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Introduction 

In prior research, darkness has been shown to increase a pedestrian’s risk of 

fatality in a traffic accident by a factor of about seven (Sullivan & Flannagan, 2006).  No 

other crash type is as strongly linked to light level as pedestrian crashes.  With this in 

mind, there has been renewed interest in the vehicle lighting community to find ways to 

enhance distribution of low-beam headlighting to address the needs of pedestrians (e.g., 

Kosmatka, 2006; Rice, 2004).  Specific concern is focused on the consequence of the bias 

of all low-beam headlamps to direct greater illumination toward the right side of the 

roadway and away from the left side, in order to reduce glare to oncoming drivers.  While 

it is anticipated that such a bias influences pedestrian crashes, there has been little 

published data describing such effects (but see Kosmatka, 2003). 

In this report, we examine whether specific characteristics of the light distribution 

afforded by conventional low beam headlamps are also reflected in the geometric 

characteristics of the crash incidents.  Because conventional crash databases are often 

limited in the amount of detail about a crash they support, the present analysis collected 

additional information from copies of the original police reports.  We were primarily 

interested in determining whether additional information could be retrieved from the 

crash diagrams and narratives that would allow a more complete determination of crash 

configuration. 

The light distribution provided by conventional low-beam headlamps is a 

compromise between providing sufficient seeing light for the vehicle’s driver, while 

avoiding glare to drivers of oncoming vehicles.  This has resulted in a general bias in the 

distribution of light downward and to the right side of the roadway.  One might therefore 

expect that pedestrians would become less visible on the driver’s side of a vehicle 

compared to the passenger side of the vehicle.  When two vehicles are actually meeting, 

it is reasonable to expect that they will both be using low-beam headlamps.  Thus, 

pedestrians on the driver’s side, from the perspective of one of the vehicles, will be less 

strongly illuminated by that vehicle’s headlamps and may also be affected by glare from 

the lamps of the other vehicle.  However, even in nonmeeting situations, it is likely that 
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low-beam headlamps will be used, since most drivers seldom use high-beam headlamps 

(Mefford, Flannagan, & Bogard, 2006; Sullivan, Adachi, Mefford, & Flannagan, 2003). 

The approach taken in this report is to examine the location and direction of travel 

of a pedestrian relative to an approaching vehicle just prior to a crash.  Unlike previously 

reported dark/light comparisons in which there was a strategy to control variables such as 

driver fatigue, alcohol involvement, and demographics using daylight saving time 

analyses (Sullivan & Flannagan, 2001), the analyses described in this report are not 

subject to the same confounds.  Here we are assessing the differences in risk that are 

associated with direction of pedestrian approach toward an (eventually) striking vehicle 

in darkness compared to light.  If a pedestrian’s direction of travel prior to a collision is 

independent of time of day, fatigue level, demographics, or alcohol use then light/dark 

differences in the ratios of a driver-side versus passenger-side approach might be 

attributed to an effect of light distribution.  In the case of low-beam headlamps, in which 

illumination is biased toward the passenger side, we might expect to find a shift in the 

distribution of pedestrian collisions to the driver side of the vehicle in darkness when 

compared to the distribution in daylight. 

This is not to suggest that a particular direction of approach is more risky than 

another in darkness or light.  Merely that the distribution of pedestrian crashes between a 

driver-side and pedestrian-side approach is likely to be shifted toward the driver side 

when it is dark.  We may find that in both daylight and darkness, passenger-side crashes 

predominate because of the relatively close proximity of a pedestrian entering a roadway 

to the passenger-side of an approaching vehicle.  Such close proximity allows the 

approaching driver little time to make an evasive maneuver.  On the other hand, upon 

entering the roadway from the left (or driver side), a pedestrian is usually at least one full 

lane width from the path of the approaching vehicle.  This additional safety margin may 

often be sufficient for the approaching driver to successfully avoid a collision. 

Crash datasets are generally useful in ensuring that crashes are described in a 

standard way so that common characteristics among crashes can be recognized and 

reported.  However, crash datasets might fail to capture key pieces of information about a 

crash that could be informative either because there is no defined field for this 
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information, or because there is no good way to express a causal chain of events that 

plays out over time. 

Take, for example, a situation in which a pedestrian crosses a 5-lane arterial in 

two steps—first crossing to the middle turn lane, and then continuing the rest of the way 

across the street.  If the pedestrian is struck in the turn lane, the pedestrian action is likely 

to be identified as “standing in the street.”  However, the fact that the pedestrian was 

attempting to cross the street, and that the pedestrian was likely to be in the driver-side 

area of the approaching vehicle just prior to a crash is unlikely to be determinable from 

the data in the database alone.  If the diagram and narrative content from the original 

police report are consulted, we may be able to obtain other details that provide a better 

picture of the causal chain of events just before the collision occurred. 
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Method 

Pedestrian crashes occurring in darkness (coded as dark or dark but lighted) and 

daylight were drawn from the 2004 State of Michigan DOT crash dataset.  To simplify 

crash circumstances, the sample was first restricted to crashes involving only one vehicle.  

The sample was further restricted to include only vehicles in which the prior vehicle 

action had some likely causal connection to the crash (for example, going straight, 

turning left, turning right, slowing or stopped in roadway, slowing or stopped in another 

area, or starting up in the roadway).  This eliminated crashes in which forward vehicle 

lighting was unlikely to play a role in the crash (for example, backing crashes, crashes 

involving stopped vehicles, driverless vehicle crashes, or vehicles involved in a prior 

crash).  (One could argue that a crash in which a pedestrian is injured by walking into a 

stationary vehicle has little to do with the driver’s visual capabilities.)  The crash sample 

was further restricted to crashes involving a single pedestrian.  This was done, in part, to 

simplify locating the involved pedestrian.  If the crash involves many struck pedestrians, 

it is less likely that the accompanying crash diagrams would accurately identify the 

direction of travel of all involved.  Finally, crashes were further limited to involve only 

pedestrians over 18 years of age, in order to eliminate the likely day/night exposure 

difference in children.  Crashes were then binned as occurring in daylight or dark 

conditions, with “dark” including both dark and dark-but-lighted conditions.  Cases 

involving dawn, dusk, or unknown light conditions were discarded.  The resulting dataset 

contained 1,240 pedestrian crash records. 

From this “base” sample of crashes, 200 crashes in darkness and 200 crashes in 

daylight were randomly selected.  The serial number of each crash was then used to 

retrieve a digitized facsimile of the UD-10 police report filed for each crash.  Each report 

was reviewed alongside the corresponding crash database record for consistency.  

Narrative information, usually incorporated with a diagram in the lower right corner of 

the second page of the form (see Figure 1), was reviewed and the diagram was examined 

to retrieve supplemental information about the location and movement of the pedestrian 

prior to the crash.   
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Figure 1.  Back page of the Michigan Department of Transportation UD-10 crash report 
showing an accident diagram on the lower right.  The example is taken from Appendix B 
of the State of Michigan UD-10 Traffic Crash Report Instruction Manual (State of 
Michigan, 2004). 
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Because the current analysis was designed to relate the light distribution 

originating from the striking vehicle to pedestrian risk, the geometry of the crash must be 

recast using the striking vehicle as the primary point of reference.  Although the 

Michigan crash dataset provides fields identifying the direction of travel for all units 

involved in a given crash (i.e., vehicle, pedestrian), the pedestrian direction of travel is 

frequently omitted from the record.  Indeed, in the sample of pedestrian crashes used in 

this report, 75% of the pedestrian directions are reported as unknown.  In examining the 

UD-10 reports, this information is often omitted entirely from the pedestrian report, 

although it may be either implied or explicitly mentioned in the accompanying diagram 

and narrative.  There are also many cases in which the prior pedestrian direction is 

genuinely unknown—as in fatal hit-and-run collisions. 

Even if a pedestrian’s direction of travel was fully reported, absolute geographical 

directions would need to be recoded into a vehicle-relative framework.  Thus a 

southbound vehicle colliding with a westbound pedestrian would be recoded as a 

pedestrian approach from the vehicle’s driver side, as would a northbound vehicle and an 

eastbound pedestrian, a westbound vehicle and a northbound pedestrian, and an 

eastbound vehicle and a southbound pedestrian.   

The coding of a vehicle’s direction of travel can also be ambiguous and 

misleading with respect to determining the geometric configuration just prior to a 

pedestrian crash.  For example, an originally northbound vehicle may initiate a left turn 

and strike a southbound pedestrian.  This is sometimes coded as “eastbound going 

straight” or as “northbound turning left,” depending on whether the collision occurred 

during the turn or after the turn was completed.  For the purposes of this analysis, we 

would like to know what kind of preview of the roadway a driver had in the seconds prior 

to the collision.  It may matter less whether the driver was in the turn or had completed 

the turn, since we are interested in the situation seconds before the collision occurred.  

Fortunately, crash diagrams in the original police reports often include trajectories or 

implied trajectories of both the vehicle and pedestrian so that a more complete picture of 

the sequence of events can be determined.  In this particular case, we would describe the 

scenario as a pedestrian crossing southbound on what was originally the driver’s side of 

vehicle executing a left turn.   
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With these considerations in mind, each police report was reevaluated with 

respect to: whether a vehicle was or had been executing a turn prior to the collision, the 

direction of the turn, and the direction of pedestrian travel relative to the striking vehicle.  

Crash Report Recoding Procedures 
The 400 selected pedestrian crashes from the MDOT-2004 crash dataset (200 

occurring in daylight, and 200 in darkness) were recoded into several supplemental data 

fields using the UD-10.  As is common with any experimental coding scheme, many of 

the new fields proved to be of limited usefulness in resolving crash characteristics related 

to light distribution.  For example, the vertical position of a pedestrian was encoded with 

the purpose of revealing how much of that person’s body may have been illuminated by 

the approaching vehicle’s beam pattern.  The vertical position of a pedestrian was 

identified as upright, sitting or crouching, reclined, or unknown.  Among the 400 cases, 

only 1% (5) of the cases was identified as lying in the roadway (all in darkness), 3% (12) 

were identified as sitting or crouching (evenly split between darkness and daylight), and 

90% (361) were identified as upright (evenly split).  With such small numbers, it would 

take a much larger sample to resolve real differences between the darkness and daylight 

distributions of this attribute.  Furthermore, even if it was found that pedestrian crashes in 

darkness involve more reclined pedestrians, several non-light-related explanations are 

plausible (e.g., incidence of alcohol involvement is higher at night, a person reclining in 

the roadway in daylight is likely to attract public attention and be removed quickly).  This 

report will therefore restrict discussion to the supplemental data fields which proved to be 

useful in suggesting low-beam light distribution might influence pedestrian crashes.  

These fields include: 

1) Lateral position of the pedestrian.  This field identified the lateral position of the 

pedestrian relative to the striking vehicle just prior to the crash.  Field values could 

be one of the following: left, right, straight ahead, or unknown.   

2) Intended vehicle maneuver.  A vehicle was characterized as intending to make a 

left turn, right turn, no turn, or an unknown maneuver.  The purpose of this field was 

to capture the likely direction a driver was attending to just prior to the crash, 

regardless of the vehicle position at the point of collision.  For example, a driver 
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attempting to execute a right turn to merge into oncoming traffic would likely be 

looking left for clearance.  A driver executing a left turn would likely be looking in 

both directions for clear traffic.  And a driver traveling straight ahead would likely 

be looking straight ahead. 

3) Pedestrian crossing configuration relative to the striking vehicle.  Crossing 

configuration was encoded using a crossing classification system based on an 

intersection diagram (but not restricted to intersection crashes) in which the prior 

vehicle position was used as the frame of reference.  Four locations were identified 

as starting and end points of the intended pedestrian trajectory (shown in Figure 2).  

Although the topology was developed with reference to an intersection and a turning 

vehicle, the coding scheme was also applied to nonintersection-related crashes to 

capture pedestrian crossing directions that were perpendicular to a vehicle’s 

direction of travel.   

 

 
Figure 2.  Intersection diagram identifying pedestrian reference points (A, B, C, D) and 
vehicle trajectory. 
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4) Crash unrelated to lighting.  Crash records that occurred in darkness were further 

tagged with regard to whether lighting was clearly not a factor.  For example, 

crashes that involved a deliberate assault on a pedestrian, occurred under severe 

weather-related visibility restrictions (e.g., white-out conditions in a snowstorm), or 

involved a loss of vehicle control, were identified as unrelated to lighting. 

Analysis Overview 
An initial group of crash analyses on the “base” sample of pedestrian crashes was 

performed to establish a general context for these crashes.  The purpose of the analysis is 

to provide both a clear picture of the prevalence in darkness for particular pedestrian 

crash conditions, and to compare this to the daylight conditions for contrast.  While the 

dark-light comparison provides a broad picture of how pedestrian crashes in darkness 

may differ from crashes in daylight, it admittedly does not provide an unambiguous 

reason for any differences, since factors such as light level, driver fatigue, alcohol use, 

and demographics are confounded.  

The contextual analysis is subdivided into person factors related to pedestrian and 

driver behavior, and environmental factors related to the roadway conditions.  The person 

factors examined include the driver and pedestrian actions prior to the collision, and the 

levels of suspected drug or alcohol use.  The environmental factors examined include the 

roadway area (e.g., freeway, nonfreeway, and  within each category, the roadway 

characteristics), road class (interstate, US route, state route, connector, business routes, 

service drives, city/street roads), trafficway type (not divided, divided without a barrier, 

divided with a barrier, one-way), number of traffic lanes, posted speed limit, road surface 

conditions (dry, wet, icy, slushy, snowy, muddy, debris-covered), and weather conditions 

(clear, cloudy, rain, snow, fog, sleet, wind). 

A second group of analyses was conducted to associate pedestrian crash risk in 

the dark with the geometric characteristics of the low-beam headlamp light distribution 

and the pedestrian’s location and movement relative to the striking vehicle just prior to 

the crash.  These analyses ask the simple question: is there a difference in the way 

pedestrians are distributed about the roadway in a crash that occurs in the dark versus the 

light.  The analyses are divided into three parts based on the striking vehicle’s intended 
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maneuver prior to the crash—turning left, turning right, and driving straight.  This was 

done because the geometric configuration of the crash, and the driver’s lookout behavior 

and/or speed, are different in each case.  For example, referring to Figure 2, if a vehicle is 

executing a right turn, only pedestrians crossing from A to B, B to A, B to C, or C to B 

can be struck.  Moreover, in many of these turns, the driver will be attempting to merge 

with traffic approaching from the driver’s side of the vehicle and thus we might expect 

that attention will be directed to the left side of the vehicle.  Likewise, a left-turning 

vehicle is only capable of striking pedestrians traveling from A to B, B to A, A to D, or D 

to A.  Depending on the number of crossing lanes of traffic and the presence of traffic 

controls, the lookout behavior of a driver attempting a left turn can be considerably 

complex—an adequate gap must be found in each direction of the crossing traffic as well 

as in the oncoming traffic to accommodate the maneuver.  In the “going straight” 

scenario, only pedestrian trajectories perpendicular to the vehicle’s path can result in a 

collision; we might also expect that the driver’s attention would be primarily directed 

straight ahead (unless the driver is required to yield to crossing traffic). 
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Results 

Pedestrian and Driver factors.  There were 1,240 crashes in the selected sample 

of pedestrian-single vehicle crashes drawn from the 2004 Michigan DOT crash dataset 

and used in this analysis.  Of these, 553 (45%) occurred in darkness and 687 occurred in 

daylight (55%).  The most common pedestrian actions prior to a collision under dark and 

light conditions are shown in Table 1.  The distributions of prior pedestrian actions differ 

in the dark compared to daylight, χ2 (12, N = 1,218) = 44.04, p < 0.01).  In the dark, there 

appear to be proportionally fewer pedestrian crashes at intersections (27%) compared to 

daylight (36%); and proportionally more occurring away from intersections (e.g., mid-

block crossings) in darkness (31%) compared to daylight (24%).  In the dark, there is also 

a higher proportion of crashes involving pedestrians walking in the roadway compared to 

daylight—either with traffic (10% versus 5%), or against traffic (4% versus 2%).   

 

Table 1 
Percentage of crashes involving different prior actions by a pedestrian in darkness and 

light.  Rows with fewer than 5 total observations are omitted. 
 

 Light Condition 

Prior pedestrian actions Dark Light 
Crossing at an Intersection 27.3% 36.2% 
Crossing not at an Intersection  30.7% 24.3% 
Entering roadway 0.5% 0.3% 
Getting on/off vehicle 0.7% 1.5% 
Going straight ahead 4.9% 4.8% 
In roadway walking against traffic 3.8% 1.7% 
In roadway with traffic 9.6% 4.7% 
In roadway other reason 3.8% 4.9% 
Not in roadway 3.3% 4.1% 
Other 2.5% 5.4% 
Other working in roadway 1.8% 2.5% 
Standing/lying in roadway 5.6% 2.8% 
Unknown 4.5% 4.4% 
   
Total percent 100% 100% 
Total crashes 553 687 
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On the vehicle side, Table 2 shows the breakdown of prior vehicle actions before 

a pedestrian collision.  As with the previous prior pedestrian action analysis, the crash 

distributions differ between dark and light, χ2 (11, N = 1,240) = 62.76, p < 0.0001).  There 

are proportionally more pedestrian collisions in the dark involving vehicles going straight 

(69%) than in daylight (51%).  There are also proportionally fewer right turn collisions in 

darkness (4%) than in daylight (11%). 

 

Table 2 
Percentage of pedestrian crashes involving different prior actions by a vehicle in darkness 

and light.  Rows with fewer than 5 total observations are omitted.  
 

 Light Condition 

Prior vehicle actions Dark Light 
Avoiding pedestrian 2.4% 2.0% 
Changing lanes 1.8% 1.0% 
Entering roadway 0.5% 3.1% 
Going Straight Ahead 68.5% 50.8% 
Leaving roadway 0.5% 0.6% 
Overtaking or passing 0.7% 0.6% 
Slowing/stop on roadway 2.2% 3.3% 
Starting up on roadway 2.0% 5.2% 
Starting up other area 0.2% 1.0% 
Turning left 15.0% 19.1% 
Turning right 4.3% 11.4% 
Other 1.8% 1.6% 
   
Total percent 100% 100% 
Total crashes 553 687 

 

The differences in the distributions of prior pedestrian and vehicle actions in dark 

and light conditions are related and somewhat complementary: there is a larger 

proportion of vehicle-turning crashes during daylight and a larger proportion of crashes 

involving pedestrian at intersections (where, presumably, the vehicles are executing the 

turns).  Conversely, in the dark there are more crashes involving pedestrians not at 

intersections (in which case the vehicles are going straight).  It is possible that the higher 

proportion of turning crashes in daylight is influenced by traffic density, which is likely 

greater in daylight than at night.  To make a turn, a gap must first be found in one or more 

traffic streams.  For a right-turn merge, a gap is required in the traffic approaching from 
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the driver’s side of the vehicle.  For a left-turn maneuver, gaps must be found in each 

lane of crossing traffic as well as approaching traffic.  With higher traffic density, the 

task of gap finding becomes more difficult and likely more demanding on the driver.  As 

a consequence, the driver may fail to notice a pedestrian crossing in front of the vehicle, 

especially if the pedestrian is crossing from a direction that is not significant for gap-

finding—e.g., a pedestrian approaching from the right side of a right-turning vehicle. 

Not surprisingly, the crashes in darkness also contained a higher proportion of 

alcohol involvement than the crashes in daylight (shown in Table 3).  Among the 

pedestrians, 18% (100 out of 553) of the sample in darkness involved suspected drug or 

alcohol use; while only 3% (18 out of 687) of the daylight sample did.  Among the 

drivers, 10% (54 out of 553) of the sample in darkness involved suspected drug or 

alcohol use; while only 2% (11 out of 687) of the daylight sample did.  (This analysis 

excluded pedestrians under 18 years of age; including underage pedestrians in the 

sampled crashes would reduce the observed percentage of alcohol/drug involvement to 

14% in darkness and 2% in daylight.)  Notably, the suspected involvement of 

alcohol/drugs in pedestrian crashes combined over dark and light periods (9.5%) is not 

very different from the 7% reported previously by daSilva, Smith, and Najm (2003); 

similarly the suspected involvement of alcohol/drugs among the involved drivers over 

dark and light periods (5.2%) is similar to the 6% also reported by these authors. 

 

Table 3 
Percentage of pedestrians and drivers suspected of alcohol or drug involvement in 

selected Michigan 2004 pedestrian crashes by day and night.  
 

  Light condition 

Party 
Suspected 
Alcohol/Drugs Dark Light 

Pedestrian No  81.9% 97.4% 
 Yes  18.1% 2.6% 
     
Driver No  90.2% 98.4% 
 Yes  9.8% 1.6% 
     
Total percent     100% 100% 
Total crashes   553 687 
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Environmental Factors.  Pedestrian crashes were initially broken down by 

roadway area using a coarse grouping (freeway, nonfreeway intersection, nonfreeway 

nonintersection, and other), followed by a finer-grained analysis using the detailed 

categories used in the crash dataset.  The two groupings are presented in Table 4.  

Consistent with the previous analysis of pedestrian actions, there are proportionally more 

intersection-related crashes in daylight than in darkness, and proportionally fewer 

nonintersection, nonfreeway crashes in daylight than in darkness, χ2 (3, N = 1,240) = 

23.8, p < 0.0001.  As is shown in the breakdown, more than half of pedestrian crashes in 

darkness occurred on nonfreeway nonintersection straight roadways (52%); the 

remaining crashes in darkness generally occurred near intersections (33.8%). 

The distribution of pedestrian crashes using an alternative roadway breakdown, 

highway class (e.g., interstates, US Routes, state roads, business routes, and local/county 

roads), is shown in Table 5.  In both dark and light conditions, about 65% of the crashes 

occurred on road/city/street or unknown roadways.  Crashes in darkness do not appear to 

be distributed any differently than crashes in daylight among the different highway 

classes.  

Next we examined the trafficway configuration.  Trafficway distinguishes 

whether a road supports one- or two-way traffic, and specifies whether and how the two-

way traffic flows are separated (e.g., center turn lanes, barriers).  Trafficway 

configuration could influence pedestrian visibility in several ways.  For example, one-

way streets and divided roadways with physical barriers are likely to permit less glare 

from opposing traffic than two-way highways that are not physically divided, or divided 

only by a median strip with no barrier.  Pedestrians also occasionally rely on medians to 

cross multi-lane traffic in stages.  Standing in the median places pedestrians to the left of 

oncoming traffic in both directions, where at night the low-beam light distribution is 

weakest.  On the other hand, pedestrian exposure is likely to be lower around roadways 

separated by medians (e.g., interstates).  Such restriction may easily overshadow any 

observable dark/light differences in the distribution of crashes.  The actual breakdown of 

crashes is shown in Table 6.  In both dark and light conditions, approximately 70% of 

pedestrian crashes occur on undivided two-way trafficways.  No difference was observed 
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between the dark and light pedestrian crash distributions (χ2 (4, N = 1,240) = 6.7, p = 

0.15). 

The distribution of pedestrian crashes by number of roadway lanes was examined 

by dividing the sample into freeway and nonfreeway lanes.  Separate consideration of the 

number of lanes by road type is important because the number of lanes alone indicates 

only the width of a trafficway.  Thus two lanes on a freeway (separated by a median) will 

generally carry traffic traveling in a single direction and likely involve little glare from 

opposing traffic; two lanes on a nonfreeway roadway will generally carry two-way traffic 

and is more likely to involve glare from opposing traffic.  Table 7 shows the breakdown 

of pedestrian crashes by lane number and light condition, excluding nonroadway crashes 

and unknown or uncoded data.  The small amount of freeway data limits any definitive 

statement about the interaction of number of lanes with light conditions.  In the case of 

the nonfreeway data, most pedestrian crashes occur on two-lane roadways, which likely 

mirror the high exposure level to two-lane roads.  The distribution of nonfreeway 

pedestrian crashes over number of lanes was also found to be different across light 

conditions (χ2 (8, N = 1,127) = 15.5, p < 0.05).  The largest dark/light difference in 

expected values occurred in the 3- and 5-lane crash distributions: in darkness, there were 

proportionally fewer 3-lane crashes and proportionally more 5-lane crashes than in 

daylight.  On explanation might be as follows.  Roadways with odd numbers of lanes 

generally have a center turn lane which, because it is situated on the driver’s side of the 

vehicle is less brightly illuminated than the right side of the roadway.  If pedestrians are 

inclined to use the center lane as a “safety” zone where they might pause while crossing a 

wide street in stages, we might expect that pedestrian occupancy of the center lane on 5-

lane roads would be higher than it is on 3-lane roadways.  If this is the case, then we 

would expect a relatively higher proportion of nighttime pedestrian crashes involving 5-

lane roads than 3-lane roads.  Coupled with the likely higher speed of 5-lane roads (and 

the strong effect of speed on pedestrian crash risk in the dark), it is likely that 5-lane 

roads with center turn lanes result in a higher pedestrian crash risk in darkness. 
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Table 4 
The distribution of single-pedestrian single-vehicle crashes by roadway area during dark 

and light conditions. 
 

  Light Conditions 
Category Category detail Dark Light  
      
Freeway     
 Enter/Exit ramp 1.6%  0.9%  
 Median crossing 0.2%  0.1%  
 Transition area 0.5%  0.4%  
 Rest area -  0.3%  
 Other 2.4%  1.3%  
Subtotal  4.2%  3.1%  
     
Nonfreeway Intersection     
 In intersection 18.4%  25.6%  

 In driveway (near 
intersection) 4.0%  4.5%  

 Intersection related 11.5%  14.3%  
Subtotal  33.8%  44.4%  
     
Nonfreeway Nonintersection     
 Straight roadway 52.0%  37.6%  
 Curved roadway 1.5%  1.2%  

 Driveway (not near 
intersection) 1.8%  4.4%  

 Parking related -  0.7%  
 Transition area 0.5%  0.3%  
 Median 0.5%  0.3%  
 Railroad 0.4%  -  
Subtotal  56.7%  44.4%  
      
Nontraffic/Other/Unknown     
Subtotal  5.3%  8.2  
      
Total percent 100.0%  100%  
Total crashes 553  687  
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Table 5 
The distribution of single-pedestrian single-vehicle crashes by highway class during dark 

and light conditions. 
 

 Light Conditions 
Category Dark Light  
Interstate 2.9%  1.9%  
U.S. Route 4.5%  3.9%  
Michigan Route 22.1%  19.9%  
Business Route—Interstate 1.8%  2.8%  
Business Route—US Route 1.8%  2.2%  
Business Route—Michigan -  -  
Connector 0.2%  0.2%  
Service Drive 2.0%  3.1%  
Country Road, city street, or unknown 64.7%  66.1%  
     
Total percent 100.0%  100.0%  
Total crashes 553  687  

 

 

Table 6 
The distribution of single-pedestrian single-vehicle crashes by trafficway configuration 

during dark and light conditions. 
 

 Light Conditions 
Category Dark Light  
Not physically divided (two-way trafficway) 72.7  69.9  
Divided highway, median strip, no barrier 4.0  3.9  
Divided highway, median strip, barrier 2.2  1.8  
One-way trafficway 2.5  5.4  
Uncoded/Error 18.6  19.1  
     
Total percent 100.0  100.0  
Total crashes 553  687  
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Table 7 
The distribution of single-pedestrian single-vehicle crashes by freeway and number of 

lanes during dark and light conditions. 
 

  Light Conditions 
Category Number of lanes Dark Light  
      
Freeway     
 1 3.8%  23.8%  
 2 30.8%  28.6%  
 3 34.6%  14.3%  
 4 19.2%  19.1%  
 5 -  9.5%  
 6 7.7%  4.8%  
 7 -  -  
 8 -  -  
 9 3.9%  -  
      
Total percent  100%  100%  
Total crashes  26  21  
     
     
Nonfreeway     
 1 3.8%  4.6%  
 2 45.5%  48.6%  
 3 7.0%  10.5%  
 4 18.2%  16.7%  
 5 18.6%  14.2%  
 6 2.8%  2.2%  
 7 3.2%  2.1%  
 8 -  0.8%  
 9 0.8%  0.3%  
      
Total percent  100%  100%  
Total crashes  499  628  
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Weather-related conditions.  In this analysis, weather conditions and road 

surface conditions in which a pedestrian crash occurs are examined for prevalence and 

differences in the dark/light distribution.  Road surface could affect pedestrian risk in 

darkness in several ways.  On a wet roadway in darkness, surface water reduces the retro-

reflectivity of lane markings, making it difficult for drivers to monitor their lane position.  

In addition, the reflectivity of the wet road surface increases, producing a mirror-like 

image of the visual scene.  At night, this mirror image effectively doubles the number of 

light sources projected into a driver’s eyes, increasing both the complexity of the visual 

scene and the total glare light.  It is also probable that driver expectation plays a role such 

that during inclement weather conditions, drivers may not be as prepared to see a 

pedestrian along the roadway as they would in clear weather or in daylight conditions.  

As shown in Table 8, pedestrian crashes generally occur when the roadway surface is dry.  

This is likely most of the time.  However, consistent with the earlier suggestion that wet 

roadways at night create a special visibility problem, the number of pedestrian-vehicle 

collisions is disproportionately higher in darkness on wet roadways than during daylight, 

χ2 (6, N = 1,240) = 54.97,  p < 0.0001).  A similar pattern, not surprisingly, is seen in the 

dark/light breakdown of weather conditions (Table 9).  In darkness, pedestrian crashes in 

the rain are proportionally much higher than in daylight (18% versus 5%; χ2 (8, N = 

1,240) = 87.1, p < 0.0001). 
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Table 8 
The distribution of single-pedestrian single-vehicle crashes by roadway surface condition 

during dark and light conditions. 
 

 Light Conditions 
Road Conditions Dark Light  
Dry 62.0%  78.3%  
Wet 28.8%  12.4%  
Icy 1.8%  2.0%  
Snowy 5.2%  4.5%  
Muddy -  -  
Slushy  0.5%  1.2%  
Debris -  -  
Other/Unknown 0.7%  .7%  
Unencoded 0.9%  .9%  
     
Total percent 100%  100%  
Total count 553  687  

 

Table 9 
The distribution of single-pedestrian single-vehicle crashes by weather condition during 

dark and light conditions. 
 

 Light Conditions 
Weather Conditions Dark Light  
Clear 45.6%  61.1%  
Cloudy 27.1%  30.0%  
Fog/Smoke 1.1%  -  
Rain 17.9%  4.5%  
Snow/Blowing Snow 4.0%  2.9%  
Severe Wind 2.9%  0.7%  
Sleet/Hail 0.4%  0.2%  
Other/Unknown 1.1%  0.4%  
Error -  0.2%  
     
Total percent 100%  100%  
Total crashes 553  687  
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Pedestrian crash risk and roadway crossing geometry.  In this analysis, 

pedestrian crossing trajectory is examined in the context of the precrash vehicle 

maneuver—turning left, turning right, and traveling straight.  As described earlier, these 

analyses were conducted on a sample of 400 cases randomly selected from the set of all 

single-pedestrian, single-vehicle collisions in the 2004 MDOT crash dataset, with 200 of 

the sampled crashes occurring in darkness, and 200 occurring in daylight.  A breakdown 

of the prior crash maneuvers is shown in Table 10.  Although the sampled distribution 

resembles the larger distribution with respect to dark/light breakdown of prior maneuver, 

it should be noted that the intended prior vehicle maneuver was determined from the 

crash diagram and narrative provided in the crash report form and may not always agree 

with the coded maneuver.  For example, in some circumstances the intended precrash 

maneuver may be identified as a turn while the coded precrash maneuver identifies it as 

“not a turn.”  As noted earlier, there are proportionally more turning crashes in daylight 

than in darkness, especially right turns (χ2 (2, N=389) = 25.6, p < 0.0001).  This could be 

a consequence of traffic density: with more vehicles on the road, finding a gap in traffic 

that would allow a turn may require greater lookout effort than at night, resulting in 

failures to notice crossing pedestrians. 

 

Table 10 
Distribution of intended prior vehicle maneuvers in sampled crashes.  

 
 Light Conditions 

Intended vehicle maneuver Dark Light  
Left turn  15.5%  20.2%  
Right turn 5.5%  21.5%  
Not a turn  75.5%  56.5%  
Unknown/Other 3.5%  2.0%  
     
Total percent 100%  100%  
Total crashes 200  200  

 

In examining pedestrian crossing trajectories, about 37% of the cases were 

classified either as unknown/indeterminate or not engaged in crossing a street at all.  This 

portion of the data contained 43% (85) of the cases in darkness and 32% (63) of the cases 

in daylight, with 252 cases remaining for analysis.  For example, in some instances a 
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pedestrian was standing in or walking along the roadway; in others, the police report only 

describes where a pedestrian was struck, not what the pedestrian was doing at the time; 

and in hit-and-run collisions, too little information is available to determine what 

happened. 

Pedestrian crossing trajectory during left turns.  There are four possible 

crossing paths that could result in a pedestrian-vehicle collision while a vehicle is 

executing a left turn (see Figure 2): two crossing paths are perpendicular to the turning 

vehicle’s starting position (A-B, B-A), before the turn is begun; and two are 

perpendicular to the turn after the turn is executed (A-D, D-A).  Based on the likely 

distribution of light as a left turn is executed, a pedestrian is more likely to be illuminated 

and thus be more visible in some crossing paths than in others.  For example, path of the 

headlamp beam is more likely to sweep across location D during a left turn, and unlikely 

to sweep across location A.  Consequently, a pedestrian crossing from D to A (the far 

left) would more likely be seen than one crossing from A to D (the near left).  

For left-turning vehicles, there were 56 pedestrian cases which fell into one of the 

four crossing path categories (or 22% of the pool of 256 cases): 25 cases in the dark and 

30 in daylight.  Only four cases involved pedestrians crossing in the A-B, B-A path.  The 

remaining cases are shown in Figure 3, distributed by light condition and crossing 

direction.  An interaction between light condition and crossing trajectory was observed 

(χ2 (1, N = 52) = 4.7, p < 0.05), suggesting that, in darkness the risk is higher in the near-

left crossing trajectory. 
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Figure 3.  Pedestrian collisions during intended left-turn maneuvers by crossing 
trajectory. 

 

Pedestrian crossing trajectory during right turns.  There are four possible 

crossing paths that could result in a pedestrian-vehicle collision while a vehicle is 

executing a right turn (see Figure 2): as described earlier for left turns, crossing paths are 

perpendicular to the turning vehicle’s starting position (A-B, B-A) before the turn is 

begun; and two are perpendicular to the turn after the turn is executed (B-C, C-B).  Based 

on the likely distribution of light as a right turn is approached and executed, a pedestrian 

is likely to be illuminated on the right side of the road (locations B and C) and thus be 

more visible in crossing paths originating from the passenger side of the roadway 

(locations B or C).  However, we should also consider where a driver is inclined to look 

when initiating a right turn.  That would be toward the origin of the crossing traffic—to 

the driver’s left.  Thus, in the case of a right turn, while visibility may be better on the 

right side, attention may be habitually directed to the left. 

For right-turning vehicles, there were 50 pedestrian cases which fell into one of 

the four crossing path categories (20% of the pool of 256 cases): 10 cases occurred in the 

dark and 40 in daylight.  Paths originating on the right side of the roadway (B-A, B-C and 

C-B) were grouped together for comparison with those originating from the left side of 
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the roadway (A-B).  These cases are shown in Figure 4.  No interaction between light 

level and crossing direction was observed (χ2 (1, N = 50) = 0.35,  p = 0.55). 
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Figure 4.  Pedestrian collisions during intended right-turn maneuvers by crossing 
trajectory.  
 

Pedestrian crossing trajectory during nonturns.  There were a total of 146 

pedestrian collisions involving nonturning vehicles.  These involved collisions while 

crossing at intersections (28 cases), and at nonintersections (88 cases), and other 

pedestrian crossing behavior (29 cases) coded variously as: unknown, other, in roadway 

with traffic, and working in roadway.  Pedestrian crossing paths were characterized as 

originating from either the left or right side of the roadway.  Because intersections are 

frequently fitted with fixed overhead illumination, they were separately analyzed from 

the other cases.  The intersection-related pedestrian crash breakdown is shown in Figure 

5.  In this small sample, there is little evidence of an interaction between lighting 

condition and pedestrian travel direction. 

The nonintersection cases are shown in Figure 6.  In this figure, there appears to 

be proportionally more crashes approaching from the left in the dark.  However, the size 

of the effect is not statistically significant, χ2 (1, N = 88) = 1.14, p = 0.29. 
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Figure 5.  Intersection-related pedestrian crashes by light condition and crossing 
direction. 
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Figure 6.  Nonintersection-related pedestrian crashes by light condition and crossing 
direction. 
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Conclusions 

From the analysis of the 2003 MDOT crash dataset of single-pedestrian, single-

vehicle collisions, prior pedestrian actions involving road crossings either at intersections 

or at nonintersections make up the majority of crashes, with the highest proportion of 

crashes in darkness occurring at nonintersections (30.7%), while in daylight the highest 

proportion of pedestrian crashes occurred at intersections (36.2%).  There are also 

proportionally more crashes in darkness involving pedestrians walking in the roadway in 

the direction of traffic (9.6% versus 4.7% in light).  With respect to the prior vehicle 

actions, most pedestrian collisions occur with a vehicle going straight, both in darkness 

(68.5%) and in daylight (50.8%), with darkness having a proportionally higher share of 

these crashes.  The higher outcome in darkness is likely related to the fact that vehicles 

traveling straight may also, on average, be traveling at a higher speed than turning 

vehicles.  With the limited forward preview provided by low-beam headlamps, any travel 

condition that permits a higher travel speed is also likely to increase crash risk in the 

dark. 

In daylight, turning maneuvers were found to account for proportionally more 

crashes than in darkness.  One explanation for this is that turning to merge into traffic is 

more challenging in daylight, when there are more vehicles on the road and gaps in traffic 

are less abundant.  A driver’s attention may be drawn away from monitoring the 

whereabouts of pedestrians, increasing the potential of a pedestrian collision. 

With respect to the roadway environment, most pedestrian crashes occurred on 

straight roadways both in daylight and darkness.  This is not surprising—straight 

roadways are plentiful and exposure is likely to be high.  However it was also found that 

there are proportionally more pedestrian crashes in darkness than in daylight on straight 

roadways.  In as much as straight roadways are conducive to high speed, as mentioned 

earlier, risk in darkness is likely to be elevated.  

Neither road class nor trafficway configuration interacted with ambient light 

level.  The latter result is especially surprising given that glare from oncoming traffic can 

be expected to be worse on roadways with limited two-way traffic separation in darkness.  
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Perhaps reduced traffic density during periods of darkness also reduces the amount of 

glare from opposing traffic, offsetting any effect of road class or configuration. 

In the lane analysis presented in Table 7, it was found that nearly half of all 

pedestrian-vehicle crashes occur on 2-lane roadways, regardless of light condition.  

However, it also appears that 5-lane roadways present a special problem in darkness that 

may be related both to travel speed and insufficient illumination of the center lane. 

Finally, it was found that wet road conditions and rain involved proportionally 

more pedestrian crashes in darkness than in daylight.  This may be caused by a variety of 

factors that affect visibility (roadway surface reflectance multiplies the number of 

potential glare sources, negative contrast is lost and lane markings disappear on a wet 

roadway, and water droplets on windshields may obscure the forward view) as well as 

reduced driver expectation to see pedestrians on the roadway during bad weather. 

Results derived from the examination of geometric details recovered from the 

diagrams and narrative content contained in police reports suggest that there is valuable 

supplemental information in these reports that can go beyond the information captured in 

the conventional crash data tables.  For example, from the perspective of whether an 

approaching driver may have seen a pedestrian before a collision, it may be less 

important to identify whether the collision occurred while a turn was being executed than 

to identify whether a turn was executed any time in the several seconds preceding the 

collision.  It is similarly important, from the perspective of vehicle lighting, to establish 

geometric relationships between pedestrians and vehicles using a vehicle-centric 

reference basis.  Thus, it is more important to know that a pedestrian is crossing in front 

of a vehicle from the left or right direction than to know each party’s absolute heading.  

When pedestrian location was recast in this manner, a consistent pattern was found in the 

left-turn pedestrian-vehicle collisions that suggests the visibility of pedestrians is poorer 

on the left side of the roadway, consistent with low-beam light distribution.  A similar, 

although not statistically significant, pattern was also observed for pedestrians crossing in 

front of vehicles traveling straight.  No such pattern was apparent for right-turning 

vehicles, perhaps because driver attention is normally directed to the left, regardless of 

light condition, when attempting to merge with oncoming traffic.  In this case, 

pedestrians approaching from the right side of the roadway are the principal victims.   



 28 

Implications for Headlighting 
The analyses of pedestrian crashes in which the striking vehicle was turning left 

(Figure 3) showed a marked increase in relative risk at night for pedestrians who were 

illuminated only by the left side of headlamp beam patterns.  Although this pattern is not 

surprising, the results reported here, together with previous analyses (Sullivan & 

Flannagan, 2006), provide an estimate of the size of the potential problem based on actual 

crash data.  These results suggest that some form of supplemental cornering light may 

have substantial safety benefits. 

The data for nonintersection crashes in which the striking vehicle was not turning 

(Figure 6) showed a similar trend toward greater risk on the left at night, but even though 

the observed difference was large, it was not statistically significant.  This suggests that it 

might be useful to extend the method used here to a larger set of crashes in order to 

provide better information about this potentially important effect.  However, a further 

difficulty in interpreting any such effect is that it is difficult to disentangle the possible 

effects of insufficient light emitted by the striking vehicle from glare effects of light 

emitted by possible oncoming vehicles.  Because the striking vehicle was not turning, 

there is a simple spatial correspondence between the leftward region in which low-beam 

light is intentionally limited and the likely locations of any oncoming vehicles.  Although 

glare was not noted as a factor in any of the crashes analyzed here, it is difficult to rule 

out an influence of glare.  If the pattern that appears in Figure 6 can be statistically 

supported, it would also be valuable to determine the relative contributions of lack of 

light and glare.  

The results reported here provide examples of how asymmetries in headlamp 

photometry may affect real-world outcomes.  They may therefore provide an important 

opportunity for validation of quantitative models of headlamp performance (e.g., Bhise et 

al., 1977; Kosmatka, 2003).  Although headlamps vary, standards insure that they are all 

reasonably similar at the relatively coarse level of the right/left asymmetry of low beams 

(e.g., Sivak, Schoettle, & Flannagan, 2006).  Headlamp visibility models have been 

validated against field visibility data, but testing the agreement of model predictions with 

the right/left differences in crash outcomes observed here could provide a closer tie to the 

actual effects of headlighting on safety. 
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