A Steepest Decent Multiplier Adjustment Method for the
Generalized Assignment Problem

Nejat Karabakal
James C. Bean
Department of Industrial & Operations Engineering
University of Michigan Ann Arbor, MI 48109

Jack R. Lohmann
School of Industrail and Systems Engineering
Georgia Institute of Techology Atlanta, GA 30332

Technical Report 92-11
January 1992
Revised October 1993

A Steepest Descent Multiplier Adjustment
Method for the Generalized Assignment Problem

Nejat Karabakal
Faculty of Business Administration
Bilkent University, 06533 Ankara, Turkey

James C. Bean

Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor, Michigan 48109-2117

Jack R. Lohmann

School of Industrial and Systems Engineering
Georgia Institute of Technology, Atlanta, Georgia 30332

January 1992
(Revised October, 1993)

Abstract

Multiplier adjustment methods (MAMs) have been used to solve the Lagrangian
dual of the generalized assignment problem. We improve the traditional MAM by
incorporating a post-optimality analysis for the 0-1 knapsack subproblems based on
a dynamic programming formulation. Our approach guarantees a steepest descent
improvement at each iteration and eliminates all intermediate knapsack solutions
required by the traditional MAM for calculating a step length. We also describe a
branch-and-bound algorithm that incorporates the improved MAM as a bounding

tool. Computational results obtained with the algorithm are reported.

1 Introduction

The generalized assignment problem (GAP) seeks to optimally assign n tasks to m agents
such that each task is assigned to exactly one agent but each agent is constrained only by
the amount of a resource. Let ¢;; be the profit of assigning task j to agent ¢, a;; be the
resource required by agent 7 to perform task j, and b; be the resource available to agent :.
Suppose a 0-1 variable, z;j, is set to one if task j is assigned to agent ¢, zero otherwise.

Then, an integer programming formulation for the GAP is:

m n
maximize Z Z Cij Tij (1)

i=1 j=1
subject to iaij zi; < b; i=1,...,m (2)
j=1
ix,-jzl j=1,...,n (3)
:jle 0,1} alli,j. (4)

Aside from many practical problems that can be put into the above formulation di-
rectly, other applications can be reformulated to the GAP structure. Ross and Soland [17]
show how to formulate a number of important facility location and location-allocation
problems as GAPs. In more sophisticated applications, the GAP appears as a subprob-
lem. Fisher and Jaikumar [4] describe a two-phase vehicle routing heuristic where, in the
first phase, a GAP is solved to assign customers to vehicles and, in the second phase,
traveling salesman heuristics are invoked to determine individual vehicle routes. The
shopping mall design project in Bean et al. [2] could be formulated as a GAP. In that
problem, z;; = 1 if store j is located in area 1 of the mall.

Both GAP and finding a feasible solution to (2)-(4) are NP-hard problems ([5] and
[15]). A common solution technique for the GAP has been branch-and-bound with upper
bounds obtained by various relaxations. The straightforward linear programming relax-
ation, given by replacing (4) with r,, > 0. for all : and j, is rarely used in the literature
since it fails to exploit the structure and results in large duality gaps. Ross and Soland [16)
used a relaxation replacing (2) with a,,z,; < b;, for all ¢ and j. Martello and Toth [14]
proposed another relaxation by simply removing multiple-choice constraints (3). They
reported improved performance over the Ross-and-Soland algorithm for problems where

knapsack constraints (3) are tight. Later, several Lagrangian relaxation approaches were

1

proposed for the GAP. Chalmet and Gelders 3] compared the effects of relaxing either
(2) or (3) with respect to duality gaps and computational times. A subgradient opti-
mization is used in the search process. Jornsten and Nasberg [9] used a variable-splitting
(Lagrangian decomposition) approach in which two subproblems are generated, one re-
laxing (2) and the other relaxing (3). Fisher, Jaikumar, and Van Wassenhove [5] obtained
a Lagrangian relaxation by dualizing the multiple-choice constraints (3). Instead of using
the more common subgradient optimization to solve the Lagrangian dual, they developed
a multiplier adjustment method (MAM) for determining good multipliers. MAMs are
heuristic algorithms for solving Lagrangian duals exploiting the special structure of a par-
ticular problem. They also reported significant improvements over Ross-and-Soland and
Martello-and-Toth algorithms in their computational tests. Later, Guignard and Rosen-
wein [7] suggested several enhancements over this MAM but the basic structure remained
the same. We will refer to Fisher-Jaikumar-Van Wassenhove version of the MAM that
incorporates some of the enhancements of Guignard and Rosenwein as the traditional
MAM in subsequent discussions.

To construct the Lagrangian relaxation that dualizes (3), let u; be the multiplier

associated with multiple-choice constraint j. Then

L(u) = Zui + max { Z Z(c;]- — uj) z;j | « satisfies (2) and (4)} . (5)

J

For a given u, L(u) is an upper bound on the optimum GAP objective. The tightest
bound is obtained by solving the Lagrangian dual problem: min, L(u). Although it
cannot guarantee bounds better than those obtained by a subgradient algorithm, the
MAM usually provides faster bound improvements in solving the Lagrangian dual. It
starts with given initial multipliers and solves the corresponding Lagrangian relaxation.
If the Lagrangian solution, i.e. r satisfying only (2) and (4), is also feasible to (3), it is
optimal; otherwise violated multiple-choice constraints give descent directions of L(u) over
the multiplier space. The method then finds a step length along any descent direction,
updates multipliers and iterates. Further discussion is given in Section 2.

In this paper, we propose algorithmic improvements to increase the effectiveness of the
traditional MAM as a bounding tool. These improvements are due to a post-optimality
analysis for the 0-1 knapsack subproblems based on a dynamic programming (DP) formu-
lation. In computing the value of L(u) for a given u, m knapsack problems are first solved

using forward recursions. Subsequent backward recursions generate useful post-optimality

2

information that enables the MAM to achieve a guaranteed steepest descent improvement
at each iteration. It also eliminates all intermediate knapsack solutions required by the
traditional MAM for calculating a step length. The post-optimality analysis is explained
in Section 3, followed by a description of its use in improving the traditional MAM in
Section 4. In Section 5, we present a branch-and-bound algorithm that incorporates the
improved MAM in upper bounding. Moreover, we describe a lower bounding heuristic
that makes feasible an infeasible Lagrangian solution. Computational results obtained

with the algorithm are also reported.

2 Traditional MAM

In this section we describe the traditional MAM and discuss the improvements proposed.
First, we introduce some further notation. If (di,...,dn) is a vector of real numbers then
min2;{d;} is the second smallest element of d over 7. Similarly, argmin2,{d;} designates the
index of the second smallest element. Define max2;{d;} and argmax2;{d;} analogously.
Given some solution, z, let p; = >_.x;; for all j. The traditional MAM, as we define it,
is stated in detail in [12]. |

Given a violated multiple choice constraint, j*, and a current optimal solution, z,
the key calculation in the traditional MAM finds A;j«, the least decrease (increase) in
u;j» required for setting z;;» = 1 (z;;» = 0) in an optimum knapsack solution of row 1 if
p;» =0 (pj» > 1). The traditional MAM uses the following approach in determining A,
quantities. Define &; = ¢;; — u;, and z; =). &;zi;. Suppose we removed variable z;;.
from knapsack :. We will call the remaining problem with (n — 1) variables a restricted
knapsack. Let zf(B) be the optimum objective value of the restricted knapsack when its
right hand side capacity is 5. Now. if p;» = 0 and z;;» = 0, the least increment in ¢;;.

that would cause z;;» = | in an alternative optimum solution is given by
Ajjo = 2, = &0 = 2 (b = ayj 6
e = S T Gy — & (b; al]‘)' ()

Similarly, if pj;o > 1 and z;;» = 1, the least decrement in ¢;;- that would cause z;;+ = 0 in

an optimum solution of knapsack 7 is given by
A, =z - 2R(b). (7)

In the Fisher-Jaikumar-Van Wassenhove strategy it is never necessary to increase a

multiplier; that is, for all 7, p; <1 is maintained throughout. Decreasing multiplier u;. for

3

p;j» = 0 improves the bound by A;«j+ at each iteration, where i* is argmin,; {A;;+ }. However,
Guignard-Rosenwein showed that, although such a strategy forces primal feasibility, it
restricts the search over the multiplier space in solving the Lagrangian dual. Therefore,
we choose not to impose any restriction on p; and allow multipliers to be both decreased
and increased. Increasing multiplier u;. for p;» > 1 in the Guignard-Rosenwein version
improves the bound by (pj» — 1)A;+;+ (see also [8]).

The MAM that serves as a basis for our improvements is a hybrid of the techniques
of Fisher-Jaikumar-Van Wassenhove and Guignard-Rosenwein. Hence, it has a different
bound improvement rate than either. The following result, which establishes the new
bound improvement scheme, is used for selecting the steepest descent bound improvement
in Section 4. Let A = min2;{A,;+} be the step length chosen by this hybrid, traditional

algorithm, where the min operator ranges over

all 7, if pjr»=0
{i|zye =1}, if pj > 1.

Proposition 1 Adjusting multipliers from u* to u**! reduces the upper bound from L(u*)

to L(u**'), where

L(uk+l) — L(uk) - Ai‘j‘a lf p» = 0
L(u*) = (pyr =2)A = Aiwjo, if pjo > 1.

Proof: See [12] (refereed with paper). =

Proposition 1 suggests that the bound improvement is not strictly monotonic for the
traditional MAM and hence. the method may stall at a certain bound value for a number
of iterations without making any progress.

We observe the following issues that impair the performance of the traditional MAM:

1. In computing a step length along a candidate descent direction, m restricted knap-
sack problems must be solved if p,. = 0. and p;. restricted knapsack problems must

be solved if p,» > I.

2. A candidate descent direction is selected by scanning the set {j | p; # 1} in any given
order. The descent direction selected is the first encountered that gives a nonzero

step length. Once it is found, all remaining candidate directions are discarded

4

from further consideration. Although this strategy reduces the number of restricted

knapsack solutions, it can result in slow convergence.

This paper proposes improvements for both issues with the help of a 0-1 knapsack post-
optimality analysis described in the next section. The post-optimality analysis directly
generates A;; quantities for all 7,7 and hence, eliminates restricted knapsack solutions.
Also, with A;; quantities readily available as a table, it is possible to select a direction/step

length pair to guarantee a steepest descent improvement of L(u).

3 A Post-optimality Analysis for 0-1 Knapsack

In this section, we concentrate on one of the m 0-1 knapsack problems and suppress the
i-index in the variables for clarity. Consider the following problem defining s; as the

complement of z; (s; =1 —r;):

n
Z = max E CJ'IJ'

1=1
n
subject to Za]- r; <b
)=l
s, =1 foryj=1,...,n

r, € {0,1} for all ;.

We assume that b and «, are integers for all j. The post-optimality analysis is based
on a DP solution of 0-1 knapsack problems ([6], [18]). Let the state space consist of the
set of ordered pairs (j, 7). where j enumerates variables (1 < j < n) and f enumerates
the knapsack capacity (0 < 3 < b). The knapsack function, f;(8), is defined to be the
optimum value of a subproblem which uses variables 1 through 7 with a knapsack capacity
of 3. Consider a DP network in which nodes are states and arcs represent variable selection
decisions. Arc lengths are assigned the objective values of corresponding variables. A
standard recursion is used to find f,(.3) = the longest path from state (0,0) to (7, 8) for
each feasible state (j.3) in the DP network. The longest path length from (0,0) to (n,b)
is denoted :z.

Similarly, we can make a backward pass to compute g;(f) defined as z minus the

length of the longest path from state (j,3) to (n,b). Specifically,

Boundary conditions:

gn-1(f) = = forb—a, <B<b
gn-1(B) = min{z, z —c,} for0<pB<b-a,

Recursive equations: For j =n—2,...,1

9;(B) = gi+1(PB) forb—aj41 <B<h
9;(B) = min{g;+1(B), gj+1(B+ ajs1) —cjp1} for 0 < B <b—ajp
Theorem 1 Suppose z; = 0 in the current optimum solution. Assuming that all other

objective coefficients remain unchanged, the minimum 6 such that ¢; + 6 would cause

z; =1 in an alternative optimum s given by A;, where

A = gi(a)—a (8)
A; = min {g;(f) = fialB-ej) =} forj=2,..,n—1 9)
An = z— foa(b—a,) —c,. (10)

Proof: If z; = 0 then s; = 1 in the current solution. Consider the DP network in which
the longest path from (0,0) to (n,b) has an arc corresponding to s; = 1 (see F‘igure 1).
Let one of the arcs representing z; be from (j — 1, f—a;) to (j, 8). Define 2; and 2, as the
longest path lengths from (0,0) to (j — 1,3 — a;) and from (7, 8) to (n,b), respectively.
Let z® be the length of the longest path from (0,0) to (n,b) constrained to include the
arc from (3 — 1,8 — a;) to (j,3). Then

R
=4+ <z

In order for z; to be selected in an alternative optimum solution, z® should be at least as

large as . To enforce this selection. we have to increase c; by at least z — z®, where

=R = (5 4+)
= (:—2)—21—¢
= 6,(8) = fi-1(B - a;) — ;.
Since there may be more than one arc corresponding to the variable z; in the DP network,

it is necessary to look for the minimum increment of ¢; over all these arcs.

min {z -z} = min {g;(8) = fi=1(8 - a;) - ¢;}

a,<B<b a,<B<h

= A

knapsack
capacity (n,b)
b

B - a;

1 1 ! -

(0,0) 7-1 J n variable

Figure 1: Illustration of the post-optimality analysis.

as given by equation (9). Consider the boundary conditions. For j = 1, g1(a1) = min g,()
over a; < f# < band z; = 0; substitution gives equation (8). For j =n, fo_1(b—a,) =

max f,-1(f) over 0 < 3 < b - a, and =, = 0; substitution gives equation (10). m

Corollary 1 Suppose x, = 1 in the current optimum solution. Assuming that all other
objective coefficients remain unchanged, the minimum 6 such that ¢; — 6 would cause

r; =0 in an optimum solution is given by A;, where

Ay = gi(0)
Aj = orgn;jigb{g](j)_f"-‘(d)} Jorj=2,...,n-1

Ay = - fn—l(b)-

Proof: If z; = 1 then s, = 0 in the current solution. The result directly follows by

interchanging r; and s; in the theorem. =

It is interesting to note that the procedure implied by the above theorem and its
corollary is similar to finding total floats in activity networks by the critical path method.

The floats define A; values. This idea is adopted from an algorithm for the capital

constrained equipment replacement problem (see [10] and [11]). It is similar to analyses
in Lee [13] and Van Hoesel and Wagelmans [19].

4 Improved MAM

The results of 0-1 knapsack post-optimality analyses combined with Proposition 1 en-
able us to improve the traditional MAM. The improved MAM is given by the following

algorithm:

Step 0: Initialize multipliers by either u® = max2;{c;;} ([5]) or u® = max;{c;;} ([7]). Solve
- m knapsack problems to obtain Lagrangian solution, z°. Perform post-optimality

analysis for each knapsack to compute A?j quantities. Set the iteration counter

k0.

Step 1: Define p; = 3, z¥, 11(j) = argmin;{AL}, i2(j) = argmin2,{Af} for all j. Let

179
S={jlpj #1and AfQ(j)‘j > 0} and go to step 2.
Step 2: If S = ¢, stop; otherwise select index j* € S such that

" = argmax{ max {A¥ .}, max ~—2Af~~+AI~°-'}.
T {{np,=0}{ b ey A5 = 2R + Ao}

Construct a descent direction £* = (&5, ..., €¥), where

+1, ifj=j"and pj» =0
&= 1. ifj=j"andpp >1
0, otherwise.

Step 3: Letting the step length A = Afm.)’].\ adjust multipliers, u**! « u*— A £*. Solve

knapsack problems followed by post-optimality analyses to compute respective

z8H and AFM quantities. Set k — k+ 1, and go to step 1.

i3

In step 2, this method evaluates all possible descent directions and chooses the steep-
est for the next multiplier update. The extra computational effort introduced by post-
optimality analyses is compensated by 1) eliminating all restricted knapsack solutions
for determining step lengths. and 2) increasing the rate of bound reductions through a

steepest descent improvement at each iteration.

5 Branch-and-Bound Enumeration

If the Lagrangian solution does not provide an optimal GAP solution, one or more
multiple-choice constraints are violated. We branch from such solutions using a strat-
egy suggested by Bean [1]. First, we select a violated multiple-choice constraint with the
largest multiplier value. Since any feasible solution includes exactly one out of m variables
from this constraint, we create m branches. At each branch, one variable is fixed at one,
and the rest are automatically set to zero.

We also use the following heuristic in an attempt to attain feasibility given a La-

grangian solution z that violates (3):

Step 1: Store in a list all the variables z;; such that z;; = 1 and p; > 1 in the current

solution. Sort the list in ascending c;j/a;; order.

Step 2: Starting from the top of the list, set z;; = 0 and increase the slack space of

knapsack 7 by a;;. Repeat until p; <1 for all ;.

Step 3: Using only variables z;; with p; = 0, solve all knapsack problems optimally.

If the heuristic procedure stops with p; =1 for all 7, the final solution is feasible and the
incumbent is checked for improvement. Otherwise, the attempt to make the Lagrangian
solution feasible fails. Computational experiments showed that the heuristic is more effec-
tive with Lagrangian solutions returned by a subgradient algorithm. Therefore, following
the termination of the MAM, we perform a few subgradient iterations with multipliers
initialized by the output of the MAM.

While subsequent subgradient iterations improve the MAM upper bound at the root
node for certain types of problems. similar improvements were rarely observed for the de-
scendent nodes where output multipliers of the MAM are very close to optimum. There-
fore. the primary advantage of subgradient iterations is to tighten the lower bound by
enhancing the above heuristic, and thus, to improve the overall branch-and-bound enu-
meration. A study of the quality of lower bounds from the heuristic and upper bounds
from the MAM and subgradient iterations follows the experiment description.

Our branch-and-bound algorithm was programmed in C and compared against the
Martello-Toth branch-and-hound algorithm coded in FORTRAN (program MTG in [15]).
The programs were compiled using cc and xIf compilers, respectively, on the IBM RS/6000,

with optimization switches turned on. Random problems were generated according to
distributions suggested in [14] and [15]. The results are shown in Table 1.
The statistics were obtained over a sample of five problems. The letters A, B, C, and

D refer to the four different problem generations:

A. Parameters a;; and ¢;; are integers uniformly random in [5, 25] and [1, 40],
respectively. Let & be a solution of (1)-(4) with (2) replaced with a;z;; <
bi, for all 4,7. Then, b; = 9(n/m) + max;{}_; a;;:;}.

B. Same as A, but b; is set 70% of the value given in A.
C. Sameas A, but b; = 0.8 Z]- a;;/m.

D1. Parameters a;; uniformly random in [1, 100], b; = 0.8) a;;/m, and ¢;; =

a;; + K, where K is uniformly random in [-10, 10].

D2. Same as D1, but ¢;; is uniformly random in [a;j, a;; + 20].

Class A problems, first suggested by Ross-Soland [16], usually admit many feasible
solutions and are easier than the others. Problems of B, C, and D have increasingly
tighter capacity constraints and become increasingly difficult to solve. In addition, class
D problems have a correlation between objective values and knapsack weights (often
observed in real-world applications) and are the most difficult.

The results in Table 1 show that our algorithm is comparable with Martello-Toth
algorithm with easy problems of class A. However, our algorithm performs better with
more difficult problems of B, (", and D. Note that performance will degrade if larger
knapsacks are solved. See [5] for discussion of this issue.

Turning to the quality of the upper and lower bounds, we ran the same set of problems
disabling branching and obtained root node bounds. Table 2 shows average deviation from
optimal value of a) the lower bounding heuristic, b) the MAM upper bound, and c) the
MAM followed by 50 subgradient iterations initialized by the final MAM multipliers.
For all problem types and sizes. one can observe that final upper bounds are closer to
the true optimal value than lower bounds. Moreover, the quality of MAM bound tends
to deteriorate with increasing problem difficulty, resulting in greater improvements by

additional subgradient iterations to reach the final node bound.

10

6 Summary

We describe a branch-and-bound algorithm featuring a more effective MAM than those of
Fisher, Jaikumar, and Van Wassenhove [5] and Guignard and Rosenwein [7]. The MAM’s
effectiveness stems from a post-optimality analysis we developed for the 0-1 knapsack
subproblems. This MAM is embedded in a branch-and-bound algorithm adapting the
multiple choice branching strategy of Bean [1]. Computational tests indicate that the
algorithm is capable of solving nontrivial problems with up to 500 variables in reasonable

times. The code is available from the first author.

Acknowledgment

This research was supported in part by National Science Foundation grants PYI-G-DMC-
8352346, DDM-9018515 and DDM-9202849 to the University of Michigan.

References

[1] Bean, J. C., “A Lagrangian Algorithm for the Multiple Choice Integer Program,”
Operations Research. 32 (1984). 1185-1193.

[2] Bean, J. C., C. E. Noon. S. M. Rvan. and G. J. Salton, “Selecting Tenants in a
Shopping Mall,” Interfaces. 18 (1983). 1-9.

[3] Chalmet, L. and Gelders L.. “Lagrangean Relaxations for a Generalized Assignment-
Type Problem.,” In M. Roubens (editor) Advances in Operations Research, North-
Holland, Amsterdam (1977). 103-109.

[4] Fisher M. L. and R. Jaikumar, “A Generalized Assignment Heuristic for Vehicle
Routing,” Networks, 11 (1981). 109 124.

[5] Fisher M. L., R. Jaikumar. and L.. N. Van Wassenhove, “A Multiplier Adjustment
Method for the Generalized Assignment Problem,” Management Science, 32 (1986),
1095-1103.

[6] Gilmore, P. C. and R. E. Gomory. “The Theory and Computation of Knapsack
Functions,” Operations Research, 14 (1966), 1045-1074.

[7) Guignard, M. and M. B. Rosenwein, “An Improved Dual Based Algorithm for the
Generalized Assignment Problem.” Operations Research, 37 (1989), 658-663.

11

[8] Guignard, M. and M. B. Rosenwein, “An Application-Oriented Guide for Designing
Lagrangean Dual Ascent Algorithms,” European Journal of Operations Research, 43
(1989), 197-205.

[9] Jornsten, K. and M. Nésberg, “A New Lagrangian Relaxation Approach to the Gen-
eralized Assignment Problem,” Furopean Journal of Operations Research, 27 (1986),
313-323.

[10] Karabakal, N., “Capital Rationing Replacement Problem,” Ph.D. Dissertation, De-
partment of Industrial and Operations Engineering, University of Michigan, Ann

Arbor, 1991.
[11] Karabakal, N., J. R. Lohmann, and J. C. Bean, “Parallel Replacement Under Capital

Rationing Constraints.” Forthcoming in Management Science.

[12] Karabakal, N., J. C. Bean and J. R. Lohmann, “A Steepest Descent Multiplier Ad-
justment Method for the Generalized Assignment Problem: Technical Report,” Tech-

nical Report 92-11, Department of Industrial and Operations Engineering, University
of Michigan, Ann Arbor, 1992.

[13] Lee, I.-S., “On Sensitivity Analysis for Shortest Path Dynamic Programming,” Work-
ing Paper, University of California, Los Angeles, (1986).

[14] Martello, S. and P. Toth, “An Algorithm for the Generalized Assignment Problem,”
In J. P. Brans (editor) Operational Research ’81, North-Holland, Amsterdam (1981),
589-603.

[15] Martello, S. and P. Toth, Knapsack Problems: Algorithms and Computer Implemen-
tations, John Wiley and Sons, 1990.

[16] Ross, G. T. and R. M. Soland, “A Branch and Bound Algorithm for the Generalized
Assignment Problem,” Mathematical Programming, 8 (1975), 91-103.

[17] Ross, G. T. and R. M. Soland, “Modeling Facility Location Problems as Generalized
Assignment Problems,” Management Science, 24 (1977), 345-357.

[18] Toth, P., “Dynamic Programming Algorithms for the Zero-One Knapsack Problem,”
Computing, 25 (1980). 29-45.

[19] Van Hoesel, C.P.M. and A.P.M. Wagelmans, “Sensitivity Analysis of the Economic
Lot Sizing Problem,” Report 9165/A of The Erasmus University Rotterdam, The
Netherlands, (1991).

Table 1: Computational experience with random problems. Times are in CPU seconds
on IBM RS/6000. Five problems for each line.

Martello-Toth Karabakal-Bean-Lohmann

m n Type Min Median Max Min Median Max
5 20 A 0.03 0.04 0.06 0.10 0.14 0.17
B 0.26 1.36 6.17 0.25 0.61 0.86

C 0.19 1.35 5.48 0.25 0.68 1.11

D1 4.62 7.84 12.74 6.26 12.79 16.42

D2 88.44 452.21 515.81 0.87 4.33 5.10

5 30 A 0.04 0.06 0.09 0.15 0.27 1.31
B 3.73 64.40 293.73 0.56 1.88 3.85

C 8.51 141.51 367.59 0.53 4.14 8.11

D1 45.78 569.40 780.23 19.17 69.01 95.41
D2 TIME TIME TIME 30.18 65.35 95.25

5 40 A 0.04 0.07 0.53 0.26 0.39 3.41
B 181.36 814.87 1000* 1.21 7.46 23.64

C 226.25 1000* 1000* 4.49 6.95 57.58

D1 973.40 1000* 1000* 287.96 1000* 1000*

D2 — — — 203.43 462.26 642.53

5 50 A 0.05 0.08 30.61 0.27 0.81 5.39
B 45.92 1000* 1000* 0.59 20.01 158.85

¢ TIME TIME TIME 16.24 30.77 42.92
D1 TIME TIME TIME 474.50 999.14 1000*

D2 — — — 543.59 1000* 1000*
10 20 A 0.03 0.07 0.10 0.16 0.49 1.82
B 0.06 2224 50.80 0.32 0.50 2.45
C 0.38 7.63 29.27 0.12 0.62 1.32
D1 12.29 65.40 153.91 3.80 7.85 12.10
D2 TIME TIME TIME 3.19 6.11 14.19
10 30 A 0.07 0.10 11.57 0.26 0.30 6.12
B 0.15 202.67 1000* 1.91 2.66 6.45
C TIME TIME TIME 3.43 12.25 20.55
D1 TIME TIME TIME 94.57 156.75 437.52
D2 — — — 76.91 125.61 510.90
10 40 A 0.07 0.10 0.11 0.48 1.92 4.40
B 0.14 1000* 1000* 4.75 7.39 153.94
C — — — 9.16 29.31 41.92
D1 — - — 987.25 1000* 1000*
D2 — — — TIME TIME TIME
10 50 A 0.09 0.95 4.46 0.55 1.74 12.63
B TIME TIME TIME 7.07 25.70 75.32
C — — — 23.69 70.43 355.64

TIME indicates that none of the problems in the sample could be solved within 1000 seconds.

* Problem exceeded 1000 second time limit.

13

Table 2: Average bound deviations from the optimum at the root node. Five problems
for each line.

Average Deviation of Average Deviation of =~ Average Deviation of
Problem Lower Bound Upper Bound Upper Bound

m n Type (Heuristic) (MAM) (MAM + Subgradient)
(%) (%) (%)
5 20 A 0.00 0.00 —
B 0.93 1.68 0.69
C 1.79 1.16 1.02
D1 2.53 1.40 0.60
D2 1.82 3.06 1.46
5 30 A 0.08 0.00 —
B 1.83 0.87 0.39
C 2.26 2.17 0.98
D1 2.30 3.15 0.51
D2 1.69 5.26 0.40
5 40 A 0.06 0.05 0.00
B 2.95 0.93 0.47
C 3.13 1.71 0.72
D1 1.53 6.03 0.33
D2 2.31 12.13 0.54
5 50 A 0.29 0.02 0.00
B 2.79 1.41 0.37
C 1.80 1.61 0.61
D1 1.80 8.89 0.28
D2 1.17 16.76 0.27
10 20 A 0.84 0.00 —
B 1.61 1.06 0.51
C 0.09 1.20 0.28
D1 1.92 1.88 0.87
D2 3.29 2.31 0.99
10 30 A 0.56 0.00 —
B 1.47 0.38 0.12
C 3.74 1.30 1.16
D1 2.79 3.95 0.49
D2 247 11.24 0.67
10 40 A 0.49 0.00 —
B 1.30 0.57 0.29
C 1.96 1.37 0.34
D1 4.14 19.19 1.43
D2 3.57 20.07 0.48
10 50 A 0.37 0.00 —
B 0.70 0.58 0.10
C 1.77 1.05 0.33

14

