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Abstract

We address the problem of controlling an assembly system in which the processing times as well as
the “types” of subassemblies are stochastic. The quality (or performance) of the final product depends
upon the characteristics of the subassemblies to be assembled, which are not constant. Furthermore,
the processing time of a subassembly is random. We analyze the tradeoff between the increase in the
potential value of products gained by delaying the assembly operation, and the inventory costs caused
by this delay. We also consider the effects of processing time uncertainty. Our problem is motivated
by the assembly of passive and active plates in flat panel display manufacturing.

We formulate the optimal control problem as a Markov Decision Process. However, the optimal
policy is very complex, and we therefore develop simple heuristic policies. We report the results of
a simulation study which tests the performance of our heuristics. The computational results indicate

that the heuristics are effective for a wide variety of cases.

1 Introduction

Assembly systems, consisting of several sub-assembly lines feeding an assembly station, are prevalent in
many manufacturing environments. Two typical examples in electronics manufacturing include multi-
plane circuit boards (PCB’s), which are manufactured by fabricating the layers separately and then
laminating them together, and flat panel displays. where “active” and “passive” layers of an electronic
display are produced separately and then mated.

Previous work on assembly systems has focused on the effects of the uncertainty of the processing
times at the subassembly and assembly stages (e.g., Ammar (1980), Bhat (1986), Bonomi (1987), Lee
and Pollock (1989), Hopp and Simon (1989), Duenyas and Hopp (1992, 1993), Duenyas (1994), Duenyas



and Keblis (1995), Rao and Suri (1994), and Hazra and Seidmann(1994). The focus in this body of work
has been the development of approximations for the performance of different release control mechanisms
for assembly systems.

A significant other source of uncertainty in some assembly systems is “type uncertainty” where the
“type” of subasssemblies produced by one or more of the subassembly lines or machines is uncertain. In
all of the above papers, it is assumed that only a single “type” of product is produced by each subassembly
line. In contrast, in this paper, we focus on environments where there is uncertainty with respect to the
“type” of subassembly to be produced. Furthermore, the performance (or quality) of the final product
depends upon the characteristics or “types” of the subassemblies mated. In such an environment, the
major tradeoff is between the better performance obtained by putting off the mating operation until a
“match” of components with the same “types” is obtained, and the larger inventories associated with
this delay in the mating operation.

A typical example of assembly systems with processing time as well as “type” uncertainty is in flat
panel display manufacturing where “active” and “passive” layers of an electronic display are produced
by separate processes. Due to yield losses, machine failures etc., the time between the production of
two consecutive “active” or “passive” layers is random so that at any point in time there may be more
“active” than “passive” layers or vice versa. After a passive and active layer are mated, the resulting
electronic sandwich is cut into smaller pieces to produce final products (i.e., displays). The final product
is defective and will have to be discarded if either the active or passive layer has a fatal defect in the
location corresponding to that particular display. For this reason, each “passive” and “active” layer is
inspected for fatal defects before the mating of layers and identified as being one of a set of possible
“types”, each containing defects in specific locations. For example, when the layers will eventually be cut
into 8 pieces (as is common in industrial applications), there are 28 types, since each of the 8 possible
pieces may have zero or more fatal defects. ( We note that the problem would be much simpler if the
active and passive layers were first cut into smaller pieces and then only the non-defective pieces mated.
However, under the currently available technology for flat panel display manufacturing, cutting the layers
into smaller pieces before mating them significantly increases the defect rates. Therefore, the layers are
first inspected, then mated, and then cut into smaller pieces).

In the flat panel display environment described above, the control issues to be addressed are as follows:
Given the number and “types” of passive and active layers already produced and not yet mated 1) how

does one decide when to release new passive or active layers into the system? 2) how does one decide



which active or passive layers (if any) to mate?

A similar problem arises in the manufacturing of ball bearings where an inner and outer race are
assembled (along with a set of balls) to produce a ball bearing (Iyama et al. 1992). Each race has
a critical dimension that is a random variable, taken from a known distribution. After the races are
produced, they are accurately measured at an inspection machine and classified into one of three size
ranges (e.g., types). High quality bearings are produced by mating (i.e., assembling), when possible,
inner and outer races having the same size range. The “type” uncertainty is due to the variability in the
dimensions of the races, and the processing time uncertainty is due to the possibility that the machines
producing the inner and outer races may fail. For this problem, Iyama et al. investigate the effects of
an ad-hoc mating strategy on buffers and machine blocking. They do not focus on the derivation of
“optimal” mating strategies.

To our knowledge, the only paper that addresses the issue of control of assembly systems under type
uncertainty is by Duenyas et al. (1994). However, Duenyas et al. assume that there is no processing
time uncertainty and that the subassembly lines produce at the same deterministic rate. Therefore,
the only decision in their paper is which (if any) subassemblies to mate. Clearly, in most realistic
systems, processing times are not deterministic. Furthermore, even in the rare situation where they are
deterministic, it is highly unlikely that all subassembly machines (or lines) produce at the exact same
rate. For this reason, in this paper, we address the control problem when there is uncertainty in both
the subassembly processing times and types.

The rest of this paper is organized as follows. Section 2 presents the problem formulation and intro-
duces notation. In Section 3, we formulate the optimal control problem as a Markov Decision Process
(MDP). Since the dynamic programming approach used for computing the optimal policy suffers from
the “curse of dimensionality” when the number of types is greater than 3, we present simple heuristics in
Section 4. Section 5 presents a comparison of our heuristics against simulation for sample problems with

three and 16 types. Section 6 concludes the paper.

2 Problem Formulation and Notation

We restrict ourselves to the case where two components are produced, and combined to form a final
product. For convenience, we refer to these as “left” and “right” halves, respectively. The act of combining
halves is called “mating”. Each half is produced on a separate machine. (In this paper, we assume that

each subassembly is produced on a single machine. Clearly, in many cases, subassemblies may be processed



on a tandem line. We intend to analyze more complicated network structures in the future.) We assume

that the processing time distribution of the machine that produces the left (right) half has mean - (1)

W1 \p2
and variance 0% (03). At any point in time, a machine is either on (running) or off (stopped).

When a left half is produced, it exhibits a “type” t € {1,2,...T'}, with probability l;; type u right
halves are produced with probability r,, where Z;P:l It =1, and ES:I re = 1. The probability that a
right (left) half is of a certain type is independent of the type of previously produced left halves and right
halves. In order to measure the negative effect of holding inventory and long cycle times, we assume that
each half kept in inventory incurs a cost at rate h per unit of time.

When a right half of type u is mated with a left half of type ¢, the resulting product has a value V4,

where

Vtu >0 (21)
Vit > Viw for t# u and Vyy > Vi for t#u (2.2)

Inequality (2.1) implies that all matings have some value; (2.2) shows that mating left and right halves
of the same type produces a maximum value. (For convenience, we define a “match” to be the mating of
two halves of the same type.)

When there are three or more types, we will also assume the V4, satisfy the additional inequality

Vie+ Ve 2Vt +Vee forallz£u,u#t,z#1¢ (2.3)

This inequality ensures that immediately matching two halves of the same “type” is optimal. To see this,
suppose that two halves of the same type t were held in inventory without being matched. This would
imply that they would eventually be mated with some other halves (e.g., with a left half of type u and a
right half of type z). However, by (2.3) this mating would result in no greater value than matching the
two halves of type t and mating the two other halves of types u and z. Since there is a cost associated
with holding inventory, it would be better to match the two halves of type t as soon as possible rather
than hold them.

Inequalities (2.1) through (2.3) rule out some possible value matrices, however, they are reasonable
for a wide variety of situations including the problem that motivated this study. In flat panel display
manufacturing, ‘the highest value is obtained when layers that have defects at the same locations are
mated. This is because once mated, a location is defective if it has defects on either layer and the display

corresponding to that location will have to be discarded. Each layer can be represented by a vector of zeros



and ones that denote whether a location is, respectively, defective or nondefective (e.g., (1, 0) represents a
layer that will be divided into two pieces with the second piece defective and the first piece nondefective).
Let x denote the vector associated with a passive or active layer. The unique type number ¢(z) can then
be represented as t(z) = Zfil 2'z;, with N denoting the number of pieces that the layer will be cut into.
Conversely, given type number t, the vector z(t) is uniquely defined to be binary representation of t. We
can similarly represent the right layer by a vector y, with type u(y). The value of mating/matching a
left half of type ¢ with a right half of type u is then given by Vi, = r1(z(t) - y(u)) + ro(N — (z(t) - y(u))),
where 7, is the revenue associated with a good display, ro is the salvage value of a defective display and
(z(t)-y(u)) is the inner-product of vector s z(t) and y(u). It is straightforward to check that when ry > ro
this value function satisfies all three inequalities. (Duenyas et al., 1994).

Since an optimal policy immediately matches left halves and the right halves of the same type, if
the number of left halves of a certain type is non-zero, then the number of right halves must be zero.
Therefore, for each type, we only need to keep track of the difference between the number of left halves
and the number of right halves. The state of the system can be represented as the T-vector, {ny,...,n7},
where n; is the difference between the number of left halves of type ¢t and right halves of type t. The
fundamental problem is to determine for any given state vector (ny,no,...,ny), which pair (if any) of
types should be mated and which machine(s) to run (left, right or both) in order to maximize net value per
unit time. (We note that in the particular application that motivated this problem, the actual assembly
process is much faster than the production of the subassemblies. We therefore ignore any queues at the

assembly machine and focus on the inventory of parts waiting to be mated or matched).

3 Optimal Policy

In this section we give a Markov Decision Process (MDP) formulation for the problem described in Section
2 when processing times at both subassembly machines are assumed to be exponential. When processing
times are non-exponential, one needs to keep track of the time since the last job at each machine was
begun, and therefore, the formulation becomes even more complicated. We therefore focus on the case
where processing times are exponential. As we will show, the formulation becomes quickly intractable
even with exponential processing times. We will therefore develop a heuristic in the next section which
does not assume exponential processing times.
We let

g = the minimum long-run cost per period



n = a vector which depicts the state of the system (n; is the difference between the number of left halves
of type t and the number of right halves of type t).
fn = the relative value of being in state n

et = the unit vector whose t** component is one.

We use uniformization as in Lippman (1975) and without loss of generality, we also assume that
p1 + po = 1. When this does not hold true, appropriate rescaling of the problem can result in an
equivalent problem with pu; + puo = 1. The formulation consists of two cases: when all n; > 0 for all
t=1,..,Torn;<0forallt=1,.. T, the only option is to stop one of the machines (since in this case

there are no parts to mate from one of the machines) and the underlying recursive equation is

g+ fn= (h"n” + ﬂlmin{zz’zl lt(fn+e; - Vi - 1{n,<0}); fn} + #2"”."{23‘:1 Tt(fn—e, — Vit - l{n,>0}); fn}) (34)

otherwise, we have

hln|| + lllmin{z;r:] le(frve, = Vet Lin,<0}), fn} + #2min{Z{=1 rt(fn-e, = Vit 1(n,>0}), fn}
offa=ming ] (il -2) - Ve + mimin{ Y l(fa-euterter = Vit - Lngt1 ey <0p): froente,}  (3:9)

(w2)eX +#2m1:"{z;r=1 re(fn-eurecte = Vit " Ln—1(_, >0} fr-eute. }
where X = {(u,2) : ny > 0,ny-n; < 0 and u,z = 1,..T}, 1, the indicator function that equals 1
when y is true and 0 otherwise, and ||n|| = |n)| + |n2| + ...Jn7|. In equation (3.4), the term involving u;
pertains to the decision of either running or stopping the left machine. The term involving ps pertains
to the decision of either running or stopping the right machine. When a new component is produced, if
it is a left half of type t, then the state becomes n + e; and a value V4 is earned if there is a right half of
type t in inventory. If the component produced is a right half of type ¢, then the state becomes n — e; and
a value Vy; is earned if there is a left half of type t in inventory. In equation (3.5), the outside minimum
pertains to the decision of either not mating any halves, or mating a left half of type u with a right half
of type 2. Within the outside minimum, the top line is the same as equation (3.4) and therefore has the
same explanation. The bottom line is the minimum of all possible matings of left halves of type u with
right halves of type z.

Equations (3.4) and (3.5) completely define the MDP formulation for the T-type problem. Unfortu-
nately, the optimal solution to the MDP in (3.4) and (3.5) has an extremely complicated structure. The
decision to shut off one of the machines, for example, is dependent on the number and types of left and
right halves, and not only on the difference between the number of left and right halves. Moreover, as

Duenyas et al. show, even for the case where there is no processing time uncertainty, the optimal policy

becomes very complex. In fact, even if the optimal solution to equations (3.4) and (3.5) were available,



it would be questionable whether this solution would be implemented, as a huge database keeping the
optimal decisions for each possible state would need to be stored and consulted after the production of
each part. These considerations lead us to the development of two simple but effective heuristics which

we describe in the next section.

4 Heuristic Solutions

The MDP formulation of the type matching problem quickly suffers from the “curse-of-dimensionality”
as the number of types increases. For example, when there are 4 types, formulating an MDP where the
number of left or right sides of a certain type is at most 40 requires over 40,000,000 states. Therefore,
for realistically sized problems (for example, with 16 types) solving the MDP is not a practical solution.
Furthermore, even if the solution were somehow available, a database that would store the optimal decision
in each possible state would be infeasible to construct. This leads us to consider two heuristic solutions.
The first heuristic (H1) is similar to one that we observed in use at a flat panel display manufacturing
plant when we became aware of this problem. This heuristic decomposes the problem into two separate
problems. The first problem is when to stop the left (or right) machine, and the second problem is how
to decide whether or not to mate the existing parts and which ones to mate. Heuristic 1 applies two
simple thresholds to address these problems. The first threshold, a5, is the maximum number of left (or
right) halves that are allowed to accumulate in inventory. If the number of left (right) halves in inventory
reaches ag, then the left (right) machine is stopped until the number of left (right) halves in inventory
drops to ag— 1. The second threshold, a;, is the maximum number of total left and right halves that are
allowed to accumulate in inventory. If the sum of left and right halves reaches a;, then a transportation
problem is solved to determine how to mate all the available halves optimally. The best values of a; and
a; are determined through simulation for a given problem.

H1 is implemented as follows. Every time a left (right) half is produced, it is matched with a right
(left) half of the same type if there are any in inventory. If a half of the same type is not available, then
the newly produced half is added to inventory. If the sum of the left and right halves has reached a;,
then a transportation problem is solved to decide how to mate the available halves. In the case where
the number of left and right halves available is not equal, the solution to the transportation problem will
prescribe that some of the halves go unmated and remain in inventory. The levels of left and right halves
in inventory are then compared to a,. (regardless of whether a transportation problem has been solved

to mate parts) in order to determine whether either machine should be stopped.



Despite its simplicity and ease of implementation, H1 has significant weaknesses. First of all, both
thresholds have to be computed by simulation, which is time-consuming. Furthermore, a new simulation
study is required if any of the system parameters is changed. Also, software for solving the transportation
problem dynamically is required to decide which parts to mate (although in the computerized environment
of flat panel display manufacturing, this is not as significant a problem). These problems with H1 lead
us to develop a second heuristic, H2.

Our second heuristic (H2) also decomposes the combined problem of deciding when to shut off ma-
chines and mate parts to separate problems. However, no simulations are required to implement H2. To
decide when to shut off the machines, we replace the original problem with T types by one with a single
“average” type. In a problem with only one type of product, as soon as there is a single left and right
half, these can immediately be assembled. Therefore, the only decision here is on when to shut off the
left or right machine. The following theorem states the structure of the optimal policy for deciding when

to shut off the machines for a 1-type problem.

Theorem 1 The optimal policy for the 1-type assembly control problem where the machine processing
times have ezponential distributions is a control-imit policy requiring only the state n (a scalar, the
difference between the number of left and right halves) and two numbers a; > 0 and a, < 0. The optimal

policy is to:
a) stop the left machine if n > ay:
b) stop the right machine if n < a,;

¢) wait for the next component produced if a, < n < ay.

Proof: The proof is straightforward and therefore omitted.

We replace the original T-type problem by a 1-type problem with the same holding cost, and machine
processing times as the original problem. We assume that every time two parts are mated, a revenue of
T
- LV,

S is earned. Note that R is an average revenue computed over the maximum fraction of
1=1 T

parts that can be matched. We therefore replace the original T-type problem by a single type problem

R =

with the average revenue R per part. Given R, h and the machine processing time distributions, we can
\

compute the two thresholds a;, and a, by solving the following simple dynamic program:

1 ‘ : .
g +vi = =(2hli| + gy min{v,.) = Rljcopivi} + pomin{viy — Rlgsoy5v4})- (4.6)

T



In (4.6), g denotes the optimal cost per unit time,v; denotes the relative cost of state i, and 7 = p1+po.
With probability p;/7, the next event is a completion of a left half, and the first minimization represents
the choice between producing another left half (and getting a revenue R if there are only right halves in
inventory) or not producing another left half by shutting off the machine. The explanation for the second
minimum is similar.

Once the threshold values for shutting off either the left or the right machine are obtained, our
decomposition heuristic also computes threshold values a4, for mating a left half of type t with a right
half of type u, forallt =1,...,T and u=1,...,T,u # t. To do this, we decompose the original T-type
problem to simpler 2-type problems. We solve 2-type problems (by ignoring the existance of the other
types) to obtain the thresholds for mating those two types. For this, the production probabilities first

have to be conditioned on producing only those particular types ¢ and u,

! l !
l, = Pr{left type t produced | only left t or u produced } = l —l—tl =1-1, 4.7)
t u
r, = Pr right type t produced | only right ¢ or u produced } = Tt =1 4.8
f re v
u

We also need to re-scale the holding costs. In an actual 2-type mating problem, the expected time until
a new left (right) half arrives is l‘il(f;), when the left (right) machine is not stopped. With more than
2 types, the expected time until the arrival of another right half of type ¢ or u equals m Thus,
each left half of type ¢t or u in inventory incurs an expected holding cost of m until the arrival
of the next right half of either type. Similarly, each right half of type ¢ or u incurs an expected cost
WT::“_IJ until the arrival of the next left half of either type. Thus, when we rescale the probabilities for

types t and u, we also need to rescale the holding cost values. We assign the rescaled holding cost value

h'= 2(11":'114) + 2(1‘:’41-7‘“) to be the average of these two values.

Given the conditional probabilities, I,.r,.I,.r,. the rescaled holding cost h', the values u), po, Vi,
Vut, Vit and Vi, from the original problem and the thresholds for shutting off the left and right machines
a; and ar, we can compute the optimal thresholds ay, and ay for mating a half of ¢ and a half of u. To do
this, note that given the values of a4, and ay, the system can be modelled as a simple Markov-Process for
which we can compute the average cost per unit time. In this Markov Process, the state of the system is
(z,7) where 7 (j) denotes the difference between the number of left and the number of right halves of type
t (u). Except at the boundaries, (defined by a;. a,. ay, and ay), the possible transitions from (7,;) are
to states 1) (i + 1, ) with rate I, corresponding to the arrival of a left-half of type t, 2) (i,j + 1) with

rate yll; corresponding to the arrival of a left-half of type u, 3) (: — 1,5) with rate ugré corresponding



to the arrival of a right-half of type t and 4) (¢,j — 1) with rate pgr; corresponding to the arrival of a

right-half of type u. Similarly, except at the boundaries, in state (%, ;) costs are incurred with rate

R(li] + 15]) = k2(rViel sy + ruVaul»0) = 1 (Ve Licoy + by Vaulij<o))-

The steady state probabilities as well as the average cost per unit time for this Markov Process can be
easily computed and the optimal values of a¢, and ayt can be found by pure enumeration.

Once the thresholds a; and a, for shutting off the left and right machines and the thresholds for
mating, as, and ay for all t = 1,...,T and u = 1,...,T, have been computed, the implementation of
H2 is straightforward. Every time a new left (right) half is produced, it is mated with a right (left) half
of the same type if there are any in inventory. If a half is not available, then the newly produced half is
added to inventory. For any t = 1,...,T and u = 1,..., T, if there are at least ay, left halves of type ¢
and right halves of type u, then a left side of type t is mated with a right side of type u. After carrying
out any matching or mating, the number of left and right halves in inventory are then compared to a;
and a, respectively in order to determine whether either machine should be stopped.

H2 is at least as simple to implement in practice as H1. Furthermore the thresholds can be computed
very quickly. For problems with as many as 16 types, (typical in the flat panel display environment) the
computation of all of the thresholds (which have to be computed only once) takes less than an hour of
CPU time on a Sun Sparcstation 20. Checking to see if any threshold has been exceeded is also very
simple, especially in computerized electronics manufacturing environments.

Finally, we note that although we described both heuristics for the case where the processing times
are assumed to be exponential, they can easily be adapted to the case where processing times are non-
exponential. In particular, as the optimal thresholds for H1 are computed by simulation, whether the
processing times are exponential or not makes no difference. In the case of H2, approximating the
processing times by appropriate phase-type distributions results in Markov-chains for which the optimal

thresholds can once again be computed, albeit at a cost of larger state spaces.

5 Computational Results

We conducted a simulation study to test the performance of the two heuristics. Since problems with more
than 3 types become extremely difficult to solve optimally (as we noted above, an MDP formulation of a

problem with 4 types can easily require over 40 million states) the two heuristics were tested against the

10



optimal policy only for problems with 3 types. We also compared the two heuristics for typical 16-type
problems arising in flat panel display manufacturing.

Tables 1 through 3 show how the two heuristics performed on 36 test problems with 3 types. The
results in Table 1 are for systems where both machines have exponential processing time distributions with
rate 0.50. In Table 2, the results are for systems where each left machine has an exponential processing
time distribution with rate 0.60 and each right machine has an exponential processing time distribution
with rate 0.40. In Table 3, the results are for systems where each left machine has an exponential
processing time distribution with rate 0.66 and each right machine has an exponential processing time
distribution with rate 0.33. For each use of H1, simulation was used to compute the profit maximizing
threshold values. Tables 1 through 3 show the average profit per unit time obtained by H1, H2 and
the optimal policy (obtained by solving the complete MDP formulation), as well as the percentage sub-
optimality of H1 and H2. The profits achieved by H1 and H2 were computed by simulation.

Cases 1-36 were selected to cover a wide range of operating conditions. Cases 1-6, 13-18 and 25-30
represent situations where the value of the mated part gets lower as the “difference” between the halves
increases. (For example, different types may correspond to different tolerances, and the halves with the
same tolerances may have the best fit.) Cases 7-12, 19-24 and 31-36 represent situations where there are
different “qualities” associated with each type, and an assembled component is only worth as much as
its lowest quality part.

Tables 1 through 3 show that both heuristics perform well for all 36 cases. H2 performs as well as
or better than H1 in all but one of the 36 cases. In fact, the average sub-optimality of H2 was 1.4 %
over the 36 test cases. This is encouraging since it is much easier to compute the parameters of H2; the
thresholds required to implement H2 were calculated in several minutes for each of the examples. The
simulation runs required to determine the thresholds for H1, by comparison, took as long as several hours
of CPU time on a Sun Sparcstation 20 machine. The performance of the heuristics declines slightly as the
processing rates of the left and right machines become more unequal. Interestingly, H2 was slightly more
accurate when the left and right side type probabilities were different than when they were the same.

Finally, we compared the performance of the two heuristics on a typical problem from flat panel
display manufacturing. As described in Section 1, in flat panel display manufacturing, “active” and
“passive” halves are inspected to determine the location of the defects. The plates are then assembled
and cut into smaller products. A typical example has the “passive” and “active” halves cut into four

pieces after being mated, to produce 4 displays. In this case, since each half could have defects in four
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Case | Vi1, V12, Vi3 li,lg, 13 h H1 H2 Optimal
Vo1, Vag, Va3 T1,72,73 (% subopt.) | (% subopt.)
Va1, Vag, Va3
1 10,7,4 0.33,0.33,0.33
7,107 | 0.33,0.33,0.33 | 0.05 | 421 (0.9) | 423(0.5) | 425
4,7,10
2 10,7,4 0.33,0.33,0.33 .
7,10,7 0.33,0.33,0.33 | 0.02 4.52 (0.0) 4.52 (0.0) 4.52
4,7,10
3 10,7,4 0.50,0.30,0.20
7107 | 0.50,0.30,020 | 0.05 | 424 (0.5) | 425(0.2) | 426
47,10
4 10,7,4 0.50,0.30,0.20
7,10,7 0.50,0.30,0.20 | 0.02 | 4.52 (0.2) 4.52 (0.2) 4.53
4,7,10
5 10,7,4 0.60,0.20,0.20
7,10,7 0.20,0.20,0.60 | 0.05 | 3.32 (1.2) 3.36 (0.0) 3.36
4,7,10
6 10,7,4 0.60,0.20,0.20
7,10,7 | 0.20,0.20,0.60 | 0.02 | 3.49 (0.9) | 3.52 (0.0) | 3.52
4,7,10
7 1062 | 0.33.0.33.0.33
6,6,2 0.33,0.33,0.33 | 0.05 | 2.36 (2.1) 2.38 (1.2) 2.41
2,2,2
8 10,6,2 0.33,0.33,0.33
6,62 | 033,033,033 | 002 | 261 (0.4) | 2.62(0.0) | 2.62
2,22
9 10,6,2 0.50,0.30,0.20
6,62 |0.50,0.30,020 | 0.05 | 2.94 (1.7) | 2.98(0.3) | 2.99
2,22
10 10,6,2 0.50,0.30.0.20
6,62 | 050030020 | 0.02 | 3.18(0.9) | 320(03) | 321
2,22
11 10,6,2 0.60,0.20.0.20
6,62 | 020020060 | 005 | 1.82(27) | 186 (0.5) 1.87
2,2,2
12 10,6,2 0.60,0.20,0.20
6,6,2 0.20,0.20,0.60 | 0.02 1.96 (1.5) 1.99 (0.0) 1.99
2,22

Table 1: Results for 3-type Cases, u; = po = 0.50
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Case | V11, V12, Vi3 li,lg, 13 h H1 H2 Optimal
Vo1, Voo, Vo3 T1,T2,7T3 (% subopt.) (% subopt.)
V31, Va2, Va3
13 10,7,4 0.33,0.33,0.33
7,10,7 0.33,0.33,0.33 | 0.05 | 3.51 (2.8) 3.51 (2.8) 3.61
4,7,10
14 10,7,4 0.33,0.33,0.33
7,10,7 0.33,0.33,0.33 | 0.02 | 3.72 (L.1) 3.70 (1.6) 3.76
4,7,10
15 10,7,4 | 0.50,0.30,0.20
70,7 | 0.50,0.30,0.20 | 0.05 | 3.52 (3.0) | 3.53 (2.8) 3.63
4,7,10
16 10,7,4 0.50,0.30,0.20
7,10,7 | 0.50,0.30,0.20 | 0.02 | 3.70 (1.9) | 3.70 (1.9) | 3.77
4,7,10
17 10,7,4 0.60,0.20,0.20
7,10,7 0.20,0.20,0.60 | 0.05 | 2.84 (3.7) 2.93 (0.7) 2.95
4,7,10
18 10,7,4 0.60,0.20,0.20
7,10,7 0.20,0.20,0.60 | 0.02 | 2.95 (1.7) 3.00 (0.0) 3.00
4,7,10
19 10,6,2 0.33,0.33,0.33
6,6,2 0.33,0.33,0.33 | 0.05 1.96 (5.8) 2.00 (3.8) 2.08
2,2,2
20 10,6,2 0.33,0.33,0.33
6,6,2 0.33,0.33,0.33 | 0.02 | 2.13 (3.2) 2.15 (2.3) 2.20
2,2,2
21 10,6,2 0.50,0.30,0.20
6,6,2 0.50,0.30,0.20 | 0.05 | 2.47 (3.9) | 2.49(3.1) | 257
2,22
22 10,6,2 0.50,0.30,0.20
6,6,2 0.50,0.30,0.20 | 0.02 | 2.63 (2.2) | 2.64 (1.9) 2.69
2,2,2
23 10,6,2 0.60.0.20.0.20
6.6.2 0.20,0.20,0.60 | 0.05 | 1.55 (7.2) | 1.64 (1.8) 1.67
22,2
24 10,6,2 0.60,0.20,0.20
6,6,2 0.20,0.20,0.60 | 0.02 | 1.66 (3.5) 1.71 (0.6) 1.72
222

Table 2: Results for 3-type Cases, u; = 0.60, uo = 0.40
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Case | V41, V12, Vi3 li,l9, 13 h H1 H2 Optimal
Vai, Vg, Vaz 1,72, 73 (% subopt.) | (% subopt.)
V31, Vag, Va3
25 10,7,4 | 0.33,0.33,0.33
70,7 | 0.33,0.33,0.33 | 0.05 | 2.87 (4.0) | 2.92 (2.3) | 2.99
47,10
26 10,7,4 0.33,0.33,0.33
710,7 | 0.33,0.33,0.33 | 0.02 | 3.05 (L9) | 3.07 (1.3) 3.11
47,10
27 10,74 | 0.50,0.30,0.20
7,10,7 0.50,0.30,0.20 | 0.05 | 2.89 (4.0) 2.93 (2.7) 3.01
4,7,10
28 10,7,4 0.50,0.30,0.20
7,10,7 | 0.50,0.30,0.20 | 0.02 | 3.06 (2.2) | 3.07 (L.9) 3.13
4,7,10
29 10,7,4 0.60,0.20,0.20
70,7 | 0.20,0.20,0.60 | 0.05 | 2.38 (3.6) | 2.46 (0.4) | 2.47
47,10
30 10,7,4 0.60,0.20,0.20
710,7 | 0.20,0200.60 | 0.02 | 2.46 (2.0) | 2.50 (0.4) | 2.51
4,7,10
31 10,62 | 0.33.0.33.0.33
6,6,2 0.33,0.33,0.33 | 0.05 1.62 (5.8) 1.66 (3.5) 1.72
2,22
32 10,6,2 0.33.0.33,0.33
6,62 |033033.033]002| 1.75(38) | 1.78(22) | 1.8
2,22
33 10,6.2 0.50.0.30.0.20
6,6,2 0.50,0.30,0.20 | 0.05 | 2.03 (4.7) 2.08 (2.3) 2.13
2,2,2
34 10,6,2 0.50.0.30.0.20
6,6,2 0.50.0.30.0.20 | 0.02 | 2.18 (2.2) 2.19 (1.8) 2.23
2,2,2
35 10,6.2 0.60.0.20.0.20
6,62 | 020020060 | 005 | 1.30(7.8) | 1.38(2.1) 1.41
2,2.2
36 10,6.2 0.60.0.20.0.20
6,6.2 0.20.0.20.0.60 | 0.02 | 1.38 (42) | 1.43(0.7) 1.44
2,22

Table 3: Results for 3-type Cases, u; = 0.66, uo = 0.33
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Figure 1: Performance of H1 and H2 for 16-type problem

different locations, there are 16 possible types of halves. Suppose that the probability of defect in any
location is 0.3, independent of defects at other locations, and a display is worth $10 if it has no defects on
either of its halves. Therefore mating “passive” and “active” halves that both have no defects is worth
$40. On the other hand, mating an active plate that has a defect in the location of the third display with
a passive plate that has defects in the location of the second and fourth displays will result in production
of only one 1 display (in the location of the first display) and the total mate is worth only $10. We
assumed that the machines producing the left and right halves had exponential distributions with rate
0.5.

Since this problem has 16 types, it cannot be solved to optimality using dynamic programming. Even
if the maximum inventory of a given type were limited to be at most 40, there would be over 1028 states
in the MDP. Figure 3 shows the performance of H2 and H1 as a function of h. For all of the holding cost

values displayed, H2 outperforms H1, although in this case the difference in performance is smaller.

6 Conclusions and Further Research

In this paper, we formulated a dynamic type mating problem that arises in many manufacturing environ-
ments including flat panel display manufacturing and presented two effective heuristics. Although both
heuristics performed well on the examples considered in this paper, further research is needed to test the

effectiveness of these and other heuristics on larger scale problems. Further research should also focus on

15



more complicated systems than the one we considered here (e.g., subassembly lines instead of machines).
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