THE UNIVERSITY OF MICHIGAN

SYSTEMS ENGINEERING LABORATORY

Department of Electrical Engineering
College of Engineering

SEL Technical Report No. 8

LECTED TOPICS IN AUTOMATA THEORY
by

Richard M. Karp

September 1966

This research was supported by United States Air Force
Contract AF 30(602)-3546.

Preface

During the 1964-65 academic year the staff of the Systems Engineer-
ing Laboratory undertook a systematic review of automata theory and its
applications, in an effort to identify significant research problems.
This report represents a part of that study. The contents of this re-
port were presented by the author as a course (Communication Sciences
622) in the Communication Sciences Program at The University of Michi-
gan during the spring of 1965. The author wishes to acknowledge the
helpful suggestions of the students in that course, and to thank Pro-

fessors H. L. Garner and E. L. Lawler for their advice and encourage-

ment.

iid

TABLE OF CONTENTS

Section Page
1. INTRODUCTION « & « v o o o o o o 0 o o v 0 e o e v 0 1
2. THE FUNCTIONS rp(x) AND res(X) « « v ¢« ¢ v o o v o o . 10
3. THE RESPONSE TREE; ACCESSIBILITY . « « « & & & + & & 16
L, SEQUENTIAL CIRCUITS '« & o ¢ o o o o o o o o o o o o & 23
5. RIGHT CONGRUENCES AND THE EQUIRESPONSE RELATION . . . 29
6. THE LATTICE OF STRUCTURE TYPES OF TRANSITION SYSTEMS . L0
7. SEQUENTTAL MACHINES WITH INPUT ALPHABET Ar 57
8. SEMIGROUPS AND SIMULATION . &+ & o o v o o o o o o & & 78
9. REGULAR EVENTS AND REPRESENTABLE FUNCTIONS 99

10. PAIR ALGEBRAS AND STATE ASSIGNMENT «. 12k
11, LOOP-FREE DECOMPOSITIONS OF SEQUENTTIAL MACHINES . . . 183
12, TURING MACHINES AND RECURSIVELY UNSOLVABLE PROBLEMS . 213
13, READ-ONLY AUTOMATA + + o o o o o o o 0 e o o v o o . 221
1k, GRAMMARS AND LANGUAGES + « & & o o o o o o o o o « . . 2u8

References . . v o v v 6 o v ¢ 6 6 4 s e e 6 4 e e e e e e e 506

1. INTRODUCTION

Automata theory is a young mathematical discipline dealing with con-
ceptual models of information processing devices and methods. It is the
purpose of this report to give a formal development of the properties of
some of these models, and to discuss their relationships to some poséible
areas of application. Automata theory has its origins in several disci-
plines. One important model, the finite-state sequential machine, was
originated by engineers seeking systematic methods for the analysis and
synthesis of digital circuits. Other links with engineering include the
similarity between communication channels and probabilistic sequential
machines, and the use of absﬁract state-transition models in the study of
control systems and sequential decision processes. There is a close rela-
tionship between formal generative grammars, devised by theoretical lin-
guists and computer programmers to define the sentences of natural or ar-
tificial languages, and automata which distinguish sentences of a language
from non-sentences. Finally, the Turing machine was invented in response
to the inner needs of mathematics itself; Turing machines provide one satis-
factory means of formalizing the intuitive notions of "effectively calcula-
ble function" and "effectively decidable proposition."

We shall not attempt to give a general definition of the term "auto-
maton." 1Instead, we shall illustrate the concept by informally discussing
the two most widely studied models: finite-state sequential machines and
Turing machines. We shall then point out some features common to these two

models, and briefly mention other related models.

The most direct motivation for introducing sequential machines is to
provide a means of describing formally the structure and behavior of sequen-
tial switching circuits. Since the definition of a sequential circuit re-
quires some preliminaries, we shall postpone it, and shall instead con-
sider a simplified model of digital computer operation. Consider a digi-
tal computer with a fixed, finite amount of internal storage (core memory,
tapes, registers, switches, etc.) whose input data is in the form of a stack
of punch cards. The computer proceeds by reading a card, performing some
computations, (which amount to a change of its "internal state"), reading
the next card, and so on until the computer receives an indication that all
the cards have been read. The computer then prints out a single "record,"
consisting of some of the data contained in its memory.

We can model this type of computer operation as follows: a finite-

state sequential machine is specified by a sextuple (AI, Q, AO, SRy N, 5)

where:
AI is a finite set of input symbols
Q is a finite set of internal states
A,o is a finite set of output symbols

dy € Q 1s the initial state

A is the transition function AQ X AI - Q

o} is the output function O Q = AO.

In modelling a digital computer, these entities may be interpreted
as follows:
AI: the set of possible configurations of holes in a punched

card

Q : the set of all possible internal configurations of the

computer (Thus, for an IBM 7090, the approximate number
220

of states is (2)° .)

A : the set of records that may possibly be printed out

dy* the initial internal state of the computer

N ¢ If the computer is in the state q and reads the input a,
its deterministic internal operations take it to the
state AM(q,a) just before reading the next card.

& : ©(q) is the record printed out if the computer arrives

at state q.

It is evident that certain important considerations about digital com-
puters (the distinction between instructions and data, the subdivision into
arithmetic unit, control unit, input-output units, and memory units with
various characteristics, etc.) are not captured in this general model, and
that the very large number of states is likely to preclude the use of the
model for the exact description of any given computer. Still, it appears
that general theorems about the computations that sequential machines
represent could have implications concerning computers.

The second model we shall describe also has bearing on digital com-
puters, but it existed before computers did. Beginning in the 1930's
several mathematicians (including Church, Kleene, Turing, Post, and Markov)
grappled with the problem of defining what is meant by the term "algorithm",
or "effective calculation procedure." Their definitions of an effectively
calculable (general recursive, computable, A-definable) function are quite

different in form, but the same in content. Turing's definition is based

on what are now called Turing machines. A Turing machine consists of a
finite-state machine, together with a tape, ruled into a two-way infinite
sequence of squares on which symbols may be written. The initial data, as
well as all intermediate and final results of the calculation, are stored
on . the tape. The way in which the tape is read and the writing of symbols
on the tape are controlled by the finite-state machine and the data it

reads from the tape. A formal definition is ag follows: a Turing machine

is a sextuple (A, Q, dp> D, , f) where

A is a finite set of at least two symbols
Q is a finite set of internal states
4y € Q is the initial state

D= {L,C,R} is the set of directions of tape moticn
W is a "halt" indicator

f is a funetion f: @ ><A- {w U A > Q > D}.

One symbol, beA, is designated as a "blank." When a Turing machine
begins its operation, with some initial data on its tape, all but a finite
number of squares contain the symbol b, and the rightmost "non-blank"
square is being scanned (If every square is blank, it doesn’'t matter which
square 1is being scanned.). Suppose, at some point in its operation, the
Turing machine is in state g reading a square containing the symbol a.

Then,

1]

(a) if f(q,a) = w, the machine halts

(b) if £(q,a) = (a', g', d') the machine

i) replaces the symbol a in the square being scanned by a'

ii) enters the state g

iii) reads the square to the right of the present one if
d' = R; reads the same square if d' = C; reads the

square to the left if d' = L.

A Turing machine may be considered to represent a function. This
function has the initial tape configuration (i.e. the unique shortest
sequence of consecutive symbols bounded by the leftmost and rightmost
non-blanks) as its argument, and the final tape configuration as its
value; the function is undefined for initial tape configurations such that
the Turing machine does not halt. With suitable conventions, a Turing
machine can also be considered to represent a partial function
f(xl,xgg...,xn) whose arguments and values are nonnegative integers.

To compute f(al,ag,...,an), put the initial configuration a; b a, b ... b a
on the tape, where beA, leh, and a represents a string of a+l 1l's. The
rightmost 1 is initially being scanned. If the Turing machine halts,

then f(a .,an) is equal to the number of occurrences of 1 in the

19809
final tape configurstion; if the Turing machine does not halt,
f(al,ag,...,an) is undefined.

It is generally felt that the Turing machine (as well as the other
equivalent formulations) gives a satisfactory solution to the problem of
formalizing what is meant intuitively by an "effectively calculable func-
tion." Thus, it is an accepted proposition, but not a provable one, that

any function that can be calculated at all can be calculated by a Turing

machine. This proposition is called Church's thesis.

The finite-state sequential machine and the Turing machine have

several properties in common. Both operate on symbols drawn from finite

alphabets, rather than symbols drawn from a continuum of values such as the
real numbers. Thus, both are digital machines. Their basic operation steps,
including the reading and writing of symbols, changes of internal state,

and tape motion, occur in a discrete sequence, rather than continuously.

Thus, they are discrete-time machines. Each basic operation depends on

only a finite number of symbols, and affects only a finite number of sym-
bols; the machines are therefore finitary. The sequence of steps, and the
final results, are implicitly determined by the initial data. Thus, they

are deterministic. The main respect in which finite-state machines and

Turing machines differ is in the amount of memory they have. The memory
of a finite-state machine, as measured by its number of internal states,
is fixed and finite. On the other hand, the tape of a Turing machine is
available for the storage of intermediate results, and, usually, no

a priori upper bound on the amount of tape a Turing machine will use can
be given. Since, at any given time, the total amount of tape used is
finite, it is misleading to call a Turing machine an infinite automaton;
the terms "growing automaton" or "potentially infinite automaton” are
preferred.

Our main concern in the present report will be with digital, discrete-
time, finitary, deterministic automata. Accordingly, the main mathematical
tools used will be algebra, combinatorial analysis, and one or two results
from computability theory, rather ﬁhan analysis and probability theory.
Other types of automata are certainly of interest also. For example, the
dynamical systems of classical mechanics are analog, continuous-time, deter-
ministic automata; also, communication channels may be viewed as stochastic

automata.

Most of the report will deal with finite-state sequential machines.

We will develop characterizations of the functions representable by finite-
state machines, methods of analysis and classification of such machines,
and methods of realizing machines by interconnection of smaller machines.
We then turn our attention to automata more powerful than finite-state
machines, but less powerful than Turing machines. Since we accept

Church's thesis, all the automata we use as models of information process-
ing systems will be no more powerful than Turing machines; note, however,
that we may find it technically useful to define automata which represent
noncomputable functions (infinite-state sequential machines, for instance),
but whose operation is not finitary, since it involves look-ups in infinite
tables.

One simple example of such an intermediate automaton is a finite auto-
maton which can look back and forth through its input tape (unlike a finite-
state machine proper, which reads through the input sequence in single-pass
fashion), but cannot write or erase symbols on the tape. Another variant

is a linear bounded automaton, which operates like a Turing machine, except

that it may write in or erase only those squares which originally contained
symbols of the input sequence. A third type of machine is the pushdown
automaton, which is a finite-state machine together with an infinite tape
called the "pushdown" which is used subject to the following restrictions:
i) TInitially there is only one square on the tape which is not
blank; it contains a special symbol 4= , and is designated as

the top of the pushdown.

ii) The only square that can be read is the top of the pushdown;
upon being read it is erased (made blank), and the square to
its left becomes the top.

iii) The only square that can be marked (written on) is directly
to the right of the top; upon being marked, a squeare becomes

the top.

When one studies the capabilities of pushdown automata and related
intermediate automata, one discovers strong connections with the phrase
structure grammars and associated phrase structure languages of mathemat-
ical linguistics. We can indicate the nature of these connections by
means of an example. Consider the artificial language whose "sentences"
are sequences of a's and b's such that:

i) the total number of b's exceeds the total number of a's by
exactly 1;

ii) in any suffix of the sentence (obtained by deleting an ini-
tial sequence of symbols) the number of b's exceeds the number

of a's by at least 1.

Some sentences: Some non-sentences:
b a

abb bab

ababb abbba

The set of sentences forms a so-called context-free language, which
can be generated by the following context-free grammar:
A-=Db
A = alA

A derivation in this particular grammar is a sequence @O,Ql,...,@n of

words composed of symbols a,b,A such that @O = A, ¢n does not contain 4,
and, for i=0,1,...,n-1, @i+l is obtained from ¢i by replacing an occur-~

rence of A in @i either by b or by alA.

Example:
% A
? aAA
® afahA
$5 abalA
P, ababA
@5 ababalA
P ababalb
$7 abababb

The set of sentences can also be recognized by a pushdown automaton
which reads an input sequence of a's and b's from right to left and:
i) if b is read, a 1 is written in the pushdown
ii) if a is read, one symbol is read from the pushdown
iii) after the entire string has been read, two additional symbols

are read from the pushdown.

An input sequence is recognized as a sentence if and only if each symbol
read from the pushdown is a 1, except for the last symbol, which is a

blank.

This example gives an indication of the connection between phrase-
structure-languages and seéntence-recognizing automata. More precise con-

nections will be developed later in the report.

2. THE FUNCTIONS rp(x) AND res(x)

In this section we present some pictorial representations of finite-
state sequential machines, and define and give some elementary properties
of the functions yp(x) and res(x), which characterize
the structure and behavior of a sequential machine, Our development will

draw freely on [8] and [10].

Definition., A sequential machine is a system # = (AI, Q A, qo,k,S)

where:
AI is a finite nonempty set (input symbols)
Q is a nonempty set (internal states)
AO is a finite nonempty set (output symbols)
4 € Q (initial state)
A is a function A: QTV(AI-% Q (transition function)
5 is a function 8: Q= A~ (output function)

A sequential machine is said to be finite-state if Q is a finite set,
Although we are interested mainly in finite-state machines, some of our
early results will hold for infinite-state machines as well,

The definition we have given is known as the Moore model of a se-
quential machine, An alternate model, the Mealy model, is the same
except that the output function & has domain Q?<AI and range AO. All
results about the Moore model translate into closely analogous results
about the Mealy model; the Mealy model will not occur in our formal
development,

A finite-state sequential machine can be specified by tabulating

the functions A and o,

10

11

Example 1

AI = {0,1}

Q = (qo}ql)q2)q3}

AO = {a,b}.

0 1

Dbidhl b 9% | @
Q% | %D S
b f L | 93 Q% | b
q3 q2 qo q3 b 4
Table for A Table for

An alternate representation employs a rooted, directed, labelled graph

called a state diagram. The nodes are in one-to-one correspondence with

the states. The node for state g is labelled q/8(q). If A(q,a) = q', then
there is a branch labelled'"a"directed from the node associated with
g to the node for q'. The node associated with 4 is the root of the graph,

and is given a distinguishing mark, The state diagram for the: machine of

Example 1 is:

12

From the state diagram, it is possible to visualize the response of
the machine to sequences of inputs., For example, the input sequence
0010 takes the machine from the initial state successively to ql,qg,qB,
and 9 The output produced at the end of this sequence is 6(q2) = b,
In general, for the given machine, a sequence produces the output a if
and only 1f the sequence does not contain two consecutive 0's, or it
contains two consecutive 1's after the last pair of consecutive zeros,
Let us introduce some terminology, in order to be able to deal
with the response of a machine to input sequences., Let A? denote the
set of all finite sequences of elements of AI;'ihcludingﬁthe null sequence,
denoted. by €. Sometimes AI is referred to as the input alphabeti?and
*. T

the elements of A_ are called words in the input alphabet, Let AI

I
The length

denote the set of non-null sequences of elements of AI“

of a sequence x, denoted lg(x), is the number of symbols in the se-

quence x, Then

]
-

1g(by,by +v b))

lg(e)

1l
[©)

The concatenation of x and y, denoteed xy, is the sequence consisting

of x followed by y; for example, if x = bl e br and y = ¢

then xy = bl see br Cq oo Cye Note that

e o 0 C
1 s’

Xe = €X = X

lg(xy) = lg x + 1g y

1.

(xg)z = x(yz)

The algebraic system (Ai, concatenation) is a semigroup, and the

13

system (A?, concatenation) is a semigroup with identity (monpid). Let
us recall the definitions:

A semigroup is an algebraic system (S,-), where S is closed under
the associative binary operation ., The element eeS is a (two-sided)
identity element if, for all seS, es = se = s, A monoid is a semigroup

with a two-sided identity element.

Remark., A semigroup has at most one (two-sided) identity
element, The system (AI, concatenation) is called the

. *
free semigroup generated by AI, and the system (AI, conca~

tenation) is the free monoid generated by A

L%
We can now extend the domain of the transition function A\ to Q ><?AI.
The definition of the extended function is recursive;

*
For x ¢ AI’ ace AI;
Mase) = q

l(q,xa) = K(K(Q)X):a)-
An alternate recursive definition is:
k(q,e) =4

Ma,ax) = M2A(q,a),x),
Lemma 2,1 The two recursive definitions are equivalent,
PROOF, We use induction on lg x,

Basis, The result certainly holds if lg x < 1,

Induction step. Suppose the result holds whenever lg x « r, Con-

sider x = a., a Then

1% 0 By

14

) =

NA(Ma,8g), 8y B), B) =

k(h(q,al),-agv... 8.,

A(n(q, ay ...,ar_l), ar).
qQ.E.D.

Lemma 2.2

* %
For all q € Q, and for x € A, ¥ € A, Masxy) = Ma(a,x),y) .

The proof, which we omit, is by induction on 1lg x.

*
We define the response function rp(x) as follows: for all x € Ars

rp(x) = k(qo,x), In other words, rp(x) is the state the machine reaches
upon application of the input sequence x. The domain of this function is

*
AI’ and its range is Q.

Corollary 2.1

Mrp(x),y).

rp(xy)

Corollary 2.2

*
If rp(x) = rp(y), then, for all z ¢ AL

rp(xz) = rp(yz).

Another important function is the result function res(x): A; —>AO.
This function is defined by: res(x) = d(rp(x)). This function gives
the output obtained upon application of the input sequence x. The func-
tion res(x) is referred to as the function represented (defined) by the
sequential machine ;&% . A basic question concerning the behavior of
finite-state sequential machines is: what are necessary and sufficient
conditions on a function f in order that it be represented by some finite-

state sequential machine?

15

The proviso "finite-state" in this question is important, since
every function f: A;-a AO is represented by some infinite-state machine.
A machine representing a given function f is obtained as follows. The
input alphabet is AI, and the output alphabet, Ao' The states are in
one~-to-one correspondence with the elements of A;. The state corres-
ponding :to the word x is denoted < x > . The initial state is <e >,

and the transition and output functions are defined as follows:

M<x>,a) = <xa>

5(<x >) f(x).

It is easy to prove by induction that, for all x,

rp(x) = <x >

Then

res(x) = &(rp(x)) = d(<x>) = f(x),

as desired.

3. THE RESPONSE TREE; ACCESSIBILITY

A convenient way to represent A§ pictorially is by means of the
free tree generated by.AI. This is a rooted infinite directed tree,
in which the branches directed out of any node are labelled in 1-1
correspondence with the elements of AI. Part of the free tree for

A= {0,1} is shown below:

0 1 0 1 0 1 0O 1

. *
There is a one-to-one correspondence between AI and the set of nodes;

if xe_/flf,

if x = aj85 c.ov 8, N is reached by following the successive branch

let its corresponding node be n . Then the root is 0 s and,

labels = ++,8 UD from the root. The response tree for a sequen-

l) 82, .
tial machineza‘ with input alphabet AI is obtained by labelling each

node o with the state rp(x). For the infinite-state machine discussed
at the end of the last section, rp(x) = < x >, so n_is given the label
< x >, For this particular machine, but not in general, the response

tree i1s a state diagram, except that the outputs are not shown. For the

machine of Example 2.1, a part of the response tree is:

16

L7

A state q is accessible if, for some X, q = rp(x). If q is accessi-
ble, let

a(q) = min 1g(x) .
{x | rp(x)=q}

Evidently, q occurs as a label in the response tree for M if and only
if q is accessible; the label q will appear at the d(q)th "level" of the
response tree, and will not appear at any earlier level.

In general, the response tree for a machine contains redundant infor-
mation, since the transitions out of a given accessible state may be
exhibited more than once. This redundancy is eliminated in the EEEEEQ
response tree for /4 , which is constructed as follows. Starting with
the root the tree is generated level-by-level, and from left to right
within a given level. ZEach node already generated is examined, but the
branches out of a node, and its successors at the next level, are gen-
erated if and only if the label of the node has not been encountered
before. A unique left-to-right ordering of the nodes at a given level

is induced by putting AI in some alphabetic order; the branches out of a

18

node are arranged left to right in aScending alphabetic order of their

labels.

Example 1:

The pruned response tree for the finite-state machine of Example

2.1 is:

The property that every accessible state is a node label is pre-

served even in the pruned response tree.

Lemma 1
The node label g occurs in the pruned response tree for 7z%
if and only if q is accessible. If q is accessible, the
shortest path in the response tree from the root to a node

labelled q is of length d(q).

19

PROOF: If q is not accessible, then there is no x such that q = rp(x),
and therefore no node is labelled q. To complete the proof, we show by
inductioh on d(q) that, if q is accessible, there is a node labelled q,
and that the shortest path from the root to such a node is of length d(q).
Basis. d(q) = O; then q = a4y = rp(e). The root is labelled a4y

Induction step. Suppose the result holds for d(q) < r. Consider

d, with d(q) = r. Then there exists an ordered pair (q',a)
such that d(q') = r-1 and A(q',a) = q. By the induction hypo-
thesis, there is a node ny labelled q' at a distance r-1 from
the root. Therefore, the first node labelled q' to be encoun-
tered in the construction of the pruned response tree is at a
distance r-1 from the root (the distance is S r-1, since it is
encountered earlier than ny in the construction process, and
it cannot be < r-1 since, if rp(z) = q', 1g(z) >r-1); let this
first node be n, - Then there are branches out of n, in the
pruned response tree, which therefore contains the node nZa
But rp(zar) = x(rp(z),ar) = x(q',ar) = q, and the node nzar is
at a distance r from the root. Finally, the by definition of

d(q), no node n, at a distance < r from the root can be labelled

q.
Q.E.D.
Lemma 2
Let /t have n accessible states. Then, if q is accessible,

d(q) < n-1.

20

PROOF: Let x be a word of minimum length such that rp(x) = q. Suppose
x can be written as x = u v w where v # e and rp(u) = rp(uv). Then
rp(uw) = Arp(u),w) = A(rp(uv),w) = rp(uvw) = q, contradicting the mini-
mality of x. If this contradiction is to be avoided, all the prefixes
of x (including the null sequence) must give different responses, and
each response must be an accessible state. Since the number of such

states is n, x may have only n prefixes, and 1g(x) <n - 1.
! Q-EODo

The pruned response tree for a finite-state machine can certainly
be constructed with a finite number of operations. For, if AI has k
elements, and the number of accessible states of Zh is n, the response
tree has kn branches, and, as an easy consequence of Lemma 2, every node
is at a distance < n from the root. Thus, we have an algorithm for deter-
mining the accessible states of a finite-state machine. Stating this re-

sult more precisely, we claim:

Corollary 1
There is an effective procedure for determining the accessible

states of a finite-state sequential machine.

To prove this corollary quite rigorously, we would have to define a
Turing machine to carry out this procedure, given a conventional repre-
sentation of a finite-state machine'as input data. We shall not be so
fussy, and shall acceptveffective procedure" more intuitively defined.
More care will be required, of course, when we prove the nonexistence
of algorithms for certain decision problems.

Some other results now follow quite easily.

2l

Corollary 2
Let 71 be a finite-state sequential machine, and let beAO.
‘There is an algorithm to determine whether there exists xeA¥

such that res(x) = b.

PROOF: The algorithm is as follows: list the accessible states of 7,

and determine whether any accessible state q has 8(q) = b.

Q.E.D.
Corollary 5
Let 74 = (AI, Qs A Ay N 5) and
m' = (AI, Q'y A, ads Ny 5') be finite-state machines.

There is an algorithm to determine whether there exists

xeA¥ such that res = res 7”,(x).

()

PROOF: Let Tm = 78 >< ', the direct product of » and 7% ', be

a finite-state machine defined as follows: :
A = (A, Q><Q', A <A, (15,9, A, §)
where
A(a,a'),8) = (Ma,a), M(a',8))
and
8(asq") = (8(a), 8'(a").
The desired algorithm consists of determining the accessible states of

ﬁa , and checking whether there is an accessible state (q,q') such that

Q.E.D.

22

Since the inaccessible states of a machine play no part in the
determination of the functions rp(x) and res(x), they can be ignored
for most purposes. In what follows, we shall sometimes restrict our

attention to machines in which all states are accessible.

L. SEQUENTIAL CIRCUITS

One of the principal reasons for studying sequential machines is
their usefulness in the analysis and synthesis' of synchronous
sequential circuits. In this section we present a moderately realistic
model of a certain class of sequential circuits, and establish a connec-
tion with sequential machines.

A sequential circuit is a finite collection of interconnected ele-

ments of two types: gates and latches. A gate with [inputs and m out-

puts is depicted below. Each input and output is a function of a real

variable t (time)

and has 3 possible values: O, 1/2, 1. Whenever an input is 1/2, we
assume that the outputs are undetermined. If we were modelling a phys-
ical circuit with voltages as inputs, the interpretation might be as
follows:
1l: a voltage above a given threshold Vl
0: a voltage below a given threshold VO
L/Q: a voltage between VO and Vl’ for which the response of

the circuit is uncertain.

23

oh

l ’ ,,,»——"“”"m—‘_\

i T T

Voltage

x(t)=0 x(t)=1/2 *(0)=1 time

A switching function of 1 variables has as its domain {O,l}(z) (z-tuples

of O's and 1's), and, as its range, (0,1}. An l-input m-output gate is

specified by:
a) m switching functions of I varisbles,
fi<Xl’X2""’X£) i=1l,...,m.

b) a response time A,

The behavior of g gate 1s determined as follows: let
(al,ag,...,alz) € {o,l}m. If, for t < T <t + A, and for
J=1,2,...,1, Xj(T) = 8y, then, for all i, yi(t+A) =’fi(al,a2,...,a1).
In all other cases, the outputs are undetermined.

There is a special input signal to the circuit, called €, which is

a clock signal of width €. The graph of the function 6(t) is of the form:

25

In other words,
1l if, for some j, tj < t< tj + €
o(r)y =

O otherwise.

A latch with response time y has 6 as an input, one additional in-

put x, and an output y. If, for tj <T< tj + €, x(1) = a, where

a € {0,1}, then, for tj fetp<T<t, ,+e y(1) = a. In all other

g+l
cases, y is undetermined.

The element E is connected to F (denoted E - F) if some of the out-

puts of E are identified one-to-one with inputs of F. A cycle is a

=g =0=

sequence of elements El’EE""’En such that El-e E2 oo En—l —>En —aEl.

We make the following interconnection assumption: every cycle in-

cludes a latch. With this assumption, a sequential circuit takes the

following form:

— T T T T T T T

26

Xl ” 8 0 Xp
yl ° yq
N LATCHES
CYCLE-FREE :
)
GATE 9 ——‘e e o0 e
| A_J —_—%
NETWORK : A
'
1 Wq
Zl vee Z

A cycle-free gate network is sometimes called a combinational circuit.

With regard to its behavior, the entire cycle-free gate network may be
represented as a (p+q)-input, (r+q)-output gate, with a response time
A which is equal to the maximum, over all directed paths in the gate
network, of the sum of response times of the elements in the path:

Exemple 1:
Xy X Y1\ Yo y3 X X), y

27T

If each element has the same response time A, then all the outputs will
be determined if the inputs are held at constant binary values for a
period 3A.

Let the switching functions associated with the "equivalent" gate

be divided into an r-tuple F = (f.,f ..,fr), determining z

1t 10002 By

and a g-tuple G = (ql,qg,...,qq), determining URREERL AL

We shall also make the following timing assumptions:

i) there is a constant n > A such that, for all j,
tj - tj-l > e+ p+ 7, where p is the maximum
response time of any latch in the circuit.

ii) a fixed binary input p-tuple X(j) is applied
to the gate network throughout the intervél
j41 T up tj+i + €],
iii) in the period [tl =M, by F €], the outputs of
| the latches are given by a fixed binary q-tuple

(0).

It follows by induction that, for j > 1, the outputs of the latches

assume fixed binary values Y(j) in the interval [tj + o, t + €], and

J+1
that the outputs z,,...,z, assume fixed binary values given by 7(j) in

the interval [tj+l -n + A tj+l + €], where
z(3) = FX®), ¥(J))
Y(3+1) = w(3) = a(xX(3), ¥(3))-

Perhaps a picture will clarify the timing.

28

<L
c €
tj) J+1l
. Y(3) 0
. X(3) »
16 I
o W(i)

Thus, because of the interconnection and timing restrictions we
have imposed, the essentials of the behavior of the circuit are reduced
to difference equations, giving a digital, finitary, discrete-time,
deterministic representation. In fact, the circuit can be represented

by a Mealy-model sequential machine

2 = (10,0, (0,13, (0,137, 1(0), ¢, .

The transition and output functions are determined by the combinational
circuit, and the internal state is "stored" in the outputs of the latches.

If the functions F = (f ..,X_, a

...,fr) are independent of x,,. o

l)
Moore model representation is obtained.

It is possible to show that, in a sense to be defined later, every
sequential machine can be realized by a sequential switching circuit.

Later, when we discuss state minimization and decomposition of sequential

machines, we shall comment on the implications for sequential circuit design.

5. RIGHT CONGRUENCES AND THE EQUIRESPONSE RELATTION

In this section we derive necessary and sufficient conditions for

a function
i A; - Q

to be the function rp(x) for some sequential machine with input alphabet
AI and the state set Q. In the course of our development we introduce
the concept of a transition system (sequential machine without outputs),
define the equiresponse relation of a transition system, and discuss the
lattice of equiresponse relations (right congruences) over Ai.

First, we review some important concepts. A relation R over a set S
is a subset of S >< 8. The statement (a,b) € R is sometimes written
aRb. A relation R over S is: reflexive if, for all aeS, aRa

symmetric if aRb =————> bRa

antisymmetric if aRb and bRa =——> a=b
transitive if aRb and bRe =—> aRc.
A relation which is reflexive, symmetric, and transitive is an equiva-

lence relation. Associated with an equivalence relation = over S is a

unique partition of S into equivalence classes, such that a=b if and only

if a and b are in the same equivalence class. An example of an equiva-
lence relation over the integers is congruence modulo n; the equivalence
classes are the residue classes modulo n. An equivalence relation over
the set of American citizens is the relation "A lives in the same state
as B;" in this case, there are fifty‘equivalence classes (if we exclude
citizens living abroad, etc.). The rank of an equivalence relation is

the number of equivalence classes. An equivalence relation is of finite

29

30

rank if the number of equivalence classes is finite.
A relation which is reflexive, antisymmetric, and transitive is a

partial ordering relation. An example of a partial ordering relation

over the subsets of a set is Sl«g 82 .
Let (8,°) be a semigroup. An equivalence relation = over S is

called a right regular equivalence relation or a right congruence if

XEy = for all w € S, XxWw = yW;

left congruence if

X=y = for all u € 8, wx = uy;

two-gided congruence if

X=EY —> for all u,w € S, uxXw = uyw.
Equivalently, = is a two-sided congruence if and only if it is both a
right congruvence and a left congruence.

Two-sided congruences over semigroups are closely related to the
homomgrphisms of semigroups. In general, a homomorphism is a mapping
from one algebraic system Qnto (or into) another, such that certain rela-
tionships among elements are preserved; i.e., if the relationship holds
for thé original elements, it holds for their images.

Let (S,) be a semigroup, and let (T,*) be a multiplicative system

into}

(T is closed under the binary operation ¥.). A homomorphism of 8 {onto .

. . into .
T is a function @ from S {onto} T such that:
For x €8, v €85, o(x.y) = o(x)*o(y).

Here, the:relationship preserved among X,y, and z is this:

if x.y = 2z, then o(x)x o(y) = o(z).

31

Example:
*
The function ¢(x) = 1lg(x) is a homomorphism from (AI, concatenation)

onto (nonnegative integers, +).

A 1-1, onto homomorphism is an isomorphism; the inverse of an iso-
morphism is an isomorphism. If a homomorphism exists from a semigroup
(8,') onto a multiplicative system (T,*), then (T,*) is also a semigroup
(i.e., ¥ is associative):

o(x-y)% o(z) = o(x.y-2);

(p(x)% o(y))* o(z)

P(x)*(o(y)% 9(z)) = o(x)#(o(y-2)) = p(x.y2).
Any two-sided congruence p over S determines a homomorphism of S.
For any xeS, let [x] denote the equivalence class of x with respect to p.

We define S/p, the factor (or guotient) semigroup of S modulo p as:

({[x], xeS}, °), where [x] ¢ [y] = [x.y].
To show that the operation ° is well defined, it is necessary to show
that its result does not depend on which representations of the equiva-
lence classes [x] and [y] are considered. Thus,

suppose X, € [x] and x. € [x]; therefore x

1 2 1P %o

Also,
v, € [y] and Yo € [y]; therefore Yy P Vo

Then P X5 since p is a left congruence, and X5 P X5¥5s

171
since p 1is a right congruence. Therefore, by transitivity, XY P X¥pe
It is now evident that ° is well defined, and that the function

X - [x]

is a homomorphism of S onto S/p.

32

Conversely, let © be a homomorphism of (S,*) onto (T,%), and let

the relation = be defined as follows:

y == o(x) = o(y).

S

Lemma 1

The relation = is a two-gsided congruence, and T is isomorphic

e
with s/g.

PROOF: FTirst we show

X=y —= for all u,w, uxw = uyw:

Bl

y = 0(x) = o(y);

Sl

o(wew) = o(u)* p(x)k o(w) = p(w* o(y)* o(w) = o(uww);

therefore
UXW % uyw.

The isomorphism from S/% onto T is £ [x] - o(x),
where [x] is the equivalence class of x with respect to 5. We must
show that

£([x] ° [y]D) = £([x])* £([y]).
But £(Ix] = Iy]) = £(Ixy]) = o(xy),
and f(xD* £([y]) = o(x)* o(y) = o(x-y).

Thus we have established the following result.

33

Theorem 1
Every homomorphic image of a semigroup (S,.) is dsomorphic
to the factor semigroup with respect to some two-sided con-
gruence, and every factor semigroup (S/p,e) is a homomor-

phic image of (8,*)

With this introduction to right, left, and two-sided congruences,
we may return to the question of characterizing response functions (i.e.,
determining the possible ways in which the response function may classify
the‘elements of A?). The answer to this question will involve the right
congruences over AI'

Since the function rp(x) does not involve outputs, it will be con-
venient to consider transition systems (sequential machines without out-

puts). A transition system is a quadruple

T = (AI’ Q, qO’ >‘-)’;

each element of which is defined exactly as in the definition of a
sequential machine. Since rp(x) ranges only over accessible states, we
shall further restrict attention to transition systems with every state
accessible.

The equiresponse relation,J_ of a transition system T is an

*
equivalence relation over AI defined as follows:

x | y&=>rp(x) = rp(y).

Thus, J_ is of finite rank if and only if the number of (accessible)

states of M is finite.

3k

Lemma 2
For any transition system T, the equiresponse relation is a

. *
right congruence over AI.

PROOF: x | y === rp(x) = rp(y)
—> for all w € A?, rp(xw) = TP(YW)

== for all w € A;, X W J_ yW.

Lemma 3
*
Let p be a right congruence over AI. Then p is the equires-

ponse relation of a transition system.

PROOF: For x € Ai, let [x] be the equivalence class associated with p
containing x. Consider the transition system

(o) = (&, ([x], x € A1,[e], A),
where A([x], a) = [xa]. The function A is well defined by this equation
since

X =3 X

1P % 18P X

08;

—_— [xla] = [Xea].
It is easy to prove that, for all x,
rp(x) = [x].

Therefore,

35

Theorem 2
. . 3 . N *
Every equiresponse relation is a right congruence over AI’
. * . .) .
and every right congruence over AI is an equiresponse

relation.

Thus, we have a complete characterization of equiresponse relations,
and, therefore, of the possible functions rp(x). It is interesting to
compare right congruences (equiresponSe relations) with regard to how
finely they classify input sequences. Let Rl and R2 be right congru-

*
ences over AI. Then

R, <R,

e X Ry —%):XRQ.V-
Thus, when Rl < RE’ each equivalence class for Rl is‘qqntained in an
equivalence class for R2.

It is easy to verify that S isvreflexive, antisymmetric, and tran-
sitive. Thus, it is a partial ordering of fe, the set of all right
congruences over A;; equivalently, we say that (ﬂ?, S) is a partially
ordered set. We shall establish the stronger result that (761 S) is a
lattice.

Let us review the definition of a lattice. Let (S, <) be a par-

tially ordered set, and let x and y be elements of S. The element z € 8

is the greatest lower bound of x and y (denoted glb(x,y)) if

a) z<xandz<y, and
b) if w <x and w <y, then w < z.

Similarly, v is the least upper bound of x and y (denoted lub(x,y)) if

36

a) x<vandy<v, and
b) if x <uand y < u, then v < u.
A lattice is a partially ordered set in which any two elements have a

glb and a lub.

Example 1:
The partially ordered set (S, 5) where S is the positive integers,
and x <y if x is a divisor of y, is a lattice. In this lattice,

© lub(x,y) = lem(x,y), and glb(x,y) = ged(x,y).

Example 2:
The partially ordered set (S, <), where
S = {a,b,c,d},
and ﬁhe relafion <1is
{(a,c), (a,d), (b,c), (b,d)},

is not a lattice.

Theorem 3

The partially ordered set (A, <) is a lattice.

PROCF: TIf »Rl € 7£ and R2 € ﬂ?, we shall explicitly define

P

]

glb(Ry,R,)

and Q lub(Rl)Rg)]

i

and prove that P and Q have the required properties. We define P as
follows:

X Py &= x Rl y and x R2 vy

It is evident that P is an equivalence relation. Also, P is a right

congruence:

37

x Py —> xR, yandx R2 y

1
=V w, XW Rl'yw and xw R2 yw
=Y w, xw P yw.

Also, it is clear that x Py ==X Rl y and

XxXPy =—>x R2 ¥y, so that
P< Rl and P < R2. Now, suppose R < Rl and R < Rg. Then
XRy =>x Rl y
and xRy ==xR,V;
thus XRy —>xPy.

This completes the proof that P = glb(Rl,Re).

It is tempting to define
Q = lub(Rl,Rg)

by x Qy &> xR, yor xRy y => x(Rl U Re)y.

Unfortunately, this is not a transitive relation. For example, take

x Ry y if 1lg(x) = 1lg(y) mod 2

lg(y) mod 3 .

. 2 2
Then, if a € AI, e Rl a, and a8 R2 a5,

and X R, y if 1g(x)

but it is neither true that e Rl a5 nor that e R2 as.

n o :
(Here, .a denotes the. concatenation of n-a's.)

Instead, we must define Q as the transitive closure of the relation

Rl U RQ:

x=2., y=2,., and - zl(Rl U Rg)zi_'_1 for i=1,2,...,r-1,

In this case, we say that x is chain connected to y by the sequence

X Qy = 3 Zl,Zg,...,Zr such that

ZysZps ey Then Q is an equivalence relation; to check transitivity,

38

for example, note that, if x is chain connected to y by the sequence
ZsTpseeesbs and y to z by the sequence WysWoyeeosW o, then x is chain
connected to z by the sequence Zl,Z2"'.’ZT},W2’";)WS';TAlSO’ Q is a
right congruence; for, if x is chain connected to y by Zl’ZE""’Zr’
then xw is chain connected to yw by ByWy ZoWy eeey S W
It is further clear that Q is an upper bound for Rl and Rg:

X Rl y =X Q Yy

X R2 y = X Q Y.

Finally, suppose R is an upper bound for both Rl and Rg;

X Rl y =—>xRy

and X R2 y =—>xRy.

Suppose X Q y. Then x and y are chain connected by EERXEFPENY
where, for each i, zZ3 Rl Ziq

or Zi R2 Zi+1;

thus Zs R i1

Since R is transitive, 2y R 2.3 i.e., XRy.

Therefore, x Q y = xRy, and Q <R. This completes the proof

of Theorem 3.

It may be helpful to discuss the equivalence classes of the right

congruences
P = glb(Rl,Rg) and Q = lub(Rl,RE).
The equivalence classes of P are simply those nonempty sets obtained as

the intersection of an equivalence class of Rl with an equivalence class

of R2. The determination of the equivalence classes of Q can be illustrated

39

by an example. Suppose Rl and R2 are both of finite rank. Let Rl have

equivalence classes E E3’Eh’ and R2, equivalence classes Fl,Fg,F3,Fu,F5.

l,EQ’

These classes are indicated below, with lines drawn between the classes

which are assumed to have an element in common.

= Fl U F2 UF

Fh Ur

Then E, UE

1 2 3’

and E

3 U Eh 5°

The equivélence classes of Q are El u E2 and E3 U Eh'
The lattice (Ky, <) has the universal lower bound O and the uni-

versal upper bound I, where:

¥x Vy, xOy,

and ' xIy&=D x=y.

The sets of left congruences and two-sided congruences over A; are
lattices, with the same ordering relation and definitions of glb and
lub as in (7{2 <). Each of these lattices is a sublattice of the

*
lattice of equivalence relations over AI.

6. THE LATTICE OF STRUCTURE TYPES OF TRANSITION SYSTEMS

It is natural to introduce an ordering — of transition systems with

input alphabet AI induced by the ordering of their equiresponse relations:

To T e—— | <]| .
T !

This is a quasi-ordering (reflexive and transitive), but not a partial
ordering (not antisymmetric), since distinct transition systems may have
the same equiresponse relation. If we say that two transition systems

are of the same structure type if their equiresponse relations are the

same, then the structure types form a lattice isomorphic with (f?, S).
In this section we develop the lattice ordering of structure types
of transition systems somewhat more indirectly than in the above discus-
sion, and thereby introduce the important concepts 'homomorphism of a
transition system,' and ‘equivalence relation with the substitution

property. '

Let T

il

(AI’ Q, q‘O’ >\-)

and T

be transition systems for which all states are accessible. A homomorphism

(AI) d} q-.o) i)

from T onto 7" is a function h: Q — § such that
a) hlqy) =
b) ¥aqeQ,Vach, hr(g,a) =i(hlq),a).
Thus, if A(q,a) = q',
An(q),a) = nh(q').

A one-to-one homomorphism is an isomorphism; the inverse of an isomorphism

is an isomorphism.

Lo

L1

There is an immediate application of the concept of a homomorphism
to the "series connection" of transition systems. In what follows we use
the terms "series connection" and "realization" heuristically without
defining them. Let h: Q —» § be a homomorphism of T onto 'J7, let R be
a set, and let f be a one-to-one function from Q onto S, where S g;@ >R,

such that, for all q,

Since f is one-to-one and onto, it has an inverse f_l.
Each element of Q thus has a '"representation" in S as an ordered
pair (h(q), k(q)), and, corresponding to the function
AN Q X AI-a Q,
there is a function p which operates on the representations:
T8 S><AI—aS.

It is required that

w(f(a),a) = f£(r(q,a)).
Thus, if (q,r) € S,
- 1, -1,- -1,-
H((Cbr):a) = FA(f (Q)r))a) = (h A(f (Cl)r):a); k A(f (Q;r>)a)'
Since h is a homomorphism,
-1, - - -1,-
h A(f “(q,r),8) = A(h £ “(q,r),8).
But, if
-1,- . *
f (q,r), = q,
* -
then h(q") = q;
thus, h f-l(i,r) = q,

and the first component of u(a,r),a) is A(q,a), which is independent of
r, and is given by the transition function of T . The second component,

K(f_l(i,r),a) will, in general, be dependent on q, r, and a. Let us

Lo

write this function in the form(p(q,a),r); if (q,r) £ S, ¢ may be
assigned an arbitrary value in R. Then ¢ can be taken as the transition
function of a transition system

U = @>=<a, R, k), @)
Strictly speaking, lL is a transition system only if Q if finite; other-
wise, U has an infinite number of input symbols. The function p is the
transition function of the transition system which is the series connec-

tion of ﬁ% and QL :

N

R
W

Thus, the homomorphism h has yielded a series realization of T . - T
has been decomposed into "simpler" transition systems; note that, if T
is finite-state, and h is neither an isomorphism nor the constant func-
tion h(q) = g,
then R can be chosen such that Q and R each have fewer elements than Q.
Just as semigroup homomorphisms are determined by two-sided congru-
ences, the homomorphisms of a transition system T are determined by the
equivalence relations with the substitution property over Q. An equiva-

lence relation p over Q has the substitution property if

q, p a, == for all a € A, k(ql,a)p x(qg,a).
Associated with p, an equivalence relation with S.P., is a homomorphism

of T onto the factor transition system modulo p, ’r/p. For q € Q, let

[q] denote the equivalence class of g with respect to p. Then

L3

7 /o

(AI’ {[Q]; q €Q}, [qo]; X):

where

i([Q])a)

We omit the easy verification that A is well defined, and that the

ENCPENP

mapping ¢ —» [q] is a homomorphism of T onto T/o.
Going in the reverse direction, let h be a homomorphism of 77
onto T . Then the equivalence relation = defined by:
q; = ¢, <= h(q;) = h(q,)
has 5.P., and "l:' is isomorphic with 'T'/E. The verification of this
is analogous to the corresponding step in our discussion of semigroup
homomorphisms.

The following theorem summarizes the discussion so far.

Theorem 1
Every homomorphic image of a transition sytem T is isomorphic
with ’T’/p, for some equivalence relation with S.P. p, and

every factor transition system 7"/p is a homomorphic image

of T .

Let 7" and 77 be transition systems with input alphabet AI and
with all states accessible. Let their equiresponse relations be,
respectively, 'L'T' and |, . We shall show that there is a homomor-
phism from 7’ onto 7 if and only if "LT' < 1 Py and that such a

homomorphism, if it exists, is unique.

4

Lemma 1
- *
Let h be a homomorphism from 7 onto T . Then, for all x € AI,

rp 2 (x) = hlrp_ (x).

PROOF: The proof is by induction on lg(x).
Basis. If 1lg(x) = O,

then x = e,

rp'f' (e) = a.o)

and h(‘rp'ﬁ(eﬂ = hlgy) = q4

Induction step. Assuming that the statement of the lemma holds when

1g(x) = r-1,

consider y = xa,

where a ¢ A and lg(y) = r.

Then 'rp’j__?(xa) =):(rprr_,(x},a)
= Mn(rp ,(x)),a)
= h(MI’P,T,(X),a))
= h(rp_(xa))

Let the relations — and <« be defined by

T - T «——> there is a homomorphism from 7’ onto 7,

o -

and 77 < 7 if and Vonly if there is an isomorphism from 7 onto 7.

The following corollaries of Lemma 1 are immediate.

Corollary 1

X 'Lm/p y =—> rp,r,(x} P rpq,,(y)o

b5

Corollary 2

Ifr T = T, the < | _.
o n_L,F __er,

Corollary 3

-

1’1"’[‘«-—>"|",thenj_'_P = J_ﬁ".

Corollary 4

r T - T’, there is exactly one homomorphism from

qq to T .

PROOF: Since all states are accessible, h is completely determined by

the equation

rpT(X) = h(rprT_,(X)%

We next establish the converse of Lemma 1.

Lemma 2
1f | < | _,then T o T.
T T
PROOF: Let the function h from Q onto Q be defined as follows:

h(q) =q <>rp_(x) = ¢q

T
———R G oA = _',
p,,-,() q

Since (x) = rp,T,(y) B rP'T'(X) = rp7-,(:>f),

rp
T
and since every state q is accessible, the given definition determines

h completely.

To verify that h is a homomorphism, we note that:

2) o (e) = g

and rp,7-=,(e) = Qo

therefore, h(qO) = Q-

L6

b) Suppose rpa,(x) = q,
so that rpr.]._’(x) = h(q).
Then rpm(xa) = A(q,a),
and TP, (xa) =):(rpq__'(x),a)
= Nh(q),a)
Therefore h(rn(q,a)) = i(n(q),a).

Summarizing, we have:

Theorem 2

-

i 477<—==>_J_T < |

-

Corollary 5

"7 PSRN f'<:::j> = -
Example 1:

Let us apply our results so far by constructing a homomorphic

i

image of a finite-state system T with AL {a,b},
Q = {1)2J5)u35}f ' qO =1

and A\ specified by the following table:

x(q,a) aAIb
1 [|1]k
2 1|3
Q|3 512
L 511
p) 215

The pruned response tree for T is:

The equivalence relation p with equivalence classes {1,2} = A4,
{3,4} = B, and {5} = C has the substitution property. The response
function for 77/p is given by

rp (x) = [rp (X)]
T/p T

Thus Q

{4,B,C}.

The pruned response tree for 'T'/p is:

A series decomposition of T based on the homomorphism T 77b
can easily be constructed. Let R = £a,5}, and let f: Q - S g;Q >R

be as follows:

U1 WO e

Then u is given by the following table:

a b
Ao | A,a | B,B

AR | A,a | B,
B,a | C,a | A,B
B,p |C,0 | A,a
c,a | AR | B,

The transition system 7" may be realized by the series connection of 7'/p
and U, where U - (@ > A, Ry ®), and ¢ has the following table,

where —— indicates that the entry is arbitrary.

A,a "A,b | B,a | B,b | C,a"| C,b

lall o B a B B a
R

Bl o a a o - -

Corollary 5 establishes that the relation «- is an equivalence rela-
tion over the set of transition systems with input alphabet ‘AI for which
all states are accessible. Let the equivalence classes associated with

this relation be called the structure types of transition systems. Let

the structure type of ’7" be denoted < 7> , and let the equiresponse rela-

tion common to all the elements of < 7 > be denoted _J_ . The rela-
<T >

tion -» between structure types is defined in the natural way:
<T>o< T >
if and only if, for all A € <7 > and L e<?>s A - L.

Then the following is an easy corollary of Theorem 2.

Corollary 6
<77>- < 77> if and only if | < 1.
< 7> < 7>
The relation — is a partial ordering relation over the set of struc-
ture types. To discuss the relationship between the system ({< 7 >},=)
and (717 ,5) , we need some further general concepts. The partially ordered
systems (S, <) and (T, C) are isomorphic if there is a one-to-one func-
tion @ from‘S onto T such that:
x <y = 9(x) Coy).

If (S, <) and (T, ©) are isomorphic, then one is a lattice if and only if

50

the other is. If (8, <) and (T, C) are isomorphic lattices, then

o(glb(x,y)) glo(o(x), o(y)),

[}

and

o(lub(x,y)) = lub(p(x), o(y)).

Theorem 3
The partially ordered systems ({<T>}, —) and (#, <) are

isomorphic lattices.

PROOF: The structure type <7> ¢ {<#>} corresponds to the right con-

gruence _J_ € /(- Since every right congruence /f is the equiresponse
<T >,

relation of some transition system 7’ , every right congruence % is

for some structure type <T>. It is immediate that the condi-
<7>

tions for isomorphism are satisfied.

To complete our discussion of the lattice ({<7>}, -), we shall
explicitly determine the greatest lower bound and least upper bound of
two arbitrary structure types <77> and <’7"’>, and shail specify universal
upper and lower bounds‘. Let us keep in mind that glb(<7>, <7>) is the
structure type of the "least complex" transition system that has both 7
and ’7-; as”homomorphic images, and that lub(<7>, <7>) is the structure
type of the "most complex" transition system that is a homomorphic image
of both 7 and 7 .

Let us recall that 77 X T , the direct product of the transition

P

systems 7 and '77, is defined as follows:

A

7 > 77 = (AI’ Q ><Q; (qO’ 5‘0)’ }\):

51

where

(@6,d),a) = (Ma,8), MG,a)).

Since 77 >< 7 may have inaccessible states, we define ac(7" >< 7))

(the accessible part of 77 > 7) as the transition system

(AI’ R, (qo,io), 7‘-’):
. . 7 . D
where R is the set of accessible states of 7 > 77, and A' is '\

restricted to the domain R >< AI'

Lemma 3
For any two structure types <7 > and < 7> s

glb (7>, <T>) = <ac(T<T) >

PROOF: Since all states of ac(7 < 5;) are accessible, the structure
type < ac(7 > ﬁ;)b>~is well defined. Because of the isomorphism be-

tween ({<7 >}, -) and (4, <), it is sufficient to show that

glb(_L) _J_)
<T

> O <T> < ac(’7’><'7")>.
But
go(] . |) = ew(] ,] .),
<T> T <> 7 T
and - | = | .
< ac(T><T) > ac (7 ><) TSI
But, clearly,
rp (x) = (rp_(x), rp_(x))
l7"></7"' ’77 J ,77 2

so that

52

X_L {I:lyé__?—’>x_]__7’yandxl7'y.

T ><

Thus

J_ = glb(_L. s J_-_.).
T > T T T
The definition of the least upper bound of two structure types is
somewhét more complex than the definition of their greatest lower bound.
Let p be the following equivalence relation over R, the set of states of
ac(T><T: (p,p)o(q,q) if and only if there exists a sequence

(ql;il),o-.,(qr,ér) such that:

(p,D)

1) (ay5q,)
1) (qq.) = (a9

iii) for i=1,2,...,r, (qi,ii) € R, and

or q. = ii+l'

iv) for i=1,2,...,r-1, 9 = 9y i

If these conditions are met, theh (p,p) is said to be chain connected to

(da,q) by the sequence (ql’ql)"°"(qr’ir)’ The equivalence relation p has
S.P.; for, if (p,p) is chain connected to (q,q) by (ql,il),,,.,(qr,ir),

then A\'((p,p),a) is chain connected to A'((q,q),a) by the sequence

N'((ql:il)}a); . °°}‘-'((qryc-lr):a> .

Lemma L

For any two structure types <T> and <>

Tb(<T>, <T>) = <ac(T><7)/p >.

53

PROOF: Since every state of ac(T ><’7) is accessible, every state of its
homomorphic image ac(7’><77)/p is accessible, therefore, the structure

type < ac(T ><T)/p > is well defined.” We have to show that

lub(_L_ , _L_).
> <T

i

< ac(T ><T)/e > < >
But = : ’
-L< ac(T ><T)/p > '_Lac(’7'><’77)/p

and, by Corollary 1,

X y
ac(T > 1T7)/p
if and only if
rp _(x)prp _),
ac(7 > ac(T > T)
and this is equivalent to rp _(x) being chain connected to rp (y)
T ><T (T >< T

by a sequence (ql,il),(qg,ig),...,(qr,ir) meeting the conditions stated

gbove. On the other hand,

wo(| o, 1) = lub(-]-,,—.’ J"f')’

<T> <T>

and

y
(Lub (<>, <T>)

if and only if x is chain connected to y by a sequence ZysZpy e sy,

meeting the conditions stated in Theorem 5.3. But the two types of

chain connectedness are indeed equivalent. For if rp X is chain
] i (T><T)
connected to rp y by (a+,9,),(a,9,),...,(a_5a), then x is chain
- 2 2
(7 >< 7) 12917249 9oy

connected to y by ZysZps e sl where 21X, Z.7Y, and, for i=2,3%,...,r-1,

*
zg is any element of AI such that

rp (z,) = (a.,q,);3
o< T

such a z; is guaranteed to exist, since (qi,qi) is an accessible state

-

of ™ > T ., Going the other way, we observe that, if x is chain con-
nected to y by the sequence Zy5%5y 0+ s%,, then rp _(x) is chain
T><T

connected to rp _(y) by the sequence

T ><T

rp _(z,), rp (2,)5 +ooy 1D _(z).

T * T><F © T><T *

Example 2:

Let T and T be transition systems, where

AI = (O)l})
Q = {a)ch}}
Q@ = (4,B,C}.

Up=2; c_10=A, and A and N\ are specified as follows:

01 0] 1

btle Ay C
b a B| A
C c|b Bl A

N N

The response tree for ac('7"><’7"') is as follows:

55

(a)A)

Thus, every transition system in glb(<T>, <’;’>) has four states, and is
isomorphic to ac(T ><"-I-‘) There is a homomorphism h from ac(T ><%) onto
T , where n(a,A) = a, h(b,A) = b, and h(c,B) = h(c,C) = c. There is a
homomorphism h from ac(T >< T) onto T , where h(a,A) = n(b,A) = A,

h(c,B) = B, and h(c,C) = C. The equivalence relation p has the equiva-
lence classes

{(a,8), (b,A)}

Q
i

and

B {(c,B), (c,C)]}.

i

The pruned transition tree for ac(T ><T)/p is:

56

The transition system ac(7 ><7)/o is the "most complex" transition sys-
tem which is a homomorphic image of both 7' and 7 . There is a universal
lower bound <F > in the lattice ({<7>}, »). The transition system F
is the "free" transition system

Fo= (a, A, e, 9),
where @(x,a) = xa. The equivalence relations with S.P. for F are pre-
cisely the right congruences over A?;, and any transition system 77 is
isomorphic to F/—LT: . There is also a universal upper bound < ¥>,

where Y is a transition system with only one state.

‘(. SEQUENTIAL MACHINES WITH INPUT ALPHABET AI

Building on the results of the previous section, we shall next de-
velop the lattice of types Qf sequential machines with input alphabet AI'
We shall also derive and apply a necessary and sufficient condition for a
function to be representable by some finite-state sequential machine, and
shall show that any function with domain Ai has a unique "least complex"
machine representing it. We shall also provide an algorithm for deter-
mining the machine with a minimum number of states which represents the
same function as a given finite-state machine. Our development in this
chapter as well as Chépters 2, 3, 5 and 6, is largely derived from [8],
and from the exposition of [10] given in [8].

We have already seen an important equivalence relation over A; which
may be associated with a sequential machine

771 = (AI’ Q, AO’ A5 A, B),
namely the equiresponse relation J_7", determined as follows:

X _Lmy <> rp, (x) = rp, (¥)-

It is natural to introduce a second equivalence relation, the equiresult

relation A7”, as follows:

x A,y = res7w(x) = res7”(y).

As we have shown, J—7w is a right congruence. Also, J_7W'<zﬁ7%;

i.e. X J__My = X A,my.
This is evident from the definition of the function res7ﬂ(x) as 6(rp7"(x));
clearl, T X) =1 = res_ (X) = res).

¥ p,, (%) pw(y) (%) L, (9)

o7

58

*
Let R and 8 be equivalence relations over AI such that R is a right

congruence and R < S. Then there is a natural way to construct a machine

Yl such that R

% :
J_'n’ and 8 = AL?Z' For X ¢ AI’ let [x] denote the
equivalence class associated with R to which x belongs; and let <x >

denote the equivalence class of x in S. Then

A = (b, (x], x € £), (<x> x e &), [e], a1, 87),

where A ([x],a) [xal,

and 5 ([x]) < x >,

We omit the simple proofs that A' and d' are well defined, and that‘7z

has the stipulated properties. Summing up, we have the following theorem.

Theorem 1

Let (R,S) be an ordered pair of equivalence relations over
* .

AI' Then there exists a sequential machine 7 such that
R = _L_7¢ and 8 = Ay 1if and only if R is a right con-

gruence and R < S.

Corollary 1

There exists a finite-state machine 7L with R = J-‘7L and
S =AA741 if and only if R is a right congruence of finite

rank, and R < 5.

Corollary 2
Let f be a function from Ai to AO. Then f is representable by
a finite-state sequential machine if and only if the equivalence
relation = given by
x =,y == f(x) = £(y)
has, as a refinement, a right congruence of finite rank (R 1is

a refinement of § if R < §).

59

Later, we shall illustrate the usefulness of Corollary 2.
A lattice ordering on the ordered pairs (R,S) satisfying the con-
ditions of Theorem 1 can be introduced in a natural way, as follows:
(R,8) < (R',8') <=>R <R' and S <8'.
Let this lattice be denoted (17, S). We could then say that the machines
M and 7L are of the same type if
<_|_n, o) = (s 890
and a lattice ordering on machine types would be induced. Following
the strategy of the previous section, we prefer to develop the lattice
of machine types from the point of view of homomorphisms.

Let

Y

(A, Q, A

o’ qol s 5)

and

—

ﬂ = (AI’ Q; AO’ ‘io:):) 6)°
We assume throughout the following discussion that all states are acces-

sible, and that the functions 8: Q — AO and &: @ - Ao are both onto.

A homomorphism from % onto M is a pair of functions,

h: Q 9229—) Q and @ AO 93394 Ao
such that
1) n(gy) = a4
ii) h(n(q,a)) = A(h(a),a)

ii1) 8(n(q)) = o(3(a)).
Conditions (i) and (ii) are, of course, familiar from our discussion of
transition systems. Condition (1iii) states that the output of the homo-

morphic image of ¢ is the homomorphic image of the output of q. Applying

60

*
Lemma 6.1, we have the result that, for all x €A,

rp ~(x) = h(rp(x)). (1)
Now, ‘ resﬂq(x) = S(rpj;(x))

= 8(a(rp_, (x))

= 9(8(rp,, (x))

= o(res_, (x))

*
Thus, for all x ¢ AI,
res_(x) = w(regz”(x))o (2)

Let 7 — 7 denote that there exists a homomorphism from 7/ onto 7,

Then the following lemma is a consequence of equations (1) and (2).

Lemma 1

I 7 W, th AL) < AL,
=7 en (_J_W) ”)_(_L?;;; 7.’7)
The converse of Lemma 1 is quite easy.

Lemma 2

acm—

If (_J_”, Aﬁ) < (_J_7;,, Aﬁ), then 7 - M.

PROOF: The required function h and ¢ are constructed as follows. If

*
there exists X € AI such that

rp_, (%) = qand rpgp(x) = q
then h(q) = q-
It n(q) = q, theno(q) = 8(q).

We omit the simple proofs that h and ¢ are well defined functions, and

that they determine a homomorphism from 7 onto T .

Q.E.D.

61

Combining Lemmas 1 and 2, we have the following result.

Theorem 2
Let 7m andﬁ be such that all states are accessible, and

the functions &: Q — Ao and §: § - 110, are onto. Then

M T = (;{_W, A”) < (J_ﬁ, Aﬁ).

A strong homomorphism from 7% onto 7 is a homomorphism such that

the function ¢ is one-to-one. An isomorphism from-7” onto M is a
homomorphism such that the functions h and ¢ are both one-to-one. Let
the expression # —- 717 denote the‘ existence of a strong homomorphism
from 4 onto 7 , and let”vthe existence of an isomorphism be denoted by
P e M. It is evident that 2 s W if and only if 7 « 7. The

methods used to establish Theorem 2 yield the following corollaries.

Corollary 3

M > W if and only if_]__ f_]__

- and A = A_.
o -7 D

Corollary 4
A« 74 if and only if (| ’Aw) = (] Aﬁ).

m

Two machines 7/ énd 77 may represent the same function, and there-
fore have the same equiresult relation, even though their equiresponse
relations are incomparable, so that neither is a homomorphic image of

the other. The following two machines provide such an example.

62

The functions res7n(x) and res s (x) are identical; each function is
equal to 1 if and only if the number of 1l's in the sequence x is odd.

It is also true, of course, that two machines may have the same
equiresponse relation and have incomparable equiresult relations.
Finally, it is possible to have J_% < _]_7;; and A—;,; < J‘?% .

The relation «— is an equivalence relation. Let us call the equiv-
alence classes associated with this relation machine types, and let the
machine type of /A be denoted < 7>, Following the approach used in
dealing with transition systems, we define a partial ordering — on
machine types as follows: <> <7 > if and only if, for all
M € <> and M e %77>, M — 7%. Then the partially ordered
system ({<77>}, —) forms a lattice isomorphic with the lattice (77,<).

).

The greatest lower bound and least upper bound of two machine types are

The machine type <7 > corresponds to the ordered pair (—LW’AW

easily obtained by analogy with the case of transition systems. Let

el

il

(AI’ Q) AO’ q‘O’ Ny 8);

and let

7% = (AI’ Q: AO: Czoy X; S)

63

Then /% > M = (AI; Q > Q: Ao = Ao: (qO’iO)’ X', 6')

(X(Q;a)) X(i;a)):
(5(a), 8(a))-

Let ac(7p >< 7#) be the machine obtained by retaining only the accessible

where ' K'((Q)i))a)

and 5'(q,q)

states of Jh > /¥ , and retaiiﬁing only those elements of AO > Z\‘o

which are of the form (8(q), 8(q)), where (q,q) is accessible.

Lemma 3
Let 7 and 7 be sequential machines belonging to the machine
types < # > and <7 >. Then

glb(< >, <H>) = <ac(mM><w) >

The construction of lub(< 7>, <737>) is a direct extension of the
corresponding construction for transition systems. The equivalence rela
tion with S.P. p over the states of ac(# >< 7) is defined exactly as

it was defined in the last section:

there exists a sequence

= - - -
(p,2) o (0,0) = (ay,8;)5+ -5 (a,,d,) of states

of ac(7k ><) such that

(p,p) = (q7,9);
(,0) = (a.,9.);
and, for i=1,2,...,r-1,
4 7 din
oF 4G = Gy

A second equivalence relation p has the following definition:

6k

there exists a sequence

(p,0) b (q,q) = (ag,87) 544 45(a,,q,) of states

-

of ac(Z ><#) such that

(p}£> = (ql’il),

<Q;i). = (qr;ir))
and, for i=1,2,...,r-1,

8(q;) = 8(aqy,)
or 6(qi> = a(qi_l_l)"

It is evident that p is a refinement of p. Let the equivalence class
of (q,q) in p be denoted [q,q], and let its equivalence class in u be

- feed
< q,q > Let the machine 7 be defined as follows:

F o= (g, Uadl), (<a.d>), la,d), % 8,
where
ala,al,8) = [R(a,q),e]
and
8(lq,q]) = <aq,q >

The functions n and ® are well defined by virtue of the fact that p is an

equivalence relation with S.P. and a refinement of .

Lemma 4

o

Let 77 and 7 be sequential machines belonging to the machine
types <27 > and <] >, and let 7» be derived from 7 and #
by the construction given gbove. Then

Tub (<7 >, <7>) = <> .

We omit the proof of Lemma 4.

65

The lattice ({(<7 >}, —) has a universal lower bound, namely the

"free" machine type of which the following machine /C’is a representa-

tive:
* *
F o= (AI’ AI’ AI’ e, N, '6))
where
Ax,a) = xa,
and
5(x) = x.

There is also a universal upper bound, the machine type whose elements
are all the one~state machines.

*
Let A be an equivalence relation over AI' Then the set of all

elements (R,S) € (70,5) such that S = A forms a sublattice of (7‘25):

glb((R:A>) (R',4)) (glb(R)R');A):

and

i

1w ((R,4), (R',4)) (Lub(R,R"),4) .

We shall show that this sublattice has a universal upper bound. The

element in the lattice ({< &>}, —») corresponding to this universal

upper bound is then the least upper bound of all machine types having

the equiresult relation A.

*
Let the equivalence relation RA over AI be defined as follows:

*
X RA y <=> for all w ¢ AI’ xw A yw.

Then R

A is a refinement of A, and RA is a right congruence:

* *
X RA y =>V z € AI’ Y we AI

XZW A yZW => X2 RA YZ.

66

Moreover, if R is any right congruence which is a refinement of A, then

R is a refinement of RA:

*
xRy — for all w € AI, xw R yw
*
= for all w € AI, xw A yw

ﬁxRAy

Therefore R, is the least upper bound of all right congruences which

A

refine A, and (R,,A) is the universal upper bound of the sublattice of

RA’
(70,5) consisting of all the ordered pairs (R, A). The right congru-

ence R, is called the right congruence induced by A. The machine type

A

<M > corresponding to (RA,A) in the lattice ({<7 >}, =) is a strong

homomorphic image of every machine type having the equiresult relation A.

Although the following result is a direct consequence of Corollary 1,

we designate it as a theorem because of its importance.

Theorem 3
*
The equivalence relation A over AI is the equiresult relation
A

of a finite-state sequential machine if and only if RA is of

finite rank.

*
Let £ be a function from AI to a set Ao, Then any sequential

machine realizing f has the equiresult relation Ef:

x =,y = f(x) = f(y).
Then R_, the right congruence induced by =p> has the following definition:
f
x R y < for all w, fxw) = £(yw).

f

67

*
For any element x € AI, let the function

be defined by the equation

Then x R_ y if and only if the functions fx(w) and fy(w) are

identical.

Theorem U4

A function £ from A; to Ao is representable by a finite-

state machine if and only if the number of distinct func-

tions fx(w) as X ranges over A; is finite.
PROCF: 1If f is representsble by a finite-state machine then RE is of
finite rank, which means that the number of distinct functions gx is
finite. Conversely, if the number of distinct functions fx is finite,
then RE is of finite rank. Let the equivalence class of x in RE be

f f
denoted [x]. Then the following finite-state machine realizes f:

7

(AI’ ([x], x € A-)Ie}: Ao) [e], N, 8),
where

[xa]

>

—

e §
»

~
o

—”
il

and

f£(x).

o
—
—
\>¢/
—a
~—

il

Q‘CE.D'

Let us make some applications of Theorem U, First, we shall prove

that, in a certain sense, a finite-state sequential machine cannot

68

recognize perfect squares. Let
£ (a) - {0,1}
be defined as follows:
1if n = 52 for some nonnegative integer s
£(a") =
O otherwise.

Let k and [/ be integers, with kX < f. Then

2
. 2(5121«:+1) _ f(a<1<.+1)) = 1,
k
a
and
£ (82k+l) - 0.
2
y4
a
Therefore the function
f 09 k=0,1,2,...
k
a

are all distinct, and, by Theorem 4, f is not representable by a finite-
state machine.
As another example, we shall show that the set of palindromes

over an alphabet with more than one letter cannot be recognized by a

finite-state machine. TFor x € Ai, let X denote the reversal of x:
e = e,

and, if X=8,85.0.8 18
X = a8 qece858

Then x is a palindrome if and only if x = X. If punctuation and spacing

are ignored, the following is a palindrome over the Roman alphabet:

69

AMAN A PLAN A CANAL — PANAMA!
Let
*
f:AI—-> {O,l}
be defined as follows:
r1 if x = X

f(x) = {

0 otherwise.
.

*
If AI has only the single element a, then every element of AI’is a

palindrome, and the one-state machine with output 1 recognizes f.
Suppose, however, that AI has two distinct elements a and b. Let
k and !/ be nonnegative integers, with k < {. Then

£ (a9 = 1,
PR

and

a’d

Therefore there is an infinite number of distinct functions f kb,
a
k=0,1,2,..., and f is not representable by a finite-state machine.
Before proceeding to the next application, it will be convenient

to derive a variant of Theorem 3. Let A be an equivalence relation

*
over AI. Then :A’ the (two-sided)congruence induced by A, is defined

as follows:

xT, y&e=>V v VW, vxw A vyW.

A
Clearly, TA is a refinement of A. Also, ?A is a two-sided congruence:
X ?A y =>Vv VYw Vv' Vw',

v'v xw w' Avivyw w! =V v Vw, Vv ?A VyW.

70

Finally, if T is a two-sided congruence which is a refinement of A,

xTy =Vv Vv, vxw T vyw
=Vv Vv, vxw A vyw

=> x,?ﬁ V.

Theorem 5
*
The equivalence relation A over AI is the equiresult
relation of a finite-state sequential machine if and

only if TA is of finite rank.

PROOF: Since T, is a congruence, it is a right'congruence, and

A
T, <R,. If TA is of finite rank, then so is R,, and, therefore,

A —-"A A
A is the equiresult relation of a finite-state machine. Going in
the other direction, suppose A is the equiresult relation of a finite-
state machine 7% with n states. For the rest of this chapter, let
the equivalence relation ~ over A; be defined with reference to the
machine M as follows:

X~y =Y q, Ma,x) = Ma,y).
With x fixed, the function

r(a) = AMa,x)

is a transformation from Q into Q. Since Q has n elements, only o
such transformations exist; therefore, ~ is of finite rank. 3But ~
is a two-sided congruence:

x ~y =>7V q, Ma,x) = NMa,¥)

=V q Vv Aag,vx) = MN(q,v),x)

An(a,v),y)

il

k(Q:VY)

TL

=Y¥Yq Vv Vw, ANqg,uxw) M (g, ux),w)

x()\(Q:W) ,W)

il

M, uyw) .
Also, ~ is a refinement of A. Therefore, ~ < ?A’ and, since ~ is of

finite rank, so is Th-

Corollary 5
% ,
A function £ from AI to AO is representable by a finite-

state machine if and only if the congruence relastion T

=

f
is of finite rank.
* ~
Let £ be a function from AI to AO, and let the function f be de-

fined as follows:

Using Corollary 5 we shall prove that, if f is representable by a finite-

state machine, so is f. Iff is representable, then T_ is of finite

=

f
rank. But
xT_ y =>Vv Vw, vxw =_vyw
f
= Vv V V, §§;_E% %?3
= xT__ V.
f

Therefore, T_ 1is of finite rank, and, by Corollary 5, T is representable

=~

by a finite-state machine.
Having shown how results associated with the induced right congruence

and the induced congruence T, are used in determining whether certain

R A

A

T2

functions are representable by finite-state machines, we shall next apply
the same ideas to a problem of machine minimization: given a machine /4 B
find a "least complex" machine having the seame equiresult relation as 77 .
More precisely, the problem is this: given M , Find a representative

7l of the machine type <7 >'such that

By end | = R,

A = .
< > Wad

<>
From our knowledge of the properties of induced right congruences and of
the isomorphism between the lattices (ﬁ,s) and ({<M >}, -), we know
the following facts.
l) A machine % with the desired properties exists,
2) ‘There is a strong homomorphism from ¥4 onto 7.

3) If there is a strong homomorphism from% onto a machine v%,

—

then 7L and # are isomorphic.

L) 77/ is a finite-state machine if and only if RA is of
,)
finite rank, and, if A is finite-state, it has as many states
as RA has equivalence classes.
-
5) If % is finite-state then, up to isomorphism, I is the

unigque minimum-state machine having the equiresult relation

A .

7

6) If f is a function such that =c is A%, then 7 is isomorphic
to the minimum-state machine realizing T.

Our next endeavor is to determine the strong homomorphism from V44

onto 7L . In the case where = (AI, Q, Ay 9 N 8) is finite-state,

we will then be able to give an algorithm for the construction of 7.

73

Let an equivalence relation over Q be defined as follows: the

states q, and q, are indistinguishable (denoted q = q2) if,

*
for all w € AI

4 and q, are distinguishable if they are not indistinguishable.

Lemma 5

et —————

Indistinguishability is an equivalence relation with S. P.

PROOF: Tt is evident that

m

is an equivalence relation. Also,

it

: :) (a,aw)
q, =q, =>Vaci, VveAi, May,aw) = A Qs 8V
*
=V v e A, Mi(q,a),w) = MA(aya),v)

=> May,8) = May,a)-

Therefore = has S.P.

Lerma 6

*
Let x and y be elements of AI. Then

xRy y == rpﬂq(x) = rpjy(y).
PROQF:
xR,y ==V, res7%(xw) = re57%(yw)
=V, 8(Mrn, (1)) = TP fy),¥)

= rp_,(x) = rpw(y)-

T4

For g ¢ Q, let [q] denote the equivalence class of q in the rela-

We shall prove that the desired machine 7Z is the image of the

i

tion
strong homomorphism in which h maps g into [q], and @ is the identity

function.

Theorem 6
Let% = (AI) ([q_], q € Q}) AO, [qO]) X-} 8)7

[K(Q;a>])

il

where M([q],a)
and 8(lal) = 3(a).

Then (_LW,A) = (Ry s &_).
—_t

PROOF: The function A is well defined, since = has S. P., and 5 is
well defined, since

a4y = a5 _ 6<ql> = 5(q2>,
Also, it is immediate that V% —+>7% ; the functions associated with

the strong homomorphism are h, mapping q onto [q], and ¢, the identity

function. Since the homomorphism is strong, A‘7%/ = 1570. It remains
only to prove that J_‘7@ = 3&,%%,’ By Lemma 6,
x R y == rp_,(x) =rp (y)
Ajnt Ll W
— x)] = r
rp ()] = [rp, (¥)]
= T X = T
p,, (%) p%(y)
> x V.
1.
A sequential machine % is said to be reduced if J“fMV = 337%9’

or, equivalently, if any two states of 7 are distinguishable. As an

application of the foregoing development, we shall give an algorithm for

75

explicitly determining the equivalence relation =, and thereby construc-

ting V2 , the reduced form of 7%', when £ is finite-state. This algo-

rithm is useful in the design of sequential circuits, since the number of
latches required in a circuit "realizing" an n-state machine is q, where
2q—l <n< Eq; q is therefore a monotonic function of n.

The states q, and q, are k-indistinguishable (denoted a; qe)

toall]

*
if, for all w € A such that lg(w) <k,

8(May,w)) = 8(N(ayw))-

The equivalence relation 7 does not necessarily have S.P.

Lemma 7
For q € Q and a4 €Q,

1) a5 ap =>0(q) = 5(q)

ii) for k > 0, 4 5 b =9 and, for all a € A,

x(ql,a) ﬁ >\-(q2)a) .

PROOF : 9 = gy = 8(r(g;se)) = 5(N(a,5¢))
= 8(q,) = 8(q,);
q; kfl qq if and only if . the following two conditions hold:

a) for all w > lg(w) <k, 8(A(ay,w)) = B(A(ay,w);
b) for all w > 1g(w) <k, for all a € AL
6(x(ql,aw) = 6(x(q2,aw)).
Condition (a) is equivalent to 4y = dp- Condition (b) is equivalent to:

for all a e A, and for all w such that 1lg(w) <k,

s(h(Mag,8),) = B(M(M(ap8),w));

i.e., for gll a ¢ AI,

x<q1)3>

=
>
o
N
o
~—~

Corollary 6
If, for some k > 0, the relations E and g are equal, then

each of them is equal to the relation =.

Corollary 7
If TZ has n states and p output symbols, then the relations

= and =_ are equal.
n-p

PROOF: As a consequence of the definitions of indistinguishability and
k-indistinguishability,

=< Z <5< S5

adlll
ol

2

?IH

If, for some k < n-p, is equal to then = is equal to =, and both

K K1’ i

are equal to n%p’ Otherwise, for k:O,l,,.,,n-p—l,.kfl strictly refines
ﬁ, and therefore has at least one more equivalence class than ﬁo There -
fore, since % has p equivalence classes, = has at least p + (n-p) =n

equivalence classes. Then n%p is the identity relation, and, since the
identity relation has no refinement except itself, nfp is equal to =.
Q-E.D.
Corollary 7 has the following interpretation: if the states ql
and q, are distinguishable, then there is an "experiment'" w € Ai of

length n-p or less that distinguishes them:

i.e., 8(n(ay,w)) £ B(n(ayw)) -

The algorithm for determining = is based on Lemma 7.

relations =, =, ...
01

E is equal

Example

to 3

Tr

The equivalence

are determined successively until, for some k,

By Corollary 7, this procedure must terminate.

Consider the machine /X specified by the following two tables

i

la b

O*¥ 15 1

1|k 3

Q 2 |2 p)

3 43 0

o1 2

5 U5 4 4
A

Vi W N+ Ok
Q ® ® W™ W 53£§

o)

The computation is summarized in the following table.

Equivalence relation

Equivalence classes

0

1

2

{0)5}) {l)E}B)L"}
(0,5}, (1,4}, (2,3}
{0}5}) {l)h’}; {2;5}

The relation =

has three equivalence classes:

A= {0,5}, B = {1,4}, and C = {2,3}.

The three-state machine 7Z is specified as follows:

O

QW

A

> QW o

QW o

3

QW 1

S

8. SEMIGROUPS AND SIMULATION

In this section we discuss two important congruence relations over
the set of input words of a sequential machine 7% . Properties of the
associated factor monoids (the transition monoid of %7 and the function
monoid of 74) are derived, and the Krohn-Rhodes normal form, involving
the function monoid of 7, is introduced. The main result of the sec-
tion shows how the capabilities of two machines, possibly with different
input alphabets, can be compared by considering the normal forms of the
machines. Most of the material of this section is drawn from [13], and
from J. Myhill's paper, "Finite Automata, Semigroups and Simulation,"
University of Michigan Engineering Summer Conference on Automata Theory,
1963.[16].

Both of the two-gided congruence relations that we wish to consider

occurred in the last séction, but we reintroduce them here. Let
% = (AI’ Qs AO’ Lok Ns 3)
be a sequential machine with all states accessible, and with every ele-

ment of AO equal to &(q) for some g € Q. The equivalence relations ~

*
and @ over AI are defined as follows:

X~vy<Es=YVv ¥Vw, rp7%(v X w) = rp7%/(v VW) .
XQpy<&e=>Vv Vw, res7%(v X W) = resjnb(v v W),
Then, using the notation of the last section, ¢ = ?A . It is evident
7

from the definitions that ~ and ¢ are two-sided congruences, and that
NSQP’

Using the fact that all states of % are accessible, we can give an

78

9

alternate characterization of each of these relations. The first lemma

shows the equivalence of the definition of ~with that on page T78.

Lemma 1

*
Let x and y be elements of AI' Then
X~y <=>Vaq, Ma,x) = Na,y).

PROOF: From the definition,

X ~ Vv Yw, r T XW = T v .
y) pm(v) pﬂ(yv)
Since
rpw(VX) = rpm(vy) =V W, rpw,(VXW) = rpﬂ(vw),
X~y G Y v, rp7”(VX) = TQ7M(VV)

> ¥ v, Mrny,(v),x) = x(rpw,,(V),y).

Since all states are accessible, every state q is rp1n7(v) for some v;

therefore,

X~y =27 q, Ma,x) = Nay).
The following lemma relates the relation @ to the indistinguish-
ability relation =.

Lemma 2
*
Let ¥ and y be elements of AI' Then

x 0y ==Y q, AMa,x) = ra,y).

PROOF: From the definition,

80

XQy &=>VYVv ¥w, resyn(vxw) = res7m<vyw)

=V v Vwd\rp,,(v), ww)) = 8(Mrp,,(v), yw)

il

>V v, Alro,, (v), %) = Alrp 4 (v),).
Since all states are accessible, every state q is rpﬁM(v) for some v;
therefore

X @y <==Vq, nNq,x) = N(q,y).

Corollary 1
If N is reduced, then the congruence relations ~ and @

are equal.

The converse of Corollary 1 is false.

*
The factor monoid AI/~ is called the tramsition monoid of 74,

*
and AI/@ is called the function monoid of M .

Just as every group is isomorphic to a group of permutations, every
semigroup is isomorphic to a semigroup of transformations--functions from
a set to itself. A semigroup of transformations isomorphic to (S,') is
({Ra, a €8}, ¥), where R_ is the transformation of § defined by the

equation

and
* = .
Ra Rb Ra-b
It is immediate that the function ¢: a - Ra is an isomorphism. The

semigroup ({Ra, a € 8}, *¥) is called the regular representation of (S,-).

81

The transition monoid of a machinejﬂk has another, more useful,
*
representation as a monoid of functions. For x € AI’ let the function
>\X:A Q—-Q,
be defined by the equation

N(a) = Ag,x).

Then, by Lemma 1, the functions xx(q) and xy(q)‘are identically equal
if and only if x ~ y. Let the monoid of transformations Tizz be defined

as follows:

Ty = (g x e &), %),

where

Lemma 3

*
The monoids AI/~ and T are isomorphic.

WA

PROOF: Let [x] be the equivalence class of x in the equivalence rela-
tion ~. The function

onto

given by the equation

is well defined and one-to-one, by Lemma 1. Clearly, ¢ is onto.

Finally, ¢ is a homomorphism:

82

o([x]-[y]) = o(lxyl)

]
>

Xy’

i
>

ES
>
"

P(Ix]) * olly]) = A *A = a

Let (S,°) be a monoid. A set AC S is a set of generators of § if

every element of S is a product of elements of A (by convention, the

empty product is equal to the identity element).

Lemma U4
Any monoid (S,°) with a finite set of generators A is iso-
morphic with both the transition monoid and the function

monoid of some sequential machine.

PROOF: The required machine is

(8) = (A, 8, 8, e, N, B'),
where
A(s,a) = s-a,
and
5'(s) = s
Then the semigroup T is isomorphic with the regular representation

(s)

of 8. The isomorphism ¢ is as follows: if
{sl,se, ...,sm} C 4,

and

then

Then the semigroups

and
(S:')
are all isomorphic. Since every state of “P#(S) has a different output,

*
72%7(8) is a reduced machine, and A /@ is isomorphic with the other semi-

groups mentioned above.

Since A;/~ can have as many as n" elements if 7% has n states, its
primary usefulness is theoretical, rather than computational. Never-
theless, it 1s instructive to work through the construction of this
semigroup, and the isomorphic semigrioup Ej&f,.in“a'"toy”‘ekample.'HItfﬁould
be possible to formalize the methods we shall use in this example, but
it is doubtful whether such a formalization would serve a useful purpose,

in view of the typically unwieldly size of transition monoids.

Example 1

We consider a machine 7% with

Q@ = {99959},
A = {a,b},
AO = {O)l})

and) and d specified by the following tables.

8L

o1
IEEE q [5(q)
. 1
9% 9 | 9 4y
Q | 9% a; | ©
Ao fl 9o | 9 a | ©
A 3

It is easy to check that M is reduced; therefore A;/~ and
A;/Q are isomorphic. Since the functionsg Ka(q) and xb(q) ‘are per-
mutations, every function xx(q) is a composition of permutations, and,
therefore, a permutation. Thus, T'ﬁt is acsemigroup of permutations:of
the finite set Q, and T’Tb is necessarily a group. By isomorphism,
A§/~ and A?/@ are also groups.

The following diagram shows part of the free tree generated by AI.
Each node n is labelled with the 3-tuple

(N (ag) s N(ag) A (ay)

specifying the function xxa The label of the node N, ey be ob-

tained conveniently from the labels of n, using the identity

Mg(D = A (a);2).

85

(a5,9;59,) (95,9, 59,)
2’%1’% 229129
a b
(20s259) (45,95597) (a7,95594) (20,97 595)
(a1,90:9,) (99r25,9;)
b

Each of the six possible permutations of Q appears as a function
KX in the subtree. Therefore, Tjné is isomorphic to 85’ the symmetric
group on three letters. Choosing the first (i.e., minimum-length, and
leftmost within a given length) representative of each equivalence
calss for the equivalence relation ~, we find that the equivalence classes
are [e], [a], [b], [&b], [bal, and [aba]. Also, we note that the func-
tions Kaa’ xbb, and xe are all identical, and that the functions
aba and Kbab are identical, Therefore:
aa ~e
bbb ~e
bab~ab a.

*
The multiplication table for AI/~ is as follows:

86

[e] [a]l [v] [ab] [ba]l [aba]

le]l [e]l [a] [v] [abv] [bal [aba]

W

| T
o
)
©
o'
-
[on
=
[
o'
QJ N
™
(o2
©

| S

(o] [v] [ba] [e] [aval [a] [ab]

laba] [aba]l [ab] {(bal [a] [b] [e]

The construction of this table was carried out with the aid of (1),

For example, the computation of [aba] [ba] was carried out as follows:

[aba]-{ba] = [&baba]l
Since bab ~ aba a(babja ~ a(aba)a
Since aa ~ e (aa)baa ~ e(baa) = baa
Since. aa .~ e b(aa) ~ b(e) = b,
Therefore,

(aba]-[ba] = [b].

Since the set of identities (1) is sufficient to determine each of
the entries in the gbove table, these identities are called defining
relations for the semigroup A§/~a

The defining relations are sufficient to determine the equivalence

class to which a given word belongs. Consider, for example, the word

X = aabababbasbabababa

X

[

(aa)baba(bb)(aa)babababa

Using the identities aa ~ e and bbb ~ e,

87

X ~ bababababsba = (bab)a(bab)a(bab)a.
Since bdb ~ aba
X ~ gbaaabaasbaa = ab(aa) ab(aa) ab(aa).
Since asa ~ e
X ~ gbabab = aba(bab)
Since bab ~ aba,
X ~ gbagba = ab(aa)ba
Therefore, ~x ~ a(bb)a
X ~ aa
X~ e.
Therefore [x] = [el,
KX = Ke,

so that xX is the identity function. This tells us, for example,that

rp(x) = a4

We shall next show how concepts about semigroups and semigroup
homomorphisms may be used to compare the capabilities of sequential
machines, and in particular, to determine the conditions under which
one machine can simulate another. In the following discussion, all
the relevant characteristics of a machine are determined by the func-
tion which the machine represents. Thus, a machine is specified by a
function

£ A* - B,
and we speak interchangeably of the machine f and the function f. We

shall not exclude the possibility that A, the set of generators of the

88

free monoid A*, may be infinite.
*
Let us recall that the congruence relation ¢ over A for the machine

f is defined as follows:
X Qy<&e=>Vv Vv f(vxw) = £(vyw).

*
The factor monoid A /@ is called the function monoid of f; its elements

are equivalence classes associated with ¢, and its multiplication oper-
ation * is as follows:

[x] * [y] = I[xyl,
where [x] denotes the equivalence class of x. Henceforth, this monoid

will be denoted 8,. If [x] € Spr % € [x], and X, € [x], then, clearly,

f(xl) = f(xg),
An equivalence relation Pp OVEr the elements of Sf may be defined as
follows:
[x] pp [y] = £(x) = £(y).

The ordered pair (Sf,p is called the normal form of f, and denoted

)

NF(f). A reflexive, transitive relation over the set of normal forms

of machines may be introduced as follows: NF(f) |NF(g) (' | ' is read

‘divides’) if Sg has a subsemigroup S, such that there is a homomorphism
6 from S onto Sf satisfying the following conditions:
for all 8 € S, 8, € S
51 0, B ﬁ@(sl\) or 9(52)0
It should be noted that this definition involves only the abstract prop-

erties of Sf, as given by its multiplication table, and has nothing to do

with the fact that the elements of Sf are equivalence classes. Also,

89

the definition applies even if the input and output alphabets of f are

different from those for g. By contrast, the relation

(Lo) (L5 o)

studied in the last section makes sense only for machines with the same
input salphabet, and involves the state-transition structure of a machine
as well as the function it represents.
Let
*
f: A - B
and
*
g: C -D
be machines. We say that fw g (f divides g) if there exists a homomor-
*
phism H from (A",-) into (C*,'), where '-' denotes concatenation, and a
function h from D to B, such that the functions f(x) and hgH(x) are
identical. The mappings involved in this definition may be diagrammed

as follows.

A > B

1 A
HJ/ h

*

C € =D

Since H is a homomorphism, it is completely determined by the values
it assumes for the elements of A; for, if

X = 4a, a

12...8.

nJ
where each of the a; is an element of A, then

H(x) = H(al)H(aE)...H(an).

Thus, the statemeﬁt f] g may be interpreted as meaning that, given

an appropriate input encoder and output decoder, the machine g can

90

simulate £f. The input encoder replaces each letter a by the string H(a);
the output decoder maps the final output symbol d into h(d), an element
of B, In digital computer terms, we may say somewhat fancifully that,
with suitable data format conversions, the computer g can simulate the

computer f.

Theorem 1 (Krohn-Rhodes)
Let f and g be machines. Then f | g if and only if

NF(£) | NF(g).

This theorem states that the capability of g to simulate f is deter-
mined by the properties of the function monoids Sf and Sg, and the equiw
alence relations P and pg, Before entering into the proof of Theorem 1

let us consider an example.

Example 2

Let f be the function represented by the following sequential machine:

£ (A,B}* - {a,B}

91

It i1s clear by inspection that the transition monoid of this machine is

03’ the cyclic group of order 3. Since the machine is reduced, Sf = CB.
The multiplication table for Sf is as follows:
[e] | [A] | [B]

(el | [el | [a] | [B]

(a] | [a) | [B] | [e]

(B] | [B] | [e] | [A]
Since fle) = a,
and f(a) = f(B) = B,

the equivalence relation p, has the equivalence classes [e] , [A], [B] .

Let g be the function represented by the reduced machine that was

considered in Example 1.

As we found in Example 1, the function monoid Sg is isomorphic to the
symmetric group 85, which has the subgroup 05. The subgroup S of Sg

isomorphic to C, has the following multiplication table.

5

[e] | [ba] | [&b]

[e] | [e] | [va]| [eb]

[pa]| [bal | [ab]] [e]

[ab]| [ab] | [e] | [ba]

92

Also, gle) = 1,
g(ab) = g(ba) = O0;

[ab]pg[ba], [ab]gg[e].

Therefore, the following isomorphism 6 from S onto Sf satisfies the con-
dition 51P 455 => Q(Sl)pf 6(52): 6(le]) = [e], 6([val) = A, 6([ab]) = B.
Therefore, NF(f) | NF(g). On the other hand, it is also true that f | g,
The required homomorphism is given by

H(A) = ba,

H(B)

]

ab,
and the function h is given by
h(l) = Q,

h(0) = B.

In proving Theorem 1, it will be useful to associate with a function

f: A - B,
another function
*
F Sf - B

The function F is represented by the following sequential machine (which
may have an infinite input alphabet):

(Sf) Sf9 B, [e]s N 6))

where

as,t) s ¥ 1,

and, if s = [x],

Then

95

F([e]) = f(e‘),

and, in general,

F([Xl][xe]...[xn]) = f(xl%2"'xn)'

*
Note that (S

f,') and (Sf,*) are not the same monoid. Thus, for example,

*

[e] is the identity element of Sf, but is a word of length 1 in Sf,

whose identity element is e,

Lemma 5
*
Let f be a function from A to B, and let F be the asso-

*
ciated function from Sf to B. Then f IF and F |f.

PROOF: Tirst, we show that £ |F. The diagram showing the domains and

ranges of the required homomorphism and function is as follows:

A* L B
H l' Th
S; r B
For all a € A, let H(a) = [a].
Then H<a132"°an) = [al][az].. [a],
and F([al][ag],..[an]) = f(alag.. an)

If h is the identity function then f(x) is identically equal to
WFH(x), as required.
It is equally easy to show that F |f. The diagram of mappings for

this case is as follows:

9l

* F

Sf > B

! 0
H h

v 1

* f

A ————— B

The required homomorphism H is determined by the equation H([x]) = x,

where x is an arbitrary, but fixed, element of [x]. Then

F([xl]°[x2]°,a,°[xn]) = f(xlxgaaoxn)

= f(H([x1x,].. . [x 1))

n
If h is the identity function, then F is identically equal to hfH.

This completes the proof of Lemma 5.

PROOF: (of Theorem 1)

f | g <= NF(£)[NF(g).
We begin by showing that

f|g == NF(f)|NF(g).

If fl g, then f = hgH. The diagram of mappings is as follows:

*
A >

Q
>!<<
oa

>

w)

Let 8, a subset of Sg, be defined as follows:

*
s = {[H(x)], x e A };
note that '[]' denotes 'equivalence class of the relation @é. To

prove that S is a semigroup (and therefore a subsemigroup of Sg> we

95

must show that [H(x)]*[H(y)] € 8.
But (H(x)1*[H(y)] = [H(x)-H(y)]
= [H(xy)].

Therefore, S is closed under ¥, the multiplication operation in Sf.
Now, to show that NF(f) | NF(g), we must construct a suitable homomor-

phism from S onto S First we show that

o
(H(x)] = [H(y)] = [x] = [y]:
[H(x)]

g(rH(x)s) = g(rh(y)s) => Vv e A Vwed, gE(WEEEW)) = gH(v)E(y)H(W)

* *
[H(y)] =>VreC VseC,

= Vv Vw, g(H(vxw)) = gH(vyw)
=> Vv V¥ w,hgH(vxw) = hgH(vyw)
=x0y
= [x] = [y].

In view of this result, the mapping

6: [H(x)] - [x]

is well defined, and is a mapping onto S,. Also
o([u(x)] * [H(y)]) = o([H(x) H(y)])
= 6([u(xy)])
= [xy],
and
6([H(x)]) * o([H(y)]) = [x] * [y]
= [xy].

Therefore, 6 is a homomorphism. Finally, we must show that, for

[H(x)] € 8 and [H(y)] € 8,

[8(x) 1o [H(y)] = [x] o, [¥].

This is done as follows:

(H(x)] Py [H(y)] = g(H(x)) = g(H(y))

= heH(x) = hgi(y)
= £(x) = £(y)
= [x] o, [¥].
To sum up, S is a subsemigroup of Sg’ and there is a homomorphism 6 from

S onto Sf such that

s, = Q(Sl) o(s

1 Pg ®2 pe 0(sy)

The second half of the proof requires us to show that
NF(f) | NF(g) => flg.
By Lemma 5 and the transitivity of the "divides" relation, an equivalent
statement is:
NF(f) | NF(g) =—=TF |G,
where G is the function from SZ to D associated with g. The domains

and ranges of the mappings to be constructed are shown in the following

diagram.

*

S, r >3
, A

H h

V% e

S e——]
g

Since NF(f) | NF(g), there is a subsemigroup S of Sg, and a homomorphism

6: s onto

> S,

971

such that

* *
The required homomorphism H from (S.,°) to (Sg,‘) is determined by the

f,
action of H on the elements of Sf.

Let H be chosen so that, for all s ¢ Sf,

H(s) = s,

where

Such a choice is possible, since 6 is onto.

Let sl PYRELM be a word of S:. Then
F(SlSE"'Sn) = F(sl ¥ 5, ¥ L. ¥ sn),
and
GH(slsg...sn) = G(éls'g.,;'én)
= G(gl * 52 * * gn)
Since 6 is a homomorphism,
05, % 5, % ... % 5) = 0(5) *6(5,) * ... % 9(5)
= 5 * 85 * ... 0% 5

Thus, h can be constructed if, for all s € Sg, the value of F(6(s))
can be predicted from the value of G(é). This is equivglent to the
statement that

¢(s) = a(t) = TF(6(s)) = F(6(%)).

This is true, since

98

a(s) = c(t) =>s pg%

= 9(s) S 6(t)

=>F(6(s)) = F(6(1)).

This completes the proof of Theorem 1, and with it our discussion of
simulation. The Krohn-Rhodes Normal Form will appear again later, in our

discussion of the decomposition of sequential machines.,

9. REGULAR EVENTS AND REPRESENTABLE FUNCTIONS

In Chapter 7 we proved that a function f is representable by a
finite-state sequential machine if and only if the right congruence RE
is of finite rank, or, equivalently, if and only if the number of distinct
functions fX is finite. 1In the present section we introduce regular events
and regular expressions, and thereby obtain another characterization of
representable functions. Much of the material we cover can be found in:
J. A. Brzozowski [7] and D. Arden [5].

To begin with, we shall consider a restricted class of finite-state

machines, the finite automata, or finite-state acceptors. A finite auto-

maton has only two output symbols, A and R. A sequence x is said to be
accepted if res(x) = A, and rejected otherwise. It is convenient to

specify a finite automaton as a quintuple

ﬂ = (AI’ Q) A ¥, A)

where F C Q, and &(q) = A if and only if q € F;

the set F is called the set of final states. Note that the word x is

accepted if and only if rp(x) € F.

* *
An event over AI is a subset of AI. The finite automaton represents

the event P if P is the set of words accepted by 52 . MAn event is repre-
sentable if and only if some finite automaton represents it.

The characterization of representable functions in terms of right
congruences yields, as an immediate consequence, a characterization of

* *
representable events. For any event P over AI, and any word X € AI,

DX(P), the derivative of P with respect to x, is defined as follows:

99

100

D (P) = {y|=xyeP}.

Lemma 1
The event P is representable if and only if the number of dis-

*
tinct derivatives Dx(P)’ as X ranges over AI, is finite.

PROOF': By definition, P is representable if and only if the following
function f(x) is representable by a finite automaton:

Aif x eP

f(x) =

R otherwise.
But, for x and y ¢ Ai, thé functions fx and fy are identical if and only
if, for all w,

Xw € P €<= yw ¢ P;

i.e., if and only if

D(P) = D (P).

Therefore, the number of distinct functions fx(w) is finite if and only if

the number of distinct derivatives DX(P) is finite.

The main result of the present section is that the representable
* *
events over AI are precisely the regular events over AI’ which we now pro-
ceed to define, In the definition, we shall use the following operations

on events:

101

union PUQ = {x|xePorxceq)
concatenation P-Q = {(xy|xePandyeq)
n-th power Pn, where n is a nonnegative integer, is de-

fined recursively as follows:

P = (e}; forn>0, B = PP l.p,
0
iteration P = k,) P - (e} UuPuy P2 Y eoe o
n=0

*
Let A be a finite alphabet. The definition of regular event over A

is recursive.

1) the empty set @ is regular;

ii) the set {e} is regular;
1ii) for each a € A, {a} is regular;
iv) if P and Q are regular, then Py Q and P - Q are regular;
v) if P is regular, then P* is regular;
vi) no event is regular unless its being so follows from (i) ... (v).

Regular events may be denoted by well-formed formulas constructed
from the constant events ¢, {e}, and {a}, a € A, together with the binary
operators v and °, and the unary operator ¥*; such formulas are called

regular expressions. In writing regular expressions, certain conventions

are useful. Any set consisting of a single word may be written without
braces, and the '+<' between concatenated events may be omitted. Thus,
instead of {a}-{b}:-{c-d} we may write abcd.

The operation * has precedence over - and U, and - has precedence

over v; thus: P¥ U (Q'R) may be written as P¥ y QR.

102

The following identities, valid for all events P, Q, and R, are

direct consequences of the definitions:

PUP = P
PUQ = QUP

PU(@QUR) = (PUQ) UR

P(QR) = (PQ)R

PQ UPR = P(Q UR)

PRUQR = (P UQ)R

ePuaf = e*ud)* - @dH"
Pe = eP = P

The associative laws enable us to mit parentheses according to
the usuval convention:

(PUQ)UR = PUQUR,

It is useful to acquire facility in translating verbal descriptions
of events into regular expression notation, when possible. For example,
the event consisting of those sequences of a's and b's which end in b,
followed by an odd number of a's, followed by an even number of b's is

(a U b)* ”b(aa)* a(bb)*a
The event consisting of those sequences of a's and b's which either do
not include three consecutive s's, or have two consecutive b's since the

last three consecutive a's, is
* *,
(e U(aUb) bb)(b Uab Uaab) (e Ua U aa).

The importance of regular events i1s underscored by the following

thecrem, which is the main result of the present section.

103

Theorem 1
*
An event P over A~ is representable if and only if

it is regular.

As by-products of the proof of Theorem 1, we shall obtain two useful
algorithms. The first of these, given a finite automaton representing
the event P, produces a regular expression for P. The second, given a
regular expression for P, produces a finite automaton representing P.

The proof of Theorem 1 consists of the proofs of corollaries 1 and 5.

We begin by proving that every representable event is regular.

Let P be the event ' represented by the finite automaton

a

(AI’ Q) qO’ F, >\-})

where

AI = {al,ag,uno,am],
and

o = lagay,- e)
For j=0,1,...,n-1, let

X, = X|r X) =4q.}.

5 (x| pd())

Then

P = U X,.
J

{J lq.j € F)

In order to prove that P is regular, it is sufficient to show that, for
each j, Xj is a regular event.
For any two indices i and j in the set {0,1,...,n-1}, let Oﬁj be

the following regular event:

10k

X € aij === X € AI

and

k(qijx) = q,j"

In other words, aij is the set of input symbols which cause a transition

*
of Cz, from q to qj. Now, if x € AI and a € AI,

rp(xa) = A(rp(x),a)
therefore

rp(xa) = 2 <= for some i, rp(x) = q; and a ¢ o 5

Accordingly, the events Xj are related by the following system of simul-

taneous equations

n-1
Ly = e U g_} Xlalo
i=0
(1) n-1
X. = kdj X.Q, ., Jj=1,2, ,n-1
J ico T

We shall prove that the system (1) has a unique solution, and that,
in this solution, each event Xj is regular. The proof requires the

following lemma.

Lemma 2 (Arden)
Let A and B be events such that e £ A. Then the equation (2)
X = XAUB
has the unique solution

*
X = BA.

105

PROOF: Let X. be a solution of (2). By induction on n, BA" C X,

0
for all n 2 0; therefore, BA¥ CIXO, Assuming that
Xy # BAX,
let w be a shortest word of XO not in BA¥, Then
W € XO AU B,

and since w £ B, w € XyA; i.e., W = yz, where y € Xy and z € A. Since

e £ A
lg(z) > 1,
and
1g(y) < 1lg(w).
By the minimality of lg(w), y € BA¥; but then
w € (BA¥)A C BA*.

This contradiction establishes that

= *,
XO BA

Theorem 2
For i=1,2,...,n, and j=1,2,...,n, let aij be a regular
event not including the null sequence e, and let bi be
a regular event. Then the system of equations
n
Y, = U Y, a5 Vb, 3=1,2,...,n
i=1

has a unique solution, and each of the events Yj in

this solution is regular.

106

PROOF: The proof is by induction on n.

*
Basis. n=1. 3By Lemma 2, Yl = blall’ which is regular.

Induction step. ©Suppose the result holds for k=n-1l. Using Lemma 2,

we may solve for Y in terms of the other variables:

vo= ((L} Y.8,9) U bl)ail, (3)
1=

Substituting in the other equations,

n
* *
Yj = lB} Yi(aij u ailallaij) U (bj U blallaij)’ J=2,%,...,0.
i=2
Fach event
U *
%15 7 #41%11%;
is regular and does not contain the null sequence, and each event
b b ¥
5 Y P181a8y
is regular. To see this, one uses the facts that the regular events are
closed under -, U, and *, and that e ¢ AB if and only if e € A and e ¢ B.
Therefore the induction hypothesis applies, and, for j=2,3,...,n, each

event Yj is a uniquely determined regular event; by (3), Yl is also a

uniquely determined regular event.

Corollary 1
Every representable event is regular.
PROOF: Theorem 2 applies to the system (1); therefore, eachevent Xj is
regular.
The proof of Theorem 2 suggests that a system such as (1) can be

solved by elimination. This technique is applied in the following example.

107

Example 1

Consider the following finite automaton:

a b
b a
a
XO = € LlXob tIXla
Xl = Xoa LJXEb
X2 = le LJX2a

Solving the first equation for XO:

= y *
X, (e U Xla)b

Substituting in the second equation:

= , %8 U X Db = b¥a U ; *&s .U ¥ob
Xy (e UXla)b a U X = b¥a U X, eb*a U Xb.
Solving the third equation for X2:
= *
X2 lea
Substituting in the equation for Xl:
= TD¥g *g U *
Xl b*a U Xlab aly lea b
Solving for Xl:
X, = b*a(ab¥*a J ba¥b)*
X, = b*a(ab¥a J ba¥b)* ba¥
P = X u X, = b¥a(ab¥a j ba¥b) (e y ba¥).

Before going on to prove that every regular event is realizable,

let us derive some further applications of Theorem 2. A nondeterministic

finite automaton 7/ is a quintuple

108

7Z = <AI’ Q) QO’ ¥, L):
where
Q = (qoﬁql)“":qh_l):
G CQy FCaQ,
and L is a function from Q >< AI to subsets of Q. The set QO is the set

of initial states, and F is the set of final states. A nondeterministic

automaton may be interpreted as having a number of choices for its '"move".
When it is in a given state q and receives an input a, it may go to any
state in the set L(q,a); of course, L(q,a) may in some cases be the empty
set. A word

X = 8y 8 ... 8 4
is accepted by‘7Z if there exists a sequence of states g 0 »q t seeesQ
such that q(O) € QO’ q(n) € ¥, and, for 1=0,1,...,n-1,

i+1 i

L) (D)

s ai),

e L(q
We shall prove that the set of words accepted by a nondeterministic

finite automaton is regular. For j=0,1,...,n, let Xj be the set of input
words that can cause the automaton to reach qj from some state in QO; then
e € Xj if and only if qj € Qo, and the word

X = aoalwoan
is an element of X, if and only if there exists a sequence of states
q(o) q(l),“.,,q(n) such that q_(o> € Q)

)

and for i=0,1,...,n-1,
i+l i
q() ¢ L(q(), a.) .

Then

109

P = X..
(J'lqkj-)eF}J

Let
Oy = {azl a, € A and q; ¢ L(qi,a)},

Then the following system of equations holds:

-1
if q. € X, = eU X.Q, .,
qJ Qro) J Eg i
n-1
if qj ﬁ Q,O, XJ = g Xiocij.

Theorem 2 applies to this system of equations, and asserts that each
set Xj is regular; therefore, P is regular. Thus, we have proved the

following result.

Corollary 2
The set of words accepted by a nondeterministic finite

automaton is regular.

Up to now, we have taken the point of view that a sequential
machine computes a function from A; to AO; i.e., that it maps each input
sequence into an output symbol. It is also possible to consider sequen-
tial machines as transducers, which map sequences to sequences. This
point of view is generally applied to the class of generalized sequential
machines, a variant of the Mealy machines. Nevertheless, for the sake of
uniformity we shall continue to consider the Moore model. Let

7@[/ = (AI’ Qs AO’ Q) A, B)
be a finite-state machine, and let the function seq(x) from A? to A; be

defined as follows.

110

seq(e) = res(e)
= 8(ay);
if x = B8y e85 then
| seq(x) = res(e)res(al),..res(a -l)'

For j=0,1,...,n-1, let

4.
J

i

(sea(x) | rp(x) = q,).
Also, let

S,

J

Then the following system of equations holds:

i

(o, [Fay3 Maysay) = a).

2, - seale) v (\J 2,) 8(ay)
1€SO
7. = (\UJ2) 8(a,), j=1,2,...,n-1.
J ieg, J
J

Since this system of equations satisfies the conditions of Theorem 2,

each of the events Z. 1s regular. Therefore,

5o
I
}__l

\v) Zj = {seq(x) |x ¢ A?}

J=0

is regular. Thus, we have proved the following result.

Corollary 3
The set of all output sequences that a given finite-state

machine can produce is a regular set.

Using Corollary 3, we shall now obtain a stronger nesult. Let 72
*
be the machine introduced above, and let P CjAI be the event represented
by the finite automaton

Q = (AI) Q; &O’ ﬁ: K)’

111

Let Jl be the finite-state machine
= (&, @< Q5 Ay (a:84), M5 BY),
where
A((a,0),8) = (Ma,a), A(q,8)),

and

it

5'(q,q) 8(q).

Then, for any sequence x,

seq_, (x)

7 seq7njx)

and

X € P = I'P,ﬂ/ (X> = (Q:i),

where q € F. Therefore,

(x) | rp, (x) = (a,q)}.

(seqnb(x)l x € P} = \v) {seq 2,

((ClJ(i) l a.EF—} 7
By the argument given in proving Corollary 3, this set is regular.

Therefore, we have proved the following result.

Corollary k4
Let U be a finite-state machine with input alphabet AI’
and let P CZA; be a representable event. Then
{seq7ﬂﬁx)| x€P} is a regular event; i.e., the function

seq7%jx) maps representable events onto regular events.

We shall next complete the proof of Theorem 1 by showing that
every regular event is representable. Our method of proof will consist
of showing that every regular event has only a finite number of

derivatives.

112

It will prove useful to introduce the following operation on events:
e if e e P
A(P) =
o if e £ P
The following identities, wvalid for all x and y in A¥, all a € A,
and all events P and Q over A, are direct consequences of the defini-

tions of the operations A(P), DX(P), P yQ, P'Q, and P*.

AP UQ) = A(P) uAQ)
A(P-Q) = A(P)-AQ)
A(P*¥) = e
e if x e P
A(D (P)) =
@ if x ¢ P
De(P) = P
Dy(P) = D(D(P))
D.(PuUQ) = D(P) uD(Q)
D (PQ) = D _(P)Q U U A(D (P))D_ (Q)
* * ((wyswy) [wqwpmx] V1 Vo
for x # e,
D_(P¥) = D (P)px
* ((wyswy) | wywox and w,eP¥) Vo
D.(Puq) = D(P) uD(q)
D (Pq) = D_(P)a UA(P)D_(q)

D (P*) = Da(P)P*,

113

Most of these identities follow directly from the definitions. We

shall prove the two most difficult ones.

(1) D (PQ) = D (P)Q A(D. (P))D. (Q).
X % U [(wl,wg) ﬁﬁ;@2=x} (kst Yo
PROOF': y € DX(PQ) <« xy € FQ.

It is convenient to distinguish the two ways in which xy can be an ele-

ment of PFQq.
i) y = vw, where xv € P and w € Q;
ii) x = W, Wy, where w, € P and w,y € Q.

The set of words v such that xv € P is DX(P). Therefore, the set of
words y satisfying (i) is DX(P)Qw

The set of words y such that w,y € Q is D_ (Q); also, w, €Pif
2

and only if AD (P)) = e.
Y1

Therefore, the set of words y satisfying (ii) is

A(D_ (P))D, (a).

{(wl,wg) |w1w2=x} V1 2

Taking the union of the two sets of words, we obtain (1).

(2) For x £ e,

D_ (P¥)

*
x D, (P) P*,

= %
{(wl,wg) lwlw2 x and w, € P¥} "2

114

PROOF': y € DX(P*) &> xy ¢ P¥

= X=W W, and y=zlz2

* *
where Wy € P*, Zy € P*, and WoZy € P. Hence z, € DWE(P), and

2.7, € D (P)P*. Taking the union over all choices of <W1’W2>

satisfying the required conditions, we obtain (2).

The following two lemmas establish certain properties common to
all the regular events over an alphabet A. In both lemmas, the method
of proof is to show, for every regular expression R, that the event it
denotes has the required property. Each of the proofs is by induction
on the number of occurrences of the operators tf, °, and * in the expres-

sion R; this number i(R) is called the index of R. The induction steps

of the proofs make use of the fact that, if

i(R) = n >0,
then either
R = PUQ,
or
R = P-Q,
or
R = P¥,

where P and Q are regular expressions of index less than n.

Lemma 3
If R is regular, then, for all x € A¥, DX(R) is a

regular event.

115

PROCF':
Basis.
i(R) = 0
Then R = o,
R = e,
or R = az,

an element of A. Clearly, all the derivatives of these expres-
sions are regular.

Induction step.

Let R be of index n, and take the induction hypothesis that the
derivatives of events denoted by expressions of index less than

n are regular. Either

R = PuaQq,
R = P-q,
or R = P*.

Inspecting the formulas for DX(P U Q), DX(P'Q), and DX(P*), we
find that, in each case, DX(R) can be composed from regular expres-
sions by a finite number of -+, |y, and * operations. Therefore,

DX(R) is regular.

Lemma 4
If R is regular, then R has only a finite number of

distinct derivatives.

116

PROCEF':

Basis. The result is obvious if i(R) = O.

Induction step. Let R be of index n, and take the induction hypo-

thesis that events denoted by expressions of index less than n have only
a finite number of distinct derivatives.

Ir R

it

P UAQ,
then, for any x,
D (R) = D (P) uD(Q)-
Then, if P has p derivatives, and Q has q derivatives, R has at most
Pq derivatives.

If R = P-q,

then, for any x,

1l

b (R) - D, (Pa uUDW2<Q>,

where the union is taken over some of the derivatives of Q. The number
of ways of choosing DX(P) is p, and the number of distinct unions of
derivatives of Q is at most o4, Therefore, there are at most p~2q dis-
tinct events having the form required of Di(R).

If R = P¥,

D, (R) U D, (P)P*,

= 2

then, for x £ e,

il

where the union is taken over some of the derivatives of P. The number

of events expressible in this form is at most 2pe

Corollary 5

Every regular event is representable.

117

PROOF: By Lemma 1, every event with a finite number of distinct deriv-

atives is representable.

This corollary completes the proof of Theorem 1; henceforth, the
class of regular events and the class of representable events may be
identified with each other.

The states of the minimum-state finite automaton representing a
given regular event R are in one-to-one correspondence with the distinct
derivatives of R. Let < DX(R) > denote the state corresponding to DX(R).
Then the transition function of the reduced machine is as follows

A< DX(R) >, a) = <Dxa(R) > .

Also, < DX(R) >¢cF <= A(DX(R)) = e,
which means that x € R. It is easy to show that, if < De(R) > is the
initial state, then, for all x,
rp(x) = < DX(R) >,
so that x is accepted if and only if x € R.

A first step in constructing a finite automaton representing R now
suggests itself. Starting at the root of the free tree generated by A,
ahd moving up level by level, label each node n with an expression for
the event DX(R)° The label for n _ may be cbtained from the label for n_
by means of the identity

Dxa(R) = Da(DX(R)).

if Dy(R) is found to be equal to a derivative previously computed, do not

branch out from the node ny.

The difficulty with this process is that we have no procedure, as yet,

118

for testing whether two regular expressions, corresponding to derivatives
DX(R) and Dy(R), denote the same event. Nevertheless, the construction
process can be made to work, provided that care is used concerning some
computational details. Firsf, we must assume that R is in such a form
that no parentheses implied by associativity are omitted. The deriva-

tive Dxa(R) is computed as Da(DX(R)), where the operation D_ on expres-

sions is defined recursively as follows:

Da(e) = O,

Da(CP) = O

D, () = o
if b £ a,

Da(a) = e,

(0, (P):q) if A(P) = @
D_(PQ) =

(D, (P):Q) UD_(Q)) if A(P) = e,

Da(P*) = (Da(P) P*).

Let two expressions be called similar, or of the same similarity
class, if each can be converted to the other solely by means of the

following identities:

RUR = R
PU(QUR) = (PUQ) UR
PUQ = qQUP

P = PP = ¢

eP = Pe = P.

119

It is clear that similar expressions denote the same event, and that it

is effectively decidable whether two regular expressions are similar.

Theorem 3
Let R be regular. Then, among all the expressions for
the derivatives of R, only a finite number of similarity

classes occur.

PROOF: We use the same induction scheme as in Lemmas 3 and k4.
Basis. For i(R) = O, the result is obvious.

Induction step. Let R be of index n, and take the induction hypo-

thesis that the theorem holds for all expressions of index less
than n. If

R = PuaQ,
then, by induction on lg(x), it follows that each expression DX(R)
takes the form

D, (P) uD.(Q).

If

R = P-Q,
then, by induction on 1lg(x), each expression DX(R) is of the

same similarity class as
(o,(»-a) u U (@),
2

where the union is taken over all words w2 such that x is of the

form wlwg’ where vy e P. If

R = P*

then, again by induction on 1lg(x), each expression DX(R) is

120

similar to

\J D (P) P*
>

where the union is taken over all wlw2 such that x = wlw2 and

w, € P¥. Tn all three cases, the induction hypothesis is suf'-
ficient to show that the derivatives of R fall into a finite

number of similarity classes.

Since the number of similarity classes of derivatives of R is
finite, the process of labelling nodes of the free tree generated by
A with derivatives must terminate, provided that no branches out of
n_ are constructed if Dy(R) is similar to some derivation previously
computed. Once this construction process has been completed, an
automaton representing the event R can easily be constructed. Let
[DX(R)] denote the similarity class of D;(R). The automaton is as
follows:

@ = (A, (D (R)], x € &%}, [D_(R)], F, \),
where [DX(R)] ¢ F if and only if
AD(R)) = e,

and

]
=}
)
N

MID (R)T, &)

Example 2.
Suppose A = {a,b}, and
R = ((ba¥)(ab¥a v ba¥b)*).

The labelled tree showing the calculation of derivatives is as follows:

121

((a%b) (ab*a U ba¥b)*) (ab¥*a J ba¥b)*
a b
((o¥a) (sb*a U ba¥b)) ((a%0) (sb¥a U ba¥b))¥
b
(ab*a U ba¥b)¥ (b*a) (ab¥a U ba¥b)*
Y

((o*a) (ab¥a U ba¥b)*)

A finite automaton representing R has the following state diagram.

122

In this particular case the algorithm leads to a reduced machine.
This 1s not necessarily true in general, since the computation process

may produce derivatives which denote the same event, but are not similar.

Now that we have a complete characterization of representable events,

it is an easy matter to characterize representable functions.

Theorem U4
Let AI and AO be finite alphabets., The function
* A
f.AI—ao
is representable by a finite-state sequential machine if
and only if, for each element b € AO,
(x| £f(x) = D)

is regular.

PROOF: First we establish the necessity of the given condition. Sup-
pose T is represented by the finite-state machine‘zw, with the set
of states
Q = £qo)ql?°°°)qn_l}°
Then, by an argument previously given, for each j, the set

X

]

j (x |72 (x) = q;}-

is regular, Therefore,
(x| £(x) =v} = X5
{3 lﬁ(qj)=b}
which is a regular set. To show sufficiency, suppose each set

{x | £(x) = b} is regular. Since Ay is finite, for some sufficiently

125

large integer [there is a one-to-one mapping g from AO onto a subset
of {0,1}%;
v & (o (0), ap(b), «.vy @,()).
Then, for 1 <k < [,
(x| o (£(x)) = 1) = L) (x | £(x) = D).
{b I Oﬁ{(b):l}
This set is therefore a regular event, and by Theorem 1, there exists

a finite awtomaton (1,5 such tnat
res CXJK(X> = Qk(f(x)),

Now, consider the finite-state direct product machine

f = 6L<l>>< @(2>><,”>< afz)a

Then, for all x,

res 0 (x) = g(£(x)).
Replacing each output symbol s of an accessible state of by the
symbol g_l(s) € AO, one obtains a finite-state machine 5;9' repre -

senting f.

10. PAIR ALGEBRAS AND STATE ASSIGNMENT

Let

ﬂ = <AI; Q: AO’ io) 7:5 S)

be a reduced machine representing the function

*
f AI-% Aoo

Then if
A

is a machine with all its states accessible which also represents f,

= (AI’ Q) AO" q‘O’ N 6)

A = A/
7t on’

—
and, because 7" is reduced,

L S_L,;;{/'

!
Therefore, there is a strong homomorphism from 2/ onto 72 . Let the

functions associated with this homomorphism be

h: Q — §
and
OH Ao - Aoo
Then we have the identity
resﬁﬁi(x) = @(resfﬂéﬁx);

and, since 7% and 7% both represent the same function, ¢ must be the

identity function. Therefore, the function h satisfies the following

equations:
1) nley) = q,
i1) h(M(a,a)) = N(h(a),a)
i1i) 8(h(q)) = 8(a)-

124

125

The existence of a function h satisfying these conditions is a necessary
and sufficient condition for 72 to represent the same function as ",
When such a function exists, we say that 7t realizes 7%. Although the
motivation for this concept depends on the fact that T is reduced, the
definition makes sense whether 7 is reduced or not.

The concept of "realization" is important in connection with the

logical design of synchronous sequential circuits. A design specifica-

tion for such a circuit may be given by a representable function

Of course, since the input and output alphabets of sequential circuits
are given as binary tuples, the set AI in this case will be of the form
[O,l}<p), and A will be of the form [O,l}<r), Let f be such a design
specification, and let ”* be a reduced machine representing the function
f. Then any sequential circuit satisfying the design specification can
be described by a machine ‘7 which realizes . Moreover, since each
internal state of a circuit is represented by a binary s-tuple, it follows
that Q, the set of (accessible) states of 7%, is a subset of {O,l}(s),
for some s. The problem of specifying 7”6, which involves giving the
"coding" of its states as binary s-tuples, so that the resulting sequen-
tial circuit will have a simple structure is called the state assignment
problem.

In this section we shall discuss the algebraic approach that Hart-

manis and Stearns have taken to the state assignment problem [11;12].

A finite-state machine

770 = (AI’ Qs AO: qO’) 5)

126

is state-assigned if

Q SR >R, > ... XR,

where s > 1, and each of the sets Rj has at least two elements. Then

any state q € Q is an s-tuple (rl(q), ..oy, ¥ (q)). The transition

s
function

ANeoQ X< AI.a Q
induces partial functions (undefined for some domain elements)

)\.J.: Rl><R2><ooe ><RR><AI—9RJ’ j=l,2,a.s,s,

where

}\'j(rl<q‘)’ rg(@)) XD rs<<l)) a) = rj(k(%a))-

A state-assigned machine ™M is said to exhibit '"reduced state dependence"
if the values of some of the functions XJ can be determined from the
input a, together with only a proper subset of the set of arguments

(ry, 75

tion of v , and each set

oy rs}a In the case where M is a state-assigned realiza-

R, = (0,1},

the existence of reduced state dependence means that, in a sequential
circuit corresponding to 7N, some of the "next state" outputs of the
combinational part (inputs to latches) can be determined independently
of some of the "present-state" inputs (outputs of latches). When a
state assignment is made which exploits the possibilities for reduced
dependence, the complexity of the resulting combinational circuit is
usuvally considerably less than it would otherwise be.

The concept of reduced dependence in state assignments is closely

allied with fundamental ideas about number representations. Thus, for

127

any integer b > 2, the base b number representation is a "state assign-

ment" of the integers which allows reduced dependence in the formation

of sums and products. For example, the k least significant bits of a

sum can be determined from the k least significant bits of the two addends.
The following example shows a connection between the concept of

reduced dependence and another kind of number representation, the residue

number system, whose application in computers has been studied by Garner,

Svoboda, and others.

Example 1.

—

Consider a sequential machine 7% for which

AI = {a,b]},

Q: = Ao = {qo) q.l, ° ey q209})
and, for all j,
qu’a) = 9541 (mod 210)°
and. 5(q. = q,.
) (a;) a;

Then the following state assignment is possible:

qj = (rl(qj)) rg(Qj)) r5(qj)) rh(qj)))
where the four coordinates are the residues of j modulo 2, 3, 5, and 7,
respectively. With this assignment, the state transitions of the

machine can be determined separately in each coordinate:

kl(rl, Tpr T35 T a) = r, +1 (mod 2)

1l

r, +1 (mod 3)

Ts ¥ 1 (mod 5)

xh(rl, Tps T3y T a) = r), +1 (mod 7)

K2(rl, r2) TB) rh) a)

il

x}(rl) rg) r5} ru) a)

128

We shall investigate the properties of a machine 7Z which govern
the existence of state-assigned realizations 94 with reduced dependence.

Given such a realization 7%7, with

Q TRy ><R, > ... ><XR,

each subset
s c {1,2,...,s]
determines an equivalence relation Pg over @ as follows:
APy Gy, = for all j € 8, rj(ql) = rj(qg),
In what follows, it will be convenient to speak interchangeably
of equivalence relations over a set Q and of the partitions of Q induced

by such equivalence relations. An ordered pair (o,7) of equivalence

relations over Q is called a partition pair if the following implication

holds:

q, 0 q, =>VYa, (q,,8) 7 (q,a).
Note that (0,0) is a partition pair if and only if o is an equivalence
relation with S.P. In terms of partition pairs, the following character

ization of reduced state dependence may be given.

Theorem 1
Let S and T be subsets of {1,2,...,8}. Then the following
conditions are equivalent:
1) for all k € T, the value of the fumction N, 1s deter-
mined completely by the arguments a and {rj] j e s}

2) (pS’ pT) is a partition pair.

129

PROOF: Condition (1) means that whenever, for all j € S,

r(ay) = r(e),

M(apo8) = A (ay,2)
for all k € T. This is equivalent to the statement that,
if qlpsq2, then, for all a,
Mapsa)en(ay,a);
and this means precisely that (ps,pT) is a partition pair. This com-
pletes the proof.

Now we have seen that the existence of partition pairs (pS,pT)
determines the existence of reduced state dependence in a state-assigned
realization % of iiz . Let us next consider the properties of 32%>
which determine the existence of reduced dependence in its realizations.
Suppose that “#C realizes ‘552, and that (G,T) is a partition pair of %% .
Let the equivalence classes associated with o be Bl’BE"°"Bt’ and let
the equivalence classes associated with T be Cl’CE""’Cu° Then, for

any j € (1,2,...,t}, and for any a € AL,

x(Bj,a) = {nq,a) | q ¢ B,)
is contained in some set Ck(j,a)° Let h be the homomorphism from 72
onto 7%5, and let
n(B,) - (n(a)|q e8]

Then, for any j € {1,2,...,t},

i(h(Bj),a) = (Ma,a) |q ¢ h(Bj)}

I

{(X(n(q), a) |q ¢ B,).

Because h is a homomorphism, this set is equal to {h(r(qg,a)) | q € Bj]’

130

which is contained in h(Ck(j_a>), Thus, the collections {h(Bj)}

9
and {h(Ck)] have the property that the image of each set h(Bj) under an
input is contained in some set h(Ck). Also, since h is onto

n(B.) = U = Q.
U h(B.) L h(Ck) Q

In the particular case where h is one-to-one, so that 7 and 7Z are
isomorphic, each of the collections {h(Bj)} and {h(Ck)} is a partition of
Q-

The foregoing discussion suggests that the definition of partition
pair be extended to "overlapping partitions", as follows. A collection

[Dj, 3=1,2,...,t} of subsets of § is a cover of Q if

The ordered pair of covers ({Dj}j [Ek}) is a cover pair (with respect to

—

“M) if, for all j, and for all a ¢ A
i(Dj,a) = {Xg,a) | q e D,

is a subset of some set Cko A cover @ is said to have the substitution

property (S.P.) if (9,0) is a cover pair.
The following example indicates the use of covers with S.P. in

the construction of state assignments.

151

Example 2.

This machine ‘ has the following two covers with S.P.:
@: 012 3

and

6: 03 13 25.
The first of these is a partition with S.P., but the second is not a
partition. By making three "copies" of state 3, we can obtain a machine
YW which realizes W , and has partitions with S.P. @' and 6', such
that the homomorphism from % onto 7% ' maps the blocks of ®' onto the

blocks of ¢, and the blocks of 8' onto the blocks of 0.

b

132

The homomorphism h is as follows:

h(qo) = a.o)
h(ql) = al’
h(Qe) = 5.2)

We can now construct a state assigmment for ﬁi’in which @' is the par-
tition associated with the equivalence relation p{l}, and 6' is asso~

ciated with p{g}:

a [ry(a)] ryla)

A o
A g
@ | A 4
B a
B B
B Y

Because pf{l} and p{2} are equivalence relations with S.P., reduced de-
pendence exists, and as far as its state transitions are concerned, 77
can be represented as a pair of machines operating in parallel, one

keeping track of the coordinate s and the other keeping track of Ths

as follows.

155

We next present a theorem which shows how the existence of par-
tition pairs in the realizations of M is dictated by the cover pairs
for ™ . For any cover ®, and any state g, let n@(i) denote the num-

ber of blocks of ¢ in which q occurs.

Theorem 2

Let

(9,0) = ((p,3, (B))
be a cover pair for 7. Then there exists a realization
7L of 4 with %, max[n (q.), n,(q.)] states, having a
i o i 0 i
partition pair ({Aj}, (Bk}) such that, for all j,

h(Aj) = Dj and, for all k, h(Bk) =

PROOF: For each state q € §, 2 will have max(n@(i), ne(&))
states whose image under the homomorphism h is i. Call these states
aA’ iB’ Then enough "copies" of each state q are available to
permit the construction of partitions {Aj} and {Bk} of Q, the set of
states of ¥ , such that, for all j,

n(A,) = D,

and, for all k,

134

For each pair (j,a) choose k(j,a) such that

AMD.,a) CE . .
(3’) k(J,a)

The transition function of 722 is now constructed as follows: if éP € Aj’
then q ¢ Dj,
AMg,a) € B .
(a,a) k(j,a)
and, for some R,

[k(&,a)]R € Bk(j,a)’

then set

K(ip;a) = [i<a:a)]R'

Then

AA, CB /.
(J,a) k(J;a))

so that ({Aj}, {Bk}) is a partition pair. Also, taking (&O)A as

the initial state of 7%/, and setting

for all states iP of M, we find that all the conditions for a homomor-

phism are met, so that #C realizes - .

Example 3.

Let \ be given by the following table:

135

- A
%‘ab'
17114
- 2|4]2
M EIE
L1313

Then the ordered pair (9,6) = ({123, 3k, 23k}, (1L, 23k4})
is a cover pair. Performing the construction given in the proof

of Theorem 2, the following realization # of % is obtained.

A
M Ta v
NEYE
2y | *a |2
30 | *a | 2a
Q|5 | |3,
yIESEN
% |5 |2
3% | |2
"5 % |2

The following is a partition pair (o,t) for % :
(L2 300 35 % 25 3 Mgds (1 By 2,253, 55 30 i)

The homomorphism from 7% onto 72 is as follows:

lA—el, 2A—->2, 28_)2’ BA—)B’ 5]3—%5’ 50—95,
LLA - b, hB - L4, The images of the blocks of o are the blocks of

P, and the images of the blocks of T are the blocks of 6.

136

Since the cover pairs of A determine its state-assigned realiza-
tions with reduced dependence, it is of interest to consider the algebraic
structure of the set of all cover pairs of I . We shall also be in-
terested in the structure of the set of partition pairs of Tiéf, which
determine the existence of reduced dependence in state-assigned machines
isomorphic to TZZ/.

Let {Dj} and {Ek} be covers, and let {Fg} and [Gm} be collections

of subsets of Q such that each of the sets F, is a subset of some set Dj’

Y/
and each of the sets Gm is contained in a set Ek' Then it is easy to
check that either all of the following are cover pairs, or none are:
(g3, (B D, (0,1, B uleh, (U (F,], (E,}), end

({Dj}'U £F£}’ {Ek} LJ{Gm}). Thus, in characterizing the cover pairs of
‘iﬁ/, we may as well consider only those covers in which no set is in-

cluded in another. Accordingly, we are led to the following definitions.

A set system is a collection {Dl, D2, ooy Dt} of subsets of § such that

and, if

then j, = J,. If {Si} is any collection of subsets of Q, let Max ((Si})
denote the collection consisting of those sets in {Si} that are not prop
erly contained in any other set in {Si}° Then, if {Dj} is a cover,

Max ({Dj}> is a set system. A systems pair is a cover pair in which

both covers are set systems.
The set systems associated with Q may be partially ordered as fol-

lows: @l < @2 if every block of @l is contained in a block of @2.

137

Lemma 1

The set systems associated withq form a distributive lattice.

PROCF: The lattice operations are defined as follows:

glo(9,,0,) = ¢ - @, = Mex (BNB'|Beco and B ¢

lub(@l,@e) = 9 + 0, Max {B|B ¢ P or B e mé}.
We omit the simple verification that these operations define the greatest

lower bound and least upper bound of ¢, and ¢., and that the distributive
1 2

laws hold:

i

cpl + (CPE ° CPB) = (Cpl + @2) ‘ (cPl + CPB) .
The universal lower bound O for the finite lattice of set systems has

each element of § in a block by itself, and the universal upper bound

I=1{q}.

Lemma 2
If (@l; @i) and (@2, $é) are systems pairs, then
(9 = ®yp @ + @4) and (9 + 9y, @] + @)) are

systems pairs.

PROOF: Any element of @l - ¢, is of the form B N C, where B is a set

2
.

contained in ¢,, and C is contained in @,. Since (¢l, ¢l) and (@2, @2)

are systems pairs, it follows that, for any a € AI, there exist sets

B' € @i and C' € @é‘such that

n(B,a) C B,

128

and

~C,a) ccr.
Therefore,

B NC, a)CB' nct,
and, since B' N C' is contained in some block of @i ° ¢é, the conditions
for (@l . ®2, $i . mé) to be a systems pair are satisfied.
Any element B € Py + ¢2 is either an element of ®l or an element

of @2; then

»(B,a) C B,
where B' is either an element of @i or an element of @éo Accordingly,
B' is a subset of some block of ¢J + @}, and MB,a) is contained in

this block, so that the conditions for (¢, + 0., ®! + ©.) to be a
1 27 1 2

systems pair are satisfied.

Lemma 3%
For any set systems ¢ and @', (¢, I) and (0, @') are

systems pairs.

Hartmanis and Stearns have introduced an abstract algebraic struc-
ture which captures the essential properties of the set of all systems

pairs. Let Ll and L2 be finite lattices, and let A be a subset of

Ll > Lzo Then A is a pair algebra on Ll > L2 if

(a) (xl,yl) e A and <X23Y2) A

=0 c % oy oYy el

and (xl T Xy, ¥t y2) e A,

159

(b) If I is the universal upper bound of-LE-and 0 is the universal
lower bound of Ll’ then for any x ¢ Ll’
(x, I) e A, and for any y ¢ L,

(0,y) e A.

Theorem 3
Let L be the lattice of set systems of Q, and let
ACL XL
be the collection of all systems pairs for 7%5 .

Then A is a pair algebra.

The proof of this result is a direct consequence of Lemmas 2 and 3.

Before going on to study the properties of pair algebras, let us
establish that the set of partition pairs associated with a machine w4
is a pair algebra. Let o and o' be partitions of Q. Then o <o' if

and only if every block of ¢ is contained in a block of o'.

Lemma 4

The partitions of Q form a lattice.

PROOF: The lattice operations are defined as follows. The blocks of
glb(cl,cg) = 0, " 0,

are the set intersections of the blocks of Gl with the blocks of 02.

The states a and q, are in the same block of

lub(ol,og) = 0 + 0,

if and only if there is a sequence ZerZnseresly of elements. of Q such

that 29=4y, Z,50p; and for i=1,2,...,n-1, z; and Z;,q are either in

140

the same block of 01 or in the same block of 02, The verification

that the operations just defined yield the greatest lower bound and

least upper bound of Ol and. 05 is essentially the same as the corres-
*

ponding step in the proof that the right congruences over Ai form a

lattice (Theorem 5-3).

The following lemmas will establish that the partition pairs of

M form a pair algebra.

Lemma 5

If (ol,T and (GE,TE) are partition pairs, then

1)

- 7,.) and (01 + 0

(cl "t O, Ty 5 T, + 12) are

22 "1

partition pairs.

PROOF: Every block of o, ° o, is of the form B N C, where B is a

1 2
block of oy and C is a block of Ope Then
»(B,a) C B',
and
n(C,a) C C',

where B' is a block of Ty and C' is a block of Tss thus

AMBNC, a)CB' nCT,
and
B ncC
is a block of Ty Ty This completes the proof that (Ol © 05 Ty 72)

is a partition pair.

It qq and. q, are in the same block of o) + Oy, then there is a

141

SEQUeNCe 2),Zn5y .. ,2, such that

Zl = ql}

Zn = QQ)
and for i=1,2,...,n-1, Z; and Z,,1 are either in the same block of
o, or in the same block of Ope For any given input symbol a, consider

the sequence (x(zl,a), x(zg,a), cooy x(zn,a)). If z; 0 2,,,, then
x(zi,a) T, x(zi+l,a),

and if zi 02 zi+l

, then
x(zi,a) T x(zi+l,a),
since (ol,rl) and (02,12) are partition pairs; Since
23 79

and qn = q2’

we have proved that, if a4 and q, are in the same block of oy + Op»
then for any a, k(ql,a) and x(qg,a) are in the same block of T, + T,.

This completes the proof.

The universal upper bound I of the lattice of partitions of Q has
a single block containing all the elements of Q, and the universal

lower bound O has each state in a block by itself,

Lemma 6
Let o and T be partitions of ®. Then (o, I) and (O, T)

are partition pairs.

Combining Lemmas 5 and 6, we may state the following theorem.

1ho

Theorem 4
The partition pairs associated with a machine'7ﬂ£'form a

pair algebra.,

We shall next derive some properties of pair algebras in general.
Once this has been done, we shall consider how some of the results
apply to the class of systems pairs and the class of partition pairs.

In what follows we assume that A is a pair algebra on Ll > Lg,

Lemma 7
If (x,y) € A and x' < x, then (x',y) € A;

if (x,y) € A and y <y', then (x,y') € A.

PROCF: Since (x,y) € A and (x',I) € A,
(X°X'; .V°I> = (quy) €A
Since (x,y) € A and (0,y') € A,

(x+0, y+y') = (xy') €A

For any set S of lattice elements, let IIS denote the
greatest lower bound of S, and ZS, the least upper bound of S.
For x € L, let m(x) be defined as
Iy, | (x,y;) ¢ al,
and for y € L,, let M(y) be defined as
Z{Xi ‘(xi,y) € A},
The interesting properties of pair algebras all seem to involve these
operators. In deriving these properties, we can cut our work in half

by noting a certain duality. If L is a lattice with ordering relation

143

<, then a dual lattice LD is obtained by taeking the elements of L with
the ordering relation > defined as follows:

y2x&=x<y.
Then the - operation in L is the + operation in LD, and the + operation
in L is the < operation in LD. Universal upper and lower bounds in L,
if they exist, are respectively universal lower bounds in LD. If
A is a pair algebra on Ll > Lg, then a dual pair algebra AP on

D D
L2 > Ll

is obtained as follows:

(y,%) € & = (x,y) € &
Let the operations m and M in AP be denoted mD and MD, to distinguish
them from the corresponding operations in A, which we continuve to de-
note as m and M. Then the functions mp and M are identical, and the
functions MD and m are identical. Thus, any theorem T about the class
of all pair algebras applies to both A and AP, and when T, as it ap-
plies to AP, is translated into a statement about A, a dual theorem
TD is obtained. The properties given in Table 1 are listed in dual

pairs.

144

(1) (x,m(x)) ea M(y),y) € a
(i1) x; <x == m(x) <m(x,) vy ¥, = My;) <M(y,)
(111) m(x;x,) = m(x)) + m(x,) My, + ¥,) == M(y;) - M(y,)
(iv) m(x %) <mlx)) -« m(x)) M(y;) + M(y,) <Myy + ¥,)
(v) m(x) <y &> (x,5) € x <M(y) &= (x,y) €A
(vi) x <M(m(x)) n[M(y)] <y
(vii) m{M[m(x)]} = m(x) M{m[M(x)]} = M(x)

TABLE 1

We shall prove that the first of each dual pair of properties holds.

(1) Let ¥1,¥ps---5y, be the elements y, of L, such that (x,yi) € A.

2
Since (x,yl) € A and (x,yé) € A,

(x-%, y17v,) = (%, ¥7°7,) € A

Repeating this argument n-1 times,

(X) yl"'yg' e yn) = (X)m(x)) € A.

(ii) Since (x2, m(xg)) € A and x; < %,

(xl) m<X2>) € A;
since m(xl) < y whenever (xl,y) €A,

m(xl) < m(xg),

(iii) Since (xl, m(xl)) € A and (xg, m(xg)) € A,
(xl N m(xl) + m(x2)) € NA;

therefore, m(xl + x2) < m(xl) + m(xg)a

On the other hand, since x, < X+ X5 and x, < X, * X535

m(x,) < m(}«::L + XE) and m(xg) < m(xl + xg);

1)

(vii)

145

therefore
m(xl) + m(xg) < m(xl + xg).
Combining the two results,

= m(x, +x

m(xl) + m(x 1 2).

5)

Since (xl, m(xl)) € A and (xg, m(xg) € A,
(xl * X5 m(xl) . m(xg)) € A;

therefore

- m(x

m(x, - x,) <m(x

1 2) l) 2)'

If (x,y) € A, then m(x) is a lower bound for y. Conversely,
if m(x) <y, then since (x, m(x)) € A, we know by Lemma 7,
that (x,y) € A.
Since (x, m(x)) € A, the resiilt (v), in dual form, ensures
that

x < M(m(x)).
Since x < M(m(x)),

m(x) < m(M(m(x)).

But, by (vi), in dual form, taking y as m(x),

m(M(m(x)) = m(x).

It is interesting to note that the functions m and M establish a

Galois connection between the lattices Ll and Lg. In general, a

Galois connection between two partially ordered sets S and T is a pair

of functions

and

into
g: § —s

T: T EEEg S

146

such that:

(a) x, <x, =>o0(x)) <olx) (3%, €)
) v, <y, = 1(y,) <7lyy) (ys¥, € T)
() x <7 o(x) (x € 8)

(@) y <o (y) (y €T)

It is evident that, with appropriate allowance for dualization of L2,
properties (a) and (b) correspond to our identity (ii), and (c) and (d)
correspond to (vi).

An element (x,y) € A is called an Mm-pair if

y = m(x) and x = M(y).
By virtue of (vii), the following statements hold:

for any x € L (Mm(x), m(x)) is an Mm-pair,

l)
and

for any y € L M(y), mM(y)) is an Mm-pair.

2.’
As the following useful lemma shows, the Mm-pairs associated with

a pair algebra A determine the structure of A completely.

Lemma 8
The ordered pair (x,y) is an element of A if and only if

there is an Mm-pair (x',y') such that x < x' and y' <y.

PROOF: The sufficiency of the condition is obvious:
(x',y') e & = (x,5) €A,
To prove necessity simply note that, if (x,y) € A, either (Mm(x), m(x))

or (M(y), mM(y)) can serve as the required Mm-pair (x',y').

147

If (xl,yl) and (xz,ye) are Mm-pairs then, clearly,

*) S¥y =V SV

1=~

Therefore, the Mm-pairs are partially ordered in a natural way:
(Xl’ yl) S (X2Jy2)

if and only if x, < x

1 2°
Lemma 9

The set of Mm-pairs forms a lattice in which

glb((xl?yl)s (XE’yZ)) = (Xl’xgﬁ m(X1°X2))
and
Tub((x557), (%55¥5)) = (Mlyy + o)y ¥q + ¥0)-

PROOF: Since

X, = M(m(xl))
and
X2 = M(m<'x2)))
X, * Xy = M(m(xl m(xg))
Since
m(xl x2) < m(xl) m(xg),
M(n(x, - %,)) < Mlnlxy) " mlxy),
so that
M(m(xl ‘ X2>) <x X
On the other hand, since
. \
(xl 55 m(xl x2) € A,
X, 0 %, < M(m(xl xg))

Therefore

148

and (xl-x2, m(xl-xg)) is an Mm-pair, and a lower bound for both (Xl,yl)
and (Xg,yz); it is also the greatest lower bound since
(X3)5’3) < (Xl"yl) and (XB’yB) < (XQ)YQ)

implies

By a dual proof, it is verified that

lub((xl,yl), <X2?y2)) = (M(yl + y2>; vy * yg),

Let A be a pair algebra on L >X L. An element x € L is gelf-
sufficient (with respect to A) if and only if (x,x) € A. Then x is
self-sufficient if and only if

m(x) <x < M(x).
In particular, the elements O and I are self-sufficient.
A nonempty subset R of a lattice L is a sublattice of L if
a,b € R =>ab ¢R and a +b € R,
where - and + are the meet and join operations for L. Note that it is
possible for R to be a lattice, and yet not be a sublattice of L. For
example, the partitions of an n-element set S form a lattice, but for
n > 3, the partitions of S do not form a sublattice of the lattice of

set systems on S.

Lemma 10
The self-sufficient elements with respect to A form a

sublattice of L.

149

PROOF: If x and y are self-sufficient then (x,x) ¢ A and (y,y) € A.
Therefore, (x-y, x°y) € A, and (x +y, X + y) € A, so that x*y and

X + y are self-sufficient.

Let us now apply some of the foregoing general results to two par-
ticular pair algebras: I, the pair algebra of partition pairs of a finite-
state machine 5%2 and =, the pair algebra of ' systems pairs of 22z, It
is immediate that the self-sufficient elements of Il are the partitions
with S5.P., and, analogously, that the self-sufficient elements for = are
the set systems with S.P.: a set system.{Bj} has 5.P. if, for all j,
and for every input symbol a, there is a k such that

X(Bj,a) CB,.

Let us consider how the functions m and M are determined for II,
The equivalence relation m(c) is to be chosen as "fine" as possible,
subject to the condition that (o,m(c)) must be a partition pair. Thus,
we are led to the following two-step specification of m(o):

(1) Let the symmetric, reflexive relation p(o) be defined as
follows: &l w(o) ig if and only if'&i-: @é orithere exist
éigand ijle Q, and a € A;, such that

G, oGy, Ad;,8) = 4y,
and i(ij,a) = dns

(i1) m(o) is the transitive closure of u(o); i.e. il m(o) ig

if and only if there is a sequence of states zl,gg,,..,zn

such that il = 2, &2 =z, eand, for i=1,2,...,n-1,

2y b (o) Bit1

150

It i1s clear that the equivalence relation specified by this construc-
tion is equal to m(o); for two states are equivalent in this relation if
and only if the definition of a partition pair, together with the condi-
tion of transitivity, implies that these states are equivalent in any
equivalence relation T such that (o0,7) is a partition pair.

The function M(T) associated with the pair algebra Il is also easy
to specify:

q; M(1) 4,
if and only if, for all s,
X(Ql,a) T X(ig,a).
This equivalence relation is clearly the coarsest of all the equivalence

relations o such that (¢,7) is a partition pair.

Example L.
Consider a machineaeaz with
5, = [1:2)3;)“';57697})

and the transition function A specified by the following table.

>
O
Y]

O
~ O\\Ul FWw o
= EO WY O
~N 1 DU D WU

151

Let the equivalence relation ¢ be specified by the following par-
tition: {I 23 ¥ 567). The images of the blocks of this partition under
the inputs a, and a, form the following set of blocks: {6 36 1 2%,

525 2 17}. Then

a; w(0) g
if and only if ii and ij occur together in one of these blocks. There-
fore, m(o), the transitive closure of u(o), is given by the following
partition: {17, 25, 36}. Let us now compute M(m(c)). Denoting the
blocks 17, 245, 36 by A, B, and C, we can form a table which specifies,

for each state g and input a, the block which includes A(q,a). This

table is as follows:

Ar
% %
1[C | B
2|C | B
3{C | B
QlL4lalB
5|B | A
6B | A
7IB | A

Then two states are equivalent in M(m(c)) if and only if they correspond
to identical rows in the table. Therefore, M(m(c)) is given by the par-
tition (123 ¥ 567}, and the ordered pair ({123 * 567}, {17255 36})
is an . Mm-pair.

The function m(o) associated with the pair algebra = is quite easy
to specify: given o = [Bj},

n(o) = Max ([K(Bj)] U O).

The determination of M(T) is a bit more complicated. Let

T = {Ck],

152

and suppose that

A = {al’aE”°"am}5

for any m-tuple (kl’k2"’°’km) of indices of blocks of T, let

B = {q.]|v 1, AMa.,a,) eC_)
kl’kz”'°’km J g7 i ki
Then, if {B } is the collection of all sets obtained in this
kl’kE’""’km
way M(T) = Max{B .
’ (7) k) sKpyeesk J

m
Example 5.

We continue to consider the machine introduced in Example k.

Let
o = {1234 1567}.

The images of the blocks of o under the inputs 8y and 8, form the set

{126 12% 25 127}. Therefore

m(o) = (136 12L 25 127}.
Let the blocks of m(c) be denoted as follows:
36 = ¢

l?
2k = ¢,
g = C33
1-_2‘7 = C)‘Le

As a first step in computing M(m (o)), we form a table giving, for each

state q and input symbol a, the indices of all blocks of m(o) which

include A(q,a).

153

a; a5
1 1 3
g 1 |2,3,4
1 3
Q| 4| 1,2,42,3,4
2 2,2,4 l,i,h
7 2 L
From the table we see that
Bl,3 = 123%,
that
Bo,u = 567,
and that every set Bkl’kg is contained either in Bl,3 or in BE,M'

Therefore
M(m(o)) = {123%, 3567},

and the ordered pair

((123%, 567}, (136, 12k, 25, 127})

is an Mm-pair in the pair algebra

The next computational problem we consider is that of determining
the lattices of Mm-pairs for the pair algebras n and = associated with
a finite-state machine 7% . For this purpose we shall need a few ele-
mentary lattice-theoretic concepts. An element a of a lattice L is

meet-irreducible if a cannot be expressed as b-c, where b and c are

different from a. Similarly, a is join-irreducible if a cannot be ex-

pressed as b+c, where b and c are different from a.

154

Example 6.
For the finite lattice shown below, the set of join-irreducible

elements is (1,2,3,5,6}, and the set of meet-irreducible elements is

{J—[.)5}6)7] *

Lemma 11
Any element of a finite lattice L is a join:

of join-irreducible elements.

PROOF: Let a be a least element of L which is not a join of join-
irreducible elements. Then a is not join-irreducible, so a =b + ¢,
where b # a and ¢ # a. Clearly, b and c cannot be joins of join-
irreducible elements. But if, for exampie, b is not such a join,

then since b < a, the minimality of a is contradicted.

Corollary 1
Any element of a finite lattice L is a meet of

meet-irreducible elements.

Now, suppose that

A C Ll > L2

is a pair algebra. Let the set of join-irreducible elements of Ll

be (al,oo,,ar}, and let the set of meet-irreducible elements of L2

155

be {bl,...,bs}. Then any element x € L. is equal to

1

84
(ai| a; <xJ

and

m(x) = m(a,).

1
(e, | 2, <x)

1

But, from identity (ii) of Table 1 it follows that

m(:E: ai) = :g: m(ai),

(ai, a, < xJ {ail a; <x}

Thus, every element of L2 of the form m(x) is a join of elements of the
form m(ai), where each element a; is join-irreducible. By duality,

any element y € L, is equal to

2
ey
b, |y <v.} ’
AR
and
M(y) = M(bj)-
(o, [y <))

Two algorithms for computing the Mm-pairs associated with a pair
algebra A now suggest themselves; the first of these makes use of the

Join-irreducible elements of L The second algorithm, whose applica-

1
tion to A is equivalent to the application of the first algorithm to

AP, uses the meet-irreducible elements of L2. An outline of the first

156

algorithm follows:
(1) Determine the join-irreducible elements 81585500058, of Ll;
(2) Find m(aq), m(ag), ooy m(ar);

(

3) Form all the distinct Joins of elements m(ai);
(k) TFor each element X m(ai), form the Mm-pair

(M(m(z ai)), m(% ai))°
This algorithm yields all the Mm-pairs contained in A. By Lemma 8,
the Mm-pairs determine A completely.

To assess the usefulness of the two dual algorithms in deter-
mining the Mm-pairs of the pair algebras wn and =, let us characterize
the Join-irreducible and meet-irreducible elements of the lattice of
partitions of a finite set Q with n elements, and the lattice of set
systems associated with Q; these lattices will be denoted, respect-
ively, P(Q) and s(Q).

Let I and O denote the universal upper and lower bounds of P(Q).

Also, let o . denote the partition with one block equal to {a,b}, and

ab
each other block containing only a single element. Finally, for any
proper subset R CIQ, let UR denote the two-block partition having R as

one block, and the complement of R in Q as the other. Thus,

b F O{a,b}"

Lemma 12
An element o ¢ P(Q) is join-irreducible if and only if

o=0o0r o=0_, where a € Q and b € Q.

ab

157

PROOF: O is join-irreducible, and the only elements o such that

0 <o are O and Gab’ so that ¢ is join-irreducible. On the

ab ab

other hand, any partition ¢ is equal to

o
ab’

{Gab Icab < o}

so that no elements except the specified ones are join-irreducible.

Lemma 13
An element o € P(Q) is meet-irreducible if and only if

o =1, or o= op, where R is a proper subset of Q.

PROCOF: This proof parallels the previous one. I is meet-irreducible,

and the only elements o such that o, < o are I and Op» 8O that o is

R R

meet-irreducible. On the other hand, any partition

C.

M e

(op | 0 < op)

so that no elements except the specified ones are meet-irreducible.

Lemma 1k
An element ¢ ¢ S(§) is join-irreducible if and only if ©

contains at most one block with more than a single element.

-1
1
oc

i5

PROOF: The universal lower bound of S(Q) is join-irreducible, and the
Jjoin of any two incomparable elements of S(Q)»necessarily contains at
least two blocks with more than one element. On the other hand, any

element @ of S(Q) is the join of all those elements 6 such that 6 < @

and. 9 hss only one block with more than one element.

Lemma 15
An element @ ¢ S(§) is meet-irreducible if and only if

each block of ¢ has at least n-1 elements.

PROOF: Let ¢ contain a block Bj with less than n-1 elements, and let

kl and kg‘be elements of § not in Bjo Let ml be obtained from ¢ by

replacing Bj with Bj U {k.,}, and let @2 be obtained by replacing Bj

1
with B, U {k.}. Then
J 2
1 2
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>