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ABSTRACT

The isothermal galvanomagnetic tensor components associated with the
Hall effect and the magneto resistance effect are analyzed for arbitrary orien-
tation of the crystal axes in the sample, arbitrary orientation of the magnetic
field B, and arbitrary crystal symmetry. The conductivity components in suit-
able coordinates are expanded in powers of the components of B. The coefficients
are the galvanomagnetic material constants, called "brackets"; they are defined
in Equation 10. By means of Onsager's relations it is shown that the magneto
resistance effect is always even in B, whereas the Hall effect 1s odd in B only
with special geometry (Section 2). Further, the Hall effect is even or zero for
some geometric and crystallographic conditions. The effects of the crystal sym-
metry on the brackets are covered by the theorem of Section 3. The resultant
dependencies between the brackets are tabulated completely for all powers of B
for the crystal classes other than the trigonal and hexagonal ones. For the
latter the bracket relations are given up to the sixth power of B. Formulas
for the number of independent brackets up to any power of B are given for all
crystal symmetries in Section 4. Explicit forms of the galvanomagnetic tensor
components in terms of the brackets for all arbitrary conditions, up to BZ, are
tabulated in Section 5. The significance of the results obtained is pointed out

in Section 6.
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OBJECTIVE

This project aims at developing the under-
standing of the magneto resistance efféct (change of
electrical resistivity in a magnetic field) by theo-
retical and experimental research, with the ultimate
aim of developing materials with more favorasble mag-

neto resistance properties than are available at

present.



A. INTRODUCTION

Owing to administrative circumstances, the present report follows the
previous one at an interval of approximately ten months. The work done during
this period requires a relatively large amount of reporting. In order to dis~
tribute the burden of writing over a reasonable amount of time, it was found to
be expedient to report presently on the progress made in this period with the
theoretical work. The next report will consist of a similar comprehensive re-
port on the experimental progress without a theoretical part.

Regarding the theoretical work reported here, the following remarks
are appropriate.

1. Many of the problems which remained to be brought toconclusion in the
phenomenological theory as sketched in previous reports have since been finished
and are reported here.

2. Several additional viewpoints, simplifications, and shorter proofs
have been found and are presented.

3. In order to make the report a self-consistent unit, a number of
items which have been previously reported are included again. This is true of
the main theorem. The bracket relations, which were formerly given up to n <
L, are now available for n < 6 and for many crystals for any value of n.

k. The authors expect to publish the same material in practically
the same form very soon.

5. The theoretical developments presented here are, we feel, a good
step forward of whatever theoretical material is available in this area of re-
search at present and will be of considerable assistance in the experimental
work of our own group and others.

6. Plans for theoretical work in the immediate future are primarily
directed towards further development of the electron theoretical part of the

theory (see the diagram, Figure 1, of the previous report).
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B. THEORETICAL PART

1. INTRODUCTION

Consider a volume element of an anisotropic isothermal* homogeneous
single crystal of arbitrary shape, placed in a homogeneous magnetic field B.
In the crystal is maintained a constant current density J by means of a suit-

able electric field F (see Figure 1).

Figure 1. Orientation of vectors J, F, B
and probes ab in an anisotropic single
crystal.

Evidently F will be a vector function of J and B,

F = F (LB . (1)

The dependence of F on B represents the galvanomagnetic effect. The crystal
symmetry and other physical laws will, in general, restrict the possible forms
of (1). It is the purpose of the present paper to find the proper description
of F for all possible crystal symmetries, all orientations and magnitudes of J
and B with respect to the symmetry axes of the crystal, under the restriction

that Om's law 1is valid for fixed E.

*Isothermal conditions are assumed throughout this paper without further ex-
plicit statement.

**Throughout this paper we restrict ourselves to nonferromagnetic substances.
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The vector F can be determined experimentally for any given J and B
by measuring the components Fj 2,3 of F in three independent directions. In a
direction d one can measure Fy by measuring the potential difference Vg,;, between
two probes a and b, without drawing current, and dividing by the distance ab.
If»g is taken along J, the resulting dependence of F" (iag) is called the mag-
neto resistance effect; if d is normal to J, then EL (£§§) is called a Hall
effect. Both are special cases of the galvanomagnetic effect. Other special
cases, such as the Corbino effect, imply a geometry and boundary conditions
which are again different.

Historically, Lord Kblvinl first discovered the magneto resistance
effect for Fe in 1856 and also predicted the Hall effect in 1851. After many
tries by various workers Halll discovered it in 1879. The first empirical for-
mula connecting the two effects was proposed by Beattie in 1896.,l The name
"galvanomagnetic effect" appeared in the literature, meaning the Hall, the mag-
neto resistance effect, as well as some other effects such as the Corbino effect.

The dependence of the Hall effect on the magnetic field and on the
temperature was studied by many investigators. In 1883 Righil studied the in-
fluence of the crystal orientation of the Hall effect. Extensive summaries were
given by Cam;pbelll in 1923 and by Meissner2 in 1935. Briefly, the findings5 of
all this work are that the Hall effect depends on the crystal orientation, and
that it is not adequately described by a constant Hall coefficient. The Hall
effect is not always an odd function of the magnetic field, contrary to a sug-

b in 1945,

gestion by Casimir

1. L. L. Campbell, Galvanomagnetic and Thermomagnetic Effects, Longmans, Green
and Co., Inc., 1923.

2. W. Meissner, Handbuch der Experimentalphysik, vol. XI, pt. 2, Leipzig, 1935.

3. BSee, for example, J. K. Logan and J. A. Marcus, Phys. Rev., §§:125h (1952)3
R. K. Willardson, T. C. Harman, and A. C. Beer, ibid., 96:1512 (1954).

L. H. B. G. Casimir, Rev. Mod. Phys., 17:343 (1945); H. B. G. Casimir and A. N.
Gerritsen, Physica, 8:1107 (19L1).




Numerous authors ‘extended Lord Kelvin's work on magneto resistance to
nonferromagnetic materials. Grunmach and Wiedertl published in 1906-07 the first
extensive study for various elements at room temperature. In 1928-3%0 Kapitza5
went to lower temperatures and higher magnetic fields. In 1897 Van Everdingenl
had discovered the influence of the crystal orientation on the magneto resist-
ance. The effect was studied further by Schubnikow and de Haas,6 Stierstadt,7
JustiB:and co-workers, Blom,9 and othersolo Schubnikow and de Haas, Stierstadt,
and, more systematically, Blom, tried to analyze the angular dependence of the
magneto resistance on the orientation of the magnetic field relative to the sam-
ple by a Fourier analysis. Briefly, findingsll of all this work are that the
magneto resistance depends markedly on the crystal orientation, especially at
low temperatures; that for low magnetic fields (say less than 1 kilogauss) the
magneto resistance is proportional to the square of the field, whereas at high
fields the relation is a more complicated function of the field. According to

most results, this function is even. In 1905 Voigt12 laid the foundation for

an appropriate description of the anisotropy of the Hall and magneto resistance

5. P. Kapitza, Proc. Roy. Soc. London(A), 123:292 (1929).

6. L. Schubnikow and W. J. de Haas, Comm. Leiden Nr. 207, a,c,d (1930)3 Comm.
Leiden Nr. 210, a,b (1930).

T. O. Stierstadt, Z. £. Phys., 80:636 (1933); 85:310, 697 (1933).

8. E. Justi, lLeitfihigkeit und Leitungsmechanismus fester Stoffe, Chapter I,
Vandenhoeck and Ruprecht, G&ttingen, 1948.

9. J. W. Blom, Magnetoresistance for.Crystals of Gallium, The Hague, Martinus
Nijhoff, 1950.

10. R. Schulze, Phys. Z., 42:297 (1941); Y. Tanabe, Tohoku Univ. Res. Inst. Seci.
Rep. " I:275 (l9h97 E. Grueneisen and H. Adenstedt, Ann. Phys., 31: 71k
(1937)3 B. G. lazarev, N. M. Nakhimovich, and E. A. Parfenova, C. R. Moskau

(N.S.), 24:855 (1939).

11. For recent works see, for example, G. L. Pearson and H. Suhl, Phys. Rev.,
83:768 (1951); G. L. Pearson and C. Herring, Physica, 20: 975 (195k) .~

12. W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig and Berlin, 1928.




effects. Further contributions to the phenomenological theory were made by
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Juretschke,”” and other workers.

Kohler,? Casimir,” Seitz,

The present paper attempts to give an explicit development and broad-
ening of the general phenomenological theory, which is required for the inter-
pretation of isothermal galvanomagnetic measurements In terms of true isothermal
galvancmagnetic material constantsol6 In Section 2 the proper galvanomagnetic
constants are defined, the dependence of F on the orientation of J and B is
discussed, and some general relations are established. 1In Section 3 a general
method is developed by means of which the effects of crystal symmetry are prop=-
erly taken into account. In Section 4 formulas are given for the number of in-
dependent galvanomagnetic constants for the various crystal classes. In Section
5 explicit forms are given for F up to terms quadratic in the components of B
for the various crystal symmetries, while the corresponding forms for higher
powers can be elaborated from there on without essential difficulties. The sig-
nificance of the results obtained is pointed out in Section 6.

The objective and plan of attack of the present work is as follows.
The ultimate aim of the theory of the galvanomagnetic effects is to describe the
function (1) completely in terms of the electronic properties of the material
concerned. This task can be divided into two parts. In the first or phenomen-
ological part the function (1) is described in terms of a number-—finite or
infinite—of appropriate constants that are characteristic for the material.
In the second or electron-theoretical part these constants are interpreted in

terms of electronic properties. The present paper 1s only concerned with the

phenomenological part.

13. M. Kohler, Ann. Physik, 20:878,891 (1934); 95:365 (1935).
14. F. Seitz, Phys. Rev., 79:372 (1950).
15. H. J. Juretschke, Acta Cryst., 8:716 (1955).

16. The essentials of the present paper were first given in a contract report,
with the U. S. Signal Corps Engineering Laboratories, of November, 1954,
by E. Katz, entitled: Magnetically Sensitive Electrical Resistor Material.
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Here again the work can be divided into several steps. First, proper
coordinates will be defined. Second, the galvanomagnetic function (1) must be
put in the simplest form consistent with general principles and with arbitrary
orientaﬁion of B, arbitrary crystal symmetry, etc. This form must then be ex-
pressed in terms of functions that are characteristic for the material. Third,
these functions must be described by a number-~finite or infinite—of constants
which are amenable to discussion by the electron theory. Fourth, the restric-
tions imposed on these constants by the crystal symmetry are to be established,
and the number of independent nonvanishing constants should be found. Fifth,
the information so obtained must be synthesized; the galvanomagnetic effect,
measured under the most general conditions, is then expressed in terms of ma-

terial constants ready for interpretation by the electron theory.

2. DEFINITIONS AND GENERAL RELATIONS

a. Coordinate Systems.-—Two sets of orthogonal coordinate systems

will be used.

(1) The symmetry coordinates ki (i-= 1,2,3). These are adapted to the
crystal symmetry* as follows:

For the groups C;, Sy the directions of the coordinate axes are
arbitrary. For the groups SZ,VS,L, Ss, C2, C3, C4, Csy Coh, Cahy Cahs
Cen, the ks axis is taken along‘the axis of rotation;** the other axes
have bne degree of freedom.

For the groups T, Tp, Tq, the coordinate axes are taken along the
twofold rotation axes.

For all other classes, kg is taken along the rotation axis of

highest order, k; along a rotation axis** normal to ks, and ks accord-

*Only the macroscopic symmetry of the crystal, i.e., to which of the 32 crys-
tallographic point groups it belongs, need here be considered.

**The axis of an improper rotation is understood here as the normal to the cor-
responding reflection plane.



ingly. Vector or tensor compqnents with respect to these symmetry co-
ordinates will carry Latin subscripts.

(2) “The laboratory coordinates x?y(a,: 1,2,3) with x' along the current
dénsitylg, x? in the plane of J and d, and x3 accordingly. In the
case of magneto resistance, d is along J, allowing one degree of
freedom for x® and x° in the plane normal to x*. Vector and tensor
components with respect to the laboratory coordinates will carry
Greek superscripts. No confusion between.superscripts and exponents

should arise in practice.
The definition of the laboratory system implies
7 =P = 0 . (2)

o’
Denoting the direction cosines between the two coordinate systems by £4 and

using the summation convention for repeated indices, we have

h
T 04
FB = F.lﬁ.
Jdd
- PP
Fj = F Zj . J

b. Assugption I. Ohm's Law.--We assume Ohm's law to be valid for
any constant applied magnetic field B, i.e., the current density J is a homo-

geneous linear vector function of F. Thus, in symmetry coordinates:

73

]

o153 (B) Fy
()

Il

s

J pj1 (B) J1

where the conductlvity tensor components 043 and the resistivity components
pji are both functions of B and are related by

pji = Aig/a . (5)
Here A is the determinant of the ¢j3 and Ajj is the cofactor of oj5 in A. The

6



functions cij(g) and pji(g) are characteristic of the material at any given tem-
perature and independent of the geometry of galvanomagnetic measurements. The
effects of crystal symmetry are to place restrictions on these functions. How-
ever, the direction of current flow J has, in general, no particularly simple
relation to the symmetry coordinates, and the results of measurements are most
directly expressed in terms of laboratory coordinates. Ohm's law, restated in

laboratory coordinates, is

where >~ (6)

a1 1.Q

B) = p

For @ = 1 these equations describe the magneto resistance effecti for o = 2 or

3 they represent the Hall effect. The latter form exﬁresses these galvanomag-

netic effects in terms of the conductivity components in symmetry coordinates.

.¢. Assumption IT. Onsager's Relations.—The validity of Onsager's

relations is assumed: r
in(-]—S—) = pij(-E)

and,’ consequently, L (7)

0., (B)

jiv=> 7 Tiih =

1
Q
—~
]
oo}

as well as

pP(-B) . (8)

il

0B (B)

d. The Parity of the Magneto Resistance Effect.-—Equation (8) states
that
p (B) = o (-B) , (9)
which proves the theorem that the magneto resistance effect is even in B. 1In

the literature 1T there has been some comtroversy about the evenness of pll

but the above argument shows that under the very broad assumptions stated, pl?t

17. References 11, 43 D. Shoenberg, Proc. Camb. Phil. Soc., 31l: 271 (1935);
J. Meixner, Ann Phys., 36:105 (1939); ibid., 40:105 (1941); B. Donovan
and G. K. T. Conn, Phil. Mag., 41:770 (1950).
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must be an even function in B without exception.

e. Parity of the Hall Effect.—The Hall effect as defined by (6)

with o # 1 implies that the Hall electrodes are normal to the current. We
shall adhere to this definition, though some experimenters prefer to define
the Hall effect as measured with the Hall electrodes on an equipotential when
B=0.
In general the Hall effect 1s neither an odd nor an even function of
B. This is true for either definition. However, in a number of special con-
figuratidns the crystal symmetry may impose a special parity on the Hall effect.
The complete list of such configurations is as follows. Consider the crystal-
lographic point group, obtained from that of the crystal by augmenting it with
an inversion center. The physical sighificance of this augmented group is ex-
plained in Section 3. Then one can easily prove with respect to this augmented
group:
(L) If B lies along a 3-, 4-, or 6-fold axis and either J or d is normal
to B, then the Hall effect is odd.
(2) If B is normal to a 2-, L-, or 6-fold axis and either J or d is along
that axis, then the Hall effect is odd.
(3) If B lies along any 2~, 3-, 4k-, or 6-fold rotation axis and is coplanar
with J and d, then the Hall effect is even.
() If B, J, and d are normal to the same 2-, k-, or 6-fold axis, then the
Hall effect is even.
(5) If B and either J or d lie along any 2-, 3-, k-, or 6-fold rotation
axis, then the Hall effect vanishes.
There are no other cases in which the Hall effect is purely even, odd, or zero
as a function of B. The "new" galvanomagnetic effect reported by Goldberg and

18

Davis,” - for example, is a case illustrating points (4) and (5). In their Fig-

18. C. Goldberg and R. E. Davis, Phys. Rev., 94:1121 (1955).
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ure 1 the slight discrepancy between the axis direction and the direction of
zero Hall effect must be due to an experimental error of imperfect alignment.

f. Assumption III. Power Seriles Expansion of aij(g).-—Most galvano-

——

magnetic measurements suggest that oi3(B) can be expanded as a series in powers
of the components By. One of many typical examples is reproduced by A. H.
Wilsonl9 from work by Justi and Scheffers on gold. If a Fourier analysis of
polar diagrams of this sort involves significant terms with arguments of the
sines or cosines up to n¢, then, it 1s easily shown, significant contributions
to the conductivity components 03 arise from terms proportional to the nth
power of B and vice versa.

There 1s an observed limitation to the appropriateness of a power-
series expansion for galvanomagnetic effects. Experimentsgo have shown that
the Hall voltage and the magneto resistance at low temperatures contain oscil-
lating terms whiéh presumably are connected with the van Alphen - de Haas effect
and are proportional to B sin BO/B. Such terms do not possess a derivative with
respect %o B at B = O and hence cannot be expanded in powers of B. Consequently,
the development presented here does not apply to that part of the galvanomagnetic

effects which arisesfrom terms of such a nature.

As the third assumption, we write
©® n m
m-p p_ n-m
013(B) = }Z }Z }Z[m~p,p,n—m]ij By Bs Bs (10)
n=0 m=0 p=0

or, introducing the direction cosines y; of B with respect to the symmetry co-

ordinates,

19. A. H. Wilson, The Theory of Metals, Univ. Press, Cambridge, 1953, p. 318.

20. See, for example, P. B. Alers and R. T. Webber, Phys. Rev., 2&:1060 (1953);
T. G. Berlincourt and J. K. Logan, Phys. Rev., 93:348 (1954); T. G. Berlin-
court and M. C. Steele, Phys. Rev., 2@:955 (1955)3 M. C. Steele, Phys. Rev.,

99:1751 (1955).
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® n m
E 11 - -
cij(_]é) = Z B Z z [m-]p,]p,n—m]ij 71m p72p73 no, (10a)

n=0 m=0 p=0

The coefficients in this expansion are designated by the bracket symbols and
are independent of B. They are the true phenomenclogical material constants
characterizing the galvanomagnetic behavior of any particular material. They
are sums of components of tensors of rank 2n + 2 since the axial vector B is
an antisymmetric tensor of rank two.

Onsager's relations imply
n
[m-p,p,n—m]ij = (=) [m—p,p,nfm]Ji . (11)

Consequently, it is sufficient to consider 1ij values of 11, 22, 33, 23, 31,
12, only. This will always be done unless stated otherwise. Another conse-
quence of (11) is that all brackets with n = odd and i = j vanish. Denoting

by @ an arbitrary odd number:
[m-p,p,0-m]5;; = O . (11a)

The restrictions imposed on the brackets by the crystal symmetry will be de-
scribed in the next section. The fact that (6) is simpler in terms of P
then in terms of 01 would suggest a power-series expansion of the former.

The latter was chosen since the brackets so obtained permit a simpler electron
theoretical interpretation. However, the contents of all that follows are ap-

plicable without any modification to p-brackets and o-brackets alike.

3. THE EFFECTS OF CRYSTAL SYMMETRY

a. Only Eleven Point Groups Need Analysis.—Tensor components that

are material constants must be invariant under the operations of the crystallo-

*In order to set the tensor character in evidence, the brackets will sometimes
be denoted by [(23)"7P,(31)P,(12)"™] 5. The quantities (23), (31), (12) will
be referred to as the pairs of inner indices and ij as the outer indices.

10



graphic point group of the crystal considered. If the tensor components are of

even rank, they transform identically into themselves under inversion. Conse-
‘quently,. all tensor components of even rank that are material constants must be
invariant under the operations of the point group that is obtained by augment-
ing the point group of the crystal considered by an inversion center. This is
obviously also true for the brackets. Any point group augmented by an inver-
sion center becomes one of the eleven well-~known crystallographic point groups
which possess such a center. Thus, it suffices to analyze these eleven point
groups. They can all be generated by at most two rotations in addition to the
inversion center. We shall generate the eleven point groups by means of the
elements shown in Table I. In the second row are listed the twenty-one point
groups without inversion center which go over into those of the first row by

the addition of an inversion center.

TABLE I

GENERATING THE ELEVEN POINT GROUPS

Point Group S2 Czh Csi Csh Ceh Dah Dsi Dgh Deh Th  On
Equivalent Ci1 Cso Ca Cq Csh Coy Cay Dzg Dapn T Tg
Point Cs S4 Ce Dz D3 Cav  Cev 0
Groups Dy Ds
Generating*

Elements

axis along kg - 2 3 b 6 2 3 Ly 6 2 i
axis along ki - - - - - 2 2 2 2 - -
axis along [111]]| - - - - - - - - - 3 3

*
If an axis is taken as a generating element, its multiplicity N is listed at
the appropriate place. The inversion center which is a common generating ele-
ment of all groups is not listed.

11



Under a general rotation each bracket is transformed into a linear
combination of other brackets. If the rotation be a covering operation, and
thus requires invariance of the bracket, then certain relations must hold be-
tween the brackets.

Under inversion each bracket is transformed identically into itself.
Hence, no relations between brackets can be derived from the requirement of in-
variance under inversion.

b. A Theorem Concerning the Effect of an N-Fold Rotation Axis Along

kg .—~The effects of an N-fold rotation axls along ks are covered by a theorem
which states that certain linear equations must hold between the brackets. In
order to express these combinations concisely, some notations are introduced.
Iet s be the number of non-threes among a given ij and let 6 be the number of
twos minus the number of ones In ij. The numbers.s@ define uniquely one of

the six independent pairs of indices 1j, and vice versa. Table II gives the re-

lation explicitly for further reference. We write

[mrp,p,n-m]ij = [mfp,p,n—m](s’@) . (12)

TABLE II

TABLE OF s AND © VALUES

iJ S e
33 0 0
31 1 -1
23 1 C 41
11 2 -2
12 2 0
22 2 +2

Let z denote a nonnegative integer < s and w a nonnegative integer < m. Each
of the linear equations referred to by the theorem will be labeled‘by five in-
tegers n, my, s, z, w. All brackets occurring in one equation have the same
n,m,s, but may differ in p,8. The parameters z,w serve to label the various
equations with the same n,m,s, involving the same brackets with different co-

efficients. 12



Theorem

For an N-fold rotation axis along ks, the brackets satisfy the equa-

tions

m
Z z g(m,p,w) €(s,6,z) [m"P:P;n"m](S’@) = 0 , (13)
8 p=0

provided the inequality
h = mes - 2(wtz) # KN (k=0,+1,+2...) (1k)

holdsj in other words, h is not a multiple of N.
The summation over 6 is meant to include all 1 combimations with con-

stant s. The coefficient g(m,p,w) is defined in terms of binomial coefficients

T
g=0

The factor €(s,8,z) is given in Table III for all values for which it is defined.

by

H

g_(m,p,w)

The proof of this basic theorem is given in Appendix I. In Appendix II it is
shown that the only solution for the complete set (13) for given n,m,s, is that
all brackets involved vanish. A consequence is that the equations (15) with
the condition (14) represent a complete description of the symmetry properties
of the brackets.

For finding the relations between brackets of given n,m,s, one will
first list all brackets of this set according to their p and © values, next es-
tablish their coefficients ge for all possible values of the parameters w,z,
and finally write down one equation of the type (13) for each set of w,z val-
ues compatible with (14). Shortcuts to this procedure will be explained after

some corollaries of the theorem have been proved.

c. Some Consequences of the Theorem.—In formulating the fundamental

theorem a rotation axis was taken along ks. It is simple to apply the theorem

13



TABLE IIT

THE VALUES OF ¢(s,9,z)

n = even n = odd
s e ij z~» 0 1 2 ) 0 1 2
0 0 33 1 - - - - -
1 -1 31 1 1 - 1 1 -
1 1 23 i -1 - -i i -
2 -2 11 1 1 1 - - -
2 0 12 2i 0 -2i 0 21 0
2 2 22 -1 1 -1 - - -

to a rotation axis along ky or ke by permutation of both inner and outer in-
dices. The effect of a threefold axis along the [111] direction can be taken
into account by requiring invariance for the brackets under cyclic permutation
of the indices 1,2,3 both in and outside any bracket. Thus the effect of sym-
ﬁetry for the eleven point groups is completely described by the theorem with

these generalizations.

However, in a number of cases the application of the theorem is greatly

simplified by means of some corollaries.

Corollary T
For N = even (2,4,6) about ks, all brackets for which the index 3 oc-

curs an odd number of times (inside plus outside) are zero.

Proof

In any particular bracket, the index 3 occurs 2-s+m times. Thus it
must be shown that all brackets with (m+s) odd vanish. If (m+s) is odd then h
cannot be an integral multiple of the even number N. Thus all equations pro-

vided by the general theorem are valid. According to the theorem, given in

1k



Appendix II, all brackets concerned must now vanish.
q.e.d.
In preparation of Corollary II let two brackets be called "adjoint"
with respect to ks, if they can be obtained from one another by interchanging
the indices 1 and 2*), both inside and outside, and writing the resulting pairs

of indices in the conventional order. For example, the brackets

[m-p,p,n-m]p3 and [p,m-p,n-m]z;

are adjoint. Indeed the first bracket can be written as [(25)m'P,(Bl)p,(lE)n‘m]25.

Upon interchanging 1 and 2 this becomes [(52)p,(13)m’p,(El)n'm]l3. All pairs
must now be interchanged in order to appear in the conventional order. The n
)

inner pairs each give a minus sign. The outer pair gives (-)" according to

Onsager's relation (11). The result is always a plus sign. The resulting

bracket is [(23)F,(31)"P )n‘m]Bl, which is the same as [p,m-p,n-m],; . Thus

,(12
the adjoining operation with respect to ks transforms one bracket into another

one, by interchanging p with m-p and © with -8.

Corollagz ;E

For N = 4 about ks, nonvanishing adjoint brackets are either equal or
opposite. They are equal if the number of occurrences of the index 2 is even,

opposite if this number is odd.

Proof

Under a fourfold rotation about kg, k; transforms into ké and ks into
-k; . Thus the result of this rotation differs from the operation "adjoining"
only by a factor (-) to the power of the number of occurrences of the index 2.
If the index 2 occurs an even number of times the factor is +1, otherwise -1.

Since the fourfold rotation is a covering operation the corpllary is proved.

*Similarly we define adjoint with respect to ky (or kz) by interchanging the
indices 2 and 3 (or 3 and 1).
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The indices 1 and 2 occur both even or both odd. Indeed the total
number of indices 1, 2, and 3 is even, and the occurrence of the index 3 is
even according to Corollary I. Thus the corollary is symmetric with respect

to the indices 1 and 2.
g.e.d.

Corollary III

If in an equation of the type (13) each -bracket [mﬁp,p,n-m]ij is re-
placed by [myp,p,n'—m]ij, where n' has the same parity as n, the resulting

equation also belongs to the set (13) and has the same h.

Proof

The corollary is essentially due to the fact that kg is the rotation
axis. In equation (13) n occurs only in two places: in the brackets, all
brackets in one equation having the same n, and in € (see Table IIT). In the
latter the influence of n enters only through its parity, hence different val-
ues of n with the same parity lead to similar equations. Since the definition
(lh) of h does not contain n, the h-values of such equations are equal.

q.e.d.

A consequence of this corollary is that a change from n to n' with
the same parity in any bracket relation leads to another valid relation, i.e.,
bracket relations for given values of m,s need to be tabulated only for n =
even and for n = odd, a fact which has permitted great simplification in the

tables of bracket relations that follow.

Corollary IV
Two equations of the type (13) with equal n,m,s having parameter val-

ves w,z and w'=m-w, z'=s-z, i.e., h'=-~h, are conjugate complex.

Proof

One must prove that the coefficient ge is transformed into its conju-~

gate complex by changing from w,z to wiz!. According to (15) it is easily shown

16



that g(m,p,w) = (-)™P g(m,p,m-w). Since the definition of g contains a factor
1P

b

m

g(m)PJW) = (-) g*(m;P:W') ) (16)

the asterisk denoting the complex conjugate. Likewise, Table III shows that
*
€(s,0,z) = € (s,0,2z') . (16a)

Thus by changing from w,z to w',z' the equation is multiplied through by the
constant factor (--)m and each coefficient changes to its complex conjugate.
g.e.d.
The occurrence of the equations (15) in complex conjugate pairs per-
mits a simplification in listing or surveying all such equations. If the real
and imaginary part of each equation is taken separately, one need only consider
one equation of each conjugate ccmplex pair and maintain all self-conjugate
equations. This can be done in two ways. In the first way one restricts the

range of w to values satisfying the selection rule:
m”EWZO 3]

and leaving 0 < z < s free. In this way only equations with h > O are selected,
and this procedure is most practical for the making of tables of bracket rela-
tions. 1In the second way one restricts the range of z to values satisfying the

selection rule:
s -2z >0 ,

and leaving O < w < m free. This way is useful for proving some general rela-

tions, for example, those of Appendix IIT. It is evident that for self-conju-

gate equations

m-2wv = 8 -2Z = 0

is a necessary and sufficient condition. The number of real equations so ob-

tained is equal to the number of original complex equations.

17



Corollary V

If in an equation of the type (13) each bracket is replaced by its ad-

°

Joint, the resulting equation also belongs to the set (13) and has the same lh

Proof

Fach equation (13) contains adjoint pairs of brackets, characterized
by p,® and p'=m-p,8'=-6, since summations over p and © occur.

The coefficients of adjoint brackets in one equation are g(m,p,w)
€(s,0,z) and g(m,p',w) €(s,0',z). Thus, replacing all brackets by their ad-
Joints is equivalent to interchanging the above coefficients without changing
the brackets. We shall prove that, apart from a constant factor, this change
in coefficients transforms the equation into its conjugate complex, which acQ
cording to Corollary IV also belongs to the set and has opposite h.

It follows directly from equation (15) that

( _ )II’.H'Wi =-m

g(m,p,w) = g*(m,p’,w) ) (17)

where p'=m-p. It is also easy to verify in Table III that

€(s,0,z) = (‘)n+zis e*(SJQ};Z) s (172)

where ©' = -6. Thus by changing from p,® to p?,0', the coefficients are multi-

)28

plied by the constant factor (- and change to their conjugate complex.

q.e.d.
A consequence of this corollary is: For any real relation between
brackets its adjoint relation is also valid with the same coefficients. This
fact is extensively used in constructing the tables of bracket relations which
follow.
A number of other corollaries follow from the symmetry of g and €.
The principal ones are listed below, proofs being left to the reader. They are

useful for checking relations among brackets.
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Corollary vi
Any relation between brackets with s = 1 (@ = i.l) is invariant for
the substitution 6' = -6 followed by reversal of the sign of the coefficients

of all terms with @' = =1.

Corollary VIT

Any relation between brackets with s = 2 is invariant for the substi-
tution ©' = -6 followed by reversal of the sign of the coefficients of all terms

with € = O.

Corollary VIII

Any relation between brackets for s = 1, n = even, is transformed to
a valid relation for n = odd by changing the sign of all brackets with 6 = + 1,

and ‘'vice versa.

Corollary IX
For m = odd any relation between brackets is invariant for the substi-
tution m' = m-p followed by reversal of the sign of the coefficients of all

terms with outer indices 31 and 12.

d. The Procedure for Tabulating the Bracket Relations.-—~It was stated

that the brackets are linear combinations of components of tensors of even rank.
Thus the analysis can be restricted to eleven out of thirty-two point groups.
Mbrecver, Onsager's relations permit one to use only six pairs of indices 1ij,
with equations (11) and (1la) validvfof all point groups. The theorem, given

by equations (13) and (1k4), allows complete tabulation of all bracket relations
for all these groups. Often the application of the corollaries, especially I

and 11, is helpful in obtaining the tables for certain groups from those of other
groups. The brackets of the group So can be tabulated completely by using equa-
tions (11) and (1la) only. It is to be remembered that all the tables that fol-

low are constructed according to the convention that kg is taken along the ro-
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tation axis of highest order and k; along a rotation axis normal to ks, if there

be one.
TABLE IV
PROCEDURE FOR TABULATING BRACKET RELATIONS
Table .of + Corollary I + Corollary II + Invariance Yields
Group Abgut kg About kj About ks ggiiitgziéic ngéiDOf
Sz + Czh
Can + Dzn
Csh + Csh
Dzh + D4n
Dsh + Th
Dgh + On
Cai + Dai
Céi + Ceh
Ceh + Deh

The first six groups of the last column of Table IV are seen to be
completely derivable from the Corollaries I and II and the invariance under cy=-
clic permutation, as indicated by the + signs. The groups Dsji, Csh, Dsgh are
based on Csi, which required the direct application of the general theorem, as-
sisted by the various corollaries. We have not found any simple rule yielding
the complete tabulation for Csjy.

e. Bracket Relations for Cgh and Donh.—Table V for Czoh and Doh is

constructed on the basis of Corollary I. The effect of symmetry is manifest
entirely in the vanishing of certain bracketsj all nonvanishing brackets are
independent. Thus, we have used three symbols to indicate the state of a

bracket whose inner part is given by the second column and whose outer indices
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appear in the first row. The inner parts of brackets contain the symbols e for
an arbitrary even number and w for an arbitrary odd one.
+ means the bracket is independent both for Cop and Dgh.
® means the bracket is independent for Csh but vanishes for Dop-
O means the bracket vanishes both for Csn and for Dop.
Examples: [205]25 is found to be zero as shown by [eew]25 in the eighth
row,
[20&]12 is found to be independent for Cop and zero for Dop
as shown by [eee] in the first row.
The outer indices 11, 22, 33 cannot occur with n = odd, according to equation

(12). Table V is complete for all n.

TABLE V

BRACKET RELATIONS FOR Cop AND Don

i3+ |23 | 31 | 12| 11| 22| 33
[eee] 0 0 & ' + + +
]
=
o [eaw] + ® 0 ' 0 0 0
[0 ]
I [wew] ® + o ' o0 0 0
ol 1
[owe ] 0 0 + 9 ® &
44
[aww] 0 0 ®
@ [weel | + ® 0
I [ewe] @ + 0
o
[eew] 0 0 +

+ means bracket independent for Czh and Don.
® means bracket independent for Czp, zero for Dzp.
0 means bracket zero for Csh and Dzh.

f. Bracket Relations for C4h and Dgh.—The effect of symmetry is mani-

fested in two ways: either a bracket is zero or it is equal to plus or minus its
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adjoint (as defined in Corollary II of the theorem). Of each such pair of ad-

joint brackets, one bracket can be chosen as independent. In the first, fourth,

fifth, and eighth or last row self-adjoint brackets may occur. A self-adjoint

bracket may be forced to vanish if it must be minus its adjoint. Thus it turns
I
out that four symbols are needed, whose meaning is explained under the Table VI,

which gives the complete bracket relations for all n.

Examples: [202]y5 = -[022]1p for C4h, zero for Dun (first row).
[220]12 = self-adjoint and -[220]12, hence zero for Cup and Dyp.
[202]ll = +[022]22; one of the pair is independent, both for

Cqh and Dyh.
TABLE VI
BRACKET RELATIONS FOR C4nh AND Dyn
ij » 23 31 12 11 22 33
[eee] 0 0 4 $o--- 4 }
o
8| leaw] | 4 | O 0 0 0
\K,
g [wew] | <~ N4 0 0 0 0
[awe] | © 0 I - | &
[ ] 0 0 .
% [wee] #\ e 0
>
g [ewe] o 4 0
[eew] 0 0 g
+ means bracket is one of an independent pair and
equal to its adjoint for Cun and Dgh.
9-means bracket is one of an independent pair and

equal to minus its adjoint for Cyun, zero for Dyp.
©means ©-and in addition zero if self-adjoint.

O means zero for Cup and for Dyh.
Dotted lines connect adjoint places.
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g. Bracket Relations for Ty and Op.-—Table VII for these groups is

derived from Table V for Doy and Table VI for Dgy by requiring that brackets

remain invariant under cyclic permutation of all indices. The six permutations
of the indices 1,2,3 fall into two groups of three cyclic permutations. Brackets
belonging to two such cyclic groups are pairwise adjoint with respect to k;, ko,
and kg. If adjoint brackets are to be equal, such as happens in Oy, or if
brackets are pairwise self-adjoint, the two cyclic groups coincide. For exam-
ple, we have for Ty a cyclic group of three equal brackets, obtained by cyclic

interchange of inner and outer indices from the first one:

The other cyclic group of three equal brackets can be obtained from these by a
transposition of two indices. Thus by interchanging 1 and 2, i.e., adjoining

with respect to kg, one obtains:
[022]22 = [220]ll = [202]55 .

For Op all six are equal. On the other hand, the bracket {220]53 is self-
adjoint with respect to ks, hence there is only one cyclic group of three
brackets derived from it and they are equal both for Ty and Oy, namely:

[220]35 = [022]ll = [202]22 .

h. The Bracket Relations for Csi, Dsi, Ceh, Deh.—No simple rules

for the complete tabulation are available and the theorem plus corocllaries will
be used. In order to obtain the most compact form for the results, the follow-
ing scheme has been adopted.

For any particular bracket we must first decide whether or not it is
zero. For Cgzj all zero brackets are listed in Table VIII. The proof that these
brackets are zeros for Csi is given in Appendix IITI. The groups Dsi, Cgh, and
Dgh have the same zeros and the additional zeros listed in Table IX. The latter
was obtained from Tables V, VI, and VII according to the procedure shown in

Table IV.
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TABLE VII

BRACKET RELATIONS FOR Ty, AND Oy

ig> | 23| 31| 12| 11| 22| 33
[eee] 0 0 0 RN I S
§ | leaw] |+, © 0 0 0 0
> N
O] ~
I [wew] 0 S 0 0 0 0
g .
[axwe ] 0 0o |+ 0 0 0
[ ] 0 0 0
o]
g [wee] + 0 0
N
[ ‘\\
o [ewe] 0 + 0
~k
[eew] 0 o |+

+ means nonvanishing bracket for T} and for Oy,

O means zero bracket for Tj and Oy.

In Ty + is one of an independent cyclic set of
three equal brackets.

In Oy + is one of an independent permuted set of
three or six equal brackets (three, if brackets

are pairwise self-adjoint).
Dotted lines indicate places of brackets of the
same set.

If a bracket does not vanish according to Tables VIII

its relations to other brackets are shown in Table X, up tom =

and IX, then

6 inclusive.

Table X is arranged in three parts, according to s = 0, 1, or 2.

dered by brackets.

to the familiar trigonometric tables:

2k

Fach part consists of seven sub-tables for m = 0, 1, ... 6.

The

sub=-tables,

except the simplest ones, have the form of a core array of coefficients bor-
This arrangement represents a double-entry table, similar
brackets on the left are equal to the
linear combinations of those at the top, with the listed coefficients, whereas
brackets on the right use these same coefficients with those at the bottom.

That this arrangement, in which adjoint brackets stand at opposite ends of
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rows and columns, is possible is due to Corollary V. For example, for s

m = 4 we have

[31e]03 [40e]31 + 3[o4elz

[13e]5l 5[406]25 + [o4e]25

The two equations are adjoint with respect to ks.

TABLE X

RELATTONS FOR NONVANISHING BRACKETS FOR Cai, Dsi, Ceh, Dsh

1,

s =0
m
0 [ooe 5
1 —
2 [20e]33 = [o02e]33
3 Laolsz = -3leonlss
[210]33 = -3[o3w]33
) placelyy = lezely, = 2losely,
5 [s00] 3
loawlyy -2 [2awls3
[140]35 =3 [410]33
[osw] 33
6 leoely; lsoelss loselss

[s1el35 0 -3/10 0 [1selss
[42e]z5 -6 0 9 [24els3
[oee]35 [33e]55 [6oe]55
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TABLE X (Continued)

s=1 n=even
m
0 -
1 [1ow]5; = [owlyz
[ow]s) = -l10m]y5
2 2lzcels; = - [12e]lps = - 2[ozels
2lzoelys = [r1ely; = - 2[ozelys
3 [sow]ls; = [12m]3; = [210]ps = [oswlpys
=lsowlyy = -liawlyy = [2w]z; = [osw]s
4 [40e]s, [osels)
[e1elps 1 5 [lisely
[zels; -3 -3 [eze],,
[13elps -3 -1 [s1ely;
[ose]y5 [40e]p3
5 [sowls; loswlys : [503]23'[05w]31
[s10]p5 -2 3 [1awls; | lewly; 2 3 [1aw]py
sl b 6 [mwly; | [lomlys b -6 [l
[osw]ys [s0m]5, : [osw]s; [sowlps
6 [ecels) [osels;
[s1elps 1 5 lisels
[42el5; -2 -3 [24elpy
[szelps -2 2 [asels
[22elsy -3 -2 [azelyy
[iselys =3 -1 [s1ely

[ceelpz [s0elnz

*
The same table can be used for n = odd if each bracket with outer indices 23
recelves a minus sign, according to Corollary VII,
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TABLE X (Continued)

s=2  n=even
[ooely; = [ooeln
[1ow]y7 = [owwlyp = [1ow]pp
[owwlpy = -[1ow]yp = [o1w]y;
[12e],, = [2cely; - [20elap
[oze]y; = [a0elss
[ozel,, = [20el;,
[11e]y; = - [11elnp = 2[20e], = -2lozel,
[sawly; [sowlop
[210], -1/2  1/2 [120]1p
ewly, -1 2 [zl
[120]pp -2 -1 [2100]77
[oaw]p -1/2  1/2 [sow]qp

[o3w]op [oam]ll

[40e]y; ([oae]y; + [40elsy) [o4elns [40e]1p [02e]qp

[31e112 -3/2 -1/2 5/2 [13e]12 [31e]ll 1 3 [13e]22
[ose]qq 1/2 1/2 -1/2 [40e]on | [22e]15 -3 -3 [22e]y5

[ose] o [20e]5

|
|
|
|
[22e]y; -5/2 1/2 7/2 [22e]22: [a1elny -1 -3 liselqy;
:
\
[ose]ps ([40e]os + [0ae]yp) [40e]qq i

[50<D]ll [OS(D]]_Q [50(1)]22

[a0]15, 1 3 -1 [1am]95
[32w]y; -3 -6 1 [a3w]lop
[saw]pp 1 6 -3 [aawlyy
[23w]1p -3 -k 3 [s2w]ip
[1a0]77 O 2 -3 [a10]0p
[1a0]p -3 -2 0 [a10]y;

[0560]22 [50(0]12 [OSCD]]_]_
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TABLE X (Concluded)

[s0elqq

[51@]12 -1
[428]11 -4
[42e]5p -2

[338]12 2

3
6

3

2

[soelop [oselyq [ose]os

[158112
[246]22
[24e]y;

[aze]{s

[oselss [oselq; [scelss [B0e]77

[scelip [oselyp [azely;
[s1ely; 2/5 18/5 -3/10 [1selas
[s1elpp -8/5 -12/5 -3/10 [1selqy
[42¢],, -2 -3 0 [z24elp
[sselpp 4 -b 1 [asselj;

[ose]l s [s0e]in [33e]ns

[oow]ip

[oaw]yp =

(20015

[12e]

12

[216}12 = “3[03@]12

= -3[sce] ,

2[40@]12 =

[22@]12

= 2[oaw]p

2[41@]12

2[146]12

5[236112

3[32@]12

-[ose];5

= -[s0el{p

I

5/10[33@]12 = [1=w]yp
-6[eow];, + 9loew],,

9[60@]12 - 6[06@]12

THE NUMBER OF NONVANISHING INDEPENDENT BRACKETS

Let I(n) be the number of nonvanishing independent brackets for each

29

point group as a function of nj further let P(n) be the number of possible
brackets, E¥(n) the number of valid equations (13) between them, E(n) the num-

ber of equations (13), valid and nonvalid, and K(n) the number of nonvalid



equations (13) corresponding to h = kN. Then evidently

I(n) = P(n) - E(n) = P(n) - E(n) + K(n) . (18)

Case 1. Groups Cy (N = 1,2,3,4,6)

It will be shown in Appendix II that Py(n) = Eq(n) for a rotation axis

along ks, reducing (18) to
Ieg(n) = Keyln) . (19)

In order to evaluate KCN(n), a counting diagram as shown in Figure 2 can be
used. For any of the six allowed combinations of s,z when n is even (three
when n is odd), each possible equation (13) is represented by a point in the
h,m plane. The equations for a given value of n are represented by lattice
points m < n. Since by definition 0 <w <m, we have -m + (s-2z2) <h < +m +
(s =22z); hence, for each s,z pair (subgraph), the points fill a triangular ar-
ray. For purposes of counting it is convenient to think of each point as the
center of a one-by-two rectangle, the rectangles filling the area. The points
(equations) satisfying h = kN lie on a series of equldistant horizontal lines
spaced by a distance N.

For the group C; all the points must be counted as a function of n,

i.e., up tom = n inclusive, leading to

Icl(n) = Po(n) = Es(n) = Kcl(n) = agn® + bon + co (20)

where, for n = even, ag = 3, bg = 9, ¢o = 6, and, for n = odd, ag = 3/2,

bo = 9/2, ¢ = 3.
For CN(N > 1) the number of points lying on the horizontal lines h = kN

mist be counted and is easily seen to be of the form an® + bn + c, where
a = - ao/N (21)

stems from the main triangle area covered by these lines (i.e., the rectangles

of the lattice points on these lines) while
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Points represent E-equations (13) in h,m plane for the various possible combi-
nations of s and z. Arrows indicate K-equations for which h = kN. The case
illustrated is N = 3. For n = even all six diagrams are valid; for n = odd,

only those with parentheses.

Figure 2. Counting diagram.
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b = b, /N for N = odd

even, n = even (22)

o’
i

(bg + 1)/N  for N

o'
1

even, n = odd

(b, + 1/2)/N for N

stems from circumference points with h = kN whose rectangle areas stick out be-
yond the main triangle area. The values of ¢ are most easily evaluated in prac-
tice by solving for ¢ for some low value of n for which ICN has been counted.

In this way the formulas of Table XI for the C classes result.

Case 2. Groups Dy (N = 2,3,4,6)

The quantities on the right-hand side of (18) will now be interpreted
after the effect of a binary axis along kj has been taken into account. This
effect is manifest in two ways: certain brackets vanish, reducing P(n), and
certain equations about ks must be dropped, reducing E(n), as will now be shown.

According to Corollary I, all brackets for which the index 1 occurs
an odd number of times vanish. In any bracket the index 1 occurs p + n - m
times inside and 1/2(s - ©) times outside, together p +n - m + 1/2 (s - 9)
times. On the other hand, any equation (13) about ks contains brackets with
the same n,m,s, but different p,8. The coefficient ge of any such bracket is
ip+l/2(s-©) 1% times a real factor. Thus, if n - m + s is even, then all
brackets with imaginary coefficients in the equations (13) about ks vanish due
to the binary axis about k;, while if n - m + s is odd, those with real coef-
ficients vanish. Thus, every equation (13) about ks becomes equivalent to its
complex conjugate, and in order to find EfN(n) it is only necessary to count
points h # kN for which h > 0, i.e., the upper half of the counting diagram of

Figure 2. Consequently

3

*
EDN(n) = 1/2 ECN(n) . (23)
The number of possible brackets after introducing the binary axis k; is clearly
PDN(n) = ICgh(n) , (23a)
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or with (18) and (20)

Ipg(n) = Iggp(n) - 1/2 [Ig, (n) - Igy(a)] . (2k)

Substituting the results found under Case 1 for Igc,, and Ig,, we have for

I

s
i

even IDN(n) 1/2 ICN(n) +1/2n+ 1 (okha)

i

n = odd Ipy(n) 1/2 Iey(n) + 1/4 n + 1/b (2hp)

Case 3. Groups Tp,0p and the Isotropic Case

For the class T}, analysis of the effect of cyclic permutations leads

immediately to

ITh = 1/ Tnay

while for Oh case various simple ways of counting  yield the results of

Table XT.

5. EXPLICIT FORMS OF THE GALVANOMAGNETIC TENSOR UP TO B2
For the practical purpose of reading off the explicit form of the gal-
a1 OiJl“
vanomagnetic tensor component p = F‘/ in terms of the brackets, the tables
of this section have been compiled. These give p@l for arbitrary orientation
of the sample and the magnetic field with respect to the crystal axes and for
‘all crystal structures except Sa.

It was shown in Section 2b that

QL a 1 Ay O 1 v
e = Pyp by by = = b by o, (25)

o
where Ajj is the cofactor of ¢;5 in A = det 035, and L; is the direction cosine

J
of the laboratory coordinate axis O with respect to the symmetry coordinate
axis i. For & = 1 the equation represents the magneto resistance, for a # 1
the Hall effect, and this is true for all that follows. The expansion of all

0ij in powers of B leads to
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THE NUMBER OF NONVANISHING INDEPENDENT BRACKETS an® + bn + c

TABLE

XT

- Group n a b c
C1=S» even 3 9 6
odd 3/2 9/2 3
Czh even 3/2 5 y
odd 3 /4 5/2 T/4
Cai even 1 3 2
odd 1/2 3/2 1
C4h even 3 /4 5/2 2
bk+1 3/8 5/h 11/8
bk-1 3/8 5/4 7/8
Ceh 6k-2 L/3
6k } 1/2 } 5/% ?
6k+2 8/3
6k-1 T/12
b+l } /% } 5/6 23/12
6k+3 5/
Dap even 3/L 3 b}
odd 3/8 3/2 9/8
Day even ’1/2 2 2
0dd 1/4 1 3 /4
D4y even 3/8 T/4 2
b+l 3/16 7/8 15/16
hk-1 3/16 7/8 11/16
Den 6k-2 5/3
6k } 1/ } 4/3 2
Ek+2 - 7/3
6k-1 13/2h
Ok+1 } 1/8 } 2/3 29/2k
6k+3 7/8
Ty even 1/ 1 1
odd 1/8 1/2 /8
On even 1/8 3/k 1
Wi+l 1/16 3/8 9/16
hk-1 1/16 3/8 5/16

3h
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Table XII gives My. Table XIII gives the nonvanishing coefficients
1 a1
of £4 lj in Py . Table XIV gives the coefficients of ¥, the direction cosines
a1
of B in the crystal coordinate system, resulting in Q1 . For the purpose of

tabulating the coefficient of B® we write
oL Pt 051 a1
<%2 - ﬁi M%) = Rz = Rgg 7« 74 - (27)

Tables XV, XVI, and XVII give the Rz; for the various classes.
Coefficients for higher powers than B2 can be obtained similarly if needed.
These tables are useful, for example, in determining what measurements must be
made in order to determine all the indépendent brackets (material constents).
In principle, a number of measurements at least equal to the number of indepen=
dent brackets is needed. It is expedient to choose these with care. For ex-
ample, no matter how many magneto reéistance measurements are made, even with
different samples, allowing variation of 1? and 7)., one cannot obtain all
brackets individually. Combinations of Hall and magneto resistance measure=
ments work most efficiently.

In Table XIV Zﬁ has been used as an abbreviation defined by
1 & 1 O
by = A4 lj - lj L
where, if o = 1, Zﬁ automatically vanishes in agreement with the evenness of
the magneto resistance, while, if O % 1, the subscripts ijk must be a permuta-
tion of 123 of the same parity as the superscripts 1af. In that case zi is

the direction cosine between the symmetry axis k and the laboratory axis B.
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TABLE XII

THE EXPLICIT FORM OF M,

Csh [ooo]55 ([ooo]ll [000]22-- [ooo]ie)
Dzh [ooo]55 [ooo]ll [ooo]22
Ca1,D31,C4h 5
[ooo]z5 [000]yy
D4h,Ceh,Deh
Th,0n [ooo]?Ll
TABLE XITITI
THE EXPLICIT FORM OF Pgl
i1 Q 1 Q 1 O 1o 1«
L1 21 l2 12 i3 13 i 1o+ 05 23
Czh [000]22[000]33 [000]55[000]ll [000]11[000]22—[000]52 -[000]53[000]12
Dzh [000]22[000]53 [000]55[000]ll [ooo]ll[ooo]e2
Cai,Dai
CahsDap [ooo]ll[ooo]53 [ooo]ll[ooo]33 [ooo]il
Ceh,Deh
ThsOp [ooo]il [ooo]il [Qoo]il
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TABLE XV

THE EXPLICIT FORM OF Rz FOR Czh, Dzh

1§"l’{'{([ocao]53 [aoo]11 + [1oo]§;) A/B + 2([:.00]23 [100]51 - [ooo]35 [200]12) A+ ([ooo]}j [200]22 + [100125) AB} +

+

133 {([ooo]55 [200]22 + [100]25) B/A + 2([:.00]25 [100]51 - [ooo]53 [200]12) B+ ([ooo]u [zoo]53 + [100]?1) AB} +

on
- Ry
+ 1303 {[om:»]ll [000]22 [zoo]53 + [oc:o]ll [1.00]23 + [000122 [100]; + (2[100]25 [1.00]51 - [ooo]l2 [zoo]j)) (1 - AB) [ooo]Ie}/[mo]53 +
+ (%3 + t%&){ (foool; [200] , - [x00],,, l00l;)) (1 + 4B) = ([oool,, [200];, + [mo]?l') A - ([oool,, [200],, + [100]25) n}*
lgli {([ooo]}} [oeo]ll + [olo]?l) A/B + 2([01.0]31 [OJ.o]23 - [ooo]}} [&0]12) A+ ([000135 [oec]22 + [010123) AB} +
Rm + 12112 {([000135 [oeo]22 + [010122;) B/A + 2([o:|.o]31 [o;v.o]23 - [ooo]53 [020]12) B+ ([ooo]n [ozo]ﬁ + [o;.o]?l) AB }+
- Rz2
+ lgl; {([000]22 [oeo]53 [ooo]ll + [ooo]ll [mo]g; + [ooo]22 [o:.o]?l) + (2[0},0]23 [010151 - [ooo]l2 [ogo]ﬁ) (1 - AB) [ooo]Ie}/[ooo]” +
+ (l?l; + lgli){([ooo]ﬁ [020112 - [010131 [010]23) (1 + AB) - ([ooo]” [029]11 + [o1o]§l) A - ([000135 [ozo]22 + [010]23) B}*
PEoH {([000]22 lgo2ly; + [om]?z) / [oao]ll - 2[002]12 A + [ooel,, AB} [ooo]55 +
. + 1213 {(foool,, Tocelyy + o 12,) / fovoly, - 2locz]y, B+ Locel, 48 } ocolyy +
Ras

1‘;‘12 (1 - AB)2 [ooz]ﬁ [°°°]ll [ooo]22 / [000133 +

+

(l?lé + lgli){ (1 + AB) [002112 - ([000122' [ooz]); + [oo0]yy [oo2],, + [°°l]§2) A/ [000122’}* [ooo].j3

+

o o
- (Rzs + Raz)

(1215 + £522) (locoly [onalyy = [ooaly, [or0ly) = lovol, foraly)) + (138 + 1345) ([oooly, [onaly) = [ooaly, [o0lyy - [ocoly, lonalyy)” (1 - AB)

(02§ QL
- (Ra1 + R33)

(t?zﬁ + lgzé) ([ooo]ll [101]25 - [001112 [100131 - [oooly, [101]31)* + (tgzi + lgl;) ([ooo]22 [wi]Bl -[001]12 [1oo]25 = [oool,, [10;];3)(1 - AB)

o . oom
- (Riz + R21)

l?l}_{([v:zoo]55 [110]11 + 2[010]31 [100]51) A/B + (2[100]25 [010]31 + 2[010]25_ [J.oo]31 - [ooo]” [110]12) A+
+ ([oczo]22 [1.1.0]55 + [000]55 [:.w]22 + 2[190]23 [01012}) AB}* +
+ 1212{([000135 [110]22 + 2[100]25 [010]25) B/A + (2[:|.oo]25 [010]31 + 2[010]25 [100]31 - [ooo]}5 [110]12) B+

)AB}*+

+ ([000111 [110153 + [000155 [uo]l1 + 2[100151 [010131

+ lgt:la'i([ooo]22 [110]55 [ooo]:Ll + z[ooo]22 [J.oo]31 [m.o]51 + 2[100]23. [010]25 [ooo]n).+
+ (2[:|.oo]23 [o'w]}l + 2[010]25 [J.oo]}l - [ooo]12 [110]55) (1 - AB) [ooo]‘12 ]»”/[ooo]35 +
+02s + 431) {([ooo]” Dol , - [r00], [orol,) - [oro], [300l, ) (2 + AB) -

- ([ooo]35 [llo]ll + 2[010131 [100]51) A - ([ooc:]}5 [110]22 + 2[1.00]25 [010]25).!3}

A [oooIIE/[‘ooo]l]_ AB = l/(.B/A) = [°°°]22/[°°°]11

B [ooo]Iz/[oco]22 * means zero for Dph
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6. DISCUSSION

The anisotropy of galvanomagnetic effects, first studied by Righi in
1883, appeared in many works from time to time. However, the crystallographic
effects have never been taken into account comprehensively. An overall inves-
tigation of the crystallographic effects of the 32 point groups upon the iso-
thermal galvanomagnetic effects is attempted in the present paper. The results
include as special cases the work of Voigt and of Juretschke concerning the ta-
bles of brackets, the work of Seitz, Pearson and Suhl, and Goldberg and Davis
concerning the formulas for cubic crystals, and some of the work of Kohler,
insofar as it is concordant with Onsager's relations.

For Dz4 and m < b, Juretschke'std results agree completely with ours
presented in Table X, except for a different notation. In order to facilitate
the comparison of our bracket notation with the notations used by Seitz and by

Pearson and Suhl for the case Oy, Table XVIII has been prepared.

TABLE XVIII

NOTATIONS OF VARIOUS AUTHORS

Nii;ﬁ;; Fear Sﬁg,ﬁ:’,;ioi“hl's Bracket Notation

9% = 1/po [oooly4

Q [100]p5 = [oo1]yp

B [200],, = [o0z],

Y [011]25 = [110]y5

B+7+29d [zoo]ll = [ooz]55
a [100]25/[oo¢f]ll
b ([200122[ooo]ll+[1o_o]§5)/[ooo]§l
c ([100]55-[011]25[000]11)/[ooo]%l
a ([200]11—[200]22-[011]25)/[000]ll

L1



The methods developed here can be extended to all thermo-galvanomagnetic
effects. We hope to follow up this paper by one which gives the electron theo-
retical definition of the brackets and further developments regarding the effects
of crystallographic symmetry by means of the electron theory of solids.

Many investigators 1limit themselves to cases where the magnetic field
is either parallel or normal to the current, or in the plane of the current and
the Hall probes. Such limitations seem unnecessary with the broadened defini-
tions of the galvanomagnetic effects, which permit the magnetic field to be ar-
bitrarily oriented (Seitz did this for the magneto resistance of cubic crystals
ineluding terms up to B2). Therefore all the galvanomagnetic effects bearing
various conventional names, such as the transverse and longitudinal magneto
resistance, the Hall effect, the "planar Hall field," and the Corbino effect,
are included as special cases. They can all be analyzed in terms of an ascend-
ing power series of the magnetic field; the only known exception is the oscil-
latory behavior at very low temperatures. The Corbino effect, about which, to
the best of our knowledge no work has been done on single crystals, will be
dealt with in a separate paper.

We have also brought to light certain properties regarding the parity
of the galvanomagnetic effects, about which a certain lack of consistency is to
be found in the literature. In particular, the magneto resistance is necessarily
an even function of the magnetic field, while, contrary to the odd-Hall-effect
convention, it was proved here that the Hall effect is in general neither an odd
nor an even function of B, but can be purely odd or purely even or zero when
proper conditions are satisfied. These contentions are firmly supported by ex-

periments, for example by Logan and Marcus, and by Goldberg and Davis.
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APPENDIX I

Proof of the Theorem Concerning an N-Fold Rotation Axis Along kg

Let k1'ko'ks! be a set of symmetry coordinates of a point and let
ky "ko"ka" be the transformed set of the same point after rotation of the co-
ordinate axes through an angle ¢ = En/N about kg. With respect to these two

systems of axes the components of a tensor T of arbitrary rank are related

by

1" _ ’ .
T ij...4 }Z Sin Fgu v B T?kp.,.T s (A.1)

where

cos ¢ sin ¢ 0
ain = |-sin @ cos g O | . (A.2)
0 6] 1

This is true in particular for the components of the position vector k of a
point, of the components of the magnetic field vector B, and of the components
0ij of the second-rank conductivity tensor. Thus by such a rotation of coordi-
nate axes any equation between singly primed tensor components is transformed
into one with doubly primed tensor components. If the rotation is a "covering"
operation of the crystal, then the equation must be invariant, i.e., its form
in terms of singly primed quantities must be identical to that in terms of
doubly primed quantities. This principle can be applied to equation (10).
Thus, for a covering operation the coefficients (brackets) in the singly primed
and doubly primed forms of (10) must be identical, hence can be written without
any primes.

Now the doubly primed forms of equations (10) can be transformed by

applying the equations A.1 and A.2 +to the doubly primed components of ¢ and

B. The transformed equations so obtained in terms of singly primed components

A-1



must be equivalent to equations (10) in their direct singly primed form. This
equivalence requirement yields certain identities between the brackets. It will
be shown that these identities are just described by equations (13) and (14).

In order to simplify the proof we shall not apply'the above reasoning to the
Cartesian components of the tensors involved but rather refer to a pair of co-

ordinate systems of a different type (complex, nonorthogonal) defined by

q
klv = k]_' + i kzg
ko' = k3' -1 kg’ - (A.3)
ksl - ksl

J

and likewise for double primes. Quantities referring to the complex coordinates

will be marked by a bar throughout. We define the complex components of B by

By' = By' + i B!
Bs' = B! - i Bg' > (A.L4)
B3' — BS'

J

and likewise for double primes. The complex components of the second-rank con-

ductivity tensor are defined by™

*For a tensor of arbitrary rank n the complex component Tij,,.l is defined as
follows.

a. Replace every index in the given order by a symbol according to this scheme:
the index one by (li+is), the index two by (1i-is), the index three by
(1s)-

b. Multiply the n-fold product of symbols so obtained according to the associ-
ative and distributive law, but do not use the commutative law.

c¢. Replace each "term" of the symbolic polynomial so obtained by T with the
indices of that term in the given order and with a coefficient equal to the
product of the coefficient parts (upper parts) of the "factors" of that term.
The resulting polynomial in T is the desired expression.

For example, one wants to find the appropriate definition of Tis5. According to
(a) he writes the symbol (1l;+iz)(li-i2)(ls). According to (b) he obtains the
symbolic polynomial (1;)(11)(1ls) - (11)(iz)(1s) + (i2)(11)(1s) - (iz2)(iz2)(1ls).
According to (c) the definition is now Tyss = Tyis = 1 Tisa + 1 Tors + Topa.



017 = Opp + 1o + 05y) 03y + 05y - (o, - 0y)  0y3 + 0,3
013 =| 045 + 0y + 1i(o), - 021) 01 = Oy - i(oq, + 021) 0y5 - 1oz (A.5)
05 + 1055 05 - 10, 033
According to Onsager's relation
0;5(B) = 031(-B) , (A.6)

hence terms below the diagonal of A.5 are dependent and it suffices to consider

those above the diagonal.

For convenience we shall now introduce another notation. Let s denote
the number of ones and twos together, and z the number of twos, among the in-
dices of a EEE. This definition of z is consistent with that given in Section 3%b.
The numbers s,z define uniquely one of the six independent pairs of indices 1]

and vice versa. We write (note the indices between parentheses):

O(s,z) = 91§ - (A.7)

Thus, for example, G(ll) is another notation for Oz It can be verified by
direct substitution of these definitions and comparison with A.1 and A.2 that

the complex tensor components as defined transform under a rotation of coordi-

nates about kg according to

———— —— T
ijo..g T }: ai) 83y ¢+ &gt Dau...7 (A.8)

In particular,
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Bl" = Bl[ e"l¢
B2" - BZ' el¢
> (A.10)
Bs" = Bs'
~r ey -i;é(S—EZ)
G(S:Z)(E) = 0 (S)Z)(E) © J

We are now ready to apply the invariance principle. The equations to
which it will be applied are the expansions of ar and o, in powers of
(s,2) (s,2)

Bx' and By", respectively, analogous to equation (10):

o n m
=T _ =T TV - Th-m
c(s,z)(é) = 2 Z Z Cis,z) (n,m,w) By' Bo Bs . (A.11)

Comparison of A.ll with equations (10) and (11) yields

: m
oT m W
( )(n m W) = (1/2) (') g(m,p,w) e(S,@,Z) [m‘pip)n‘m](s e)’ (A.12)
2
p=0 ©
where g and € are the functions defined in the text by equation (15) and Table
ITI. Equations of identical form, but with double primes, hold for the compo-
nents with respect to the doubly primed coordinate system.
From the equality of singly and doubly primed brackets for a covering

operation of the crystal, arrived at earlier, it follows now that

EFS (n,m,w) = —?s,z) (n,m,w) . (A.13)
According to the plan outlined at the beginning of this section, one
must now express the doubly primed components of E?g z) and Bk” in the doubly
2

primed analog of A.ll in terms of the singly primed ones by means of A.10.

We obtain
© n m
_?Q,Z) ) ;Z Ez Ej _?s,z) (nym,w) o1 B B2 Bal (A.1k)
n=0 m=0 w=0



with h=m+ s - 2(w 4+ z). Comparing A.14 with A.11 it is seen in view of A.l3

that the two results are only compatible if

either "

) (A.15)
or el _

In connection with A.12, the equations A.15 are identical with (13) and (1k4) in

the text, and the theorem is proved.



APPENDIX IT

Completeness of the Equations (13)

Consider the complete set of equations (13) for given n,m,s, that is,
the equations (13%) for all values of O <w<mand 0<z < s, regardless of the

value of h.

Theorem
The only solution of the complete set of equations (13) for given

n,m,s is that all the brackets with the given n,m,s vanish.

In the power-series expansion (10) the brackets for given n,m,s, with
the six independent pairs of outer indicesz are independent constants (as long
as no symmetry restrictions are introduced).

The moduli of the transformations from B; to Bj and from oj5 to E;E
or E(s,z) are nonvanishing, according to A.4 and A.5, Consequently, in the
power-series expansion A.11l the constants C(s,z) for given n,m,s, are indepen-
dent constants and the equations A.12 for given n,m,s can be inverted, leading
to homogeneous expressions of the brackets in terms of the C's.

The complete set of equations (13) for given n,m,s, states that all
C's vanishj consequently, all brackets with these n,m,s values vanish.

g.e.d.

In this proof use has been made of the fact that for given n,m,s, the
number of brackets [mfp,p,n—m](sje) is equal to the number of constants C(s,z)
(n,m,w), hence equal to the number of equations (13) [without (14)]. This
equality is easily verified. Indeed, the number of equations for given n,m,s,
is determined by the ranges of the integers w and z, given by O < w < m and
0 <z < s, while the number of brackets is determined by the ranges of the in-

B-1



tegers p and 1/2(s - 6), given by O <p<mand 0< 1/2(s - ©) <s.

The theorem of this appendix is useful in spotting vanishing brackets
and in counting nonvanishing ones. It also follows from this theorem and Ap-
pendix I that the symmetry properties of the brackets are completely described

by the equations (13) with the condition (1k).



APPENDIX III

Proof of Table VIII - Zero Brackets for a Threefold Axis of Symmetry

Consider the set of equations (13) for given values of n,m,s and dif-
ferent w,z. According to Corollary IV and the remarks made immediately there-
after, it is expedient to select from the original complex equations those sat-

isfying the selection rule
s -2z >0 (C.1)

and equating their real and imaginary parts to zero. The number of real equa-
tions so obtained is equal to the number of the original complex equations with
s - 2z unrestricted by C.1, It is also equal to the number of brackets having
the given values n,m,s that occur in these equations (see Appendix II).

A first type of zero bracket arises through the applicatgon of the
theorem of Appendix II. If no equation of the set is invalidated by h = kN,
then all the brackets of the set vanish. The h values of the equations, for
any particular value of s - 2z, range fromm + s - 2z downward in steps of two
for the various values of O < w < m. In order to avoid h = O, this type of

analysis is restricted tom + s = odd. In order to avoid h = + 3 as well, it

is necessary that

m+s -2z = 1 (Cc.2)

for all values of z, compatible with the given n,m,s values and C.1. This con=-
dition can only be realized in three ways. First, m =1, s -2z = 0, and s = O3
consequently, z = O and n must be even. Second, m =1, s - 2z = 0, and s = 2}
consequently, z = 1 must be the only compatible z value, necessitating n = odd
(see Table III). Third, m = O, 8 - 2z = 13 consequently, s = 1, and the only z

value compatible with C.1 is z = O. The corresponding zero brackets are,



respectively,
[10(1)]55 [om)]53
[1oe]12 [o:.e]12 > (C.3)

[oon]

o3 [oon]51 . ﬂ

A second type of zero brackets can arise for m + s = even. According
to the definitions of g and €, the coefficients ge of any bracket in the complex
equations are ip+l/2(s-9).is times a real number. Thus, all the real parts of

the equations with given n,m,s, contain only brackets of one parity of p', de-

fined by
p' = p+ 1/2(s -0) , (C.4)

and all the imaginary parts of these equations contain only brackets of the

other parity of p'. The brackets ﬁith given n,m,s thus fall into two subgroups
according to the parity of p'. 1In each subgroup there are as many real inde-
pendent equations as there are brackets. There is one way in which the condi-
tlon h = kN can affect one of these two subgroups without affecting the other.

The brackets in the unaffected subgroup must then vanish on the same grounds, as
before the condition h = kN was applied. In order that h = kN shall affect only
one subgroup, it is necessary and sufficient that it affect only self-conjugate
complex equations. According to Corollary IV, these occur only for h = 03 namely,

if both

(s - 2z)

it
O

(c.5)
(m - 2w)

I
O
-

hence m,s, and m + s are all even. Since h = 6 is inadmissible, the possible
values of m are 0,2,4. These can be realized in three ways, compatible with
C.5. First, s = 0; consequently, z = 0 and n = even. The case m = O must here
be excluded since the remaining subgroup is empty. ©Second, s = 2, n = odd; con-
sequently, z = 1. On the same grounds as in the first case, m = O i1s excluded.

Cc-2



Third, s = 2, n = evenj consequently, z = 1 according to C.5. But the equations
withs = 2, z = O must now also be admitted, while no equation that is not self-
conjugate complex should be ruled out by h = k.3. This configuration allows

only m = 0. The corresponding zero brackets are:

[11e]35 [31e]53 [:Lse]55

[11(1)]12 [31(1)]12 [13%]12 >(C.6)

[ooe]lz

It can be shown that a threefold axis produces no other zero brackets than those

listed in C.3 and C.6.






