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ABSTRACT

Traditional replacement models assume unlimited capital. In practice, however,
firms frequently use budgets to control their expenditures. Budget constraints neces-
sitate that all replacement decisions be considered as a portfolio, creating a difficult
combinatorial problem. In previous research, a branch-and-bound algorithm was
developed for solving moderately-sized problems optimally. In this paper, we pro-
pose a dual heuristic for dealing with large, realistically-sized problems. First, the
individual replacement problems are solved ignoring the budget constraints. Then,
we reduce (or eliminate, if possible) budget violations by solving a Lagrangian dual
problem. The computational tests suggest that the effectiveness of the approach
increases with problem size.

INTRODUCTION

Traditional replacement models assume unlimited capital. In practice, however, firms
frequently use budgets to control their expenditures. In this paper, we present a practical
approach for studying the effects of budget constraints on replacement decisions.

Suppose we need to keep n parallel assets to provide a required service over H periods.
For each asset, the decision maker (DM) is faced with a current choice between keeping
an existing asset (defender) and replacing it immediately with one of several new assets
(current challengers). The decision must take into account the chain of future challengers
since anticipated future challengers directly affect the economy of the defender and current

challengers. All asset replacements are subject to a common budget in each period.
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There is a rich literature for single asset replacement. Early replacement models as-
sume any current challenger would be replaced repeatedly with identical assets into an
indefinite future. Later attempts to relax the repeatability assumption include 1) exten-
sions to the early infinite horizon models (Terborgh [23]; Oakford [21]; Bean, Lohmann,
and Smith [2]), and 2) finite-horizon dynamic programming (DP) models (Wagner [24];
Oakford, Lohmann, and Salazar [22]). |

Introducing budget constraints links each single asset replacement problem. The eco-
nomic interdependence of assets caused by rationing capital makes it necessary to consider
all replacement decisions in each time period as a portfolio, creafing a difficult combina-
torial problem.

In Karabakal, Lohmann, and Bean [18], we added budget constraints to Oakford-
Lohmann-Salazar’s dynamic replacement economy decision model and formulated a zero-
one integer program (IP). The proposed branch-and-bound algorithm involves relaxing
single asset replacement constraints and solves moderately-sized problems optimally. As
a continuation of this line of research, we propose a heuristic in this paper for dealing with
large, realistically-sized problems. We start by solving individual replacement problems
while ignoring budget constraints entirely. The heuristic then reduces (or eliminates,
if possible) budget violations by solving a Lagrangian dual problem. Both approaches
employ new multiplier adjustment methods (MAMs) for solving the Lagrangian duals.
The concept of total floats from critical path methods is used to substantially enhance
the performance. This approach was suggested in [19]. In this paper, we develop a new
MAM, based on total floats, for relaxation of the budget constraints. The computational
tests suggest that the effectiveness of the approach increases with problem size.

We first review the integer programfning formulation in [18]. Next, we preseht a
Lagrangian relaxation followed by a heuristic multiplier adjustment method for solving the

Lagrangian dual. Results of computational tests on random problems are also reported.

FORMULATION

We assume that all replacements and cash transactions occur at the end of discrete
time periods and that the end of period zero refers to the current time.
The decision variable z(a,c,?,7) is set to one if challenger ¢ of asset a is installed from

period 1 to period 7, zero otherwise. Here,



€

€ {0,...,m(a)}
: € {0,...,H-1}
j € {i+1,...,min{H, i+ N(a,c)}}
where m(a) is the number of challengers considered for asset a, and N(a,c) is the maxi-
mum service life of challenger ¢ of asset a. The notation ¢ = 0 refers to the defender, a
special challenger that cannot be repeated and is only available in period zero. For ease of
exposition, for each asset a we define a dummy decision variable z(a,c’, H,0) = 1, where
the value of ¢’ is arbitrary.

Let v(a,c,i,7) be the marginal net present value (NPV) benefit of the replacement

decision corresponding to z(a,c,7,7) = 1. A convenient way to compute these NPV

benefits is as follows. For each challenger c of asset a acquired in period z, define

installation (purchase) cost, if ¢ >0

P(a,c,t) = {

current salvage value, ifc=0and:=0
r(a,c,1,t) = revenue generated in relative time period t,t =1,...,7 — 1,
e(a,c,1,t) = expense in relative time period ¢,

S(a,c.1,k) = salvage value after k periods of usage, k =1,...,N(a,c).

Letting a be the interest rate per period, and y = 1/(1 + «),

J-z . . .
v(a,c1,7) = (—P(a,c,_i) + Z [r(a,c,i,t) —e(a,c,i,t)]y + S(a,c,1,5 — 1) y(J")) y'.

t=1 i

The above computations suppose before-tax cash flows to avoid computdtioﬁal com-
plexity. Unless tax consequences are a function of the replacement decisions, the role of
taxes can be incorporated by calculating after-tax cash flows and adjusting other param-
eters accordingly. Also, the NPVs for future challengers acquired at ¢ > 0 are estimated
from the current challenger’s NP Vs using functional relationships to account for the effects
of technological improvements and inflation [22].

To keep notation simple, we suppose v(a,c,1,j) = —oo whenever ¢ = 0 and ¢ > 0.
Furthermore, we define two index sets, J(a,c,1) and I(a,c,t), as the time periods such
that, for a given (a,c) pair, replacements are possible to and from period 1, respectively,

without violating maximum service life restrictions.



The following is a classical IP formulation assuming hard budget constraints. The
objective is to maximize the overall NPV of cash flows resulting from replacement decisions

of n assets over H periods.

maximize EZE Z v(a, ¢4, 7) z(a, 6,1, 1)

a=1 ¢=0 i=0 jeJ(a,c,)

subject to the following constraints:

1. Serial replacement: Each asset may be replaced each time period by exactly one

asset. So,fora=1,...,nand ¢t =0,...,H:

m(a)
> 2 zacig)= Z > z(a,cj,i)

c=0 j€J(a,c,) c=0 jel(a,cyt)
2. Budget: Expenditures should be within budgets. So, for: =0,...,H —1
n m(a)
ZZP(CL,C,i) Z .'II((I,C,Z,])SB(Z)
a=1 c=1 jEJ(a,c,i)

where B(t) is the budget available in period «.
3. Integrality: z(a,c,1,7) € {0,1}.

The above formulation has a network characterization which is exploited for the rest of
the paper. Consider a directed graph where nodes represent the end of time periods and
arcs represent replacement decisions. Associated with each arc are two parameters, length
(NPV benefit of the replacement) and resource consumption (installation cost). We have
as many such gfaphs as the number of assets. An example graph is shown in Figure 1
for a certain asset a with one challenger and a defender. The challenger’s maximum life
is three periods. The defender may be used for at most two more periods. We seek the
longest path from node 0 to node H in each asset’s graph such that no resource (budget)
constraint is violated.

The problem of finding longest paths under resource constraints is NP-complete (Han-
dler and Zang [14]). Approaches to resource constrained path finding problems include
Lagrangian relaxation in a path ranking approach [11, 14], network reduction techniques
followed by implicit enumeration [1, 15], and branch and bound with Lagrangian relax-
ation bounds [4]. Most applications reported in the literature deal with general con-

straints, for example, traversal time limit, energy consumption limit, etc., along the path
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v(a,1,0,3)
P(a,1,0)

v(a,1,0,2) v(a,1,1,3)

v(a,0,0,2)

Figure 1: A sample directed graph for a particular asset with one challenger and a de-
fender.

in a single network. In contrast, the replacement problem we describe in this paper has
resource constraints across individual networks, rendering a unique structure. Next, we

discuss how this structure is exploited.

LAGRANGIAN RELAXATION

We propose a method based on Lagrangian relaxation. It relaxes constraints into
the objective function producing a Lagrangian problem that yields an upper bound (for
maximization problems) on the optimal value of the original problem (Fisher [8]; Geoffrion
[10}).

Two alternative Lagrangian relaxations can be considered for the previous IP. If we
relax the budget constraints (REL-1), the relaxed problem is solved by longest path algo-
rithms. However, the relaxation has the integrality property so that the best upper bound
is the linear programming (LP) relaxation bound. Alternatively, if we relax the serial re-
placement constraints (REL-2), the relaxed problem is solved by knapsack algorithms.
REL-2 is likely to produce tighter upper bounds since it lacks the integrality property.
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In [18], an exact solution procedure is developed by using REL-2 as a bounding tool
in a branch-and-bound algorithm. Although the exact procedure is capable of solving
moderately-sized problems (up to ten parallel assets over eight periods) in reasonable
times, it is computationally too expensive for larger problems. In this paper, we present

an approximate solution method using REL-1 for the following reasons:

1. The relaxed problem is solved finding longest paths on acychc graphs Wthh are

much easier to solve than the knapsack problems from REL-2.

Any Lagrangian solution z gives a valid replacement schedule that may only violate

o

the budget constraints. Some of the violations could be insignificant and an accept-
able solution can be obtained. In contrast, no valid replacement schedule is possible

in the second relaxation until an optimum solution is reached.

We consider a solution that satisfies the replacement constraints but violates budget
constraints more useful than a solution that violates the replacement constraints but
satisfies the budget constraints. The justification lies behind the logic of imposing budget
constraints. In practice, budgets do not represent hard limits on finance, rather they are
provisional limitations for the purposes of expenditure control (Weingartner [25, 26, 27]).
The survey results summarized by Gurnani [13] about the reasons of capital rationing
support this viewpoint. Hence, the purpose of our proposed method is not bounding
the IP optimum per se, but producing an approximate solution with acceptable budget
violations. In addition, estimating the losses which result from imposing tight budgets in
certain periods is valuable in budget planning. The extent of budget violations and loss
of optimality are discussed in computational experiments section.

Let A(z) > 0 be the multiplier associated with the budget constraint of peridd z.

Dualizing budget constraints using A, we get
= mgxzzzz [v(a,c,t,5) — Pla,c, k) A(3)] z(a, c,1,7) + ZB(z) Mz) (1)
a ¢ 1 g 1

where the maximization is over all z satisfying serial replacement and integrality con-
straints. Any solution, z, obtained in evaluating L()) for a A > 0 is referred to as a
Lagrangian solution.

Relaxing the budget constraints removes the interdependency of replacement decisions

across assets. Hence, the problem can now be decomposed into n independent serial



replacement problems, each of which is solved by finding a longest path on an acyclic
graph.
We use a dynamic program (DP) to solve each longest path problem efficiently. For a
given A > 0, define
v(a,c,1,7) = v(a,¢1,7) — P(a,c,1) A(2)

for all a,c,1,j. Let f(a,j) be the longest path from node 0 to node j in asset a’s graph.

For every a, initialize f(a,0) = 0 and solve the following forward recursive equations:

fla,j) = max(o(a,c,if) + flai))  forj=1,....H ¢

where the maximization is over all c and 7 = j — 1,...,max{0, j — N(a,c¢)}.

The Lagrangian value is then computed from
L(A) = 3 B(i) M) + 3 f(a, H).

For future. reference, let us define b(a,?) as the longest path from node H to node :.
After setting b(a, H) = 0 and b(a,0) = f(a,H), we can use the following backward

recursion to compute the rest of the b(a,?) quantities:
b(a,7) = max {v(a,c,i,7) + bla,J)} fori=H-1,...,1 (3)
CYJ

where the maximization is over all cand j =i+ 1,...,min{H, 7 + N(a,c)}.
The associated Lagrangian dual problem ([5, 10, 8]) is formulated as

min L(A). (4)

A>0
Given the discussion on écceptable violations of the budget constraints, this Lagrangian
dual problem could be interpreted as the appropriate formulation.. The multiplier A(z)
can be interpreted as the penalty of violating the budget constraint of period z. If the
total replacement expenditure in period 7 exceeds the budget, its penalty A(z) should be
increased to discourage some replacements.

Next, we present a multiplier adjustment method (MAM) for solving (4).

A MULTIPLIER ADJUSTMENT METHOD

MAMs are heuristic algorithms for solving Lagrangian dual problems exploiting the

special structure of a particular application. Previous successful integer programming
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applications include the uncapacitated facility location problem (Erlenkotter [7]), gen-
eralized assignment problem (Fisher, Jaikumar, and Van Wassenhove [9]; Guignard and
Rosenwein [12]; Karabakal, Bean, and Lohmann [17]), and set partitioning problem (Chan
and Yano [6]). A MAM usually guarantees monotonic bound improvement, however, it
does not guarantee bounds better than those obtained by more common subgradient
algorithms [8]. _
The following development considers a directed graph of asset a and assumes that the

longest path f(a, H) is associated with the Lagrangian solution .
DEFINITION 1 Given a Lagrangian solution z, expenditure in period 1 is defined as
E(z,1) = Z Z Z P(a,c,t)z(a,c,t,7)
e ¢ g
fori=0,...,H —1.

When E(z,7) > B(i), the central idea in our MAM is to increase A(¢) until one of
the replacements in period i is canceled. The exact amount of this increase is determined

using Theorem 1 which, in turn, uses the following sensitivity results.

LEMMA 1 [If z(a,c,1,7) = 0 in an optimal solution to (1), the minimum & such that
v(a.c.1,))+0 would cause x(a,c,i,7) = 1 in an alternative optimum is given by s(a,c,1,7),
where

S(a’cai’j) = f(a,H) - b(a’J) - f(aal) —E(‘lvcvivj)-

PROOF. Let f(a, H) be the longest path from node 0 to H constrained to include the arc

from 7 to j using challeriger ¢. Then

fla.H) = f(a.1) +5(a.c,i,5) + bla, ).
In order to set z(a,c,2,7) = 1 in an alternative optimum, f(a, H) should be at least

as large as f(a, H). To enforce this selection we have to increase v(a,c,1,j) by at

least f(a,H) — f(a, H), where

f(a?H)_f(a’H) = f(avH)—[f(aai)-l'-ﬁ(a‘vcai’j)—{"b(aaj)]
s(aye,t,7). m (5)



LEMMA 2 Ifc is the only challenger of asset a that can possibly be installed in period : and
z(a,c,i,j) = 1, then the minimum é such that v(a,c,1,7) — 6 would cause no replacement
in period t is given by 6*: |

& = fla, H) - f(a, H | ~i)
where f(a,H |~ 1) is the longest path from node 0 to H constrained to exclude any

replacement in period t.
PROOF. Omitted. m

THEOREM 1 If asset a has a replacement at i* > 0 so that z(a,c,1*,7) = 1 for some c and

j, then the minimum A such that A(¢) + A would cause z(a,c,*,7) = 0 in an optimum

is given by
A(a) = min{A;(a), Ay(a)} (6)
where ( %, 7"
B , s(a, 1", 5"
M) = e T o { P(a,c,1*) — P(a,c, i*)}
and

fla,H) = f(a, H [~e7)
P(a,c,1%) '

Ag(a) =

PROOF. The current longest path, 0-i*—~j-H in Figure 2, has length f(a, H). For each A
increase of A(1*), the value of T(a,c.7%,7) is decreased by A P(a,c,t*); as is f(a, H).
When the reduction in f(a, H) reaches a certain threshold, another path emerges as
an alternative to the current longest path. The new path will either 1) pass through

node ¢, or 2) skip node 7*.

1. If the value of 5(a,c,i*,j) is reduced sufficiently, a new path from 0 to H
passing through node 7*, but installing another (cheaper) challenger ¢’ from
node 7* to any node j', becomes as long as the current one. In Figure 2, this
new path is 0-1"—j'~H. Asin Lemma 1, let f(a, H) be the length of the longest
path constrained to include the arc from ¢* to ;' using challenger ¢’. To enforce
the lengths of these two paths. 0-i*-j-H and 0—*-7-H, to be equal, A(¢*)
should be increased by at least A > 0, satisfying

fla,H) = AP(a,c,i") = f(a,H) = AP(a,c,i") (7)

f(a,H)—f(a,H) = A[P(avcai*)_P(a’c,ai*)] (8)



fla, H |~77)

Figure 2: Two possible ways of creating an alternative optimum by increasing A(i*) in
order to set z(a,c,1*,5) = 0.

provided
P(a,c,7*) < P(a,c,1%). (9)

If P(a,c,t*) > P(a,c,1*), an alternative longest path passing through :* and
installing ¢’ does not exist. An illustration of equation (7) is given in Figure 3.

The relation (9) between the slopes must hold for the intersection of the two

lines, hence for the existence of A. From (5), f(a, H) - f(a, H) = s(a,c’,2%,5').
Since there can be many arcs emanating from * and installing challenger ¢ # c,
Ai(a) is the minimum A over appfopriate challengers and their service lives
satisfying (8). Note that if there is no challenger ¢ satisfying (9), Aq(a) is set

to +o00.

2. If the value of T(a,c,t*,7) is reduced sufficiently, a new path from 0 to H
not passing through node ¢* becomes as long as the current one. This is the
path 0-H in Figure 2. From Lemma 2, A(:*) should be increased by at least
A = Ay(a), satisfying

fla,H) — A P(a,c¢,7") = f(a,H | ~1").
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Path
Length

f(a,H)
~ f(a,H) = A’ P(a,c,1*)

f(a,H)

fla,H) — A" P(a,c,i*)

!
|
!
[
|
:
|
4'
A A’

Figure 3: When A(:*) is increased by A, there will be two alternative longest paths.

The value of (a,c,t*,7) is reduced until either case occurs. Hence, (6). =

COROLLARY 1 If¢* =0 so that z(a,c,0,7) = 1 for some c and j, then

) Aifa), tfe>0
Ale)= { +o0, ifc=0 (10)

PROOF. By problem definition, node 0 cannot be skipped. Thus, Az(a) = +o0. If ¢ =0,

Ay(a) 1s also 400 because the replacement cost of a defender is zero. =

The following MAM is a systematic way of adjusting the multipliers (penalties) of

violated constraints.

The Multiplier Adjustment Algorithm

Step 0: Initialize A(¢) = 0 for all ¢ (i.e., ignore all budget constraints). Use DP recursions
(2) and (3) for solving n independent longest path problems and obtaining z°,

f°, and 8°. Set the iteration counter k « 0.
Step 1: Let I ={i| E(z¥, 1) > B(:)}. If I = ¢, stop; current z* is feasible.

11



Step

Step 3:

2: Select a period :* € I for which the present value of the budget deficit is the

largest, 1.e.,

" = argmax
i€l

{E(w’“, i) — B(z’)}
i+ay |

Let A(:*) = {a | z*(a,c,i*,j) = 1 for some c and j}. Compute A(a) for each
a € A(¢*) from either (6) or (10), depending on whether ¢* = 0 or not. Let

a* = argmin {A(a)} and A* = A(a”).
a€A(i*)

If A* =0, update I « I'\{i*}. If I = @, stop; no further improvement is possible.
Otherwise, go to step 2.

If A* > 0, update multipliers:
ALY M)+ (AT M) = AF(4) ford #47

where (A*)* is infinitesimally greater than A* to ensure that asset a* would not

have the same replacement in period :* again.

Solve n independent longest path problems with new multipliers to obtain z*+!,
g
fH1 and b**1. Set k — k + 1, go to step 1.

The monotonicity of the MAM is established by the following theorem.

THEOREM 2 Let :* be a period in which the budget constraint is violated at the k-th
iteration of the MAM. That is,

E(zt,i%) > B().

Increasing \*(1%) by A* > 0 found in step 3 reduces L(\F) by A* [E(z*,*) — B(i*)] > 0.

PROOF. In the k-th iteration

= Y B() X)) + Y f*(a, H).

Increasing A*(i*) by A* reduces the longest path of each asset a € A(:*) by A* P(a, c,1*),

where ¢ denotes the challenger of asset a installed at 1* by z*. Hence,

L(AFT) ZB 1)+ A" B+ Y fa, H)



~A" Y P(a,c,iv)

a€A(1*)

= L()\")—A*( 3 P(a,c,z‘*)—B(i*))

a€A(i*)
= L(\) - A" [E@*,i") - B@)|. =

The MAM reduces the Lagrangian value by attempting to decrease budget violations.
in certain periods. Therefore, the monotonic improvement of the Lagrangian value should

lower the budget violations. Computational tests verify this effect.

DEFINITION 2 Given a Lagrangian solution, z, the present value of budget deficits is

defined as
A1 (max{0, E(z,i) — B(i)}
Ple)= Zo( (I +ay )

Unfortunately, there is no guarantee that D(z) is reduced monotonically. We per-

formed the foHowing computational experiments to evaluate the overall reduction in D(z)
by the MAM.

COMPUTATIONAL EXPERIMENTS

The MAM was coded in C and run with random test problems. The following discrete
uniform distributions were used to generate challenger parameters for each asset a. Time

horizon was fixed at H = 20.

Number of challengeré U(1.4)
Defender life U1, 3)
Challenger life U(2.5)

Challenger’s purchase cost 100 x a + U(100, 999)
Defender’s salvage value 100 x a + U(10, 99)

Revenue 80% of purchase cost each period

Expense 10% of purchase cost in the first period
U(10%, 30%) increase each period

Salvage value U(5%, 50%) decrease each period.
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Distributions are obtained after scaling and simplifying the data collected for a vehicle
fleet replacement study in Michigan [3]. The study involved a major utility company with
a fleet of over one thousand vehicles that are different in price, size, and service objective.
Even after various strategies of clustering to decompose the problem, they must solve a
problem that includes hundreds of vehicles. _

Note that a challenger’s cash flows are correlated with the purchase cost. Although
such correlations increase the computational difficulty, they are usually observed in real
applications. See [9, 17, 20] for discussions of this issue. ‘ |

We conducted three computational experiments to determipé the effectiveness of the
MAM. First two experiments fixed the budget level and varied the problem size, first
using moderately large problems (up to 30 assets), second very large problems (up to
500 assets). We set the budgets to (n/2) x the average challenger purchase cost in each
period. The third experiment set the problem size at 100 assets and varied the budget
level. All experiments were done on an IBM RS/6000-320H.

In the first experiment, and compared the best solution the MAM produced with the

optimal solution. Let

™ = optimal solution of the IP,
¢ = Lagrangian solution with the smallest present value of budget deficits, or
D(z') = ming{D(z*)}, where k is the iteration counter of the MAM,
1'(z) = 1P objective function value associated with solution z.

('learly. 2’ may have plus or minus objective value error. To determine the average magni-
tude of minus errors (loss of optimality), we solved problems with n = 5,10, 15,20, 25 and
30 assets. using both our MAM code and IBM’s Optimization Subroutine Library (OSL)
[16] for optimal solutions. The results are summarized in Table 1.  The average loss
of optimality, the maximum of zero and the deviation from the optimal objective value,
is usually insignificant. Moreover, the average D(z') statistics verify our conjecture that
the MAM is more effective in reducing budget violations as the problem size increases.
The rate of reduction in average budget violation is exponential as the number of assets
increases linearly from 5 to 30. Naturally, large problems offer more freedom across assets
for the MAM to fix budget violations. Given the fact that, in many real applications, the
asset data and budgets are not known to a high precision, the extra computer time to

locate the true optimum may be difficult to justify.
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Table 1: Comparison of the MAM solutions with optimal solutions. Each line shows
statistics for 10 problems.

Average loss Average Max MAM CPU time OSL CPU time

of optimality* D(z') D(z') Median Max Median Max
n (%) (%) (%)  (secs)  (secs) - (secs)  (secs)
5 3.34 6.69  13.42  0.08 0.17  30.54 4579.62
10 0.51 3.06 1395 0.24 0.28  45.07  103.07
15 0.20 1.21 293 048 0.64 52.33  490.43
20 0.12 1.07 246  0.74 1.09  163.81 1069.12
25 0.15 1.06 2.11 0.87 1.22 37233 4324.91
30 0.08 0.44 1.23 1.33 220  257.57  6545.9
. max{0, V(z*)=V(z')}

V(z*)

Table 2: Results for larger problems. Each line shows statistics for 10 problems.

Average Maximum MAM CPU time

D(z') D(z") Median  Max

n (%) (%) (secs)  (secs)
100 0.03 0.13 13.12  19.28
200 0.08 0.55 3771 67.42
300 0.16 0.68 73.34  188.78
400 0.11 0.37 128.97 1310.41
500 0.04 0.23 178.40  737.24

In the second experiment, we generated very large problems that are either impossible
or computationally too expensive to solve optimally. Table 2 shows the performance of
the MAM for problems with 100 to 500 assets. The average budget violations are usually
less than 0.1% and, for all practical purposes, can be considered negligible.

In the third experiment, we fixed the number of assets at 100 and focused on the
performance with respect to budget tightness. We solved problems with budget levels
ranging from 30% more to 30% less than those levels in the first two experiments, which
were derived from a real case. The results are shown in Table 3. As budgets are made
looser, it becomes more likely to obtain alternative feasible and improving paths, and

problems become easier to solve. Similarly, as budgets are made tighter, it becomes less
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Table 3: Performance of the MAM with varying budget levels. Number of assets is fixed
at 100. Each line shows statistics for 10 problems.

Average Maximum MAM CPU time
D(z') D(z") Median  Max
Budget (%) (%) (secs)  (secs)
30% more 0.00 0.03 0.44 4.87
20% more 0.01 -~ 0.06 _ 2.15 11.16
10% more 0.03 0.19 8.35 18.48
Original 0.03 0.13 1312 19.28
10% less 0.37 2.03 25.84 1182.29
20% less 0.71 2.05 35.30  327.48
30% less 3.27 4.94 62.50 1247.19

likely to find alternative feasible and improving paths, and problems become more difficult
to solve. Thus, final budget deficits are lower in the former case, higher in the latter case.

Moreover, the performance is more sensitive to tightening budgets than loosening budgets.

CONCLUSIONS

We describe a dual heuristic for solving realistically-sized replacement problems under
budget constraints. Our approach is to reduce the budget violations of the unconstrained
solution progressively so that a feasible or acceptable solution is obtained. We use an
IP described in [18] as a starting point and develop a MAM to solve a Lagrangian dual.
Computational ‘experiments(show that'budget violations of the selected MAM solutions
average around 1% for 15 to 30 asset problems and around 0.1% for 100 to 500 asset.
problems. Moreover, the average loss of optimality for problems with more than 10 assets
is insignificant (less than 0.5%). The performance of the heuristic is somewhat sensitive
to the budget levels, but not overly so. Therefore, the MAM appears to be a viable tool

in solving large problems in practice.
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