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ABSTRACT:

An interior point of a triangle is called a CP-point if its orthogonal projection on the line containing
each side lies in the relative interior of that side. In classical mathematics, interest in the concept of
regularity of a triangle is mainly centered on the property of every interior point of the triangle
being a CP-point. We generalize the concept of regularity using this property, and extend this
work to simplicial cones in R, and derive necessary and sufficient conditions for this property to
hold in them. These conditions highlight the geometric properties of Z - matrices. We show that
these concepts have important ramifications in algorithmic studies of the linear complementarity
problem. We relate our results to other well known properties of square matrices.

KEY WORDS: Simplicial cones, faces, orthogonal projections, CP- points and rays, linear
complementarity problem, Positive definite matrices, Z-matrices, P-matrices.



1. INTRODUCTION

Consider the equilateral triangle in R2 shown in Figure 1. The point b in Figure 1 satisfies the
following properties.

i) it is in the interior of the triangle

ii) for each side of the triangle, the orthogonal projection of b on the straight line containing that
side, is in the relative interior of that side.

We will call a point satisfying these two properties, a CP- point (abbreviation for "centrally (or
interiorly) projecting point", since it projects into the interior of each side) for the triangle. See
Figure 2 for a triangle in R2anda point ¢ init which is nota CP-point, since it violates (ii).

Figure 1: An equilateral triangle Figure 2: A triangle in R2and a
and a CP-point b in it. point ¢ in it which is not a CP-
point. However, the point b where
all the bisectors lines of the angles
meet, is a CP-point



Every triangle in R? hasa CP-point. By a well-known result in classical geometry, the bisector
lines of the three angles of a triangle have a common point, b, and clearly that point b is a CP-
point for the triangle. See Figure 2.

Also, it can be verified that every interior point of the equilateral triangle in Figure 1 is a CP-point
for it, but this property does not hold for the triangle in Figure 2.

In this paper we generalize the concept of CP-points for triangles in R2 o simplicial cones
in R%, We show that CP- points in simplicial cones play an important role in studies aimed at
developing efficient algorithms for linear complementarity problems associated with positive
definite symmetric matrices and P-matrices. We investigate several geometric properties
associated with CP-points in simplicial cones, and relate them to classical results in matrix
theory.

2. NOTATION
We will use the following notation.
LCP Linear Complementarity problem, defined in Section 4.

LCP(g,M) an LCP for which the input data is the column vector ¢ and square matrix M.

E;, E j If E is any matrix, E; denotes its ith row vector, E j denotes its jth column
Vector.

Eyg If E=(eij) is any matrix of order mxn, given L C {1,°**,m},JC
(1,+*+n}, Ey denotes the submatrix (e;; : i€L, jeJ) of E' determined
by these subsets.

Dy, submatrix of D with row vectors D; for i€J.

Dj Submatrix of D with Column vectors D ; forj€J

Xy If x=(xj)€R“, J<{1, "+ n}, xj denotes the column vector (x;: j€J)
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given the matrix D, this is the cone {x: x=Dy for some y>0}

the linear hull of the set of column vectors of the matrix D, it is the subspace
{x : x = Dy, for some vector y }.

Unit matrix of order n.
Cardinality of the set J.

When K and A aretwosets, KM\ is the set of elements of K which are
notin A.

a square matrix, all of whose principal subdeterminants are >0.
a square matrix, all of whose off-diagonal elements are <0.

a Z-matrix which is also a P-matrix

these are respectively the classes of P-, Z-. and M- matrices of order n.

The Euclidean norm of the vector x=(xj ), itis+4 jZ xzj

the set {1, ..., n}
for bERD, b#0, therayofb is Pos (b)={x:x=a b for some o 20}.
pi, the length of the circumference of a circle in R2 with diameter 1.

positive definite

3. CP-POINTS AND CP-RAYS IN SIMPLICIAL CONES

Let D be a real square nonsingular matrix of order n. Pos(D) is a simplicial cone in R™. For
each j=1ton,the ray Pos(D j) ={x:x=aD j o 2 0} is a generator or a generator ray for



Pos(D). In this section we define CP-points and CP-rays for Pos(D), and various other geometric
entities related to Pos(D), which are used later in studying CP-points.

Since Pos(D) is a simplicial cone, a face of Pos(D) is Pos(D J) for some J € [" and vice versa.
For any J C [, we will say that Pos(D _J) is the face of Pos(D) corresponding to the subset J.
When!J!=n -1, Pos (D J) is called a facet of Pos(D), it is a face of Pos(D) whose dimension is

one less than the dimension of Pos(D).

The point b €Pos(D) is said to be a CP-point for Pos(D) if it satisfies the following properties
1, 2.

1. b isin the interior of Pos(D)

2. for every face F of Pos(D), the orthogonal projection of b on the linear
hull of F, is in the relative interior of F.

Since there are 20 - 2 nonempty proper faces of Pos(D), property 2 consists of 2" - 2 conditions.
Here again, "CP-point" is an abbreviation for "centrally (or interiorly) projecting point”, since this
point projects into the relative interior of every face of Pos(D).

As an example, consider the simplicial cone, Pos(D) in R2, given in Figure 3, which is an

obtuse angle. The point (1, 1/4)T violates property 2, since its orthogonal projection on the linear
hull of Pos(D 1) is d, which isnotevenin Pos(D ). The point (0, 1)T also violates property 2,

since its orthogonal projection on the linear hull of Pos(D 5) is 0, which is not in the relative
interior of Pos(D 7). However, the point b=(-1+ V2, 1)T on the bisector line of the angle

Pos(D) does satisfy both properties 1,2, and is therefore a CP-point for Pos(D) in this example.
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Figure 3: D= -1 1  Pos(D) is the thick obtuse angled cone. The open cone bounded
1-0
by the dashed lines, {y : DTy > 0} is the set of all CP-points for Pos(D).

If b is a CP-point for Pos(D), the ray Pos(b ) ={x: x =ab, for o 20} is said to be a
CP-ray for Pos(D).

LEMMA 1: Every nonzero point on a CP-ray for Pos(D) is a CP- point for it.

PROOQF: By direct verification. O



3.1 PROJECTION AND NON-PROJECTION FACES OF POS (D)
RELATIVE TO A GIVEN POINT b.

Given b€RD, the face Pos(D J) of Pos(D) corresponding to J C ", is said to be a projection
face relative to b if the orthogonal projectionof b in LH(D .J) 1sinthe relative interior of
Pos (D y); non-projection face relative to b otherwise.

The face of Pos(D) corresponding to " is Pos(D) itself. By the above definition, Pos(D) is a
projection face relative to b iff b is in the interior of Pos(D).

Thus b is a CP-point iff every face of Pos(D) is a projection face relative to b, that is, iff
there are no non- projection faces relative to b.

The concept of a projection face is algorithmically very important in the study of the linear
complementarity problem. In K. G. Murty and Y. Fathi [14] and P. Wolfe [19] it has been used
to develop efficient algorithms for nearest point problems in simplicial cones, and special types of
linear complementarity problems. These algorithms, and consequently projection faces, play an
important role in a new algorithm for linear programming developed by S. Y. Chang and K. G.
Murty [1].

3.2  THE SET OF CP-POINTS OF POS (D) WHEN n = 2.

If n=2, and Pos(D) is an acute or right angle, every point in the interior of Pos(D) is a CP-
point for it. If Pos(D) is an obtuse angle, any point b in the interior of Pos((DT)1 ) (these are
points b satisfying DT b > 0) is a CP-point for Pos(D). See Figure 3.

In this case (n = 2), the bisector ray of the angle Pos(D), is always a CP-ray for Pos(D). A

nonzero point on this bisector ray is b = (1/2) ((D.;/ IID.ll) + (D.,/IID., 1)),
the bisector ray is the ray of this point b.

3.3 INCENTER AND CIRCUMCENTER OF POS (D).

Facets of Pos(D) are its faces of dimension n- 1. Forj=1to n, let Kj =Pos(D ¢, *.



D Djiy,Dy)andletHjbe the linear hull of K; Ky, ..., K, are the facets and
H,, -, H, are the facetal hyperplanes for Pos(D).

The concept of the bisector ray of the angle Pos(D) when n =2, does not directly generalize for
n23. However, when n =2, the important property of a nonzero point on the bisector ray of
Pos(D) is that it is equidistant from each facet of Pos(D), and this property can be generalized for
n23. Thereis a point in the interior of Pos(D) which is equidistant (say, at a distance of 1) from
each of the facetal hyperplanes for Pos (D), this point is called the incenter for Pos(D) and its ray
is called the incenter ray for Pos(D). Each point on the incenter ray is equidistant from each of the
facetal hyperplanes. See Figure 4.

Figure 4: A simplicial cone in R3 and its incenter a.



Let B =(B;j)=D L. Then,forj=1ton,the facetal hyperplane H; for Pos(D)is

Hj= [x: Bj.x = 0}.

The incenter of Pos(D) which is at a distance of 1 from each facetal hyperplane of Pos(D) is
a=D (81,...,8‘1)T where 8]- =l Bj. Il. This point a is clearly in the interior of Pos(D), and the

ray of a is the incenter ray for Pos(D).

When n = 2, the incenter ray for Pos(D) is exactly its bisector ray, and itisa CP-ray. One may
be tempted to conjecture that the incenter ray is always a CP-ray for Pos(D). Unfortunately, this
conjecture may be false when n23. Let

-1 1 20
A
D=1 0 3 1 (2)
0 0 1

A A
The incenter ray is not a CP-ray for Pos(D). Surprisingly, we found that Pos( D) has no

CP-point at all. This can be seen from the following. If b = (by, b, b3)T is a CP-point for

A
Pos (D), b must satisfy

-b, >0
b2 >0
(3)
b2 ‘b3 >0
177b, 59b, +bs >0

besides other inequalities imposed by properties 1, 2. The first inequality in (3) comes from the
A
requirement that the orthogonal projection of b in the linear hull of { D ; } lies in the relative
A

interior of Pos( D ;). The second and third inequalities above come from the requirement that b



must be in the interior of Pos(B), thatis, b = (-0 + 0ty +20013, 30ty + 03, a3)T for some ( a.y,
0, 03) > 0. Finally, the orthogonal projection of b in the linear hull of {?).2, lA).3} is Y, 1/\).2 +

Y3 ?).3 where ¥, = (-56 by + 1189 by -23 b5)/3511 and 3 = (177 b; -59 b, + b3)/3511, and since
this point should be in the relative interior of Pos(AD’z, ?)'3), we need ¥, >0, y3 > 0; and y3 >0
leads to the last inequality in (3). Multiplying the inequalities in (3) by 177, 58, 1, 1 in that order
and summing leads to the inconsistent inequality 0 > 0, hence there exists no b satisfying (3), that
is no CP-point for Pos( 8 ).

At this stage we were quite tempted to conjecture that if D is a square nonsingular matrix such that
the incenter ray is not a CP-ray for Pos(D), then Pos(D) has no CP-points at all. Unfortunately,
this conjecture also turned out to be false. Let

1 -1 -1
D= 0 1 1 (4)
0 0 1

When D is the matrix given in (4), the incenter a =(-1, 1+ V2,17, isnota CP-point for
Pos(D). But b=(2, 8, 1)T is a CP-point for Pos(D).

Given the square nonsingular matrix D, the point d # 0 is said to be the circumcenter of
Pos(D) if:
a) dis equidistant (say, at a distance of 1) from each of the generator rays of Pos(D)

and  b) the ray of d makes an acute angle with each of the generator rays of Pos(D).

The ray of the circumcenter is known as the circumcenter ray for Pos(D). While the
incenter is always contained in the interior of Pos(D), the circumcenter may not even be in
Pos(D).

The circumcenter ray makes equal acute angles with all the generator rays of Pos(D) (this
provides another equivalent definition of the circumcenter ray for a simplicial cone). From
this it can be verified that the circumcenter ray for Pos(D) is the ray of (DT)! 1 where
T=(11, " ,Tn)T, Tj= I D'j I'l,j=1 ton. So the circumcenter ray is in the cone

Pos(D) iff (DTD)1120.



3.4 POLAR CONE

Let D be a square nonsingular matrix of order n. The cone { y: yI x>0 for every x€

Pos(D) } is known as the Polar Cone of the cone Pos(D). Clearly, yis contained in the polar
cone of Pos(D) iff yTD.j >0,forallj =1ton,thatis DTy>0. This implies that the polar cone

of Pos(D) is Pos( (DT)1).

The Gale-Nikaido theorem ( [4] ) states that if A is a P- matrix, then the system Ax <0, x>0,
has the unique solution x =0. Using this and Gordan's theorem of the alternatives ( [8, 12]),
since (DTD)"! is a PD matrix and hence a P-matrix, we conclude that the system: D' (DTY1 x>
0, x>0, has a solution x. This implies that the point (DT)! x is both in the interior of

Pos(D) and the interior of its polar cone. Thus, the interiors of Pos(D) and its polar cone always
have a nonempty intersection. We will prove later (Corollary 1) that every CP-point for Pos(D)
must be an interior point of its polar cone Pos((DT)'1 ).

Here are some important properties of the polar cone of Pos(D). The circumcenter ray for
Pos(D) can be verified to lie always in the polar cone of Pos(D) by definition.

Let B=D! and let H{={x: B1, x=0} be the facetal hyperplane containing

Pos(D5,* **,D ). If y¢ H,, the orthogonal projection of y on H is
A
y=y-0/1B, 1% (B,)T B, y. Since B) D;=0forallj=2ton, itcan be verified that if
A

yID 20, then (y)TD. j 20 also, for all j =2 to n. This implies that the orthogonal projection of
the polar cone of Pos(D) on H;=LH({D ,,* * *+ ,D ,} is the polar cone of the face
Pos(D 5,* * * ,D,). In the same way it can be verified that the orthogonal projection of the
polar cone of Pos(D) on the linear hull of any face of Pos(D) is the polar cone of that face.

Consider ﬂnspecml case n=2. In this case if Pos(D) is a non-actute angle (see Figure 3) the polar
cone Pos((b?r)"l) C Pos(D), and from Section 3.2 the set of CP-points of Pos(D) is the interior of
the polar cone. If Pos(D) is a non-obtuse angle, Pos((DT)-l) D Pos(D), and the set of CP-points
for Pos(D) is its owh interior.

10



3.5 DIHEDRAL ANGLES AND INWARD NORMALS TO FACETAL HYPERPLANES

As before, let D be a square nonsingular matrix of order nand B =D"1. The hyperplane Hj

defined in (1) are the facetal hyperplanes for Pos(D). Fori, j€ [, i #], the intersection of the
closed half-spaces defined by H; and Hj containing the Cone Pos(D) is known as the dihedral

angle defined by the pair of facetal hyperplanes H; and Hj.

LetG ;= (Bj. /11 Bj, 112, The ray of G jisnormal to the facetal hyperplane H;, and is on the
same side of H ; as Pos(D), hence it is known as an inward normal to the facetal hyperplane H .

n
There are (2) Dihedral angles associated with any simplicial cone in R™, Fori, j€[',i#j,a
measure of the dihedral angle between H;, Hj in radians is

0 = 7 - (angle between inward normals to H; , H ¥ in radians).

=n-Cos/((G)TG))

The polar cone of Pos(D), Pos( (DTY1), is a subset of Pos(D) iff, for every y 20,
(DT)"ly = Dx for some x 2 0, that is, iff D=1 (DT)"1 y >0 for all y 2 0. This holds iff
D1 (DTYy1=gpT>0, that s, iff all the dihedral angles associated with Pos(D) are non-acute (i.e.,
obtuse or right). Similarly, it can be verified that the polar cone of Pos(D) is in the interior of
Pos(D) iff all the dihedral angles associated with Pos(D) are strictly obtuse, and in this case the
circumcenter ray of Pos(D) is in its interior.

3.6 CP-OWNING, OR CP-LACKING SIMPLICIAL CONES
Given the square nonsingular matrix D of order n, we will say that the simplicial cone Pos(D) is
CP-owning (or a CP-owner) if it has at least one CP-point. It is CP-lacking (or a CP-lacker)

otherwise.

We have already shown that every two dimensional simplicial cone is a CP-owner. But for
n 2 3, simplicial cones may or may not be CP- owners.

11



3.7 CP-POINTS FOR LOWER DIMENSIONAL CONES

Let Abean nxr matrix where r < n, whose set of column vectors is linearly independent.
Then Pos(A) is an r- dimensional conein R™ which has empty interior. A CP- point for
Pos(A) is defined exactly as before, with the exception that property 1 now requires the point to be
in the relative interior of Pos(A).

3.8 SUMMARY OF OUR MAIN RESULTS ON CP-POINTS

Let D be a square nonsingular matrix of order n. Let K = Pos(D); and K* = Pos((D1))"}, its
polar. Let C, C* denote the sets of CP-points of K, K* respectively. As seen in Section 3.2,
there are only two possibilities when n=2. They are

i) K* C K, C = C* = interior of K*.
ii) K cK*, C =C* =interior of K.

Of course, there are many more possibilities when n 2 3. However, our main results on CP-
points in the following sections fall into two main streams corresponding to these two possibilities
(i) and (ii).

One stream is concerned with the case where the angles between every pair of generator rays of K
(i.e., the generator angles of K) are non-acute, that is, when M = DTD is a Z-matrix. In this case
K* C K, and C = C* = K*. In this case the dihedral angles associated with every face of Pos (D)
are all non-acute.

The second stream is concerned with the case where all the dihedral angles associated with K are
non-obtuse. This property is inherited by all the faces of K. In this case Ml = (DTD)1isa
Z-matrix, and all the generator angles in K are non-obtuse. Here K € K* and C = C* = interior
of K.

4. APPLICATION TO LCP

LetM = (’"ij ) be a given real square matrix of order » and ¢ = (qj ) a given column vector in
R™. The LCP withdata ¢, M, denoted by (g, M), is the problem of finding vectors

12



w=(wjhz=(z)¢€ RD, satisfying

w-Mz=¢q

(3)
w, 220, wlz=0

The LCP is a fundamental problem in mathematical programming, it has been the focus of
extensive research over the last 25 years. CP-points came up in a study dealing with the
construction of efficient pivotal algorithms for solving certain classes of LCPs. In this section we
review this application of CP-points in LCP.

In (5), the pair of variables {wj 2] } is known as the jth complementary pair of variables, for

j=1,...,n. In(5), the column vector associated with wj isl j and the column vector
associated with Z is-M j The pair { [ jo -M j } is the jth complementary pair of column
vectors in (5). A complementary vector of variables in (5) is a vector y = (y}, ..., y,l)T
where Yj € {w]- 12 }foreach j=1,...,n If A.j is the column in (5) associated with
Yjs the matrix A=(Aj...A,) isknown as the complementary matrix associated with y.
The complementary vectory is said to be a complementary basic vector in (5) if the
corresponding complementary matrix is nonsingular. If y is a complementary basic vector
associated with the complementary matrix A, the complementary basic solution of (5)

corresponding to y is given by

all variables in (5) notiny are =0
(6)
y=Alq

Clearly, the solution in (6) satisfies the complementarity condition wlz =0, because y isa
complementary vector. If Al q 20, the solution in (6) is a solution of the LCP (g, M) (it
satisfies all the conditions in (5) ). It is then said to be a complementary basic feasible solution,
and y is said to be a complementary feasible basic vector for (5). The complementary basic
feasible solution in (6), and complementary feasible basic vector y are nondegenerate if
Alg>o.

When M € P, it is well know that the LCP (g, M) has a unique solution for all g € R". Hence
for M € P, if y is a complementary feasible basic vector for the LCP (¢, M), which is

nondegenerate, it is the unique complementary feasible basic vector for this LCP.

13



Forany J C ' the LCP of order 1]J 1,

wy-Myyzp=q;

(7)
wy,2y2 0, (wJ)T zy= 0

which is the LCP (g5, Mjy) , is known as the principle subproblem of (5) corresponding to the
subset J.

One method for solving the LCP (g, M) when M is a P-matrix is the following. Select a column
vector p>0in R". Consider the following parametric LCP, where o is a nonnegative parameter

I -M | g+ap ®)

When a > 0 is sufficiently large, w is a complementary feasible basic vector for (8), and the
method is inititated with this. The method moves through complementary basic vectors for
(8), exchanging one basic variable by its complement in each pivot step, in an effort to find a

complementary feasible basic vector for (8) for smaller and smaller values of o until it reaches
the value 0. In some general stage, let (w i'% ) be the complementary basic vector for (4) at

this stage, for some J < ', J =I"\J. The corresponding basic solution for (8) is
(wy, z;)= 0
2y 4;t ap, 9)
Wj qi + apj
where
(4pp)=- My (a5.pp),

(a3, py) =gy, Py +Mjy(4;.p))

14



The smallest value of a for which the right hand side of (9) remains > 0 is © given by
Maximum [-c}j/ﬁj:jsuch that 131- >0}

-, if p <0 (10)

If0<0,(w J 2 ) is a complementary feasible basic vector for (8) for a =0, that is, a

complementary feasible basic vector for (5), terminate. Otherwise, let r be the maximizing index

in (10) (or the maximum among these indices, if there is a tie). Perform a pivot step replacing the
basic variable from the pair {w, , z,} in the current complementary basic vector by its

complement, and continue the method with the new complementary basic vector.

This method is known to solve the LCP (g, M), when M isa P-matrix, in a finite number of
pivot steps [9]. Even though this method is finite, in the worst case, it may take up to 2" pivot
steps before termination [10, 12]. However, in [15] J. S. Pang and R. Chandrasekaran observed
that if the column vector p is selected so that it satisfies the following property 3, then the method
will terminate after at most n pivot steps, for any g€¢R™.

3. (Myy )'lpJ> 0, for all nonempty JcT.

Since M = (m,-j) is a P-matrix, m;; > 0 for all i = 1 to n. Taking J = {i} in Property 3 implies
that p; > 0, hence any vector p satisfying property3 is automatically > 0.

If the column vector p satisfies property 3, in the above method, when (w T zy) is the

complementary basic vector, in the basic solution (9), iJj< 0 for all j¢J; and the maximizing index

r giving the value of © in (10) will not be in J. That is, once a z-variable becomes basic in the
above method, it will stay basic until termination. This guarantees that the method terminates
after at most n pivot steps.

15



PC-VECTORS FOR A P-MATRIX

Givena P-matrix M of order n, the column vector p€R" is said to be a PC-vector for M
if it satisfies property 3 given above. Such a column vector was first defined in the Pang and
Chandrasekaran paper [15], and hence the name "PC-vector".

The following Lemmas 2, 3, and Theorem 1 relating PC-vectors to CP-points follow from the
results established in K. G. Murty [11].

LEMMA 2: Let M¢P_, p€R". The column vector p is a PC-vector for M iff the vector

composed of the z-variables only, is a nondegenerate complementary feasible basic vector in every
principal subproblem of the LCP (11).

w-Mz=-p
w,z220,wlz =0 (11)
PROOF: Follows by direct verification. O

We will now show that for the class of PD symmetric matrices M, PC-vectors correspond to CP-
points of a related simplicial cone.

Let M beaPD symmetric matrix of order n. Let D denote a real nonsingular square matrix
of order n satisfying DTD = M, (for example, the Cholesky factor of M is a candidate for D). Let
PERM, p>0, and

b=(DT)1p (12)

LEMMA 3: For J<I', Pos(D j) is a projection face of Pos(D) relative to b iff
M, J)‘1 py> 0, or equivalently, iff z § is the nondegenerate complementary feasible basic vector
for the principal subproblem of (11) corresponding to J.

16



PROOF: If J=(, the result holds by convention. So, assume J# & andlet!J|=s. The
orthogonal projection of b in LH(D j)is D y Ay, where Ay is the optimum solution of the

problem

minimize (b - D jAy)T (5 -D 5 )
over Aj€ RS

which is

N=Myt @ )Tb (13)

So, the orthogonal projection of b in LH(D_ J ), is in the relative interior of the face
Pos (D ), if Ay given by (13)is >0, thatis, iff (Myp ' (@ )T b= My py>0, or
equivalently, iff zy is the nondegenerate complementary feasible basic vector for the principal

subproblem of (11) corresponding to J. O

THEOREM 1: Let D be a real nonsingular square matrix of order n and p€R". Let
M=DTD, b= (DT)'lp. The vector p isa PC-vector for M iff b is a CP- point for Pos(D).

PROQF: Follows directly from Lemmas 2, 3. O

COROLLARY 1: Let D be areal nonsingular square matrix of order n. Every CP-point for
Pos(D) must be an interior point of the polar cone of Pos(D),Pos( (DT)1).

PROOF: Let b be a CP-point for Pos(D). Then by Theorem 1,p = DTb isa PC-vector for
M =D'D, and hence p=DT b>0. Since b= (DT)"! p, this implies that b is an interior point of
Pos( (DTY}).

O

Corollary 1 can also be proved very directly. If b is a CP-point for Pos(D), each of the
generator rays Pos(D j), j=1 ton, must be a projection face relative to b, by definition. This

implies that (D j)T b>0 forall j=1ton, thatis, DT b>0,0r bmust be in the interior of the
polar cone of Pos(D), Pos( (DT)'l ).

17



Geometrically, Corollary 1 says that every CP-ray for Pos(D) must make a strict acute angle with
each of the generator rays of Pos(D).

COLLARY 2: Let D be areal nonsingular square matrix of order n. The set of CP-points for
Pos(D) is a subset of the intersection of the interiors of Pos(D) and Pos( (DT)1).

PROOF: Follows from the definition and Corollary 1. O

Let D bea square nonsingular matrix of order n. When n =2, in Section 3 we have seen
that the set of CP-points of Pos(D) is always (interior of Pos(D)) N (interior of Pos( (DT)1)).

In Sections 7, 8 we establish that this result also holds for some special classes of matrices D
when n>2. Also, when n =2, the set of CP-points of Pos(D) is either the interior of Pos(D)
(when Pos (D) is an acute or right angle), or the interior of Pos( (DT)"1) (when Pos(D) is an
obtuse angle). In Sections 7, 8 we derive some necessary and sufficient conditions on D, for
these properties to hold, when n> 2.

THEOREM 2: Let M be a PD symmetric matrix of order n, and let D be a square matrix
satisfying DTD = M. There exists a PC-vector for M iff Pos(D) is a CP-owner.

PROOF: Follows directly from Theorem 1. O
THEOREM 3: Let M be a P-matrix of order n. The set of all PC-vectors for M is either @ or
is an open polyhedral cone.

PROOF: A vector p€¢R"is a PC-vector for M iff it is a feasible solution of the system

M;plp; >0, forall @#Jcl (14)

(14) is a finite system of strict linear inequalities, and its set of feasible solutions is the set of PC-
vectors for M. Hence, if this set is nonempty, it is an open polyhedral cone. O
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THEOREM 4: Let D be a square nonsingular matrix of order n. The set of CP-points for
Pos(D) is either empty, or is an open polyhedral cone.

PROOF: Let M =DTD, and let A be the set of PC-vectors for M. By Theorem 1, the set of all
CP-points for Pos(D) is {x: x = (DT)‘1 p, p€A} and this is an open polyhedral cone when it is
nonempty, since the same property holds for A. O

5. PC-VECTORS FOR P-MATRICES OF ORDER 2.

Suppose M =(M ij) isa P-matrix of order 2. Then from the definitions, p = (p;, p2)T isa
PC-vector for M iff it is feasible to (15).

myy P1-My2 Py >0
"My Pr+myy Py >0 (15)

P >0

pp >0

Using Gordan's theorem of the alternatives [8, 12], and the Gale-Nikaido theorem [4], it can be
verified that (15) is always feasible. Hence, every P-matrix M of order 2 has a PC-vector p,
which can be found by solving (15).

6. THE HEREDITARY FEATURE OF THESE PROPERTIES.

Let D be a square nonsingular matrix of order n.

THEOREM §: If Pos(D) is a CP-owner, so is every face of Pos(D).

PROOF: Consider the facet Pos(D 5, *** , D ;) =K of Pos(D) and the facetal hyperplane
H, containing it. Suppose b is a CP-point for Pos(D). Let b! be the orthogonal projection of

19



b in H;. Since b is a CP-point for Pos(D), bl is in the relative interior of K,. By Pythagoras
theorem, ll x - b 112 =l x - b1 12+ 11 b - b1 12 for all x€H,. So, if F isany face of K, the

orthogonal projections of b, bl in the linear hull of F, are the same. So, by the hypothesis, bl
is a CP-point for K;. A similar proof holds for all facets of Pos (D), so all facets of Pos (D) are

CP- owners if Pos (D) is a CP-owner. Repeating this argument, we conclude that all faces of Pos
(D) are CP-owners if Pos (D) is.

]

THEOREM 6: If every interior point of Pos (D) is a CP-point for it, then for every face of
Pos (D), every relative interior point is a CP-point.

PROOF: Consider the facet K; = Pos (D ,,***,D ;) of Pos (D). Let b! be any point in
the relative interior of K. Erect the inward normal at b to the facetal hyperplane containing
K, andlet b be a point on this normal in the interior of Pos (D). By the hypothesis of the

theorem, b is a CP-point for Pos (D), so by the arguments in the proof of Theorem 5, bl isa
CP-point for K;. So, every point in the relative interior of K, isa CP-point for K. A Similar

proof holds for all facets of Pos (D); so, every facet inherits the property that all points in its
relative interior are its CP-points. Repeating this argument, we conclude that every relative
interior point of any face of Pos (D) is a CP-point of that face, if every interior point of

Pos (D) is its CP-point. D

THEOREM 7: Let M be a P-matrix of order n. If M has a PC-vector, so does every principal
submatrix of M.
PROOF: Let p be a PC-vector for M. Then, for every J<T', it follows directly from the

definition; that py is a PC- vector for the principal submatrix Myy of M corresponding to the
subset J. O
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7. CP-POINTS FOR POS(D) WHEN EVERY PAIR OF GENERATORS MAKE A NON-
ACUTE ANGLE.

THEOREM 8: Let D be a square nonsingular matrix of order n. If every pair of generators of
Pos(D) make a non- acute (i.e., either obtuse or right) angle, then Pos(D) is a CP- owner, and the
set of CP-points of Pos(D) is the interior of the polar cone of Pos(D), Pos( (DT,

PROOF: Suppose every pair of generators of Pos(D) make a non- acute angle. So
(D_i)T D j <Oforalli#j. Therefore, M= DTD is a P-matrix which is also a Z-matrix, and

hence an M- matrix. By the results in [3] this implies that M120,and by the same argument
(Myp'20 forall @=JcT. Let peR™, p>0. LetM!p=y=(y,). Since Mlisalsoa
P-matrix, each of its diagonal elements is > 0. Sincce M-1 > 0 and has positive diagonal elements
and p >0, we have y =M1 p > 0. A similar argument shows that (M JJ)'lpJ >0 forall @ #Jcl,
p>0. Henceevery p€R™M, p>0,isa PC-vector for M = DTD. Consequently by Theorem 1, all
b in the interior of Pos( (DT)"1 ) are CP-points for Pos(D). By Corollary 1, this implies that the
set of all CP-points for Pos(D) in this case is the interior of Pos( DTy ). D

The converse of Theorem 8, namely that if D is square and nonsingular, and every interior point of
the polar cone Pos( (DT)!) is a CP-point of Pos(D), then every pair of generators of Pos(D) make
a non-acute angle, is also true. This is proved along with several other equivalent statements,
under Theorem 18 in Section 9.

8. CP-POINTS FOR POS(D) WHEN EVERY PAIR OF GENERATORS MAKE A NON-
OBTUSE ANGLE.

In this section, D is a square nonsingular matrix of order n.

In Section 3, we have seen that if n =2, and Pos(D) is an acute or right angle (i.e.,

(D'l)T D ,20), every interior point of Pos(D) is a CP-point for it. An intuitive generalization of
this result to higher dimensions states that if the rays of D ; and D J make an acute or right angle
(ie., (D; )T D J >0) foralli#j,then Pos(D)isa CP-owner. This result is true for n =2, and

established for n =3, but may be false for n24. Consider matrix D, given below.
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1 20 0
0 3 1 0 (16)
D= O 0 1 0
\5 5 5 5

Even though (D l-)T D i> 0 for all i #, in this matrix D, Pos(D) is a CP-lacker. This can

be seen from the following argument. Let M = DTD. For a vector p€ R? to be a PC-vector
for M, it must satisfy:

-48p, +35ps >0
250p, +25p, -275p, >0
87275p;  -1450p, +4425p, -90250p, >0
90250p,  +1475p, -4575p; +9335%9p, >0

The first and the second of these inequalities come from the requirement that (M JJ)'1 py>0
for J = (2,3}, {1,2,4} respectively, while the last two are from the same requirement but
correspond to J = {1,2,3,4}. Muliplying the inequalities in this system by 13275, 37923, 19720,
19175 in that order and summing leads to the inconsistent inequality 0 > 0. Thus no PC-vector
exists for M, and so by Theorem 1 there is no CP-ray for Pos(D).

In order to guarantee that Pos(D) is a CP-owner in this case, we need to impose more conditions
on the matrix D. Our work on this class of matrices D was motivated by the following
conjecture made by Soo Y. Chang,.

CONIJECTURE (proved below): Let Kj =Pos(D ;,**° ’D.j-l D.j” ,***, D,)and Hj

the facetal hyperplane. of Pos(D) containing Kj. If for each j =1 to n, the orthogonal projection
of the generator Pos(D. j) in Hj lies in the relative interior of Kj , then Pos(D) is a CP-owner.
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While it may not be immediately apparent, we will show that the hypothesis in this conjecture
implies that every pair of generators of D make an acute angle, so this conjecture legitimately
belongs in this section. We will provide a proof of a stronger form of this conjecture and derive
several related results.

For ease of reading, we will summarize the notation for this section. Kj and Hj are as stated in
the above conjecture. B = (Bij y=D-l. Then,

Hj=[x: ﬁj_x=0} (17)
Pos(D) = { x: Bj.xzo, j=1ton} (18)
Kj=[x: Bi.xzo,i=lton,i#j;andBj‘x=0} (19)
G.j= (Bj_ )T/ IIBj. 112, anonzero point on the inward normal to Hj (20)

Consider the hyperplane { x: a; x;+ ***+ax,=ax=d} and let x€RM. The orthogonal

projection of x in this hyperplane is x +aT d- ax Yllall2,
We will now investigate the simplicial cones Pos(D) satisfying one of these properties.

4. For each j =1 to n, the orthogonal projection of the ray Pos(D.j )in Hj is in the
relative interior of K]

5. For each j = 1 to n, the orthogonal projection of the ray Pos(D j )in Hj isin Kj .
6. All the dihedral angles associated with Pos(D) are acute.

7. All the dihedral angles associated with Pos(D) are non- obtuse (acute or right).

8. Every interior point of Pos(D) is a CP-point for it.

9. Every interior point of Pos(D) is a CP-point for the polar cone Pos((DT)'l)
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n
THEOREM 9 : If property 4 holds, all the (2) dihedral angles associated with Pos(D)

are acute, and conversely.

PROOF: The orthogonal projection of D jon H;is D - (B )T ( Bi. Dy )/ 12, = D,
-G (since B; D =1,asP = D1y, Under property 4 the orthogonal projection of D ; on H,
is in the relative interior of K, and hence from (19), Bl-‘ (D;-G;) >0 foralli#1. But

B, D=0foralli#1,since B=D1. So B G<Ofor all i#1,thatis, (G )T G,<0,
forall i# 1. In the same way, under property 4, we have ( G; e < 0 for all i#j, that is, all

the dihedral angles associated with Pos(D) are acute. The converse is established by essentially
reversing the steps of the proof.

O

n
THEOREM 10: If property 5 holds, all the (2) dihedral angles associated with Pos(D)

are non-obtuse (i.e., acute or right), and conversely.

PROOF: Similar to the proof of Theorem 9. O

Thus, properties 4 and 6 are equivalent. Likewise, properties 5 and 7 are equivalent.
LEMMA 4: Let x be any interior point of Pos(D). If the orthogonal projection of D ; in H is in
the relative interior of K, the orthogonal projection of x in H, is also in the relative interior of

K,.

PROOF: Suppose the orthogonal projection of D ;in Hj is in the relative interior of K.
Then, from the proof of Theorem 9, we have, B; (B, )T <O foralli= 1.

i ¢ in Hyis x=x - (B;)T (By x )/1IB; I2. Weh
Now, the orthogonal projectionof x in Hyis x =x - (B;)" (B; x )/l II°. We have,

fori#1,
B x = B, x +(-B BT) (By x )/ 1B, I2

>0
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because Bi. x >0 ( from (18), since x isin the interior of Pos(D) ) for all i, and
A
(-B; (B, )T ) > 0 (established above). So, x is in the relative interior of K|, completing the

proof of this lemma. O

THEOREM 11: If property 5 holds, then every interior point of Pos(D) is a CP-point for it, and
conversely.

PROQF: The proof is essentially similar to the proof of Lemma 4. Suppose property 5 holds.

Let x be an interior point of Pos(D). Let F be a proper face of Pos(D). So, from (18), there
must exist a @=J CI” such that

F={x: B; x=0, B; x20,icl'\J }. (21)

Let!J1=r. So By, is of order r x n and of full row rank. Hence the matrix A =f; (B J.)T is PD
symmetric. By Theorem 10, we have B; (B j )T <0, forall i #j. This implies that A is a Z-

matrix, and hence an M-matrix. By the results in [3] , this implies that
A1>0.

The orthogonal projection of x in the linear hull of F is the optimum solution of the problem

minimize (x- x )! (x-x)
subject to By x =0.

whichis ¥ = x - (B;)T A1 B, % . Let il \J. Wehave B, £ =B, x -B, (B;)T A" B x
>0, because B;X >0 (since x is in the interior of Pos(D)), B; (B, )T < 0 (since B, (B;, )T<0 for
allj#i), A120 (established above), and BJ.i >0 (sincei is in the interior of Pos(D) ). So,

A . . . . . . - . .
x 1is in the relative interior of F, thatis, F is a projection face relative to x . Since this holds for

all faces F of Pos(D), x isa CP-point for Pos(D). Hence every interior point of Pos(D) is a
CP-point for Pos(D) in this case.

To prove the converse, suppose every interior point of Pos(D) is a CP-point for it. Suppose
there is a j such that the orthogonal projection of D j in Hj isnotin Kj, say for j=1. Since
orthogonal projection is a continuous operation, we can find an open ball B containing D | such
that the orthogonal projection of every point inside B in H, is outside of K. Since B is an open
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ball containing D ;, it contains some points from the interior of Pos(D), and the orthogonal
projection of these points are outside K, contradicting the hypothesis. So, if every interior point

of Pos(D) is a CP-point, property 5 must hold. D
Hence, properties 5 and 8 are equivalent.

We can think of each face of Pos(D) as being a full dimensional simplicial cone in its linear hull.

r
If F is an r-dimensional face of Pos(D), we can define the ( 2) dihedral angles of F relative to
its linear hull, just as we defined the dihedral angles for Pos(D).

We will now show that properties 5 and 7 are facially hereditary, in the sense that if Pos(D) has
the property, then every face of Pos(D) also has the corresponding property.

THEOREM 12: If the simplicial cone Pos(D) has property 5, then every face of Pos(D) has the
corresponding property.

PROOQF: This follows from Theorems 11 and 6. D
THEOREM 13: If all the dihedral angles defined by pairs of facets of the simplicial cone Pos(D)
are non-obtuse, every face of Pos(D) also has the same property. '

PROOQF: Follows directly from Theorems 11, 10 and 12. D

THEOREM 14: For any simplicial cone Pos(D), properties 5, 7 and 8 are equivalent, and these
properties are inherited by all faces of Pos(D).

PROOF: Follows from Theorems 10, 11, 12 and 13. O
THEOREM 15: Property 9 holds iff (DTD)! is a Z-matrix

PROOF: Let K* = Pos((DT)"!) be the polar cone of Pos(D). Define B = (DT)",, M =DTD N =
BTB=(DTDyl =M1,
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Suppose N = M- is a Z-matrix. Since N is also PD, by the results in [3], (N ”)-1 2 0 for all
nonempty JCI', and since (N J)'1 is also PD, each of its diagonal elements is > 0. Hence, in this
case (N JJ)'1 qy >0 for all g€ R?, ¢ >0, and nonempty J<I'. Hence, by Theorem 1, (BT)"lg = Dq

is a CP-point for K* for all g > 0, that is every interior point of Pos(D) is a CP-point for the polar
cone K* in this case.

Suppose Dgq is a CP-point for K* for all ¢ > 0. Then by Theorem 1 we must have:
(N‘”)‘1 4y > 0, for all nonempty J < I" and all ¢ > 0. (22)

In particular N-1g>0for every ¢ > 0. Let 1 <j<n. Define q(€) = (q,(€): t =1 to n) where
q,(e)=€fort#j,and 1 fort=j. Since N-lg(e) >0 for all € >0, by making € tend to zero
through positive values, we conclude that (N‘l).j >0. Hence N'120.

Using the same argument, we conclude that (23) implies that (N} J)‘l 2 0 for every nonempty
J cT'. Now consider J; = {1,2}. Then denoting the i, j-th element in the matrix N by nyj» we

have:

NJlJl -

Ay

Since N = BIB is symmetric, nyy = nyq, and denote their common value by Y. Also, Nis PD,
hence, ny; >0, nyy >0, and ny; ny, - ¥ >0. Using these and (N JlJl)'1 20, we conclude that

Y<0. By the same argument we can show that all off-diagonal elements of N are <0, that is
N = (DTD) ! is a Z-matrix, in this case, completing the proof. ]

COROLLARY 3: Let A be a P-matrix of order n. It is a Z-matrix iff (A JJ)'1 2 0 for all nonempty
JcrT.

PROOF: Follows from the results in [3], and using the argument made in the proof of Theorem
15.

27



We will now explain the relationship of these properties to the condition mentioned in the
heading of this section, and the role that Z-matrices play in these properties. From the results in
this section, we see that the basic condition for properties 5 or 7 or 8 to hold is that

B;. (Bj.)Tso for all i # . - (23)

that is, that BT is a Z-matrix. Since Bis nonsingular, this is equivalent to requiring that PBT
be an M-matrix. But PBT= (D) (D"1)T= (DTD)1=M-1 where M=DTD. So, if (23) holds,
(DTD)! is an M-matrix, and by the results in [3] , DD 20, in other words, every pair of
generators for Pos(D) makes a non-obtuse angle. Hence all the results in this section relate to a
subclass of simplicial cones in which every pair of generators make a non-obtuse angle.

One noteworthy feature. Let DTD = M. In Section 7 we dealt with the case where M is a Z-
matrix. In this Section 8, we are dealing with the case where M~ is a Z-matrix. We now
provide a theorem which summarizes this section.

THEOREM 16: Every interior point of Pos(D) is a CP-point for it, iff (DTD)!isa
Z-matrix. Also, properties 5, 7, 8 and 9, and the condition that (DTD)1 is a Z-matrix, are all
equivalent.

PROOF: Requiring (D7D)’! to be a Z-matrix is equivalent to requiring property 7 as explained
above. So, these results follow from Theorems 14 and 15.

GENERALIZATION OF THE CONCEPT OF REGULARITY OF A SIMIPLICIAL CONE.

In classical geometry, a simplex is called a regular simplex if all its edges are of equal length, and
the simplicial cone Pos(D) is called a regular simplicial cone if the convex hull of

{D J/ IDl:j=1ton } isaregular simplex. Property 8 of course holds for regular
simplicial cones, and this is of principal interest when referring to regularity in simplicial cones.
So, the conditions given in Theorem 16 (namely that (DTD)! should be a Z- matrix) provide a
proper generalization of the traditional concept of regularity in simplicial cones. It identifies the
class of simplicial cones satisfying property 8.
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9. SIMPLICIAL CONES POS(D) WITH ALL DIHEDRAL ANGLES NON-ACUTE.
Let D be a square nonsingular matrix of order n.

THEOREM 17: If n =3, and all the dihedral angles associated with Pos(D) are non-acute, then
the circumcenter ray of Pos(D) is a CP- ray for it.

PROQF: From the definition of the dihedral angles associated with Pos(D) (Section 3), we
know that they are all non-acute iff

0™D)120 (24)

Let 7 =(1y,° * *,1,)T where 1;=I1D Il j=1ton, and
b=(Tyl1 @5)

The ray of b is the circumcenter ray for Pos(D). Since Dlp= (DTD)‘1T>0 (because 1 > 0,
(24), and since (DTD)1is a PD symmetric matrix, its main diagonal is >0), b is in the interior of
Pos(D).

Let M =(m;)=D'D. We will now show that
M)ty >0forallJ c (1,2,3 ). (26)

Since M1 1 =D"1 b >0, we know that (26) holds for J ={1,2, 3}. When J =(1, 2},

it can be verified that (My;)! 1; = (15, 1)T/(1; 75+ (D )TD 5) >0 because 1,

and 1, are >0 and 1, 7, + (D.l)T D , >0 by Cauchy-Schwartz inequality, so (26) holds. By
symmetry, (25) holds whenever \JI=2. When J = {j}, My lry=(1/1;) >0, forall j =1, 2. 3,
s0 (26) holds. Hence 7 is a PC-vector for M, and by Theorem 1, b = (DN lrisa CP-point for
Pos(D). So, the circumcenter ray is a CP-ray for Pos(D) in this case. O

Forany n, if all the dihedral angles associated with Pos(D) are non-obtuse, (24) holds. Under
(24), the circumcenter ray for Pos(D) is an interior ray for Pos(D). Unfortunately, under these
conditions, the circumcenter ray is not guaranteed to be a CP-ray if n 2 4. Consider the following
matrix D of order 4
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-1 1 20 -20

0 3 1 -4

D= 0 0 1 -1
0 0 0 1/3

It can be verified that this matrix satisfies (24), so all the dihedral angles associated with its

pos cone are non-acute. Yet, this cone Pos(D), has no CP-point. This follows from Theorem 5
since its face Pos(D 1, D ,, D ;) has no CP-point (in its linear hull this face Pos(D 1,D ,,D ) is
A A

the same as the cone Pos(D) where D is the matrix given in (2), and it was shown in Section 3.3
A
that Pos(D) is a CP-lacker).

Thus, when n 2 4, to guarantee that CP-point exists for a simplicial cone Pos (D), condition (24)
is not adequate by itself, we need to impose more conditions. This leads us to the next theorem,
which includes the converse of Theorem 8 in Section 7, and provides several other equivalent

results.

THEOREM 18: Let D be a real square nonsingular matrix of order n. The following statements
are equivalent

i) Every pair of generators of Pos(D) make a non-acute angle, or equivalently M = DD is
a Z-matrix.

i) Every point in the interior of the polar cone, Pos((DT)"!) is a CP-point for Pos(D).
iii) Every p€R™, p >0, is a PC-vector for M = DTD.

iv) Every face of Pos(D) satisfies the property that all the dihedral angles associated with it
are non-acute.

v) Every intetior point of the polar cone Pos((DT)!) is a CP-point for it.

PROOQF: (i) and (iii) are equivalent by Theorem 1. By Theorem 8, (i) implies (ii).
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We will now prove that (iii) implies (i). Assume that (iii) holds. By the definition of a PC-
vector, we have (M ”)'1 py> 0 for every p >0 and every nonempty J C I, Using the argument

made in the proof of Theorem 15, this implies that M is a Z-matrix, which is equivalent to the
statement that every pair of generators of Pos(D) make a non-acute angle. Hence (iii) implies (i).

If (iv) holds, (M};)-120 forall J C T, and hence (iii) holds. If (iii) holds, for every J C T, we
have, (M JJ)'l py> 0 for all p;> 0, this implies that (M JJ)'1 20 by the argument given above,
which in turn implies that the dihedral angles associated with the face of Pos(D) corresponding to J
are all non-acute. Hence (iv) holds if (iii) does. Thus, (iii) and (iv) are equivalent.

Assume that (i) holds. Then D”D is a Z-matrix. Let B = (DT)"1. Therefore DTD = (BB)],
hence (BTB)! is a Z-matrix. This implies that all the dihedral angles associated with Pos (B) =
polar cone of Pos(D), are non-obtuse, and hence by the results in Section 8 every interior point of
the polar cone is a CP-point for it, thus (; ) holds. Now, if (;) holds, by applying Theorem 16
to the polar cone we conclude that (DT)'1)T ((DT)1)1 = DD must be a Z-matrix, so (i) holds.

Thus (i) and (;}) are equivalent.

Hence conditions (i) to (;}) are all mutually equivalent. l___l

As stated in the summary in Section 3.8, the results in Section 7 and this section correspond to
the case where the Polar cone Pos((DT)'I) C Pos(D), and the sets of CP-points of Pos(D) and
Pos((DT)'I) are both the same as the interior of the Polar cone. The results in Section 8 correspond
to the case where Pos(D) is a subset of the polar cone, and the sets of CP-points of Pos(D) and its
polar cone are both the same as the interior of Pos(D).

10. OPEN QUESTIONS

Given a rational square nonsingular matrix D of order n and a rational point b in the interior of
Pos(D), b has to satisfy Property 2 of Section 3 to be a CP-point for Pos(D). Property 2 consists
of 20-2 sets of conditions. It is not known whether there is a polynomially bounded algorithm for
checking property 2.
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J. S. Pang posed the following question: What is the class of real square nonsingular matrices D
of order n, for which the set of CP-points of K = Pos(D) is the innterior of KNK*, where K* is
the polar cone of K?

A mathematical characterization for this class is easy to provide using Theorem 1. Denoting D'D
by M, this is exactly the class of all matrices D for which

p€R™, p>0and M p >0 implies (M;;)™ p;>0 for all nonempty J<I

From the results of Sections 7, 8, 9, we know that this class contains the matrices all of whose
generator angles are non-acute, and the matrices all of whose dihedral angles are non-obtuse. Itis
not known whether this class contains any matrices other than these two streams.

Another interesting problem is the following: if a simplicial cone is a CP-owner, is its polar cone
also a CP-owner? A further intriguing question is whether the sets of CP-points for a simplicial
cone and its polar are the same. The answers to these questions are not known yet.

Let D be a real square nonsingular matrix of order n, and let C be the set of CP-points of Pos (D).
We have shown that if C # &, it is an open polyhedral cone defined by a system consisting of a

large number of constraints (2" sets of constraints). In the earlier version of this paper, we
conjectured that whenever C # @, it is a simplicial cone This conjecture has been settled in the

affirmative by J. Lavrence and W. D. Morris, Jr. in their recent paper [7].
11. A GENERALIZATION

In this section, we will discuss a generalization of the properties of being a CP-point or a
PC-vector. Here, R™® denotes real square matrices of order n, which may or may not be

nonsingular. We now state two properties 10, and 11.

10. The pair (D,q), where DER™™ and g€ R", is said to have this property if for each nonempty
J cT the orthogonal projection of ¢ onto the subspace LH(D j) lies in the relative interior of

the cone Pos(D j).
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11. The pair (M, q), where M € R™" and g€¢R", is said to have this property if
for each nonempty J CI', the linear complementarity problem (-q 1, Myp)

has a solution (JJ , ;J ) with ;J > 0.

Note that the definition of property 10 is minimal in the sense that every subset JCI" must be
checked, as the following examples show. The listed D and g have the projection property for
every subset of {1, 2, 3 } except the ones listed:

3 4 10
D=2 3 4 g= |10 J= (123)
0 1 -1
0 13
D=1 5 4 g= |18 J=1{12)
0 1 3
1 -1 -10 1
D=[1 1 10 g= {100 J=(1)
0 0 1 1

Notice that in Property 10, D is not required to be nonsingular. Likewise in Property 11, M
may not be nonsingular. We define

P 10,={D€R™™ : there exists at least one g€ R™ such that (D, g) satisfies property 10}.

P 11 =(MER™™: there exists at least one g€ R™ such that (M, q) satisfies property 11}.
n

By our earlier results, if D€ R™ is nonsingular, (D, ¢ ) has property 10 iff (DTD, D”g) has
property 11.
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CONVEXITY RESULTS

PROPOSITION 1: For DERM™ the set of g€ R" such that (D, ¢ ) has property 10 is convex
and open.

PROOF: Let (D, q ) have property 10and @# U CT'. Let J C U be a maximal subset such
that D jhas independent columns. Then LH(D ;) = LH(D j) and the projection of q onto
LH(D ) is D jo! where, ol =D’ ; ¢, where D JT = (D J)TD J)'1 (D J)T is the pseudo-
inverse of D J The projection D § a is in the relative interior of Pos (D g)iff ol > 0.

For i € U\ J, there exist constants fij such that

j€J

from the definition of J. Choose €; > 0, i € U\J, such that

a} + Y &f.>0,

it

i€UN

for all j€J which is possible since af >0 . Let ol bea vector with components g; for
i€ U\J, and

a‘j] + X gf;
iclN
for j¢J Then aU>0and D, ol = Dy aU. Therefore the projection of ¢ onto LH(D.y) is

given by D.y &Y, alU> 0.

By continuity, there is a neighborhood BU of q such that ol = D.J’r c~1 >0and oV

constructed as above satsifies D.; od = D.y aV and aVU>0forall g€ BU. Then for any
p€Ny BY, the projection of p onto LH(D.y) is-given by D.yal for U > 0, for each
nonempty U C I". Therefore the set of g such that (D, q) has property 10 is open.

34



If (D, ¢!) and (D, ¢?) have property 10, then for fixed UC’, U@, the projections of q! and
¢ onto LH(D.y), are given by D.Uocl, ol >0and D.Uaz, >0 respectively. Since
projection is a linear operation, the projection of (1 - A) g* +A¢? onto LH(D.y) is
(1-A) D.yal+AD.ya2 =D ((1 - Nal+ha?), where (1-Nal+Aa>0for0<A <
1. Since U was arbitrary, (D, (1 - A\)q!+Ag?) has property 10 for 0 < A < 1, which proves the
convexity. D

Observe that for n 2 2, the set P N is not convex. Let:

1 1S {1 1)
M! = | M2 =

1 2 k-lS 2
M! and M2 are P-matrices, but (1/2) (M} + M2) is not.

Since P, is not convex, it turns out that for n 2 2 and fixed g€ R, the set of matrices
M€ P N P11, such that (M, g) has property 11 is not necessarily convex.

CONJECTURE: For fixed g€RP", the set of PD symmetric M€ R™" such that (M, q) has
property 11 is convex.

DEFINITION: A set A C R is starlike if there exists a point ¢ € A such that for any point p€A

the line segment c-p also lies in A. The set of points c€A with this property is called the kernel of
A.

PROPOSITION 3: The set P, is starlike with the identity matrix / in its kernel.

PROOF: Let M€P, and 0 S o< 1. A characterization of P, is that M€P , if and only if the real

eigenvalues of every principal submatrix of M are positive [3, 16]. IfA>0 isan eigenvalue of
a principal submatrix MJJ ,then (1-a)+aA >0 isan eigenvalue of [ (1 - o)/ + M ]”.

Therefore the real eigenvalues of every principal submatrix of (1-a)/+aM,for 0<a <1,
are positive, and (1- o)/ +a M€P, for0<a<1. D
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PROPOSITON 4: For fixed g¢R", ¢ >0, the set of matrices M€ P, such that (M, q) has
property 11 is starlike with / in its kernel.

PROOF: Let (M, q) have property 11, where MEP,, q€R", ¢ > 0. It suffices to prove that
((1-AN)M+A1I,q) alsohas property 11, for 0 <A < 1. The proof of this is by induction
on n. Since (M, q) and (I, q) have property 11, consider only 0 < A < 1. The result is trivial

for n=1. Assume it holds for P-matrices of order < n. Property 11 for (M, ¢) means that
M JJ’I qy >0 for every subset J,D#J C I". Since property 11 is hereditary with respect to

principal submatrices, the induction hypothesis yields that [ (1-A) M 1yt N JJ]'1 qy>0for
every subsetJ, @ = J C T, of cardinality IJI < n. Thus all that remains is to prove
[(A-NM+ANT1g>0.

The kth component of z =[ (1 - A) M +AI |1 ¢ is, by Cramer's rule,

det ([(L-MM+AILqq .1y 14 :LA-NM+AI)(gyp. n))

Zk=
det[(1-A)M+ AT (27)

Note that the denominator is positive since (1 - A) M + Al is also a P-matrix. The determinant is

a multilinear form, and the numerator expands into a sum of determinants of the form det A,
where A ;=(1 - )\)M_iorA_i=)\1_ifori¢k, andA ,=q. Let J={ ji,....,k ... ,j. ) be

the indices such that A ;= AI; fori ¢ J. Then
det A=A"-U - W1 rlg)), det My >0

since 0 S A\ < 1, (M, ¢) has property 11, and M is a P-matrix. (The subscript k here refers to the
element k in the index set J={ j; ,...,k, ...,j, }.) Therefore the numerator in (27) is

O

positive, and so [ (1 - A) M+NIT! ¢ > 0, which completes the induction step.
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Note that Zn is convex but Mn is not. Let:
3 -16 3 2
M= Mé=
-2 11 -16 11

M3 and M# are M-matrices, but (1/2) (M3 + M%) is not.

The following theorem from M. Fiedler and V. Ptak [3] will be useful.

THEOREM 19: Let A, B € Z,, all the real eigenvalues of A be positive, and A <B.

Then
1) Al2B1>0;
2) all the real eigenvalues of B are positive;
3) detB=>detA>0.

PROPOSITION 5: The set M,, is starlike with the identity matrix / in its kernel.

PROOF: Let M€ M, =Z N P,. Itis straightforward to verify that (1 - NI+ M for0<A <1
isin both Z, and P, O

PROPOSITION 6: Forany M€M, and q€R", g >0, the pair (M, q) has property 11.
PROOF: Let MéM,, q€R,, ¢>0,and D =] C I'. Then My is also an M-matrix, hence a
Z-matrix with positive real eigenvalues. By Theorem 19 above, M;;! 2 (diag (Mj;) y120is

nonnegative with positive diagonal elements, and therefore M, J'l qy>0. This proves property 11
for the pair (M, q).
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Generalization of the class M ne

M-matrices have many nice properties with respect to the linear complementarity problem.

However, they have more structure than is really needed for linear complementarity proofs. We
argue that P11, NP, is the natural generalization of M, and that P11, N P, contains the essence

of the class M, as far as linear complementarity is concerned.

Both M, and P11, N P, are nonconvex, both are starlike from /. When MeM,,, for every
q >0, (M, q)has property 11; whereas for M€P11, N P,, there exists a g€R", q >0, such that

(M, q) has property 11. When M€M,, forall @#J CT' and every g€R", ¢ >0, (MJJ)‘1 qy >
0; whereas, for MEP11, N P, there exists a g€R™, ¢ >0 such that forall @=JC T, (MJJ)‘1
qy> 0. Similarly, when M€M,, the statement "for any g€R", the LCP (g, M) can be solved

with at most n complementary pivot steps via the parametric LCP (g+ o p, M), is true for every
p>0" whereas, for M€ P11, N P, there exists a p > 0 such that the above statement within

quotes is true.
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