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CHAPTER 1

SEISMIC DESIGN AND MODULAR STRUCTURES

1.1 Introduction

The ancient Japanese wooden pagodas have survived repeated earthquakes for cen-
turies without any serious structural damage. Tanabashi (1960) attributes this superb
performance to the flexibility and the large inherent damping of the wooden pagodas.
The fundamental period of these structures is longer than the dominant period of
Japanese earthquakes and thus the transfer of energy is limited to tolerable amounts.
Moreover, the laminated timber construction of the beams and the overhangs provides
a medium of effective frictional damping which alleviates the damaging deformations
that would otherwise take place in the event of an earthquake. These ancient temples,
with regard to their flexibility and large damping, are functional and tested examples
of the innovative ideas underlying the concepts of base isolation and supplemental
damping in modern multistory building structures.

The elastic response of conventional buildings to earthquake motion is primarily
influenced by the mass, stiffness, and damping properties of the structural framework.
The minimum amount and distribution of mass along the height of the building is
predetermined in the process of design for gravity. The additional mass due to the
lateral force design, especially in steel structures, is insignificant. A minimum lateral
stiffness is required to limit interstory drift for protection of nonstructural elements.
The damping characteristic is difficult to evaluate. Its amount, in the elastic range,
is small and varies little from one type of structure to another.

The fundamental periods of most low to medium rise conventional buildings fall in
the range of the dominant periods of earthquakes recorded on rock or competent soil.
To improve the elastic response for such structures, the mass, stiffness, and damping
properties have to be changed. The mass and stiffness, as just mentioned, have
fixed minimum values due to structural design for gravity and interstory drift limits.

Adding nonstructural mass for the sake of response improvement is economically



undesirable; and an increase in lateral stiffness will add cost, if not considerable
mass, and will limit open space that is of high priority in most modern buildings.
With these restrictions, and given that the inherent damping in the elastic range is
small, the low to medium rise conventional building has a predetermined fate as far
as its response to intense earthquakes is concerned; that is, the response will reach
and go beyond the elastic limit.

As the conventional structure deforms plastically in an intense earthquake, there
will be a considerable dissipation of the imparted energy. This is the contention of the
traditional philosophy of design for large earthquakes. Based on this philosophy, the
connections, beams, braces, columns, and shear walls are so designed as to behave in
a ductile manner under repeated hysteretic deformations while preventing collapse of
the structure. Structural damage is therefore permitted in this method of earthquake
resistant design (Newmark and Rosenblueth, 1971). The philosophy is not to avoid
but to resist the violent shaking of the ground in an intense earthquake.

In the concept of base isolation the intention is to avoid the high energy content
of the earthquake by lengthening the period of the structure (Kelly, 1986). This is
achieved by erecting the building on soft springs, commonly called isolators, which
are capable of sustaining large lateral deformations. Most of the deformation takes
place locally at the base, and the superstructure incurs minimal lateral force levels
and stays elastic. The level of the superstructure’s response improvement therefore
depends on the lateral flexibility of the isolators. Of course, the isolators should have
the capability to hold the weight of the building, restore the building to its original
position after earthquake is diminished, and be very stiff vertically so that large
vertical and rocking motions of the building are prevented. In order to limit intolerable
displacements of the isolators, some damping mechanism is also incorporated at the
isolator level (Kelly and Beucke, 1983).

The method of providing supplemental damping within the framework of a struc-
ture is fundamentally the same as invoking the inherent hysteretic damping of the
conventional building. In this method, however, the novelty is that the source and the
location of energy dissipation, for the most part, is localized within energy absorbing
devices which link various parts of the framing system (Bergman and Hanson, 1988;
Kelly and Skinner, 1979).

In this research the ideas underlying the base isolation and supplemental damping
are incorporated in a more general structural system, here referred to as a modular
structure. This system is particularly well adopted to a mathematical model in which

damping and stiffness properties can vary with substantial freedom to facilitate opti-



mization of its elastic response to earthquakes.

1.2 Description of a Modular Structure

The schematic of a three-story modular structure is shown in Fig. 1.1. In this two-
dimensional frame, one floor beam, two columns, one chevron brace, and one di-
aphragm beam constitute the design of all three similar modules. The roof is also
considered as an independent module. Every module is separated from a neighboring
one by means of two control elements. A control element represents a combination of
a lateral spring and a damper. The diaphragm beam is primarily meant to transfer
the lateral load to the chevron brace which, in this case, provides the lateral load
resisting mechanism.

In a three dimensional multi bay extension of this structural framework, the
chevron braces will be required only at a limited number of bays in each direction.
The diaphragm beams, however, must be present at every bay in order to rigidly
connect the top ends of neighboring columns in a grillage pattern. Further bracing
in the plane of this grillage may also be required to provide an adequate diaphragm
action. The grillage system is therefore a source of additional weight which must be
carried by the columns and the braces to the foundation. This additional weight,
however, is small compared to the weight of the floor system which carries all of the

floor dead and live loads.
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Fig. 1.1 Schematic of a three-story modular structure




In the illustrative model presented in Fig. 1.1, the control elements are located
at all four possible levels. Other modular models can also be produced by choosing
fewer levels of control elements. For instance, Fig. 1.2 shows a model in which the
control elements are placed at the base and between the second and third stories.
In this case, the first two stories are taken as the first module and the third floor,

including the roof, as the second.
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Fig. 1.2 A 'three-story modular structure with two levels of control elements

~ A control element is similar to currently used base isolators. Lin, Tadjbakhsh,
Papageorgiou, and Ahmadi (1990) have described the mechanisms of various isola-
tion systems and conducted a comparative study of their performance in buildings
subjected to strong earthquakes. Ideally, a control element should be capable of pro-
viding low lateral stiffness, high vertical stiffness, and some degree of damping. One
type of control element, commonly used in base isolation applications, is composed of
laminated rubber and reinforcing steel layers. This system will be described in Sec-
tion 1.4 in order to provide a basis for choosing practical constraints on the optimal
design of modular structures.
In a modular structure subjected to earthquake motion, intermodule displacements
are expected to reach several inches. This requires special design considerations for
the elevators, stairs, plumbing, ductwork, and wiring. With the exception of elevators,

the rest require only slight modifications. The stairs are integral parts of the modules



and should simply have discontinuities at the control element levels. Plumbing in the
control element region can be of flexible material, such as copper, coiled in several
pitches, and securely anchored to the neighboring modules. The segments of duct
work which pass through the control element region can be made of durable fabrics
with sufficient sag for relative movements of the sheet metal parts. All wiring should
be simply sagged at the control element levels. Special design considerations for the
elevators require that the elevator shaft be large enough to allow for the predicted
motion of the modules. In this case the gap between the entrance to the elevator cab
and the cab floor can be closed by a variety of seismic joints whose details are beyond
the present discussion.

To protect nonstructural elements, the individual modules can be designed for
any level of lateral stiffness irrespective of the stiffness of the control elements. The
bracing system shown in Fig. 1.1 serves as an illustration. Any lateral load resisting
mechanism, including concrete or steel moment frames or shear walls, can be used.
It is reasonable to expect that the lateral stiffness of the modules will be much larger
than the lateral stiffness of the control elements, so that in a preliminary design
cycle the characteristics of the system stiffness matrix can be based solely upon the
stiffness of the control elements. Ignoring the small inherent damping in the modules,
the system damping matrix can be drawn completely from the measurable damping
properties of the control elements. These features provide a simple mathematical
model for the dynamic behavior of the modular structure. For instance, the three-
story modular structure of Fig. 1.1 behaves like a simply coupled four degree of
freedom system with a diagonal mass matrix and symmetric tridiagonal damping
and stiffness matrices.

From the foregoing description it is evident that the construction of a modular
structure may be more costly than that of a conventional one. This is in part due to
the need for additional structural systems, such as the diaphragms and the control
elements; and in part due to the special design requirements for the various service
components of the building, such as the elevators and the stairs. The advantage of
tolerating the additional cost is the enhanced control over the dynamical performance
of the structure subjected to a prescribed ground motion. When the control elements
are allowed at every possible level within the structure, a maximum level of control
is achieved since the number of control parameters of the problem is at a maximum.
On the other hand, fewer levels of control elements limit the control over performance

but also reduce the total construction cost of the building.



A base isolated structure is a special form of a modular structure in which the con-
trol elements are placed only at the base. It is also of interest to note that placement
of the control elements at the base and at one other location between adjacent stories
will create a classic case of vibration isolation. Vibration isolation utilizing a tuned
mass damper has been traditionally applied to reduction of wind induced vibrations
in tall buildings (McNamara, 1977). The effect of tuned mass dampers on seismic
response of structures has been studied by Slasek and Klingner (1983) who concluded
that no reduction in lateral forces can be achieved. This conclusion is entirely due to
the practical limit that they placed on the mass of the tuned mass damper. Kavnia,
Veneziano, and Biggs (1981) conducted a more extensive investigation of the same
problem and arrived at a similar conclusion for tuned mass dampers of small mass.

In a two degree of freedom modular model, the top module and the connecting
control elements can be regarded as a tuned mass damper for the bottom module.
In this sense the restriction of a practical level of mass for the tuned mass damper
does not apply and substantial response improvements can be achieved. Curtis and
Boykin (1961) and Crandall and Mark (1963) performed extensive parametric studies
of a two degree of freedom system subjected to white noise base excitation. They
investigated the vibration absorber action of the second mass and concluded that
indeed the possibility of vibration isolation exists for sufficiently large magnitude of

the second mass. This is practically possible in a modular structure.
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Fig. 1.3 Separation of vertical and lateral supports at the roof level



Of particular interest is a two degree of freedom modular model with the control
elements placed at the base and just under the roof. In this case, because of the
relatively small weight of the roof, the supporting control elements can be divided
into two distinctly different mechanisms. A possible detail for a two dimensional
frame is shown in Fig. 1.3 in which the entire vertical roof load is transferred to the
cantilever columns through rollers; and the lateral load is transferred to a chevron
brace by means of a lateral spring. The rollers, for instance, can represent polished and
lubricated overlapping surfaces of steel plates; and the lateral spring can be a vertically
positioned helical spring or a stub column made of rubber with no reinforcing steel
plates. In this design, since the lateral load taken by the columns is minimal, a
diaphragm beam is no longer necessary. Moreover, the number of lateral springs
required will be equal to the number of chevron braces used. With some additional

bracing details, this idea can be extended to three dimensional multi bay frames.

1.3 A Six-Story Building Example

A potential candidate for a modular scheme is a low to medium rise building whose
height and plan dimensions have the same order of magnitude. A six-story steel
building shown in Fig. 1.4 satisfies this requirement. Various two degree of freedom
(2dof) models of this building will be used in Chapter 3 in the investigation of the
optimal design. Each model requires two levels of control elements. The first level
is always placed at the base of the building and the second level at one of the six
possible locations as indicated in Fig. 1.4a. With this arrangement, there are six 2dof
models with different modular mass distributions.

With reference to Fig. 1.4b, the selected floor plan utilizes a total of 24 columns.
It is assumed that the number of control elements at each level is also 24, each placed
directly under one column. It is further assumed that the control elements at one
level have the same lateral properties. Under these circumstances, the mass, stiffness,
and damping of the 2dof models are equivalently taken as one twenty fourth of the
actual values.

In order to avoid unrealistic mass distributions in the models, it is necessary to
make a rough estimate of the weight of various building components which contribute
to dead load. These, under separate headings for the floors and the roof, are listed
in Table 1.1 in terms of the pound per square foot (psf) of the plan area. The
dead loads for the floors and the roof are listed in the last row as the sum of the

individual components. Referring to Fig. 1.4b, one twenty fourth of the plan area is



approximately 542 f¢. With this value and the aid of Table 1.1, the floor and roof

dead loads, for the equivalent models, can be computed as

floor dead load
roof dead load

~S

~

50 kips
50 kips

Table 1.2 summarizes the weight distribution for the six 2dof equivalent modular

models. In the last row, the 7th model corresponds to the base isolated version. These

models will be used in the optimal design studies which will be pursued in Chapter 3.
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Fig. 1.4 A siz-story building ezample: a. Elevation; b. Plan



Table 1.1
Dead loads for the ezample building

components contributing floors | roof
to dead load (psf) | (psf)
steel plus fire proofing 25 15
steel decking 5 5
light weight concrete slab 30 30
plumbing, ducts, etc. 10 10
partitions 20 0
roofing material 0 10
parapet 0 5
fixed mechanical equipment 0 15
dead load (sum of above) 90 90
Table 1.2

Weight distribution for the 2dof equivalent models

location of the
model second level of Wlm W2(3) W, /W,

number | control elements®) | (kips) | (kips) | ratio

1 1 50 | 300 | 6/1

2 2 100 | 250 | 5/2
3 3 150 | 200 | 4/3
4 4 200 | 150 | 3/4
5 5 250 | 100 | 2/5
6 6 300 | 50 1/6
74) - 350 0 0
1) See Fig. 1.4a.

W, = Weight below the second level of control elements.

Wy = Weight above the second level of control elements.

A~ A~ o~ —~
= W
~— — ~—

This model corresponds to the base isolated version.
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1.4 Laminated Rubber Bearings

The discussion in this section is intended to provide a broad picture of the behavior
of laminated rubber bearings under the combined action of lateral and vertical loads.
It is by no means an exhaustive treatment of the subject. As such, it will serve
to identify, in approximate ways, the influence of various geometrical parameters
affecting the lateral flexibility, the vertical rigidity, and the stability of these commonly
used devices. This identification will assist in imposing practical design limits in the
formulation of the optimal design which appears in the following chapter.

Natural and synthetic rubbers are viscoelastic materials with low shear moduli
(in the neighborhood of 150 psi). At the same time these materials are nearly in-
compressible. In a laminated rubber bearing both these properties are utilized to
produce a stub column which is laterally flexible and vertically stiff. As shown in
Fig. 1.5, a laminated rubber bearing consists of a column of thin rubber sheets and
steel plates strongly bonded together. The role of rubber is to provide low lateral
stiffness through shearing deformation, while the steel layers constrain the bulging
of rubber under compressive loads and thus help to increase the vertical and tilting

stiffness of the bearing.
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B S 2T s R A NS s USSP o Vo
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Fig. 1.5 A circular laminated rubber bearing
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The structural behavior of a rubber layer bonded between parallel stiff plates has
been the subject of many analytical, numerical, and experimental investigations (Gent
and Meinecke, 1970; Roeder, Stanton, and Taylor, 1987; Herrmann, Ramaswamy, and
Hamidi, 1989; Chalhoub and Kelly, 1990). In particular, Chalhoub and Kelly have
derived exact solutions for the tilting and compressive stiffness of a circular rubber
layer constrained between rigid plates in which they have regarded the rubber as a
compressible material. They have verified their findings by experiment and concluded
that the incompressibility assumption somewhat overestimates the compressive and
tilting stiffness of the rubber layer; especially in cases where the ratio of the diam-
eter of rubber layer to its thickness is large (of the order of 50). For the purpose
of this discussion, in which the interest is in an overall description of the effect of
geometry on the stiffness and stability of rubber bearings, the simpler results due to
incompressibility assumption will be given. For a circular rubber layer of radius R,
thickness h,, and shear modulus G, the vertical, tilting, and lateral stiffnesses are

respectively given by

_ 3GR
kK, = =5 (1)
GRe
g, = W8h3 (1.2)
2
K = ”CZR (1.3)
R
| 1
LA - /
L
/ 4
>
p

Fig. 1.6 Lateral deformation of a laminated rubber bearing
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In building applications, the lateral stiffness of a laminated rubber bearing is
reduced due to the presence of axial load. Consider the usual case of a bearing
restrained against rotation at both ends and subjected to a combined action of a
shear force S and a compressive force P. As shown in Fig. 1.6, the resulting lateral
deformation is a combination of tilting and shearing of the individual rubber layers.
Let the bearing be composed of a stack of n individual rubber units of the same
geometry. As shown in Fig. 1.5, each unit consists of a rubber layer of thickness h,
and a steel layer of thickness h,. The total thickness of the unit, A, is therefore h, +h s
and the total length of the bearing, L, is nh 4+ h,. Under these circumstances, the
lateral displacement of one end of the bearing with respect to the other end, §, can
be written in the following form (Haringx, 1948; Gent, 1964)

SL nP \ taniqlL
= — _— —2
d P [(l * LK;) 39l 1] (1.4)
in which the quantity ¢ is computed from
o _nP ( n]j)
=15 \' 1R, (1.5)

The lateral stiffness of a laminated rubber bearing K| can be directly evaluated from

the load-deflection relationship given by (1.4):

S K A
K, = === — S enToT (1.6)
(1 + fl'(?) %GL -1

In this expression, as either P — 0 or K; — oo, K; — 57:1', which is the result that
would be obtained if the displacement consisted entirely of a simple shear of all n
units in the bearing. This can be verified in conjunction with (1.5) by noting that,
in both instances as P — 0 or as K; — 00, ¢ — 0 and thus in the limit

29L
which together with (1.6) implies that K; = 5;}

Under the combined action of S and P and for the particular boundary condi-
tions considered (i.e. no rotation of the ends), (1.4) is a statement of the bearing’s
equilibrium from which the critical buckling load, P., can be derived. Note that as
%qL — 3, 6 — 00, so that P, corresponds to ¢ = £. With P, and 7 in place of P and
g, respectively, (1.5) becomes
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from which

LI-{I 4W2Kt %
T e—— + 2 — 1'
Fe 2n [(1 LK, > 1] (1.1

For large shearing stiffness K; and large column length L such that

47F2I_{t
LK,

<1

the expression in the brackets in (1.7) can be approximated as
27‘(2.[_{t
LK,
which, using (1.7) and taking L = nh (for h, < nh), leads to the expression for the
Euler buckling load:
K, _ rzl-{té K.k 7EI

Fe= nL  al b L2 I (18)

in which E* is the modulus of elasticity and I is the moment of inertia of the column.

Regarding the buckling load of rubber bearings, the conditions are quite different
in that the shearing stiffness K; and the column length L are both small while the
tilting stiffness K, due to the restraining effect of the steel layers, is large compared

to K;. Under these conditions the expression inside the brackets in (1.7) can be

o (K
L \K,

P.= ; (I'(J{,)% (1.9)

Substituting K; and K; from (1.2) and (1.3) into (1.9), the buckling load takes the
following form

approximated as

which, using (1.7), results in

P V21:GR!
7 4nh?
The vertical stiffness of a rubber bearing K, is obtained by connecting n springs

of constant K, in series. This leads to K, = K;:‘ which using (1.1) takes the form

(1.10)

3rGR!
k.= 2nh3

(1.11)

1 E = 3G for incompressible materials
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In practice the vertical stiffness K, is at least 500 times greater than the lateral
stiffness K; as given by (1.6). This requirement together with an examination of
(1.2) and (1.3) indicate that the ratio % assumes a large value? of the order of 5000.
Furthermore, in building applications the laminated rubber bearing is designed such
that there is a safety factor of at least 2 against buckling (Derham and Thomas,
1983). Recalling that through the assumption of incompressibility of the rubber
material the buckling load as given by (1.10) is somewhat overestimated, an even
higher safety factor can be justified. Under these circumstances, the lateral stiffness
K, as given by (1.6) will not be significantly lower than its limiting value as K, — .
It then follows that, as a first approximation K; = L:i which upon using (1.3) becomes

rGR?

nh,

For the purpose of design, in addition to imposing lower limits on the buckling

K, =

(1.12)

load and the vertical stiffness of a rubber bearing, the strains must also be limited
to allowable values. Consistent with the formulation of the presented theory, it is
assumed than the steel layers are sufficiently thick and thus incur low strains. More-
over, the vertical stiffness of the bearing is assumed large enough so as to keep the
axial strain in the rubber layers within acceptable limits. The shearing strain in the
rubber layer, due to the lateral flexibility of the bearing, can however be quite large
and must be limited to allowable values. As reported by Roeder and Stanton (1983),
the shearing strain, which is measured in terms of the lateral displacement ¢ divided
by the total thickness of the rubber material nh,, should be limited to 50%. Higher
percentages can be justified in certain situations (Kelly and Skinner, 1979).

In the application of the modular scheme the objective is to reduce the maxi-
mum level of acceleration which is imparted to the structure as a result of earthquake
ground motion. This is accomplished by insertion of flexible control elements which
in turn reduce the fundamental frequency of the structure. As the fundamental fre-
quency decreases, so does the level of acceleration. At the same time, however, the
displacement demand on the control elements will increase. From the preceding dis-
cussion, it can be noted that as the displacement demand on the control elements
increases, it will be increasingly more costly to satisfy the requirements for vertical
stiffness, stability, and shearing strain. Consequently, in an optimal design formula-
tion, imposing an upper bound on the displacement of the control elements can be
viewed as a resource constraint. The remainder of this section serves to illustrate this

point.

2Note that typically the ratio ,% is of the order of 50.
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Consider a base isolated structure idealized as a single degree of freedom system.

The fundamental frequency, @, of this structure is given by

- K
&= \/;4—— (1.13)

in which M is a fraction of the total mass corresponding to one control element. For
the expected range of frequencies of this structure, a design displacement response
spectrum, d, which signifies the maximum displacement of the control elements, can

be approximated as
(1.14)

j=W
I
gl

in which « is a positive constant.

From (1.13) and (1.14) it is clear that as K| decreases so does & and thus the
displacement will increase. Let the total shearing strain be limited to a prescribed
value (. Since the shearing strain is defined as the ratio n—‘fl—r, the most economical

choice for nh, will be J

B

Recall that nh, is the total rubber thickness used in the construction of the control

nh, =

(1.15)

element. Using (1.13) to (1.15), the lateral stiffness can be written as

Ma? :
= .
Equating this expression for K; to that given by (1.12), leads to
Ma?
2 = = t .
R*nh, Y constant (1.17)

For convenience, using (1.12), one can rewrite (1.10) and (1.11) respectively in the

following forms

V271 R?

P, = 7 K, (1.18)
3R?
K, = 2h? K; (1.19)

With the aid of the sequence of equations (1.14) to (1.19), it is now possible, more
directly, to examine the effect of a decrease in the fundamental frequency @ on the
design of a control element. Denoting by | and T, respectively, a decrease and an

increase in the adjacent quantity, it can be noted that:

1. From (1.14),as @ |, d T.
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2. From (1.15), as d T, (nh,) T.

3. From (1.16), as (nh,) T, Ki |.

4. From (1.17), as (nh,) T, R |.

5. From (1.18) and for fixed h,,as R | and K, |, P, |.
6. From (1.19) and for fixed h,, as R | and K |, K, |.

In order to keep P, and K, above prescribed minimum values, one possible choice
is to use smaller h, which will also result in an increase in the number of rubber
layers n and thus the cost of construction. Another choice is to restart the design
cycle with larger R and nh, which again increases cost. Therefore the smaller K,
or the larger d is, the more costly will be the construction of the control element.
The foregoing argument is generally applicable to other possible types of control
elements described by Lin, Tadjbakhsh, Papageorgiou, Ahmadi (1990), Mokha, and
Constantinou (1990). Without the inclusion of any particular control element design
in the optimization of modular structures, it is therefore concluded that a cap on the
extent of the intermodule lateral displacements can be viewed as one constraint on

the available resources.

1.5 The Optimization Problem

In a modular structure a wide range of stiffness and damping coefficients can be
assigned to the control elements without significantly affecting the basic design for
gravity and interstory drift limits. This property facilitates a manageable optimiza-
tion formulation for the elastic response to earthquakes. Furthermore, by virtue of its
form, the modular structure can be physically constructed as to reflect the solution
to its mathematical optimization problem.

With a given earthquake excitation and for known constraints, the problem is to
search for the values of control element stiffness and damping coefficients which cor-
respond to the minimum of a prescribed objective function. The objective function
represents a measure of one or several of the structural response parameters related
to various parts of the structure. The constraint functions establish limits on those
response parameters that do not explicitly appear in the objective function. Depend-
ing on the nature of the problem and the stage of analysis, the objective and any of

the constraint functions can be interchanged.
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The most meaningful objective function is the one that signifies the portion of
the total cost of the building ascribed to earthquake protection. Arriving at a math-
ematical expression for this cost function, even for a fixed structural layout, is not a
simple task. One is, therefore, forced to simplify the matter by searching for an ob-
jective function which represents the best measure of an explicit cost function. At an
early stage of analysis the total base shear represents an acceptable measure of cost.
Subsequently, the ratio of the total overturning moment to the total base shear, or
the sum of shear forces and overturning moments in each module, can be considered
as more refined measures of cost. Some level of engineering judgment is necessary
for further refinement of the objective function. Several seemingly appropriate objec-
tive functions that are indistinguishable by engineering judgment alone can always
be tested for preference.

With respect to the modular structures, one objective is to reduce the maximum
accelerations imparted to each module. An equally important objective is to reduce
the cost of the control elements by reducing the demand on their lateral displacement.
As pointed out for the case of rubber bearings in Section 1.4, the smaller the lateral
displacement demand the smaller the total height of the rubber material and hence
the fewer the number of steel reinforcements, all of which translate into savings in
construction cost. It was also pointed out that the control elements placed at higher
locations will incur smaller gravity loads and thus contribute to savings.

As described in Section 1.3, the two degree of freedom models of a six-story build-
ing will be used in Chapter 3 for the optimal design illustrations. For performance
evaluation of the various possible modular mass ratios of this structure, a consistent
objective function is the base shear, and a consistent set of constraints, without in-
volving the details of the particular control elements used, is an upper limit on the
lateral displacement of the control elements at all levels. A precise mathematical

formulation of the optimization problem will be given in Section 3.4.

1.6 Analytical Methods

Various methods of evaluation of structural elastic response to earthquake excitation
are reviewed in this section. In this regard, only the maximum values of response
quantities are of interest. These methods fall in the broad categories of the response
spectrum approach, the time history analysis, and the random vibration technique.
In this same sequence, each method is discussed in an attempt to point out their

advantages and shortcomings relevant to the process of optimal design.
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The simplest method is the standard modal superposition. This requires impos-
ing some proportionality restriction on the damping matrix so that the eigenvectors
of the undamped eigenvalue problem produce a set of uncoupled modal equations.
Then, the available earthquake response spectra are used to find the maximum value
of modal response parameters. The maximum modal responses thus obtained are
finally combined by the complete quadratic combination or the square root of sum of
the squares methods to arrive at an estimate of the total response (Wilson, Der Ki-
ureghian, and Bayo, 1981; Berg, 1989). The most serious problem with this approach
is the proportional damping restriction. The damping matrix, due to the pattern in
which the control elements are installed, is tridiagonal. This also results in a tridiago-
nal stiffness matrix. For the damping matrix to be proportional, and at the same time
installable; that is, to conform to the installation pattern of the control elements, it
must be proportional to the stiffness matrix. This type of proportionality confines the
variables of the optimization problem to the stiffness coefficients. Furthermore, this
form of damping produces increasingly more damping in the higher modes. This is
not economically desirable since only the lowest modes have dominant contributions
to the total response.

In structures with supplemental damping devices of known characteristics, one
successful method of analysis is to start with the known damping matrix, use the
undamped modes to dispose of mass- and stiffness-coupling, and then to integrate
numerically only the first few significant damping-coupled modal equations (Clough
and Mojtahedi, 1976). This method produces accurate results while avoiding consid-
erable computational effort for large systems. For the modular structure, the number
of equations will not exceed the number of modules, therefore, the exact numerical
integration of equilibrium equations does not pose a serious drawback. The formula-
tion of optimization problems in which time dependent quantities, in particular the
maximum values of these quantities in a given time interval, are involved, can also
be managed by well established methods (Haftka and Kamat, 1985; Haug and Arora,
1979). The difficulty is however with the character of earthquake excitation and
the resulting structural response. To illustrate, consider a simple damped oscillator
subjected to a real earthquake acceleration record at the base. Let the mass and
the damping coefficient have fixed values. Consider finding the value of the spring
constant for which the acceleration of the mass is minimized while its maximum
displacement relative to base is restricted to a certain limit. This is a simple ideal-
ization of an optimal design formulation for a low rise base isolated structure. The

solution can be found by constructing the acceleration and displacement response
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spectra associated with the given base acceleration record. As shown in Fig. 1.7,
although both spectra will have jagged patterns, the acceleration spectrum tends to
decrease and the displacement spectrum tends to increase with decreasing values of
the spring constant. Having a barrier level for the displacement, the optimum design
can be identified as that value of the spring constant, k*, for which the displacement

response spectrum crosses the barrier.

DISPLACEMENT ACCELERATION
SPECTRUM DISPLACEMENT SPECTRUM
BARRIER\'

Jr—

RESPONSE SPECTRA

STIFFNESS

Fig. 1.7 Jaggedness of earthquake response spectra

In a mathematical search technique, at every advancement to a new value for
the spring constant, a certain reduction in acceleration is sought without violating
the displacement barrier. With reference to Fig. 1.7, starting at the initial point
ko, the search will quickly halt at l::o — a local minimum within the boundary of the
feasible domain. Restarting the process at another point, such as k;, will again quickly
produce another local minimum at &, close to the initial point. Because of the jagged
nature of the response spectra, there are numerous local minima which could be far
away from the actual optimum design k*. Consequently the time domain approach
with actual earthquake records is not an effective way of tackling the optimal design
problems.

It is possible to generate artificial earthquake acceleration records which are com-
patible with a given smooth design response spectrum (Gasparini and Vanmarcke,
1976; Scanlan and Sachs, 1974). This requires generating first an excitation power
spectral density (psd) function that produces the given smooth response spectrum,

and next finding an artificial acceleration time history compatible with the computed
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psd function. The end results are a time series and a frequency decomposition which
both produce the parent smooth design response spectrum. The time series can
be used in the time domain formulation of the optimization problem, and the psd
function can be used in the corresponding frequency domain formulation. In both
instances the damping coefficients can be considered as variables of the optimization
problem without any proportionality restrictions.

For the present research, the frequency domain formulation is adopted since it
requires less computation time. The framework of this formulation, using the proba-
bilistic methods of random vibration, is presented in Chapter 2. Within this frame-
work, a method of relating smooth design response spectra to the psd of excitation
is devised. The spectrum-compatible excitation psd thus obtained will be used in

Chapter 3 in the investigation of the optimal design of modular structures.



CHAPTER 2

STRUCTURAL RESPONSE TO EARTHQUAKES

2.1 Introduction

The behavior of a building subjected to an earthquake is assessed based on the extreme
value of the response quantities of interest. When the building can be modeled as a
single degree of freedom system, a design response spectrum furnishes the extreme
value of response with a certain probability of exceedance. For a multiple degree
of freedom system, the response spectrum approach can be extended to assess the
-extreme value of response only under the restriction of proportionality of damping
(Wilson, Der Kiureghian, and Bayos, 1981; Der Kiureghian, 1980a). In conventional
structures with low damping, the assumption of damping proportionality provides
computational convenience and produces acceptable results. In structures in which
damping devices are intentionally added to improve their behavior in an optimal sense,
the proportionality assumption may no longer apply. In such cases the probabilistic
methods of random vibration provide a rational basis for evaluation of response to
earthquakes.

In the application of random vibration methodology the earthquake excitation is
characterized by its power spectral density (psd) function. Under certain conditions
the psd of any quantity of response can be written in terms of the psd of excitation.
The knowledge of the psd of a response quantity leads to a set of statistical averages
from which the extreme value of response can be estimated. This holds true for a
system with any number of degrees of freedom. For a single degree of freedom system,
the extreme values are available from a design response spectrum. This suggests that
the psd of excitation and a design response spectrum derived from the same excitation
are related.

The most widely used psd for strong motion earthquakes is that due to Kanai
(1957) and Tajimi (1960). It is a three-parameter psd which represents a white noise

excitation of constant psd, Sy, filtered through a single degree of freedom spring-

21
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mass-damper model characterized by its frequency, w,, and damping ratio, {,. The
parameters of this model (So, w,, £,) were extensively studied by Lai (1982) who
based his investigation on 140 actual strong motion acceleration records. His statis-
tical study, however, does not subcategorize these records with regard to specific site
conditions, earthquake magnitude, maximum ground acceleration, and other perti-
nent factors which are of interest for design purposes. Lin, Tadjbakhsh, Papageorgiou,
and Ahmadi (1990), in their evaluation of the performance of earthquake isolation
systems, pfopbsed a seven-parameter filtered white noise whose parameters are de-
rived from seismological earthquake source spectra. They used two different spectral
source models independently, but the scope of their study does not extend to resolving
the discrepancies between the two models.

Design response spectra, on the other hand, are more widely available and used
by the engineering profession. In particular, the design response spectra provided by
Mohraz (1976), Seed, Ugas, and Lysmer (1976) are site-specific and form the basis
of spectra recommended for design by the Building Seismic Safety Council (BSSC,
1988). Because the application of random vibration techniques requires a knowledge
of the psd of excitation, it is desirable to establish methods of deriving psd functions
from design response spectra using the available probabilistic framework. Pfaffinger
(1983) has established one such method based on an extreme value probability distri-
bution derived from a Poisson model of barrier crossings. It has been shown by Der
Kiureghian (1980b) that this model tends to overestimate the mean extreme value
of the random process. In this chapter the more accurate extreme value probability
distribution of Vanmarcke (1975) is employed and the method presented is compu-
tationally simpler than that suggested by Pfaffinger. It leads to a functional form

directly relating the mean response spectrum to the psd of excitation.

2.2 Excitation and Response Relations

The earthquake that may strike the base of a building during its expected lifetime
is considered to be a sample of a stationary normal process with zero mean. Since
the building is modeled as a linear time invariant system, the response will also
be stationary normal with zero mean (Nigam, 1983). The excitation is the base
acceleration, &;, and the response is any quantity of interest, 2. Both the excitation
and the response are characterized by their one-sided psd which are functions of the

circular frequency, w. Under the stationarity assumption, the excitation psd, S;,, is
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related to the response psd, S,, by the following equation (Nigam, 1983)
S. = |H.|* Sz, = Q.S (2.1)

in which H, is the complex frequency response associated with the response quantity
z; and Q, = |H,|* is the corresponding transfer function. The complex frequency
response can be found by substituting &, = ezxp(iwt) and 2 = H,Z; in the differential
equations of motion. Properties of S,, significant to the subsequent treatment, are
the first three spectral moments of the process z, namely Ag, A, and A,, determined
from (Nigam, 1983)

A = /Oooijzdw . 5=0,1,2 (2.2)

The extreme values of the response process z in a fixed interval of time 7 constitute
the sample space of a random variable denoted here as 2°. Knowledge of the prob-
ability distribution of z° enables one to estimate statistical averages of the extreme
values, in particular, the mean and the standard deviation of z¢ which are of principal
interest in evaluation of response to earthquakes. A comprehensive treatment of the
probability conéepts relating to the random variable z¢ is given by Nigam (1983).
Here, for the sake of brevity, only important results which support the development
in the next section are presented.

The probability distribution of 2¢ is closely related to the probability distribution
of the first passage time ¢; at which the parent process z crosses a symmetric barrier
level 2. This is true since, for the same barrier level, the probability that ¢ f1s
greater than 7 is the same as the probability that z¢ does not cross the barrier in
the time interval 7. Vanmarcke (1975) has derived an expression for the probability
distribution of the first passage time of a stationary normal process with zero mean in
which he has taken into account the statistical dependence between barrier crossings
of the process. Using Vanmarcke’s expression, the probability distribution function,

P(z), signifying the probability that 2° is less than zq, is given by

P(z) = [1 _ eap ("_’"2)} ezp [-21/71 _ P (—\/g_-ql‘*'br)] (2.3)

2 exp (g—) -1

in which r = 2z/v/)o is the normalized barrier level; and the spectral parameters v

and ¢ are determined from

1 [
2 /\0

M
q = 1- Xo)\_z (2.5)
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The parameter b is an empirical constant with the value 0.2. The speéctral parameter
v is a measure of the central frequency of the random process, while ¢ is a measure
of the dispersion of the psd function about the central frequency.

Based on the probability distribution (2.3), Der Kiureghian (1980b) has derived
semi-empirical expressions for the mean and the standard deviation of 2°. The mean

or expected value, E[2¢], is given by

E[zf] = (\/21721/07' - %) \//\_0 (2.6)

and the standard deviation, o,, is evaluated from

Ope = [-\;2}1.121107’ 13+(2Inuo1')3 2] \/_0 ;o vt > 2.1 (27)
T 065y ; vor < 2.1

In the expressions for E[2°] and o, the spectral parameter vy is expressed as

(2.8)

2(1.63¢%% - 0.38)v ; ¢ < 0.69
Uy =
° 2v ; g > 0.69

It is convenient to rewrite (2.6) in the following form

B[] = /Ao (2.9)

where

0.5772

V2Inyyt

In summary, for any response quantity z of a multiple degree of freedom system,

2lnyer + (2.10)

the corresponding transfer function @, can be determined from the differential equa-
tions of motion. Having the psd of base acceleration Sj,, the psd of response S, is
given by (2.1). Using (2.2), the spectral moments of the response process can then be
evaluated. Finally, the mean extreme value of response becomes known using (2.6)
and (2.8). This procedure is repeated for as many number of response quantities
as necessary. In particular, for a single degree of freedom system characterized by
its natural frequency and damping ratio, the procedure furnishes the mean extreme
value of any response quantity of interest. If, for instance, the mean extreme value of
the absolute acceleration of the mass is sought, the outcome determines the ordinate
of one point on a mean acceleration response spectrum. This is of significance since,
as will be shown in the next section, given an acceleration response spectrum, one
can proceed backwards through the above procedure and arrive at the psd of base
acceleration. The psd of base acceleration is a characterization of the base motion

only and can be applied to any system with single or multiple degree of freedom.
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2.3 Power Spectral Density and Response Spectrum Relation
A linear, viscously damped, single degree of freedom system subjected to base exci-
tation is described by

&+ 20t + &z = 260ty + @z (2.11)

where Z, £, and z are, respectively, the absolute acceleration, absolute velocity, and
absolute displacement of the mass; ; and z; are, respectively, the velocity and dis-
placement of the base; ¢ is the system damping ratio; and @ is the system natural
frequency. It is assumed that the excitation process is the base acceleration, 3, and
the response process is the absolute acceleration of the mass, &. The complex fre-
quency response, Hj, associated with Z, is obtained by substituting &, = ezp(iwt)
and Z = Hz..’L'b in (2.11) .
0% + 2ibow

@? — w? 4+ 21fow

H; = (2.12)

in which ¢ = v/—1.

In what follows, one point of a mean acceleration response spectrum corresponding
to specified @ and ¢ is considered equivalent to E[z°] which signifies the mean extreme
value of the response process Z in the time interval 7. An acceleration response
spectrum normalized to a ground acceleration of 1 g, where ¢ is the gravitational
acceleration, can be constructed using the log-normal statistical data given by Mohraz
(1976). The mean values of his data pertaining to rock deposits are selected for
the present study. Mohraz and Elghadamsi (1989) have presented a comprehensive
review of the attenuation of maximum ground acceleration for different magnitude
earthquakes pertaining to different site conditions. They have noted that the influence
of soil condition can generally be neglected when using acceleration attenuation laws.
From their data, for a magnitude 7.5 earthquake at a selected distance 10 km from
the source of energy release, the mean maximum ground acceleration is estimated to
equal 0.5 g. A mean acceleration response spectrum E[i°] can then be obtained by
multiplying the normalized acceleration response spectrum by the mean maximum
ground acceleration. Plots of E[i¢] for several values of the damping ratio ¢ are shown

in Fig. 2.1. The equation form of the plot with 5% damping is

29 0 <@ <w
El3] = 1.16g ; wo <@ < 50 (2.13)
(2+05)g; @250

in which wo, in this case, is equal to 20.88 rad/sec. This equation will be used to

derive a compatible excitation psd function.
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E[z°), (9)
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Fig. 2.1 Mean acceleration response spectra for structures founded on rock deposits

As is evident from the development in the previous section, the evaluation of a
mean acceleration response spectrum E[Z¢] compatible with a known excitation psd
is straightforward. Here, the interest is to do the opposite, that is, to derive the
excitation psd from a given mean acceleration response spectrum. To begin, it is
noted that when ¢ and & are both small, the transfer function associated with (2.12)
is a narrow band spike centered at @. Under these conditions, for evaluation of the
first spectral moment \,, any slowly varying psd function S;z,(w) can be approximated
by a constant psd equal to Sz (@). Consequently, Ao can be evaluated analytically
using Cauchy’s residue theorem (Crandall and Mark, 1963):

- 2
Ao = MS&@) (2.14)
4¢
which, neglecting the second power of ¢, leads to
o X
52,(®) = —=Xo (2.15)

Solving for Ag from (2.9) and substituting in (2.15), Sz, (@) takes the form

(E[#])’ 1
@ p?

Si‘b(a’) =

2 A

(2.16)
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Examination of the sequence of equations (2.10), (2.8), (2.5), (2.4), (2.2), and
(2.1) indicates that p? is a complicated function of & whose evaluation requires prior
knowledge of Sj,(w). It is however a smooth function and can be approximated by a
simple function of @ denoted here as ¢. As suggested by (2.10) and the behavior of

the second fraction in (2.16), a simple form for ¢ is a logarithmic function defined as
(2.17)

in which by, bs, ¢1, and c; are constant coefficients as yet to be determined. With this

approximation and interchanging @ for w, (2.16) becomes

_ 46 (B’

1
=208

(2.18)

Under the assumption than ¢ and & are both small, (2.18) provides a first approxi-
mation to the actual excitation psd. The coefficients of ¢ can be evaluated through

the following iterative procedure:

1. As an initial guess all coefficients of ¢ in (2.17) are assumed to equal unity.

2. Having ¢ and with an actual mean acceleration response spectrum E[#¢] such
as (2.13), Sj, becomes available through (2.18).

3. With S;, just obtained and the complex frequency response given by (2.12),
the sequence of equations (2.1), (2.2)}, (2.4), (2.5), (2.8), and (2.10) are used

~ to arrive at the quantity p? at selected values of .

4. The data defining p® at discrete values of @ are used to compute new coefficients

for an improved ¢. This is done by least squares approximation.

5. If the newly computed coefficients are not close enough to those at the start of

iteration, the improved ¢ is used to start another iteration at step 2.

1The computation of spectral moments in (2.2) involves numerical integration. The upper limit of
integration, although theoretically infinite, can be set equal to a value at which the transfer function
@; is practically zero. A small multiple of & such as 5& is adequate for the upper limit. Because
¢ cannot physically take nonpositive values, such as occur in (2.17) for small values of w, the lower
limit is selected at a point somewhat beyond the zero of ¢ at w = exp(—by /bs). This remedy does
not introduce significant error in spectral moment values since the point w = exp(—b;/bs) is nearly

Zero.
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This procedure provides acceptable results in a few iterations. To illustrate, E[z¢]
of (2.13) which corresponds to ¢ = 0.05 is used. The fixed interval of time 7 in which
the statistics of the response process are examined is assumed to equal the duration of
the stationary excitation process. Based on numerous strong motion models and du-
ration studies reported by Mohraz and Elghadamsi (1989), it is reasonable to assume
that, for a magnitude 7.5 earthquake recorded on rock sites 10 km from the source of
energy release, the duration of the stationary part of the excitation process is 25 sec.
For evaluation of discrete values of p? in step 3, the system natural frequencies are
selected from 2 rad/sec to 20.88 rad/sec in 10 increments; and from 20.88 rad/sec
to 200 rad/sec likewise in 10 increments. With these preliminary data, the unknown
coefficients are computed and listed in Table 2.1 for every iteration. Convergence,

based on equality of successive coeflicients to four decimal places, is achieved in 6

iterations.
Table 2.1
Iterative convergence of coefficients in (2.17)
coefficients
iteration b by ¢ Cy

0 1.0000 | 1.0000 | 1.0000 | 1.0000
5.0040 | 1.4024 | 0.9793 | 2.6559
5.3110 | 1.2773 | 1.2401 | 2.6231
5.3343 | 1.2652 | 1.2464 | 2.6221
5.3364 | 1.2641 | 1.2465 | 2.6221
5.3366 | 1.2640 | 1.2465 | 2.6221
5.3366 | 1.2640 | 1.2465 | 2.6221

(= B R - I S R

The function ¢ having the coefficients in the last row of Table 2.1, and the cor-
responding quantity p? are plotted in Fig. 2.2. The agreement indicates that ¢ as
defined by (2.17) is an appropriate approximation to the quantity p? as evaluated
from (2.10).

As already mentioned, (2.18) is valid only for small values of @. To find the
maximum value of & for which (2.18) holds, it suffices to compare E[#¢] as computed
from (2.9) to E[2°] as given by (2.13). Using the coefficients in the last row of
Table 2.1, Sz, becomes available. The corresponding E[3¢] can therefore be computed
from (2.9). The result, denoted as E[z°](approz), is plotted in Fig. 2.3. In the same
figure E[i°] as given in (2.13) is also plotted and denoted as E[#¢](target).
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Fig. 2.3 Matching of the response spectra based on (2.18)
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From Fig. 2.3 it is clear that up to a frequency of about wy=20.88 rad/sec the
two curves are similar. Beyond this frequency E[z)(approz) falls above E[i¢](target)
and the difference increases slowly with increasing frequency. This discrepancy can be
corrected by multiplying the right hand side of (2.18) by a slowly decaying function

of w defined as

¢={ L WS o (2.19)

exp (.qn;_w) ;WS> Wy

where «'is a positive constant to be determined iteratively. With the introduction of

the correcting function 9, (2.18) becomes

55 = 4_: (E[E)* 9 (220)

w

o |

1'5

£ =5%
] —— E[&#)(approa)
— — E[i°](target)

E[i], (9)
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Fig. 2.4 Matching of the response spectra based on (2.20) and (2.19)

-

The iterative procedure which was described for evaluation of the coefficier
¢ was written in conjunction with (2.18). The same procedure is also applicat
conjunction with (2.20) provided that a remains the same until an acceptable ¢ is
reached. Supposing that « equals a large number, such as 10°, ¢ is practically equal
to 1 for all frequencies of interest. The iterative procedure will therefore produce the
same results as given in Table 2.1 and Fig. 2.3. To force E[i¢|(approz) to tend closer

to E[])(target) in Fig. 2.3, successively smaller values are assigned to a; each time
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a new ¢ is obtained and E[i°|(approz) tends closer to E[i|(target). This process
is shown graphically in Fig. 2.4 in which the E[i¢](approz) closest to E[i°](target)

corresponds to
a=200 b =52560 by=12798 ¢ =13671 c;=2.5943

In this spectrum, the ordinates at frequencies 20.88 and 50 rad/sec have the largest
nonconservative errors (of the order of 5%) with respect to the target spectrum. These
frequencies define the range of fundamental frequencies of most low to medium rise
building structures. Therefore it is appropriate to improve the correcting function %
such that this portion of the response spectrum takes conservative values. This can

be done without introducing any additional unknown parameters by redefining % as

1+ w < wo
v={

(1 + -“f) exp (2";—‘"-) ;W > W (2.21)

in which a remains the only unknown parameter to be determined through the same
iterative procedure.

The final result is shown in Fig. 2.5 in which the approximate spectrum envelopes
the target spectrum at all frequencies below 170 rad/sec. The largest conservative
error is about 4% and occurs at a frequency around 30 rad/sec. Beyond 170 rad/sec
the approximate spectrum falls slightly below the target spectrum. These frequencies
are higher than normally encountered in building practice. The approximate spectrum
of Fig. 2.5 corresponds to

a=150 b =052418 b, =1.2814 ¢ =1.4816 c,=2.565T7

With these values, rounded to two decimal places, and using (2.13), (2.17), and (2.21),
(2.20) takes the following form

2 w_ o,
f %5.24+11'.12;ln(u)§27 ’ 0.05 < w < 20.88

1l4er 20.88—w
Sz, = 4 gé—l——-l‘jjs 2 20.88 < w < 50 (2.22)

20.88—
2 1.14exp!—4!§0! (

025 , 33 , 1089) .
\ 57 1.48+2.57In(w) +a2ts ) ; w2390

Note that the lowest value selected for w is 0.05. This number is approximately the
minimizer of the positive part of the function

w

5.24 + 1.28In(w)
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which appears in the first segment of (2.22). Such remedial measure is required since,
as mentioned previously, Sz, is physically nonnegative and its first segment is an
increasing function of w. Should it be necessary, one can define a linear segment
extending from the point {0,0} to the point {0.05,S5:,(0.05)} and thus obtain a
complete one-sided psd ranging from zero to infinity.

1.5
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Fig. 2.5 Matching of the response spectra based on (2.20) and (2.21)
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Fig. 2.6 Spectrum-compatible psd function (2.22)
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Fig. 2.7 Approzimate and target mean acceleration response spectra
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The excitation psd function represented by (2.22) is plotted in'Fig. 2.6. It is a
characterization of a magnitude 7.5 earthquake felt on rock deposits 10 km from
the source of energy release. The family of response spectra shown in Fig. 2.1 also
characterize the same earthquake excitation. In deriving (2.22), however, only the
5% response spectrum was used in the matching process. To have a broader range
of applicability, (2.22) should also correspond to the response spectra with other
damping values and hence have no or little dependence on damping.

In order to illustrate the extent of applicability of (2.22), this equation was used,
together with (2.9), to generate a number of mean acceleration response spectra for
different damping ratios. The results are shown in Fig. 2.7 and are identified as
E[i°)(approz). In the same figure, the response spectra of Fig. 2.1, identified as
E[i°](target), are also shown for comparison. The low frequency portion of Fig. 2.7,
which is of greater utility for modular structures, is redrawn in Fig. 2.8 for closer
inspection. From these figures it can be noted that in addition to the response spectra
with 5% damping, which were required to match, the response spectra with 10% and
20% damping are also in close agreement. The approximate 2% response spectrum
is everywhere greater than the corresponding target spectrum, and hence is on the
conservative side. The conservatism is most significant at intermediate frequencies.

On the basis of these findings, (2.22) is applicable to the analysis of structures
with damping values between 5% to 20%. These values cover the range of damping
widely believed to be present in conventional structures. The insignificant depen-
dence of (2.22) on damping values of practical importance (5% to 20%) clearly shows
applicability of (2.1), (2.3), and (2.9), and their associated underlying hypotheses to
the earthquake excitation and response processes. In the probabilistic approach to
response optimization of modular structures, which will be presented in the following
chapter, the psd function given by (2.22) will be used as a characterization of the

ground acceleration process.

2.4 Response Spectra for High Damping

As has been mentioned, the psd function (2.22) pertains to a particular category
of earthquakes. Site-specific response spectrum statistics for dampings up to 20%
are abundantly available (Mohraz and Elghadamsi, 1989). The same is not however
true for large values of damping. Structures which are designed with supplemental
mechanical dampers are likely to have dampings in excess of 20%. This will be the
case in some of the optimal design illustrations in chapter 3 of which the most damped

example has 73% damping.
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In the previous section the psd function (2.22) was shown to correspond to damping
values of 5% to 20%. In the absence of site-specific response spectra for dampings in
excess of 20%, this psd function will also be used for highly damped optimal design
problems in Chapter 3. A qualitative justification for this is offered in the remainder

of this section.

Table 2.2

Effect of high damping on acceleration response spectrum

mazimum acceleration response at w rad/sec

(units: in/sec?)

earthquake records || 50% damping | 100% damping | 150% damping
El Centro 1940 NS 45 LY) 70
Taft 1952 N69W 22 34 41
Gateway 1969 50 62 70

Fig. 2.9 serves to illustrate the general trend of the response spectra derived from
the psd function (2.22) for dampings in the range of 5% to 100%. The low frequency
portion of these spectra is shown in Fig. 2.10. From these figures it is seen that, in the
intermediate to high frequency range, the effectiveness of damping vanishes at large
values. Moreover, at low frequencies, increased damping has an adverse effect — it
tends to increase the intensity of the acceleration response spectra. These same trends
can be observed from the high damping acceleration response spectra computed by
Ashour and Hanson (1987). They investigated the effect of up to 150% damping on
the acceleration response spectra of three actual earthquakes?. In order to provide
an example, the information collected in Table 2.2 was extracted from their graphical
results at a frequency of 7 rad/sec (period of 2 sec). It can be seen that, at this
low frequency and for high damping ratios, increased damping results in increased

acceleration for all earthquakes considered.

2El Centro 1940 NS, Taft 1952 N69W, and Gateway 1969



CHAPTER 3

THE OPTIMAL DESIGN PROBLEMS

3.1 Introduction

In Chapter 1 essential features of a modular structure were described. It was pointed
out that a base isolated structure is a special case of a modular structure in which
the control elements are placed at the base. It was also noted that placement of the
control elements at a higher level isolates the top portion from the bottom, and thus
provides a classic case of vibration isolation.

A method of deriving a psd of excitation Sz, compatible with site-specific design
response spectra was developed in Chapter 2. It was shown that the mean E[z°] and
the standard deviation ¢, of the extreme values 2° of any response process z can
be found by a knowledge of Sz, and the complex frequency response H, associated
with z.

In this chapter the complex frequency response functions of various response quan-
tities for one and two degree of freedom systems are derived. These functions together
with S3, as given by (2.22) are required to compute E[2°] and o, for any response
process z. Knowledge of E[2¢] and o, will then facilitate formulation of the design
optimization problems.

The subsequent interest in this chapter is to compare the performance of a one
degree of freedom base isolated structure to that of a two degree of freedom modular
version. It is clear that the choice between base isolation and modular schemes should
be based on either the most favorable response under equal resource availability; or
the least resource consumption for the same level of response. Consequently, following
the optimal design formulations, a discussion on the equivalence of resources used in
each problem is presented. It will be shown that a practically meaningful comparison
requires a detailed cost analysis relative to each competing design option. Without
access to actual cost data, a volumetric material analysis will be conducted in the

context of a specific example with the result that, for the same level of response, the
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control elements in the modular structure require less material than ‘those in the base
isolated structure. From a practical standpoint however it will be argued that, for
the same level of response induced by earthquakes on rock deposits, the construction
of a base isolated system will be relatively less costly. It is however well established
that, on soft soil deposits, the dominant periods of earthquakes, such as the one
which occurred in Mexico City in 1985, will be in the range of the fundamental
periods practically achievable in base isolated structures (Seed, Ugas, and Lysmer,
1976; Mayes, 1989). Since with a modular scheme even longer fundamental periods
can be attained, it is conceivable that modular structures can be designed to perform
favorably in earthquakes filtered through soft soil deposits.

Next, attention will be turned to specific applications of a modular structure. In
this regard two possibilities will be explored. Firstly, situations may arise in which,
because of the practical limits on the extent of flexibility and lateral displacement
of a base isolation system, the desired response reduction cannot be achieved. In
such cases a modular structure with two levels of control elements can result in the
desired response reduction. In this context, it will be shown that a modular design
can effectively utilize damping as high as practically possible, while the same levels
of damping in a base isolated design will have an adverse effect on the quality of
response. Secondly, as a more significant application, the effectiveness of a modular

solution in retrofitting buildings with soft first stories will be demonstrated.

3.2 One Degree of Freedom Systems
A low to medium rise base isolated structure can be idealized by a one degree of
freedom (1dof) model in which a lumped mass m is connected to a moving base by
means of a linear spring of constant k and a viscous damper of constant ¢. In this
model k and c represent, respectively, the lateral stiffness and the damping coefficient
of the control elements on which the structure stands; and m represents the total
mass of the structure. The total mass is assumed to be unaffected by the relatively
small mass of the control elements. The motion of the base is given in terms of its
acceleration Z.

In a Idof system the response quantities, which are of significance for design, are
the relative displacement y = z — z;, and the interstory shear forces which can be
written in terms of the absolute acceleration of the mass . The differential equation

of motion in terms of the relative displacement y is

my + ¢y + ky = —mi, (3.1)
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Once the relative displacement y is evaluated from this equation the absolute accel-

eration of the mass 7 is found by substituting § = & — 2 in (3.1):
mi = —cy — ky (3.2)

The complex frequency responses H,, and Hj, associated with y, and &, respectively,

are obtained by substituting

iy = exp(iwt) (3.3)
Yy = Hy(.l.tb (34)
i = Hd (3.5)
in (3.1) and (3.2):
H, — (3.6)

= k — mw? + tcw
k+icw
k- mw? + icw

The shear force at the base is V = ¢y + ky. Using (3.2) it can be written as
V =-mi (3.8)

The complex frequency response, Hy, associated with V' is obtained by substituting
V= Hv."i'b and (35) in (38)
HV = —mH5;. (39)

which upon using (3.7) becomes

Hy = —m(k + icw)

T k—mw?+icw

(3.10)

For future reference the natural frequency, @, and the damping ratio, £, of a 1dof

system are defined as follows

02

3.3 Two Degree of Freedom Systems

Modular structures can be modeled as lumped parameter systems in which one or
more stories can be regarded as a single module. Because of high lateral stiffness,
each module is considered infinitely rigid and therefore can be represented by a single

mass. The coupling of the modules is accomplished through the control elements with
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specified stiffness and damping properties. The behavior of a two degree of freedom
(2dof ) system subjected to base excitation would therefore correspond to that of a
low to medium rise modular structure with control elements placed at the base and
at one other location between adjacent stories.

Consider a 2dof system with masses m; and my; spring constants k; and k,; and
viscous damping coefficients ¢; and ¢;. In this model m; is the total mass of the
module above the base; my is the total mass of the module above my; k; and ¢
rep‘resent, respectively, the lateral stiffness and the damping coefficient of the control
elements placed between the base and my; and k; and c, represent, respectively, the
lateral stiffness and the damping coefficient of the control elements placed between
my and my. The motion of the base in this case, as in the case of the Idof system,
is also given in terms of its acceleration . Let 3, x1, and z, denote the absolute
displacements of the base, the mass m,, and the mass m,, respectively. The coupled
differential equations of motion for this system can be written in terms of the relative

displacements y; = z; — z; and y, = z, — 7, as follows

mify + b + kg — Y — koys = —mudy (3.11)

ma(§1 + §2) + ca¥a + kay2 = —mady (3.12)

in which the response quantities y; and y, are related to the base acceleration Z;. The
other response quantities of interest are the absolute acceleration of the masses &,

and &;. These quantities are obtained by substituting §; = #; — &, and g, = Z, — I,
in (3.11) and (3.12):

mi; = —cay— ky + ¢y + kaye (3.13)

maly = —CaY2 — kayo (3.14)

The shear force at any level can be written as a linear combination of the accelerations
Z; and Z,.

Associated with the four response quantities y;, ys, 1, and &, there are four

complex frequency response functions which are respectively denoted as H,,, H,,,
H;,, and Hj,. Making the substitutions

N = Hylib (315)
Y2 = Hyuiy (3.16)
and (3.3) into (3.11) and (3.12):

2 _ ko — 1
i, = e = (o £ el - o 4 mgles (3.17)
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—m'zkl - imzclw

H, = - (3.18)
in which
A = mymyw? — [moky 4+ (my + my)ky + crcp] w? + ik,
- z{[(m1 + m2)02 + m2c1] w3 - (k162 + kgC])W} (319)
Substituting
& = Hdy (3.20)
z, = Hiay (3.21)
(3.15), and (3.16) into (3.13) and (3.14):
miH;, = —(k +icw)Hy, + (k2 + icow)Hy, (3.22)
mgHi- = —(k2 + iCzUJ)Hyz (323)
which upon using (3.17) and (3.18) lead to
Hg,:.l - —(m2k1 + 0162)w2 + k1k2 —A; [m2c1w3 - (k102 + k2c1)w] (324)
H53 _ —01620.}2 + k1k2 + i(k1c2 + kgCl)w (325)

A

The shear force at the base is V; = ¢;9; + k1y;, and the shear force between m;
and my is V5 = cofy + koys. Using (3.13) and (3.14) these response quantities can be

written in terms of the acceleration of the masses #; and Zj:

V1 = —-ml."l‘71—m2:‘iz (326)

‘/2 = —mgfiﬁg (3.27)

The complex frequency responses Hy, and Hy,, associated with V; and V5, respec-

tively, are obtained by substituting

Vi = Hyi (3.28)
Vo = Hyd, (3.29)

(3.20) and (3.21) into (3.26) and (3.27):

Hy, = —myH; (3.31)
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which upon using (3.24) and (3.25) become

[mlmgkl + (ml + m2)61c2] w2 -_ (ml + mg)klkg

+’l [m1m2c1w3 - (m1 + mz)(k1c2 + kZCl )u)]
Hy, = < (3.32)

my, = Do - bk < imihe ¥ o) (3.33)

Tn the presentation of results which appear in later sections, reference will be
made to the modal frequencies, w; and w,, and the modal damping ratios, ¢; and &;.
These quantities are defined in Appendix B where, for the cases of nonproportional

damping, a procedure for their evaluation is presented.

3.4 The Formulation of Design Problems

In a structural optimization problem the concern is to minimize an objective function
over a prescribed design space. The objective function is a measure of the cost or
the reliability of the structure; both of which can be represented in terms of one or
several of the response quantities related to various parts of the structure. The design
space is defined by a set of constraints placed on the design variables; and on those
response quantities which do not explicitly appear in the objective function.

The computational algorithm, used for solving the nonlinear optimization prob-
lems in this research, is based on a gradient projection technique devised by Haug
and Arora (1979). This algorithm was coded into a computer program and verified
by solving several nonlinear programming problems with known solutions. The algo-
rithm, a brief theoretical background, and one verification problem can be found in
Appendix A.

The response quantities which appear in the subsequent optimal design problems
are written in terms of their extreme value statistics. These statistics were formulated
in Chapter 2 using a general response quantity z. In particular (2.6) and (2.7) provide,
respectively, the mean E[2¢] and the standard deviation o,. of the extreme values 2°
related to the response quantity z. In the process of computing these statistics,
H, corresponds to the appropriate complex frequency response functions which were
derived in the previous sections. In every instance Sz,, the ground acceleration psd, is
given' by (2.22). This psd function is a characterization of a magnitude 7.5 earthquake
recorded on rock deposits 10 km from the source.

The probability distribution function, P(z), signifying the probability that 2¢ is

less than a symmetric barrier level %z, is given by (2.3). A desired barrier level for
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the extreme value of a response quantity can be written as the sum of its mean value
and some multiple B of its standard deviation. The probability of not exceeding this
barrier level can then be computed from (2.3). A lower bound to this probability can
be established using Chebyshev’s inequality (Nigam, 1983):

P(E[7] + B0) > 1 - % (3.34)
in which the left hand side means the probability that z¢ is less than E[z¢] + fo..
Unless otherwise noted, # = 4 will be used in all the subsequent problems. This
value, according to (3.37), corresponds to about 94% probability that 2° will not be
exceeded.

Drawing upon the preceding discussions, the remainder of this section serves to
formulate the optimal design problems. First, a formulation is presented for the 2dof
modular models whose mass distributions, m; and m,, were summarized in Table 1.2
of Section 1.3. Next, a formulation is given for the Idof base isolated model whose
mass m equals the sum m; + my. Following the two optimal design formulations
attention will be focused on whether, with the same resource availability, any one
of the 2dof modular models will perform more favorably than the Idof base isolated
model.

For a 2dof modular structure the variables of the optimization problem are the
stiffness k; and the damping coefficient ¢; of the control elements placed at the base;
and the stiffness k; and the damping coefficient ¢, of the control elements placed at
a higher level. The task is therefore to find the control element parameters k;, ¢;, ks,
and ¢; which correspond to the following minimization problem:

minimize E[Vf]

such that yi <yt
Y3 < Yy
k> K (3.35)
ky > K
ca <cf
L ¢

in which
yi = Elyil+ Boy
y; = Elyi]+ Boy

and the superscripts [ and u mean, respectively, lower and upper bounds on the

corresponding quantities. In this formulation the objective function is the mean
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extreme value of the base shear V; and reflects a measure of the building cost ascribed
to earthquake protection. The constraints on the displacement, stiffness, and damping
of the control elements can be considered as measures of the available resources.

For a 1dof base isolated structure an optimal design can be posed as finding

the control element parameters k and ¢ corresponding to the following minimization

problem:
minimize E[V]
such that y® <y
> Bl (3.36)
c<c*
in which

y° = E[y°] + Boye

In this formulation, also, the objective function is the mean extreme value of the base

shear V and the constraints reflect a measure of the available resources.

3.5 The Problem of Equivalence of Resources
In both problems, (3.35) and (3.36), the objectives are the same. The damping con-
straints in (3.35), owing to the use of viscous dashpots in the equilibrium equations,

can be combined into a single constraint
¢+ ¢ S c

which is equivalent to the damping constraint in (3.36). Beyond this, in the framework
of the present formulation, no equivalence in resources can be readily established. In
the discussion on the design of rubber bearings in Section 1.4 it was pointed out
that as the axial load and the vertical stiffness demand on the bearings increase, it
will be increasingly more costly to satisfy the requirements for lateral stiffness, lateral
displacement, and the safety against buckling. Therefore the cost of a control element
design simultaneously depends on its lateral stiffness, its allowable displacement, and
the level at which it is installed. At the base, the requirements for the vertical stiffness,
shearing strain, and safety against buckling are more stringent than, for instance, at
the roof level. Furthermore, while laminated rubber bearings are commonly used at
the base of structures, they may not be the most economical choice for the control
elements at the roof level where the axial load is relatively small and a variety of

other conceivable soft spring mechanisms can be used.
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The two optimal design problems (3.35) and (3.36), although independently ad-
equate for preliminary investigations, are not in the form suitable for comparative
studies. This is also true regarding comparisons among the various 2dof models
sharing the same formulation (3.35). What can be done however is to perform, for

instance, the comparative studies in two steps:

1. Solve the optimal design of the 1dof model with given displacement and damping
resources and then, using the same damping resource, solve for the optimal
design of the 2dof model using a displacement resource which produces the

same objective as in the Idof case.

2. Having the displacements and stiffness values, design the control elements for

both cases and compare their costs.

To illustrate, consider the following optimal design problems. For the Idof base

isolated model with m = 350 kip-mass,

minimize E[V°
over k,c
such that y¢<9.6 in (3.37)
¢ £ 0.365 kip_sec/in
k> 1 kip/in

and for the 2dof modular model with m; = 300 kip-mass and m, = 50 kip-mass,

minimize E[Vf]
over ky,ky,cq,co

such that y§ +y5 <13 in
c1 + ¢ £ 0.365 kip_sec/in
c; 2 0.001 kip_sec/in
c; 2 0.001 kip_sec/in
ky > 1 kip/in
k2 > 1 kip/in

(3.38)

In these problems, the objectives and the damping resources are the same while
the displacement resources are different. These resources have been so selected to
produce practically equal objectives and to result in approximately 5% damping in
the Idof model. The bound on the stiffness value in problem (3.37) and the bounds
on the individual stiffness and damping values in problem (3.38) are precautionary

and will turn out to have no effect on the outcome. The solutions, i.e. the stiffness
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and damping coefficients, together with other pertinent information are summarized
in Table 3.1.

Table 3.1
Optimal design solutions to problems (3.37) and (3.38)

2dof system 1dof system
units qua_ntity value || value | quantity | units
kips E[ve] | 83.92[ 8342 E[ve] | kips
kip/in ky 30.73 || 14.88 | £ kip/in
kip/in ko 3.58 - |- -
kip-sec/in | ¢y + ¢, | 0.365 || 0.365 | c kip-sec/in
kip-sec/in | ¢; 0046 | - |- -
kip-sec/in | c; 0319 - |- -
in y; + y5 13 | 9.60 |y° in
in vi 4.44 - |- -
in vs 8.56 - - -
g E[z5] 0.26 || 0.24 | E[Z] g
g E[z§] 0.40 - |- -
rad/sec | w; 6.79 || 4.05 | @ rad/sec
rad/sec | wy 4.87 - |- -
- & 0.12 || 0.05 | ¢ -
- & 0.14 - |- -
kip-mass | my+my| 350 || 350 |m kip-mass
kip-mass | my 300 - |- -
kip-mass | mqy 50 - |- -

Note that the resources are fully consumed in both problems. This implies that any
decrease in resources will cause the objectives to increase. In particular, decreasing
the displacement resource of the modular model (13 in) to that of the base isolated
model (9.6 in) will increase the objective from 83.92 kips to 124.02 kips. At first,
this indicates that for equal total damping and displacement the base isolated model
is more favorable than the modular model. Further evaluation of the physical design
of the control elements will however provide competing arguments for both structural

systems. To this end, let the control elements used in both structures be of the type
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described in Section 1.4. The required design equations (1.12), (1.18), and (1.19) are

repeated here, respectively, for convenience:

2
K = ”ShR (3.39)
2
P, = ‘/EZR K, (3.40)
2
K, = %%K, (3.41)

where, as before, K; is the lateral stiffness equal to ki, ks, or &k as given in Table 3.1;
P. is the critical buckling load; K, is the vertical stiffness; G is the shear modulus of
the rubber material; R and h, are, respectively, the radius and thickness of the rubber
sheets; and n is the number of rubber sheets used in the laminated construction of
the bearing.

A consistent design procedure requires that the shearing strain 7;%7’ resulting from
lateral displacement §, the ratio h_R,’ and the shear modulus G be the same for all
designs. Assuming ;f: = 50% and noting that é is equal to y§, y§, or y° in Table 3.1,
the total thickness of rubber nhk, becomes known. Since K| is also known for each case,
with the assumption that G = 200 psi, (3.39) can be used to compute R. Setting
the ratio h% = 45, the rubber sheet thickness in each case can then be evaluated.
subsequently, the number of rubber layers n becomes known. Finally (3.40) and
(3.41) can be used to compute the buckling load P, and the vertical stiffness K, for
each design. Of course when the values for P, and K, are not satisfactory, a smaller
h., based on either (3.40) or (3.41), can be selected.

Using the above procedure, the control elements required for both models were
designed. The results are summarized in Table 3.2. It should be noted that the
dimensions for R and h,, and the values for n (an integer) should be adjusted to
obtain practical values. For the purpose of the present discussion, however, these
values are kept unadjusted. From this data, it is clear that the resources used in the
design of the control elements for the 2dof model are substantially less than what
is required for the Idof model. In particular, the volume of rubber material, vol,,
and the volume of steel material, vol,, used in the 2dof model are, respectively, 37%
and 13% less than those in the Idof model. Also of interest is to note that both the
vertical stiffness and the buckling load of the base control element in the 2dof case
are more than twice as large compared to those in the 1dof model.

Although for the same base shear the modular structure requires less material

resources for the control elements, the reduction is not sufficiently radical to offset
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the costs associated with installation of a second level of control elements. From
a practical point of view, it therefore appears that the construction cost of a base
isolated structure, designed for earthquakes on rock deposits, will be relatively less.
However, as will be shown in the remainder of this chapter, in certain situations, the
modular structure can be considered as a viable alternative for earthquake resistant

design.

Table 3.2
Control element designs for 1dof and 2dof systems®)

quantity K, R k., n | vol,® | wol,® K, P,
(units) || (kip/in) | (in) | (in) | (-) | (f€) | (f&) | (kip/in)] (kips)
1dof, base | 14.88 0.48 | 40.27 | 159 |33.3h,9 | 44,640 | 15,755
20.84
9.88

2dof, base 30.73 0.47 [ 19.06 | 7.0 15.1h, | 92,190 | 31,852
2dof, roof 3.58

0.22 | 78.00 | 3.0 13.8h; 1,767 | 10,874

2dof, sum - - ~ 10.0 | 28.9, - -
T?-dof, saving - - | - - 37% 13% - -

(1) Dimensions for R and h,, and the values for n (an integer) should be adjusted
to obtain practical values. For the purpose of the present discussion, however,
these values are kept unadjusted.

(2) wol, = volume of rubber

~~

3) wols = volume of steel
(4) h, = thickness of each steel plate

3.6 Specific Applications of a Modular Structure
From the numerical examples presented in the preceding section the following obser-

vations can be made:

1. For the same base shear, the control elements required for the base isolated
structure are laterally more flexible than those needed at the base of the modular

structure.

2. The vibration isolation action of the second mass in the modular structure

effectively reduces the base displacement.

In the first instance, because of the practical limits on the extent of the lateral

flexibility of the control elements in a base isolated structure, the modular scheme can
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be viewed as a method to further improve the response without additional reduction in
lateral flexibility at the base. For this reason, it is of interest to investigate the effect of
mass distribution and damping on the optimal design of various 2dof modular models
which were described in Section 1.3. This task will be dealt with in the following
section.

In the second instance, the vibration isolation action of the second mass in a 2dof
modular structure can be used to retrofit existing seismically hazardous buildings. In
particular this idea can be applied to rigid multistory structures with soft first stories.
This possibility will be studied in Section 3.8.

3.7 Effect of Mass Distribution and Damping
The effect of mass distribution and damping will be studied through specific examples.
The term mass distribution refers to the proportion of the total mass of the building
assigned to the lumped masses m; and m; of the corresponding 2dof models. These
models, resulting from the different alternatives in the location of the second level of
control elements, were discussed in Section 1.3.

To study the effect of mass distribution, consider the following optimization prob-

lem:

given mq,mg

minimize E[Vf]
over ky, kg, c1,C9
such that y; <6 1in
ypsbm (3.42)

c1 +¢; <1 kipsec/in
¢ 2 0.01 kip_sec/in
¢z > 0.01 kip-sec/in
ky > 1 kip/in
ko > 1 kip/in

The results for six different mass ratios my/m; are summarized in Table 3.3. The
mass ratio varies from 1/6 in case 1 to 6/1 in case 6 in increasing order. In all cases
the total damping ¢; + ¢, and the maximum displacement y5 are at their upper limits.
For all possible mass ratios, the expected value of the maximum base shear E[Vf] is

practically unchanged, ranging from 49 to 56 kips. However, the effect of mass ratio



50

on the base displacement and the stiffness coefficients is significant. ‘With increasing
mass ratio the base displacement y¢ decreases while both stiffness coefficients k; and

k, increase.

Table 3.3
Effect of mass distribution

units quantity || case 1 case 2| case 3| case 4 | case 5| case 6
— maofmi | 1/6 |2/5 |3/4 |4/3 |5/2 |6/
kip-mass | mq + mq || 350 350 350 350 350 350
kip-mass | my 300 250 200 150 100 50
kip-mass | mq 50 100 150 200 250 300
kip-sec/in | ¢; + ¢, 1 1 1 1 1 1
kip-sec/in | ¢; 050 015 (001 |0.00 |[0.01 |0.01
kip-sec/in | ¢, 0.50 |08 [099 (099 |099 |0.99
rad/sec | w 442 |579 |T711 [9.50 |13.54 |25.74
rad/sec | wy 3.84 [3.79 |340 336 |[345 |3.53
- & 044 026 |[021 |018 |0.16 [0.16
- ' & 016 (024 |[021 (017 |0.14 |0.14
kips E[V¥] 53 54 49 49 53 56

in Y3 6 4.5 3.6 2.7 2.1 1.1
in 5 6 6 6 6 6 6
kip/in ky 145 |19.7 |21.8 281 [38.2 |75.6
kip/in ko 2.0 4.1 5.4 7.3 9.6 11.0

The optimal designs in Table 3.3 can be viewed as possible options for further
response improvement of a base isolated solution. The need for these options can
arise in base isolation projects in which, because of high axial loads, the design of
a particular device with a low enough lateral stiffness or a large enough allowable
displacement becomes impractical. In this sense, the modular models in cases 1, 2,
and 3, in which the second level of control elements carry relatively smaller axial
loads, are most likely to succeed.

An interesting characteristic of a 2dof modular structure is its capacity to ad-
mit very large amounts of damping. With fixed stiffness coefficients k; and k,, the
structure will effectively consume increasing levels of damping in order to reduce the

base shear. The same is not true in a Idof base isolated structure. In this case,



31

given a fixed value for the stiffness k, the base shear tends to decrease with increasing
damping; attains a minimum at an optimum damping value; and begins to increase
as the damping further increases. To illustrate, consider the following optimal design

problems. For a Idof system with m = 350 kip-mass,

minimize E[V¢]
over k,c
such that y¢<2in (3.43)
¢ <10 kip-sec/in
k > 50 kip/in

and for a 2dof system with m1 = 200 kip-mass and m2 = 150 kip-mass,

minimize E[Vf]
over ki, ko, 1,0
such that y; <2:n
ys < 21n (3.44)
c1 + ¢ <10 kip-sec/in
ky > 50 kip/in
ky > 50 kip/in

The solutions to these problems are presented in Table 3.4. Note that the 2dof
model utilizes all of the damping available while the !dof model rejects any damping
beyond 39%. For the Idof model, the rejection of damping beyond certain values is
clearly due to the increase in the intensity of acceleration response spectra at large

damping and low frequencies. This phenomenon was discussed in Section 2.4.

3.8 Retrofitting a Building with a Soft First Story

A building with a soft first story is shown in Fig. 3.1. This is a common example in
which, for space and aesthetic requirements, the unbraced columns in the first floor
support the relatively rigid structure of the upper levels. In an intense earthquake
plastic deformations concentrate in the soft story and ultimately cause the collapse
of the entire structure (Arnold, 1989).

As an example consider the six-story building described in Section 1.3. Let the first
floor columns be unbraced and constrained against rotation at both ends. Further
assume that all other floors are adequately braced and thus comprise a rigid unit
supported on the soft columns of the first floor. Under these circumstances the

building can be modeled as a Idof system. For this model let a typical first floor
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column have a lateral stiffness equal to 53 kip/in. The total weight of the rigid unit,
corresponding to one column, is then equal to 300 kips — discounting the 50 kips

weight of the base slab which is no longer required.

Table 3.4
Effect of damping

2dof system 1dof system

| units quantity value || value | quantity | units
kips E[Ve] | 683 | 82 [E[Ve] [kips
kip/in ky 50 50 |k kip/in
kip/in ko 50 - |- -
kip-sec/in | ¢; + ¢; 10 || 5.30 {c kip-sec/in
kip-sec/in | ¢ 6.15 - |- -
kip-sec/in | ¢, 3.85 - |- -
in Yi 1.5 1.7 | y¢ in
in Y5 0.9 - |- -
g E[z] 0.18 || 0.22 | E[Z] g
g E[z] 014 | - |- -
rad/sec | w; 165 || 74 |@ rad/sec
rad/sec | wy 6.8 - |- -
- & 0.73 || 0.39 | ¢ -
- € 0.38 - |- -
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Fig. 3.1 A rigid multistory building with a soft first story
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Based on an elastic design procedure, the allowable relative end ‘displacement of
the columns, due to the combined action of lateral motion and gravity loads, can be
readily computed. In the example problem under consideration, a reasonable value
for the allowable displacement is 0.45 in. This value, however, will be far exceeded
in the event of a severe ground motion. To illustrate, the ground motion and the
probabilistic method of analysis described earlier in Section 3.4 were used. The results

for 5% damping, identified as case 1, are summarized in Table 3.5.

Table 3.5
Elastic solutions to the soft first story building ezample
(using 1dof models)

units quantity | case 1| case 2| case 3
kip-mass | m 300|300 | 300
kip/in k 53 1171 | 609
kip-sec/in | ¢ 0.59 |3.02 |87
rad/sec | @ 8.26 | 38.82 |28.00
- € 0.05 |0.05 |0.20
kips E[ve [151.7 [361.0 | 199.1
g E[i*] 0.51 |1.20 |0.66
in ¥ 468 045 |045

Note that the relative column end displacement (4.68 in) is excessively large. In
order to reduce this displacement to the allowable level at 0.45 in, the following

options can be explored:
1. Provide adequate bracing in the first story.

2. Consider partial bracing in combination with supplemental damping devices in
the first story.

3. Use the second option in conjunction with a modular scheme in which the roof
or the top story are separated from the bottom portion by means of control

elements.

These options can be studied in the context of the optimal design formulations

presented in this chapter. For the first two options the following formulation can be
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used:
minimize E[V¢]
over k,c
such that y° =045 in

§< ¢

(3.45)

in which ¢ is the damping ratio as defined at the end of Section 3.2 and {* is the upper
bound on €. For the first option let é* = 5% and for the second option, requiring
supplemental mechanical dampers, use {* = 20%. The solutions are presented in
Table 3.5 and are respectively identified as case 2 and case 3.

In case 2, large braces have to be used to provide the required lateral stiffness
of 1171 kip/in. The acceleration in this case is also excessive (1.2 g), requiring
strengthening of the upper stories. It should be noted that case 2 results are based
on an elastic analysis. As such, these results do not reflect the forces and accelerations
which will be obtained when retrofitting structures with braces that are allowed to
yield and buckle consistent with a ductile design philosophy. The objective here is to
obtain a retrofitting solution which guarantees elastic behavior. In this sense, case 3
provides a better solution because both the required lateral stiffness in the first story
(609 kip/in) and the acceleration of the upper stories (0.66 g) are smaller.

Next consider the third option using the following minimization problem:

minimize E[Vf]
over ky,ky, 1,0
such that y§ =045 in (3.46)
c1 < 8.7 kip-sec/in
¢ > 0.1 kip_sec/in

In this formulation, the upper bound on the first floor damping coefficient has been
set equal to the damping required for the second option (case 3, Table 3.5). The
solutions, for two different mass ratios, are provided in Table 3.6. Case 1 requires
placement of the control elements under the roof while in case 2 the control elements
are placed under the floor slab of the top story. With respect to the base shear,
accelerations, and the lateral stiffness requirements in the first floor, both modular
solutions in Table 3.6 indicate substantial advantages over those considered previously
(Table 3.5). Again, tagging any one of the retrofitting options as the best solution

requires at least a preliminary cost analysis.
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Table 3.6
Elastic solutions to the soft first story building example
(using 2dof modular models)

| units quantity || case I | case 2
kip-mass | m, 250 B 200
kip-mass | my 50 100
kip-mass | my +my || 300 300
kip/in ky 402  |259
kip/in ka 162 |94
kip-sec/in | ¢ 8.7 8.7
kip-sec/in | c; 1.1 1.5
rad/sec | wy 253 225
rad/sec | wy 11.0 |6.0
- & 031 |0.44
- & 0.36 | 0.46
kips E[Vy] 119.2 | 84.7
g E[5) 0.53 |0.45
g E[zg) 0.41 |0.22
in Y5 0.45 | 045
in Y5 1.37 | 146




CHAPTER 4

SUMMARY, CONCLUSIONS, AND FUTURE
RESEARCH

4.1 Summary

The primary interest in this dissertation has been the optimum design of low to
medium rise buildings subjected to intense earthquakes. In this regard the concept of
modular structures was introduced. In its most general form a modular structure is
composed of a stack of rigid stories or modules separated at their interface by passive
control elements. These elements can be similar to currently used base isolation sys-
tems. They require a structural mechanism which is vertically stiff, laterally flexible,
and provides some means of energy dissipation.

A modular structure can be described mathematically as a number of lumped
masses consecutively connected by springs and dampers. In this model the lumped
masses represent the rigid modules; and the springs and dampers represent the lateral
mechanical properties of the control elements. The only control or design variables in-
volved in the optimization of the response of such structures to earthquake excitation
are the spring and damping coeflicients of the control elements. These design vari-
ables can assume a wide range of values irrespective of the basic design requirements
for gravity loads and interstory drift limits imposed on the modules. Consequently,
a computationally manageable optimal design problem is facilitated.

Optimal design problems for structural vibrations are formulated based on the
extreme values of the response quantities of interest. These extreme values can be
obtained by a variety of methods which fall in the broad categories of the response
spectrum approach, the time domain analysis, and the random vibration technique.

In the response spectrum approach the extreme values are obtained based on
approximate modal combinations. In this case the structure must have proportional
damping characteristics. In this research, both stiffness and damping coefficients were

considered as variables of the optimal design problems. Therefore it was expected

56
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that the damping coefficients would turn out to be nonproportional. Because of
the damping proportionality restriction and the approximations involved in modal
combinations, the response spectrum approach was not pursued in the investigation
of the optimal designs.

The available time domain methods of optimal design require examination of the
entire time history of a number of response quantities in an effort to reduce the ex-
treme values of some while preventing others from exceeding certain admissible levels.
It has been observed that the success of these methods depends on the character of
excitation time history. In particular, single impulse excitations, for which the corre-
sponding response spectra are smooth functions of frequency, can be effectively dealt
with by these methods. An earthquake time history will however cause serious prob-
lems in the optimization process. The reason lies in the jaggedness of the earthquake
response spectra; especially for lightly damped systems. In a mathematical search
technique, at every advancement to an improved design point, a certain reduction in
the objective function is sought without violating the constraints. Both the objec-
tive and constraints are functions of the extreme values of the response time histories.
Since these quantities vary in a jagged pattern with respect to design variables, shortly
after the initial point the search will halt at a locally ascending portion of the objec-
tive function or a slightly violated portion of the constraints. Although the point at
which the optimization process is terminated qualifies as a local minimum, there are
many other points in the design space with this same qualification. This is a serious
drawback in terms of locating a global minimum by restarting the optimization at
different initial points. Consequently, the time domain methods were not used in this
research.

The aforementioned restrictions and shortcomings, associated with the response
spectrum and time domain analyses, do not arise in the random vibration method.
Therefore this method was selected for the optimal design investigations. The excita-
tion and response relations were formulated in the frequency domain. This requires
a knowledge of the power spectral density of the ground excitation process. The ex-
citation process, used in the optimal design investigations, corresponds to a family
of strong earthquake accelerations recorded on rock deposits in the vicinity of the
source. Because the statistical characterizations of site-specific earthquakes are more
widely available in the form of design response spectra, a new method was developed
in this research to derive power spectral densities from design response spectra. In
this effort an existing extreme value probability distribution, which has been shown

to apply accurately to earthquake excitation and response processes, has been used
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(Vanmarcke, 1975; Der Kiureghian, 1980b). Details of deriving power spectral den-
sities from response spectra are presented in Sections 2.2 and 2.3. The highlights of
the method are summarized in the following paragraph.

From the results obtained by Der Kiureghian (1980b), the expected extreme value
of the acceleration of a single degree of freedom system, E[#¢], can be written in
terms of the transfer function associated with the acceleration of the mass, @3, and

the power spectral density of the ground acceleration process, Sz,:

E[E] = f(Qz Sa,) (4.1)

Q3 is a function of the system frequency, @, and the damping ratio, £. For a particular
@ and ¢, if Sz, is known (4.1) furnishes one point of a mean acceleration response
spectrum. As mentioned previously, the interest is to derive S;, from E[£¢]. Because
an analytical inversion of (4.1), i.e. writing S, explicitly in terms of E[i¢], is not
possible, a computational inversion procedure was proposed. To this end, it was

shown that (4.1) can be written in the following form:
Sz, = (B[E))* 9 (S=) (4.2)

where g is a known but complicated function of S;,. Based on an examination of the
behavior of g, this function was approximated by a simple function of frequency, w,
and five unknown parameters, o; (z = 1,2,3,4,5). Denoting this function by A, (4.2)
can be written as:

Sz, = (E[£%))* h (w, o1, 0, @3, a4, 05) (4.3)

In order to find the unknown parameters o, the following iterative procedure was

used:
1. Start with a known mean acceleration response spectrum E[z¢].
2. Guess initial values for parameters a;.
3. Compute Sz, from (4.3).
4. Use S, just computed in (4.1) and evaluate E[z°].

5. If the newly computed E[Z°] closely matches the known E[#°] in step 1, stop.

Otherwise, continue.

6. Compute the function g in (4.2).
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7. Compute new coefficients o; based on least squares approximation of g by h at

discrete values of w.
8. Take the newly computed parameters a; as the next guess and go to step 3.

It has been shown that this procedure produces acceptable results in a few iter-
ations. A mean acceleration response spectrum with 5% damping, corresponding to
strong earthquakes on rock deposits, was selected to obtain S;,. This spectral density
was then used to generate response spectra for other damping ratios. It was shown
that the resulting spectra closely match the actual response spectra with damping in
the range of 5% to 20%.

Site-specific response spectra for damping ratios greater than 20% are not avail-
able. Therefore, for these high damping ratios, the validity of the derived excitation
power spectral density was established qualitatively. As a result, it was observed that
for the particular excitation process considered, the corresponding response spectra
at frequencies below 15 rad/sec (periods above 0.4 sec) tend to increase as the damp-
ing ratios are increased beyond 40%. This same trend can also be observed in high
damping response spectra computed for actual earthquake records (Ashour and Han-
son, 1987). This observation implies that a low frequency oscillator, such as a base
isolated structure, has an optimum value of damping.

Only one and two degree of freedom models were used in the optimal design
investigations. These models represent a six-story building structure. The one degree
of freedom model simulates the base isolated version of this structure; and the two
degree of freedom model represents its various modular arrangements using two levels
of control elements. In every modular case the first level of control elements was placed
at the base, while the second level was placed at a higher location between adjacent
stories or just under the roof.

For all models the optimal design problems were formulated as to minimize the
base shear. The stiffness and damping coefficients of the control elements were con-
sidered as the design variables. The constraints included upper bounds on the lateral
displacement and damping coefficients, and lower bounds on the stiffness of the con-
trol elements. The base shear was represented by its mean extreme value; while the
displacements were written as the sum of their mean extreme value and a multiple
four of the standard deviation of their extreme values. A computer program was
written to solve these nonlinear optimization problems. The algorithm used is based

on a well established gradient projection method due to Haug and Arora (1979).
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The initial interest was to compare the performance of a one degree of freedom
base isolated structure to that of a two degree of freedom modular structure. It is
clear that the choice between base isolation and modular schemes should be based
on either the most favorable response under equal resource availability; or the least
resource consumption for the same level of response. Consequently, following the
optimal design formulations, a discussion on the equivalence of resources used in
each problem was presented. It was shown that a practically meaningful comparison
requires a detailed cost analysis relative to each competing design option. Without
access to actual cost data, a volumetric material analysis was conducted in the context
of specific examples using laminated rubber bearings as the control elements.

Next, attention was turned to specific applications of a modular structure. In this
regard two possibilities were explored. Firstly, the possibility of a desired response
reduction by a modular structure with two levels of control elements was investigated.
In this context, the benefits of large damping and vibration isolation in a modular
structure were studied. Secondly, the effectiveness of a modular solution in retrofitting

buildings with soft first stories were demonstrated.

4.2 Conclusions

The site-specific excitation process used in the optimal design investigations was
selected to correspond to rock deposits. The dominant periods of this process are
much shorter than the largest periods achievable in a base isolated structure. With
this process, and the use of laminated rubber bearings as the control elements, the

following conclusions were made:

1. The new method to derive power spectral densities from design response spectra

is computationally simpler than other available methods.

This method has been devised based on an existing extreme value probability
distribution which has been shown to apply accurately to earthquake excitation

and response processes.

2. For the same level of response to earthquakes on rock deposits, the construction

of a base isolated building is less costly than that of a modular building.

However, there are certain limitations associated with the feasibility of base
isolation. Firstly, there are practical limits on the extent of flexibility and lateral
displacement of a base isolation system. In such a situation a modular scheme

can be viewed as a method of further response improvement without requiring
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additional flexibility or displacement capacity at the base. S&econdly, because
of the practical limits just mentioned, base isolation is not a feasible option in
protecting structures founded on soft soil deposits. Earthquakes recorded on
soft soils, such as the ones in Mexico City, have dominant periods in the range

of the longest periods that can be practically obtained with base isolation alone.

The modular system can provide an increase in the fundamental period of the
building thereby providing a viable alternative for earthquake protection where

base isolation is not satisfactory.

. The modular scheme can be used to limit story shear forces and story displace-

ments in existing seismically weak multistory structures.

The application of the modular scheme to retrofitting existing multistory struc-
tures with soft and weak first stories was considered. The example required
placement of one level of control elements under the roof or under the top floor
slab. The characteristics of the control elements and the supplemental braces
and dampers in the first story were established such that overall elastic behavior
throughout the building was achieved during a severe earthquake. These results

show that the proposed retrofitting solution can be effective and practical.

4.3 Future Research

The concept of a modular structure was introduced here for the first time and has

been shown to have potential advantages in certain applications. The results warrant

continued research to more fully establish the benefits of this concept. In this regard

the following topics are recommended for future studies:

1.

Investigate the cost effectiveness of modular structures using different types of

control elements.

Study the applicability and practicality of modular structures with respect to
earthquake characterizations on soft soil deposits.

Conduct studies with broader parameter variations for retrofitting solutions.



APPENDIX A

A NONLINEAR OPTIMIZATION PROGRAM

A.1 Introduction

Optimization software which are intended to solve nonlinear programming problems
are commercially available (Haftka and Kamat, 1985). Successful implementation of
a commercial optimization software for every problem is not however a simple task.
Because of the nature of approximations inherent in optimization algorithms and
the sensitivity of the related computational processes to the convergence tolerances
and the program options, it is imperative that the user has a basic understanding
of the underlying computational strategies employed. Beyond that, access to the
source code or more preferably to the responsible party maintaining the software is of
principal importance. In a situation where there is an abnormal halt in the solution
process, any remedial attempt is certainly aided by knowing where in the algorithm
the abnormality occurred and what the cause was.

In order to avoid potential difficulties in using a commercial program, a computer
program was written based on a well established gradient projection method. The
advantage of having one’s own optimization program, in addition to its general use-
fulness, is the ease with which it can be manipulated in resolving potential problems
that can occur during various computational processes.

This appendix provides a brief theoretical background leading to a computational
algorithm which was used in the development of the computer program. For ver-
ification purposes, this program was used to solve several nonlinear programming

problems with known solutions.

A.2 A Gradient Projection Method

The nonlinear design optimization problems encountered in this research can be cast

in the following general form
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minimize  f(b) (A.1)
such that hi(b)<0; t=1,.,n (A.2)

in which b is the vector of design variables; f is the objective function; and k; represent
n inequality constraints including upper and lower bounds on the design variables.
The method of solution adopted here is based on a gradient projection technique
with constraint compensation due to Haug and Arora (1979). In this method the
objective and the active constraint functions are linearized at a given design vector
bo from which an improved design vector b is sought such that the objective function
is reduced while the active constraints remain feasible. This is accomplished through
a move from by in the projected direction of the steepest descent of the objective
function onto the hyperplane defined by the gradients of active constraints. Since this
move typically causes violation of some of the constraint functions, it is combined with
a restoration move to compensate for the constraint violations. At every point thus
obtained, the Kuhn-Tucker necessary conditions are invoked to check convergence of
the objective function to a local minimum.

At a given feasible point by, the set of active constraints are identified as those h;

satisfying the following condition
—e< hi(b) L0; i=1,.,n (A.3)

in which € is a small positive number. For convenience, let the active constraints be

denoted as g;. Thus
—€<gi(bo) £0; i=1,..,n4 (A.4)

where n4 < n is the total number of active constraints.
The advancement from by to a new point b is obtained by choosing an incremen-
tal design vector b such that the objective function is decreased while the active

constraints are not violated. Mathematically, this requirement can be stated as

< f(bo) (A.5)
gi(d) < 0; t=1,..,n4 (A.6)

where

b= b + 6 (A.T)



64

The incremental design vector §b must be small enough to allow representation of f

and g;, in the vicinity of by, by linear approximations. In this sense

F(b) = f(b)+ V7 (bo)db (A.8)
gi(0) = gi(bo) + VgF(bo)6b; i=1,....,n4 (A.9)
in which V is the gradient operator; and the superscript T stands for the transpose.

Within these linear approximations, satisfying the requirements (A.5) and (A.6) is

equivalent to solving the following minimization problem at each iterate:

minimize V7T (bo)8b (A.10)
such that Vgl (b)éb < —gi(bo); i=1,..,n4 (A.11)
6bT6b < € (A.12)

where ¢ is a small positive number.

Under the assumption that the gradients of the active constraints Vg;, evaluated
at by, are linearly independent, one can use the Kuhn-Tucker theorem to establish the
necessary conditions for which éb is a local minimizer of the incremental minimization
problem defined by (A.10) through (A.12). At a local minimum, the Kuhn-Tucker nec-
essary conditions guarantee existence of n4 nonnegative multipliers y;, corresponding
to (A.11), and a nonnegative multiplier +, corresponding to (A.12), such that

Vf+Vgu+296b = 0 (A.13)
pi(Veléb+g) = 0; i=1,..,n4 (A.14)
A(6bT6b—€%) = 0 (A.15)
in which s
Vop =) wVg; (A.16)

=1
The necessary conditions (A.13) to (A.15) are nonlinear in the unknowns 6b, u,
and v, causing difficulty in obtaining a solution. In order to circumvent this difficulty

a strategy, as suggested by Haug and Arora (1979), is to assume

Vgléb = —gi; i=1,..,n4 (A.17)
§6T6b = ¢ (A.18)

implying that the constraints (A.11) and (A.12) are tight, i.e. equal zero, and the
multipliers y; and 4 are nonnegative. Premultiplying (A.13) by Vg7 leads to

VeIV +VgTVgu +29Vg76b =0 (A.19)
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which, using (A.17), becomes
VgIVf+VgTVgu —2vg =0 (A.20)

From this equation the vector of multipliers 4 can be evaluated in terms of the as yet

unknown multiplier ~:
p=—(Vg'Vg)[Vg'V f - 27g] (A21)

Substituting p from (A.21) into (A.13), the incremental design vector éb can be

evaluated and written in the following form
8b= —51?%’ + 6b11 (A.22)

in which the components 6b' and 6b'! are respectively given by

s = [I-Vg(VgTVyg) VeI VS (A.23)
&1l = —Vg(VgTVg) g (A.24)

The quantity contained within the brackets in (A.23) is a symmetric positive definite
projection matrix.

It is noted that once a value for 4 is determined, both the multiplier vector u
and the incremental design vector éb become available through (A.21) and (A.22),
respectively. A value for the multiplier 4 can be established based on a certain desired
reduction in the objective function at each iterate. Let éf, a positive number, denote

the desired reduction. Therefore, as can be verified from (A.8), it is required that
ViTb=—6f (A.25)

As shown by Haug and Arora (1979), since it is the —3-8b" component of 6b which

tends to reduce the objective function, (A.25) can be written in the following form

v fT(——l-éb’) =-6f (A.26)
2y
from which 7 can be evaluated as
v fT 66
= 2
v 2] (A.27)

The foregoing development has been based on the assumption that the multipliers
p; and v are all nonnegative. It is noted that v as evaluated by (A.27) will always be

nonnegative. The nonnegativity of the numerator in (A.27) can be established based
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on the projection property of the matrix contained within the brackets in (A.23); and
it was just mentioned that §f in the denominator is a selected positive number. As
shown by Haug and Arora (1979), after computation of s from (A.21), if any number
of the multipliers y; turn out to be negative, it is an indication that the objective
function can be further reduced by simply removing the corresponding constraints g;
from the active constraint set and repeating the iteration with the remaining active
constraints.

Towards computational efficiency in evaluation of 6b and y, Haug and Arora (1979)

decompose the vector g in the form
p=pl+2yu" (A.28)
in which p! and p!! can be obtained from the following sets of linear equations:

(Vg'Vgu! = -Vg'Vf (A.29)
(Vo' Vo)t = ¢ (A.30)

With this arrangement, it can be verified that (A.23) and (A.24) can respectively be

written as

&' = Vf+Vgul (A.31)
&1 = vgul! (A.32)

Based on geometrical considerations pertaining to 6’ and 66! | Haug and Arora
(1979) have shown that as the solution of the original minimization problem, given by
(A.1) and (A.2), is approached, b approaches zero. This can be used as a stopping

criteria in the following computational algorithm:

1. Guess an initial design by
2. Evaluate h; at ‘bo forz=1,...,n.

3. From an examination of h; select the set of active constraints g;, with indices 3
ranging consecutively from 1 to ng4, such that —e < ¢g; < 0 where € is a small

positive number such as 0.01.
4. Compute the gradient of the objective function V f evaluated at by

5. Compute. the gradients of the active constraints Vg; evaluated at by and form
the matrix Vg = [Vg; Vg, ... Vgn,]
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11.

12.

13.

14.
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. Compute p! from (A.29)

Compute b7 from (A.31)

Choose a certain percentage reduction « in the objective function and evaluate

6f = af(bo)
Evaluate 7 from (A.27)

Evaluate p!! from (A.30) and Compute p from (A.28). If any components
of 4 are negative, delete the corresponding constraints from the active set,
reconstruct the matrix Vg with the reduced number of active constraints and

go to step 6. Otherwise continue.

Compute 65 and form the new incremental design vector §b using (A.22)
Let by « by + 6b

Evaluate h; at by for 2 =1,...,n.

If all h; are satisfied within an acceptable tolerance and 64’ T5b is small enough,

terminate. Otherwise restart the iteration at step 3

A.3 Verification of the Computer Program

A Fortran computer program was written based on the computational algorithm

presented in the preceding section. For verification purposes, this program was used to

solve several nonlinear programming problems with known solutions. As an example,

consider the following problem:

minimize f(b) = 3b; +/3b,
such that ¢1(b) = —3+1—8 + 9[?1 <0
b b
gg(b) = —b1 + 5.73 S 0
g3(b) = =b,+717<0

The program is started at the feasible point b = (12,12) at which

F=5678 g1=-063 gy=-627 gs=—483

A 5% reduction in the objective function is sought with each descent move. The

tolerance on constraint violations at the end of each descent move is set equal to 0.01.
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This means that if the value of any one of the constraint functions evaluated at the
end of a descent move exceeds .01, the percent reduction is decreased and the descent
move repeated. The tolerance on the acceptability of a restoration move is set equal to
0.00001. This means that if at the end of a restoration move the violated constraints
are not restored to within 0.00001 of the boundary of the feasible domain, then an
additional restoration move is initiated. The tolerance on the stopping criteria is set
equal to 0.01. With these parameters, the problem is solved after 24 iterations with

the following results
by =9.455 by, =9479 [f=4478 p; =1487 pa=0 p3=0

Haftka and Kamat (1985) provide the following exact solution to the same minimiza-

- tion problem
by =9.464 b, =9464 f=4478 3 =1493 p;=0 p3=0

Comparing the numerical and the exact solutions, it is concluded that the program

produces acceptable results.



APPENDIX B
MODAL CHARACTER OF THE DESIGN PROBLEMS

B.1 Introduction
In a proportionally damped multiple degree of freedom structure, the modal damping
ratios ¢; provide means of assessing the amount of damping present in the system. The
optimal design solutions in Chapter 3, which pertain to the two degree of freedom
(2dof) modular models, all have nonproportional damping characteristics. Conse-
quently, the usual definition of a modal damping ratio no longer applies to these
problems.

" In nonproportionally damped systems, some means of damping assessment is still
desirable. The main purpose of this appendix is to provide the basis for an approxi-

mate evaluation of damping present in such systems.

B.2 Modal Characteristics
The homogeneous equilibrium equations of a linear multiple degree of freedom system

can be represented in the following matrix form
Mi+Cu+Ku=0 (B.1)

in which M is the mass matrix; C is the damping matrix; K is the stiffness matrix;
and u, %, and i are, repectively, the displacement, velocity, and acceleration vectors.
In the case of proportional damping, expansion of u in terms of the eigenvectors of
the eigenvalue problem associated with the undamped version of (B.1), produces a
set of uncoupled differential equations with modal frequencies w; and modal damping
ratios ¢;. .

When C is nonproportional, a similar expansion procedure applies to a first order
form of (B.1) from which the original solution u can be retrieved (Meirovitch, 1980).

Addition of the identically zero system of equations

-Ku+ Ku=0

69



70

to (B.1) leads to the following first order form
Mo+ Kv=0 (B.2)

in which the vectors v and v are represented by

and the partitioned matrices M and K are defined as

. M 0 . C K
M=[0—K]; Kz[K 0] (BA)
Substitution of a solution of the form
v = e
in (B.2) leads to the following eigenvalue problem
Ap =l (B.5)
in which
A= -MK = { _MI_IC M _OIK } (B.6)

The eigenvectors ¢; and eigenvalues A; of problem (B.5) are in general complex and
appear in conjugate pairs. For stable dynamical systems, A; will have negative real

parts; and those in the upper complex half plane can be represented as
Aj = = +10; (B.7)

in which ¢ = v/-1; and both components (; and 8; are positive.
In the case of proportional damping, the eigenvalues A; can be written in terms of

the modal frequencies w; and modal damping ratios ¢;; thus

Aj = —€jw; + iwjy/1 - & (B.8)

Comparison of (B.7) and (B.8) shows that, when damping is proportional, §; is equal
to the j*» damped modal frequency while (; is a measure of the decay rate of the j*
modal response. From (B.7) and (B.8) it follows that

G = —2 (B.10)

G
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Although (B.9) and (B.10) are exact for the proportional damping case only, they can
be viewed as approximate relations in the case of nonproportional damping (Minami,
1977).

The optimal design solutions to the 2dof modular models in Chapter 3, all turn
out to have nonproportional damping. The frequencies w; and damping ratios ¢; for
these problems have been computed from the relations (B.9) and (B.10). Using the
assumptions and notations employed in Section 3.3, the matrices M, C, and K of a

2dof modular model take the following forms

M = l:ml 0] : C = I:C1+Cz °-'02:| , K = {kl’{'kg —kg}

0 moy —C2 Co —kz k2

from which the matrix A as given by (B.6) is readily constructed. The eigenvalues of
A can be extracted using commercially available computer programs.
As an example consider the 2dof system in Table 3.1. The mass, damping, and

stiffness properties of this system are

my = 300 kip-mass ; ¢, =0.046 kip_sec/in ; ky =30.73 kip/in
me =50 kip-mass ; c; =0.319 kip_sec/in ; k. =3.58 kip/in

With these numerical values, the eigenvalues ); are computed as

A = —0.808 4 1:6.741
A2 —0.659 + 14.825

Subsequently, the frequencies and damping ratios can be evaluated using (B.9) and
(B.10):

wy =6.79 rad/sec ; & =0.12

wy = 4.87 rad/sec ; & =0.14



APPENDIX C

LIST OF SYMBOLS

C.1 Symbols in Chapter 1

!

1
1dof

a decrease in the adjacent quantity

an increase in the adjacent quantity

one degree of freedom

two degree of freedom

a positive constant

allowable shearing strain of rubber

lateral displacement of a laminated rubber bearing
circular frequency of a one degree of freedom system
spectral displacement

modulus of elasticity

square foot

shear modulus of rubber

hy + ks

thickness of a rubber layer in a laminated rubber bearing
thickness of a steel layer in a laminated rubber bearing
moment of inertia of a column cross section

stiffness coefficient in a Idof base isolated model

stiffness

stiffness

stiffness corresponding to a local minimum reached from kg
stiffness corresponding to a local minimum reached from &
stiffness corresponding to the global minimum
kilo-pounds

lateral stiffness of a circular rubber layer constrained between two stiff
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plates

tilting stiffness of a circular rubber layer constrained between two stiff
plates

vertical stiffness of a circular rubber layer constrained between two stiff
plates

lateral stiffness of a circular rubber bearing

tilting stiffness of a circular rubber bearing

vertical stiffness of a circular rubber bearing

total length of a laminated rubber bearing

number of rubber layers in a laminated rubber bearing

axial force

critical buckling load of a laminated rubber bearing

power spectral density

pounds per square foot

pounds per square inch

quantity as defined by equation (1.5)

radius of a circular rubber bearing

shear force

weight below the second level of control elements

weight above the second level of control elements

mass

C.2 Symbols in Chapter 2

(a7

B
6

a positive constant which appears in equations (2.19) and (2.21)

allowable shearing strain of rubber

lateral displacement of a laminated rubber bearing

first spectral moment of the random process z defined by equation (2.2)
second spectral moment of the random process z defined by equation (2.2)
third spectral moment of the random process z defined by equation (2.2)
spectral parameter as defined by equation (2.4)

spectral parameter as defined by equation (2.8)

damping ratio of a one degree of freedom system

damping ratio of the ground modeled as a single degree of freedom system

function as defined by equation (2.17)



exp

~. . ~ (Q

T4

function defined by equations (2.19) or (2.21)

standard deviation of the random variable 2°

duration

circular frequency

a constant circular frequency

circular frequency of a one degree of freedom system
circular frequency of the ground modeled as a one degree of freedom system
a constant which appears in equation (2.17)

a constant which appears in equation (2.17)

a constant which appears in equation (2.17)

a constant which appears in equation (2.17)

mean or expected value of the random variable &°

mean or expected value of the random variable z°
exponential function

gravitational acceleration equal to 386.088 in/sec?

complex frequency response associated with the random process Z
complex frequency response associated with the random process z
imaginary number defined as /=1

inches

kilometers

natural logarithmic function

probability distribution function

function defined by equation (2.10)

power spectral density

transfer function associated with the random process z
spectral parameter as defined be equation (2.5)

radius of a circular laminated rubber bearing

normalized barrier level defined by 20/v/2o

radians

intensity of a constant power spectral density

power spectral density of the random process z

power spectral density of the ground acceleration process Ty
seconds

the first time at which 2 crosses z (first passage time)
absolute displacement of a one degree of freedom system

absolute velocity of a one degree of freedom system
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T absolute acceleration of a one degree of freedom system

z° a random variable signifying the extreme values of the random process Z
Ty absolute acceleration of the ground

z a general response process

2 a constant barrier level on the random process z

2° a random variable signifying the extreme values of the random process z

C.3 Symbols in Chapter 3

Idof one degree of freedom

2dof two degree of freedom

g a nonnegative number set equal to 4 in all examples
A quantity defined by equation (3.19)
) lateral displacement of a laminated rubber bearing

¢ damping ratio of a Idof base isolated model

& modal damping ratio as defined in Appendix B
o,  standard deviation of the random variable y°
oy  standard deviation of the random variable y§
oy standard deviation of the random variable y§
0,e standard deviation of the random variable 2¢

w circular frequency

@  circular frequency of a 1dof base isolated model

wj modal frequency as defined in Appendix B

c damping coefficient of the control elements in a Idof base isolated model

ct upper bound on ¢

) damping coefficient of the first level of control elements in a 2dof modular
model

cf upper bound on ¢;

2 damping coefficient of the second level of control elements in a 2dof modular
model

upper bound on ¢,

E[Z°] mean or expected value of the random variable z°
E[2°] mean or expected value of the random variable 2°
ezp exponential function

ft®  cubic foot
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shear modulus of rubber
gravitational acceleration equal to 386.088 in/sec?

complex frequency response associated with &

complex frequency response associated with 2,

-

mEmme Q

:
N}

complex frequency response associated with 2,
complex frequency response associated with y
complex frequency response associated with y;

complex frequency response associated with y.

= oo

<

complex frequency response associated with V

Hy, complex frequency response associated with V;

Hy, complex frequency response associated with ¥,

H.  complex frequency response associated with z

h., thickness of a rubber layer in a laminated rubber bearing
i imaginary number defined as /=1

) inches

K, lateral stiffness of a circular rubber bearing

K,  vertical stiffness of a circular rubber bearing

k lateral stiffness of the control elements in a 1dof base isolated

Kt lower bound on k

k1 lateral stiffness of the first level of control elements in a 2dof modular
model

Kl lower bound on &,

k,  lateral stiffness of the second level of control elements in a 2dof modular
model

ki  lower bound on k,

kip  kilo-pound

kips  kilo-pounds

km  kilometers

m mass of a Idof base isolated model

m,  mass of the module above the base in a 2dof modular model
mq  mass of the module above m, in a 2dof modular model

n number of rubber layers in a laminated rubber bearing

P probability distribution function

P, critical buckling load of a laminated rubber bearing

psd  power spectral density

pst  pounds per square inch
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R radius of a circular rubber bearing

rad radians

Sz,  power spectral density of the ground acceleration process z;

sec  seconds

t time

V base shear in a 1dof base isolated model defined as cy + ky

174 base shear in a 2dof modular model defined as ;41 + k19

V2 shear at the second level of control elements in a 2dof modular model
defined as ¢y, + kays

vol, volume of rubber used in a laminated rubber bearing

vol,  volume of steel used in a laminated rubber bearing

z absolute displacement of m in a Idof base isolated model

x4 absolute displacement of m; in a 2dof modular model

Tq absolute displacement of m, in a 2dof modular model

Tp absolute displacement of the ground

z absolute velocity of m in a Idof base isolated model

2 absolute velocity of m; in a 2dof modular model

T absolute velocity of m, in a 2dof modular model

z absolute acceleration of m in a Idof base isolated model

Z, absolute acceleration of m; in a 2dof modular model

Iy absolute acceleration of my in a 2dof modular model

Ty absolute velocity of the ground

Ty absolute acceleration of the ground

relative displacement of m in a Idof system defined as ¢ —

extreme value of y defined as E[y¢] + foye

upper bound on y°

1 relative displacement of m; in a 2dof modular model defined as z; —
y;  extreme value of y; defined as E[yf] + foy;

yy  upper bound on y§

Ya relative displacement of m, in a 2dof modular model defined as z, — z;

y;  extreme value of y, defined as Efy;] + fo,.

U

b upper bound on y§

Y relative velocity of m in a Idof base isolated model defined as ¢ — &,
% relative velocity of m, in a 2dof modular model defined as z; — z,
Yo relative velocity of my in a 2dof modular model defined as , — 2,

y relative acceleration of m in a 1dof base isolated model defined as Z —
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relative acceleration of m; in a 2dof modular model defined as 531 — I
relative acceleration of m, in a 2dof modular model defined as 2, — 2,
a general response process

a constant barrier level on the random process z

a random variable signifying the extreme values of the random process z

C.4 Symbols in Chapter 4

constants

damping ratio of a one degree of freedom system

circular frequency

circular frequency of a one degree of freedom system

mean or expected value of the random variable z°

function

function

function

transfer function associated with the random process &
power spectral density of the ground acceleration process &
absolute acceleration of a one degree of freedom system

a random variable signifying the extreme values of the random process &

absolute acceleration of the ground

C.5 Symbols in Appendix A

-1
\%

60"
5bH

used as a superscript to signify the inverse of a matrix
the gradient operator

the gradient of f

the matrix of vectors Vg; defined as [Vg; Vg, ... Vg,,]
the gradient of g;

percentage reduction in the objective function f
lagrangian multiplier

incremental design vector

component of db

component of §b
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6f  desired reduction in objective function f — a small positive number

€ a small positive number

© vector of lagrangian multipliers p;, ¢t = 1,2,...,n4
u! component of y

p* component of

p;  the ith component of p
a small positive number

vector of design variables b;, j = 1,2,...,m

b; the j** component of b

bo a given design vector b

f objective function — a function of b

g the vector of active constraint functions g;

g; the it* active constraint function; : = 1,2,...,n4
h;  the i** constraint function; i =1,2,...,n

m maximum number of design variables

n maximum number of constraint functions h;

na  maximum number of active constraint functions g;

T used as superscript to signify the transpose of a vector or a matrix

C.6 Symbols in Appendix B

—1  used as a superscript to signify the inverse of a matrix
0 zero, a zero vector, or a zero matrix as applicable
2dof two degree of freedom

G real part of A;

6;  imaginary part of A;

\; 7 eigenvalue associated with ¢;

€ j** modal damping ratio as defined by equation (B.10)
@ eigenvector

@;  j™* eigenvector

w;  j** modal frequency as defined by equation (B.9)

A matrix as defined by equation (B.6)

C damping matrix

a damping coeflicient of the first level of control elements in a 2dof modul

model
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damping coefficient of the second level of control elements in a 2dof modular
model

identity matrix

imaginary number equal to /=1

inches

stiffness matrix

matrix as defined by equation (B.4)

lateral stiffness of the first level of control elements in a 2dof modular
model

lateral stiffness of the second level of control elements in a 2dof modular
model

kilo pounds

mass matrix

matrix as defined by equation (B.4)

mass of the module above the base in a 2dof modular model

mass of the module above m; in a 2dof modular model

radians

seconds

time

displacement vector

velocity vector

acceleration vector

vector as defined by equation (B.3)

vector as defined by equation (B.3)
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