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Abstract

We study a manufacturer that faces a supplier privileged with private information about sup-

ply disruptions. We investigate how risk-management strategies of the manufacturer change,

and examine whether risk-management tools are more, or less, valuable, in the presence of such

asymmetric information. We model a supply chain with one manufacturer and one supplier, in

which the supplier’s reliability is either high or low and is the supplier’s private information.

Upon disruption the supplier chooses between paying a penalty to the manufacturer for the

shortfall and using backup production to fill the manufacturer’s order. Using mechanism design

theory, we derive the optimal contract menu offered by the manufacturer. We find that informa-

tion asymmetry may cause the less reliable supplier type to stop using backup production while

the more reliable supplier type continues to use it. Additionally, the manufacturer may stop

ordering from the less reliable supplier type altogether. The value of supplier backup production

for the manufacturer is not necessarily larger under symmetric information and, for the more

reliable supplier type, it could be negative. The manufacturer is willing to pay the most for in-

formation when supplier backup production is moderately expensive. The value of information

may increase as supplier types become uniformly more reliable. Thus, higher reliability need

not be a substitute for better information.

∗Department of Industrial & Operations Engineering, University of Michigan, 1205 Beal Avenue, Ann Arbor, MI
48109. E-mail: zhibiny@umich.edu
†Department of Industrial & Operations Engineering, University of Michigan, 1205 Beal Avenue, Ann Arbor, MI

48109. E-mail: ayding@umich.edu
‡Department of Industrial & Operations Engineering, University of Michigan, 1205 Beal Avenue, Ann Arbor, MI

48109. E-mail: babich@umich.edu
§Ross School of Business, University of Michigan, 701 Tappan St., Ann Arbor, MI 48109. E-mail:

dbeil@bus.umich.edu



Electronic copy available at: http://ssrn.com/abstract=1033170

1. Introduction

In March of 2007, following the deaths of numerous pets, Menu Foods Corp., a producer of pet food,

had to recall more than 60 million cans and pouches of dog and cat foods for more than 100 pet-

food brands. Myers (2007) reports that the deaths were linked to melamine, an industrial chemical

suspected of causing kidney and liver failure. The melamine was traced to wheat gluten, which Menu

Foods (a Canadian firm) had bought from ChemNutra (a U.S.-based supplier), who, unbeknownst

to Menu Foods, had outsourced it to Xuzhou Anying Biologic Technology Development Co. Ltd. (a

Chinese supplier). This example illustrates that, as supply chains are extended by outsourcing and

stretched by globalization, disruption risks and lack of visibility into a supplier’s status can both

worsen. The possible causes for supply disruptions are myriad, for instance, supplier bankruptcy,

labor strikes and machine breakdown (Sheffi, 2005).

As supply risks increase, it is crucial for manufacturers to learn how to anticipate, prepare for,

and manage potential supply disruptions. The losses due to supply disruptions can be huge. For

example, shortly after initial recalls were issued on March 16, 2007, the market capitalization of

Menu Foods Corp. lost about half of its value, dropping to $70 Million. Generally, Hendricks

and Singhal (2003, 2005a,b) find that firms that experienced supply glitches suffer from declining

operational performance and eroding shareholder value (e.g., the abnormal return on stock of such

firms is negative 40% over three years).

A manufacturer has a number of choices when managing its supply risk, including supplier qual-

ification screening, multi-sourcing, flexibility, and penalties levied for supplier non-performance.

Intuitively, the effectiveness of risk-management tools used by a manufacturer depends on informa-

tion the manufacturer has about the supplier. For example, risk-management measures put into

place by Menu Foods would likely have been different, had it known that ChemNutra was out-

sourcing to a Chinese supplier. In practice, suppliers are often privileged with better information

about their likelihood of experiencing a production disruption than the manufacturers they serve,

because of the suppliers’ private knowledge of their financial status, state of operations, or input

sources. However, most of the extant research on supply disruptions assumes that the manufacturer

and supplier are equally knowledgeable about the likelihood of supply disruptions. The majority

of papers that incorporate asymmetric information do so in the context of suppliers’ costs, and

only a few model asymmetric information about supply disruptions. There is a crucial difference

between asymmetric information about suppliers’ costs and asymmetric information about supply

1



disruptions. Supply disruptions affect not only the manufacturer’s cost, but also the manufacturer’s

risk profile (risk-return tradeoff). As a consequence, to handle uncertainty about supply disrup-

tions, the manufacturer can not only design information-eliciting contracts (as considered in the

economics literature), but can also avail itself of various operational risk-management tools.

To address these gaps in the current literature, in this paper we investigate the interaction

between risk-management strategies and asymmetric information about supplier reliability. We

address the following questions:

Research Question 1: How do a manufacturer’s risk-management strategies change in the pres-

ence of asymmetric information about supply reliability?

Research Question 2: How much would the manufacturer be willing to pay to eliminate infor-

mation asymmetry?

Research Question 3: Are risk-management tools more, or less, valuable when there is informa-

tion asymmetry?

Research Question 4: How do answers to the above questions depend on changes in the un-

derlying business environment, such as supply base heterogeneity, or the manufacturer’s

contracting flexibility?

In answering these questions, we limit our consideration within the set of possible risk-management

strategies. We examine penalties for non-delivery, and an ability of the manufacturer to offer con-

tract alternatives to a supplier. Penalty clauses in contracts are a common means for buyers to

recover damages for non-delivery.1 The penalty amount is mutually agreed upon at the time of

contracting as a proactive way to avoid costly litigation for damages in the event of non-delivery.2

Penalties provide an incentive to the supplier to look for alternative means of satisfying its obli-

gations. In our model, we call such alternatives backup production. Backup production could take

many forms. For the Menu Foods Corp. example, upon disruption a supplier like ChemNutra might

re-source its wheat gluten from a different second-tier supplier (not Xuzhou, who was the culprit

of the disruption), install different quality controls, produce the wheat gluten itself, or perhaps use

a combination thereof. Backup production sometimes involves heroic efforts by the supplier. For
1What we call penalties in this paper are known, in precise legal terms, as “liquidated damages.” To be court-

enforceable, liquidated damages must not exceed damages that the buyer reasonably expects to suffer as a result of
supplier non-performance (Corbin, 2007). The penalties studied in this paper satisfy this requirement.

2An example of the latter is the suit brought by medical device manufacturer Beckman Coulter
against its circuit board supplier Flextronics, after Flextronics exited the medical device circuit board
business without delivering the units promised to Beckman Coulter (Beckman Coulter v. Flextron-
ics, OCSC Case No. 01CC08395, September 24, 2003 Orange County Superior Court), described at
http://www.callahan-law.com/verdicts-settlements/fraud-beckman-coulter/index.html.
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example, in 1997, when a fire at one of Toyota’s suppliers — Aisin Seiki, threatened to halt produc-

tion at many Toyota plants, Aisin Seiki was able to avert disruption by shifting production to its

own suppliers and other firms (including some outside of automotive industry, see Nishiguchi and

Beaudet, 1998). Where backup production is infeasible or implausible, our paper captures this by

including in its model the possibility that backup production is prohibitively expensive and hence

never used. In addition, we extend our analysis to the case where the manufacturer has access to

its own backup production option.

We use a single-period, single-supplier, single-manufacturer model where the supplier is subject

to a random production disruption, the likelihood of which is the supplier’s private information.

There are two supplier types, according to their reliability: high and low. In case of a production

disruption, the supplier has two choices: use a perfectly reliable (but costly) backup production

option to fulfill the manufacturer’s order or pay the manufacturer a penalty. Using mechanism

design theory, we find the optimal menu of contracts offered by the manufacturer to the supplier,

and obtain answers to our research questions. We emphasize a few of our results below.

Because backup production at the supplier improves the chances of products being delivered to

the manufacturer, one might intuitively expect that the manufacturer is more likely to encourage the

use of this tool when working with a less reliable supplier. However, under information asymmetry,

we observe that this need not be true, addressing research question 1. In an effort to correctly set

incentives for a more reliable supplier, the manufacturer may force a less reliable supplier to pay

penalties in case of a disruption, while asking a more reliable supplier to use backup production.

Addressing research question 2, the value of perfect information for the manufacturer depends

on the cost of the supplier’s backup production option. Where backup production is cheap, the

value of information is small. The value of information is the greatest for moderately costly backup

production, where the manufacturer, in an attempt to control the incentives of a more reliable sup-

plier, decides to deviate from the risk-management strategy optimal under symmetric information.

Furthermore, jumping to research question 4, as the reliability gap between the two supplier types

increases, the value of information for the manufacturer increases as well. Interestingly, the value

of information may also increase as supplier types become uniformly more reliable. Thus, higher

reliability need not be a substitute for better information.

Intuitively, the better the manufacturer’s information about the supplier’s reliability, the more

precisely it can execute risk-management actions such as ensuring the supplier would exercise
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its backup production option, and the more valuable the presence of such an option is for the

manufacturer. In contrast to this intuition, we find that the supplier’s backup production option

may become less valuable if better information about the supplier becomes available, addressing

research question 3.

The paper is organized as follows. We briefly review related literature in the next section. The

model is described in §3. In §4, we present the optimal contracts under symmetric information

as a benchmark for our study of asymmetric information. The optimal menu of contracts under

asymmetric information is presented in §5. Value of information, value of backup production and the

interaction between them are explored in §6. We conduct a sensitivity analysis in §7. In §8 we extend

our model to allow for the manufacturer’s backup production option. §9 summarizes managerial

implications, discusses model limitations, and suggests future research directions. Proofs can be

found in the Appendix.

2. Literature Review

Supply chain risk management has attracted interest from both researchers and practitioners of

Operations Management. Chopra and Sodhi (2004) and Sheffi (2005) provide a diverse set of

supply disruption examples. Various operational tools that deal with supply disruptions have

been studied: multi-sourcing (e.g., Anupindi and Akella, 1993; Tomlin, 2005b; Babich et al., 2005,

2007), alternative supply sources and backup production options (e.g., Serel et al., 2001; Kouvelis

and Milner, 2002; Babich, 2006), flexibility (e.g., Van Mieghem, 2003; Tomlin and Wang, 2005), and

supplier selection (e.g., Deng and Elmaghraby, 2005). For a recent review of supply-risk literature

see Tang (2006).

These, and the majority of other papers in the supply-risk literature, assume that the distri-

bution (likelihood) of supply disruptions is known to both the suppliers and the manufacturer. In

contrast, we assume that the supplier is better informed about the likelihood of disruption. There

are few papers that consider the issue of the manufacturer not knowing the supplier reliability dis-

tribution. For instance, Tomlin (2005a) studies a model where the manufacturer faces two suppliers,

one with known and the other with unknown reliability. The manufacturer learns about the latter

supplier’s reliability through Bayesian updating. In our model, information is also revealed, but

through a contract choice rather than through repeated interactions. In Gurnani and Shi (2006),

a buyer and supplier have differing estimates of the supplier’s reliability. Unlike our setting, the
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buyer’s beliefs about reliability are not affected by knowing the supplier’s self-estimate. Depending

on whose estimate is larger, the authors employ contract terms incorporating either downpayment

or non-delivery penalty.

Disruptions in supply chains could be caused by quality problems and several papers have

examined information asymmetry in quality control. For instance, Baiman et al. (2000) study a

moral hazard issue surrounding the fact that both the supplier and the manufacturer can exert

costly effort to prevent (requiring supplier effort) or weed out defective items. Lim (1997) examines

a problem where the manufacturer can inspect incoming units at a cost to identify defects. If

inspection is not done and a defective unit is passed on to the consumer, the channel incurs warranty

costs. The central theme in this literature is how to allocate quality-related costs among the channel

partners and/or how to motivate several parties to exert costly quality improvement efforts.

In the operations contracting literature, prior work has examined situations in which cost infor-

mation is private, be it the manufacturer’s cost (Corbett et al., 2004) or the supplier’s cost (Corbett,

2001). In addition, the latter is extensively studied in the literature on procurement auctions under

asymmetric information (Rob, 1986; Dasgupta and Spulber, 1990; Che, 1993; Beil and Wein, 2003;

Elmaghraby, 2004; Chen et al., 2005; Kostamis et al., 2006; Wan and Beil, 2006). However, as we

discussed in the introduction, there is a crucial difference between asymmetric information about

suppliers’ costs (studied in those papers) and asymmetric information about supply disruptions

(studied here).

3. Model

We model a stylized supply chain, in which a manufacturer purchases a product from a supplier

to satisfy market demand. The supplier is unreliable in that its regular production is subject to

a random disruption. We assume there are two types of suppliers in the market: high reliability

and low reliability. These types differ from each other in their likelihood of a disruption and their

cost of regular production. Let the fraction of high-reliability suppliers in the market be α ∈ (0, 1).

We hereafter refer to high- and low-reliability suppliers as high-type and low-type, and distinguish

them with labels H and L. For a type-i supplier, i ∈ {H,L}, we represent the random yield of its

5



regular production as a Bernoulli random variable ρi having success probability θi, that is,

ρi =


1 with probability θi

0 with probability 1− θi,
(1)

where probability θi can be interpreted as a measure of the supplier’s reliability. The success

probabilities are θH = h and θL = l, where 1 > h > l > 0. We assume that it costs a type-i supplier

ci (per unit) to run regular production, regardless of whether the run is disrupted or not. Although

we allow cH and cL to be different, the high-type is assumed to be the more cost-efficient supplier,

that is, the expected cost of successfully producing one unit using regular production is smaller for

the high-type supplier:3

Assumption 1. cL/l > cH/h.

In addition to a regular production run, the supplier has access to a backup production option

in case of disruption. We assume that backup production is perfectly reliable, with unit cost b.4

We make the following assumption on b:

Assumption 2. b > cH/h.

In other words, the cost of backup production is greater than the high-type supplier’s expected cost

of successfully producing one unit using regular production. As explained in §3.1, this assumption

avoids the uninteresting situation in which neither type of supplier uses regular production before

running backup production.

To focus on the effects of supply risk without additional complications due to demand uncer-

tainty, we assume the manufacturer faces a deterministic demand, D, for the product. In other

words, demand is known at the time the manufacturer places its order. The demand is infinitely

divisible, and without loss of generality, we normalize it to D = 1. The manufacturer collects a

revenue of r per unit sold. We restrict r as follows:

Assumption 3. r > cH/h.
3Note that, for one unit of input going into regular production, the expected output of a type-i supplier is θi.

Hence, were repeated regular production attempts allowed, the expected cost of successfully producing one unit using
regular production would be ci/θi.

4The analysis would go through if one assumed that the unit cost of backup production were a random variable,
whose value is realized after the supplier commits to using it. In such a case, the parameter b would represent the
expected value of the random unit backup production cost.
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If this assumption does not hold, the manufacturer would not order from either supplier type,

because the unit revenue would be less than the expected cost of producing one unit.

To capture the manufacturer’s lack of visibility into the supplier’s reliability and cost, we assume

that the supplier’s type is its private information. All other information is common knowledge.

The manufacturer designs a contract menu without knowing the type of the supplier, who can act

strategically and take advantage of its private information. We find the manufacturer’s optimal

menu of contracts using mechanism design theory. This approach dates back to the seminal work

by Myerson (1981). Invoking the Revelation Principle (Dasgupta et al., 1979; Myerson, 1979), the

mechanism design problem can be solved by focusing on incentive compatible, direct revelation

mechanisms. Therefore, the manufacturer offers two contracts, one for each type of supplier, and

the supplier truthfully reports its type. In our model, a contract consists of three terms: an upfront

transfer payment, Xi ≥ 0, an order quantity, qi ≥ 0, and, because of the possibility of supplier

non-delivery, a unit penalty, pi ≥ 0, for delivery shortfall, where i ∈ {H,L}.

The timing of events is shown in Figure 1. The problem can be divided into two stages:

contracting and execution. At time zero, at the beginning of the contracting stage, nature reveals

the supplier type to the supplier, but not to the manufacturer. Then, the manufacturer designs

a menu of two contracts, (Xi, qi, pi), i ∈ {H,L}. The supplier then selects a contract (signals its

type), concluding the contracting stage. In the execution stage, the supplier receives its transfer

payment from the manufacturer, runs regular and/or backup production, makes delivery, and pays

a penalty, if necessary.

Nature reveals the 
type to the supplier

Manufacturer offers a 
menu of two contracts 
to the supplier

Supplier picks a 
contract

Supplier commences 
regular production

Supplier commences 
backup production

Supplier 
delivers parts

Contracting stage Execution stage

Figure 1: Timing of events.

We solve the problem by working backward from the execution stage. The next subsection

presents the analysis of the supplier’s execution stage decisions.
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3.1 Supplier’s Production Decisions

For notational convenience, in this subsection we suppress the supplier’s subscript i from the pa-

rameters ρi, ci, θi, Xi, qi, and pi. In the execution stage, given a contract (X, q, p) offered by the

manufacturer, the supplier chooses its regular production size and delivery quantity to maximize

its expected profit. The supplier first decides on z, the size of its regular production run. After

the completion of regular production, which has yielded ρ z, the supplier decides the total quantity

to be delivered to the manufacturer, y. Subsequently, the supplier engages backup production to

make up the difference, (y−ρ z)+, and/or pays a penalty for the shortfall (q−y)+. The + operator

is defined such that x+ = x if x > 0 and x+ = 0 if x ≤ 0. The following is the optimization problem

of the supplier whose probability of successful regular production is θ:

πS(X, q, p|θ) = max
z≥0

{
X − c z − E

{
min
y≥0

[
b (y − ρ z)+ + p (q − y)+

]}}
. (2)

Let z∗ and y∗ denote the optimal decisions. Solving this problem, we observe that, when

deciding how much to deliver, the supplier either uses backup production (i.e., y∗ = q), if b < p,

or pays a penalty (i.e., y∗ = ρ z∗), if b ≥ p. When choosing z∗, the supplier trades off the cost

of regular production, c z, against the cost of recourse (backup production cost or penalty). The

supplier will run regular production only if its expected cost of successfully producing one unit

using regular production, c/θ, is lower than both backup production cost, b, and unit penalty, p.

The following proposition formalizes the above discussion.

Proposition 1. For a given contract (X, q, p), the size of the supplier’s optimal regular production

run, z∗, the delivery quantity, y∗, and the supplier’s expected profit, πS, are:

Case z∗ y∗ πS(X, q, p|θ)

(1) p > b, b < c/θ 0 q X − b q

(2) p > b, b ≥ c/θ q q X − c q − (1− θ)b q

(3) b ≥ p, p < c/θ 0 0 X − p q

(4) b ≥ p, p ≥ c/θ q ρ q X − c q − (1− θ)p q

Notice that in case (3) of Proposition 1 the supplier makes no effort to produce. As we will

see later, this situation never arises under the manufacturer’s optimal contracts. In case (1) of

Proposition 1 the supplier does not use regular production, instead finding it more economical to
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use backup production to produce and deliver q units. Note that, per Assumption 2, this situation

does not arise with the high-type supplier, who will always give regular production a try. However,

Assumption 2 does not rule out the possibility that b ≤ cL/l, in which case the low-type supplier

would bypass regular production.

Proposition 1 shows that the supplier’s profit is increasing in its reliability, θ. (In this paper, we

use increasing and decreasing in the weak sense.) We extend this observation and show that, given

the same contract, a high-type supplier would earn a larger profit in expectation than a low-type

supplier. We denote the difference between the high- and low-types’ optimal profits, given the

manufacturer’s contract, by Γ.

Definition 1. Γ(q, p)
4
= πS(X, q, p|h)−πS(X, q, p|l) is the benefit of being a high-type supplier over

a low-type supplier, given the manufacturer’s contract, (X, q, p).

Notice that Γ is not a function of the transfer payment, X, because the transfer payment term

cancels out in the calculation. Applying Proposition 1 to the definition yields the expression for

Γ(q, p).

Corollary 1. For given q and p, the expression for Γ(q, p) is given by the following table and

illustrated in the accompanying figure. Moreover, Γ(q, p) is always non-negative.

Case Γ(q, p)

p > b
b < cL/l (h b− cH)q

b ≥ cL/l [(h− l) b+ (cL − cH)]q

b ≥ p

p < cH/h 0

cL/l > p ≥ cH/h (h p− cH)q

p ≥ cL/l [(h− l) p+ (cL − cH)]q Cost of Backup 
Production

Unit Penalty

0

[(h-l)b+(cL-cH)]q

(hb-cH)q

(hp-cH)q

0

p

b
cL /l

cL /l

cH /h

[(h-l)p+(cL-cH)]q

cH /h

Γ(q, p) reflects the high-type supplier’s reliability advantage over the low-type supplier. We

will carefully consider this advantage when solving the manufacturer’s contract design problem, as

described in the next subsection. With Corollary 1, Γ(q, p) can be shown to be increasing in b, p, q,

and h, and decreasing in l. These properties of Γ(q, p) will be instrumental in developing insights

about the effects of asymmetric information on the manufacturer’s optimal contract.
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3.2 Manufacturer’s Contract Design Problem

Recall that we model the manufacturer’s decisions as a mechanism design problem, using a standard

information-economics approach (e.g., see Laffont and Martimort, 2002), and, by the Revelation

Principle, we focus on incentive-compatible, direct revelation contracts.

For shorthand, we define πH(X, q, p)
4
= πS(X, q, p|h) and πL(X, q, p)

4
= πS(X, q, p|l). In addi-

tion, given contract (Xi, qi, pi), we denote the optimal delivery of the type-i supplier by y∗i (Xi, qi, pi),

i ∈ {H,L}. Where convenient, we suppress the explicit dependence of y∗i on the contract terms.

The expressions of πH , πL and y∗i can be obtained from Proposition 1.

Using these definitions, we present the manufacturer’s contract design problem as the following

optimization program:

max
(XH ,qH ,pH)
(XL,qL,pL)


α
[
r Emin(y∗H , D)−XH + pH E(qH − y∗H)+

]
+ (1− α)

[
r Emin(y∗L, D)−XL + pLE(qL − y∗L)+

]
 (3a)

subject to

(I.C. H) πH(XH , qH , pH) ≥ πH(XL, qL, pL), (3b)

(I.C. L) πL(XL, qL, pL) ≥ πL(XH , qH , pH), (3c)

(I.R. H) πH(XH , qH , pH) ≥ 0, (3d)

(I.R. L) πL(XL, qL, pL) ≥ 0, (3e)

XH ≥ 0, XL ≥ 0, qH ≥ 0, qL ≥ 0, pH ≥ 0, pL ≥ 0. (3f)

The objective function (3a) of this problem is the sum of the manufacturer’s expected profits

from the high and low supplier types, each weighted by the probability of drawing that type of

supplier. Constraints (I.C. H) are (I.C. L) are incentive compatibility constraints, which ensure

that a supplier does not benefit from lying about its type to the manufacturer. Constraints (I.R.

H) and (I.R. L) are individual rationality constraints, which reflect the fact that a supplier accepts

the contract only if its reservation profit is met. We assume that both supplier types have the

same reservation profit, normalized to zero. This assumption is common in mechanism design

problems, and has been used in both the economics literature (e.g., Myerson, 1981; Che, 1993) and

the operations management literature (e.g. Lim, 1997; Corbett et al., 2004).
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4. Optimal Contracts under Symmetric Information

To explore the influence of asymmetric information, as a benchmark we first derive the optimal

menu of contracts when the manufacturer knows perfectly the reliability type of the supplier. We

refer to this case as symmetric information.

cH /h

cL /l

b

r

Unit Cost of 
Backup Production

Unit 
Revenue

(i)

(ii)

(iii)

cL /l

Legend

“High” and “Low” refer to the supplier’s type.

“Penalty” and “Backup” refer to the manufacturer’s choice
of inducing the supplier to pay a penalty or use backup
production in case of disruption.

“No order” indicates that the manufacturer does not order
from the supplier.

Figure 2: Supplier’s actions induced by the manufacturer’s optimal menu of contracts under
symmetric information.

Under symmetric information, nature reveals the supplier type to the supplier and the manu-

facturer simultaneously. Thus, the incentive compatibility constraints (3b) and (3c) in the man-

ufacturer’s problem (3) are no longer required, and the manufacturer’s choice of the contract for

one supplier type does not interfere with the choice for the other type. At optimality, the individ-

ual rationality constraints in the manufacturer’s optimization problem will be binding, and either

type of supplier earns zero profit. This is formalized in Proposition 2 below, which describes the

optimal menu of contracts and resulting profits.5 Let π̌M |i(Xi, qi, pi) and π̌i(Xi, qi, pi) denote the

manufacturer’s and supplier’s profits, given that nature draws a supplier of type i, i ∈ {H,L}, and

the manufacturer offers contract (Xi, qi, pi) to the supplier of type i. Thus, α π̌M |H + (1− α) π̌M |L

is the manufacturer’s expected profit prior to nature drawing the supplier type, where we have

suppressed the contract terms. Let π̌∗M |i and π̌∗i denote the manufacturer’s and supplier’s profits

under the manufacturer’s optimal contract. Figure 2 illustrates the following proposition.

Proposition 2. The manufacturer’s optimal contract under symmetric information is
5The legal requirement that penalties (or “liquidated damages”) do not exceed a reasonable estimate of the buyer’s

damages translates to p ≤ r in our model. This condition is satisfied by the buyer’s optimal contracts derived in this
paper.
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Region Penalty Quantity Transfer Payment

(i): r > b

any pH ∈ (b, r) qH = 1 XH = cH + (1− h)b

any pL ∈ (b, r) qL = 1 XL =


b b < cL/l

cL + (1− l)b b ≥ cL/l

(ii): b ≥ r > cL/l
any pH ∈ [cH/h, b] qH = 1 XH = cH + (1− h)pH

any pL ∈ [cL/l, b] qL = 1 XL = cL + (1− l)pL

(iii): b ≥ r, cL/l ≥ r
any pH ∈ [cH/h, b] qH = 1 XH = cH + (1− h)pH

any pL ∈ [0, r) qL = 0 XL = 0

Furthermore, the supplier’s profit is zero, that is, π̌∗H = π̌∗L = 0, and the manufacturer extracts

the entire channel profit (π̌M |i is the manufacturer’s profit if the supplier is of type i, i ∈ {H,L}),

given below:

Region π̌∗M |H π̌∗M |L

(i) and b < cL/l r − cH − (1− h) b r − b

(i) and b ≥ cL/l r − cH − (1− h) b r − cL − (1− l) b

(ii) h r − cH l r − cL

(iii) h r − cH 0

From Proposition 2, in region (i), backup production is cheap relative to the product’s market

revenue, so the manufacturer uses backup production with both types of suppliers. In the sequel,

if the manufacturer’s contract induces the supplier to use backup production in case of disruption,

we will refer to this by the shorthand term “using backup production”. In region (ii), backup

production is costly, and the manufacturer induces both types to pay a penalty in case of disruption.

In the sequel, if the manufacturer’s contract induces the supplier to pay penalties, we will refer

to this by the shorthand term “paying penalty”. In region (iii), the unit revenue, r, is too low to

justify ordering from the low-type supplier.

Per Proposition 2, under symmetric information, the manufacturer extracts all channel profit.

Let πC|i(Xi, qi, pi), i ∈ {H,L}, denote the channel’s profit when nature draws a supplier of type

i and the manufacturer offers this supplier contract (Xi, qi, pi), and let π∗C|i denote the channel’s

optimal profit. Hence, π∗C|i is given by π̌∗M |i, and the optimal contract under symmetric information
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also maximizes the channel’s profit. It will be of interest in the following section to examine

the channel’s profit loss when the manufacturer offers a contract different from the contract in

Proposition 2. In particular, we define the following.

Definition 2. ∆(X, q, p)
4
= π∗C|L − πC|L(X, q, p) is the channel loss given that nature draws a

low-type supplier and the manufacturer offers this supplier contract (X, q, p).

5. Optimal Contracts under Asymmetric Information

In this section, we first overview the procedure of solving the manufacturer’s problem (3) by de-

scribing the tradeoffs involved in the solution. The solution is presented in Proposition 3 below.

We then compare the optimal contract with that under symmetric information.

The fundamental tradeoff. We first notice from re-arranging equation (2) that −Xi +

piE(qi − y∗i )+ = −πi(Xi, qi, pi) − ci z∗i − bE(y∗i − ρi z∗i )+ for i ∈ {H,L}, where z∗i is the optimal

size of the regular production run for the type-i supplier. We suppress the dependence of z∗i on

the contract terms (Xi, qi, pi) for notational convenience. Using this, we rewrite the manufacturer’s

objective (3a) as

max
(XH ,qH ,pH)
(XL,qL,pL)


α
[
r Emin(y∗H , D)− πH(XH , qH , pH)− cH z∗H − bE(y∗H − ρH z∗H)+

]
+ (1− α)

[
r Emin(y∗L, D)− πL(XL, qL, pL)− cL z∗L − bE(y∗L − ρL z∗L)+

]
 . (4)

Second, as an outcome of the mechanism design problem (see the proof of Proposition 3 in

the Appendix), at the optimal solution, the high-type supplier’s incentive compatibility constraint

is binding, that is πH(XH , qH , pH) = πH(XL, qL, pL). Combining this observation with the def-

inition of Γ(q, p) (Definition 1), we have πH(XH , qH , pH) = πL(XL, qL, pL) + Γ(qL, pL). At the

same time, the low-type supplier’s individual rationality constraint (3c) is also binding, that is

πL(XL, qL, pL) = 0. Therefore, at optimality, the profit of the high-type supplier, πH(XH , qH , pH),

equals Γ(qL, pL), which is a function of the contract terms offered to the low-type supplier. In ad-

dition, at the optimal solution, the individual rationality constraint for the high-type supplier (3d)

and the incentive compatibility constraint for the low-type supplier (3c) turn out to be non-binding.

Hence, we can roll binding constraints (3b) and (3e) into the objective function (4) by substituting

πH(XH , qH , pH) = Γ(qL, pL) and πL(XL, qL, pL) = 0 into (4) and separating terms that depend on
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(XH , qH , pH) and (XL, qL, pL) to obtain

max
(XH ,qH ,pH)

{
α
[
r Emin(y∗H , D)− cH z∗H − bE(y∗H − ρH z∗H)+

]}
(5a)

+ max
(XL,qL,pL)

{
(1− α)

[
r Emin(y∗L, D)− cL z∗L − bE(y∗L − ρL z∗L)+

]
− αΓ(qL, pL)

}
. (5b)

Third, we observe that the bracketed expressions in (5a) and (5b) are the same as the profit of

the channel with a high-type and low-type supplier, respectively. Therefore, when the manufacturer

chooses (XH , qH , pH) to maximize (5a), the resulting profit equals π∗C|H . Furthermore, applying

the definition of ∆ (Definition 2), we can rewrite the manufacturer’s objective function (5) as

απ∗C|H + (1− α)π∗C|L − min
(XL,qL,pL)

{
αΓ(qL, pL) + (1− α) ∆(XL, qL, pL)

}
. (6)

Observe from (6) that the manufacturer’s profit is the optimal channel profit under symmetric

information minus two types of losses due to asymmetric information: Γ(qL, pL), which can be

interpreted as the incentive payment to the high-type supplier to represent itself truthfully, and

∆(XL, qL, pL), the loss in the channel profit. Thus, the manufacturer’s decision boils down to

selecting a contract, (XL, qL, pL), offered to the low-type supplier, to minimize the sum of these

two losses. To mitigate the loss due to the incentive payment, the manufacturer deviates from the

contract that is optimal with the low-type supplier under symmetric information, causing channel

loss (per Definition 2). This tradeoff between Γ(qL, pL) and ∆(XL, qL, pL) is the fundamental

tradeoff in our analysis.

Optimal contracts under asymmetric information. Following the steps outlined above,

we derive the optimal solution to problem (3). We divide the (b, r) plane into five regions using

five lines, as illustrated on the right panel of Figure 3. See Lemma 1 in the Appendix for a formal

definition of these five regions.

The right panel of Figure 3 shows the salient features of the menu of optimal contracts under

asymmetric information. The optimal contract terms vary by region, and details are provided in

the following proposition.

Proposition 3. Under asymmetric information, the optimal unit penalties, pH and pL, order quan-

tities, qH and qL, and transfer payments, XH and XL, offered to the high- and low-type suppliers

are:
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Symmetric information

cH /h

cL /l

b

r

Unit Cost of 
Backup Production

Unit 
Revenue

(i)

(ii)

(iii)

cL /l

Asymmetric information

(IV)

cH /h

cL /l

b

r

(II)

(III)

Unit Cost of 
Backup Production

Unit 
Revenue

(V)

(I)

Stop ordering from 
low-type supplier

Stop using backup 
production with 
low-type supplier

1

3

5

4

2

cL /l

Figure 3: The supplier’s actions induced by the manufacturer’s optimal menu of contracts under
symmetric information (left panel) and asymmetric information (right panel). The effects of asym-
metric information are indicated on the right panel. Region (i) is the union of regions (I), (II) and
(IV); region (ii) is the union of region (III) and the shaded portion of region (V); and region (iii)
is the unshaded portion of region (V).

Region Penalty Quantity Transfer payment

(I)
any pH ∈ (b, r) qH = 1

XH = XL =


b b < cL/l

cL + (1− l) b b ≥ cL/lany pL ∈ (b, r) qL = 1

(II)
any pH ∈ (b, r) qH = 1 XH = h (cL/l) + (1− h) b

pL = cL/l qL = 1 XL = cL/l

(III)
any pH ∈ [cL/l, b] qH = 1 XH = h (cL/l) + (1− h) pH

pL = cL/l qL = 1 XL = cL/l

(IV)
any pH ∈ (b, r) qH = 1 XH = cH + (1− h) b

any pL ∈ [0, r) qL = 0 XL = 0

(V)
any pH ∈ [cH/h, b] qH = 1 XH = cH + (1− h) pH

any pL ∈ [0, r) qL = 0 XL = 0

Furthermore, the low-type supplier’s profit is zero, π∗L = 0. The high-type supplier’s profit, π∗H ,

and the manufacturer’s expected profits of sourcing from the high- and low-type suppliers, π∗M |H
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and π∗M |L, are

Region Manufacturer’s profit High-type supplier’s profit

(I)
b < cL/l π∗M |H = π∗M |L = r − b π∗H = h b− cH

b ≥ cL/l π∗M |H = π∗M |L = r − cL − (1− l) b π∗H = (h− l) b+ (cL − cH)

(II)
π∗M |H = r − h(cL/l)− (1− h)b

π∗H = (h− l)(cL/l) + (cL − cH)
π∗M |L = l r − cL

(III) π∗M |H = h(r − cL/l), π∗M |L = l(r − cL/l) π∗H = (h− l)(cL/l) + (cL − cH)

(IV) π∗M |H = r − cH − (1− h) b, π∗M |L = 0 π∗H = 0

(V) π∗M |H = h r − cH , π∗M |L = 0 π∗H = 0

Effect of asymmetric information on the optimal contract. Using Propositions 2 and 3,

we compare the manufacturer’s optimal risk-management policies under symmetric and asymmetric

information and highlight the difference in Figure 3, addressing research question 1. Specifically,

in region (II), under asymmetric information, the manufacturer induces the high-type supplier to

use backup production in case of disruption, but (unlike the optimal contract under symmetric

information) makes the low-type supplier pay a penalty. This is, perhaps, counterintuitive, because

the manufacturer uses backup production as a quantity-risk management tool. Therefore, one

might expect that the less reliable the supplier is, the more the manufacturer prefers that the

supplier uses backup production. In regions (IV) and (V), as in the symmetric-information case,

the manufacturer orders from the high-type supplier. However, in region (IV) and the shaded

portion of region (V), information asymmetry causes the manufacturer to stop ordering from the

low-type supplier.

To gain intuition for this behavior, note that the manufacturer deviates from the symmetric-

information risk-management policies in order to reduce the incentive payment to the high-type

supplier. Specifically, in region (II), had the low-type supplier used backup production, the resulting

transfer payment to the low-type supplier would have been large, because backup production is

relatively expensive. Consequently, the incentive payment to the high-type supplier would have

been large as well. Therefore, the manufacturer curtails this large incentive payment by forcing

the low-type supplier to pay penalty (less than the cost of backup production). Similarly, in region

(IV) and the shaded portion of region (V) the incentive payment is avoided by simply not ordering

from the low-type supplier.
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As a consequence of the deviation from the symmetric-information contract, we have the fol-

lowing result.

Corollary 2. The quantity received by the manufacturer from the supplier under symmetric infor-

mation is stochastically larger than the quantity received under asymmetric information.

The manufacturer deviates from the symmetric-information risk-management policies in order

to reduce incentive payments. In doing so it incurs channel loss, as captured by the fundamental

tradeoff in equation (6).

Informational rent and channel loss. Using the optimal contract terms from Proposition 3,

we can evaluate the incentive payment to the high-type supplier, Γ(qL, pL), and channel loss,

∆(XL, qL, pL), at the optimal contract (XL, qL, pL) offered to the low-type supplier. Hereafter, we

denote the incentive payment at the optimal contracts by γ and refer to it as informational rent, as

is customary in information economics. In addition, let δ denote the channel loss under the optimal

contracts.

Proposition 4. At the optimal contracts, informational rent, γ, and channel loss, δ, are

Region Informational rent, γ Channel loss, δ

(I)
b < cL/l h b− cH 0

b ≥ cL/l (h− l) b+ (cL − cH) 0

(II) (h− l)(cL/l) + (cL − cH) (1− l)(r − b)

(III) (h− l)(cL/l) + (cL − cH) 0

(IV)
b < cL/l 0 r − b

b ≥ cL/l 0 r − cL − (1− l) b

(V)
r > cL/l 0 l r − cL

r ≤ cL/l 0 0

Proposition 4 reveals that under the optimal contract, in all regions except region (II), the

manufacturer incurs either informational rent or channel loss, but not both. Intuitively, the man-

ufacturer chooses the less onerous type of loss. For example, in regions (IV) and (V), revenue is

so low that the channel loss due to not ordering from the low-type supplier is small. In return for

this sacrifice, the manufacturer avoids paying what would have been relatively high informational

rent. In region (I), backup production is so cheap that the channel loss due to not using backup
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production with the low-type supplier is large. On the other hand, in region (III), backup produc-

tion is so costly that it would not be used with symmetric or asymmetric information, while high

unit revenue entices the manufacturer to order from either supplier type. Therefore, there is no

channel loss incurred in regions (I) and (III). In region (II) the manufacturer incurs a mixture of

informational rent and channel loss.

6. Values of Information and Backup Production

In this section, we address research questions 2 and 3, examining how the value of information

and the value of backup production depend on important problem parameters: backup production

cost b and unit revenue r. As in the previous sections, all the figures in this section represent

analytically derived results.

Value of information for an entity of the supply chain is the difference between its optimal

expected profits under symmetric and asymmetric information.

The manufacturer earns the entire channel profit under symmetric information. However, under

asymmetric information, it loses informational rent, γ, if the supplier is of high-type and suffers

a channel loss, δ, if the supplier is of low-type (see the fundamental tradeoff in equation (6)).

Therefore, the value of information for the manufacturer equals αγ + (1− α)δ (where expressions

for γ and δ are provided in Proposition 4).

The supplier makes no profit under symmetric information, regardless of its type. Under asym-

metric information, the low-type supplier continues to make zero profit. Therefore, the value of

information is zero for the low-type supplier. In contrast, the high-type supplier earns an informa-

tional rent, γ, under asymmetric information. Hence, the value of information for the high-type

supplier is −γ.

The channel loses a profit, δ, under asymmetric information, when the manufacturer offers the

low-type supplier a contract that differs from what an integrated channel would offer, as discussed

earlier. The value of information for the channel (prior to nature choosing supplier type) is (1−α) δ,

where 1− α is the probability of drawing a low-type supplier.

Value of information and the cost of backup production. We first study how the value

of information for the manufacturer, channel, and supplier change in the unit backup production

cost, b. The results are shown on the left panel of Figure 4, which follows from Proposition 4 with

18



unit revenue fixed at r = r0 above line 5 (marked on the right panel). The behavior for smaller

values of r (below line 5) is similar.

Value of information for the channel

b0
( )0b̂ r 0rcH /h cL /l

Value of information for the manufacturer

b0
( )0b̂ r 0rcH /h cL /l

Value of information for the high-type supplier

b0

Region (I) Region (II) Region (III)

( )0b̂ r 0rcH /h cL /l

(IV)

cH /h

cL /l

b

r

(II)

(III)

Unit Cost of 
Backup Production

Unit 
Revenue

(V)

( )b̂ r

(I)

1

3

5

4

2

( )0b̂ r 0r

0r

cL /l

Figure 4: Value of information reaches its peak at the rightmost border of region (I), given a fixed
r. b̂(r) is the union of line segments 1, 2, and 3.

For the manufacturer, the channel, and the supplier, the effect of information is most pronounced

for moderate values of b. To gain intuition for this, consider a large r (above line 5). For small

values of b, backup production is so cheap that the manufacturer would like both supplier types to

use it. Similarly, if b is very expensive the manufacturer does not want either type of supplier to

use it. At these extreme values of b, the manufacturer does not care to distinguish between supplier

types and can offer them the same contract, as formalized in the following corollary.

Corollary 3. Per Proposition 3, under asymmetric information, in regions (I) and (III) the man-

ufacturer can offer the same optimal contract to the two supplier types by letting pH = pL.

In contrast, at medium values of b, the tradeoffs are more intricate and the manufacturer may

choose to stop using backup production with the low-type. Therefore, this is the region where the

manufacturer benefits the most from knowing the supplier’s type.

Value of information and the unit revenue. We now study how the value of information

for the manufacturer, channel, and supplier changes in the unit revenue, r. The results are shown

on the left panel of Figure 5, leveraging Proposition 4. We examine the value of information at

a fixed backup production cost b = b0, where b0 is marked on the right panel of Figure 5. The

behavior for other values of b is similar.
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Figure 5: Value of information versus unit revenue, r. b̂(r) is the union of line segments 1, 2, and
3.

From Figure 5, observe that the value of information for the channel and the high-type supplier

is non-monotone with jumps at r̄ and r̂, where r̄ corresponds to line 5 and b̂(r̂) = b0. Each

discontinuity coincides with a strategic decision by the manufacturer to change whether it incurs

informational rent, channel loss, or both, as captured by Proposition 4. For example, for r ≤ r̄ the

manufacturer avoids paying an informational rent by not ordering from the low-type supplier, but

once r > r̄ the low-type receives an order and informational rent is incurred (along with channel

loss). Finally, observe that the value of information is always increasing for the manufacturer, and

is increasing within each region for the channel. From Corollary 2, the quantity received by the

manufacturer and hence the quantity sold are stochastically smaller under asymmetric information.

The larger the unit revenue, the larger loss the manufacturer would suffer due to the reduction of

sales. Similar reasoning applies for the channel, within each region.

Value of backup production. For the manufacturer, supplier and channel, we examine the

value of the backup production option, defined to be the difference between profits with and without

backup production (where the latter can be computed by setting b = r, making backup production

economically unattractive). The expressions for the value of backup production in Table 1 are

derived from Proposition 3. It can be verified using Table 1 that the value of backup production

for the manufacturer and the value for the channel are decreasing in the backup production cost b,

increasing in the revenue r, and nonnegative under asymmetric information.
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Region Manufacturer High-type supplier

(I) (r > r̄)
b < cL/l (r − b)− θ̄ (r − cL/l) h (b− cL/l)
b ≥ cL/l [r − cL − (1− l) b]− θ̄ (r − cL/l) (h− l)(b− cL/l)

(I) (r ≤ r̄) b < cL/l (r − b)− αh (r − cH/h) h b− cH
b ≥ cL/l [r − cL − (1− l) b]− αh (r − cH/h) (h− l) b+ (cL − cH)

(II), (IV) α (1− h)(r − b) 0
(III), (V) 0 0

Table 1: Value of backup production for the manufacturer and high-type supplier under asym-
metric information. θ̄ = αh+ (1−α)l is the average reliability of suppliers and r̄ is defined by line
5 in Figure 3.

As shown in Figure 6, the value of backup production for the high-type supplier is non-monotone

in backup production cost, b, and could be negative. Recall that the profit of the high-type

supplier comes from informational rent. For small r (i.e., r ≤ r̄), the high-type supplier earns zero

informational rent in the absence of backup production, because the low-type supplier receives no

orders. Therefore, for such r the value of adding backup production can only be positive. On the

other hand, for large r (i.e., r > r̄), the high-type supplier earns informational rent even in the

absence of a backup production option. Introducing a cheap backup production option of unit cost

b < cL/l reduces the economic advantage of being a high-type supplier, by allowing disruptions to

be cheaply remedied. This diminishes the high-type supplier’s informational rent. Therefore, for

small b and large r, the value of backup production is negative for the high-type supplier.

Value of backup production for the high-type supplier

b0
cH /h cL /l

For small r
For large r

Figure 6: Value of backup production for the high-type supplier is negative for large r (i.e., r > r̄)
and small b (b < cL/l), but is always non-negative for small r (i.e., r ≤ r̄).

Effect of information on the value of backup production. Intuition might suggest that,

if information asymmetry regarding supplier reliability is eliminated, then the manufacturer will

make better use of the backup production option to manage the supply risk. Hence, one may expect

the value of backup production to be larger under symmetric information. However, as shown on

the left panel of Figure 7, the value of backup production may be larger or smaller under symmetric
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information. Under information asymmetry, the presence of a backup option with a small unit cost,

b, results in a decrease in the informational rent paid to the high-type supplier. This additional

benefit of backup production does not exist under symmetric information. As a result, under small

b the value of backup production is greater under asymmetric information. In contrast, when b is

moderate, under asymmetric information the backup option increases the informational rent paid

to the high-type supplier, thus diminishing the value of backup production.

b

Value of backup 
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0

Region (I) Region (II) Region (III)
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information
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Figure 7: Value of backup production under symmetric and asymmetric information. The left
panel plots the values of backup production for r = r0 (marked on the right panel). On the right
panel the shaded portion of region (I) indicates (b, r) pairs for which the value of backup production
is greater under asymmetric information. The right panel also shows the line b(r), used on the left
panel and defined as follows: for r > r̄, b(r) = cL

l ; for r ∈
(
cL
l , r̄
]
, b(r) = (1−α)l

αh

(
r − cL

l

)
+ cH

h .

7. Sensitivity Analysis

In this section, we address research question 4 by investigating the sensitivity of our earlier results

to changes in the underlying business setting, including reliability parameters, h and l, the fraction

of high-type suppliers in the market, α, and the manufacturer’s contracting flexibility.

Sensitivity to supplier reliabilities, h and l. Suppose we increase h and l simultaneously,

fixing the difference, h − l. This corresponds to the case in which all suppliers in the market

become more reliable while the reliability gap between the two supplier types remains constant.

While one might expect that the value of information should always decrease as suppliers become
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more reliable, the following corollary shows that when unit revenue is relatively small, or backup

production is relatively cheap, the value of information for the manufacturer can actually increase

with supplier reliability.

Corollary 4 (Sensitivity of value of information to supplier reliability). Per Proposition 4, if the

supplier reliabilities l and h increase to l+ ε and h+ ε, respectively (while h− l remains constant),

then in the interior of regions (I), (IV) and (V) the value of information for the manufacturer in-

creases, while in the interiors of regions (II) and (III) the value of information for the manufacturer

decreases.

The intuition for the behavior in regions (I), (IV) and (V) can be gleaned from the table in

Proposition 4. In regions (IV) and (V), only channel loss is incurred due to the manufacturer not

ordering from the low-type supplier. The more reliable the low-type supplier becomes, the larger

this channel loss and, hence, the larger the value of information. On the other hand, in region (I),

only informational rent is incurred. In the part of region (I) where backup production is very cheap

(b < cL/l), the low-type supplier does not utilize regular production at all, and its unit production

cost is fixed at the cost of backup production. As the high-type supplier’s reliability, h, increases,

its reliability advantage also increases, which drives up the informational rent and, hence, the value

of information.

Using Table 1, we next examine how the value of backup production changes. The next corollary

follows from the fact that the manufacturer’s need for backup production diminishes as suppliers

become more reliable.

Corollary 5 (Sensitivity of value of backup production to supplier reliability). Per Table 1, if the

supplier’s reliabilities h and l increase to h+ ε and l+ ε, respectively (while h− l remains constant),

then the value of backup production for the manufacturer decreases.

Sensitivity to reliability gap, h− l. Here, we fix the low-type’s reliability, l, and increase the

high-type’s reliability, h. This corresponds to an increase in the reliability gap, with the high-type

supplier becoming more reliable. The following corollary describes how the value of information

and value of backup production depend on the reliability gap.

Corollary 6 (Sensitivity to supplier reliability gap). Per Propositions 3 and 4, if h increases and

l is fixed, then

1. The value of information for the manufacturer increases.
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2. The value of backup production for the manufacturer decreases, and the absolute value of

backup production for the high-type supplier increases.

Intuitively, as the two supplier types become increasingly different, information about the sup-

plier’s type becomes more critical. In addition, as the high-type supplier becomes even more

reliable, the probability that backup production is used to fulfill the order decreases. Consequently,

the value of backup production for the manufacturer diminishes.

Sensitivity to the fraction of high-type suppliers in the market, α. Recall that the

value of information for the manufacturer is αγ+ (1−α)δ, where informational rent γ and channel

loss δ do not depend on α, the probability of drawing a high-type supplier (see Proposition 4). In

regions (I) and (III), where only informational rent is incurred (channel loss is zero), the effect of

informational rent is magnified due to an increase in α, and the value of information becomes larger.

In regions (IV) and (V), where only channel loss is incurred (informational rent is zero), the effect

of channel loss is diminished due to a decrease in 1−α, and the value of information decreases. In

region (II), value of information can move either way in α, depending on whether channel loss or

informational rent is larger. These observations are formalized in the following corollary.

Corollary 7 (Sensitivity of value of information to α). Per Proposition 4, if α increases to α+ ε,

then in the interior of regions (I) and (III), the value of information for the manufacturer increases,

while in the interiors of regions (IV) and (V) the value of information for the manufacturer de-

creases. In region (II) the value of information increases if (h− l)(cL/l)+(cL− cH) > (1− l)(r− b)

and decreases otherwise.

Using Table 1, we examine how the value of backup production changes with α. One may

expect that, if the fraction of more reliable suppliers in the market increases, disruptions will

become less likely and, hence, the value of backup production will decrease. This intuition holds

under symmetric information, but not necessarily under asymmetric information, as Corollary 8

illustrates.

Corollary 8 (Sensitivity of value of backup production to α). Per Table 1, as α increases to α+ ε,

the value of backup production for the manufacturer decreases in region (I) and increases in regions

(II) and (IV).

To understand why the value of backup production increases in the fraction of high-type sup-

pliers when the cost of backup production is moderate (in regions (II) and (IV)), recall that the
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manufacturer asks only the high-type supplier to use backup production in these regions. Therefore,

in these regions, the benefit of backup production is realized only if a high-type supplier is drawn,

and an increase in the fraction of high-type suppliers, α, enhances the value of backup production

for the manufacturer.

Sensitivity to manufacturer’s contracting flexibility. We now discuss the effects of the

manufacturer’s contracting flexibility on its contracting decisions and its profit, using three types

of manufacturers:

1. Informed manufacturer, who knows the supplier’s type prior to contracting. The informed

manufacturer’s problem is the symmetric-information problem (discussed in §4).

2. Partially-informed and discriminating manufacturer, who does not know the supplier’s type

prior to contracting, but knows that there are two supplier types and has the flexibility of

offering a menu of contracts. This manufacturer’s problem is the asymmetric-information

problem (discussed in §5).

3. Partially-informed and non-discriminating manufacturer, who is identical to the partially

informed and discriminating manufacturer, except for being constrained to offer a single

contract. The manufacturer could either be legally bound to offer a single contract or limited

by its procurement department’s resources to monitor and enforce multiple supplier-specific

contacts.

As shorthand, we will refer to the latter two manufacturer types as discriminating and non-

discriminating, respectively. We have already defined mathematical models for the informed and

discriminating manufacturer types. The non-discriminating manufacturer’s problem is

max
(X,q,p):

X≥0, q≥0, p≥0


αE

[
r min(y∗H , D)−X + p (q − y∗H)+

]
I{πH(X,q,p)≥0}

+ (1− α)E
[
r min(y∗L, D)−X + p (q − y∗L)+

]
I{πL(X,q,p)≥0}

 . (7)

In the above expression, I{A} is the indicator of an event A. The manufacturer offers a single

contract (X, q, p). A type-i supplier, i ∈ {H,L}, chooses to participate if πi(X, q, p) ≥ 0. The

optimal contract is stated in Proposition 5 and is characterized on the left panel of Figure 8.

Proposition 5. The optimal contract offered by the non-discriminating manufacturer is summa-

rized in the following table
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0r
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cH /h cL /l
(a) (b)(c)

Figure 8: Left panel: optimal contract offered by the non-discriminating manufacturer. Right
panel: expected profits of the three manufacturer types (r is fixed to be r0, marked on the left panel).
The non-discriminating manufacturer earns a smaller profit than the discriminating manufacturer
only when b is moderate (i.e., (b, r) is in region (II)).

Region Penalty Quantity Transfer payment

(I) and (IIa) any p ∈ (b, r) q = 1 X =


b b < cL/l

cL + (1− l) b b ≥ cL/l

(III) and (IIb) any p = cL/l q = 1 X = cL/l

(IV) and (IIc) any p ∈ (b, r) q = 1 X = cH + (1− h) b

(V) any p ∈ [cH/h, b] q = 1 X = cH + (1− h) p

By comparing Propositions 3 and 5 and using Corollary 3, we notice that the optimal contracts

offered by the discriminating and non-discriminating manufacturers coincide in regions (I) and

(III). Furthermore, the contracts offered by the two manufacturer types coincide for the high-type

supplier in regions (IV) and (V). In these two regions, the low-type supplier does not participate with

either manufacturer type. In region (II), where the discriminating manufacturer does use its power

to discriminate between the two supplier types, the non-discriminating manufacturer does not have

that option and falls back on one of three kinds of contracts: the contracts in subregions (IIa), (IIb),

and (IIc) coincide, respectively, with the contracts offered by the discriminating manufacturer in

regions (I), (III), and (IV).
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The right panel of Figure 8 shows the expected profits of the three manufacturer types. The dif-

ference between the profits of the discriminating and informed manufacturer types equals the value

of information for the manufacturer, discussed in §6. Interestingly, the profits of the discriminating

and non-discriminating manufacturer types are different only in region (II). This happens because

only in region (II) the discriminating and non-discriminating manufacturers induce suppliers to

take different actions. It follows that, in our model, the ability to discriminate pays off for the

manufacturer only if the backup production option is moderately expensive. The reasoning for this

is akin to that provided after Figure 4 to explain why information is most valuable when backup

production is moderately expensive.

8. Extension: Manufacturer’s Backup Production Option

So far, we have assumed that only the supplier has access to backup production capacity. It is also

possible that the manufacturer has its own backup production option, the implications of which we

investigate in this section.6

To the model we have been using so far, we add the ability of the manufacturer to use its own

backup production at unit cost bM . If both the supplier and the manufacturer have access to the

same third-party backup source, then the manufacturer’s cost of accessing this source, bM , may

be higher or lower than the supplier’s cost, b, depending, for example, on the relative bargaining

powers of the supplier and the manufacturer versus the third party. It is also possible that, instead

of having its own backup production option, the manufacturer asks the supplier to run the supplier’s

backup production even if the original contract did not call for it. For instance, in region (II), if the

low-type supplier experiences a disruption and according to the contract would not deliver, perhaps

the manufacturer could simply pay the supplier b and ask the supplier to run backup production.

In such a case, bM could be equal to b, but it is more likely that bM > b due to administrative

costs, for instance, the cost of verifying that a disruption indeed occurred. Verification prevents the

supplier from claiming to have had a disruption, and consequently demanding the b payment from

the manufacturer for backup production, regardless of whether there was actually a disruption or

not.

As before we assume that the cost of backup production exceeds the effective cost of regular
6For example, in the Beckman Coulter v. Flextronics example we cited earlier, after Flextronics failed to deliver

the promised units, Beckman Coulter was able to convert one of its exiting prototype production lines for full-scale
production.
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production for the high-type supplier, bM ≥ cH/h. To the contracting and execution stages of the

original problem (see the timeline in Figure 1), we append a manufacturer recourse stage in which

the manufacturer may run its backup production. In the recourse stage, the manufacturer chooses

si, i = H,L, the total product supply that will be available to it at the stage’s conclusion. In

the execution stage, given a contract from the manufacturer, (Xi, qi, pi) i = H,L, the supplier’s

production decisions, y∗i and z∗i , are unaffected by the manufacturer’s backup production option

and are the same as those described in Proposition 1. In the contracting stage the manufacturer

designs the contract menu (Xi, qi, pi), i = H,L, and offers it to the supplier.

To find the optimal contract menu we invoke the following intuitive observations. Suppose

the unit revenue for the product is fixed at some r = r0. First, if the manufacturer’s backup

production cost is greater than the revenue, bM > r0, the manufacturer’s backup production option

is economically infeasible and none of this paper’s previous results change. Second, if bM ≤ r0,

the optimal contracts under symmetric and asymmetric information are, respectively, given by

Propositions 2 and 3, where r is replaced by bM . Consequently, all of the subsequent analysis

(value of information, value of supplier backup production, etc.) goes through with bM playing

the role of r. To understand why, we observe that if the quantity delivered by the supplier, y,

is less than demand, D, the manufacturer pays bM (D − y)+ when the manufacturer’s backup

production option is available, and “pays” r(D − y)+ (via lost revenue) when such an option is

absent. Thus, mathematically, bM plays the same role in this model as r played in equations (3a)

and (4). (Proposition 6 in the Appendix formalizes this argument.)

Addressing research question 1 we notice from Corollary 2 that asymmetric information in-

creases the risk of non-delivery from the supplier. This effect increases the manufacturer’s reliance

on its own backup production option.

Addressing research question 2 we examine how introducing the manufacturer’s backup pro-

duction option affects the manufacturer’s value of information. Recall from Figure 5 that the value

of information increases in r, the unit shortfall cost in the absence of the manufacturer’s backup

production option. As pointed out earlier, the presence of the manufacturer’s backup production

option reduces the manufacturer’s unit shortfall cost from r to bM < r. By making the manufac-

turer less sensitive to shortfall, the manufacturer’s backup production option reduces the value of

information. Thus, addressing research question 3, the manufacturer’s backup production option is

a substitute for information. In particular, this means that the value of the manufacturer’s backup
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production option is greater under asymmetric information. This is in contrast to the supplier’s

backup production option, which can be either a substitute or a complement for information. In-

tuitively, the supplier’s backup production option can increase the high-type supplier’s reliability

advantage, thus increasing the informational rent, whereas the manufacturer’s backup production

option has no such effect.

Similarly, the manufacturer’s backup production option is a substitute for the supplier’s backup

production option. This is because the value of the supplier’s backup production option increases

in the unit shortfall cost (see Table 1, where the shortfall cost equals r). The introduction of the

manufacturer’s backup production option reduces this shortfall cost from r to bM < r, thereby

reducing the value of the supplier’s backup production option.

9. Concluding Remarks

In a supply chain, lack of visibility into supplier reliability impedes the manufacturer’s ability to

manage supply risk effectively. This paper examines a situation where the supplier’s reliability

is either high or low and is its private information, and the supplier has two options to respond

to a disruption: use backup production, or pay a penalty to the manufacturer for non-delivery.

When designing a procurement contract, the manufacturer must anticipate which of these options

the supplier would choose, and how this would affect the manufacturer’s expected procurement

costs, use of its own backup production option, and sales revenues. To our knowledge, this paper is

among the first in operational risk management to consider asymmetric information about supplier

reliability.

We model the manufacturer’s contracting decisions as a mechanism design problem, and derive

closed-form expressions for the optimal menu of contracts that elicits the supplier’s private infor-

mation. We observe that the manufacturer faces a key tradeoff when designing the contract for

the low-type supplier: pay high informational rent to the high-type supplier, or suffer channel loss.

Informational rent comes from the high-type supplier’s incentive to exploit its reliability advantage

over the low-type supplier, and it depends on the low-type supplier’s actions in response to a dis-

ruption. In controlling this incentive, the manufacturer offers to the low-type supplier a contract

that would be suboptimal under symmetric information, resulting in the channel loss. This tradeoff

between informational rent and channel loss determines how the manufacturer manages its supply

risk.
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We answered four main research questions in this paper. Addressing research question 1 (How

do a manufacturer’s risk-management strategies change in the presence of asymmetric information

about supply reliability? ), we find that asymmetric information can have a pronounced effect on

the manufacturer’s risk-management strategy. While information asymmetry encourages the use

of the manufacturer’s backup production option, it discourages the use of the supplier’s backup

production option. In particular, information asymmetry may cause the manufacturer to stop using

the backup production of a less reliable supplier, while continuing to use the backup production of

a more reliable supplier. Additionally, the manufacturer may stop ordering from the less reliable

supplier altogether.

Addressing research question 2 (How much would the manufacturer be willing to pay to eliminate

this information asymmetry? ), we obtain a closed-form expression for the value of information. We

find that the manufacturer would be willing to pay the most for information — that is, asymmetric

information is of the greatest concern for managers — when the supplier’s backup production

is moderately expensive. In this case, the manufacturer predicates the supplier’s use of backup

production on the supplier’s type. In contrast, when the supplier’s backup production is cheap or

expensive, the manufacturer’s decision to induce the use of backup production does not depend on

the supplier’s type.

Addressing research question 3 (Are risk-management tools more, or less, valuable when there is

information asymmetry? ), asymmetric information enhances the benefits the manufacturer derives

from its own backup production option. The effect of information on the value of the supplier’s

backup production option is more intricate. For the manufacturer, information asymmetry makes

the supplier’s backup production option more valuable provided it is moderately expensive, and

less valuable when it is cheap, but the value is always positive. On the flip side, for the supplier,

under symmetric information, the value of its backup production option is always zero. However,

under asymmetric information, the value of the backup production option for the high-type supplier

is positive provided backup production is moderately expensive, but is negative when it is cheap.

Cheap backup production for the supplier erodes the high-type supplier’s reliability advantage over

the low-type by reducing the cost of remedying supply disruptions. Therefore, an already reliable

supplier may be reluctant to embrace the addition of cheap backup production into the supply

base.

Addressing research question 4 (How do answers to the above questions depend on changes
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in the underlying business environment, such as supply base heterogeneity, or the manufacturer’s

contracting flexibility? ), we find that, as the reliability gap between the two supplier types increases

due to an improvement in the reliability of the high-type supplier, information becomes more

valuable for the manufacturer. Interestingly, the value of information may increase even as both

supplier types simultaneously become more reliable. Therefore, higher reliability need not be a

substitute for better information. The high-type supplier’s benefit (or disbenefit) from its backup

production option is magnified as its reliability improves. In particular, an improvement in the

reliability of the high-type supplier may actually enhance its benefit from backup production.

Finally, we find that the flexibility to offer a menu of two contracts to the supplier benefits the

manufacturer only if supplier backup production is moderately expensive. Thus, a manufacturer

who does not want to exert the effort to offer a menu of contracts need not do so if supplier backup

production is cheap or very expensive.

The above findings were derived through closed-form analysis, facilitated by several simplifying

assumptions. We assumed the manufacturer’s demand, D, is common knowledge. Maskin and

Tirole (1990) (Section 4, Proposition 11) proved that if (i) the principal (the manufacturer) also

has private information, (ii) the principal’s information cannot directly affect the agent’s payoffs,

and (iii) the agent’s and principal’s payoffs are quasi-linear in the transfer payment, then the

principal derives no benefit from its private information; in other words, without loss of optimality

one can focus on the situation in which the information about the principal is public. Applied to

our paper, this means that when the manufacturer has private information about its demand, it

can do no better than when this information is public.

Another assumption on demand is that it is deterministic. We conjecture that the main trade-

offs identified in this paper would remain if demand were stochastic, however, the details of how

these tradeoffs play out would change. This analysis would be far more complicated owing to the

monotonicity condition and bunching (Laffont and Martimort, 2002, pages 39, 140), meaning the

contract design problem cannot be separated into independent subproblems for the high and low

types.

We expect that increasing the number of discrete supplier types would also not substantially

change the main qualitative insights documented in answers one through four above, although

it would make the analysis more tedious. Having more than two supplier types or allowing a

continuum of types may again create problems with monotonicity conditions. For an illustration of
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principal-agent problems with three agent types, please refer to Laffont and Martimort (2002). For

a general treatment of mechanism design with N agent types, see Lovejoy (2006). For a discussion

of detailed monotonicity conditions under a continuum of types, see Fudenberg and Tirole (1991),

pages 266 – 268.

We also assume linear backup production costs, and restrict the manufacturer to offer linear

penalty schedules to the supplier. As a result, the supplier would either run backup production

or pay a penalty, but not both simultaneously. We can show that under general, concave backup

production costs and concave penalty schedules for shortfall, the supplier’s production decisions are

unchanged and, consequently, all of our results continue to hold. An example of a concave penalty

schedule (backup production cost) is a fee-plus schedule, whereby the supplier pays a fixed fee plus

an additional fee per unit of shortage (backup production quantity).

We modeled supply risk using a random yield framework. One could also model supply risk

arising from supplier lead time uncertainty. Under certain conditions the two approaches are

equivalent: For example, for a manufacturer whose selling season is short relative to the variability

in supply lead times, a delay is tantamount to a disruption and the backup option corresponds to

the ability of the supplier to expedite the production (and the delivery). A more general model

would have to introduce the manufacturer’s sensitivity to delivery delays and the ability of the

supplier to speed up (at a cost) depending on the forecast of the remaining production time. One

might also wish to model the supplier’s decision to slow down production (at a cost savings).

With such features, the supplier’s problem becomes a rather intricate stochastic control problem,

compounding the difficulty of finding the manufacturer’s optimal menu of contracts. We leave this

interesting and challenging topic for future research.

In this paper, we assume that the cost of regular production is perfectly correlated with the

supplier type and the expected backup production cost is public information. Allowing imperfect

correlation between supplier reliability and its cost, or extending information asymmetry to backup

production, would require solving a multi-dimensional screening problem. Such problems have been

solved for rather few, special cases (see Kostamis and Duenyas, 2007). We leave the study of this

problem to future research as well.
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Online Appendix for “Supply Disruptions, Asymmetric Information

and a Backup Production Option”

Zhibin (Ben) Yang, Göker Aydın, Volodymyr Babich, and Damian R. Beil

Proof of Proposition 1. The supplier’s problem is given in (2). We first derive the supplier’s

optimal delivery quantity y∗(z) for a given size of regular production z by solving

min
y≥0
{p (q − y)+ + b (y − ρ z)+}.

Because the objective function is piecewise linear in y, we focus on the corner point solutions,

y ∈ {0, ρ z, q}. If p < b, the optimal delivery quantity is y∗(z) = ρ z. If b < p, the optimal delivery

quantity is y∗(z) = q. If b = p, the supplier is indifferent between the two choices. To break the

tie, we assume that the supplier prefers paying a penalty, that is, y∗(z) = ρ z.

Given the optimal delivery quantity y∗(z) as described above, we next derive the optimal size

of the regular production run, z∗, by solving

min
z≥0
{c z + Eρ [p (q − ρ z)+]} if b ≥ p,

min
z≥0
{c z + Eρ [b (q − ρ z)+]} if p > b.

If b ≥ p, by evaluating the expectation, the optimization problem reduces to

min
z≥0
{c z + θ p (q − z)+}+ (1− θ) p q.

From above, we observe that, if p < c/θ, the optimal solution is z∗ = 0, and, if p > c/θ, we have

z∗ = q. When p = c/θ, we let z∗ = q to break the tie. Analogously, if p > b, the optimal solution

is z∗ = 0 for b < c/θ and z∗ = q for b ≥ c/θ. The expressions for the supplier’s expected profit are

derived by substituting z∗ and y∗(z∗) into the objective function of problem (2). �

Proof of Proposition 2. To find the optimal contract under symmetric information, we solve the
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following problem:

max
(XH ,qH ,pH)
(XL,qL,pL)


α
[
r Emin(y∗H , D)−XH + pH E(qH − y∗H)+

]
+ (1− α)

[
r Emin(y∗L, D)−XL + pLE(qL − y∗L)+

]


subject to πH(XH , qH , pH) ≥ 0, πL(XL, qL, pL) ≥ 0,

XH ≥ 0, XL ≥ 0, qH ≥ 0, qL ≥ 0, pH ≥ 0, pL ≥ 0.

We apply the supplier’s optimal profit function πi(Xi, qi, pi) = Xi−ci z∗i −piE(qi−y∗i )+−bE(y∗i −

ρi z
∗
i )+, i ∈ {H,L}, to the manufacturer’s objective function and separate the terms that depend

on (XH ,qH , pH) and (XL, qL, pL), respectively. The above problem is equivalent to

α max
XH≥0,qH≥0,pH≥0:
πH(XH ,qH ,pH)≥0

{
r Emin(y∗H , D)− πH(XH , qH , pH)− cH z∗H − bE(y∗H − ρH z∗H)+

}
(A-1a)

+ (1− α) max
XL≥0,qL≥0,pL≥0:
πL(XL,qL,pL)≥0

{
r Emin(y∗L, D)− πL(XL, qL, pL)− cL z∗L − bE(y∗L − ρL z∗L)+

}
. (A-1b)

Observe that, for i ∈ {H,L}, reducing Xi decreases πi(Xi, qi, pi) and increases the objective value.

Therefore, for a given qi and pi, it is optimal to set Xi equal to its lowest possible value, which

is given by Xi = ci z
∗
i + piE(qi − y∗i )

+ + bE(y∗i + ρi z
∗
i )+, where πi(Xi, qi, pi) = 0. Using this

observation, we rewrite problem (A-1) as:

α max
qH≥0, pH≥0

{
r Emin(y∗H , D)− cH z∗H − bE(y∗H − ρH z∗H)+

}
(A-2a)

+ (1− α) max
qL≥0, pL≥0

{
r Emin(y∗L, D)− cL z∗L − bE(y∗L − ρL z∗L)+

}
(A-2b)

Xi = ci z
∗
i + piE(qi − y∗i )+ + bE(y∗i + ρi z

∗
i )+, i = H,L. (A-2c)

We now solve problem (A-2b), where a low-type supplier is drawn. In the following table, each

combination of the constraint on pL and the condition on b versus cL/l corresponds to a case in

Proposition 1. For each combination of constraint and condition, the following table provides the

objective function obtained by substituting z∗L and y∗L (from Proposition 1) into (A-2b).
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Constraint on pL Condition Objective function

A = {pL : pL > b}
b < cL/l r min(qL, 1)− b qL

b ≥ cL/l r min(qL, 1)− cL qL − (1− l) b qL

B = {pL : b ≥ pL, pL < cL/l} 0

C = {pL : b ≥ pL, pL ≥ cL/l} b ≥ cL/l l r min(qL, 1)− cL qL

For each constraint and condition, we find the optimal qL. Because in all cases the objective

function is piecewise linear in qL, we restrict our attention to corner-point solutions, where qL = 0

or 1. When the two solutions yield the same objective function value, we let qL = 0, following

the convention that the manufacturer breaks the tie in favor of smaller transfer payments. For

instance, if pL ∈ A and b ≥ cL/l, it is optimal to set qL = 1 if r − cL − (1 − l) b > 0, or qL = 0 if

r − cL − (1 − l) b ≤ 0, and pL can take any value in A. The constrained optimal (qL, pL) and the

objective function value in each of the four cases are summarized in the following table:

Constraint Condition qL pL Constrained

optimal objective

A

b < cL/l
r − b > 0 1

any pL ∈ A

r − b

r − b ≤ 0 0 0

b ≥ cL/l
r − cL − (1− l) b > 0 1 r − cL − (1− l) b

r − cL − (1− l) b ≤ 0 0 0

B 0 any pL ∈ B 0

C b ≥ cL/l
r − cL/l > 0 1

any pL ∈ C
l r − cL

r − cL/l ≤ 0 0 0

Next, to find the optimal qL and pL for problem (A-2b) we first consider the case b ≥ cL/l and

r > b. In this case, we have r > cL/l and r− cL − (1− l) b > 0. Therefore, if pL ∈ A, the objective

function value is r− cL− (1− l) b. If pL ∈ B, the objective value is 0. If pL ∈ C, the objective value

is l r − cL. Thus, by comparing the three values, we conclude that when r > b > cL/l, the optimal

objective value is r − cL − (1− l) b, obtained by setting pL ∈ A and qL = 1. For other values of r

and b, the analysis is similar.

The solution procedure for problem (A-2a) is analogous to that for problem (A-2b), with cL
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and l being replaced by cH and h. (Recall that we assume that b > cH/h and r > cH/h.)

To derive the optimal transfer payment Xi, we substitute the type-i supplier’s decisions y∗i and

z∗i under the optimal (qi, pi) into equation (A-2c). Moreover, without loss of optimality, we restrict

pH < r and pL < r whenever possible. This completes the solution to problem (A-2). �

Proof of Proposition 3. To solve problem (3), we use the form (4) of the objective function (3a)

(see §5). The following is the roadmap of the proof. To solve problem (4, 3b–3f), we first reduce it to

an equivalent problem over decision variables qH , pH , qL, and pL. Then, we relax the monotonicity

constraint in the equivalent problem and show that the optimal solution to the relaxed problem is

indeed feasible.

To reduce problem (4, 3b–3f) to the equivalent problem, we use the following three steps.

1. Rearrange the incentive compatibility and individual rationality constraints (3b–3e). Recall

Γ(q, p) reflects the reliability advantage of the high-type supplier. From its definition (Defi-

nition 1),

πH(XL, qL, pL) = πL(XL, qL, pL) + Γ(qL, pL), and

πL(XH , qH , pH) = πH(XH , qH , pH)− Γ(qH , pH).

Substituting these two equalities into incentive compatibility constraints (3b) and (3c) yields

Γ(qH , pH) ≥ πH(XH , qH , pH) − πL(XL, qL, pL) ≥ Γ(qL, pL). The latter inequality, together

with Γ(qL, pL) ≥ 0 and πL(XL, qL, pL) ≥ 0, implies that the individual rationality constraint

for the high-type, πH(XH , qH , pH) ≥ 0, is redundant. Thus, constraints (3b–3e) are equivalent

to

Γ(qH , pH) ≥ πH(XH , qH , pH)− πL(XL, qL, pL) ≥ Γ(qL, pL), (A-3a)

πL(XL, qL, pL) ≥ 0. (A-3b)

2. Identify a set of constraints that is equivalent to (A-3) at optimality. The manufacturer’s ob-

jective function (4) suggests that, for any given qi and pi, i ∈ {H,L}, the objective function

is maximized if Xi is chosen such that the supplier’s profit πi(Xi, qi, pi) is minimized. Hence,

by (A-3), at optimality XH must be chosen such that πH(XH , qH , pH) − πL(XL, qL, pL) =

Γ(qL, pL), and XL must be chosen such that πL(XL, qL, pL) = 0. Constraint set (A-3) degen-

A4



erates to

Γ(qH , pH) ≥ Γ(qL, pL), πH(XH , qH , pH) = Γ(qL, pL), πL(XL, qL, pL) = 0, (A-4)

where constraint Γ(qH , pH) ≥ Γ(qL, pL) is commonly called the monotonicity constraint in

the economics literature.

3. Replace the constraints (3b–3f) with (A-4) and substitute πH(XH , qH , pH) = Γ(qL, pL) and

πL(XL, qL, pL) = 0 into the objective function (4). Problem (4, 3b–3f) becomes the following

equivalent problem

max
qH ,pH ,qL,pL


α[r Emin(y∗H , D)− Γ(qL, pL)− cH z∗H − bE(y∗H − ρ z∗H)]

+ (1− α)[r Emin(y∗L, D)− cL z∗L − bE(y∗L − ρ z∗L)]


subject to Γ(qH , pH) ≥ Γ(qL, pL) (monotonicity)

qH ≥ 0, qL ≥ 0, pH ≥ 0, pL ≥ 0,

(A-5)

where the optimal XH and XL can be found by setting πH(XH , qH , pH) = Γ(qL, pL) and

πL(XL, qL, pL) = 0, that is,

XH = Γ(qL, pL) + cH z
∗
H + pH E(qH − y∗H)+ + bE(y∗H − ρH z∗H)+, (A-6a)

XL = cL z
∗
L + pLE(qL − y∗L)+ + bE(y∗L − ρL z∗L)+. (A-6b)

To solve problem (A-5), we first temporarily relax its monotonicity constraint, hoping that

the constraint is non-binding at the optimal solution. The relaxation is easier to solve in that we

can rearrange the objective function and solve it as two independent maximization problems over

(qH , pH) and (qL, pL), respectively, as follows:

max
qH≥0, pH≥0

{
α[r Emin(y∗H , D)− cH z∗H − bE(y∗H − ρH z∗H)]

}
(A-7a)

+ max
qL≥0, pL≥0

{
(1− α) [r Emin(y∗L, D)− cL z∗L − bE(y∗L − ρL z∗L)]− αΓ(qL, pL)

}
. (A-7b)

Lemma 1 below solves problem (A-7). The lemma divides the (b, r) plane into regions (I)

through (V) shown in Figure 3, and characterizes the optimal solution and the objective function

of (A-7) in each region.

A5



Next, to satisfy the monotonicity constraint, Γ(qH , pH) ≥ Γ(qL, pL), we choose the optimal

solution in Lemma 1 to be such that pH ≥ pL whenever qL > 0. The outcome satisfies the

monotonicity constraint, because Γ(q, p) is increasing function in both q and p (see Corollary 1),

qH ≥ qL and pH ≥ pL.

Finally, we calculate XH , XL and the manufacturer’s realized profits, π∗M |H and π∗M |L. XH

and XL can be calculated using equations (A-6a) and (A-6b). π∗M |H and π∗M |L are equal to the

expressions in the two pairs of square brackets, respectively, in (4), that is,

π∗M |H = r Emin(y∗H , D)− Γ(qL, pL)− cH z∗H − bE(y∗H − ρH z∗H), and

π∗M |L = r Emin(y∗L, D)− cL z∗L − bE(y∗L − ρL z∗L). �

Lemma 1. We divide the plane of (b, r), where b > cH/h and r > cH/h, into the following five

regions, as shown in Figure 3:

Region Condition Defining inequalities

(I)
b < cL/l (1− α)(r − b)− α(h b− cH) > 0

b ≥ cL/l
(1− α)[r − cL − (1− l) b]− α[(h− l) b+ (cL − cH)]

> {(1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)]}+

(II)

r > b, (1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)] > 0

and (1− α)[r − cL − (1− l) b]− α[(h− l) b+ (cL − cH)]

≤ (1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)]

(III) r ≤ b and (1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)] > 0

(IV)
b < cL/l r > b and (1− α)(r − b)− α(h b− cH) ≤ 0

b ≥ cL/l
r > b, (1− α)[r − cL − (1− l) b]− α[(h− l) b+ (cL − cH)] ≤ 0

and (1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)] ≤ 0

(V)
b < cL/l r ≤ b

b ≥ cL/l r ≤ b and (1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)] ≤ 0

In each of the five regions, the optimal solutions and the objective function of problems (A-7a)

and (A-7b) are:
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Region Condition Solutions Objective function

(I)
b ≤ cL/l

(A-7a)

(A-7b)

qH = 1, pH ∈ (b, r)

qL = 1, pL ∈ (b, r)

α[r − cH − (1− h)b]

(1− α)(r − b)− α(h b− cH)

b > cL/l

(A-7a)

(A-7b)

qH = 1, pH ∈ (b, r)

qL = 1, pL ∈ (b, r)

α[r − cH − (1− h)b]

(1− α)[r − cL − (1− l)b]

− α[(h− l)b+ (cL − cH)]

(II)

(A-7a)

(A-7b)

qH = 1, pH ∈ (b, r)

qL = 1, pL = cL/l

α[r − cH − (1− h)b]

(1− α)(l r − cL)

− α[(h− l)(cL/l) + (cL − cH)]

(III)

(A-7a)

(A-7b)

qH = 1, pH ∈ [cH/h, b]

qL = 1, pL = cL/l

α(h r − cH)

(1− α)(l r − cL)

− α[(h− l)(cL/l) + (cL − cH)]

(IV)
(A-7a)

(A-7b)

qH = 1, pH ∈ (b, r)

qL = 0, pL ∈ [0, r)

α [r − cH − (1− h) b]

0

(V)
(A-7a)

(A-7b)

qH = 1, pH ∈ [cH/h, b]

qL = 0, pL ∈ [0, r)

α(h r − cH)

0

Proof of Lemma 1. We first solve problem (A-7a) for the optimal (qH , pH). This problem is

identical to problem (A-2a) under symmetric information. Please refer to Proposition 2 for the

optimal qH , pH , and objective function value.

Now we solve problem (A-7b) for the optimal (qL, pL). In the following table, each combination

of the constraint on pL, and the condition on b versus cL/l, corresponds to a case in Corollary 1

that follows Proposition 1. For each combination of constraint and condition, the following table

provides the objective function obtained by substituting z∗L, y∗L (from Proposition 1) and Γ(qL, pL)

(from Corollary 1) into (A-7b).

A7



Constraint Condition Objective function

A = {pL : pL > b}
b < cL/l (1− α)[r min(qL, 1)− b qL]− α(h b− cH) qL

b ≥ cL/l
(1− α)[r min(qL, 1)− cL qL − (1− l) b qL]

−α[(h− l) b+ (cL − cH)]qL

B = {pL : b ≥ pL, pL < cH/h} 0

C = {pL : b ≥ pL, cL/l > pL ≥ cH/h} −α (h pL − cH) qL

D = {pL : b ≥ pL, pL ≥ cL/l} b ≥ cL/l
(1− α)[l r min(qL, 1)− cL qL]

−α[(h− l) pL + (cL − cH)]qL

For each constraint and condition, we find the optimal qL and pL. We restrict our attention

to corner-point solutions, where qL = 0 or 1. The constrained optimal (qL, pL) and the objective

function value are summarized in the following table:

Condition qL pL Constrained

optimal objective

A

b < cL/l
(1− α)(r − b)− α(h b− cH) > 0 1

any pL ∈ A

(1− α)(r − b)− α(h b− cH)

(1− α)(r − b)− α(h b− cH) ≤ 0 0 0

b ≥ cL/l

(1− α)[r − cL − (1− l) b]

− α[(h− l) b+ (cL − cH)] > 0
1

(1− α)[r − cL − (1− l) b]

− α[(h− l) b+ (cL − cH)]

(1− α)[r − cL − (1− l) b]

− α[(h− l) b+ (cL − cH)] ≤ 0
0 0

B 0 any pL ∈ B 0

C 0 any pL ∈ C 0

D b ≥ cL/l

(1− α)(l r − cL)

− α[(h− l) (cL/l) + (cL − cH)] > 0
1 cL/l

(1− α)(l r − cL)

− α[(h− l) cL
l

+ (cL − cH)]

(1− α)(l r − cL)

− α[(h− l) (cL/l) + (cL − cH)] ≤ 0
0 any pL ∈ D 0

To find the optimal qL and pL for problem (A-7b) under b ≥ cL/l, we compare the constrained

objective function values when pL is in A, B, C, and D. The following expression of the optimal

objective function value captures the comparison:

max{0, (1− α)[r − cL − (1− l) b]− α[(h− l) b+ (cL − cH)],

(1− α)(l r − cL)− α[(h− l) (cL/l) + (cL − cH)]}.
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For instance, if the second element in the curly brackets is strictly greater than the other two, the

optimal (qL, pL) under constraint A and condition (1−α)[r−cL−(1−l) b]−α[(h−l) b+(cL−cH)] > 0

is optimal for problem (A-7b). (That is, qL = 1, and pL ∈ A.) The analysis for the other cases are

analogous. Under b < cL/l, we compare the objective function values when pL is in A, B, and C.

Analogously, we use the following expression to represent the optimal objective function value:

max{0, (1− α)(r − b)− α(h b− cH)}.

Without loss of optimality, we restrict pH < r and pL < r whenever possible. The result follows

by applying the optimal solutions for problems (A-7a) and (A-7b) to all five regions defined. �

Proof of Corollary 2. By Proposition 1, the manufacturer receives qL if the low-type supplier

uses backup production, or receives ρL qL if the low-type supplier pays a penalty in the event of

a disruption. We compare the expected quantities received by the manufacturer under symmetric

information and under asymmetric information in regions (I) through (V). The result follows. �

Proof of Proposition 4. (XL, qL, pL) is the optimal contact offered to the low-type supplier un-

der asymmetric information, which is provided in Proposition 3. γ = Γ(qL, pL), where the expression

of Γ(qL, pL) is provided in Corollary 1.

δ = ∆(XL, qL, pL) = π∗C|L − πC|L(XL, qL, pL). The maximum channel profit, π∗C|L, equals

the manufacturer’s profit under symmetric information, π̌∗M |L, which is provided in Proposition 2.

πC|L(XL, qL, pL) is the channel’s profit given the optimal contract under asymmetric information.

We again have πC|L(XL, qL, pL) = πM |L(XL, qL, pL), the manufacturer’s profit under asymmetric

information, since the low-type supplier makes zero profit. The expression of πM |L(XL, qL, pL) is

provided in Proposition 3. �

Proof of Corollary 3. The result follows from Proposition 3. �

Proof of Proposition 5. To solve problem (7), we begin by applying equalities

X = πi(X, q, p) + ci z
∗
i + pE(q − y∗i )+ + bE(y∗i − ρi z∗i )+, i = H,L (A-8)
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to the objective function. The problem becomes

max
X≥0, q≥0, p≥0

{
α[r Emin(y∗H , D)− πH(X, q, p)− cH z∗H − bE(y∗H − ρH z∗H)] I{πH(X,q,p)≥0}

+(1− α)[r Emin(y∗L, D)− πL(X, q, p)− cL z∗L − bE(y∗L − ρL z∗L)] I{πL(X,q,p)≥0}

}
.

(A-9)

Proposition 1 shows that, given a contract (X, q, p), a supplier with a higher probability of

success always earns a larger expected profit, that is, πH(X, q, p) ≥ πL(X, q, p). A contract (X, q, p)

such that πH(X, q, p) < 0 will induce no participation, leading to zero profit of the manufacturer.

Without loss of generality, we can assume that at least the high-type supplier would participate

under the optimal contract, and, therefore, we restrict our attention to feasible (X, q, p) such that

πH(X, q, p) ≥ 0.

We find the optimal solution to problem (A-9) using the following procedure. We first solve the

problem under constraints πL(X, q, p) ≥ 0, when both supplier types would accept the contract.

We then solve it under constraint πH(X, q, p) ≥ 0 > πL(X, q, p), when only the high-type supplier

would accept the contract. Finally, we compare the two maxima to identify the global optimal

solution.

Lemma 2 solves problem (A-9) under constraint πL(X, q, p) ≥ 0. Let θ̄ = αh + (1 − α)l, the

average probability of successful regular production run. The optimal objective function is πN2
M

(superscript “N” indicates the manufacturer is non-discriminative, and superscript “2” indicates

that both supplier types would participate), where

πN2
M =


max{r − cL − (1− l) b, α h (r − cH/h), θ̄(r − cL/l)} b ≥ cL/l

max{r − b, α h (r − cH/h)} b < cL/l.

(A-10)

We next solve problem (A-9) under πH(X, q, p) ≥ 0 > πL(X, q, p). This problem is equivalent to

problem (A-1a) under symmetric information, and its optimal solution is given by problem (A-2a) in

the proof of Proposition 2. We denote its optimal objective value as πN1
M (superscript “1” indicates

only one supplier type – high-type – would participate), where

πN1
M = max{α[r − cH − (1− h) b], α h (r − cH/h)}. (A-11)

To identify the global optimum of problem (A-9), we compare πN1
M and πN2

M (see Lemma 3 for
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details). The result follows. �

Lemma 2. The optimal solution to problem (A-9) subject to πL(X, q, p) ≥ 0 is:

When b ≥ cL/l,

• If r − cL − (1 − l) b > max{αh (r − cH/h), θ̄(r − cL/l)}, then X = cL + (1 − l)b, q = 1,

p ∈ (b,∞), πN2
M = r − cL − (1− l) b.

• If αh (r − cH/h) ≥ max{r − cL − (1 − l) b, θ̄(r − cL/l)}, then X = cH/h, q = 1, p = cH/h,

πN2
M = αh (r − cH/h).

• If θ̄(r − cL/l) ≥ r − cL − (1 − l) b and θ̄(r − cL/l) > αh (r − cH/h), then X = cL/l, q = 1,

p = cL/l, πN2
M = θ̄(r − cL/l).

When b < cL/l,

• If r − b > αh (r − cH/h), then X = b, q = 1, p ∈ (b,∞), πN2
M = r − b.

• If αh (r − cH/h) ≥ r − b, then X = cH/h, q = 1, p = cH/h, πN2
M = αh (r − cH/h).

Proof of Lemma 2. The problem we are solving is

max
(X,q,p):

X≥0, q≥0, p≥0


α[r Emin(y∗H , D)− πH(X, q, p)− cH z∗H − bE(y∗H − ρH z∗H)]

+ (1− α)[r Emin(y∗L, D)− πL(X, q, p)− cL z∗L − bE(y∗L − ρL z∗L)]


subject to πL(X, q, p) ≥ 0.

From Definition 1, we have πH(X, q, p) = πL(X, q, p) + Γ(q, p) and πL(X, q, p) = 0 must hold at

optimality. The above problem is equivalent to

max
q≥0, p≥0


α[r Emin(y∗H , D)− Γ(q, p)− cH z∗H − bE(y∗H − ρH z∗H)]

+ (1− α)[r Emin(y∗L, D)− cL z∗L − bE(y∗L − ρL z∗L)]

 . (A-12)

Note that decision variableX vanishes from the above program, and can be evaluated using equation

(A-8), with i = L and πL(X, q, p) = 0.

Now we solve problem (A-12) for the optimal (q, p). In the following table, each combination

of the constraint on p, and the condition on b versus cL/l, corresponds to a case in Corollary 1

that follows Proposition 1. For each combination of constraint and condition, the following table
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provides the objective function obtained by substituting z∗L, y∗L (from Proposition 1) and Γ(q, p)

(from Corollary 1) into (A-12).

Constraint Condition Objective function

A = {p : p > b}
b < cL/l r min(q, 1)− b q

b ≥ cL/l r min(q, 1)− cL q − (1− l) b q

B = {p : b ≥ p, p < cH/h} 0

C = {p : b ≥ p, cL/l > p ≥ cH/h} αh [r min(q, 1)− p q]

D = {p : b ≥ p, p ≥ cL/l} b ≥ cL/l θ̄r min(q, 1)− α(h− l)p q − cL q

Next, for each constraint and condition, we find the optimal q and p. We restrict our attention

to corner-point solutions, where q = 0 or 1. The constrained optimal (q, p) and the objective

function value are summarized in the following table:

Constraint Condition q p Constrained

optimal objective

A

b < cL/l
r − b > 0 1

any p ∈ A

r − b

r − b ≤ 0 0 0

b ≥ cL/l
r − cL − (1− l) b > 0 1 r − cL − (1− l) b

r − cL − (1− l) b ≤ 0 0 0

B 0 any p ∈ B 0

C 1 cH/h αh (r − cH/h)

D b ≥ cL/l
r − cL/l > 0 1 cL/l θ̄(r − cL/l)

r − cL/l ≤ 0 0 any p ∈ D 0

To find the optimal solution to problem (A-12) and its objective function value, πN2
M , we compare

the constrained optimal objective function values for p in A, C, and D when b ≥ cL/l, and for p in

A and C when b < cL/l. The result follows. �

Lemma 3. The following is the relationship between πN1
M and πN2

M :

Regions (I), (IIa), (IIb), and (III) πN2
M > πN1

M

Region (IV) and (IIc) πN2
M ≤ πN1

M

Region (V) πN2
M = πN1

M
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Proof of Lemma 3. Region (I). Recall that region (I) is defined in Lemma 1 by

(1− α)(r − b)− α(h b− cH) > 0 b < cL/l (A-13a)

(1− α)[r − cL − (1− l) b]− α[(h− l) b+ (cL − cH)] >

{(1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)]}+ b ≥ cL/l. (A-13b)

We first evaluate πN1
M , which is presented in (A-11). Note that region (I) satisfies inequality

r > b, which implies

α[r − cH − (1− h) b] > αh (r − cH/h). (A-14)

We apply this inequality to (A-11), and obtain πN1
M = α[r − cH − (1− h) b].

We now evaluate πN2
M , which is presented in (A-10). The value of πN2

M is uniquely determined

by inequalities (A-13) and (A-14). To see this, we first note that, for b < cL/l, [LHS (A-13a) +

LHS (A-14)] > [RHS (A-13a) + RHS (A-14)]. It can be verified that [LHS (A-13a) + LHS (A-14)]

= r−b, and [RHS (A-13a) + RHS (A-14)] = αh (r−cH/h). Hence, we have r−b > αh (r−cH/h).

Applying the above inequality to (A-10) determines the value of πN2
M when b < cL/l, that is,

πN2
M = r − b for b < cL/l. Analogously for b ≥ cL/l, we have [LHS (A-13b) + LHS (A-14)] >

[RHS (A-13b) + RHS (A-14)]. It can be verified that [LHS (A-13b) + LHS (A-14)] = r−cL−(1−l) b

and [RHS (A-13b) + RHS (A-14)] = max{αh (r−cH/h), θ̄(r−cL/l)}. The second equation follows

from the following equality:

θ̄(r − cL/l) ≡ αh (r − cH/h) + (1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)].

Hence, we have inequality r − cL − (1 − l) b > max{αh (r − cH/h), θ̄(r − cL/l). Applying this

inequality to (A-10), we identify the value of πN2
M when b ≥ cL/l, that is, πN2

M = r − cL − (1− l) b

for b ≥ cL/l. Comparing πN1
M and πN2

M yields

πN2
M − πN1

M =


(1− α)(r − b)− α(h b− cH) b < cL/l

(1− α)[r − cL − (1− l) b]

−α[(h− l) b+ (cL − cH)] b ≥ cL/l.

By inequalities (A-13a) and (A-13b), we must have πN2
M − πN1

M > 0.
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The analysis is similar for regions (III), (IV), and (V).

Region (II). In this region, the sign of πN1
M −πN2

M can be either positive or negative. Recall that

region (II) is defined by a set of inequalities:

r > b, θ̄(r − cL/l) > αh (r − cH/h), and

(1− α)[r − cL − (1− l) b]− α[(h− l) b+ (cL − cH)]

≤ (1− α)(l r − cL)− α[(h− l)(cL/l) + (cL − cH)].

As in the discussion for region (I), the first inequality implies πN1
M = α[r − cH − (1 − h) b]. The

second inequality implies that πN2
M = max{r − cL − (1− l) b, θ̄(r − cL/l)}. To the left of line 6 in

region (II) (see Figure 8), πN2
M = r − cL − (1− l) b. When (b, r) is also to the left of line 2 (region

(IIa)), πN2
M > πN1

M . To the right of line 6, πN2
M = θ̄(r− cL/l). When (b, r) is also to the right of line

7 (region (IIb)), πN2
M > πN1

M as well. �

Proposition 6. If the manufacturer has access to its own backup production option at unit cost

bM , the optimal menu of contracts offered by the manufacturer is as follows:

• When bM ≥ r, the optimal menu of contracts is the same as the optimal menu of contracts in

the absence of the manufacturer’s backup production option. In particular, the optimal menu

of contracts is given by Proposition 2 under symmetric information, and Proposition 3 under

asymmetric information.

• When bM < r, the optimal menu of contracts can be derived from the optimal menu of con-

tracts in the absence of the manufacturer’s backup production option. In particular, replacing

revenue r with bM in Propositions 2 and 3 gives the optimal menu of contracts under sym-

metric and asymmetric information, respectively.

Proof. We present the proof for the asymmetric information case. The analysis is similar for the

symmetric information case.

To find the optimal menu of contracts, we maximize the following objective, subject to con-
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straints (3b–3f):

max
(XH ,qH ,pH)
(XL,qL,pL)

{
α

{[
r Emin(y∗H , D)−XH + pH E(qH − y∗H)+

]
+ E max

sH≥y∗H
{r[min(sH , D)−min(y∗H , D)]− bM (sH − y∗H)}

}
+ (1− α)

{[
r Emin(y∗L, D)−XL + pLE(qL − y∗L)+

]
+ E max

sL≥y∗L
{r[min(sL, D)−min(y∗L, D)]− bM (sL − y∗L)}

} }
.

(A-15)

When the manufacturer’s backup production option is economically infeasible, bM ≥ r, the

manufacturer will not exercises it, that is, si ≡ y∗i , i = H,L. The objective function (A-15) is then

identical to the objective function (3a). Problem (A-15, 3b–3f) is identical to problem (3).

Now consider the case where the manufacturer’s backup production option is economically

feasible, bM < r. Observe that at the optimal solution, si = D and D − y∗i = D − min{D, y∗i }.

Hence, si − y∗i = D− y∗i = D−min{D, y∗i } at the optimal solution. We substitute these equalities

into objective function (A-15) to obtain

max
(XH ,qH ,pH)
(XL,qL,pL)


α [bM Emin(y∗H , D)−XH + pH E(qH − y∗H)+]

+ (1− α)[bM Emin(y∗L, D)−XL + pLE(qL − y∗L)+]

+ (r − bM )D. (A-16)

Note that the group of terms in the pair of curly brackets in (A-16) is the same as (3a), with r

replaced by bM . �
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