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NOMENCILATURE

Unless otherwise specified, the following symbols are used:

Ap(m=1,.. )
Bp(m=1,. . ,»)
Cm(m=l, .o ,00)
D2 = r2 42_
’ dz2
D _o_ O , v 4w
Dt ot i ox Y oy v oz

Fi(i=l1,2,etc.),F,F
P (q,p=1,2,3)

Hj(1i=1,2)

=l

Nm(fﬂ:l, a0 ’m>

O?

functions of z
functions of z
integration constants

differential operator

substantial derivative

auxillary symbols or functions
dimensionless metric tensor

ratio of the amplitudes of the first and
second harmonic components of the dynamic
load to the static load

modified Sommerfeld number

a charscteristic length

mass of the Journal plus the mass
of the prcpeller

integration constants
center of the bearing
center of the journal

function used for order of magnitude
analysis

general radial coordinate
a Reynolds number
critical Reynolds number
Sommerfeld number
Taylor's parameter
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U
U' = U/L
'

V' = V/L

5252 T2

X,Y,Z

d

e

e

Cpet

f;(i=1,2,etc.),f,T
gaB(OLyB:l ;2 75)

g

velocity of a point on the journal sur-
face tangential to the bearing wall in
the circumferential direction

dimensionless form of the velocity U

velocity of a point on the journal sur=-
face normal to the bearing wall

dimensionless form of the velocity V

Laplacian operator

static load on the bearing
dynamic load on the bearing

amplitudes of the first and second har-
monic components of the dynamic load

body forces per unit mass corresponding
respectively to the general coordinates

éi

body forces per unit mass corresponding
respectively to the x,y,z Cartesian co-
ordinates

function of n, a = n/[i + (l—ne)l/g]
acceleration of the journal center
number of propeller blades

bearing clearance

diameter of the Journal

journal eccentricity

unit vectors normal and tangential to the
bearing wall

auxillary symbols or functions
metric tensor

determinate of the metric tensor, g:\gaﬁl

ix



Po

1

ut(i<1,2,3)

ul(i=1,2,3)

film thickness at any point

minimum film thickness

length of the bearing

series indici

eccentricity ratio, n = e/c

pressure at any point in the bearing

supply pressure of the lubricating
fluid

radius of the Jjournal
radius of the bearing
time coordinate

velocity corresponding to the x Cartesian
coordinate

velocity components corresponding to the
general coordinates ¢l

dimensionless form of the general velocity
components

velocity corresponding to the y Cartesian
coordinate

veloclty of any point on the Jjournal sur-
face

velocity of the journal center

velocity of any point on the Jjournal sur-
face relative to the Jjournal center

velocity corresponding to the z Cartesian
coordinate

auxillary Cartesian coordinates
- 1/2
function of n, y = n/(1-n2) /

Cartesian coordinates

functions of n



P;B(a,ﬁ,id,e,j)

4
53(1,34L,2,3)

€

¢
i
g (1=1,2,3)

©

“ S

angular location of the dynamic load
with respect to the static load

Euclidean Christoffel symbols

function of n
kronecker delta

dimensionless small parameter for an
order analysis, € = ho/L

function of n
general coordinates

angular location around the Jjournal with
respect to the attitude angle

phase angle of the second harmonic com-
ponent of the dynamic load

dynamic viscosity

kinematic viscosity
dimensionless pressure

mass density of the lubricant
attitude angle of the journal
function of n

angular velocity of the journal
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I. INTRODUCTION

A. Statement of the Problem

The problem being considered here is that of finding a solution
for the pressure distribution and simultaneous shaft loci of a 360°
Journal bearing subjected to dynamic loading. The bearing is lubricated
by a circumferential source at one end of the bearing. The lubricating
fluid flows out the other end of the bearing. The bearing is considered
to be finite in length.. The bearing lubricant is water which is supplied
at a constant rate and pressure. It is assumed that the bearing and
Journal surfaces will always remain parallel and that both are completely
rigid. The surfaces are further assumed to be perfectly smooth.

The initial motivation for this problem stems from the stern
tube‘bearing of ships, within which the tailshaft seemingly undergoes
cavitation damage due to the dynamic loading of the propeller. It has
been observed in several ships that the tailshaft is eroded at several
definite positions around its periphery and within the confines of the
stern bearing. (See Figure 1.1 for the location of the stern bearing and
Figure 1.2 for the nature of the tailshaft damage involved.) The number
of locations of damage and their positions around the periphery of the
Journal vary directly as the number of blades which the propeller has.

If the number of blades is odd, either three or five, then there will be
either three or five locations respectively of tailshaft damage and their
positionsbwill be directly in line with the propeller blades. If the
number of blades is four, then there will be four locations of damage

which are exactly 45° offset from the line of the propeller blades. The

-l-



Figure 1.1. Stern Bearing Location.



Figure 1.2, Nature of Tailshaft Damage.
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location along the length of the bearing where this damage usually
occurs is slightly forward of the quarter way point of the bearing
as measured from the propeller end of the bearing.

From a survey made by the Bethlehem Steel Company, Shipbuild-
ing Division,<l) possible explanations for an attack of this nature were
(1) galvanic attack, (2) stray current leakage, (3) contact erosion with
shaft idle and (4) cavitation erosion. The first of these was elimi-
nated by direct electrical measurements which showed no current flow.

The second was eliminated by the fact that if grounded D.C. leakage
should attempt to leave the hull by jumping across to the shaft, then
the damage should occur at the jumping off place, which would be the
bearing and not the shaft. The third was eliminated by the multiple lo-
cations of damage. This left the fourth, cavitation erosion, as the
probable explanation.

While the problem studied in this effort differs from the actual
physical problem of stern tube bearings in that is was necessary to make
certain assumptions to surpass some mathematical complexities, it is felt
that it represents a reasonable initial model of the actual problem. It
should be noted in passing that there are innumerable physical situations
which correspond very closely to the problem studied here.

The three most important assumptions departing from the actual
physical situation of stern tube bearings are (1) the shaft and bearing
are to remain parallel at all times, (2) the bearing surface is completely
smooth and (3) the propeller loading can be represented by at most the

first two harmonic components.
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The first of these assumptions has the effect of making the
film thickness a function of only angular displacement around the journal.
It is believed that the two major consequences of this assumption are a
change in the intensity of the pressures obtained and a slight shift along
the length of the bearing of the region of minimum pressures developed in
the lubricating film. It is not felt however that the general pressure
profile would be substantially altered by this assumption. These conjec=-
tures will be further explored in the presentation of the results.

The second assumption definitely violates the actual bearing
which is composed of staves (See Figure 1.3) spaced in the order of one-
half inch around the bearing periphery. The mathematical complexity of
incorporating these effects however makes it necessary td assume a smooth
bearing surface. Considering the third assumption, although the actual
propeller loading is certainly composed of many harmonic components, the
first two of these are known to represent the major portion of the propeller

loading.

B. Brief History of Hydrodynamic Lubrication

Although the field of Hydrodynamic Lubrication is a relatively
0ld one, it was not until the latter part of the 1950's that solutions for
finite length journal bearings considering only static loading became
available. Suprisingly few papers on dynamically loaded journal bearings
of either finite or infinite length appear in the literature.

The initiation of Hydrodynamic Lubrication dates back to Tower,(g)
who in 1883 seemingly by accident discovered this phenomena. He was en-

gaged in an investigation of the friction characteristics of 157° partial



Actual Stern Tube Bearing.

Figure 1.3.
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railroad car Jjournal bearings. In the course of his experiments it was
necessary to drill a hole in the loaded region of the bearing. Plugging
the hole with a cork, he noted that in subsequent experiments the cork
was continuously forced out of the hole. Upon connecting a pressure gauge
he found pressures in excess of 200 psi. while the unit bearing load was
only 100 psi. Connecting more pressure gauges around the periphery of the
bearing he found a very definite pressure profile. This of course con-
firmed his growing suspicion that a pressurized fluid film was being de-
veloped between the journal and bearing which actually supported the
Journal,

In 1886 Reynolds(B) put Hydrodynamic Lubrication upon a sound
mathematical basis. His work is noted to such a degree for its clarity,
scope and understanding, that at present his analysis is basically still
followed. §Some of his integrations have been improved or extended, but
his basic theory is still intact. Considering the case of steady loading
and infinite length, Reynolds was able to obtain an approximate solution
to his basic equation for a Journal bearing in the—form of & Fourier series.
His results however, were limited to lightly loaded bearing; that is
eccentricity rafios of less than 0.5.

Sommerfeld,(h) in 1904, through a series of clever mathematical
substitutions succeeded in finding an exact solution to Reynolds equation
for steady loading of infinite length Jjournal bearings. The major short-
comings of his results were unrealistic attitude angles and negative pres-
sures of a magnitude that a fluid would be incapable of withstanding.
These results were a direct consequence of his assuming a complete oil

film around the bearing.
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Following Sommerfeld, the next most notable works were that of
Harrison;(S) who in 1919 first treated the problem of dynamic loading and
Swift,(6) who in 1937 presented a rather extensive treatment of dynamically
loaded journal bearings of infinite length. Although the major portion of
Swift's effort was devoted to stability of steady loads and alternating
loads with no Jjournal rotation, he did consider the case of a sinusoidal
load on a rotating journal. His results indicated that at a frequency
ratio of one-half (forcing frequency/journal frequency) the load capacity
of a dynamically loaded Jjournal bearing 1s zeroc. Below one-half the load
capacity is less than an equivalent statically loaded bearing and above
one-half is greéter than an equivalent statically loaded bearing. The
general journal orbits were approximately elliptical in shape becoming
flatter with increasing frequency ratio. For frequency ratios less than
one=half the major axis of the orbit was perpendicular to the load and
above one—half\parallel to the load. His results however were limited to
frequency ratios of one or less and no pressure profiles were obtained.

Burwell,(T) in 1947 extended Swift's results for the case of
square wave loading. His results indicated that for equal load amplitudes,
the sinusoidal loading gave greater load capacity to the bearing.

A major contribution was made by Tao,(8) who in 1959 succeeded
in finding an exact and complete solution of Reynolds equation for stati-
cally loaded journal bearings of finite length. His method of approach
was a multiple separation of variables technique which led to a form of
Heun's equation.

Fedor,(9) in 1960, by adding a sine series to the known solution

for a statically loaded journal bearing of infinite length was able to
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find a solution for a statically loaded journal bearing of finite length
with circumferential feed. The analysis presented below will be based
on Fedor's method.

In 1961 Hays(lo) presented a solution for a finite length journal
bearing sﬁbjected to a sinusoildal loading considering only the squeeze film
effect; that is without journal rotation. His method of approach was the
assumption of a double sine-cosine series solution for the pressure func-
tion and numerical evaluation of the coefficients on a digital computer.

To the best of the author's knowledge he also presented the first pressure
profile for a dynamically loaded journal bearing. This distribution, as
would be expected for a symmetrically loaded journal bearing, was in the
form of a paraboloid; being symmetrical with respect to the length of the

bearing and with respect to angular displacement around the journal.

C. General Plan of Attack

The initial phase of the problem deals with the formulation of
Reynolds equation governing dynamic loading of finite length journal bear-
ings. Although this equation is well known, the method chosen for its de-
rivation is a relatively new one. Following the recent work of Elrod,(ll>
who considered the case of statically load journal bearings of finite
length, the equation is formulated by a small parameter approach. The
reason for this choice is that it eliminates the necessity of making the
usual assumptions that the convective inertial terms of the Navier-Stokes
equations are negligible, the fluid film curvature is negligible and the pres=-
sure is constant across the film thickness.

The solution of the Reynolds equation is based on the recent work

of Fedor,<9) who as mentioned above considered the case of a statically
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loaded finite length journal bearing with circumferential feed. To his
solution an assumed series term is added to account for the dynamic
loading, which when made to satisfy Reynolds equation and the gi?en
boundary conditions will yield the equation for the pressure distribu-
tion.

This equation however will contain time indirectly in the form
of two unknowﬁ velocity components. These velocity componénts are the
translational‘and rotational velocities of the journal center in its
orbit about a steady state position.

These two unknown velocity components must then be solved for
from the two scalar equations of motion of the Journal mass center. These
equations of motion will yield two simultaneous, non=-linear, ordinary
differential equations which must be evaluated numerically; in this case
on a digital computer. In addition to yielding the two unknown velocity_
components, the path of the journal center will now be known. Thus for a
given position in the Jjournal orbit and the corresponding velocity compo-
nents of the journal center, the pressure profilevaround and along the

length of the bearing may then be evaluated.



IT. MATHEMATICAL DESCRIPTION

A, Formulation of Reynolds ILubrication Equation

If the assumptions of constant density and viscosity of the
bearing lubricant are made, the Navier=-Stokes equations and equation

of continuity may be written respectively as

o %% = - %ﬁ + pX + pﬁgu 5 (2.1)
2
p.%%:-%+py+mfv, (2.2)
p%j;i:-%?-+pz+u72w, (2.3)
Z
§E+§Z+B_Wg 9 (2"4)
ox Jdy Oz

in which x,y,z are Cartesian co-ordinates, u,v,w are the corresponding
velocity components, p 1s the density, p 1s the pressure, u is the

dynamic viscosity, X,Y,Z are the body forces per unit mass,

" = 52 + 82 + 62 and D_ = é— +u é— + v é— + W é— .
d9x2 | dy2  dze Dt ot ox oy oz

If the further assumptions are made that the flow is everywhere

u ov ow
%E’ %E’ v and the body forces X,;Y,Z

are neglible, then it can be shown (See Appendix A for the derivation.)

laminar and the inertisl terms

by following the small parameter approach of Elrod(ll) that Equations

(2.1) and (2.3) may be integrated directly for the velocity components
op

u and w. Equation (2.2) yields Sv = 0 and thus the pressure is con=
- :

stant across the film thickness. If the values of u and w are sub-

stituted into Equation (2.4) and then integrated with respect to y

-1]l=
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across the film thickness h, the Reynolds equation, Equation (2.5), with
first order correction terms may be written as

O 3 hy OP7 , O .3 hy Op
O md(1 -8) 9By 4 QO qpd(1+ By R
S (3= ) S+ A3+ D) S

= -6uU O_[n(1 - B_ ~hyou, g .
6pU aX[ ( Bd)} + 6un(1 5d) S, (2.5)

where h is the film thickness at any point, d 1is the diameter of the
journal and V and U are the velocity components of any point on the
journal surface normal and tangential respectively to the bearing.
Justification of the five assumptions necessary‘for the deriva-
tion of Equation (2.5), namely, (1) constant density, (2) constant vis-
cosity, (3) the flow is laminar, (4) %% = g% = g% =0 and (5) X =Y=2=0
is now in order. The first of these (1) is very reasonable when it is noted
that the compressibility of lubricating oils and water is in the order of
one part in two thousand or less. Considering (2), the viscosity of lubri-
cating oils or water is known to decrease with temperature. However, when
it is noted that the bearing is supplied by forced feed lubrication and
that the hull of the ship, which is directly adJjacent to the stern tube
bearing, is immersed in the lake water, the temperature rise is very small.
Considering assumption (3) and assuming for a moment that the
Journal and bearing are concentric, then the critical Reynolds number (Re)c

for Couette flow between circular cylinders may be calculated from the

Taylor parameter(lg) T as follows,

-2

— 2 >0
I'l-I‘

T = -2,o(§l - 1)“(Re)i (
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For numerical evaluation of the problem considered in this study the
data used will be that of the S.S. John G. Munson of the Bradley
Transportational Line. This is a single screw ship with a four bladed
propeller. From this data rj = 9.2935 inches and r = 9.25 inches.

This gives (Re), = 1.810 x 102. The actual Reynolds number is given by

2
(Re) = %9 = 4.669 x 10

where v is the kinematic viscosity of water (v = 1.4 x 1072 £t2/sec)

13) by a factor

and w = 11 rad/sec. This value however may be corrected(
of (1.0 + ,89n2) where n = e/c, e Dbeing the eccentricity of the journal
and c¢ the bearing clearance. Based on the minimum eccentricity en-
countered here the correction factor is 1.7. This gives a new Qalue for
Reynolds number (Re) = 2.746 x 10°. This value of (Re) is of course
larger than (Re)c but not significantly and does not necessarily mean
that the flow is turbulent. At (Re)c for Couette flow between circular
cylinders a secondary flow i1s induced which is also a laminar flow. An
actual bound on (Re) before turbulent motion occurs has not yet been
established but it is known that this secondary flow is actually more
stable than the initial laminar flow. It is therefore not unreasonable
to assume laminar flow. For purposes of mathematical analysis this is

a mandatory assumption.

The validity of assumption (4) can be shown by a comparison of

the magnitudes of the inertial terms versus the viscous terms, that is

e

ot dx2 t X
be taken to be one half of the period corresponding to the forcing fre-

2
§E <L vy o%u This i1s equivalent to 1« 2§ . The element of time can

quency (w = 44 rad/sec) and that of displacement (x = 0.0012 in.).
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This corresponds to the maximum journal movement in this period of time.

Considering these values

By 1. x31070 x AWk 1 o0 .

T (0.0012)2

Assumption (5) is obviously good. Considering the diameter
of the journal, approximately two feet, the hydrostatic head will be in

the order of 1.0 psi. This is less than 0.5% of the total pressure.

For the bearing considered here, h/d = 0.0017. In all other
known Journal bearing uses, h/d is even less than this. Therefore,
h/d << 1.0 and these terms may be neglected in Equation (2.5) which then

can be written as

d 3 Op d 1.3 9Py _ dh dU
€ [n? 22 © [p? 8] = -6uU = + 6uh 22 + 12uV . 2.6
o e P 5 T U e (2.6)

B. Boundary Value Velocities and Film Thickness

Referring to Figure 2.2, the absolute velocity of point B may

be written as
VB = Voy + VB/O' .

In terms of components parallel to the unit vectors 'EN and 'Eb

.
ﬁb' = %E[e cos® €y + e sin 6 gl + %%-x[e cos@'EN + e sin@'Eé],
or
- de . d —_ de R d -
Vor = [af cos® + e 5ine E%J ey + [EE siné - e cos® E%J e
Similarly

Vot/o = -rw sin & ey + 1w cosd €y .
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Figure 2.2, Boundary Value Velocities and
Film Thickness Configuration.
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Therefore

—t B~

. de . dQ
= [-rw sind + — cos® + e sind e
B T at 2 N

+ [rw cosd + de 5ine - e cose QQJ E% .
dt at .

Separating 'Vé into it scalar components and noting & is a small

angle, therefore

oh

cos 8 ¥ 1.0 and sind¥€ - 2=,

ox
.the components of velocity U and V of a point on the Jjournal tangen-

tial and normal respectively to the bearing may be written

U =rw + %% sin® - e cos®e %%f, (2.7)
Vero B+ 88 o504 e sine I . (2.8)
ox dt dt

Referring to Figure 2.2 the film thickness h at any point B

around the journal may be written as

— em—— —

h =AB =0A - OB = (r+c) - OB .

It is necessary at this point to assume that the journal and bearing al-
ways remain parallel such that the film thickness is a function of only
angular displacement around the journal.
Now

S = e sine and S =1r sind ,
therefore

e s5in® = r sind .
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Further
m=r sind and m = OB sine ,
thus

B =r siny/sin@ .

Noting that 7y =6 = 5,

0B = —— sin(6-8) = —— [sin® sind - cos6 coss] .
sin® sin®
However
sing = & sine ,
r
and thus
2 1/2
coss = (1 - & sine)
r2
Therefore

0B = £ [sine(l - e2 sinEG)l/2 - £ 5in6 cos6] ,
sin6 r2 T

or

0B = (r® - & sin29)1/2 - e cose .

The film thickness h may thus be written as
1
h=r+c -~ (r2 - e sin®e) /2 + e cose .

Noting that e2 ginfe << re ,
h=c+ecos6 =c(l +n cose) . (2.9)

Substituting Equations (2.7) and (2.8) into Equation (2.6) and

noting x = r®, therefore é_ =1 é_
r

ox

119 p39py, 93 9p
M UG
dh e df oh lde . . dh
-w 56—+ vy cose % " ot sin® 3 (2.10)
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— _Q ine + = ;2 cose
r dt

2 26 Sln@ 2 COS@ ° COr s
L E i ( o O O d)

From Equation (2.9)

éﬁ = - ¢cn sineG .

o6

Substituting this result and Equation (2.9) into the right hand side of

Equation (2.10) with the exception of the first term

w B + ag e sine(< + 2)

e dt r
+ 28188 L€ 0s6 + 2 coso] (2.11)
dt *r r ° °

Finally noting

S«o, &< 2cosp, =8
r T r r

and
2cn %% s5inG = = 2 Q@_é& 3

at oo

Equation (2.11) may we written

1 1 d¢.3 Op d (3 OPy] .
= [= 2’ =) + Z(n? Z)] =
6n 2 % W 5 5
edhy e A
(w -2 dt) St 2c dt_cos@ . (2.12)

The solution of Equation (2.12) together with the appropriate
boundary conditions will yield the solution for the pressure distribution

around the bearing.
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C. Boundary Conditions

One of the major difficulties encountered in solving the
Reynolds equation is adequately defining the boundary conditions. There
are three general approaches adapted in all of the bearing literature.

The first of these is the classical Sommerfeld approach, namely

p(6) = p(® + 2x) and op(8) - op(8 + 2x)
) )

This approach in general yields negative pressures over a considerable
portion of the bearing and unrealistic attitude angles. The second
method adopted is the same as the first except the pressure is set equal
to zero for the entire negative region. The third approach is to let

p =0 for all 6 > 91 and %g =0 for © = ©q. This condition of
course requires both the pressure and pressure gradient to be zero at

the beginning of the negative region. This last method in general yields
results that compare more favorably with practice, in particular with re-
spect to the attitude angle.

The approach used in this study is that of Sommerfeld for the
specific reason that the major questions in this study are (1) do nega-
tive pressures occur, (2) if so, are they of sufficient magnitude to
allow cavitation of the lubricating fluid and (3) if cavitation is possi-
ble what is the location of the areas of possible cavitation around and
along the length of the journal. Accordingly the boundary conditions
adapted are

P(O:Z) = p(2n,z) , (2.13)

P (0,z) = 9B (2x, 2,1k
5@(’2) a@(ﬂz); ( )
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(2.15)

(2:16)



III. THE PRESSURE EQUATION

A. Solution of the Reynolds Equation

In order to determine a solution to Equation (2.12) first
consider the infinite bearing; thus g_( ) = 0. Equation (2.12) may
z

then be written

O (1,3 Op dgy oh dn
O (pn’ °P) = 6ure -2 el 4 1ourle 42 e . .1
a@( e8] ) hrE(o dt) 00 *orenrme dt °08 (5-1)

The solution to Equation (3.1) satisfying the first two boundary condi-
tions, Equations (2.13) and (2.14), is a well known solution (See

Appendix B.) which may be written as

p = 6pr® (& -2 QQ)[n(2+n cos6) siné
c? dt’  (2+n°)(1+n cose)2

6ure d 1
TS S

+ arbitrary constant. .2
c2n dt [(l+n cos@)g] Y (5.2)

The arbitrary constant may be absorbed into the infinite series account-

ing for the.finite length of the bearing. For the total pressure function,

in view of Equation (3.2) let

1 =z 6ure dfs -n(2+n cos6). sine
p(6,2) =p (3 - 5) + = (0 =2 F)
’ °e 4 c2 At (24n2) (1+n cose)2

6ur® dn 1

+
c2n 4dt " (l4n cos©)2]

- 2L Ay(z) sin me - §: Bp(z) cos mo . (3.3)
m=l m=1

Equation (3.3) satisfies the first two boundary conditions,
Equation (2.13) and (2.14). The first term represents the circumferen-

tial source function. The next two terms represent the infinite length

-2l -
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bearing and the last two terms represent a correction to account for the
finite length of the bearing. The first three terms satisfy Equation (3.3)
as may readily be shown by substitution. The last two terms can be made
to satisfy Equation (3.3) by substituting them into the equation and
equating the coefficients of sin m6 and cos me equal to zero. If

this is done, and for convenience let

An(z) = Ay and  By(z) =By,
the following recurrence relations are obtained.

For m =1

]
(@]
N
N

=
S

2(D%-1) Ay + n(D%+2) A,

1]
(@]

2(D°-1) By + n(D?+2) B, , (3.5)

and for m > 1

2(D?-m?)By + n(DP-rP-m+2)By 1 + n(DP-mP+m+2)Bry =0 , (3-7)
where
2 2 42
D =T °
dz2

Considering FEquations (3.6) and (3.7), not only are they three
term recurrence relations, but they are also second order differential

equations. However following the work of Fedor(9) assume

Ap = =7Aq (3.8)

and

2

where 7y and § are positive quantities to be determined. Substituting

=By (3.9)
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Equation (3.8) into Equation (3.4), it becomes

[(2-7n)D% - 2(14yn)]ay =0 .

Letting
052 - 2!1+')’1’1) , (5.10)
(2-yn)
then
2y - -
D2A, - OFA) =0 . (3.11)

Thus we have a second order, linear, homogeneous equation with constant
coefficients. In view of the third boundary condition, Equation (2.15),
the solution of Equation (3.11) must be even in z. Accordingly the solu-
tion of Equation (3.11) is

Ay =0y cosh 22 (3.12)
where Cp 1s a constant of integration. In view of Equation (3.8)

Ap = -yCq cosh %? . (3,13)
Substituting Equation (3.9) into Equation (3.5), it becomes

[(2-yn)D? - 2(1+yn)]B; =0 .

Letting
> _ 2(1+yn) 1)
= o 24
then
DBy - t°B; =0 . (3.15)

Again in view of the third boundary condition, Equation (2.15), the solu-

tion of (3.15) must be even in z. Accordingly the solution of (3.15) is

B, = N cosh %? (3.16)
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where Ny 1is a constant of integration. In view of Equation (3.9)

B, = -yN; cosh %; . (3.17)

Knowing Ay, Ay, By, and By, all of the A, and B, may be evaluated
from the general recurrence relations, Equations (3.6) and (3.7) respec-
tively. This is done for the first eight terms of each series in
Appendix C. A bound for this particular number of terms will be es-
tablished later on.

Now applying the third boundary.condition, Equation (2.15)

p(o, %) =0 , to Equation (3.3)

2 : 2
bur 0 g@_[n(2+n cos®) sin® N bur dny 1 ] 3.18
c2 (@ dt) (2+n2) (1+n cos6)2 c2n dt (l+n cose)2 ( )

¥ An(2) s S Bu(2 0 =0
- B Am(z) sin mo - 2 Bm(g) cos me =0 .

This requires that the first two terms of Equation (3.18) be expanded

into Pourier series. Considering the first term

6ur® dg, -n(2+n cos6) sine
—%g—(w—E dt)[(2+n2)(l+n cos@)2)

(3.19)
- 6“r2(w-2 @Q) 1 nsiné  nsind g
o2 dt’ (24n2) (1+n cose) (1l+n cose)2
Now |
.n.sine = 2asine .
(1+4n cos®)  (l+2a cose@ + a2) ’
where
n
8 = 8 (3:20)

1+ (1-nR)1/2
Tt is known that(l¥)

8ino —

(~2)™"L sin mo
(1+2a cos® + &)

il

S8
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which is uniformly convergent for O < a < 1l . Accordingly
n sing S m-1_m
———— =2 ) (-1)" & sin me . (3.21)
(14n cos®) m=1
Now
n sine - n jl[ 'n sin6 1,
(14n cose)2 on (1l+n cose)

therefore from Equation (3.21)

. [s0]
n sine =n EL [2 ¥ (_l)m-lam sin me] éi ’
(1+n cose)2 oa m=1 on
or
. 0 m-1 m _.
n sine _ (-1)"""ma sin me n (3.22)
(1+n cose)2 m=1 (1-n2)1/2

Substituting Equations (3.21) and (3.22) into Equation (3.19)

6Hr2(m—2 @Q)[ n(2+n cos®) sing,

c2 dt  (2+n2)(l+n cose)2
.2
= ;gﬁfg(w-e 9@_( 1) ;: (-1)mLam(1 4+ o ) sin méB, &
c2 dt’ 24n2 m=l ZI:£§7T7§
Considering the second term of Equation (3.18) it is noted
n? ji 1 1. 2’ sind . (3.24)
3" (1+n cos6)2” ~ (l+n cose)>
Now
: §%£(12n822§@)2] T = S§i$n+cZ§@?§n@ = (5.25)
and
> . n sin® _ 2nd sine (-n sin® + n2 sin® cos6) . (3.26)

5@2L(l+n cos8)”  (l+n cos8)3 ¥ (1+n cose)3
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By adding and substracting a term in Equation (3.24) it may be written
as

n2 EL[ 1

2nd sind
36 (1+n cose)?2

= _ (-n sin6 + n® siné cose)
(1+n cos6)>

(1+n cose)’

+ (-n sine + n° sin@ cose)

: (3.27)
(1 + n cose)?

In view of Equations (3.25) and (3.26), Equation (3.27) may be written

2 9 1 _ d°: n sing d ;. n sing
. 5@[(l+n cos@)g] T 062 (14n cos@)] " S (1+n cos@)g] - (3-28)

From Equation (3.22)

i ® 2 2
1 d_n sine 5] =2 y [ N mn ]
dn (1l+n cos®) m=L

(—l)m-lamsin me

(1-n2)  (1-n2)3/2 - (5-29)
Considering Equation (3.21)
o) n sin® b m=1
—_— ] = ) -1 e .30
36 (1l+n cose) 2 mzi (-1)" "m a7cos m (3.30)
and. therefore
2 [nsine 1 __ o § (-1)"1n%Psin me . (3.31)
62 (1+n cose) m=l
Substituting Equations (3.29) and (3.31) into Equation (3.28)
2 9 1 S m=- m m n? .
n© @& l==-2 2 (=1) In a®lm - - ] sin me.
36 (1+n cose)2 m=1 (1-n2) (n2)3/2
(3.32)
Integrating Equation (3.22) with respect to ©
ne| L ] =2 ;: (-1)1glp « —2_ - ‘ng ] cos me.
(1+n cose)2 m=1 (1-n2) (1-n2)3/2

(3.33)
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From Equation (3.33) the second term of Equation (3.18) may thus be
written as

6ur? dng 1
ne? dt (14n cose)2 (5.34)

_ 6bur® dn S ym=lomp o om - ne
" e Bk (VT ey - g oot e

Although termwise integration of a Fourier series is quite
legitimate, in this case Equation (3.32), the termwise differentiation
of a Fourier seriles requires more caution. The necessary criteria is
that the resultant series must converge uniformly in the interval in
question. It is thus necessary to establish the uniform convergence of
the series in Equations (3.22), (3.29), (3.30), and (3.31). Considering

the series in Equation (3.22)

S (-1)m-lpgm

2 sin me ,
m=l (1-n2)l/2
this series is uniformly convergent on the interval 0 < a <r if 0 <r < 1.

m

u,(a) = ma and M, = mr ,
noting that sin me 1s bounded by one. Then on the stated interval
la] <r and so |uy(a)] <M, . Since the series X mr® is convergent,
the uniform convergence follows by virtue of the Weierstrauss M-test.

The series in Equation (3.30)

o0
2 X (-l)m-lmam cos me
ma:L

is uniformly convergent on the interval O <& <r Iif 0OK<r<1l.
Noting that cos m8 1s bounded by one the proof is identical to that

for Equation (3.22) directly above.
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Considering the series in Equation (3.31)
S 1
2 % (-1)™"mfa™ sin me ,
m=1
this series is uniformly convérgent on the interval 0 <a r 1if

O0<r<1. For let
up(a) = m=a and My =m°r®

noting that sin me 1is bounded by one. Then on the stated interval
]a] ST and so lum(a)l < My . OSince the series L mer®  is convergent,
the uniform convergence again follows by virtue of the Weilerstrauss M-test,

The series in Equation (3.29)

°° 2 2 -
2 ¥ = mn m-lm oin me

m=l (1-n°) ' (l-n2)5/§J (-2)

is uniformly convergent on the interval O < a <r if O<r<l.
Noting that sin m® is bounded by one and taking advantage of the fact
that thé sum of two uniformly convergent series is itself uniformly con=-
vergent, the proof of the uniform convergence of the individual terms of
Equation (3.29) is identical respectively to that of Equations (3.31) and
(3.22) above.

Substituting the results of Equations (3.23) and (3.34) into

Equation (3.18)

12|:LI'2 =D gﬁ 1 e -1 m=-1 m 1 m . a)
2 (0 dt)(2+n2) m§1 (-2)7e0 (1-n2)172] s
2 P 2
4 i2prsdn ¢ q)ym-lamp, oW - n ] cos me
ndec2 4t m=l (1-n2) (l_n2)5/2

- X Am(g) sin me - 2 Bm(g-) cos mé =0 . (3.35)
m=L m=l
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Equating coefficients of sin m@ and cos me in Equation (3.35) equal

to zero
4 gg m-1 m m
) = B w2 DLy (T« B (5.36)
and
4y _ l2ur2 dn . ym-l .. m n2
W) =Sz g () - ey - e (5.37)

Equations (3.36) and (3.37) in addition to yielding sufficient boundary
conditioné to evaluate the constants of integration for all of the

Ay(z) and By(z) also permit the evaluation of y and V in Equations
(3.8) and (3.9) respectively.

Considering Equations (3.12) and (3.36) for Al(é)

L O _ 12 re d¢ 1 7 1 9 ﬂ
Cl cos oy _c%-( it -2:;?) a[ + W:} (3 38)
and from Equations (3.13) and (3.36) for Ag(é)

) af _ _ 1l2urd a
7C1 cosh 5= = —EE——(w =2 dt)(

t+ ZE:E%YIWEJ . (5n59)

Dividing Equation (3.39) by (3.38) and substituting Equation (3.20) for

a

y = n[2 + (lang)l/E] . (3.40)

(1 + (1-n2)1/2]2

From Equations (3.16) and (3.37) for Bl(g)

Lo lewrfan 1w 41
Toeosh 2= BE & o TRy T e G40

and from Equations (3.17) and (3.37) for ’Bg(é)

¢ l2ure dn 2 2 ne
“\VN:L cosh o7 _1'_13_0-— [2 - (lnne) (lang)jfgl B (3.&2)
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Dividing Equation (3.42) by (3.41) and again substituting Equation (3.20)

for a

n[l + 2(l-n2)l/2]
Vo= SNIEE (3.43)
[1 + (1=n=)~/=]
It is to be noted finally that the last boundary condition,
Equation (2.16), is satisfied by the chosen form of p(@,z). Now since

Equation (3.3), which is repeated for convenience,

ure dd\rn(2+n cose) siné
p(@,z) = P ('J‘.‘ = E‘) + 6 L ((D='2 _L_)[ :E (5«3
R ¢ At (24n2)(1+n cose)2 )
6ur? dn 1 -7 4 nme - 3 0
* nee dt[(l+n cos@)z] mzi n(2) sin o m=l Bn(z) cos m

satisfies Reynolds Equation (3.1) and meets all prescribed boundary con-

ditions, it 1s a solution of the problem under consideration.

B. Convergence of the Series

Now the question of convergence comes up for the series
<«
2 Ap(z) sin me
m=1

and
[+o]

2. Bp(z) cos me .

me=l
The first of these has been shown(9) to be convergent in the following

manner, Making the spproximations

(m-1)(m+2) € (m-1)°
and

(m+l) (m=2) 2 (m+1)%
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for large m, then the recurrence relation for Ay(z), Equation (3.6),

may be written as
2[D%m? Ay, (z) + n[DP-(m-1)2]a, ;1 (2) + ulDP-(wel)2]a, 1 (2) = 0. (3.44)

Letting
(D°-m®)Ay(2) = Py (3.45)
where
F, = Fplm,n,z)

and substituting into Equation (3.44) yields the following second order

difference equation with constant coefficients
2F, + nFy.q + nFp 1 =0 . (3.46)

Letting Fy = UX , then from Equation (3.46)

L+ 2u+ 1] =0 (3.57)

or
- 14 (1n?)1/2
. g

Up,0 =
Now in order to insure Fy 1is finite at n =0 1t 1s noted that

n
-1 + (lanz)l/2

Ul,2 =

also satisfies Equation (3..47).
Accordingly

n ]m

, n 1™
-1 + (1-n2)1/2

I+ (1nd)i/2"

—=

Fp =Tyl - Ts

In order to insure F =0 at n =0 1t follows that T; = 0. Letting

Fy = £(z), then

By = (-7 () [ oaye) = (D)7 2(2). (5.18)
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Substituting Equation (3..48) into Equation (3.45)
(D2-m2)Ay(z) = (-1)Ma® £(z) . (3.49)
Since A (z) 1is an even function the complementary solution is
Ap(z) = Cp cosh %? :
A particular solution by variation of parameters is
Ap(z) = (“l)ﬁam(%) [ f(z") sinh[%(z«z')] dz’

or replacing the integral by its maximum value M, then the solution to

Equation (3.49) may be written

m m
An(2) = Cp cosh BZ - Lllée«_fé o (3.50)
m

Evaluating Equation (3.50) at z = é it follows that

£ -1 )%a™y
Cn = i
cosh 5;

Equation (3.50) may then be written as

(@) Am(g)cosh %5 (-1)™a™M| cosh %? .
Aplz) = + -
mp 2 mg
cosh 57 m cosh 7

Therefore the inequality exists

mz m
Am(é)cosh - X afM | | cosh =+

mg me sh =%
cosh T co o

]Am(z)l i

or more strongly
a™M

a(2)] S (@1 + 15
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Letting

m
By = [an(3)] + |55

(o)

then it follows from the Cauchy ratio test that 2. Ry, 1s absolutely
m=1

convergent since 0<a <1l for 0<n<1 and

£

lim | Aps(3)
m o Y/
Am(g)

and

]

lim |af@tiM /&M a
M=% 1 (n1)2 m?
Now |sinme| S1 and |A(z)] SR, for large m and therefore by the

comparison test the series
o«
Y. Ap(z) sin me

m=1

absolutely converges for

L<, <L,
2= T2
0 é ] ; 21
0<n<l1l

The proof for
[
Y By(z) cos me

m=l

is identical since the recurrence relation is identical and |cos me § 1.

C. Estimate of the Series Error

An upper bound on the error involved in a finite number of terms

of the series
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;: Ay(z) sin me
m=1

can be determined in the following manner. A little reflection on this
series will reveal that the Am(z) are attenuated at z =0 and reach
a maximum at z = g where the axial flow in the bearing will attain its
greatest importance. This is further substantiated by both the mathems-
tical form (see Appendix () and the numerical evaluation of the Ay(z).
Accordingly the following inequality may be written that

b |Ag(2z) | |sin me| < b |Ag(£)] |sin mo

me=1 = m=1 2

or

o0 o0

% z)| S A, L
w22 (B
Considering Equation (3.36) which is rewritten for convenience

aalf) = ey (L ¢ R (3.36)

where
2
_ 12pr -2 QQ
Fl c2 (03 dt) F

it is noted that Am(é) is the combination of the two geometric terms

and its derivative

oi mrm'l = __L._
m=1 (l-r)2
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it follows that

; (D = F1 L a _ 0 o
m=1 o 2 : (2+n°) (1-a) ' (l-n2)l/2(1_a)2 1] (5.51)

Considering the series

2. Bu(z) cos m 6
m=1L

it is again noted that

21 |Bu(z)| |cos mo| < ;Zi le(%)llcos mo |

or

MOl
S

L B2 § 3 |

Rewriting Equation (3.37) for convenience

& F m -1 all[m - m - n?
Ba(2) = 501 G T (3.27)
where
_ 12pr2 dn
Fo ==&’

then again by virtue of the known sum for the geometric series and its

derivative it follows that

ﬂ - ﬁg a _ a _ ne :
s 1wG =Sl mmp e T Tzt Y 6%

m=
It is to be noted that the error involved with the series Bm(z) is
approximately twice as great as that for Am(z) for any given number of
terms. A typical maximum error for the series

0

2. By(z) cos me

m=1



=37~

considering the first eight terms and corresponding to a steady state
position of n =0.8 is 3.5 percent. However in the actual evalua-
tion, the boundary condition for a supply pressure of 30.0 psig was
checked with a maximum error of 0.2 percent for eight terms of the éeries.
The error interior to the ends of the bearing would of course be even

less than this.

D. Condition on the Inlet Pressure

In order to insure that the oil film is continuous, the condi-
tion is imposed that the axial pressure gradient at the end of the bearing

is negative. It follows then from Equation (3.3) that

[>¢]

dp e Ay . 5 OBy
G, = [T ™ s ], 0 O

If the first term is taken from each series, an equation can be found that
imposes a minimum value for the feed pressure Po- Greater accuracy on

this lower bound may be found by including more terms of the two series.

From Equation (3.12)

OA; Ay .. Ol
(522 = £ =0u(5) stob 5

where from Equation (3.36)

12pr? agy, 1 1 a
€7 = == (-2 =£)( V(1 + ) \
* c? dt" '24n? (1-n2)1/2" cosn %ﬁ

From Equation (3.16)

(%E%Z - () sim §£

Nl
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where from Equation (3.37)

N = l2Hr2 dn 1- 1 - n2 a
n3c2 dt (1-n2)  (1-n2)3/2 ]|, op %é

Substituting these results into Equation (3.53) and noting Equation (3.20)

for a

bo > - 2L | (o0 By( Ly (a)(—L2 ) (ann L) (stn o)

2 at’ o4n° (1-n2)1/2 or
- (g7 () (s ) (cos 0) | . (5.54)

Now © 1is the angle at 2z = where the tendency is the greatest for

(VT

positive gradients to exist. Thus the angle © 1in question 1s the angle
which maximizes the right hand side of Equation (3.54). Differentiating
the right hand side of Equation (3.54) with respect tc © and equating
to zero gives |

tanh 3£ g2 QQ

- e
o = tan~L |- (& 2r dt n(l-n<)

£L dn 2+n°
tanh 5; dt

(3.55)



IV. [EQUATIONS OF MOTION OF THE JOURNAL

A. PFormulation of the Equations of Motion

Referring to Figure 4.1 the displacement of the Journal center
with respect to a fixed reference point, in this case the center of the

bearing, may be written as

—L' .
00' = e ey -

The velocity of point O' 1is then

- de - B
Vi s — €y + € e o
' Ta N7 T ap e

It follows that the acceleration of point O' may be written as

- 2 o 2
=188 - ()8 b e L0 Yy
ate dt at2 at dt

Considering the scalar equations of motion

2 EN = may and Z.Ft = may ,

then for the normal direction

8/2 2x
Wy cos(f +B) + [ [ p(6,z) coserdedz + Wy cos@ (4.1)

-4/2 0

7 d%e _ @g_g
=M [BE;? e(dt) )

and for the tangential direction

4/2 2xn
-Wp sin(@ + B) + [ [ p(e,z) sinerdedz - Wy sing
-4/2 0
_ W ore 829 de af (k.2)
=M le e Pt dt]

-39-
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Figure 4.1. Geometry for Journal
Equations of Motion.
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where M represents the mass of the journal plus the mass of the pro-

peller. The pressure function p(6,z) is defined by Equation (3.3) which

for convenience is repeated below:

1 ¢z gg n(2+n cos®) sind
e, = - - = 2
p(8,2) =2, (3 z) —Ez—-w (2+n2)(l+n cos@)E]
. Bur? dn | 1
e2n 4t (l+n cose)2
- L Ap(z) sinme - ¥ By(z) cos me . (4.3)
m=1 m=1

B. Evaluation of the Pressure Integrals

Considering the evaluation of the integrals of the pressure

function in Equation (4.1), then for the first term of Equation (4.3)

£/2 2xn 1 £/2 2n
[ p(>-2) coserdedz =p.r J [(i - 2) sine] = dz = 0. (h.b)
YZR 02 4 0 -1/2 Y 0

The integral of the second term of Equation (4.3) may be written as

£§2 ?ﬂ bure d¢ I n(2+n cos®) sine

(=2 ] coserdedz
- 0 c2 dat (2+n2)(l+n cos6)2
/2 (h.5)
2
_F 5/2{ T (24n cose)sinbcoseds " (24m c050)s1ndc0s6ddy 5,
-2/2 "0 (1+n cos@)2 7t (1+n cose)?
where
(]
F = w=
02 ®at (2+n2)

Letting © = PR + 2n in the second term of the right hand side of

Equation (4.5), then the right hand side of Equation (4.5) becomes

/2 . 0
Fof ? (24n cos®)sinecosede v [ (24n COSB)SIHBCOSBdB} dz . (4.6)

~g/2 O (1+n cose)? - (1+n cosp)?
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Replacing B = -y, inverting the limits of the second term in (L4.6)

and substituting this result into Equation (4.5) it follows that

42 2
i Sur® (- 4f) (240 c056)s1n6 _} 550,904
-4/2 0 c? dt’ (24n2)(1+n cose)2
(4.7)
43/2 x n
=F { i (2+n cos®)sinecosede i (2+n cosy)sinycosydy, 4z
-4/2 O (L+n cose)? 0 (1+n cosy)? !
=0 .
Considering the third term of Equation (4.3) then
4/2 2x 2
6“; %% 1 ] coserdedz
-4/2 O nc (1+n cos6)?
_ 6urd dn 42 1 sine B de ]2“ dz
nc2 dt -g/2 (1-n2) (1+n cos®) (1l-n2) °~ (1l+n cose)O
/2 »
= QEEZ dn { zen 2 tan™1( 10 pon 9] }dz .
n02 at -Z/Q (l- 2) (l_n2)l72 14 2 0

Evaluating the limits with respect to © and integrating with respect

to 2z

/2 2n ¢ 2 an 1
-2/2 0 nc? 4t "(14n cose)?

] coserdedz

12unrd s 1 an
_ dn 4,
ce (1-n2)3/2 at (4.8)

In view of the orthogonality relationship

2
cos rx sin sx d&x =0 ,

O

where r and s are integers then the integral of the fourth term



43-

of Equation (4.3) becomes

2/2 25 o0
] [- 2 Ap(z) sin m8] coserdedz = O . (4.9)
-4/2 0 m=1
From the additional orthogonality relationship that

2x 0, ri£s
COS rx cos sx dx =
Ty I'=S,)40

then the integral of the lastterm of Equation (4.3) becomes

4/2 2x % 4/2
] | [- Z By(z)cos me) coserdedz = -rx [ Bj(z)dz . (4.10)
-z/20  m=l -4/2

From Equation (3.16)

£z
Bi(z) = N; cosh =2-~
1(2) 1 -

and thus Equation (4.10) may be written

£/2 2xn o 2
f [ [- Z By(z)cos me] coserdedz = - arin N; sinh & (L.11)
-4/2 0 m=l ¢ or

However from Equation (3.41)

1 lopr2 dn n 1 n? 1

N = l - - ]
b osh éé ndc2 dt 14(1-n2)1/2 (1-n2)  (1-n2)3/2
Ir

and Equation (4.11) may be written as

2/2 2x o
I | [- ¥ By(z)cos me] coserasdz
-2/2 O m=L (h.12)

L 2 £
Ehpr n dn 1 n ] tanh €

T T 22 av 1+ _n2)17 (1-n2)  (1-n2)3/2 or
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Considering next the evaluation of the integrals of the pressure

function in Equation (4.2), then for the first term of Equation (L4.3)

L/2 2xn 2/2 o
[ po(% - -E—)sin@rd@dz =-p,r | [(% - —z-)cos@]o dz =0 . (L4.13)
~4/2 0 -8/2

The integral of the second term of Equation (4.3) may be written as

n(2+n cos®)sine
] sinerdedz

e an el ),

-4/2 0 c2 (2+n°) (1+n cos6)?
6urd dfy_n 4/2 2x (2+n cos6)sinQ
= E(w-2 =) ( ) ]I ] dedz . (h.1k)
2 at" (2+n?) ~4/2 0 (1+n cos6)e
Letting
5 - en (2+n cos@)sin2@d® ~ iﬁ[l + (1+n cos6))sin®6 46
0 (14n cos8)® 0 (1+n cos6)
23{ . D 23'1: . D
Ly T = a - 5 ao
0 (1+n cose) 0 (14n cos®)

and making the substitution that

cose and du = -sinGde ,

U =
then
27 2
7 = f 1-u2 du _ T 1-u2 du
0 1+nu 0 (l+nu)2

Making the further substitution that

Zz =1+ nu and dz = ndu ,

then
F o 1 ?“ V(n2-1)+22=22 iz 1 ?ﬂ V(n2-1)+2z=z2 iz
T T n2 § z ne 22
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The solution of these integrals may be written as

2n

F == AE-[ V(ng-l) + 2z - 22 + S R—
n 0 V(n-1) + 2z - 22
21
+ (nB-1) dz -1 M(nQ-l) + 2z-2°

0 z V(n2-1)+22-22 z

an dz - e az

! g z || (n2-1)+22-2° é V(£5-1)+2z-z§]

or
_ 1 1 5 5 5 2n dz
F == "1;2_ [(l - E) \/(n "l)+22—Z +n é z (n2-1)+22,-22 ]
1 1 5 5 n2__ ool rez+2(n-1)
= - = [(1l - = -1)+2z= +
7 [ - PV P12z 4 o= stn™ e 22420 L)),
However
= (1+n cos6)
and therefore
Foo-2 n°s1in8cosd . n® Sinul(n+cos@ ]“
n® (1l+n cose) (l=n2)1/2 1+n cose’ O
= 2“
(1-n2)1/2

Substituting this value of F back into Equation (L4.14) and integrating

with respect to 2z then

£/2 2% ;o
[ 6Hr (com d¢ n(2+n cose) 81n@] inordcds

-2/2 0 c? dt (2+n2)(l+n cos®)
. L2urdnt, o 9P n (4.15)

at (2+n2)(1_n2)1/2 :
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Considering the integral of the third term in Equation (4.3) then it

follows directly that

42 2n o o
burc dn 1 .
— | ——— ded.
_g/g g —ﬁgg 3 [(l+n co50)2 ] sin6rdedz
3 4/2 2n
Jburdn T 1 a0 (4.16)

]
ne2 d -z/2 n(l+n cos6) O

From the orthogonality relationship

2n O, r s
[ sin rx sin sx dx =
0 t, T =285>0

then the integral of the fourth term of Equation (4.3) becomes

2/2 2« 8/2
[ [ [- ¥ Am(z)sin me]sin6rdedz = -rx [ Aj(z)dz . (4.17)
-4/2 0 m=l -4/2

From Equation (3.12)

oz
Ay = Cp cosh ”
and thus Equation (4.17) may be written

2/2 2x

2
[ [ - ¥ Ay(z)sin me] sinerdedz = - 2% ¢y sinh 2L (4.18)
-4/2 0 m=l G ar :
However from Equation (3.38)
1 12pr2, agy, 1 n
o] = [ \CU"2 '—’_)( ) ]
1 cosh g—ﬁ 2 dt’ “o4n2 (l-n2)1/2

and Equation (4.18) may be written as

8/2 2x "
] [- Z Ap(z)sin me] sinerdedz
-g/2 0
~ Ehr 2hrium, d¢) n 7] (4.19)
B a2 dt’ (2+n2)(1-n2)1/2 2r
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In view of the orthogonality relationship that
2n
/] cos rx sin sx dx =0 ,
0

where r and s are integers, then the integral of the last term in

Equation (4.3) becomes

4/2 2x w0
[ | [- X Bp(z)cos me] sinerdedz = O . (4.20)
-4/2 0 m=l ,

C. Simplification of the Equations of Motion

If it is noted that

1 1 n2 1

1
? 2 - ey - GeerE | T merE

and the results of Equations (4.4), (4.7), (4.8), (%4.9) and (4.12) are
substituted into Equation (4.1), then the equation of motion for the

normal direction becomes

Wp cos(f+8) + Wg cosf

3 — g2
pl2urowg p2r L 88 gy 1 dn gdte | e(é@)2] . (k.21)
2  th 2r (1-n2)P2 dt dte dt

Similarly, substituting the results of Equations (4.13), (4.15), (L4.16),
(4.19) and (4.20) into Equation (4.2), then the equation of motion for
the tangential direction becomes

-W sin(@+p) - Wy sinf

louring (2r o ag- n
- el T rel QL L1 (-2 o
7 g ten o - U2 ) oy

M QEQ. de gﬁ L, o2
Mle 355+ 2 3% ag) (h.22)
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Considering Equations (4.21) and (4.22) the inertial terms can be shown
to be negligible. Since the bearing is going to oscillate about a steady
state position with a maximum radial travel equal to the minimum film
thickness, which is in the order of 0.00l1 inches, and the circular fre-
guency of the dynamic load is four times the angular velocity of the
journal for a four~bladed propeller, which in this case is 11.0 radians/

second, then the maximum acceleration expected will be

2
a = I'd)2 = Oi—gOl[u X ll] = 0016 o

This as a percentage of gravity is

0.16 v 100 = 0.5% .
32.2

The inertial forces are therefore in the order of l/EOO of the gravity

forces and shall be neglected.

The dynamic load will be assumed to be of the form
Wy = Wbl sin bwt + Wb2 sin 2b(wt - A) (4.23)

where Wbl and ng represent the amplitudes of the first and second
harmonic components of the propeller loading, b is the number of blades
and A a phase angle. It should be noted that these are termed the
first and second harmonic components in terms of the blade number and are
actually not the first and second harmonics in the usual sense.

Utilizing the fact that the inertial forces are negligible,
substituting Equation (4.23) for Wp and intfoducing the dimensionless

constants

W W
B = 2L Hy = 22 (4.2k)
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and the constant

X < lourdng (4.25)
C2WS

Equations (4.21) and (4.22) may be written respectively as
[{H; sin bwt + H, sin 2b(wt-A)} cosp + 1] cosf

-[{H] sin bwt + Hp sin 2b(wt-A)} sing] sing

5 - 1 ———7—_n2 s (.26)

+ Cﬂ tanh

and

-[{H; sin bot + H, sin 2b(wt - A)} cosp + 1] sing

-[{Hi sin bwt + Hy sin 2b(wt-.A)} sinB] cosf

2r aL _ l](m- QQ n

- K[= tanh 2 dt) (2+n2)(1-n2)1/2

) e =0 . (k.27)

It is convenient at this point to make the change of variable

- n
= TT77 4,28
In terms of the variable 5 it is noted that

1 am.g
(1-n2)3/2 at  at

and

n _3??’3
(240%)(1-02)1/2  (2435°)
Substituting these relations into Equations (4.26) and (4.27) and solving
for the time derivativesof the dependent variables § and ¢ , then

Equations (4.26) and (4.27) become respectively
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dy _ [{H, sin bwt + Hy sin 2b(wt-A)} cosB + 1] cosp (1. 29)
at |
K[1 - er tanh ££]
y) 2r

[{Hl sin bwt + Hp sin 2b(wt=A } sing] sing

K[1 - gﬂ tanh E_

and

{Hl sin bat + Hy sin 2b(wt- A)} cosp + 1] sing

oK[1 - 2 tannod] T(1452)
as or  (2+35%)

) [{Hl sin bwt + Ho sin 2b(wt-A } sinB] cos@ _ (1.50)

=D
?£ tanha,e] y(l+y )

2K|1 -
[ al or” (2+5y )

In terms of the new variable 5 Equation (3.10) for 0f becomes

1/2

o2 - 2by+ (1+52) " ] (4.31)
2(1472) Y22 57

where from Equation (3.40)

LTl 2P (k.32)
[1 + (l+§2)1/2]2

Similarly Equation (3.14) for (2 becomes

2 2l + (1722 (k.35)
2(1+y )l/2 vy G
where from Equation (3.43)
yl2 + (l+:>7'9)l/2]” a (k.34)

¥ =
1+ (1432)1/272
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Substituting Equation (4.32) into Equation (4.31)

e e P TRl (4.55)
2(1+37~9)1/2{1+(1+372)l/2} - 372{1+2(1+y2)1/2}
and substituting Equation (4.34) into Equation (L.33)
o - |2lP2r1)1/2) ¢ (12)1/2014(1452)1/2)2) e . (1.36)

2(1+y2)1/2{1+(1+372)1/2}2' - 372{2+(1+372)1/2}
Values of y, 7, Q, ¥ and ¢ verses 'n are given in Table L4.1.
Considering Equations (4.35) and (4.36) for o and ¢, it is
seen that these expressions are quite complex for computational work.

These may be approximated by polynomials of the form

a Qo.ooeeou? - 0.049805° + 0.65187 + 0.7843 (4.37)
and

¢ £ 0.008050y° - 0.1215y2 + 0.6154y + 0.8332 , (4.38)
where for

0.6 <n<11l0 or O0.75<y<w

the maximum error involved in either expression is 0.68 per cent.

The solution of the two simultaneous, non=-linear, first order
differential equafions given by Equations (4.29) and (4.30) will give the
path of the Journal in its orbit about a steady state position and the
velocity components corresponding to the translational and rotational
motion of the Jjournal center in this orbit.

Thus for a given point (n, §) in this orbit, and the correspond-

dn d

ing velocity components (ag, dt) the pressure may be evaluated around the

circumference and along the length of the bearing from Equation (4.3).
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TABLE 4.1
T 7@ ¥, v

n 7 7 e’ ¥ d

.00 0.0000  0.0000  1.0000 .0000 .0000
.10 0.1005  0.0753  1.0056 0751 .0056
.20 0.2041 0.1520 1.0229 .1510 .0227
.30 0.3145  0.2321  1.0527 .2285 .0519
. 40 0. 4364 0.3176 1.0970 .3085 .09k2
.50 0.55T4  0.4115 1.1593 .3923 1516
.60 0.7500  0.5185  1.2460 4815 227k
.70 0.9802 0.6k466 i.5702 5785 3273
.80 1.3333 0.8125 1.565& .6875 . h622
.85 1.6136 0.9214 1.7120 . TL8Y 5492
.90 2.06k7  1.0633  1.9371 L8171 . 6566
.95 3.0424 1.2756 2.3691 . 8962 . 7955
.96 3. 4286 1.3359 2.5223 9141 .8290
97 3.9900 1.4080 2.731L .9529 . 8652
.98  Lk.go2k7  1.4990  3.0L97 . 9530 9048
.99 7.0179 1.6280  3.6676 L9749 .9k488
.00 ) 2.0000 w .0000 .0000




V. RESULTS AND DISCUSSION

A. Physical Data of the Case Considered
for Numerical Evalustion

Numerical results for the simultaneous location of the Jjournal
center and the corresponding pressure distribution in the bearing will
be presented under separate headings as they are actually two distinct
steps in the numerical evaluation.

The data considered for numerical results of this problem is
from the stern tube bearing of the S. S. John G. Munson of the Bradley
Transportational Line. The pertinent characteristics of the bearing are:

11.0 radians/second,

w =
r = 9.25 inches,

£ = Th.0 inches,

¢ = 0.0435 inches,

b =L,

bwo=1.4x 107 pound-second/inch?,
P, = 30.0 (pound/inch?) gage .

The actual static load on the bearing is unknown due to the
effect of journal deflection. If the effect of this deflection is ignored
the static load can be shown to be approximately 7 x lOu pounds. This
static load however would yield a steady state eccentricity of 0.999966
and a minimum film thickness of 1.47 x 1072 inches. This is considerably
below the limit for which a lubricating film would be developed. It is
felt that the Journal actually rests on the after end of the bearing due
to its static deflection and allows & film to be developed in the re-
mainder of the bearing. For this reason the steady state eccentricity of

the Journal will be assumed and the value of Wg 1s then fixed.

~53-
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With respect to the location of the dynamic load and the ampli-
tude ratios of its first and second harmonic components little is known.
From the sparse information available it appears that the ranges of B
and Hj are respectively 270 < B < 360 and O < H} < 1.0. No information

is available on Hp although it is certainly considerably less than Hj.

B. Journal Orbits

The solutions of the two simultaneous differential equations,
Equations (4.29) and (4.30), describing the journal orbits were obtained
numerically by the Runge-Kutta fourth order method onen I.B.M. 7090 dig-
ital computer. The step size used in the numerical integration was
t = 0.005 seconds. As a check on the accuracy of the integration a step
size of t = 0.001 seconds indicated a discrepancy of only one part in
5 x 106 for a total of 0.5 seconds.

The integration was treated as an initial value problem utiliz-
ing the static loading position as initial values for n and ¢. The
integration was then continued until the Jjournal orbit repeated itself
within an error of 0.5 percent. 1In all cases considered here this
occurred by at least the second time around the orbit. It should be
noted that due to the assumption of a complete oil film, the steady state
position for ¢ from Equations (L4.29) and (4.30) will always be @ = 90°.

Figure 5.1, 5.2 and 5.3 show the orbits obtained considering
only the first harmonic component of the dynamic load fo; three values
of B (270°, 300°, 330°) and using a steady state positibn of n =0.85
and @ = 90°. These figures illustrate that it takes 9.0 cycles in
terms of the dynamic loading frequency (44.0 radians/second) or 2.25

cycles in terms of the journal frequency (11.0 radians/second) to complete
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A

0.80 Gr’/)(/ 0.90 n

® INDICATES THE START OF THE ORBIT

Figure 5.1.

Locus of the Journal Center for Hj = 0.8,
Hp = 0.0, b = 4, B =270° and K = 0.1796.
Steady State Coordinates are ¢ = 90° and
n = 0.85.
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® INDICATES THE START OF THE ORBIT

Figure 5.2. TLocus of the Journal Center for Hy = 0.8,
Hy = 0.0, b = 4, B = 300° and X = 0.1796.
Steady State Coordinates are ¢ = 90° and

= 0.85.
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102°

87°

84°

81°

78° \

® INDICATES THE START
OF THE ORBIT

Figure 5.3. Iocus of the Journal Center for Hy = 0.8,
Ho = 0.0, b = 4, B = 330° and K = 0.1796.
Steady State Coordinates are $ = 90° and
n = O. 85-
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one orbit of the journal center. The orbits are almost symmetrical about
a line connecting the mid-point of the first cycle and the end of the
fifth cycle. This shall be designated as ¢mean in the discussion.
It is seen that ¢mean is very sensitive to a change in the

value of B locating the dynamic load, decreasing at a much faster rate
-than B 1is increasing. This amounts to a rapid conversion from one

. dn . Qg
velocity (a€> to the other velocity (dt) and as shall be seen below

. considerably effects the magnitudes of the pressures developed in the
bearing.

‘The principal characteristics of the above orbits along with
other orbits investigated for H, = 0.0 and a steady state position of
n = 0.8 and ¢ = 90° are summarized in Table 5.1. These results show
that the size of the orbits vary directly as the amplitude ratio H; but

than ¢ is almost independent of Hp .

mean

It should be noted that the conditions of @ = 90° and B = 0°
are a singular point of Equations %.29) and (4.30) and represent an un-
stable condition. Figure 5.4 shows the orbit obtained for these condi-
tions, which although appearing similar in form to the preceding orbits
continues to grow in size.

Considering again the case of Hy = 0.0, the effect of increas-

ing the eccentricity of the initial conditions is shown in Figure 5.5.
Although the orbits are elongated in the ¢ direction with a correspond-
ing decrease in the n direction the general shape of the orbits is

maintained. The former point is to be expected as resistance to motion

in the n direction increases with increasing eccentricity.
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TABLE 5.1

CHARACTERISTICS OF THE ORBITS OF THE JOURNAL CENTER FOR THE
CASE OF Hy = 0.0, b = 4, X = 0.1796 AND STEADY STATE
COORDINATES OF n = 0.85 AND ¢ = 90°

H1 p Nmax Dmin Prax Bmin ¢mean
0.8 0° - - - - 0.00°
0.8 270° 0.880k4 0.8025 96.20°  83.,88°  84,51°
0.8 300° 0.8790 0.8054 99.16° 82.29° 21.06°
0.8 330° 0.8750 0.8138 100.76° 79.85° 7.88°
0.4 270° 0.866k4 0.8272 93.15°  86.90°  8k.73°
0.k 300° 0.8655 0.828k4 ok.4g8°  85.85°  21.11°
0.4 330° 0.8630 0.8323 95.47°  84.75° 7.90°
TABLE 5.2
CHARACTERISTICS OF THE ORBITS OF THE JOURNAL CENTER FOR THE
CASE OF Hp = 0.0, b = 4, K = 0.0969 AND STEADY STATE
COORDINATES OF n = 0.95 AND ¢§ = 90°
H1 B Max Dymin Brax Punin Puean
0. 0° - - - - 0.00°

270° .9611 0.9309 96.32° 83.79° 65.49°

O

300° 0.9606 0.9321 99.28° 82.16° 8.13°

(@]

270° .9561 0.9409 93.26° 86.80° 65.86°

.9557 0.9413  94.59° 85.74° 8.24°

O

8
8
8
0.8  3350°  0.9591  0.9556 101.18°  79.82°  3.35°
4
b 300°
"

.9548 0.9429 95.55° 8k4,69° 3.51°

o

330°
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® |INDICATES THE START
OF THE ORBIT

Figure 5.4, Iocus of the Journal Center for Hj = 0.8,
=00, b=24, B =0°and K = 0,1796.
Tnitial Coordinates are f = 90° and n = 0.85.



-61-

8I

® INDICATES THE START OF THE ORBIT

Figure 5.5. Locus of the Journal Center for Hj = 0.8,
Hy = 0.0, b = 4L, B =270° and K = 0.0969.
Steady State Coordinates are ¢ = 90° and
n = 0.95.
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Table 5.2 summarizes the principal characteristics of orbits
investigated for steady state conditions of ¢ = 90° and n =0.95 with
Hy = 0.0. It 1s again noted that ¢mean 1s essentilally independent of
Hy, depending largely on B. A comparison of Tables 5.1 and 5.2 shows
that @pean also depends on the steady state value of n but to a much
smaller extent than B.

Including the second harmonic component of the dynamic load at
various phase angles A produces no substantial changes in the general
shape of the Jjournal orbits. Principal characteristics of the orbits in-
vestigated are summarized in Tables 5.3 and 5.4, The variations of
¢mean verses f, the amplitude ratios Hy and Hp, and for differential
initial eccentricities follow the same patterns as those for the case of
Hy = 0.0. It is also seen that ¢mean is essentially independent of A.

Figure 5.6 shows a typical journal orbit obtained if the blade
number is changed to b = 3. In this case it takes only 7.0 cycles in
terms of the dynamic loading frequency (35°O radians/second) or 2.33 ro-
tations of the journal to complete one orbit.

If the blade number is changed to b =5 it now takes 11.0
cycles in terms of the loading frequency (55.0 radians/second) or 2.2

rotations of the journal to complete one orbit. A typical orbit obtained

for this case is shown in Figure 5.7.
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TABLE 5.3

CHARACTERISTICS OF THE ORBITS OF THE JOURNAL CENTER CONSIDERING

BOTH THE FIRST AND SECOND HARMONIC COMPONENTS OF THE

DYNAMIC LOAD FOR b = 4, K = 0.1796 AND STEADY
STATE COORDINATES OF n = 0.85 AND @ = 90°

H o E A B Mpex  Pmin  Pmex  Pmin  Pmean
0.8 0.% 0.00° 270° 0.885 0.7885 97.7h° 82.37° 84.15°
0.8 0.4 3.75° 270° 0.8815 0.7903 97.48° 82.52° 83.59°
0.8 0.4  7.50° 270° 0.8819 0.794%0 96.88° 83.01° 83.23°
0.8 0.4 11.25° 270° 0.8817 0.7999 96.10° 83,70° 83.18°
0.8 0.% 11.25° 300° 0.8799 0.8049 99.26° 81.95° 28.09°
0.4 0.2 0.00° 270° 0.8665 0.8216 93.81° 86.26° 84.42°
o.4 0.2  3.75° 270° 0.8671 0.8223 93.70° 86.33° 83.86°
0.4 0.2 T.50° 270° 0.8673 0.8238 93.4k° 86.54° 85.h5°
0.4 0.2 11.25° 270° 0.8672 0.8262 93.10° 86.85° 83.25°

TABLE 5.4

CHARACTERISTICS OF THE ORBITS OF THE JOURNAL CENTER CONSIDERING
BOTH THE FIRST AND SECOND HARMONIC COMPONENTS OF THE
DYNAMIC LOAD FOR b = 4, K = 0.0969 AND STEADY
STATE COORDINATES OF n = 0.95 AND § = 90°

H) H2 A = Dmax Dyin Bmax Bmin Brean
0.8 0.4 0.00° 270° 0.9612 0.9251 97.86° 82.29° 64.11°
0.8 0.4 3.75° 270° 0.9615 0.9258 97.60° 82.4k° 62.88°
0.8 0.4 7.50° 270° 0.9617 0.9274 97.01° 82.93° 62.22°
0.8 0.% 11.25° 270° 0.9616 0.9298 96.22° 83.62° 62.33°
0.8 0.% 11.25° 300° 0.9609 0.9315 99.38° 8L.87° 11.09°
0.4 0.2 0.00° 270° 0.9561 0.9387 93.93° 86.17° 6k4.55°
0.4 0.2 3.75° 270° 0.9565 0.9389 93.82° 86.23° 63.33°
0.k 0.2 7.50° 270° 0.9564 0.9395 93.56° 86.45° 62.69°
0.4 0.2 11.25° 270° 0.9564 0.9404 93.22° 86.75° 62.80°
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® INDICATES THE START OF THE ORBIT,

Figure 5.6. Locus of the Journal Center for Hj = 0.8,
Hy = 0.0, b =3, B = 270° and K = 0.1796.
Steady State Coordinates are $ = 90° and
n = 0.85.
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® INDICATES THE START OF THE ORBIT

Figure 5.7. Locus of the Journal Center for Hj = 0.8,
H, = 0.0, b =5, B = 270° and K = 0.1796.
steady State Coordinates are § = 90° and
n =O.85.
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C. Pressure Distribution in the Bearing

Having obtained the journal orbits, then for any point (n, @)
in these orbits and the corresponding velocity components (%%, %% ) the
pressure profile around and along the length of the bearing may be de=-
termined from Equation (4.3). This again was accomplished on the I.B.M.
7090 digital computer including the first eight terms of each series
accounting for the finite length of the bearing.

Two of the most important questions to be answered about the
pressure distribution in the bearing are how'it varies around and along
the length of the bearing for a complete orbit at a given initial eccen-
tricity position. These two points were investigated rather extensively
of which the results are indicated in Figureé 5.8 and 5.9. Figure 5.8
shows that the region of minimum pressure encountered along the length
of the bearing occurs slightly past the middle of the bearing toward the
propeller end. The particular plot is for the point in a complete orbit
where the greatest minimum pressure occurs. All other positions in the
orbit follow a similar pattern. It is of course obvious that pressures
of the negative magnitude obtained could not actually occur without rup-
ture of the fluid film.

Figure 5.9 shows the variation of pressure at a fixed point in
the bearing for a complete cycle. Again the point selected for representa-
tion is that where the greatest negative pressure occurs during a complete
orbit.

In studying the numerical results of the pressure variation
around the journal for many different initial conditions it is found

that the pressure profiles are all of a very similar design; being an
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Figure 5.8. Pressure Variation Along the Length
of the Bearing for t = 0.7300 in the
Journal Orbit; p, = 30.0 psig,
2 = 74,0 inches, b = 4, B = 270°,
Steady State Coordinates of the
Orbits are n = 0.85 and § = 90°.
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eight lobed pattern with eight regions each of positive and negative
pressures.

This pattern although fluctuating considerably in size re-
mains essentially fixed in space during a complete orbit. It oscillates
approximately t_5° about a mean position. It is further found, as in-
dicated in Figure 5.9, that there is one extreme value of negative pres-
sure encountered in each orbit.

This extreme value of negative pressure occurs slightly past
the middle point of the orbit; that is just past the mid-points of the
fourth, fifth and sixth cycles for three, four and five blades respec-
tively. The angular position around the bearing where this occurs is
defined by @ + 6 = 170°.

The numerical results also show that this extreme value occurs
at an optimum condition of a large positive value of (%%) and a large
negative value of (%%Ja The relative magnitudes of these two veloci-
ties are approximately equal.

The pressure profiles shown below will all be for the position
z = 0.0 along the length of the bearing and at the point in the respec=-
tive Jjournal orbit where the largest negative pressure occurs.

Figures 5.10, 5.11 and 5.12 show the pressure distributions
around the bearing for three, four and five bladed propellers respectively
using the parameters Ho = 0.0, B = 270° and a steady state position of
n =0.85 and § = 90°, It is seen that the three bladed propeller pro-
duces the largest values of both positive and negative pressures.

Figures 5.13 and 5.1k4 illustrate the effect of including the

second harmonic of the dynamic loading at different phase angles A.
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" A considerable reduction in the magnitudes of both positive and negative
pressures 1s obtained for an appropriate value of A, in this case
A =11.25°,

The effect of the initial eccentricity on the magnitudes of
pressures developed in the bearing is illustrated in Figures 5.15 and
5.16. Both positive and negative pressures are considerably reduced
with increasing eccentricity. Thus, although the static portion of the
pressure increases with increasing eccentricity, the total pressure is
greatly reduced. This is to be expected in view of the previous dis-
cussion of the journal orbits. As the initial eccentricity is increased

30

there is a conversion from the velocity (%%) to the velocity (EE)

and the more important one in terms of pressure levels appears to be the

. dn
radial velocit —_—).
y (dt)
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Figure 5.10.

Pressure Profile at t = 0.7850, n = 0.7951, z = 0.0 and ¢
for the Orbit Defined by Hy = 0.8, Ho = 0.0, b = 3, B = 27
A = 0.0 Steady State Coordinates are n = 0.85 and § = 90
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Figure 5.11. Pressure Profile at t = 0.7300, n = 0.8083, z = 0.0, and § = 89.83
for the Orbit Defined by H; = 0.8, Hy = 0.0, b = b, g =270° and
A = 0.0. Steady State Coordinates are n = 0.85 and § = 90°.
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QJ

Pressure Profile at t = 0.6950, n = 0.818%, z

for the Orbit Defined by H; = 0.8, Hp = 0.0, b
A = 0.0. Steady State Coordinates are n = 0.85 and §

= 0.0 and P = 88.65°
=5, g =270° and

Figure 5.12.
= 90°.
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Pressure Profile at t = 0.7300, n = 0.8004, z = O.

0 a
for the Orbit Defined by H, = 0.8, H, = 0.4, b =4, p
A = 0.0. Steady State Coordinates are n = 0.85 and @

Figure 5.13.
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Figure 5.14. Pressure Profile at t = 0.7300, n = 0.8020, z = 0.0 and @ = 89.91°

for the Orbit Defined by H, = 0.8, H, = Ok, D
and A = 11.25°, Steady State Coordinates are n

L, g = 270°
0.85 and ¢ = 90°.
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Figure 5.15. Pressure Profile at t = 0.7300, n = 0.8270, z = 0.0 and P = 89.96°
for the Orbit Defined by Hy; = 0.4, Hy = 0.2, b = 4, g = 270° and
A = 11.25°. Steady State Coordinates are n = 0.85 and g = 90°.
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&i @

Figure 5.16. Pressure Profile at t = 0.7300, n = 0.9408y z = 0.0 and § = 90.07°
for the Orbit Defined by H, = O.k, Hy = 0.2, b = 4k, g = 270° and
A = 11.25°. Steady State Coordinates are n = 0.95 and ¢ = 90°.




VI. SUMMARY

A. Conclusions

The journal orbits are found to depend primarily on four fac-
tors, these being {1) the amplitude ratios of the dynamic load Hj and
Hp, (2) the frequency of the dynamic load bw, (3) the initial steady
state eccentricity position no and (4) the angular location of the
dynamic load B.

Considering the first of these 1t is found that thé size of
the Jjournal orbits varies directly with the amplitude ratios Hy and Ho-
With respect to the second, the frequency of the dynamic load is found
to effect the general shape of the orbits. In terms of the loading fre=
quency 1t takes exactly 2b + 1 cycles to complete one journal orbit.
The third and fourth factors are found to influence the mean attitude of
the journal orbit. An increase in either B or np decreases ¢mean
considerably, with B Dbeing the more important factor. As ¢mean of
the journal orbit decreases there is a rapid change from a translational
velocity (%%) to a rotational velocity (%%)u This results in long narrow
Journal ofﬁits nearly symmetrical about '¢meanu

The position along the length of the bearing for extremum values
of pressure, either positive or negative, occurs slightly past the middle
of the bearing toward the after end. The general profile of the pressure
distribution around the bearing is independent of all parameters. It is
felt that this is a result of the assumption of a complete oil film around

the bearing and the nature of the sine=-cosine form of the solution for

the pressure distribution.

78
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For given amplitude ratios Hj) and Hy, the magnitudes of the
pressures developed in the bearing are found to depend mostly on the

relative values of the velocities (%%) and. (%%)o It appears that of these

It would

two quantities the more important is the radial velocity (%% .

take considerable more data to firmly establish this. The difficulty
encountered here is that 1t takes nearly ten minutes of computer time to
completely evaluate one journal orbit and the corresponding pressure pro-
file around and along the length of the bearing. If the above conjecture
is true concerning the velocity (%%) than the greatest reduction of
pressure magnitudes will be obtained for a minimum value of ¢mean’ a
maximum value of the initial steady state eccentricity and an appropriate
value for the phase angle A of the second harmonic component.

With respect to the physical problem motivating this study the
possibility of cavitational damage has been firmly established. It is
felt that with the proper choice of the physical parameters involved in
this problem all negative pressure regions around the circumference of
the bearing could be raised above the vapor pressure of the fluid except
one and this one occurring only once every complete journal orbit. If
this were the case then for a propeller having four blades, as it takes
exactly 2.25 revolutions of the journal for one complete orbit, there
would be four distinct areas of cavitation damage exactly 90° apart around
the circumference of the journal.

If the number of propeller blades is changed to three, it takes
exactly 2.33 revolutions of the journal for a complete orbit. This would
result in three distinct areas of cavitation damage exactly 120° apart

around the Journal.
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The same is seen to be true if the blade number is changed to
five. It now takes exactly 2.2 revolutions of the journal for a complete
orbit resulting in five distinct areas of cavitation damage 72° apart.

If the conjecture concerning the existence of one negative pres-
sure region for a complete journal orbit is true then the location along

the length of the bearing where this would occur also agrees closely with

the observed damage.

B. Areas in Need of Further Study

To get a more exact understanding of the actual physical prob-
lem there are two particular areas of investigation which would be of
considerable value.

The first of these is a more exact determination of the real
propeller loading either analytically or experimentally, the latter being
perhaps the more realistic approach.

The second would be to attempt to treat the journal as a de=-
formable body. This of course mekes the film thickness a function of

dn)

both © and 2z and would quite likely effect the velocities (Ef and

(QQJ considerably.
dat



APPENDIX

A. Derivation of the Reynolds Lubrication Equation

Reynolds equation for dynamically loaded journal bearings may
be derived by following the same approach as that of Elrod(ll) who con-
sidered the case of static loading. It is necessary only to change the
boundary conditions to account for the radial motion of the journal due
to the dynamic loading. Accordingly the work that follows is that of
Elrod with the exception of that involving the radial velocity V.

The complete Navier-Stokes equations and equation of continuity
for steady flow of an incompressible fluid and neglecting body forces xi
can be written respectively in general coordinates as

op _dPul 1owe 4 w0 o b, arky e R
AP * e e + T, y: e 360 + (8§5 + el Ton aﬁ)“u

dul s 1 ig Op _ .
- U.a(@ + Fé’,auo) - ;gl g-éﬂ =0 , (Aol)
d_ ¢ 1/2 oy _
L _(g'u*) =0 (A.2)
Ot
where the Euclidean Christoffel symbols are
{908 O8og _ 9%
Fi ( 1.2 .3 = ;L_ 1lo oB + g . (A.Ja)
B £ E,87) 5 g (aga BQB T
or
oG
il (gl ¢2,3) = L 10208 , %o . s (A.3b)
SR ) s p o L S - S
and the metric tensor is
_ 2 ol oyt (A.ka)
o i=1 Jt% JeR

-81-~



-82-

or
o _ L i
g = g(cofactor of gy 1in g). (A. kD)
Further
g = I%agl ’ Gdﬁ = %%Q ’ d15 = %gg (A°5)

where I 1is some characteristic length and the velocity components ul

may be written as

Referring to Figure A.l the following dimensionless variables are intro-

duced;

¢l = re £2 = XE and E3 = _Tr-R (A.6)
n(el,e2)

(i

L

Figure A.1 Auxillary Coordinate System.

Introducing the dimensionless velocities

i_ IPul

* V

u
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the boundary conditions become

ui =0 when e = -1 (A.Ta)
and
Drrt Drrt
ui = LU , uz = 1V s ui =0 when ¢5 =0 (A.TDb)
1% v
where
Ut = % and V' = % (A.7c)

Now the transformations inverse to Equations (A.6) are

1
y1 = R sine = (r-t3h) siné = (r-£3h) sin(¥D) ,
r
y° = L7,
gl

= r-R cos® =r - (r-t>h) cos (EF—) .

%\N
|

In view of these relations it follows that

oyt Lipg3 3 0h _.
=~ = =(r-t’h) cos6 - £t/ —— sin6 ,
ded r( ) del
1 1
O . .3 g, W o oonosing
dte dEe de>
W Lo, W, ¥ .o, (A.8)
del Ot o>
ézi =L (r-t3n) sine + &7 o cos6 ,
agl T agl

ay5—§5§_h__cos@, Q.;Yz-.:hcosga
d3e2 g2 3e> _
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Considering Equations (A.4a), (A.4b), (A.5) and (A.8) the following

relations are obtained:

€8 g = | (13 D)2 My® (P23 3w 3k dn
2 e (1-2 D)+(3 St ) () StT 3e2 & 15 50
.52 dh_ dh £ dh 2 zh oh
SLENRS 22 _— A.
L) 3¢l 32 (L a§2) 7 5P (4.9)
R oh_ 3 B oh_ (B2
12 el 12 3t2 L
301nh ]
. = N
1208 = P - L 0 :
(1-6 B2 (1-£3 B)®
dlnh
0 1 -g2
%2 |4.10)
,301nh 30 1ln h\2
: o] P2l hgg+(§ _aflig :
2
(1-¢3 = £ (185 ;)
+ <§5 O 1n hy\2
i %=
and
h.2
g =gyl = (1-8 D 4. (a.11)

Introducing as a dimensionless small parameter e = hO/L 5
where hy represents the minimum film thickness, it is noted from
FEquation (A.10) that all G are &(¢0) except @2 which is ®(e=2).
Therefore

@B - d[exp(-26g8§ln )l . (A.12)
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From Equation (A.9) all derivatives of Gop are #(c®) except G171

which is ©(e). Accordingly

OCy, 1.1
é__ké = olexp(2 - 6ozaa)ln el . (A.13)

Considering Equations (A.12) and (A.13), then from Equation (A.3b)

i nalao _ Ll
raB = & exp( 28565 + 2 5055) In €] (A.1k)

_nalso _algl _oalal _algl
+ Ilexp( 285875+ 2 6a60)ln<-:] + Ofexp( 28383 + 2 SQSB)lne] .

i
Picking the lowest power of € for each EaB is is noted that

LA5, @kl BAL: I = o)
i3, a=1,orp=1,ora=p=1 E;B = e) ,
i=3,a=1, or B £ 1: qiﬁ = &(e0) ,
= = = i = _l °
i=3,a=p=1 raB & e=t)

Introducing the dimensionless pressure

o= 2
o(

V2
ho)

and substituting s and ui into Equation (A.l) it may be written as

2.1 o o i i
op 9 ux i Oug i oug _ o Oux or i ol o oy,0
a*[ + Tgg —% + I3y —% raB g (Z0Q 4 rTﬁrga FGTFQ?B)u-x-]

de¥dEP JE% deP 3t deP
1 : .
- ug(glég + Do) - e261% g_g& -0. (4.15)
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With 1 ﬁ 3 and retaining terms of Equation (A.15) of the lowest powers

of e, that is &(e™) and ©(e™l) then

i 2.1 1 i 1
Gl o, 330k o Oux 3 x| A3 g
G, 5o + P [8(5,5)2 + 21“15 S + F55 S + Y5 uy ]
- gl Ot o (A.16)
oE%
With respect to the given accuracy

fooLlgil %2 ell(-2 By = gl B g(e)

13 2 o3 2 r r ’

i
i@é_.: (52) as @._ =0,
3¢> 3¢3

=130 [9%3 | 9833) . g(c2) as 9033 .o

33 2 de3 dEo de
Po- -1 %0 oy gl

11 2 o3 r(h) (e)

In view of these relations, Equation (A.16) may be written
P S R |
BT "a(¢2)2 r 3t 1 o8
- =2Gll_a_’f__ GlQQI[_ G15§£—=O, Al
€=l SeT Y- + 5§5J (A.17)

With i =3 correct in terms of 6(6_4) and ®(e™) Equation (A.15)

becomes

or -0, (A.18)

o%ux - 2gll E_QE% - E_§E%,= Gll(E_)2 on_ (A.19)
3(8)° T Toag Bo 3t
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and
Fuf  _nE | epn 2 dn_ (4.20)
3(82)2 1 dt3 ho  Of2
where
el = =1+282 84
(1-83 2)2 T
and
G22 =1
Retaining terms of &(e) in Equations (A.19) and (A.20)
2.1 1
U _ 5 %.éﬁi = (1 + 287 B)(E)P on_ (A.21)
a(§5)2 a§5 o] agl
and
% n ¥ n 23 (A.22)

3(e3)2 raed®  ho  dE2
In view of Equation (A.18) with respect to the given accuracy, Equations

(A.21) and (A.22) may be integrated directly to give

2171 i
oo (LPUL L R180 (g, o3y 4 B3RV | £
v 2 r 2y 36

2170 f 3
¢ (3)2(FUL L Ty o 3y 2L (A.23)
2y L 18

where

h \2 dx
f1 = (E;) ng ’

and

ui = f2[§5 iiiéil +,E(§2 + (55)2 + (5575)] (A.24)

2 r 12 L 6
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where

fro= (__) on_
27 he' a2

Equation (A.2) in view of Equation (A.18) and considering boundary con-

ditions (A.7a) and (A.7b) may be integrated with respect to £5 to give

=1 '
) 3 h 3 3h 3
[l (le—hldé 1= 2la
Il r) u + df Se ( = ) hu, | dg
-1
e - [ [O (1.6 B) md] e (a.25)
0 o8 roo#

Substituting Equations (A.23) and (A.24) into Equation (A.25) and per-

forming the required integration gives

—_ h _h _ l’_l LgUi
ag >{<><:L >a§l (6 - 2) =
RIS 1SS C RN 2 S P v (A.26)
2" 'hy' 'k or’ dt? ho v ’

Finally in terms of the more conventional variables

Z Y

= T = s

L V42
p(ho)

and noting Equations (A.7c), then Equation (A.26) may be written

O [m3(1 - B) OP) 4+ O [n3(1 + B) OP) (A.27)
ox 2r ox oz 2r 0z

- 60U 2[n(1 - 8]+ 6un(L - B) U+ 127

ox r 6r ox
This of course represents the general Reynolds lubrication equation for
finite length, dynamically loaded, journal bearings with first order

correction terms; that is @&(e).
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B. Solution of Reynolds Equation for
the Infinite Length Bearing

Considering Equation (3.1) with 2z variation neglected the

partial derivatives become total derivatives and Equation (3.1) becomes

d_(h3 9B) = 6ur2(w-2 ¥8) db 4 1o4r3c B cogo . (B.1)
dae de dt de at
Letting
6ure ag bur dn
Fp = 2—(w-2 , Fo = 2 =—
1 2 ( dt) 2 ( dt)

noting Equation (2.9) that

h = c{l+n cos@) , = =cn sind ,

dh
ae
substituting these results into Equation (B.l) and integrating with re-

spect to 6, Equation (B.1l) becomes

SN S P S RS SN2 A N = 1 (B.2)
de ! (1+n cose)? (1+n cos@)? g cS(1+n cose)?

where Fz 1is a constant of integration. Noting that the pressure must

be continuous around the bearing and letting

a =

B

Equation (B.2) becomes

n b

+ a5F2

sinede
nﬂ (& + cos6)>

p(n)-p(-n) = 0 = ¥y [

-t (& = cos@)2

b
Pry | —= (3.3)
T -£ (& + cos6)> ’
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or
— ; 7
0 = OtgFl[ _2 n-t { JC an _} sine ]
(& l =1) (& + cose) =T
— 1 n
* OPFQ[.Q(& + COS@)2]-ﬂ
3 28P+ 1 :
+ QBFB[ n~1 { tan } — 5106
(a -1)? ) (& + cose)
s1nG ]
2(qe=1)(& + cos6)2” oy (B.4)
Evaluating Equation (B.4) the constant of integration Fz 1is
-2F1( -1) (5.5)
F; = B.5
5 2&2+1
Considering now Equation (B.3) as an indefinite integral
p(6) =aPF, [ — 2 4 &, [ SIS Proy — 5+ F)
(& + cose) (& + cose) (& + coso)
(B.6)

where F) 1is an arbitrary constant, performing the integration again
as in Equation (B.l4) and substituting Equation (B.5) for Fz, Equation

(B.6) becomes

2 51in@ a - 1
) =0 M| (1 + ] + o Fol ]+ F
2(e) 1 (232+1) (T + cose) T + cosO) 2 2(& + cos6)d 4

(B.7)

Substituting the expressions for Fjp, Fp and O into Equation (B.7)

n(2+n cos®)sind
e) = - T
p(8) =~z(o dt)[(2+n2)(l+n cose)?

6ur® dn 1
2 'dt’ ‘n(l+n cose)2

] + arbitrary constant. (B.8)
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C. Evaluation of the Series Coefficients Ap(z) and By(z)

Considering the Ap(z), and for convenience letting Ap(z) = Apy,

from Equation (3.6) the general recurrence relation for m > 1 is

2(D-1P)Ay + n(D2enP-m+2)Ap 1 + n(D2-mP+m+2)Ap,] = O (c.1)
where
2
D2 = r2 4T
az2

From Equations (3.12) and (3.13) A; and Ay may be written as

Ay = ¢y cosh 9‘5 (c.2)
and
07
Ay = =yCq cosh E? (c.3)

where o and 7y are defined by Equations (3.10) and (3.40) respectively

as l/2
o = [%§l+7n)Jl/2 ) = |-B {2+(l—n2)l/2}
2=yn ’ {l+(l—n2)l/2}2

and C; 1is a constant of integration. In view of the boundary condition,
Equation (2.15), all of the A, must be even in z. The complementary
solution for all A, will therefore contain only one term which shall be
represented as the first term of each Ay and Cp 1s the corresponding
constant of integration.

For m = 3, then from Equation (C.1)

D2hs = - E(0P-b)ay - (DP-b)ay .

Substituting A; and Ao and solving for Az

2
(S5

oz
S CL cosh — . (C. %)

As = 03 + (BL - 1)

n
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For m = 4, then from Equation (C.1)

D2A) - by = - %(D2-9)A5 - (D2-10)4; .

Substituting Ap and Az and solving for A)

i} 2z _ 93 , (2(0F-10) _ 2(0P-9y 2y az
A) = C) cosh - o + (a2 my n(_&g_)(n.' 1)] Cy cosh —~ . (C.5)

For m = 5, then from Equation (C.1)

0,2
D2A5 - 1045 = - S(D°-16)4), - (132“-18)13&3 .

Substituting A3z and A) and integrating As Dbecomes

A5 = Cg coéh VIO z g Cy cosh %? - % C3(1 - é%) + Tl ¢y cosh %2

r (0”2 -10)
(Cc.6)
where
b2 L 0B=9y 2y _ of-1 1aY(27 _yQP=k
F1 “'n?(a 16)(—&5—)(? 052 -16) ( —2—)_'_—) (O‘E 18)('171— l)(-&g—)
(c.7)
For m = 6, then from Equation (C.1l)
DPAg - 18Ag = 22(D?-25)A5 - (DP-28)A) .
n
Substituting A) and Ag and solving for Ag
Ag = Cg cosh Vi8z _ 15 C5 cosh VIo z _ 12 cu(1 - ZEJ cosh 22
r n r 7 n r
h 10 Fo oz
- C h == C.8
2 %0 _2-)+(oc2=18) 1 e T (c.8)
where
20 2 ooy (BBm9N(2Y | 1y L o (2oon)(0E-10y _ 2,02-25
R - 2e2)ERA(E - 1) - H(22)( S - A m . (09)
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For m = 7, then from Equation (C.1)

2 o 2(n2_ - (P2_Lo).
DA - 28A7 = E(D 36)ag - (D 40)A5 .

Substituting A5 and Ag and solving for Ay

Va8 z _ 36 C6cosh_-\/_1_§_g_5(l_§__2_)05cosh\/fdz

A7 = C h 2
{ T cos r 10n r 3 n2 T
168, L1, , Lk 2s 1288, 10 8
24[7n (1 ne) 3 ] Cy cosh T 28[ nE(5 n2) - 12(1 - ng)] Cs
- o =36 o2 =40
> - F C h — 10
¥ (02-28)" n<oc2-l8) (052-10) 1] €1 cos r (€.10)

where Fy; and F, are defined by Equations (C.7) and (C.9).

For m = 8, then from Equation (C.1)
DPAg - 4OAg = - %(Dg—l@)A? - (D2-54)Ag.

Substituting Ag and A7 and integrating Ag becomes

VIO z 7 V28 z 1 62 Vi8 =z
Ag = Cg cosh - oy C7 cosh — - 55{56(1 - I6529306 cosh -
1726 52\ . 33 VIO z
gt - ) ) O o ——
- 15 f168¢yp LTy . L 600y 1y ¢ L 22
56 In { n HE. } 7 ng)] b o8 r
(c.11)
28 8 216
- =[- L= - __ - 72(1 - == -
2n{ 72( nE)} - =3 —g)
2
1 (2008-k9y r 2.0 -56)F ) (oz -0, )y} + a 54)F2 16, cosh %2 .

" (QB-40) n o228 n a2-18 a2 -10

From Equation (3.36)

an(2) = (-1

1+ zz:;%317§] (c.12)



where

all of

For m

Cz =

For m

For m =

For m

C6 =

-9k

p - 2w o 3y

c2 at 2+n2

the constants Cp may be evaluated.

For m =1 from Equations (C.2) and (C.12)

1 ] 1
(1-n2) 172 cosh @b
2r

= 3 from Equations (C.4) and (C.12)

C1 = Fall +

Fao[1 + ] . Fa,(?-Z - 1) (2

. 1
(1-n2)1/2 n i (l-n2)172} ‘

= 4 from Equations (C.5) and (C.12)

L fopalne — 2 3499
cosh l (1-n2)1/2 2n

QE_Q) 22 . 1) - ( -lO) ] C1 cosh gﬁ} .

5 from Equations (C.6) and (C.12)

5 > d 4
{Fa [1+ ]+ - C) cosh -

cosh Vﬂﬁ'z (l°n2)l;2“
2 S8y LB 2%
: c3(1 - =5) PI0) C1 cosh =7 .

6 from Equations (C.8) and (C.12)

{—Fa6[l+ ———Jé————] + ) C5 cosh VIO ¢
cosh V'S'z (l-n2)1/2 bn or
12 7 L k4 10

ne

== - S - = o
- cu(L ) cosh - C3(3 ) ¢y cosh r}

(a”-18)

(c.13)

(c.1h)

(C.15)

(c.16)

(c.17)

(c.18)
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For m =7 from Equations (C.10) and (C.12)

_ 1 7 7 36 18 2
Cr = Fal[l + ]+ Cg cosh Y=S X
7 ————ﬁ{ 6 :
cosh __§§_£ (l-ne)l/2 10n 2r
T

n 2r
L 1768 _ T,y , Lk ¢, 12885 10 8_
24 7n( n2) * n ) Gy cosh r * Eg[ ne( 55) - 721 - ;5)103
-t - %(042'36 Fo "-(0‘2“”0) F;) ¢ cosh 24 | (c.19)
(®-28) n a°-18 a?-10 or

For m =8 from Equations (C.1l) and (C.12)

1 8 8 7 V28 1
g = —— |-Fa®[l + ——=——] + —L Cv cosh
8 cosh V¥ 4 !: (1-n2)1/2°  on [ or
2r
+ L[36(1 - _ég_)]% cosh VI8 £ _ 11267 - 22y 4 2]¢s cosn Y10 £
22 10n2 °r 6 n n2 n or
768 - 7 4, Lhk 600, _ T 2
56 hn { } = (1 Eg)]Cu cosh -
1 288 10 8 216 10 (c.20)
I 10y L o7o(1 - 8 216z . 10
¥ 40 an { n2 n2) ! ( ng)} ¥ n (5 n2>] CB

1 (a2_49 (a2"56 - (a2°hO)F + (¢ Q2 -5k F,1C; cosh aL| .
(ag-ho) n of =28) n Qe- 18) 2 0 Qe 18) 2 or

Considering the Bp(z), and for convenience letting By (z) = By,

from Equation (3.7) the general recurrence relation for m > 1 is

2(D2—m2)3m + n(Dg-m2=m+2)Bm_l + n(DE—m2+m+2)Bm+l =0 (c.21)
2
where again D2 = re §%§-. From Equations (3.16) and (3.17) Bl and Bp
Z

may be written as

By = Np cosh %5 (c.22)
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and

B, = =yN} cosh %? (c.23)

where ¢ and V are defined by Equations (3.1k4) and (3..43) respectively

as

2(1 + Wn)Jl/Q . B {l + 2(l-n2)l/2}]l/2
2 = yn ’ {l + (l—ne)l/g} 2

¢ =1

and Njp 1is a constant of integration. In view of the bouncary condition,
Equation (2.15), all of the By must be even in z. The complementary
solution for all By will therefore contain only one term which shall be
represented as the first term of each B, and N, is the corresponding
constant of integration.

For m = 3, then from Equation (C.21)

D?Bs = - £(D2-4) B, - (D2-4) B; .
Substituting B; and By and solving for Bz
2
- 2 =k £z
Bz = Nz + (E‘[ - ;L)(-C‘Eé—) Ny cosh = (C.2k)

For m = 4, then from Equation (C.21)

D?B), - 4By, = - £(DP-9) B3 - (D?-10) By .

Substituting By, and Bz and solving for Bj

_ 2z _ ON3 _ (w(¢P-10) _ 2,t2-9y.2¥ _ tz
By = Ny cosh — -t [ (2-1) n(g—g?)(n 1) ]N; cosh = (c.25)

For m = 5, then from Equation (C.21)

D°Bs - 10Bg = - -fl—(Dg-lé)BLF - (D-18) Bs .
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Substituting B§ and B) and integrating B5 becomes

_ VIO z b 2z 9 8 z
B; = Ny cosh — - E.Nu cosh - - g.NB(l - Hz) + (EE§%67 N, cosh %?

(C.26)
where
ry = b(26) () RY - 1) - 2e2a6) (10) - (¢208) (E - 1)(Eh
3 2 (2 "'n n (2ol n £2
(c.27)
For m = 6, then from Equation (C.21)
D°Bg - 18Bg = - 2(D°-25)Bs - (D°-28)B), .
n
Substituting Bl and Bs and solving for Bg
18 1 10 12 2
Bg = Ng cosh -lg;;i - E% N5 cosh —i;:—é - = (1 - %E) cosh ;E
L 10 Fl ¢z
+ -r-l- N5(3 - ;1—2—) + '(—E-g—;l—8)— Nl cosh —; (0028)
where
Fy = <c2~ee><£—)<2"f - 1) - ¥(¢B- 28><£;l—> £—2>F5 (.29)
R (2= B o210
For m =7, then from Equation (C.21)
0P8y - 28B; = - 2(DP-36)Bg - (DP-h0)Bs
Substituting Bg and Bg and solving for B7
- N, cosh 1282 . 36y h‘[_éz- 1 - 2)n n VIO z
By 7 cos : = g cos 5( ) 5 COS .
1768, LT, 1k s 12885 10) oy 8
+ eu[7n (1 1,12) + - 1N} cosh - [ ( n2) 72(1 n2)]1\15
2. 2~
+ -2 56)F)_L - (E__EEJFB]Nl cosh &2 (¢.30)
r

(¢ -28)“_ n t=-18 ¢2-10
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where F; and F) are defined by Equations (c.27) and (C.29).
For m = 8, then from Equation (C.21)
2n. - - - 2(p2. - (D2-
D"Bg - LOBg = n(D u9)B7 (D==-54)Bg¢

Substituting Bg and B7 and integrating Bg becomes

Bg = Ng cosh _IEE_E - L Ny cosh ~1§§;5 - L[36(1 - _éa_)}N6 cosh_!ig;i
T 2n r 22 10n2 T

+ £[§6_(1 - 5_2) + .3_5_]1\15 cosh Y20 2
6 n ne n T
1:15 ;768 _ Ty , Ly _ 600, _ T 2z
36[lm { 1 } 7 (1 EEMNucosh ~

(c.31)
- E%[- 112885 . lgo - 72(1 - §§9} + 2205 . 29)1ns

on - nl n n n n2

L B0 {220, - (GOm) « (T 2
(¢t -ho) m ¢=-28 - n ¢=-18 £°-1 £=-18

From Equation (3.37)

by _ m gyl al[m - — B _ n?
Bu(3) = 1) e (1) (l-n2)5721 (c.32)
where
2
Fooiopr dn (C.33)

ndc2 at
all of the constants N, may be evaluated.

For m =1 from Equations (C.22) and (C.32)

= 1 ne 1
= - - . \ 3L
2r

For m =3 from Equations (C.24) and (C.32)

- T 3 m® =2y oy t2 -k 1
N, = Faol5 - o (1-n2)5/2] Fa(n 1)(5_25__)[1 + —=ml .
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For m = 4 from Equations (C.25) and (C.32)

W= i |Falbpy o AL 28, O
cosh é (1-n°) (l---n‘?)B_/2 2n
20£2-9y 24 _ 1y _ (=10 t
+ [ 2 (5 - 1) "’(ge_u )INy cosh 3| . (c.36)
For m =5 from Equations (C.26) and (C.32)
N5 = L |Fd5 - 2 - n ] + 4 N), cosn &
cosh VIO ¢ (l‘ng) (l—n2)5/2 n r
2r
9 ms(1-8) - T3 __ Ny cosh 22| . :
+ 5 5( n2) (gE_lo) 1 cos o7 (c 37)
From m = 6 from Equations (C.28) and (C.32)
Ng = l_________ -§a6[6 - 6 . n? ] + i?.N5 cosh VIO ¢
cosh VjéB y/ (l"ne) (l-l’l2)5/2 Ll»l’l ar
T

12 - £_ 4 1oy Py &
+ - Ny ( n2) cosh il N3 (3 = ) (£2-15) N1 cosh 21'] . (c.38)

For m =7 from Equations (C.30) and (C.32)

1 Fal I n® _q, 36 V18 4
Ny = FallT = - 1+ Ng cosh
! cosh _.___Em [ ' (1-n°) (l_n2)5/2 10n 6 2r

o L1768/, L T bk g . 1;288,, _ 10y _ _8.
55[—:(?{(_1 rTE_) + T]NlL cosh = + 5'8'[' n2(5 n2) T2(1 ng)mj

_ 1 [ 2.t2-36 L (te-ko te . °
25 n<§2-18)FJ+ (g2-1o)F5]Nl cosh - (c.39)
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For m =8 from Equations (C.31) and (C.32)

- 700 8 2 7 V28
Ng = 1 -Fa®[8 - - n ] + N~ cosh _Y¥20 £
" cosh Vgo 4 [ (1-n)  (1-n2)3/2  on ! or
T
1 _ 62 VI8 4 _ 1,26, _ 52y , 33 VIO ¢
+ —22[36(1 10n2)]N6 cosh — 6[.——n(l n---2) + = IN5 cosh >
768 L Lbk 6oo 7 L
36 Mn { } n?)]Nu co8 r

- T {56 - rlT%) - 7201 - B} + 285 - Dy

1 [2 §2-Ll-9 2 é -5 g =40 2_511- ﬂ
+ (g -4o) n C2-28 { C2 18 (QQ lO)FB} + (Q——l )FL;.]N]_ cosh =



10.

11.

12.

13.

14,

BIBLIOGRAPHY

Mosher, L. M, Tailshaft Inspection Report. Shipbuilding Division,
Bethlehem Steel Corporation, Quincy, Mass., 1957.

Tower, B. "First Report on Friction Experiments.'"  Proc. Inst. Mech.
Engrs. (London), Vol. 34, (1883) 632.

Reynolds, O. "On the Theory of Lubrication and Its Application to
Mr. Beauchamp Tower's Experiments, Including an Experimental Deter=-
mination of the Viscosity of Olive 0il." Trans. Roy. Soc. (Londonl,
Vol. 177 (pt. 1), (1886) 157.

Sommerfeld, A. "Zur Hydrodynemischen Theorie der Schmiermittelreibung."

Z. Math. Phys., Vol. 50, (1904) 97.

Harrison, W. J. '"The Hydrodynamical Theory of the Lubrication of a
Cylindrical Bearing Under Variable Load and of a Pivot Bearing."
Trans. Cambridge Phil. Soc., Vol. 22, (1919) 373.

Swift, H. W. "Fluctuating Loads in Sleeve Bearings." J. Inst. Civil
Engrs. (London), Vol. 5, (1937) 161-95.

Burwell, J. T. "The Calculated Performance of Dynamically Loaded
Sleeve Bearings." Trans. Am. Soc. Mech. Engrs., Vol. 69, (1947)
A-231=45,

Tao, L. N. '"General Solution of Reynolds Equation for a Journal
Bearing of Finite Width." Quart. Appl. Math., Vol. 17-18, (1959-61)
No. 2, 129-36.

Fedor, J. V. "A Sommerfeld Solution of Finite Length Journal Bear-
ings with Circumferential Groves.'" Trans. Am. Soc. Mech. Engrs.,
Vol. 82, Series D, (1960) 321-26.

Hays, D. F. "Squeeze Films: A Finite Journal Bearing with a Fluctu-
ating Load." Trans. Am. Soc. Mech. Engrs., Vol. 83, Series D, (1961)

579-88.

Elrod, H. G. "A Derivation of the Basic Equations for Hydrodynamic
Lubrication with a Fluid Having Constant Properties.'" Quart. Appl.
Math., Vol, 17-18, (1959-61) No. k4, 349-59.

Lin, C. C. The Theory of Hydrodynamic Stability. Cambridge
University Press, Great Britian, (1955) Chap. 2.

Barwell, F. T. Iubrication of Bearings. Butterworths Scientific
Publications, London, (1956) 166-67.

Dwight, H. B. Tables of Integrals and Other Mathematical Data.
The MacMillan Company, New York, N. Y., (1949) 85.

-101-



