 
transition point, copper 
residue, dishing, hard 
stop on barrier 

Optical in-situ (transition 
point detection), Charge 
integration 

65-45 
Copper, 
<0.5 
microns 

Charge control, 
optical in-situ 
(copper and 
barrier thickness) 

Upper layer thickness, 
transition point, copper 
residues, dishing 

Optical in-situ (transition 
point detection), Charge 
integration 

Barrier 
and 
dielectric 
layer 

90 

Ta/TaN, 
liner, 
Oxide, 
BD1 

In-situ Eddy 
current, charge 
control, IM, 
optical in-situ 

Uppermost dielectric 
thickness 

Barrier and oxide polish 
CLC, IM for dielectric 
measurements, FullScan 
endpoint 

Erosion (50%) Stand alone metrology 
Dishing (100 microns) Stand alone metrology 

65-45 
Barrier, 
liner, 
BD1, BD2 

In-situ Eddy 
current, charge 
control, IM, 
optical in-situ 

Uppermost dielectric 
thickness 

Barrier and oxide polish 
CLC, IM for dielectric 
measurements, FullScan 
endpoint 

Erosion (50%) Stand alone metrology (fab 
level process control) 

Dishing (100 microns) Stand alone metrology (fab 
level process control) 

Figure 2.2 Typical CMP metrologies and process control solutions 
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However, in the semiconductor manufacturing environment, in many cases sensor 

data are already presented in a form with features fairly directly relevant to the monitored 

or controlled processes. For example, the thermography reading from CVD can be used 

directly as a monitored feature in a statistical process control (SPC) chart. Basic statistics 

(mean or variance) or the moving average of the data can be used to construct a control 

chart for process monitoring. In addition, in-situ particle counts are used as an indicator 

of chamber contamination and are hence directly monitored. CMP processes are another 

example where most of the monitored parameters are direct measurements, such as the 

layer thickness, copper residuals, and the transition temperature, as can be seen in the 

column # 5 of Figure 2.2 (excerpted from [66]).  All these process parameters can be 

directly used in condition monitoring algorithms. 

In summary, advanced signal processing based feature extraction is not 

pronounced in the semiconductor PdM as it is in areas such as rotating machinery or 

aerospace applications. Quite often, direct measurement from sensors can be used for 

condition monitoring without elaborate mathematical transformations. 

2.3.3. Condition Monitoring 

The condition monitoring layer is designated to determine the current system or 

component condition indicators based on algorithms and output from the signal 

processing and sensor module layers. SPC and advanced process control (APC), using 

various statistical or AI methods, are prevalent condition monitoring concepts in 

semiconductor manufacturing. 
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SPC, thoroughly described in Montgomery [75], is a well-established statistical 

discipline that has been widely used for product quality control in a variety of industries. 

The SPC concept also naturally lends itself to the process condition monitoring because 

the SPC methods are able to detect statistically significant departures in time series of 

numbers and vectors away from normal conditions. They can thus facilitate monitoring of 

the process condition and aid in scheduling maintenance. For example, Bunkofske [76] 

employed SPC for condition monitoring by using multivariate techniques to reduce the 

number of monitored parameters. Mai and TuckermannIn [77] used SPC in monitoring 

the reticle contamination, which may grow over time and cause defects in the lithography 

process. Card et al. [78] discussed the run-to-run process control of a plasma etch process 

using neural network prediction models. 

With the introduction of larger wafer size and shrinking critical dimensions, 

semiconductor manufacturers are starting to look into improved methods for process 

control using APC. A general introduction of APC for semiconductor manufacturing can 

be found in Baliga [79], in which sensors and fault detections associated with APC 

implementation are discussed. Pompier et al. [80] presented an APC system for 

monitoring the multi-chamber oxide deposition process in assisting the deposition time 

control by taking into account the deposition rate in each individual chamber. Velichko 

[81] proposed using a model-based APC framework for semiconductor manufacturing, in 

which the models were nonlinear and multiple-input, multiple-output (MIMO). The 

author demonstrated the benefits of using MIMO non-linear control with prediction for 

semiconductor manufacturing. Several case studies of applying APC to semiconductor 

manufacturing were presented by Sarfaty et al. in [82], where APC using integrated 
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metrology and in-situ sensors was applied to three major processes (pre-metal dielectric, 

low-k deposition-etch, and copper wiring). Hyde et al. [83] proposed an adaptive neural 

network based APC software, the Dynamic Neural Controller (DNC) that was able to 

provide recommendations for maintenance based on the prediction of failure. A 

significant improvement in process capability was observed after implementing this DNC 

tool in the metal etchers [84]. Baek et al. [85] presented a method for analyzing the 

electron collision rate of plasma using APC method in order to identify small changes in 

plasma etching chamber conditions after wet cleaning, while these changes could not be 

detected using conventional monitoring methods.  

2.3.4. Health Assessment 

The health assessment layer generates diagnostic records by proposing fault 

possibilities based on the information of current condition, historical condition data, and 

assessment values. Subsequently, the health information can be provided to the prognosis 

layer in order to estimate the future health of the system.  

The general method for health assessment currently used in the semiconductor 

industry is to utilize the SPC [75] and APC [79] concepts developed for process control 

to monitor equipment performance. Warning limits can be used to alert the user when the 

features of the monitored equipment are approaching dangerous levels. These warning 

limits can also provide a statistical significance to give the user an assessment in how 

accurately the tool health is being estimated. For example, Sing and Rendon [86] 

proposed the use of SPC for ion implant process control to improve the fault detection 

systems. Chen et al. [87] reported using optical emission spectroscopy (OES) to provide 
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a real-time SPC monitoring scheme on the plasma performance as well as to detect faults 

during the etch process. Matsuda et al. [88] presented the use of APC for equipment 

monitoring, error detection, and PdM in semiconductor thermal process. 

In addition to the SPC/APC methods, AI techniques have been employed in 

assessing the health of semiconductor fabrication systems. For example, Salahshoor and 

Keshtgar [89] proposed an ICANN method, which performs Independent Component 

Analysis followed by a Neural Network classification. This method is used to overcome 

incorrect alarm and bad fault detections when conventional monitoring techniques failed 

dealing with large number of observation variables. Holland et al. [90] reported using 

multivariate fault detection (MVFD) to monitor an implanter tool to detect tool changes 

early in the process. Tu et al. [91] presented the results using PCA for fault detection and 

classification in a 300mm high-density plasma CVD tool. 

 
Figure 2.3 Performance evaluation using confidence value 

 

In terms of health indicators, Blue and Chen [92] proposed the generalized 

moving variance as a tool health indicator, which is dependent on the changes of recipe in 

the semiconductor fabrication process; Djurdjanovic et al. [93] proposed a generic 

method using ‘confidence value’ as an index to reflect how healthy the system is by 
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evaluating the overlap between the most recently observed features and those observed 

during normal operation, as illustrated in Figure 2.3.  

2.3.5. Prognosis 

The prognosis layer is aimed at estimating the future health states of the 

monitored system. In Shaikh and Prabhu [8], the authors proposed an intelligent PdM 

approach, in which the operating parameters for the process were selected based on 

constraints from both process and maintenance requirements. A reactive ion etcher was 

selected as the target equipment because it is widely used and is often critical in a 

semiconductor fab. Based on real-time process and equipment condition data, artificial 

neural networks were used to assess the current condition of the equipment and predict 

the remaining life of the etcher.  

Chen et al. [94] proposed a run-to-run control strategy for CMP to predict process 

removal rate and then adjust processing time based on the prediction. The exponentially 

weighted moving average (EWMA) and revised predictor corrector control (PCC) 

techniques had been employed, taking into account the age of the abrasive pad and 

conditioning disc. The prediction capability was significantly improved by including the 

equipment age into account, thus effectively merging ABM and CBM into the method. 

Though the reference did not explicitly deal with maintenance, the predictive concept is 

worth noticing. 

Although numerous prognostic methods have been proposed in other industry 

areas (e.g., rotating machinery [9, 13, 17, 18] and aerospace systems [27-30]), 
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publications on the use of predictive methods in the semiconductor manufacturing are 

very scarce. 

2.3.6. Decision Support 

System level maintenance decision support is the next layer for implementing 

PdM. Sloan et al. [3] combined semiconductor production dispatching and maintenance 

scheduling. In this work, the machine states were modeled as Markov chains and the 

scheduling and dispatching problems were modeled as Markov decision processes 

(MDPs). The link between machine condition and yield was considered and this 

information was used for product dispatching and maintenance scheduling. Since 

machine conditions and yields for different products and layers of the same product can 

differ; the link between machine condition and yield was used to optimize product 

dispatching. This MDP-based, combined approach outperforms combinations of 

traditional maintenance policies (fixed state, fixed time, fixed number of cycles, etc.) and 

traditional product dispatching policies (first-come-first-serve, first in shop, shortest 

processing time first, highest current yield, etc.). The work presented by Sloan and 

Shanthikumar [3] is innovative because both the maintenance scheduling and product 

dispatching had been combined. In most decision support research, these two issues were 

treated independently and the inconsistent effect of equipment condition on differing 

product types was ignored.  

Yao et al. [95] reported a two-level, hierarchical approach to maintenance 

planning and scheduling. In this work, the higher-level model was a PM planning model 

which used a MDP to model the dynamics of tool failure and demand pattern of products. 



25 

The inputs of this model were stochastic tool failure and demand processes, and the 

output was a PM policy by supplying a PM window. At the lower-level model, on the 

other hand, it employed a mixed integer programming (MIP) technique. The input of this 

MIP model was the PM policy output from the higher-level model, and it output a PM 

schedule. The proposed method was an improvement over traditional methods and had 

been implemented in a real semiconductor fab. After implementation, this method was 

found to be better than the previous PM scheduling method in the fab. This work, which 

used the MIP and MDP models, was the most up-to-date and sophisticated research in 

PM scheduling in the semiconductor industry.  

2.3.7. Presentation  

The presentation of information layer of OSA-CBM provides a user/machine 

interface through which maintenance decisions made in the decision support layer are 

passed into the execution stage. The presentation layer can be very application specific; 

however, it must be able to provide several key functions as listed below. 

• Receive data from all other layers, especially the health assessment, 

prognostics, and decision support layers; 

• Take input from operation/maintenance personnel; 

• Display an indicator of equipment health as well as the corresponding action 

that the maintenance program recommends. 

In addition, the complexity of the presentation can also vary in different formats. 

The lowest level of presenting CBM results is presenting raw data to the user and letting 
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the user make decisions based on that. This is a very rudimentary approach where human 

needs to deduce the relevant information and make decisions.  

Compared to the raw data presentation, one can see the conversion and fusion of 

raw data into a coherent performance index through feature extraction, sensor fusion, 

health assessment, diagnosis and prediction as the next level of presentation function 

(e.g., the generalized moving variance [92], the performance confidence value [93]). In 

this case, data is converted into some sort of information that can be interpreted more 

easily. The current SPC/APC techniques can be seen as belonging to this area, since 

multivariate SPC enables one to merge multiple sensor readings into a smaller set of 

more easily interpretable indicators whose warning limits can be statistically set. 

The highest level of OSA-CBM would require one to automate the decision-

making process. Such CBM presentation further reduces the inundation with information 

and enables one to make optimal decisions in a complex system, such as semiconductor 

fabrication, taking into account equipment condition, interrelation between equipment, 

availability of maintenance resources & crews, demand pattern and other factors. No such 

work was noticed in semiconductor manufacturing and one should note that the full 

automation of the “data to information to decision” conversion in CBM seems to have 

been done only theoretically, and not in practice. 
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Figure 2.4 Overview of integrated APM system 

 
An example of a successful presentation layer is the Automated Precision 

Manufacturing (APM) system developed by a team of manufacturing experts at AMD 

[96]. The APM was designed to maximize quality and efficiency while providing fabs 

with the ability to introduce rapid, continuous product improvements without slowing 

production. Using the APM system, any tool in the production line could alter the recipe 

used for each set of wafers it encountered based upon the information that particular tool 

received from other tools in the fab. Through these tiny (but critical) recipe changes, the 

APM decision-making software was designed to simultaneously maximize yield for each 

wafer and optimize performance for the resulting products. This process reduced waste in 

the fab and lowered costs. As we see in Figure 2.4, the APM software had three built-in 

intelligent automation systems: Integrated Production Scheduling, Advanced Process 

Control, and Yield Management. 

2.4. Potential Research Directions 
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From the literature reviewed in this chapter, it could be summarized in this section 

the potential research directions of PdM in the semiconductor industry. 

“Predictive maintenance” in broad terms can be seen as any maintenance activity 

based on sensing the condition of equipment (i.e., it represents the well-known CBM). 

However, prediction in more rigid terms pertains to one’s ability to predict equipment 

behavior in the future. While examples of CBM are already well-documented and very 

successful in different industries, strictly PdM based on predicting equipment 

performance over time is very rarely seen in both research and practice in the 

semiconductor manufacturing field. On the other hand, it can be seen from the 

questionnaire survey [5] that there is a clear need of PdM in the semiconductor industry. 

In the following paragraphs, we will summarize a few research directions that will fill in 

the gap of current PdM in the semiconductor industry as well as to improve the PdM 

practices. 

First, relating process variables (controller and sensor readings, in-situ 

measurements, in-process metrology) to outgoing product quality should be incorporated 

into PdM research. The reason lies in that the final decision on when to do maintenance 

should be not only based on the process indicators alone (observed or predicted), but also 

based on noticing or predicting process indicator patterns that result in poor product 

quality (i.e., product quality should be an inherent element of smart, PdM decision-

making). The integrated consideration of different data domains and sensor readings both 

within one tool and across different tools is of highest interest for PdM in semiconductor 

manufacturing. Integration of different sensors and data domains within one tool will 

assist one in better understanding and predicting each individual process, while 
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integration of data sources across different tools will assist one in better understanding of 

the process flow and interaction of different processes and tools. 

Second, sensing and metrology appear to be obstacles in semiconductor 

manufacturing (at least in some areas). Specifically, particle monitoring is an area where 

sensing, as the fundamental step in facilitating PdM is still too expensive and unreliable. 

Significant work is being done in advancing in-situ particle count sensing, as witnessed 

by a number of papers reviewed in this chapter. One possible improvement for increasing 

reliability and significance of in-situ particle sensing for chamber monitoring could be the 

fusion of in-situ sensing with controller and process variables, such as temperatures, 

pressures, ion-concentrations, etc. This will in turn help make more accurate and efficient 

scheduling of chamber maintenance, which is currently scheduled according to time or 

usage based information. 

Finally, the optimal maintenance decision-making is another challenge. More 

precisely, in highly complex and flexible manufacturing processes (such as 

semiconductor fabrications) interactions between maintenance and manufacturing 

operations are very intense, which necessitates the integrated and optimal decision-

making on two topics (joint production and maintenance decisions). This way, one can 

re-route jobs, or modify operations in response to equipment degradation and thus 

decelerate degradation of heavily degrading machines, at the expense of accelerating 

degradation of freshly maintained ones.
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CHAPTER 3  

PREDICTIVE MODELING OF MULTIVARIATE STOCHASTIC 

DEPENDENCIES USING BAYESIAN NETWORK 

3.1. Introduction 

The intensive competitiveness of semiconductor manufacturing industry requires 

manufacturers to be able to produce adequate quantity and high quality chips. 

Semiconductor quality control and yield management are always being the hot topics in 

both industrial practices and academic researches. Yield is generally defined as the ratio 

of the number of functional chips after the completion of production processes to the 

number of potentially usable chips at the beginning of production [2]. The yield 

prediction modeling plays a crucial role in semiconductor fab because yield models can 

be used to determine the cost of a new chip before fabrication, identify the cost of defect 

types for a particular chip or a range of chips, and estimate the number of wafer starts 

required. Many yield models have been utilized in semiconductor fabrication to facilitate 

yield predictions, and these models are mainly based on defect inspections [2, 97]. The 

current problem is that the inspection will not be performed after every single operation. 

In addition, there is no 100% inspection in the fab, e.g., only 4~5 wafers per lot (each lot 

contains 25 wafers) can be inspected. This implies that the yield estimation cannot be 



31 

made until the wafer is really scanned by metrology stations, which may cause deficiency 

of chip supply to customers due to defects that were not discovered in early processing 

stations so as to make incorrect or inaccurate yield estimations. 

In this chapter, a method of using the self-organizing map (SOM) and the 

Bayesian network (BN) for integration of diverse data domains, such as in-situ sensing, 

equipment reliability, maintenance and inspection data to predict semiconductor 

fabrication process yield will be presented. The basic idea is to utilize SOMs to integrate 

and discretize features (or feature vectors) obtained from machine conditions, then use 

BNs to find causal connections and conditional dependencies among discretized features. 

After that the trained BNs will be used for inferring probabilities of metrology features, 

given current machine conditions. These inferred results in turn can be used to predict 

station-level or end-of-line yield. In this way, the fab management will be able to 

schedule maintenance activities based on the predicted yield information that will be 

updated continuously throughout the process rather than just in rare occasions as it is 

done now, which should greatly improve the process control and product quality. This 

conceptual idea will be demonstrated using a case study where industrial dataset obtained 

from semiconductor manufactures will be employed. Furthermore, since the proposed 

method is conceptually generic, which is not only limited to semiconductor 

manufacturing but also applicable to a variety of industrial applications in complex 

manufacturing processes, a data set obtained from automotive industries will be used to 

demonstrate its capability of making predictions based on the available observations as 

well. Another challenge in this research is the huge amount of data generated in a 

complex manufacturing process, and stored in a list-based organization. As the proposed 
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method is based on the similarity comparison between current and past machine 

conditions, searching for similar data in terabyte databases would be a big challenge. A 

tree-structure database organization using SOMs that naturally arises from the proposed 

BN-based predictive modeling method will be employed to tackle this problem. 

The proposed method is aimed at potentially using the following data to achieve 

improved predictions of yield: 

 Performance monitoring data obtained by in-situ sensors 

 Equipment controller data 

 Reliability data provided by equipment suppliers 

 Historical records of maintenance activities 

 Product quality characteristics from metrology or other inspection stations 

3.2. Relevant Modeling Components 

Before presenting the framework of data integration and probability inference, it 

is helpful to review two key components that are essential to implementing the proposed 

method. Firstly, in order to help find similarity between feature vectors, a vector 

quantization tool is necessary. Secondly, in order to construct the probability model, a 

data mining tool is desired. In this section, we will briefly review the key elements in the 

proposed data integration method: SOMs that are used to discretize feature vectors, and 

BN that is a powerful data mining method and probability inference tool. 
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3.2.1.  Self Organizing Maps 

In semiconductor industries, one is always faced with large volume of high-

dimensional data from in-situ sensors, maintenance records, inspections database, etc. 

Currently, there are a number of methods that have been employed to reduce the 

dimensionality of the data in order to make it amenable to exploratory analysis. One class 

of such methods typically projects the data to a low-dimensional space, either linearly or 

in a non-linear fashion, at the same time preserving their mutual relations as well as 

possible. The SOM is a set of unique methods that reduce the amount of data by 

clustering, and reduce data dimensionality through a nonlinear projection of the data onto 

a low-dimensional space [98]. The methods in this category include principal component 

analysis, multidimensional scaling, etc. 

The SOM converts complex, nonlinear statistical relationships between high-

dimensional dataset into simple geometric relationships on a low-dimensional display. It 

is essentially a neural network algorithm that has been extensively used in the fields of 

data visualization and classification. The SOM belongs to unsupervised learning 

methods, which is suitable to deal with unknown number of groups from which data are 

derived. 

The approach that SOM uses to reduce dimensions of dataset is by producing a 

map consisting of a grid of processing units referred to as ‘neurons’. Each neuron is 

associated by a d-dimensional weight vector ],[ 21 dmmmm = , where d is equal to the 

dimension of the input vectors. The SOM attempts to represent all the available input 

vectors with optimal accuracy using a restricted set of weight vectors. In the sense of 

training process, the SOM algorithm is similar to the vector quantization algorithms, such 
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as k-means method [99]. However, in addition to the best-matching weight vector, its 

topological neighbors on the map are also updated. The result is that the weight vectors 

become ordered on the grid so that similar weight vectors are closer to each other in the 

grid than the more dissimilar ones. Therefore, the SOM accomplishes two things: 

reducing dimensions and preserving similarities through topological organizations of 

neurons. 

The SOM is usually trained iteratively. In each training step, one sample vector x 

from the training dataset is chosen randomly and weight vectors associated with each 

node in the network are modified according to the distances between the newly presented 

node. Several distance measures can be used, such as Euclidian distance and Manhattan 

distance. The neuron whose weight vector is closest to the input vector x is called the 

Best Matching Unit (BMU). If we denote the BMU with the index c, then BMU satisfies 

iic tmtxtmtx ∀−≤− )()()()(    (3.1) 

where im  denotes the weight vector associated with the SOM neuron i. 

In general, there are two types of learning algorithms for SOM training that are 

reported in literature. One is sequential training and the other is batch learning. One 

typical update rule for projecting SOM weight n
im ℜ∈  into the space of input vectors 

n
ix ℜ∈  is given by (3.2) when the sequential training algorithm is used: 

))()(()()1( ),( tmtxhtmtm iixcii −+=+    (3.2) 

where t  is the sample index of the regression step, x(t) is an input vector drawn from 

the input dataset at time t. Here, ixch ),(  is the neighborhood kernel around the BMU, 
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which is a decreasing function of the distance between the unit i and the BMU. The 

neighborhood function essentially defines the region of influence that the input sample 

has on the SOM. 

In literature [100, 101], the use of SOM in visualization of machine states was 

reported, where the in-situ measurements have been converted into a simple and easily 

comprehensible display which, despite the dimensionality reduction, would preserve the 

relationships between the system states. In this research, we will convert the in-situ 

sensor readings, maintenance actions, machine ages, as well as inspection results into 

discretized feature clusters by using SOMs, which will be able to reduce the dimension of 

feature vectors and preserve their relationships. 

3.2.2.  Bayesian Networks 

A BN is a graphical representation of a multivariate joint probability distribution 

that exploits the dependency structure of distributions to describe them in a compact and 

natural manner [102]. A BN is a directed acyclic graph, in which the nodes correspond to 

the variables in the domain and the edges/arcs correspond to direct probabilistic 

dependencies between them. Formally, the structure of the network represents a set of 

conditional independence assertions about the distribution: assertions of the form, the 

variables X and Y are independent given that we have observed the values of the 

variables in some set Z. Thus, the network structure allows us to distinguish between the 

simple notion of correlation and the more interesting notion of direct dependence; i.e., it 

allows us to state that two variables are correlated, but that the correlation is an indirect 

one, mediated by other variables. The use of conditional independence is the key to the 
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ability of BNs to provide a general-purpose compact representation for complex 

probability distributions [103]. 

 

 
Figure 3.1 Example of BNs used for modeling the direction of a car 

 
Figure 3.1 depicts a simple example of BN model that may be used to model the 

direction of a car at some high level of abstraction [104]. According to the model in the 

figure, the direction of the motion of a car is directly caused by whether or not the gas 

pedal is pressed, what gear is shifted (forward or reverse), and the angle (continuous 

variable) of the steering wheel. Regarding independencies in this example, this model 

implies that in this domain the top three variables (namely “gas pedal pressed,” “gear” 

and “steering wheel angle”) are independent and “car direction” is dependent on these 

three. In BN language, node D is called ‘child’ or ‘leaf’ and nodes A, B, and C are called 

‘parents’ or roots. 

There are numerous representations available for data mining – the process of 

extracting knowledge from data, including rule bases, decision trees, and artificial neural 

networks. In addition, there are many techniques for data mining such as density 

estimation, classification, regression and clustering. The BN has following advantages 

over these methods because of which we decided to focus on BNs in this research [105]: 

 BNs can readily handle incomplete data. 
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 BNs can be used to learn causal relationships, and hence can be used to gain 

understanding about a problem domain and to predict the consequences of 

intervention. 

 Since a BN model has both causal and probabilistic semantics, it is an ideal 

representation for combining prior knowledge (which often comes in causal 

form) and data. 

 Bayesian statistical methods in conjunction with BNs offer an efficient 

approach for avoiding the over-fitting of data. 

There are two tasks associated with BN models: learning and inference. Learning 

refers to the determination of both the structure (topology) of the model and the 

parameters. Learning the BN structure corresponds to discovering causal and dependency 

connections between random variables, while parameter learning corresponds to 

determining conditional probabilities corresponding to the identified dependencies 

between variables. For learning, various algorithms based on causal independence or 

scoring function have been developed by researchers. These methods have been 

discussed by Leray et al. [106] and Murphy [107]. Once model is learnt, inference is used 

to estimate the value of hidden/unobserved nodes given the values of observed nodes. If 

we observe the ‘leaves’ and infer the hidden causes (roots), this is called diagnosis. If we 

observe the ‘roots’ and infer the effects (leaves), this is called prediction. BNs can be 

used for both of these tasks. The basis for all the inference algorithm is the Bayes’ rule 

that states 

)(
)()|()|(

yP
XPXyPyXP =      (3.3) 
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where X is the hidden/unobserved node and y is the observed evidence. 

BNs have been used extensively to model real world problems [108-110]. 

Synoptically BN is a graphical model that organizes the body of knowledge in any 

problem domain by mapping out cause-effect relationships among key variables and 

encoding them with numbers that represent the extent to which one variable is likely to 

affect another, which nowadays is being used to gain insights into system behaviors, 

forecast system responses to specific actions and consequently to make intelligent, 

justifiable, quantifiable decisions that will maximize the chances of desirable outcomes.  

3.3. Methodology Overview 

Figure 3.2 shows the framework of the proposed method, which utilizes a generic 

semiconductor manufacturing process including a series of processing stations followed 

by a metrology scan station, as an example to illustrate the concept of data integration 

and probability inference [111]. In general, the processing station shown in the figure can 

be a stand-alone process equipment or a chamber within cluster tools. Also, it is required 

that: 

1) Each station has at least one type of relevant data available, i.e., in-situ sensor 

readings, controller data, equipment reliability, and maintenance actions;  

2) Metrology is one of the stations present in the system. 

In this framework, let us assume that feature variables extracted from the first 

processing station form the feature vector )(1 tX . In case that the sampling rates of these 

variables are different, we may construct several feature vectors for one station according 

to the different sampling rate. One example is that we may construct )(11 tX  by 
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combining ‘temperature’ and ‘pressure’ if they are monitored/recorded at the same rate in 

the first station, while another feature vector )(12 tX  consisting of maintenance actions 

and age of the machine. In the same fashion, we may construct feature vectors for the 

other stations. Eventually we will have feature vectors 

)(11 tX , )(12 tX … )(11 tX k   for station 1 

)(21 tX , )(22 tX … )(
22 tX k   for station 2 

 

)(1 tX N , )(2 tX N  … )(tX
NNk  for station N 

 
Figure 3.2 Framework of multivariate stochastic dependencies modeling 

 
)(tY  is the feature vector consisting of features extracted from the in-process 

metrology scan station. This vector is inherently affected by the machine conditions 

which can be deduced by in-situ sensor readings, age of machines and maintenance 

actions. Therefore, )(tY  is essentially a function of )(11 tX , )(12 tX … )(tX
NNk , i.e., 

( ))()(),()( 1211 tXtXtXftY
NNk=     (3.8) 
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One should note that the feature vectors )(11 tX , )(12 tX … )(tX
NNk  may not be 

independent between each other. 

It is desirable to have an analytical expression for this function )(∗f  so that 

according to the different machine conditions reflected by feature vectors 

)(11 tX , )(12 tX … )(tX
NNk  we may predict the inspection results at any instant of time, 

even without performing the metrology scan. In reality, however, due to the complex and 

stochastic nature of the semiconductor fabrication processes, it is usually impossible to 

have this function )(∗f  in an analytical form, and a probability model is needed to 

relate machine conditions with inspection results of wafers. This probability model will 

have feature vectors based on machine conditions, i.e., )(11 tX , )(12 tX … )(tX
NNk as the 

inputs and the probability distribution of inspection feature vector )(tY  as the output. 

By feeding historical feature data to train the model, its structure and parameters can be 

determined. Then, when the new observation of machine conditions is made, the trained 

model will be able to make inference using its knowledge learnt from the training data. 

From the literature review on BNs, we can see that the BN meets all requirements 

discussed above. It is capable of learning causal relationships and probability parameters, 

which are two important factors for probability inferences. 

However, one thing we must be aware of is that the majority of feature variables 

in vectors )(11 tX , )(12 tX … )(tX
NNk  and )(tY  are continuous. Although BN learning 

from continuous data is feasible, it will require tremendous computational efforts, 

especially for large datasets [112]. Therefore, the SOMs have been employed to 

discretize continuous data into discrete clusters. In addition, the SOM is able to reduce 
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the complexity of problems by converting high-dimensional, continuous feature vectors 

into low-dimensional (usually, two dimensional) discrete level representations. The 

discretized data then will be fed into the aforementioned BN to train both the structure 

and the conditional probability tables and further to make inference out of the model. 

3.4. Simulation Study 

The objective of this simulation study is to validate the proposed method. In this 

section, we will first introduce the flowchart of the simulation study, followed by the 

detailed description of data generation models. Next, the feature vector quantization and 

BN learning (structure and parameter) will be presented. Finally, the results inferred 

using BNs will be compared with the predefined probability distributions in the data 

generation model to validate the proposed method. 

3.4.1. Simulation Flowchart 

In this simulation study, a simple scenario depicted in Figure 3.3 will be 

considered. Two processing stations are assumed, followed by a metrology scan station 

which performs quality inspection. It is assumed that there are two feature variables 

associated with each processing station labeled as feature variables 1A  and 2A  for 

station A, 1B  and 2B  for station B. The feature variables might be in-situ sensor 

readings, maintenance records, machine age, etc. Also it is assumed that there are two 

parameters 1P  and 2P  extracted from measurements at the metrology station, which 

are inherently affected by the aforementioned features variables 1A , 2A , 1B  and 2B . To 

simplify the problem, but without the loss of generality, it is assumed that the data of 
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feature variables 1A , 2A , 1B , 2B and data of inspection parameters 1P  and 2P  are 

collected at the same sampling rate so that we can construct the feature vectors 

[ ]TAAA 21,= , [ ]TBBB 21,= , and [ ]TPPC 21,= . 

 
Figure 3.3 Simulation scenario 

 

 
Figure 3.4 Simulation flowchart 

 
The simulation flowchart is shown in Figure 3.4. A known stochastic model is 

firstly designed to generate feature vectors A , B  and C , where C  is probabilistically 

dependent on A  and B . The three feature vectors then will be fed into SOMs to get 

them discretized. After that, the discretized data will be used to train the BN. Based on 

the trained BN, it will be possible to use the Bayesian rules to make probability inference 

based on any new observations. At the end, the inferred probability of C  based on given 

A  and B  will be compared against the predefined conditional probability of C  in the 

data generation model, so that we can verify the correctness of the method and its 

inferences. 



43 

3.4.2. Model Description 

In order to examine the Bayesian learning algorithm we proposed in this research, 

we have designed two different models: 

1) Feature vectors A  and B  are independent  

2) Feature vector B  is dependent on A  probabilistically  

These two models will be explained in detail in this section. For the sake of 

convenience, it is assumed that the parameters of feature vectors A  and B  are 

mixtures of normal distributions even though it does not serve as a fundamental basis for 

any conclusions drawn in this simulation study. 

a) Model 1: No dependency between A  and B  

In this model, it is assumed that there is no dependency between feature vectors 

A  and B , and we assign the following characteristics to the feature variables:  

• 1A , 2A , 1B  and 2B  are mixtures of two normal distributions with constant 
variance σ ; 

• 1A  has 30% possibility to have mean value A
11μ , 70% possibility to have 

mean value A
12μ , where AA

1211 μμ <  
• 2A  has 40% possibility to have mean value A

21μ , 60% possibility to have 
mean value A

22μ , where AA
2221 μμ <  

• 1B  has 60% possibility to have mean value B
11μ , 40% possibility to have 

mean value B
12μ , where BB

1211 μμ <  
• 2B  has 20% possibility to have mean value B

21μ , 80% possibility to have 
mean value B

22μ , where BB
2221 μμ <  

 
Hence, each feature variable has two stochastic levels, and we label them as ‘+’ 

and ‘–’ to represent high and low levels of the random variables. Having two stations 
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with two feature variables and each feature variable with 2 levels, we will deal with 

sixteen ( 1624 = ) combinations, i.e., 16 different cases as listed in Table 3.1. 

Again, for simplicity, it will be assumed that the inspection parameters 1P  and 

2P  have two stochastic levels: high (+) and low (-), as listed in Table 3.2. The letters a, 

b, c, d are the cluster labels for random vector C , which will be referred to in the later 

sections. 

 Station A Station B 
Case # 1A  2A  1B  2B  

1 + + + + 
2 + + + - 
3 + + - + 
4 + + - - 
5 + - + + 
6 + - + - 
7 + - - + 
8 + - - - 
9 - + + + 
10 - + + - 
11 - + - + 
12 - + - - 
13 - - + + 
14 - - + - 
15 - - - + 
16 - - - - 

Table 3.1 Sixteen cases for A  and B  feature vectors 

 
Metrology 1P  2P  

a + + 
b + - 
c - + 
d - - 

Table 3.2 Inspection parameter combinations 

 
Next, we will define a conditional probability table, in which the probability of 

occurrence for each metrology cluster, i.e., a, b, c, d will be defined according to 16 
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different case numbers shown in Table 3.1. The values for this conditional probability 

table (Table 3.3) are assigned intentionally in such a way that for each case the 

probability distribution is different from others so that we can easily discern which case 

happened, given probabilities of a, b, c and d. For example, if we have observed that the 

probability of occurrence of a=10%, b=50%, c=0% and d=40%, we are able to tell that 

case 8 occurred. 

 Metrology 
Case # a b c d 

1 0.5 0 0.5 0 
2 0.7 0 0 0.3 
3 0.5 0.4 0.1 0 
4 0 0.8 0.2 0 
5 0.8 0.1 0.1 0 
6 0 0 0.5 0.5 
7 0.35 0.25 0 0.4 
8 0.1 0.5 0 0.4 
9 0.65 0 0 0.35 
10 0.5 0.2 0 0.3 
11 0 0.2 0.3 0.5 
12 0.4 0.3 0.3 0 
13 0.11 0.89 0 0 
14 0.33 0 0 0.67 
15 0.52 0.1 0 0.38 
16 0.2 0.1 0 0.7 

Table 3.3 Predefined conditional probability P(C|A,B) 

b) Model 2: Dependency exists between A  and B  

In addition to the study of how information from processing stations in random 

vectors A  and B  affects the inspection results in the random vector C , another data 

generation model is constructed, in which random variables 1B  and 2B  are generated 

as dependent on random variables 1A  and 2A , based on a predefined probability table, 

given in Table 3.4, in which P, Q, R and S label the four cases of stochastic level 
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combinations for 1B  and 2B  as given in Table 3.5. By having generated 1B  and 2B  

according to Table 3.4 and Table 3.5, we basically define a dependency between feature 

vector A  and B . In section 3.4.4, we will reveal this relationship of dependency from 

simulated data by using BNs.  

1A  2A  P Q R S 
+ + 0.5 0.2 0.1 0.2 
+ - 0.25 0 0 0.75 
- + 0 0.35 0.4 0.25 
- - 0.16 0.24 0.6 0 

Table 3.4 Predefined conditional probability for 1B  and 2B  given 1A  and 2A  

 
Case # 1B  2B  

P + + 
Q + - 
R - + 
S - - 

Table 3.5 1B  and 2B  combinations 

3.4.3. Feature Vector Quantization 

The high-dimensional continuous feature vectors must be classified into a low 

dimensional space with discretized values so that it can be utilized for efficient BN 

training. As mentioned before, the SOM is an appropriate tool to perform the 

unsupervised clustering and to help one visualize the high-dimensional data. In this 

simulation study, two-dimensional feature vectors are used, i.e., [ ]TAAA 21,= , 

[ ]TBBB 21,= , and [ ]TPPC 21,= . Note that in the data quantization process, one does not 

have to provide a priori number of clusters. In this research study, the SOM technique is 

used and implemented using the SOM Toolbox in Matlab [113]. 
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Figure 3.5(a) shows the unified distance matrix (for the definition of the unified 

distance matrices, please refer to [114]) for the feature vector A , which is obtained by 

one instance of running our stochastic data generation model and creating a SOM out of 

the data. The SOM is capable of clustering similar data into groups and four clustered 

regions are apparent in this figure. It is visible that the SOM is actually able to 

autonomously and independently identify the possible clusters for feature variables 1A  

and 2A . 

 
(a)     (b) 

Figure 3.5 (a) Unified distance matrix for feature A ; (b) Labels for feature A  

 
The labels 1, 2, 3 and 4 shown in Figure 3.5(b) are randomly assigned to four 

clusters obtained in SOM classification process. From now on, we will refer to those 

labels as ‘states’, which correspond to different ‘operating conditions’ of the feature 

vector A . In later sections, when we make probability inferences, we will use these 

discretized ‘states’ rather than the actual values of feature variables, which are continuous 

in magnitude. 

However, in order to utilize the inferred probability distribution in performing 

prediction based on new data, we must be able to understand the exact relationship 
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between each ‘state’ in Figure 3.5(b) to the actual readings of 1A  and 2A . This can be 

done by examining the BMU of the neural nodes in each cluster of state. For Figure 

3.5(b), the relationship between 1A  and 2A  readings and the SOM labels (states) are 

illustrated in Table 3.6.  

1A  2A  SOM Label 
+ + 2 
+ - 1 
- + 3 
- - 4 

Table 3.6 Relationship between 1A  & 2A and labels (states) in Figure 3.5(b) 

 
The same procedures we illustrated above can be applied to SOMs constructed 

out of feature vectors B  and C . The results for vector B  are shown in Figure 3.6 and 

Table 3.7, and the results for vector C  are shown in Figure 3.7 and Table 3.8.  

 

 
(a)      (b) 

Figure 3.6 (a) Unified distance matrix for feature B ; (b) Labels for feature B  
 

1B  2B  SOM Label 
+ + 2 
+ - 1 
- + 3 
- - 4 

Table 3.7 Relationship between 1B  & 2B  and labels (states) in Figure 3.6(b) 
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(a)      (b) 

Figure 3.7 (a) Unified distance matrix for feature C ; (b) Labels for feature C  

 
Metrology 1P  2P  SOM Label

a + + 1 
b + - 3 
c - + 2 
d - - 4 

Table 3.8 Relationship between 1P  & 2P  and labels (states) in Figure 3.7(b) 

 
So far we have discretized feature vectors A , B  and C , and have figured out 

the relationships between the states shown in SOM graphs and the actual readings of 

feature variables. 

3.4.4. Bayesian Network Learning 

As discussed in section 3.2.2, the BN is used in this research to make probability 

inference of inspection results based on the information obtained from joint consideration 

of in-situ sensor readings, maintenance actions, machine reliability, etc. In the preceding 

sections, we have utilized a stochastic data generation model to create hypothetical 

feature vectors A  and B  for process information. The model also generated 

hypothetical inspection results that are dependent on the process information and form 
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another feature vector C . The feature vectors then have been discretized separately into 

several clusters, to which the labels (states) are assigned using SOMs. In this section, we 

will use these discretized feature vectors A , B  and C  for both structure and 

parameter learning in BNs, i.e., to identify both the causal relationships between random 

variables and to discern stochastic connections between them. 

a) Structure learning 

In section 3.4.2, we initially have constructed two data generation models, one 

with no dependency between random vectors A  and B , and the other where B  is 

stochastically dependent on A . Also, for both of these models, C  is always dependent 

on A  and B . Therefore, we expect to see configurations as shown in Figure 3.8(a) and 

Figure 3.8(b) for BN structures corresponding to models 1) and 2) respectively. These 

structures should be obtained regardless of their initially assumed configurations. 

(a)     (b) 
Figure 3.8 Expected BN configuration after structure learning for two models: (a) A and B are 

independent; (b) B is dependent on A 

 
It should be noted that arrows in Figure 3.8 indicate a causal relationship between 

nodes. For example, arrows from A  to C  and from B  to C  indicates that A  and 

B  are all direct causes of C , in other words, node C  is dependent on A  and B . 
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Also the arrow from A  to B  represents the causal relationship between A  and B , 

where B  is directly dependent on A . 

A number of initial BN configurations are tested for the two models using 

structure learning program [115]. Only a few instances are presented in Figures 3.9 and 

3.10 for illustrative purposes.  

 

(a)      (b)       (c)   (d) 
Figure 3.9 BN configuration for A  & B  independent case: (a)-(c) different initial configurations; 

(d) final configuration after structure learning 

 
Plots (a), (b) and (c) in Figure 3.9 are the initial structures of the BNs assigned 

randomly, and (d) is the final structure obtained by the Bayesian structure learning 

process reported in Spirtes et al. [116] from the discretized feature vectors generated by 

the model, in which feature vectors A  and B are independent. After the structure 

learning process, all these ‘initially incorrect’ configurations have been rectified to the 

correct configuration shown in Figure 3.9(d), where vector C  depends on A  and 

B and vectors A  and B  are independent of either other. 

For another situation where B  is dependent on A , we performed a similar 

study. Plots (a), (b) and (c) in Figure 3.10 are the initial BN structures assigned randomly, 

and (d) is the final structure obtained by the Bayesian structure learning process reported 

in Spirtes et al. [116] from the discretized feature vectors generated by the model, in 
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which B  is dependent on A . The structure learning process, again, corrected all 

‘initially incorrect’ configurations to Figure 3.10(d), which corresponds to the actual 

structure shown in Figure 3.8(b), in which feature vector B  is dependent on vector A  

and vector C  depends on both A  and B .  

 

(a)       (b)  (c)   (d) 
Figure 3.10 BN configuration for A  & B  dependent case: (a)-(c) different initial configurations; 

(d) final configuration after structure learning 

b) Parameter learning 

The structure learning process stated above yields the causal relationships among 

the nodes (random feature variables). In order to make probability inference, we also 

need to know the conditional probabilities for each node. Learning of these conditional 

probabilities is referred to as parameter learning. In this section, we will use the model in 

which feature vectors A  and B  are independent, as an example to illustrate the 

parameter learning process. 

In this example, probabilities P(A), P(B) and P(C|A,B) will be computed using 

discretized data generated by the model in which A  and B  are independent. Let us 

refer to Figures 3.5~3.7 in which the clusters of each feature vectors are shown 

graphically and each cluster has its own label representing the corresponding ‘state’. It is 

intuitive to count how many data of feature vector A  will fall into each state in Figure 
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3.5(b), and divide this number by the total number of data. The result is essentially the 

probability of A  for each state, i.e., P(A) for states 1, 2, 3 and 4. By the same means, we 

can compute P(B) for the four states as well. Probability P(C|A,B) representing the 

conditional probability of C  given A  and B , can be computed by the following 

steps:  

Step 1: Count the number of data in feature vector C  falling into each state 

in Figure 3.7(b) given the data in A  and B  falling into a particular 

combination of their states; 

Step 2: Repeat Step 1 by going through all 16 combinations of states of A  

and B  ending up with 64 numerical values (C  has 4 states as well);  

Step 3: For each combination of states of A  and B , divide the number of 

samples falling into a particular state of C  by the total number of 

samples falling into this category of combination. This will give us 64 

numerical values, which are essentially the conditional probabilities 

P(C|A,B). 

(a) P(A) in (%) 
State P(A) from 

Learning 
P(A) from 
the Model 

1 28.22 28 
2 42.27 42 
3 17.58 18 
4 11.93 12 

(b) P(B) in (%) 

State 
P(B) from 
Learning  

P(B) from 
the Model 

1 7.72 8 
2 32.41 32 
3 47.65 48 
4 12.22 12 

Table 3.9 Tabulated probability distributions for P(A) and P(B) 
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Table 3.9 shows the probability of A  and B  in each state obtained by both 

Bayesian learning and model definition. According to the model defined in section 3.4.2, 

1A  has 30% possibility to have mean value A
11μ , 70% possibility to have mean value 

A
12μ , and 2A   has 40% possibility to have mean value A

21μ , 60% possibility to have 

mean value A
22μ . We also notice that State 1 is essentially the combination of high level 

(close to A
12μ ) of 1A  and low level(close to A

21μ ) of 2A  by observing Table 3.6 which 

gives the relationship between SOM labels (states) and actual data readings. Thus, the 

probability of State 1 should be equal to 70%×40%=28%. By the same means, we can 

perform this computation for States 2~4 resulting in the probability of State 

2=70%×60%=42%, probability of State 3=30%×60%=18%, and probability of State 

4=30%×40%=12%. It is obvious that these results computed directly based on the 

definition of data generation model are quite close to the results given by the parameter 

learning. The similar calculations have been done on feature vector B , which also give 

approximately equal results to the one obtained in parameter learning. 

The conditional probability table P(C|A,B) is shown in Table 3.10, which consists 

64 numerical values corresponding to 64 possible combinations of different states of A , 

B  and C . For comparison purposes, the probability distribution of P(C|A, B) derived 

from the model is shown in Table 3.11.  

 

 

 



55 

P(C|A, B) in (%) 
State of 

A 
State of 

B 
State of C 

1 2 3 4 
1 1 0 47.03 0 52.97 
1 2 82.30 8.85 8.63 0.22 
1 3 37.27 0 23.48 39.25 
1 4 11.31 0 50.30 38.39 
2 1 76.38 0.32 0.65 22.65 
2 2 49.67 49.89 0.22 0.22 
2 3 49.51 10.20 40 0.29 
2 4 0 21 79 0 
3 1 42.10 0 16.45 41.45 
3 2 63.70 0 0.17 36.13 
3 3 0.38 30.16 20.41 49.05 
3 4 41.44 29.28 29.28 0 
4 1 34.78 0 0 65.22 
4 2 12.98 0 86.77 0.25 
4 3 56.31 0 8.88 34.81 
4 4 19.31 0 14.48 66.21 

Table 3.10 Tabulated conditional probability P(C|A,B) from Bayesian learning 
 

P(C|A, B) in (%) 
State of 

A 
State of 

B 
State of C 

1 2 3 4 
1 1 0 50 0 50 
1 2 80 10 10 0 
1 3 35 0 25 40 
1 4 10 0 50 40 
2 1 70 0 0 30 
2 2 50 50 0 0 
2 3 50 10 40 0 
2 4 0 20 80 0 
3 1 50 0 20 30 
3 2 65 0 0 35 
3 3 0 30 20 50 
3 4 40 30 30 0 
4 1 33 0 0 67 
4 2 11 0 89 0 
4 3 52 0 10 38 
4 4 20 0 10 70 

Table 3.11 Tabulated conditional probability P(C|A,B) calculated from the model 
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3.4.5. Probability Inference and Results Verification 

In the preceding sections, we described the BN learning process, in which the BN 

structure and parameters are determined. Now this trained BN can be used to make 

probability inference based on given events. This section presents two examples of 

inference making and compares the inferred results with the predefined probability 

distribution in the data generation model to validate the proposed method.  

Two examples are shown in Figure 3.11. In the first example, shown in Figure 

3.11(a), the inferred probability of C  given that A  is in State 2 and B  is in State 4, is 

distributed as follows: State 1=0%, State 2=21.0%, State 3=79.0%, and State 4=0%, ,. 

Also in the second example, shown in Figure 3.8(b), the inferred probability of C  given 

that A  is in State 4 and B  is in State 3, is shown as follows: State 1=56.3%, State 

2=0%, State 3=8.88%, and State 4=34.8%. One may find that the inferences given here 

are essentially the numbers shown in Table 3.10 by looking up corresponding states of 

A  and B . 

 
Figure 3.11 Probability inference examples in unit (%) 

 
Next we will still use these two examples to compare their inferred results with 

the probability distribution we have defined in the model. First let us examine example 1, 

where A  is in State 2 and B  is in State 4. By looking up Table 3.6 and Table 3.7, 

  
(a)     (b) 
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which give the relationships between SOM labels (states) and the actual readings of A  

and B , we can see that in this case:  

1A = high(+), 2A =high(+), 1B =low(-), 2B =low(-) 

which corresponds to Case # 4 in Table 3.1. In turn, by looking up Case # 4 in Table 3.3, 

we will find out the predefined probabilities for four types of inspection parameter 

combinations a, b, c and d as: a=0%, b=80%, c=20%, d=0% 

From Table 3.8, we can also see that: 

• State 1 of inspection is corresponding to the combination ‘a’; 

• State 2 of inspection is corresponding to the combination ‘c’; 

• State 3 of inspection is corresponding to the combination ‘b’; 

• State 4 of inspection is corresponding to the combination ‘d’; 
 

Pr from Model Inference results 
a=0% State 1=0% 

b=80% State 3=79% 
c=20% State 2=21% 
d=0% State 4=0% 

Table 3.12 Comparison of model probability and inference results (Example 1) 

 
Pr from Model Inference results 

a=52% State 1=56.3% 
b=10% State 3=8.9% 
c=0% State 2=0% 

d=38% State 4=34.8% 
Table 3.13 Comparison of model probability and inference results (Example 2) 

 
Using these relationships, we can compare the inferred results shown in Figure 

3.11(a) to the probability distribution we have defined in Table 3.3. The comparison is 

tabulated in Table 3.12, from which, it can be seen clearly that the inference results are 

close to the model probability distribution. The same procedure can also be applied to 
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example 2 and the tabulated comparison of results is shown in Table 3.13. These two 

examples demonstrate that the BN is capable of making probability inference accurately 

(around 10% deviation to the nominal value in these examples) by using the discretized 

data obtained from SOMs. The error may come from two sources: 1) The data generation 

model may not be able to represent the predefined distribution accurately; 2) The 

Bayesian parameter learning error. Nevertheless, the simulation study has confirmed that 

the proposed method is feasible and it is ready to be applied to actual industrial dataset. 

3.5. Case Study I 

In this section, a set of industrial data obtained from semiconductor 

manufacturing process will be used to validate the proposed method of data integration 

and probability inference. The rest of this section is organized as follows: section 3.5.1 

describes the dataset used in this study; section 3.5.2 discusses the feature extraction 

using fuzzy-c means; section 3.5.3 presents data discretization using SOMs; section 3.5.4 

focuses on Bayesian structure learning and parameter learning; section 3.5.5 

demonstrates the probability inference; and section 3.5.6 discusses model validation 

using testing data set. 

3.5.1. Dataset Description 

A set of semiconductor manufacturing data is collected from a chamber tool, 

including three relational data sets, i.e., event data, trace data, and metrology data. Event 

data records the ‘Start Time’ for each operation (i.e., process start or cleaning start), and 

the ‘Processing Area ID’, ‘Wafer #’ and ‘Lot #’ associated with each operation. Trace 
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data records process parameter readings along with time stamps, which contains 6 

different chambers information. Metrology data records wafer thickness measurement 

results (mean value and standard deviation) along with wafer # and lot #. In order to 

apply BN analysis, three separate datasets have to be consolidated and synchronized. In 

so doing, events data, trace data and metrology data are merged together according to 

wafer # and time stamps. The data consolidation and synchronization process can be 

illustrated by Figure 3.12. After this, the resultant dataset contains nine process 

parameters (labeled as PARAM1~PARAM9) and one metrology measurement. 

 

Figure 3.12 Data consolidation and synchronization procedure 
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3.5.2. Feature Extraction 

Four of process parameters are plotted in Figure 3.13 for illustration, in which the 

X-axis is ‘data points over time’, and Y-axis is ‘altered reading values’. It can be seen 

that each parameter shows similar pattern over time repeatedly, and the magnitude of 

readings vary between two or more mean values, which is supposed to be pre-specified 

by the fabrication process (which may be a known specification to the fab, but unknown 

to us). For instance, as shown in Figure 3.14, PARAM4 varies between 2.5 level and 7.5 

level. By further looking at the data from a microscopic view, we can observe that there 

are many small fluctuations around the 2.5 level. These can be referred to as ‘deviations’ 

from pre-specified mean values. 

 
Figure 3.13 Chamber tool process parameters  

(X-axis: data points over time, Y-axis: altered reading value) 

 
The macroscopic behavior (i.e., the repeatable pattern) is designed in such a way 

in order to complete one or a series of fabrication function(s), which along with other 

setting parameters will determine the overall product specifications. For example, a 

certain amount of pre-specified force applied to wafers in a CMP process will influence 
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the average thickness of finished wafers. However, it is the ‘deviations’ from the pre-

specified force that result in product quality variations on a single wafer. 

 
Figure 3.14 Zoom-in of PARAM4 to show the deviations embedded in the significant variation of 

mean values 

 
Therefore, a feature extraction technique needs to be applied to extract these 

subtle deviations concealed in the significant variations of mean values. In this research, 

fuzzy c-means [117] has been employed to uncover the unknown pre-specified patterns 

of the raw data. Fuzzy-c means clustering method allows one piece of data to belong to 

two or more clusters by using ‘membership function’, which is able to relieve the effect 

of boundary data during the classification process. 

By applying the fuzzy-c means, the raw data of each parameter is grouped into 

two or more clusters, representing by the cluster means (centroid) and membership 

function. Then the deviation from mean is calculated by subtracting the product of 

membership function and cluster centroid from raw data  

jijiDi cuXX •−=      (3.9) 

where Xi is raw data, XDi is the deviation, uij is the membership function for Xi, and cj is 

the centriod of cluster j. 
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3.5.3. Data Discretization 

As mentioned before, the SOMs have been employed to discretize continuous 

data into discrete clusters. Note that when talking about discrete data, we will 

interchangeably use ‘cluster’, ‘level’ or ‘state’. 

First, features of nine process parameters are extracted from the consolidated 

dataset, and the training dataset (15000 samples) of each feature is normalized to 

mean=0, and variance=1. This normalization is typically performed to control the 

variance of features, because if some features have significantly higher variance than that 

of other features, those features will dominate the SOM organization [118]. Then the 

normalized features are discretized using SOMs. The data discretization is based on the 

criterion that the ratio of the quantization error to the range of feature data should not 

exceed a specified threshold, which in our case is set to be 1%. This relationship is given 

by 

Threshold
DataFeatureofRange

ErroronQuantizatiQR ≤=    (3.10) 

The quantization error is defined as the average distance between the data and 

their BMUs in the SOM, as shown in Equation (3.11) 

  ( )∑
=

−=
N

i
BMUi XX

N
ErroronQuantizati

1

1    (3.11) 

where N  is the number of data points for a single feature, iX  is the value of data point 

i , and BMUX  is the corresponding value of iX ’s BMU. 

The general guideline of choosing the threshold value in Equation (3.10) is as 

follows. First, it can be expected that when the threshold value is large, the discretization 
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results will be coarse, which means that it ends up with less number of discrete clusters. 

In such a situation, the Bayesian network training would discover more stochastic 

dependencies among random variables that may be even unnecessary for modeling 

purpose. However, on the other hand, if the threshold value is set to be small, the 

discretization results will tend to include more discrete clusters. The resultant Bayesian 

network structure using those discretized random variables might have totally 

disconnected nodes so that probability inference cannot be drawn out of this model. 

Second, the computational time is exponentially proportional to the number of clusters, 

which is determined by the threshold value we set up for each random variable. Smaller 

threshold value leads to more clusters in a random variable discretization result, and in 

turn leads to longer computational time. Therefore, based on the discussion above, it can 

be seen that selecting the proper threshold value involves the coherent consideration of 

validity of Bayesian learning and feasibility of computation. The discretization results 

using a proper threshold value would allow computers to complete the Bayesian training 

process in a reasonable amount of time. More importantly, it would lead to a BN that can 

be physically interpreted if field expert knowledge is available, or a BN that can be 

validated using testing dataset, which will be presented in the following subsections. 

The number of discretization clusters will be chosen so that the criterion (3.10) 

must be met, or a growing SOM can be employed [119, 120]. The feature numbers, 

feature names, real QR ratios and number of discretized clusters for nine features of 

training dataset are shown in Table 3.14. For example, the first feature PARAM1 is 

discretized into 4 clusters with QR ratio 0.94%, which satisfied our specified criterion. In 

order words, 15000 training data points for feature PARAM1 have been clustered into 4 



64 

distinct levels (states). After that, we can use the discretized state number (cluster number 

or level number) to refer to data points, instead of using continuous raw data points. In so 

doing, the computational load of Bayesian network learning can be dramatically reduced.  

Feature Name Q/R Ratio Number of States 

PARAM1 0.94% 4 
PARAM2 0.83% 9 
PARAM3 0.67% 4 
PARAM4 0.83% 5 
PARAM5 0.72% 5 
PARAM6 1.00% 20 
PARAM7 0.85% 5 
PARAM8 0.96% 12 

PARAM9 0.98% 16 
Table 3.14 Discretization results of process parameters 

3.5.4. Bayesian Network Learning 

The Bayesian network learning involves two steps. One is structure learning, 

which is intended to find causal relationships among random variables; and the other is 

parameter learning, which is to determine conditional probability tables for all random 

variables. In this section, we would like to present the Bayesian structure and parameter 

learning results using the training dataset. 

With discrete features obtained in section 3.5.3, we used greedy searching 

algorithm [107] for Bayesian structure learning. The starting point for the greedy search 

is given by the maximum weight spanning tree (MWST), which has been proven to give 

a robust initialization structure rather than solely using greedy searching [106]. The BN 

structure graph including all 9 features is shown in Figure 3.15. The random variables 

denoting features are represented by ‘nodes’, while arrows in the graph represent causal 
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relationships. One should also note that the BN structure learning process reveals the 

causal relationships without taking any prior expert knowledge, which is very important 

when using Bayesian networks in complex manufacturing systems, such as 

semiconductor manufacturing where the causal relationships among random variables are 

often unknown. 

 
Figure 3.15 Bayesian structure learning result 

 
Having the BN structure available, the next step is to utilize this BN and the given 

measurement results for parameter learning. The maximum likelihood estimation (MLE) 

has been used to estimate the conditional probability distribution among features [107]. 

After this parameter learning process, each node should have a conditional probability 

table (CPT) associated with it, except the root nodes that do not have any parent nodes, 

i.e., PARAM6. One of the CPT examples is shown in Table 3.15, which depicts the CPT 

for the node of Metrology. In this table, the first row indicates the discretized state of 

metrology (i.e., from 1 to 3); the first column indicates the discretized state of its parent 
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node. In this case, the node of metrology only has one parent, i.e., PARAM7 with 5 

discretized states. Then the table lists all the conditional probability of metrology given 

the evidence of occurrence of PARAM7. With the aid of causal networks and associated 

CPTs, the BN is able to make probability inference of unobserved random variables from 

the observed ones. 

State of 
PARAM7 

State of Metrology 

1 2 3 

1 3.44% 93.01% 3.54% 

2 84.52% 10.32% 5.16% 

3 3.61% 34.47% 61.92% 

4 12.99% 81.82% 5.19% 

5 7.05% 12.70% 80.25% 
Table 3.15 Conditional probability table for metrology node 

3.5.5. Inference 

Given evidences of some features, the conditional probability of other features 

can be inferred out of the BN. Figure 3.16 shows one of the examples, in which it is 

assumed that there comes a new observation that PARAM7 is in its state 1 (which means 

for this new observation the real data of PARAM7 falls into the discrete cluster # 1 that is 

created by SOMs), then this new evidence can be used to make inference about other 

features. However, from the prediction point of view, we are interested in finding how 

the metrology is affected by new observation of process parameters. Based on the Bayes’ 

Theorem [121], once the state of PARAM7 is determined, the probability distribution of 

metrology can be inferred based on the conditional probability table. For example, Figure 

3.16 shows that a new evidence of PARAM7 is observed, in which the PARAM7 exhibits 
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state 1. Using the established BN, we can infer the probability distribution of metrology 

as: 

P(Metrology|PARAM7=1)=[0.0344, 0.9301, 0.0354] 

which is exactly the same distribution as given in Table 3.15 for the case PARAM7 in 

state 1. It can be seen that the CPTs play an important role in quantitatively predicting the 

probability distribution based on new observations. 

 

Figure 3.16 Example of probability inference 

3.5.6. Model Validation 

A predictive model can be constructed by following the aforementioned 

procedure. However, in order to validate the model, it is required to benchmark the 

predicted results against the observed true value. In this section, we will present the use 

of 5000 samples in testing dataset to validate the BN model. 

In the model validation process, the testing dataset is firstly discretized using the 

same discretized levels and same best matching units as we processed the training 

dataset. Then we assume that all the features are observable except metrology due to 

some (e.g., technical or economic) constraints. Given historical data of all features 

1 2 3
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1
g y

1 2 3 4 5
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

(a) Given observation PARAM7=1        (b) Inferred Distribution of Metrology



68 

(including metrology), a BN as shown in Figure 3.15 is constructed and the associated 

CPTs are estimated. From the BN structure, it can be seen that once the state of 

PARAM7 is determined, the probability distributions of metrology can be inferred using 

the CPT associated with it (Table 3.15). And the states of other features will not affect the 

inference results. 

 
Figure 3.17 Comparison of true distribution to inferred distribution 

 

On the other hand, we do have the true observation of metrology in the testing 

dataset, and the conditional probability of metrology based on given observations of 

PARAM7 in testing dataset can be calculated. Figure 3.17 shows an example of the 

comparison between the true distribution of metrology to the inferred distribution using 

BN. A similarity metric is invoked to quantitatively evaluate the prediction accuracy 

between these inference distributions and true distributions, as given by Equation (3.12): 

    ( )∑ ⋅=
=

N

j
jjk TITIS

1
),(     (3.12) 

where kS  is the similarity between inference and true distributions (i.e., I  and T ) 

when parent node in state k , N  is the total number of discrete states, jI  is the inferred 

probability for state j , and jT  is the true probability calculated from data for state j .  
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It can be shown that the range of kS  is from 0 to 1, and when kS  is equal to 1 it 

implies the two distributions I  and T  are identical. Therefore, kS  closer to unity 

means a better prediction performance. 

However, kS  can only represent the similarity between I  and T  when the 

parent node in a single state k . A weighted similarity needs to be calculated to evaluate 

the overall performance of the model, which is given by Equation (3.13) 

∑ ×=
=

M

k
kk TISPS

1
),(      (3.13) 

where kP  is the probability of parent node in state k in the testing dataset, and kS  is 

the similarity metric given by Equation (3.12). 

k (State of PARAM7) 1 2 3 4 5 

S k
 in

 4
-fo

ld
 C

V 1 0.9999 0.9932 1.0000 0.9948 0.9986 

2 0.9999 0.9972 1.0000 0.9999 0.9998 

3 0.9999 0.9987 1.0000 0.9926 0.9999 

4 0.9999 0.9945 0.9999 0.9936 0.9995 

Table 3.16 Four-fold cross validation results 

 
Similar to kS , it can be shown from its definition that if S  is closer to unity, it 

implies more accurate the prediction is. Table 3.16 shows the 4-fold cross validation 

results, and the average weighted similarity is 0.9978. The results reflect the fact that the 

inferred distribution of metrology is very close to the true distribution, and therefore 

giving a good prediction. 
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3.6. Case Study II 

Although the method of using BN based probability inference to make predictions 

is originally proposed to solve yield estimation problems in semiconductor manufacturing 

environment, it can be seen that this method is not data specific, which means that it is 

possible to be applied to other applications. In this section, we will briefly demonstrate 

the entire procedure of applying BNs and SOMs to construct predictive models as well as 

make probability inference using an industrial data set collected by an optical 

measurement system operating in an automotive plant [122]. The application procedure 

will follow the same sequence presented in section 3.5. 

3.6.1. Dataset Description 

In automotive industry, optical measurement systems have been widely accepted 

as major non-contact measurement tools for car body feature inspections [122]. The 

measurement results are deviations from pre-specified datum. For illustrative purpose, 

Figure 3.18 shows a single feature measurement results recorded by a Perceptron optical 

measurement station in a domestic automotive plant. To ensure product quality, there are 

totally 156 features measured for a single car body in this factory. Figure 3.19 shows part 

of car body feature measurement points. 

In the dataset obtained from the plant, we selected a 23-day measurement record, 

which contains 13960 data samples for 156 features. This dataset is divided into 2 

subsets, each of which has 6980 data samples. One of the subsets is reserved as testing 

data for model validation, and the other is used for training the SOMs and BNs to build 

the predictive model.  
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Figure 3.18 Perceptron measurement of one feature variable 

 

 
Figure 3.19 Perceptron optical measurement features 
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Figure 3.20 Measurement features of Part # 1 and Part # 2 

 
In the manufacturing process, Part # 1 and Part # 2 are the ones which most likely 

suffer from deformation and usually cause quality problems, as shown in Figure 3.20. 

Therefore, the measurements from Part # 1 and Part # 2 will be used for analysis in this 

section. Note that there are totally 44 features on these two parts. 24 of them are 

associated with Part # 1, and 20 associated with Part # 2. 

3.6.2. Data Discretization 

As described in section 3.5.3, the SOMs have been employed to discretize 

continuous data into discrete clusters. First of all, 44 features on Part # 1 and Part # 2 are 

extracted from the 23-day measurement database, and the training dataset (which 

contains 6980 data samples) of each feature is normalized to mean=0, and variance=1. 

Then the normalized features are discretized using SOMs. The data discretization is 

based on the criterion given by Equation (3.10). The feature numbers, feature names, real 

QR ratios and number of discretized clusters for 44 features of training dataset are shown 

in Table 3.17.  
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Feature # Feature Name Q/R ratio Number of Cluster 
1 084604[X] 0.0095 16 
2 084604[Y] 0.0097 15 
3 084604[Z] 0.0100 14 
4 084609[X] 0.0094 16 
5 084609[Y] 0.0084 7 
6 084609[Z] 0.0094 12 
7 084704[X] 0.0092 15 
8 084704[Y] 0.0095 15 
9 084704[Z] 0.0096 14 
10 084709[X] 0.0091 15 
11 084709[Y] 0.0092 16 
12 084709[Z] 0.0094 14 
13 093000[X] 0.0098 21 
14 093000[Y] 0.0098 22 
15 093000[Z] 0.0100 23 
16 093006[X] 0.0089 14 
17 093006[Y] 0.0094 15 
18 093006[Z] 0.0097 19 
19 093012[X] 0.0098 16 
20 093012[Y] 0.0099 20 
21 093012[Z] 0.0098 22 
22 093014[Y] 0.0097 16 
23 093014[Z] 0.0092 20 
24 093100[X] 0.0098 16 
25 093100[Z] 0.0090 13 
26 093106[X] 0.0098 21 
27 093106[Y] 0.0095 20 
28 093106[Z] 0.0100 19 
29 093112[X] 0.0098 16 
30 093112[Y] 0.0093 15 
31 093114[Y] 0.0099 20 
32 093114[Z] 0.0099 20 
33 530801[X] 0.0095 20 
34 530801[Y] 0.0099 14 
35 530801[Z] 0.0097 15 
36 530802[X] 0.0099 20 
37 530802[Y] 0.0098 15 
38 530802[Z] 0.0099 16 
39 530901[X] 0.0093 16 
40 530901[Y] 0.0099 13 
41 530901[Z] 0.0095 14 
42 530902[X] 0.0099 15 
43 530902[Y] 0.0092 20 
44 530902[Z] 0.0098 15 

Table 3.17 Discretization results for 44 features on Part # 1 and Part # 2 
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3.6.3. Bayesian Network Learning 

Being trained with the discrete features obtained in section 3.6.2, the BN structure 

graph including all 44 features is shown in Figure 3.21. It can be found that it consists of 

two disconnected BNs, i.e., one of the networks started with feature ‘084609[X]’ (feature 

# 4) and the other started with feature ‘093000[X]’ (feature # 13). By tracking down these 

two network structures respectively, it can be found that all the features on Part # 

1(highlighted in Table 3.17) belong to the BN starting with the feature ‘084609[X]’, and 

all the features on Part # 2 belong to the BN starting with the feature ‘093000[X]’. These 

two separate BNs are plotted in Figure 3.21. The separation of those two Bayesian 

structures makes sense from the physical point of view, because in general the quality 

measurement of features on Part # 1 will not influence the quality measurement of 

features on Part # 2, and vice versa. Also, the interrelationships between features within 

each network have a physical meaning, since the related features are processed at the 

same time, which results in the stochastic dependencies between them [123, 124]. 

The MLE has been used to estimate the conditional probability distributions 

among features. Once we have the BN structure and associated CPTs, the probability 

inference and model validation can be performed as demonstrated in the previous case 

study. In the next sections, BN associated with features on Part # 1 will be used to 

validate the model. 
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Figure 3.21 BN structure for 44 features on Part # 1 and Part # 2 (a) Labeled by feature names; (b) 

Labeled by feature numbers 
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Figure 3.22 BN Structures for (a) 24 features on Part # 1; (b) 20 features on Part # 2 
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3.6.4. Model Validation 

In this section, we will use 6980 testing samples that are not used for BN training 

to validate the BN model. The testing dataset is firstly discretized using the SOMs 

constructed from the training dataset. Then we assume that all the features on Part # 1 are 

observable except feature # 8 and # 11. Given historical data of all features (including 

feature # 8 and feature # 11), a BN is constructed with corresponding CPTs. From the BN 

structure, it can be seen that given the state of feature # 40, features # 8 and # 11 are 

independent with all other feature variables. The inferred probability distributions of 

feature # 8 and feature # 11 based on different new observations of feature # 40 are 

depicted in Figure 3.23.  

On the other hand, we do have the true observations of feature # 8 and feature # 

11 in the testing dataset, and hence the actual conditional probabilities of feature # 8 and 

feature # 11 given observations of feature # 40 can be calculated from the testing dataset. 

Figure 3.24 shows the true probability distribution calculated from testing data for feature 

# 8 and feature # 11. 

Table 3.18 shows the similarity metrics for feature # 8 and feature # 11 calculated 

using Equation (3.12) along with the number of evidence in the testing dataset. Then the 

weighted similarity can be evaluated using Equation (3.13): S = 0.9733 for feature # 8 

and S = 0.9884 for feature # 11, which are all close to unity, implying a good prediction 

capability. 
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Figure 3.23 Inferred probability distributions for (a) feature # 8 and (b) feature # 11 
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Figure 3.24 True probability distributions for (a) feature # 8 and (b) feature # 11 
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State of 
Feature # 40 

Number of 
Evidence 

Similarity of 
Feature # 8 

Similarity of 
Feature # 11 

1 1857 0.9858 0.9938 
2 924 0.9664 0.9918 
3 1017 0.9783 0.993 
4 668 0.9773 0.9906 
5 512 0.9759 0.9904 
6 397 0.9709 0.9887 
7 387 0.9808 0.9903 
8 327 0.9668 0.9884 
9 246 0.9781 0.9699 

10 239 0.9662 0.981 
11 197 0.9753 0.9704 
12 95 0.9721 0.9711 
13 114 0.7492 0.902 

Table 3.18 Similarity between inferred distributions and true distributions 

3.7. Improvement of the Efficiency of Data Search 

As discussed before, the semiconductor databases are huge in terms of both 

number of entries and number of records. It is important to improve the search process 

for records that are similar to the most recently observed situation, which is necessary to 

enable to information discovery and inference process based on the use of SOMs and 

BNs. 

Currently, almost all databases in manufacturing are organized in a sequential 

manner as lists based usually on the time of arrival of an entry into the database. In this 

section we are proposing to use a ‘distance-based database structure’ to replace the 

current ‘time or sequential based’ database structure. The potential benefit of this work 

will be to increase the data searching speed. The main idea of the ‘distance-based’ 

database structure is based on the use of SOMs, which is discussed as follows. 

After completing discretization using SOMs, each feature vector is mapped to a 2-

D map, in which the SOM is naturally divided into a series of Voronoi sets. The SOM 

now becomes a codebook with one vector associated with each Voronoi set. The 
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codebook value (weight vector) is representative in the distance sense of a possibly large 

number of data records that are nearer to it than to any other weight vector in the SOM. 

Based on this, finding similar entries in the entire database can be performed much 

quicker by finding the BMU in the SOM. 

This data organization corresponds to re-organizing the entire database into a tree 

rather than a list (as it is currently done), where the leafs of the tree are database entries 

and their parent nodes are the weight vectors of the corresponding BMUs in the SOM, as 

illustrated in Figure 3.25. When the new observation comes, we first search for the best 

matching weight vector in the discrete domain, then within that subset refine the search to 

obtain the best matching entries in the database. 

 
Figure 3.25 Tree based organization of database using SOM Voronoi set tessellation 

 
The Perceptron dataset used in section 3.6 is utilized to compare the efficiency 

and accuracy of this data organization and search method with the direct searching 

method in a purely time-ordered dataset. In this study, we first perform the direct 

searching in the time-sequenced database, trying to find the first ten BMUs for every 

testing data entry. The corresponding average search time and search error (distance 

between testing data entry and the BMUs) are calculated. Then in the tree-organized 
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database formed by the SOM, we first locate the Voronoi set that has the best matching 

weight vector to the testing data entry, then within that Voronoi set, the first ten BMUs 

are searched. Both the average search time and search error are calculated as well. The 

results of the two search methods are shown in Table 3.19, from which we can see that 

the proposed search methods has at least 10 times faster search speed, and comparable 

search error compared to the direct searching in the time-sequenced dataset. This will 

significantly improve the computational efficiency of our similarity based predictive 

modeling and inference, especially for large dataset encountered in the semiconductor 

manufacturing environment. 

Searching Strategy Average Searching Time (sec) Average Error for Ten BMUs 

Exhaustive searching for 
BMUs in Original Data 6.7816E-04 1.6359E-03 

Searching in Discretized 
Data, then Search for BMUs 5.3156E-05 1.6390E-03 

Table 3.19 Comparison between data search strategies 

3.8. Conclusions 

This chapter presents the development of a method for integrating fragmented 

data domains in a complex manufacturing environment to predict product quality. The 

SOMs and BNs are proposed for this methodology, in which the high-dimensional 

feature vectors extracted from machine condition monitoring database, maintenance 

database, machine reliability information, and wafer inspection results are firstly 

classified into low-dimensional discretized feature sets by using SOMs. Then the 

discretized data is used to train BNs which will be able to draw probability inference after 

structure and parameter learning. The inferred inspection should be obtained based on 
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applying the BN-based structure on the input feature vectors that are new observations of 

machine conditions and maintenance actions, etc. 

In order to validate the proposed method, both the simulation study and the real 

industrial dataset applications have been performed. In the simulation study, a stochastic 

data generator is designed to create simulated feature vectors that are classified into 

discretized clusters using SOMs and used to train BNs. The resultant BN is capable of 

making probability inference based on the observed events and the inferred results have 

shown good agreements with the results derived directly from the simulation model. In 

the real industrial data applications, we used a dataset collected from a chamber tool in 

the semiconductor industry. Compared to the simple simulated dataset, the real-world 

data has more complex causal relationships and real physical meanings. The entire 

procedure of implementing this method is presented in the thesis, The stochastic 

dependencies among process variables and metrology are discovered autonomously, 

which enables one to perform virtual estimation of metrology without 100% inspection. 

Also, the quantitative comparison between inferred results and true value of metrology 

shows promising predictive capability. In addition, the proposed method is applicable to 

other applications. Therefore, a case study using optical measurements of automotive 

body parts has been conducted, where BN structure learning distinguished the features 

from two distinct parts and found causal connections among features on each part. 

Finally, a comparison study has been performed to testify that a newly proposed tree-

organizational data search method is able to provide faster searching than traditional list-

organizational data search that is currently used in most manufacturing facilities.
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CHAPTER 4  

HIDDEN MARKOV MODEL BASED PREDICTION OF TOOL DEGRADATION 

UNDER VARIABLE OPERATING CONDITIONS 

4.1. Introduction 

Since particle contamination in semiconductor fabrication tools is a major source 

of yield loss [125], a great deal of efforts in both research and industry communities have 

been devoted to developing in-situ particle monitoring techniques to ensure product 

quality, especially as the critical dimensions of semiconductor products are dramatically 

shrinking. Several publications [55, 56, 60] have discussed the extensive use of in-situ 

particle monitoring in a variety of chamber tools in the semiconductor manufacturing 

process, such as plasma etching, sputtering, and chemical vapor deposition. Literature 

[56, 60] also reveal that in-situ particle measurements at the current stage are still 

expensive to implement and the monitoring results are unreliable. Therefore, due to the 

inability of accurately sensing the condition of equipment, the prevailing maintenance 

practices for chamber tools are still preventive maintenance, using either time-based or 

wafer-based scheduling strategies [5]. As discussed before, since the preventive 

maintenance approach does not take the current equipment condition into consideration, 

it may lead to the chamber tools being either “over-maintained” (wasting the remaining 
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useful life) or “under-maintained” (resulting in unexpected failure). In practice, chamber 

tools are experiencing more frequent cleaning than needed to ensure the product quality, 

which usually results in substantial cost due to excessive usages of maintenance materials 

and personnel. It has been reported that cleaning gases for chamber tool maintenance 

have contributed significantly to the overall material cost in semiconductor 

manufacturing [126]. In addition, more frequent maintenance actions are taken, longer 

equipment downtime will occur, and possibly longer idle time of downstream machines.  

According to above elaboration, a PdM approach can be pursued to: 

1) Sense the in-chamber particle contamination;  

2) Initiate maintenance based on accurate relations between condition 

measurements, levels of in-chamber particle counts and outgoing product 

quality.  

This PdM approach have potentially immense benefits to both semiconductor 

manufacturers and equipment suppliers, ensuring them to improve the chip quality, 

increase the yield, and extend the useful life of semiconductor equipment. 

However, there are several impediments to reliable PdM approach for the 

chamber tools based on the in-situ particle sensing measurements. The major challenges 

are summarized as follows: 

• Chamber particle monitoring is a complex problem due to one’s inability to 

directly observe the particle counts and complexity of dependencies of particle 

counts on other process measurements; 

• Modeling of particle counts using available process and product 

measurements have not yielded satisfactory results; 
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• Relations between available in-situ measurements of energy consumption, 

chamber conditions (temperature, pressure, etc) and product quality coming 

out of the chamber (on-wafer particle counts, critical dimensions) are highly 

stochastic and product/operation dependent; 

• The fact that multiple operations (layers) on multiple products could 

potentially be executed in one chamber makes the problem more complicated 

since each operation affects the chamber contamination differently 

(contamination increments are different). 

Therefore, rather than attempting to postulate an exact analytical connection 

between available measurements and particle counts, we propose to stochastically relate 

available measurements to stratified (discretized) levels of particle counts. Then the 

hidden Markov model (HMM) will be used to model the relations between the observable 

process information, outgoing product quality and the unobservable discretized in-

chamber particle levels in the presence of multiple products/operations processed in the 

same chamber. The models will enable one to track and predict levels of chamber 

contamination and proactively clean the chamber exactly when it is needed, rather than 

the current practice where chamber maintenance is based on historical records of 

time/usage indicators. 

Furthermore, chamber degradation due to particle contamination could potentially 

lead to situations where the tool becomes qualified to execute only a portion of operations 

that are originally executed on it. In such cases, operations for which the tool is still 

qualified could continue to be executed on that tool before maintenance resources 
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become available. Thus, the maximal usage of the tool can be exploited and a better 

synchronization between maintenance and production operations can be achieved. 

4.2. Hidden Markov Model Background 

A Markov chain is a sequence of random variables 1X , 2X , 3X ... (denoted by 

{ } 0≥kkX , where k is an integer index) with a Markov property, namely that, given the 

present state, the future and past states are independent. Mathematically, this so-called 

Markov property is expressed by 

( ) ( )nnnnnn xXxXxXxXxXxX ======= ++ |Pr,,,|Pr 100111  (4.1) 

According to Cappe et al. [127], a hidden Markov model is a Markov chain 

observed in noise, in which the { } 0≥kkX is hidden, i.e., it is not directly observable. 

What is available to the observer is another stochastic process { } 0≥kkY  whose 

distributions are determined by the Markov chain kX . Therefore, HMM is a doubly 

embedded stochastic process with an underlying stochastic process that is not observable. 

The structure of an HMM can be illustrated by Figure 4.1. This structure also depicts the 

state transition of the HMM.  

 
 

Figure 4.1 Graphical representation of the dependence structures of an HMM 

1−kX

 

kX  1+kX

1−kY  kY 1+kY  
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Given one specific topology of the model, HMM can be fully described by several 

parameters, such as emission probability distribution, transition probabilities and initial 

state probability distribution, which are defined as follows [128]: 

1) N, the number of states in the model. The states, in general, are interconnected 

in such a way that any state can be reached from any other state. We denote 

the individual states as { }NSSSS ,,, 21= , and the state at time t as tq ; 

2) M, the number of distinct observation symbols per state. The observation 

symbols correspond to the physical output of the system being modeled. We 

denote the individual symbols as { }MvvvV ,,, 21= ; 

3) The state transition probability distribution { }ijaA = , where each element of 

the transition matrix is the probability of taking the transition from state i to 

state j, i.e., 

( )itjtij SqSqa === + |Pr 1 , Nji ≤≤ ,1  

4) The emission probability distribution in state j, { }}{kbB j= , where 

( )jtkj Sqtatvkb == |Pr)( , Nj ≤≤1 , Mk ≤≤1  

5) The initial state distribution { }iππ = , where 

( )iki Sqtatv == 1|Prπ , Ni ≤≤1  

From the above discussion, it can be seen that a complete specification of an 

HMM requires specification of two model parameters (N and M), specifications of 

observation symbols, and the specification of the three probability parameter matrices A, 
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B and π . For convenience, the HMM can be denoted in a compact notation 

( )πλ ,, BA=  to indicate the complete parameter set of the model. 

There are three problems related to the utilization of HMMs. If we denote the 

observation sequence using },{ 21 TOOOO = , where T is the number of observations. 

The basic three problems of HMM can be defined as follows: 

1) Learning problem: Given the underlying model ( )πλ ,, BA= , adjust the 

model parameters A, B and π  to maximize the probability of the 

observation sequence ]|[ λOP .  

2) Decoding problem: Given the underlying model ( )πλ ,, BA=  and 

observation sequence },{ 21 TOOOO = , find the most likely state 

sequence },{ 21 TqqqQ = .  

3) Evaluation problem: Given a model ( )πλ ,, BA=  and observation 

sequence },{ 21 TOOOO = , the solution to evaluation problem is to 

calculate the probability of the occurrence of the observation 

sequence ]|[ λOP .  

In this research, the first two problems will be dealt with to formulate a HMM 

based predictive model for tool degradation, especially, under variable operating 

conditions. There are plenty of literature providing effective solutions to the 

aforementioned problems. For example, it is well-known that the HMM learning problem 

can be solved using Baum-Welch algorithm [129], which is a generalized Expectation-

Maximization (EM) algorithm that can compute maximum likelihood estimates for the 

parameters of an HMM when only given observations as training data. In addition, the 
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decoding problem can be solved using Viterbi algorithm [130], which is able to find the 

most likely sequence of hidden states that results in a sequence of observed events when 

given an HMM.   

In summary, the hidden Markov model is a statistical model where the system 

being modeled is assumed to be a Markov process with unknown parameters. The 

challenge in this research is to model HMM parameters representing multiple recipes 

executed in the same chamber tool. The extracted model parameters can then be used to 

perform further analysis. 

4.3. Proposed Method 

In regard to the PdM in chamber tools, Sloan and Shanthikumar [3] proposed a 

framework using in-line equipment condition and yield information for maintenance 

scheduling and dispatching. In their work, they assumed that the chamber condition could 

be directly gauged by in-situ particle monitoring that detects the number of particles in a 

piece of equipment while it was operating. Furthermore, it was assumed that a number of 

operations/products were processed on one tool and the yield for each operation was 

probabilistically related to the particle counts through a known yield model. Thus, it was 

taken into account that the machine condition affects the yield of different product types 

differently. It was also assumed that changes in the particle count can be described as a 

Markov chain and that Markov chain properties for all processes in a given tool are 

known. Moreover, they assumed that yield information for each contamination level was 

also known. Under such assumption, at each time instance a decision optimization could 

be made to determine what layer (operation) to process or whether to clean the chamber 



91 

(maintenance was taking place). Markov process renders the decision-making its 

predictive properties, but assumption about direct availability of particle counts as well as 

particle-count/operation dependent yield properties are unrealistic based on the literature 

reviewed in Chapter 2. 

Therefore, based on the work presented by Sloan and Shanthikumar [3], we 

propose to use the HMMs to overcome the need for direct observations of particle counts, 

postulating the particle contamination progression based on available process 

information. The HMM is chosen because it is a natural extension of observable Markov 

chains in which states of the Markov chain are not directly observable and can only be 

inferred through another stochastic process that describes the sequence of observed states. 

 
Figure 4.2 Framework of HMM based chamber degradation prediction 

 
In the proposed HMM modeling approach as depicted in Figure 4.2, the directly 

unobservable in-chamber particle contamination will be modeled using observable 

controllers, in-situ measurement variables, such as temperature, pressure, gas flow, 

energy consumption, measured on-wafer particles. This requires a multi-dimensional 

HMM that has more than one observation symbol at each time [131, 132]. Since it can 

accommodate different sensor signals simultaneously and transfer all information 
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contained in the sensors into model parameters, the multi-dimensional HMM is 

preferably used in this research to fuse multi-sensor data together resulting in better 

estimation of the tool degradation. 

The original Baum-Welch algorithm is designed for one-dimensional HMM, 

which only has one observable variable, and therefore needs to be modified to 

accommodate multi-dimensional sensor data. According to literature [131], one possible 

solution employed here is to assume that observable data from different sensors are 

stochastically independent of each other, and then the emission probability of a multi-

dimensional HMM can be computed as the product of the emission probabilities of each 

dimension.  

The detailed methodology development is given as follows: 

First, for the data that will be used for training the HMM parameters, one must 

know for each entry what recipe is utilized. Then the observable variables will be 

discretized using self-organizing maps [98] or some other discretization mechanism. It 

will be assumed that the unobservable variable (level of chamber degradation state) can 

only take a discrete number of values. In other words we will stratify particle counts into 

several layers so that the prediction really reduces to utilizing available measurements to 

predict the level of particle counts (i.e., rough prediction) rather than exact particle 

counts. In this sense, the estimated result is good enough for making maintenance 

decisions, but the computational efforts will be tremendously reduced.  

Second, it is assumed that since the last chamber cleaning maintenance, there are 

a sequence of operations with recipe numbers 1R , 2R , 3R … 1−nR , nR , and some of 

which may be repeated, where n is the total number of recipes executed in the same 
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chamber since last maintenance. For each one of these recipes, the corresponding HMM 

describing the progression of the in-chamber contamination needs to be identified using 

the multi-dimensional HMM modeling techniques described above [131]. For example, 

Figure 4.3 illustrates the hidden Markov modeling approach for a chamber degradation 

process when performing operation j, which can be denoted as HMMj. (where j =1, 2, …, 

n). During the model learning process, the state transition matrices A and emission 

probability matrices B for each HMMj need to be calculated using a training dataset, 

consisting of sequences of observable variables, such as temperature, pressure, gas flow, 

and energy consumption. 

  
Figure 4.3 Illustration of modeling unobservable in-chamber degradation  

using observable process parameters 

 
Third, the initial state distribution for the first hidden Markov model, denoted as 

HMM1 in Figure 4.2, will be assumed to be such that the tool is with certainty at the 

initial state of degradation right after a cleaning process (i.e., maintenance action). In 

order words, HMM1 represents the initial chamber state after a maintenance action has 

been just performed. On the other hand, the initial state of the HMMi corresponding to 

the recipe Ri ( 1≠i ) will be set as the last state of the previous HMMi-1 corresponding to 
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the recipe Ri-1 since chamber contamination continuously increases as jobs are processed 

in it. 

Finally, each HMM will be assumed to be left-to-right, depicting the physical 

sense that chamber contamination can only get worse (or stay at its current position) until 

a maintenance action is executed. This idea will be further illustrated in more details later 

in the simulation study section. 

Once this framework has been established, one will be able to use the trained 

HMMs and observation variables of the process condition to track and predict the particle 

contamination levels of the chamber tools and proactively clean the chamber exactly 

when maintenance is required. 

4.4. Simulation Study 

In order to validate the proposed method, a simulation study is conducted by 

following the flowchart shown in Figure 4.4. First, a stochastic degradation process is 

simulated, which is assumed to be unobservable to the data acquisition system. However, 

this stochastic process will generate observable signals, which will be used to build 

HMMs. Then the trained HMM along with observable signals can be used to estimate the 

states transition of the underlying degradation process. Finally, the estimation results and 

actual degradation process will be compared to verify the modeling accuracy. Two 

simulation models will be presented in this section:  

1) Single operating condition, which simulates the situation where only 

one recipe is used;  
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2) Variable operating conditions, simulating the situation where two or 

more recipes are used. 

 
Figure 4.4 Simulation flowchart 

 

4.4.1. Single Operating Condition 

In this case study, we assume that there is only one recipe used in the chamber 

tool, which implies that the tool degradation process should follow a single pattern 

determined by the given recipe. The simulated degradation process is built upon an 

exponentially deteriorating curve, as shown in Figure 4.5, plus a normally distributed 

random noise factor. The resultant stochastic degradation process is shown in Figure 4.6, 

in which the vertical axis is an indicator of degradation level, and the horizontal axis is 

simulation time steps. As the value of degradation level indicator increases, the system 

performance is getting worse. The exponentially deteriorating trend is employed to imply 

a physical system that tends to degrade faster as its condition becomes worse. Note that 
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this assumption is only used to make the simulation more realistic to represent a real 

system, which does not constitute a necessary assumption for the modeling approach. 
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Figure 4.5 Exponential degradation curve under single operating condition 
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Figure 4.6 Stochastic degradation process under single operating condition 
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As mentioned in section 4.3, we proposed a stratified level of degradation to 

represent the state of chamber condition, rather than trying to postulate the exact value of 

degradation level indicator. One way to discretize the continuous degradation process is 

evenly divide the vertical range into N regions and each of them corresponds to one 

degradation state, where N is the number of states used to describe the entire degradation 

process. For example, Figure 4.7 illustrates the idea of using 5 stratified states to 

represent the stochastic degradation process shown in Figure 4.6, in which the dotted line 

represents the discretized state. It can be seen that as the degradation process evolves, the 

state number changes from 1 to 5. Furthermore, as we discussed earlier, the exponentially 

deteriorating trend mimics the fact that a physical system tends to degrade faster as its 

condition becomes worse. Therefore, it can be seen that the duration that the system stays 

in a preceding state is longer than that it stays in a succeeding state.     
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Figure 4.7 Stratified degradation states under single operating condition 
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Ideally, if one can observe the degradation process shown in Figure 4.6 and 

further discretize it into stratified states (Figure 4.7), a PdM decision could be easily 

made according to the current degradation state. Unfortunately, in most of cases the 

degradation process is not directly observable, such as the situation in a chamber tool we 

mentioned in the beginning of this chapter. Therefore, one will have to rely on the readily 

observable signals emitted from the deteriorating system to infer the underlying 

degradation process. 

In this simulation model, the observable signals are generated as follows. We 

assume that there is one observable variable emitting from the system. This assumption 

will only make the simulation model simple, but the HMM modeling procedure will 

remain the same if there are more observable variables, provided that an adjusted Baum-

Welch algorithm will be used in multi-sensor cases [131, 132]. Furthermore, we assume 

that the observable variable will only contain two types of emission symbols, i.e., 

{ }2,1=V . We denote ‘1’ to represent ‘conforming’ signal and ‘2’ to represent 

‘nonconforming’ signal. In reality, the observable signals will be continuous variables in 

most cases, such as temperature, pressure, and gas flow, which need to be transformed 

into discrete emission symbols by discretization, as we will perform later in the case 

study.  

In order to use the stochastic process to generate an observable signal, the 

following rules will be followed: when the degradation indicator is deviated more than 

one standard deviation from its baseline (the exponential curve), the system will generate 

‘nonconforming’ signals, i.e., ‘2’. Otherwise, when the degradation indicator is within 

one standard deviation of its baseline, the observable signal will be generated according 
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to its current degradation states. As we assume that in the early states the system is in 

‘good’ condition, it tends to generate more ‘conforming’ signals rather than 

‘nonconforming’ ones; and as the system degrades, more ‘nonconforming’ signals will 

occur. Table 4.1 shows one such example of emission probability table, in which each 

row corresponds to a system degradation state, and each column corresponds to the 

probability of generating one type of emission symbols. For instance, when the system is 

in state # 1 (best state), it has 90% probability to generate ‘conforming’ signals denoted 

by ‘1’, and 10% probability to generate ‘nonconforming’ signals denoted by ‘2’; 

however, when the system deteriorates to the fifth state (worst state), it only has 10% 

probability to generate ‘conforming’ signals and 90% probability to generate 

‘nonconforming’ signals. 

System 
State 

Observable 
Symbols 

1 2 
1 0.9 0.1 
2 0.7 0.3 
3 0.5 0.5 
4 0.3 0.7 
5 0.1 0.9 

Table 4.1 Emission probability table under single operating condition 

 
Once we have established the underlying degradation states and the emission 

probability table, a series of observable emission symbols can be generated using the 

simulation model, which will be used to train a HMM. In HMM learning, the number of 

states used to model the process is a trade-off between modeling accuracy and 

computational cost. In speech recognition [128] and machine condition monitoring [133] 

applications, 3-state HMMs are often used, which generally yield results that are good 

enough to represent the corresponding processes. However, since our modeling purpose 
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is to facilitate maintenance decision-making, 3-state HMM does not give enough 

representation to an entire degradation process. For example, if state # 1 denotes the 

initial state of chamber performance right after maintenance and state # 3 denotes the 

state of chamber performance, which is no longer qualified to produce any products. 

Then the only choice for conducting maintenance is state # 2, which will lead to a trivial 

solution of maintenance decision-making. Therefore, in order to accommodate the 

maintenance decision-making representation, but not to increase the computation cost too 

much, we will try to model the degradation process using 4-state, 5-state and 6-state 

HMMs and select the one that yields the maximum likelihood estimates. 

 
Figure 4.8 Illustration of 5-state unidirectional HMM 

 

Furthermore, the topology of HMM used in this research will be unidirectional as 

shown in Figure 4.8. Each circle represents a degradation state. Edges along with arrows 

represent the directions of state transitions, and then the likelihood of this transition 

happens is depicted along with each edge. For instance, P11 means the probability that 

state # 1 will stay at its current state; P12 means the probability that state # 1 will transit to 

state # 2, P13 means the probability that state # 1 will transit to state # 3, and so on. It can 

be seen that this is a unidirectional HMM, which only contains transitions from ‘lower’ 

states to ‘higher’ states, or unchanged states. The physical interpretation of this uni-

directionality lies in that tool performance will either be getting worse or remain the 
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same, but it cannot become better unless the chamber is maintained, in which case we 

assume that the tool state will be reset to its initial state # 1. 

First, let us use a unidirectional 4-state HMM to model the degradation process. 

The transition probability matrix and emission probability matrix can be estimated using 

Baum-Welch algorithm [129]. Due to the nature of Baum-Welch algorithm, multiple 

trials have been performed with random initialization and the model with the maximum 

logarithm likelihood value is selected, as shown below. For this particular model, the 

logarithm likelihood is -508.37. 
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The trained HMM can be used along with the observable signal to estimate the 

underlying state transition, which is plotted against the original degradation indicator as 

well as the stratified states, as shown in Figure 4.9, in which the solid line represents the 

estimated states. It can be seen that the estimated states follow the same pattern of 

stratified states very well except the last state due to the deficiency of number of states. In 

order to evaluate the performance of this model quantitatively, the sum of squared error 

(SSE) of using stratified state to represent original degradation indicator is calculated as a 

benchmark reference value 
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( )∑ −=
=

T

t
ttstratified SDSSE

1

2     (4.1) 

where T is total simulation time; t is discrete time, and t=1,2…T; Dt is the value of 

degradation indicator at time t; St is the stratified state number at time t. A large number 

of replications have been run to collect the average value of SSEstratified=9.2026. Similarly, 

the SSE of estimated states can be calculated 

( )∑ −=
=

T

t
ttestimation EDSSE

1

2    (4.2) 

where Et is the estimated state number at time t. The average SSEestimation is 13.5810. Then 

we calculate the error introduced in this modeling approach by Equation (4.3), which is 

47.58% for a 4-state HMM. 

%100×
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Figure 4.9 Estimation of state transition (4-state HMM) 
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Next, we increase the number of states for HMMs. We follow the same procedure 

as mentioned in 4-state HMM modeling to get 5-state and 6-state HMMs with logarithm 

likelihood -494.70 and -498.12 respectively. The characteristic parameters for these two 

models are as follows: 

5-state HMM: 
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6-state HMM: 
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Again, the estimated states can be obtained through Viterbi algorithm [130] using 

trained HMMs and observable variables, which are plotted in Figures 4.10 and 4.11. In 

addition, the modeling accuracy is evaluated using Equations (4.2) and (4.3): 

5-state HMM: 

SSEestimation = 9.3384  & Modeling Error = 1.48% 

6-state HMM: 

SSEestimation = 10.0319  & Modeling Error = 9.01% 
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Figure 4.10 Estimation of state transition (5-state HMM) 
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Figure 4.11 Estimation of state transition (6-state HMM) 

 
By comparing the likelihood of above models, the 5-state model will be selected, 

which offers a better representation of the underlying degradation process as well as the 

least modeling errors. Therefore, it has been shown that HMM is able to identify the 

stratified degradation states by using the observable signals under single operating 

condition. 

4.4.2. Variable Operating Conditions 

The above simulation has shown that if a HMM is selected properly, it is able to 

model the degradation process by assuming a stratified level of states when a single 

operating condition exists. In the following simulation model, we would like to verify 

that the HMMs are also able to model the varying operating conditions as encountered in 

the semiconductor manufacturing process where multiple recipes will be executed in the 

same chamber tool. 
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Similar to the simulation model built for a single operating condition, we will 

construct a degradation curve as shown in Figure 4.12. Different from the single 

operating condition case shown in Figure 4.5, we will introduce varying degradation 

curve due to the variable operating conditions, i.e., different recipes may have different 

impacts on the tool degradation. It can be seen from Figure 4.12 that the tool is firstly 

deteriorating at a slower rate during the time when Recipe # 1 is executed, and a faster 

rate for Recipe # 2. The tool degradation curve will be brought back to its original 

condition as a maintenance action is performed. In addition, the uncertainty has been 

added to the degradation curve to simulate the stochastic nature of the degradation 

process, yielding the result shown in Figure 4.13. 
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Figure 4.12 Degradation curve under variable operating conditions 
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Figure 4.13 Stochastic degradation process under variable operating conditions 
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Figure 4.14 Stratified degradation state under variable operating conditions 
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System 
State 

Recipe # 1 
Observable 

Symbols 

Recipe # 2 
Observable 

Symbols 
1 2 1 2 

1 0.9 0.1 0.8 0.2 
2 0.7 0.3 0.6 0.4 
3 0.5 0.5 0.5 0.5 
4 0.3 0.7 0.4 0.6 
5 0.1 0.9 0.2 0.8 

Table 4.2 Emission probability table under variable operating conditions 

 
We adopt the same idea of using stratified states to represent the continuous 

degradation process, and divide the entire process into discrete states. It can be seen from 

Figure 4.14 that the initial state of Recipe # 2 should be seamlessly connected to the last 

state of Recipe # 1, indicating the continuous deterioration of tool performance. 

The observable variable will be generated in the same way as it was in the single 

operating condition case. That is, when the degradation indicator is deviated more than 

one standard deviation from its baseline (the degradation curve), the system will generate 

‘nonconforming’ signals denoted by ‘2’. Otherwise, when the degradation indicator is 

within one standard deviation of its baseline, the observable signal will be generated 

according to its current degradation states, for which emission probabilities will be 

assigned to each of them as given in Table 4.2. Next, the simulated observable signals 

will be used to train two HMMs for Recipe # 1 and Recipe # 2 respectively. We need to 

undergo the same model selection procedure by comparing different models, and select 

the one that offers the maximum likelihood. The resultant transition probability and 

emission probability matrices for two recipes are given as follows: 
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Recipe # 1:  

Transition probability 
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The underlying state transition can be estimated using the trained HMMs along 

with observable variables, as shown in Figure 4.15. The solid line represents the 

estimated states, which follows the same pattern as ‘real’ stratified states. To 

quantitatively evaluate the modeling accuracy, Equation (4.1) is used to establish the 

benchmark value SSEstratified = 14.5696, and Equation (4.2) to calculate SSEestimation = 

15.0610. The modeling error is 3.37% given by Equation (4.3). The results shown here 
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verify that by concatenating two or more HMMs, a continuous degradation process can 

be modeled using stratified degradation levels and can be estimated using HMMs. The 

constraint that has to be applied in the modeling process is that the initial state of 

succeeding HMMs must be the last state of its preceding HMMs.  
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Figure 4.15 Estimation of state transition under variable operating conditions 

4.5. Case Study 

Section 4.3 proposed a methodological framework of using HMM to model the 

progression of unobservable chamber degradation under multi-operations, which has 

been validated using simulation study in section 4.4. The method will be able to provide 

an insight about how the chamber tool goes through a stratified deterioration process over 

time. As mentioned before, the ‘stratified’ contamination level is employed in this 

research to avoid attempting to estimate exact number of particles in the chamber, which 

may not be feasible or even necessary. In the following, a set of industrial data set will be 

used to illustrate and verify this method. 
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A set of process data is collected from a chamber tool, which consists of two 

consecutive operations with two recipes. During the entire production, nine process 

parameters and the succeeding metrology measurement are always being monitored, 

which means these parameters are observable. However, the underlying chamber 

degradation is not directly monitored or measured, which needs to be estimated by 

applying the proposed HMMs based method to observable parameters. 

In order to accommodate with HMM modeling approach, data preprocessing 

needs to be firstly conducted to convert raw data into observation symbols, which 

includes data separation, features extraction and data discretization, as described below: 

1) Recipe level data separation 

 Original dataset is divided into two subsets based on recipe 

information, and each of them will formulate a HMM 

2) Wafer level data separation 

 Observation sequences are obtained by separating data according to 

wafer production 

 A few observation sequences should be truncated to have the uniform 

length 

3) Feature Extraction 

 Deviations from normal values are extracted out of raw data, 

representing influential factors of product quality 

4) Emission symbol generation 

 Continuous observations are discretized into discrete emission 

symbols 
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Figure 4.16 HMM learning curve.  

X-axis: number of iterations; Y-axis: logarithmic likelihood 

 
As mentioned in section 4.4, since the frequently used 3-state HMM is not 

adequate for maintenance decision-making purpose, a higher order model will be sought 

in this study. 4-state, 5-state and 6-state HMMs will be compared to obtain a model that 

has the maximum likelihood estimates. The results show that 5-state model offers the 

maximum logarithm likelihood of -1500 for this particular dataset. Care must be taken in 

modeling the HMMs using Braun-Welch algorithm, because one of the problems of 

Braum-Welch algorithm (which is a generalized Expectation-Maximization algorithm) is 

that it is only able to discover a local optimum solution. Therefore, random initialization 

has been applied, and the model with the maximum likelihood will be chosen so as to 

avoid local optimum by comparing the logarithmic likelihood. The learning curve of 

HMM is shown in Figure 4.16. 

Since the training data contains information for two recipes, the learning process 

will give us two HMM models with model parameters, such as state transition matrices A 
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and emission probability matrices B. We denote these two HMM models as HMM1 and 

HMM2. The transition probability matrices for two given recipes are as follows: 

Recipe # 1: 
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The next step is to solve a decoding problem using models HMM1 and HMM2 to 

estimate the underlying tool degradation states, which are unobservable to maintenance 

decision makers. As mentioned in section 4.2, the most likely state sequence for given 

observable parameters is estimated using Viterbi algorithm. One constraint we need to 

specify is that the initial state of a HMM is the last state of its preceding HMM as the tool 

degradation is a continuous process, unless a chamber cleaning is performed to bring the 

tool state back to its initial state # 1. 

Figure 4.17 shows a part of the tool state estimation results, in which the X-axis is 

observations over time and Y-axis is the tool degradation state. Although 5-states HMMs 

has been employed in this case study, it can be seen that the actual tool degradation state 

may end up with a number greater than 5. This is because the chamber tool will not be 
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cleaned after each recipe production, and it will be continuously deteriorated as the 

production is undergoing. The degradation states then will be accumulated until a 

maintenance action is taken.  

It can be seen from Figure 4.17 that the tool starts from its initial state (at position 

X=0 and Y=1), after R1 recipe is finished, tool state has deteriorated to the point where 

X=250 and Y=5. However, the current state is still good enough to produce wafers using 

R2 recipe, therefore R2 is executed which keeps driving the tool degradation until the 

position where X=500 and Y=9. After that, a maintenance action is called in, and tool 

performance is brought back to its initial state with Y=1, the degradation process will 

keep going on over time. 

 
Figure 4.17 Chamber deterioration and maintenance 

X-axis: observations over time, Y-axis: degradation state 

 
Another important fact that can be learnt from Figure 4.17 is that the tool 

degradation has been stratified into discrete levels, rather than estimating the exact 

number of particles in the chamber which is impossible or even unnecessary in practice. 

The advantage of this stratified modeling is to enable a simple maintenance decision-

making through direct observable signals that have been monitored all the time in the fab. 
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The utilization of this modeling tool to facilitate maintenance decision-making will be 

discussed in Chapter 5. 

4.6. Conclusions 

Directly monitoring of chamber particle contamination is still an unsolved 

problem in practice because of expensive cost as well as unreliable monitoring results. In 

order to ensure product quality, excessive preventive maintenance has to be performed 

that substantially increase the manufacturing cost. In literature, researchers have proposed 

using Markov chain to model the semiconductor tool degradation in order to facilitate 

maintenance decision-making, but the underlying assumption is not realistic because of 

the unobservable nature of tool deterioration states. On the other hand, HMM has been 

used to model speech signal, traditional manufacturing tool monitoring, where HMM 

modeling techniques have gained many successes; however, it has not been applied to 

model the chamber tool degradation process, especially modeling the progression of 

degradation under variable operating conditions, i.e., the operation involves different 

recipes that have distinct impacts on tool degradations. 

This chapter proposed a method of estimating unobservable chamber tool 

deterioration using available process information, such as in-situ measurements and 

controller readings. In this approach, a single HMM is employed to capture the 

degradation within each operation, whilst the progression of degradation between 

operations is modeled by concatenating a series of HMMs by setting the initial states of 

subsequent HMMs as the last states of their succeeding HMMs. Furthermore, the 
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degradation process is modeled in such a way that tool states would never go backwards, 

i.e., from a worse state to a better state unless a maintenance action is performed. 

In order to validate the proposed method, a simulation study has been performed, 

including two scenarios: single operating condition and variable operating conditions. 

The simulation has successfully shown that HMMs are able to model the tool degradation 

process with appropriate selected model parameters. In addition, the entire procedure of 

implementing this method is presented in a case study, which includes data 

preprocessing, HMMs modeling, tool states estimation. A chamber tool consisting 

operations of two distinct recipes is selected for this study. Data are collected from nine 

observable sensors, and are separated based on recipes and wafer numbers. Next features 

have been extracted from raw data, and discretization is performed to generate emission 

symbols for HMM training. Through the HMM learning process, two HMMs are trained 

to represent the degradation transition under two recipe operations respectively. The 

trained models, in turn, can be utilized to estimate the unobservable chamber degradation 

state using observable signals. The results of case study has shown that different recipes 

undergo the same chamber may have different impact on tool degradations, and each of 

them has a clear trend of tool deterioration, which enables one to schedule maintenance 

on the right time. Moreover, the method proposed in this chapter provide a possibility 

that deteriorated tool may still be qualified to perform certain operations without 

comprising the product quality, thus to avoid performing excessive maintenance and 

wasting the tool’s remaining useful life.
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CHAPTER 5  

IMPROVED MAINTENANCE DECISION USING PREDICTED PROCESS 

CONDITION AND PRODUCT QUALITY INFORMATION 

5.1. Introduction 

A semiconductor manufacturing system is a highly complicated and integrated 

system with many tools and products. The products travel through the same tool groups 

repetitively using re-entrant flows. This complexity has been increased since the 

introduction of 300mm wafers, which usually involves more than one hundred tools and 

requires several months of processing time for a single product. During this complex 

manufacturing process, equipment downtime may cause a significant loss of productivity 

and profit. In addition, the downtime on a single tool may result in disruptions and idle 

time on many other tools in the process flow. Furthermore, even the operational tools 

cannot always guarantee to produce chips with satisfactory quality due to the degradation 

of tool performance. Thus, extensive efforts have been devoted to improving the 

maintenance strategies so as to keep tools in their acceptable operating conditions as well 

as to prevent tools from catastrophic failure.  

In today’s semiconductor industry, the preventive maintenance along with 

reactive maintenance are dominant practice strategies [5]. As discussed in the previous 
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chapters, the preventive maintenance only utilizes the historical reliability information 

and/or expert experiences, and bases the maintenance decision on time or usage related 

indicators, such as calendar time, processed wafers/operations. The current practices 

usually result in maintenance operations that are more frequent than really needed, which 

does not only bring excessive intrusion to the normal operations, but also wastes the tools 

remaining useful life and the limited maintenance resources. Although significant work 

has been done in the area of maintenance decision-making in semiconductor fabs, the 

models used in literature usually do not consider the effects of chamber degradation and 

yield of different recipes. For example, Yao et al. [95, 134] studied age-based preventive 

maintenance scheduling in semiconductor fabs. They proposed a two level hierarchical 

modeling structure, with long-term planning at the higher level, and short-term PM 

scheduling at the lower level. However, this model does not take into account the 

dependencies between the two levels in order to achieve tractability of the solution. 

Furthermore, tool degradation, equipment condition monitoring and production 

dispatching were not considered in their model. In addition, the Markov degradation 

model of the tool is assumed to be already given. Sloan et al. [3, 135] developed a model 

that simultaneously determines maintenance and production schedules for a single-stage, 

multi-product system. They assumed an analytical character of product yield and tool 

degradation which is not the case in reality, and it is neither explicitly described how to 

obtain the description of the degradation process, nor the maintenance policy is 

optimized.  

On the other hand, the PdM, especially the strictly PdM based on predicting 

future states of the fabrication tools have demonstrated promising applications in a 
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variety of industrial areas, such as rotating machinery, aerospace systems, chemical 

manufacturing, and electrical equipment & electronic components. Therefore, the PdM 

approaches taking advantage of the available tool performance and product quality 

information to schedule the maintenance activities should be pursued in semiconductor 

manufacturing. There are certain research challenges that have prevented the 

semiconductor industry from developing and implementing the PdM strategies, such as: 

• Modeling of interaction between production and maintenance operations. 

Interaction between production and maintenance operations in any 

production system is complex and affects strongly the performance of a plant 

[4]. This interaction becomes even more intense and important in highly 

complex manufacturing facilities, such as semiconductor fabs. Modeling of 

such interaction is crucial for obtaining maintenance schedules that will not 

be intruding on the normal production process. 

• Modeling of the influence of batching and re-entrant events on the product 

quality. The significance of modeling of the production processes in order to 

obtain optimal, non-intrusive maintenance schedules that use predictive 

machine-condition information has been recognized [136], where methods 

have been derived to utilize equipment reliability and in-line manufacturing 

system status information in order to optimally prioritize and schedule 

maintenance operations. However, these methods have been developed only 

for traditional, sequential processes that are characteristic for automotive 

manufacturing processes. 

• Multiple objective optimization. The optimal maintenance scheduling 

consists of multiple objectives, such as the maximization of yield, the 

minimization of equipment downtime, and the maximization of total profit. 

A cost function that incorporates the cost of maintenance operations and 
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benefits of the production process should be formulated in order to achieve 

an optimization procedure that would look for optimal maintenance 

operations. Furthermore, highly complex and stochastic nature of operations 

in a semiconductor fab causes the maintenance optimization problem to be 

inevitably complex and non-analytical, which makes traditional optimization 

procedures, such as linear programming or gradient based searches, 

unfeasible and impractical in reality. 
 

Nevertheless, from the work presented in Chapter 3 and Chapter 4, it can be seen 

that the BN based yield prediction approach and the HMM based modeling of chamber 

tool degradation can naturally provide an opportunity to use abundant equipment 

condition and product quality information to facilitate a more proactive maintenance 

decision-making policy. The focus of this chapter is to adapt the research results from 

Chapter 3 and Chapter 4 to demonstrate an improved maintenance decision-making 

approach. 

5.2. Proposed Method 

The idea of developing an improved maintenance decision-making tool for the 

complex semiconductor manufacturing system will be proposed in this section, which 

utilizes the research results from previous chapters. The methodological framework is 

depicted in Figure 5.1.  
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Figure 5.1 Methodology framework of improved maintenance decision-making 

 
The data-preprocessing phase will collect and preprocess the in-situ monitoring, 

process controller, and product quality data. The activities include but not limited to data 

cleaning, consolidation, synchronization, feature extraction, and data discretization if 

necessary. Then the two modeling methods presented in Chapter 3 and Chapter 4, i.e., 

BN based yield prediction and HMM based tool degradation estimation, will come into 

play. 

First, the BN prediction approach discussed in Chapter 3 is able to infer the 

station-level yield and system-level yield based on the integrated information flow of 

equipment conditions. This enables one to identify stochastic dependencies among 

process information and product qualities, as well as to estimate the product quality 

distribution prior to the metrology inspection is performed. Thus if the predicted product 

quality is going to deteriorate to an unacceptable level, the BN prediction will provide the 

production management with an early warning for loss of quality products, which in turn 
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calls for maintenance in place. Note that the input of this model is process information, 

and the output is yield estimation. 

Second, the HMM based modeling techniques presented in Chapter 4 are capable 

of using current available in-situ measurements to predict the level of particle 

contamination in chamber tool, which is recognized as one of the major sources of yield 

loss. This model uses stratified representation of tool degradation to avoid the prediction 

of exact particle counts, which makes the goal feasible but useful in practice. This HMM 

based modeling tool can be naturally extended to any fabrication tools with process 

variables that are difficult to be monitored directly. Note that the input of this model is 

still process information, and the output is the estimation of tool degradation state. 

Furthermore, it can be seen from Figure 5.1, the output of chamber tool degradation 

model will be fed into BN based yield model, which enables one to relate tool 

degradation status with product quality directly. In order words, an enhanced BN model 

will be constructed using the same procedure described in Chapter 3, with a minor 

modification that includes ‘Tool State’ as one of the variables. The benefit of this model 

is that one will be able to make yield prediction by given tool state estimation, and this 

combined information will facilitate maintenance decision-making. 

Third, using the tool degradation estimation and yield prediction obtained from 

integrating the process information, different maintenance scenarios can be evaluated and 

compared to determine which action is relatively better in terms of certain criterion, 

which is defined by a customized objective function. The objective function can be quite 

versatile depending on customer’s targets, such as low cost, high reliability, high yield, 

and low downtime. Because of its inherent complex characteristic, it is impossible to 
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express the dynamics of a semiconductor manufacturing process in analytical forms. 

Therefore, the discrete event simulation [137] can be a powerful tool to calculate required 

metrics for it. In literature [4, 136], simulations of traditional, sequential manufacturing 

processes have been constructed so that continuous interactions between equipment 

degradation, maintenance operations and production process could be simulated. In 

simulating the semiconductor manufacturing process, the sequential nature of the 

simulated system will be altered in order to accommodate for batching and re-entrant 

operations in which unfinished wafers are grouped into batches and sent back to the 

previously visited station for a similar operation. Also, in the simulation, each station will 

be assumed to be at a specific state defined by its current degradation level obtained 

using the HMM approach. Then the degradation information can be used to determine the 

yield using the BN inference.  

Finally, with simulation-based yield prediction, the optimal combination of 

maintenance actions that will result in the maximum system-level yield can be pursued. 

Since the simulation-based yield function will be a non-analytical form that is not 

amenable to traditional optimization methods replying on mathematical formulations, 

such as the methods presented in [138-140]. The problem will be approached through 

heuristic methods, such as  Genetic Algorithm (GA) [141], Simulated Annealing [142], 

or the combination of them [143]. The interaction between discrete event simulation and 

heuristic optimization methods is further illustrated in Figure 5.2. A set of feasible 

maintenance solutions (or candidate solutions) is generated by the optimization 

subroutine and is fed into the discrete event simulator as an input. The simulation model 

evaluates the distribution of the objective function. Based on the average of objective 
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function values, the optimization subroutine produces another generation of candidate 

maintenance solutions (state thresholds that trigger PdM). These steps are repeated until a 

termination condition is met (certain number of generations passed without 

improvements in the objective function, or maximal number of generations is exceeded). 

 
Figure 5.2 Interaction between discrete-event simulation and optimization methods 
 

For instance, if GA is employed to find the optimal PdM policy, the basic idea 

behind GA is to imitate an evolutionary process of survival of the fittest. Each candidate 

solution is represented by a chromosome and only the candidate solutions resulting in 

lowest average costs (as evaluated through simulations) will produce chromosomes that 

code candidate solutions for the next generation of solutions. In order to define a GA, one 

needs to define chromosomes through which each candidate solution can be represented, 

and a set of genetic operations of crossover and mutation that are needed to create a new 

generation of candidate solutions [144].  

In summary, the methodology framework of finding improved maintenance 

decisions using tool degradation estimation and yield prediction results can be executed 

in the sequence as follows. Note that some of the steps may be omitted, such as 
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optimization module in case that the searching space is not too large, and it can be 

replaced by enumeration, which will be shown in the case study. 

1) Data preprocessing 

 Major task: collect monitoring signals and perform data cleaning, 

consolidation, feature extraction, data discretization task according to 

specific requirements (input requirements of BN and HMM models) 

 Input: Raw data 

 Output: synthesized features for BN and HMM 

2) Chamber state estimation 

 Major task: use HMM based modeling approach to establish HMMs 

for each recipe, and estimate the tool degradation state using 

observable parameters 

 Input: process monitoring features 

 Output: tool degradation state 

3) Predictive yield model 

 Major task: use process parameters and quality measurements to 

discover stochastic dependencies, and make probabilistic inference of 

yield when new observation of process parameters is available. 

Furthermore, establish the direct link between tool degradation and 

yield 

 Input: process monitoring features, quality data, tool degradation state 

 Output: yield 

4) Simulation module 
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 Major task: use tool degradation models, yield prediction results to 

evaluate different maintenance policies  

 Input: Tool degradation and corresponding yield, maintenance policy 

 Output: value of objective function specified by user 

5) Optimization module 

 Major task: generate feasible solutions to be evaluated by simulation 

module 

 Input: best candidate solution in previous iteration 

 Output: possible maintenance policies 

5.3. Case Study 

The purpose of this case study is to demonstrate the utilization of BN based yield 

prediction model and HMM based tool degradation model for maintenance decision-

making, providing an improved maintenance policy over currently used PM strategy. As 

mentioned above, the simulation and optimization module may be involved in the 

maintenance decision-making process; however, it is not in the scope of this research. 

The simulation-based maintenance decision-making has been reported in dedicated 

research work, such as Yang [136] and Zhou [145]. Also, the heuristic optimization 

methods can be found with abundant references, such as Deris et al. [146], Sotoh and 

Nara [142], and Dahal et al. [143].  

For the fab system studied here, it is known that wafers were fabricated using one 

single recipe in a chamber tool. Since there is no adequate information about tool 

degradation and how the product quality is related to tool performance, the PM tasks had 
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to be scheduled in such a way that chamber must be cleaned once two wafers were 

produced to avoid catastrophic tool failures. The fab has suffered from too frequent PM, 

which resulted in substantial cost of maintenance resources. Therefore, it is desirable to 

develop a PdM strategy, which is able to use the tool performance information as well as 

the knowledge of outgoing product quality to facilitate a better maintenance scheduling. 

However, as discussed in early chapters, that information is not readily available in the 

fab, and has to be derived from other observable information, such as in-situ sensing and 

controller data. In this case study, the available information consists of a data set 

including nine process parameters, one metrology measurement, the average time 

between maintenance for PM scheduling, time to perform a PM cleaning, and normalized 

PM cleaning cost. 

According to Figure 5.1 and summary in section 5.1, the case study has included 

the following steps: 

1) Data preprocessing 

 Data is processed to accommodate BN and HMM training, as 

described in Chapter 3 and Chapter 4, namely, feature extraction, data 

discretization, emission symbols generation, etc. 

2) Chamber state estimation 

 A HMM is trained using the training data set. The transition 

probability matrix of this HMM is as below, which will be used in the 

discrete event simulation to represent tool degradation. 
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 Tool degradation is estimated through this trained HMM, and 

corresponding tool states over time are combined with training dataset 

to feed into BN based yield prediction. 

3) Predictive yield model 

 A BN network has been trained using training data set including tool 

degradation state. A part of the network is shown in Figure 5.3. 

 
Figure 5.3 Modified BN structure including ‘Tool State’ 

 
 

 With this BN structure and associated CPTs, the yield can be estimated 

for different tool states. Table 5.1 shows a one-to-one ‘Tool State’ vs. 

‘Yield’ mapping that will be used in simulation model to evaluate the 

process yield. 
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Tool State Yield 
1 93.00% 
2 92.93% 
3 77.83% 
4 55.83% 
5 0.40% 

Table 5.1 Tool deterioration states and corresponding yields 

 
4) Simulation module 

 Discrete event simulation model is used to evaluate the objective 

function ( ) rprpclclyy TCTCYieldCCObj ++−= 21 exp , where Cy1 and Cy2 

are cost coefficients for yield loss, Ccl and Crp are normalized cost 

coefficients for cleaning and repair in one time unit, Tcl  and Trp are 

total time used for cleaning and repair respectively. 

 This objective function is set in such a way that it takes into account 

the need to achieve highest possible yield, while minimizing the costs 

of scheduled and unscheduled maintenance. 

 The values of simulation parameters are assigned as follows: 

Parameter Value Description 
Ts 24 hours Simulation time 
Cy1 9000 Linear cost coefficient for yield loss 
Cy2 2 Exponential cost coefficient for yield loss 
Ccl 1/min Normalized cost coefficient for cleaning 
Crp 2/min Normalized cost coefficient for repair 
tcl 5±1 min Time to complete a cleaning task 
trp 10±2 min Time to complete a repair task 

tTBPM 12±2 min Time between two scheduled PM tasks 
Table 5.2 Simulation parameters for improved maintenance policies 

 
5) Optimization module 

 Since feasible solution space is not large (i.e., only four different 

candidates), it is not necessary to use heuristic methods, such as 
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Genetic Algorithm, to find an optimal solution. Instead, enumeration 

can be used to obtain 4 results through simulation to evaluate different 

PdM policies. 

6) Simulation results 

 50 replications for each PdM policy are run to take an average of the 

objective values. 

 The simulation results are shown in Table 5.3. 

PdM Policy State 2 State 3 State 4 State 5 
Yield 0.93 0.93 0.85 0.77 

Tcl 230 188 71 0 
Trp 0 0 8 196 

Obj. Value 1380.27±26.395 1338.27±16.980 1434.16±36.255 1960.31±69.24 
Table 5.3 Simulation results with different PdM policies 

 

From the simulation results, it can be seen that performing maintenance when the 

tool condition degrades to state # 3 is the best PdM policy based on the given objective 

function, which minimizes the total cost of maintenance and yield loss. In order to 

compare with the currently used PM policy in the fab, we calculate the normalized total 

maintenance cost during a 24 hours period for all feasible PdM policies as well as the 

normalized cost of reactive maintenance (RM) and PM policies, as listed in Table 5.4.  

Maintenance 
Policy 

Total Time of 
Cleaning, Tcl 

Total Time of 
Repair, Trp 

Total 
Maintenance Cost 

PdM at State # 2 230 0 230 
PdM at State # 3 188 0 188 
PdM at State # 4 71 8 87 

RM 0 196 392 
PM 424 0 424 

Table 5.4 Comparison of maintenance cost for different policies 
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The computation of normalized PdM cost and RM cost in Table 5.4 is 

straightforward by using the total time of cleaning and repair. For example, if we perform 

PdM at State # 4, we know that Tcl = 71 and Trp = 8 from the simulation results shown in 

Table 5.3. Therefore the normalized total cost is 

8782711 =×+×=+= rprpclcl TCTCCost  

However, for the normalized total cost of performing scheduled PM tasks, we 

need to estimate the total time of cleaning, which is given by 
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and then multiple the normalized cost coefficient of cleaning Ccl =1 to obtain the total 

cost of 424. 

It can be seen from Table 5.4, by employing the PdM when the system degrades 

to State # 3, the normalized total maintenance cost has been lowered by 55.66% during 

the entire simulation time. Though PdM at State # 4 is able to provide a solution with 

even lower cost, the yield suffers an 8.6% drop. In practice, since yield is an essential 

factor in the semiconductor manufacturing environment, PdM at State # 3 is a better 

policy for this case study. 

One should note that the data used in this case study does not contain equipment 

failure events, which means artificial ‘failure’ has to be introduced in order to 

demonstrate the proposed methodological framework. In practice, when applying this 

method to real fabrication, the equipment monitoring database will definitely provide 

failure events that can be more realistic to represent the real-world situation. 
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5.4. Conclusions 

Maintenance scheduling and decision-making has been studied by many 

researchers and have been successfully used in a variety of industrial applications. 

However, due to its inherent complex nature of semiconductor manufacturing process, 

the current practices of maintenance are still dominated by preventive maintenance 

strategies. Among several major obstacles for employing condition-based maintenance, 

the unobservable chamber state and the stochastic relation between tool state and wafer 

yield have not been fully studied in literature, which are given feasible solutions and have 

been demonstrated using case studies in previous chapters. Therefore, the materials 

presented in Chapter 3 and Chapter 4 have naturally lent themselves to an improved 

maintenance decision-making scheme, as both the tool degradation state and the yield 

prediction are essential to ensure the maintenance decision-making to be successful. 

This chapter is intended to propose a methodological framework of intelligent 

maintenance using the estimation of unobservable tool deterioration state and the 

prediction of yield at different tool states. In this approach, HMM is employed to capture 

the degradation within chambers, and then the BN analysis can be incorporated to get 

yield information corresponding to each state of degradation. Both the chamber 

degradation and yield information provide necessary information for running simulation 

to obtain improved maintenance policies. Furthermore, a case study using semiconductor 

dataset has been presented to demonstrate the application procedure. The simulation 

results show that instead of performing regular PM cleaning, a PdM policy using 

predicted chamber degradation as well as yield information is able to reduce the total 

maintenance cost by 55.66% while retaining the highest possible yield.
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions  

Research presented in this thesis has focused on the development of predictive 

modeling methods for intelligent maintenance in complex manufacturing processes (e.g., 

semiconductor fabrication process), using the in-process tool performance and the 

product quality information. 

The relevant literature of predictive maintenance in the semiconductor 

environment have been reviewed, which reveals a clear need of PdM, and the inability of 

key enabling techniques, such as in-situ particle monitoring that cannot reliably reflect 

the real contamination level in chamber tools. Also, from the literature review, several 

potential research directions have been identified, which have been addressed in this 

doctoral research. 

First, a method for integrating fragmented data domains of in-situ sensor readings, 

process controller data, and inspection results in a semiconductor fab to predict process 

yield has been proposed in Chapter 3. The proposed method utilizes BNs to discover the 

complex stochastic relationships among random variables, identify the factors that are 

probabilistically influencing future product quality, and make probability inference out of 



134 

this model by taking new observations. In order to reduce the computational cost, the 

SOMs have been applied to discretize continuous data into discrete levels, each of which 

represents a group of similar data in the sense of a predefined distance measurement, 

such as Euclidean distance. The proposed method has been validated using the simulation 

study and the applications to industrial datasets. The case studies show that the stochastic 

dependencies among random variables have been successfully discovered without taking 

any prior knowledge, enabling the predictive modeling of metrology results. In addition, 

the quantitative comparison between inferred results and true value of metrology shows 

promising predictive capability, e.g., 99.78% similarity for the case study using the 

semiconductor manufacturing data. 

Second, the particle contamination prediction using available in-situ measurement 

through hidden Markov model to facilitate PdM has been presented in Chapter 4. The 

proposed method employs the idea of stratified levels of degradation to model the tool 

deterioration process rather than trying to postulate the exact number of particle counts. 

Single HMM has been employed to represent the tool degradation process under a single 

recipe operation; and the concatenation of multiple HMMs can be used to model the tool 

degradation under multiple recipes. In order to validate the proposed method, a 

simulation study has been conducted, which showed that HMMs are able to model the 

unobservable degradation process under variable operating conditions. Furthermore, a 

case study has been employed to demonstrate the proposed method. Through the HMM 

learning process, two HMMs are trained to represent the degradation transition under two 

recipe operations respectively. The trained models can be utilized to estimate the 

unobservable chamber degradation state using observable signals. The results of case 
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study has shown that different recipes undergo the same chamber may have different 

impact on tool degradations, and each of them has a clear trend of tool deterioration, 

which enables one to schedule maintenance on the right time. Moreover, the method 

proposed in this chapter provide a possibility that deteriorated tool may still be qualified 

to perform certain operations without comprising the product quality, thus to avoid 

performing excessive maintenance and wasting the tool’s remaining useful life.  

Finally, an improved maintenance decision-making framework using the 

information from the BN inference and from the HMM prediction, through discrete event 

simulation and optimization has been presented in Chapter 5. The procedure of 

conducting maintenance decision-making have been outlined and demonstrated using a 

case study. Although optimization and simulation are not in the scope of this research, a 

numerical result was presented to show that how the estimation of stratified chamber 

contamination can facilitate maintenance decision-making, in which discrete event 

simulation has been utilized, while the optimization module was not included because of 

the relatively small searching spaces. It can be seen from the results that different 

maintenance strategies can have significant impacts on the total cost of maintenance, and 

an improved maintenance decision-making solution would be able to reduce the total 

maintenance cost by 55.66% compared to the currently used PM strategy in this case 

study, which would in turn benefit the industry for a long-term run. 

6.2. Original Contributions  

The original contributions of this doctoral research can be summarized as follows. 
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A method of integrating the equipment condition, process controller data, and 

metrology results to predict the product quality is proposed and demonstrated in this 

research. The SOMs have been utilized to discretize continuous in-process parameters 

into discrete values, which will tremendously reduce the computational cost of BN 

learning process that is used to discover the stochastic dependences among process 

parameters and product quality. This method allows the integration of fragmented and 

inhomogeneous data in different domains, and discovers the complex interrelationships 

among process variables and product quality. The outcome of this method enables one to 

make more accurate and proactive product quality prediction that is different from 

traditional methods based on solely inspection results. 

The data integration method proposed in this research naturally leads to a 

distance-based data organization facilitating quick data search. Since the proposed BN-

based modeling is highly dependent on the similarity comparison between the 

current/predicted signature of equipment condition to that in the historical database, data 

search has to be performed extensively throughout the probability inference process. 

Compared to the time sequential data organization, the proposed distance-based data 

organization resulting from SOMs enables one to find similar entries with significantly 

reduced search time while without comprising the search accuracy. 

A method for predictive maintenance in chamber tools is proposed, using HMMs 

to model the progression of particle contamination that is directly unobservable. Rather 

than postulating the exact number of particle counts, a stratified level of contaminations 

have been employed to make the modeling task feasible. The method enables one to 

estimate the condition of the in-chamber particle contamination levels so that 
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maintenance actions can be initiated accordingly based on accurate relations between 

condition measurements, levels of in-chamber particle counts and outgoing product 

quality. The method is also able to accommodate with the process involving various 

operations performed in the same chamber tool. Furthermore, the proposed method can 

be correspondingly extended to other manufacturing processes with machine condition 

indicators that are difficult to be observed directly as well as operating under various 

conditions. 

Finally, a methodological framework of predictive modeling for intelligent 

maintenance decision-making by coherently considering product quality and tool 

degradation is proposed and demonstrated in this research. The BN based yield prediction 

and the HMM based tool degradation estimation provide the fundamental necessities that 

enable one to make proactive maintenance decision in a complex manufacturing 

environment. 

6.3. Future Work 

Possible future work beyond the research presented in this report can be 

summarized as follows. 

In modeling the stochastic dependencies of random variables, a static Bayesian 

network has been applied in this research. However, static BN ignores the temporal 

dynamics of the modeled system, which may contain more fruitful insights of the 

interrelations between tool monitoring parameters and product quality. Therefore, a 

dynamic BN approach may be researched in future research to incorporate temporal 

information for multivariate stochastic modeling. Furthermore, both static and dynamic 
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BNs have fixed structures, which are not able to accommodate rapid process changes 

over time. A stochastic method that is capable of making probability inferences as well as 

capturing the rapid process changes should be pursued. 

HMM based degradation modeling for chamber tool has been demonstrated in 

this research, which can use stratified contamination levels to keep tracking the tool 

deterioration states. However, it can be seen that the number of stratified states used to 

represent the HMM is an important parameter, which is currently determined based on 

previous experience on HMM applications in other areas. Therefore, a rigorous method 

that can provide an optimal number of states would be pursued. 

As mentioned earlier, although the simulation modeling and optimization methods 

are not in the scope of this research, it can be seen that using heuristic optimization plus 

discrete event simulation may take quite long time to obtain a maintenance decision, 

which prevents the use of proposed method online. Thus, a more interactive, fast 

converging, and near-real-time maintenance decision system for semiconductor 

manufacturing is desired, and should be investigated. 

Finally, it has been demonstrated in this research that the estimation of tool 

degradation along with predictive yield models can be used to achieve an improved 

maintenance decision on single equipment, but the complex interaction of numerous 

equipment, the interaction of job dispatching and scheduling with maintenance would 

introduce more challenging problem, which may be of interest for future exploration. 
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