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Lecture # 1
Probabilistic Optimization Problems
Introduction

The lecture is devoted to stochastic optimization problems
with criteria in the form of probability (in my lectures later I
will  refer to these problems as probabilistic problems). The
author has developed a confidence approach for solving such
problems. First of all, let me describe schematically the place
taken by this method among the well-known methods. For this
purpose | would like to offer the following classification of
optimization problems in  presence of uncontrollable factors,
though somebody can find it arguable.

In statistics usually the Bayesian and minimax approaches
are  usually applied separately for estimating the unknown
parameter. According to the minimax approach this parameter is
assumed to be uncertain, and the a priori information about it is
assumed to be given in the form of a range of uncertainty
According to the Bayesian approach, the parameter is assumed to
be random and its distribution is assumed to be known. Similar
approaches have also been considered in control and filtering
theories. Please note that the stochastic and minimax theories
corresponding to these approaches have been developing
independently as a rule. That is why, [ think, the mathematical
apparatuses of these theories don’t match each other. [ would
like to stress that, in my opinion, using one approach or the
other is a matter of faith rather then a matter of truth
Supporters of the minimax theory just like atomists in philosoph\
try to split a problem “building bricks” without providing ior
any chance. They say God does not play dice. Another group oi
scientists  think to the contrary opinion. They say that
everything in our world is so interrelated and diverse that the



only way out is to stochastically describe the wvarious phenomena
around us. To cut a long story short the situation reminds me the
long dispute between idealists and materialists. [ hope you will
excuse me for such a free interpretation of these approaches. But
some scientists, for example Germeyer (USSR) in his monograph,
criticize  this  contrasting the minimax approach  with the
stochastic one. By the way, Wald’'s theory of statistical
solutions can exemplify a good unity of these approaches.
According to this theory, optimization problems were considered
with regard to random and uncertain factors, with the maximum of
averaged loss function as the optimality criterion.

Similar minimax—stochastic problems have also been examined
by Kurzhanskii, Ermoliev, Eliasberg (USSR), Loose, Poor, and
Vastola (USA). | would like to call your attention to the fact
that these scientists have examined only a formal combination of
the minimax approach and the stochastic one. A good deal of
effort has been devoted to overcoming the difficulties resulting
from the lack of agreement between different mathematical
apparatuses of the minimax theory and the stochastic one.  While
noting the doubtless usefulness of these scientists’ works, [I'd
like to stress the fact that a symbiosis of the stochastic and
minimax theories has been used when stating and solving
minimax—stochastic problems. These works have failed to take
into account the existing relationship between stochastic and
minimax  problems, although the following fact could have
suggested this idea. Equations of the Kalman filter are true for
a linear system both at Gaussian random interference and at
uncertain interference from an uncertainty set in the form of an
ellipsoid.

Now [ would like to express the main idea of my research. |
think that in the near future new results in the field of
optimization with wuncontrollable factors should be looked for in
the vertical axis, as the figure shows, by revealing links
between the minimax and stochastic theories as well as the theory
of fuzzy sets, rather than in the horizontal plane, that s,
within separate theories. In this case a search for linking
bridges between those theories will become very important. Those
bridges will help carry the results from one theory into the



other. ~ Today | would like to tell you about my modest attempt
to construct such a bridge. This bridge is constructed for
stochastic problems with criterion in the form of an objective
function quantile or, in short, with quantile criterion. Why do
we consider these particular criteria?

For the last twenty years | have been studying the problems
of analysis and synthesis of the algorithms of high-precision
control and estimation, as well as the problem of using the
obtained results in aviation and astronautics. In 1987 a
monograph devoted to these problems was published in the USSR
which was written by myself in collaboration with Professor
Malyshev.

High precision of object position estimation as well as of
its motion control is one of the main requirements when designing
modern motion control systems. To provide the necessary precision
one has to take into account different uncontrollable factors
(random, uncertain, and fuzzy) when designing algorithms of
estimation and control. Generally, we first consider random
factors acting wupon an object when it is functioning. For
example, when one controls an aircraft, he has to take into
consideration atmospheric disturbances (deviations of the
atmospheric density or wind gusts), errors of working through
control impulses, and deviations of geometric, aerodynamic, and
other vehicle characteristics. The necessity of considering these
factors influences the problem statement. .

Consider, for example, a terminal control problem of a
certain hypothetical aircraft. The aim for this aircraft is to
reach the given destination with minimal fuel consumption. [t can
be seen that the formulated problem can only be discussed in a
probabilistic ~sense. Thus, it is natural to choose as ‘the
optimality criterion the minimal fuel capacity necessary to keep
the probability of reaching the goal above a given value.
Therefore 'we must choose an optimal control strategy guaranteeing
that the terminal requirements will be met with the given
probability. This situation appears in the majority of control
problems. Many probabilistic control quality characteristics such
as the probability of a successful landing, the probability of
two vehicles rendezvous have become traditienal.



In  aircraft control problems one wants to know the
probability of landing successfully. The information that the
control system can land the aircraft ”in an average” manner is
not satisfactory, because one understands that his particular
landing can be unsuccessful as 99 following landings.

Some  other  examples of  probabilistic  control  quality
criteria can be found in the economic applications. Consider the
following example, which is referenced to as the “stock—exchange
paradox”. Lets suppose one is going to buy some shares of stock
and there are only two different types of stocks available. Let
z, be the initial amount of money one is going to invest in the
stocks, w., and W be the profits gained in i-th year for the
first and the second type of stock respectively. The vectors
wi=col(w“,wi2) are  independent and they have the same
distribution for any i. Let u and u, be the fractions of the
amount of money one is going to spend on the shares of the first
and the second type respectively, u + u, = 1. Then the total
amount of money after year N will be

N
I = 2y T (Wt wy)
The expectation of the total amount will be a criterion of our

investment efficiency

Yupug) = M [z, 4(uy g, Wy, Wy, Wiy W) J=
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i=1
where m,= M[w”], my= M[wiz].Then, it is obvious that the optimal
strategy will be to invest only in the stock that gives the
maximal profit, i.e.

. o_ o_
if m,< mg , then ul-—O, u2—1

. o__ o__
if m> m, , then ul—l, u2—0

When using this strategy our criterion is

N
0. 0y _
$(uy, uy) —i];[1 (z+ max{m1,m2}& :;

The paradox is that this strategy leads to a probability of ruin
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Thus, it is not sensible to use the expectation as a criterion in
this particular case. One can wuse quantile criterion to avoid
this paradox.

Nevertheless, I think  that  until  recently  inadequate
attention has been paid to  probabilistically stated control
problems. Apparently, it can be explained by the complexities of
taking into consideration  probabilistic  criteria in  comparison
with classic characteristics such as mathematical expectation and
root—mean—square deviation. Also, there is a lack of methods for
solving this type of problems. However, some research has been
done in this field, though in a rather uncoordinated manner. In
this lecture 1 will try to analyze the previous experience in
this area. 1 will begin with classification.

Classification of Problems

According to the type of probabilistic criterion, problems
can be divided into three large classes: direct problems, inverse
problems, and problems with chance constraints. According to the
type of object to be controlled, probabilistic optimization
problems as well as other optimization problems can be divided
into static ones and dynamic ones. The problems, in which the
object to be controlled is described by systems of static
relations such as equations or inequalities, are called static.
If in this case a set of feasible controls is finite-dimensional
space, the  static  probabilistic  problems are  actually the
probabilistically stated problems of mathematical programming.

There are problems where an object under control s
described by a system of differential and finite—differential
equations. I  will refer to them as dynamic  probabilistic
problems. -Though, formally, dynamic problems can be reduced to
static ones with an objective function written by the dynamic
relation, this division is still useful in practice. The dynamic
object state control and estimation problems, when
probabilistically = stated, can be the examples of dynamic
probabilistic problems. In this lecture 1 will devote most of my
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attention to static probabilistic problems. Now [ will turn to a
formal description of probabilistic problems.

Let an arbitrary probabilistic space (Q3,P) be given, where
Q is a space of elementary events w, J is a o-algebra of subsets
from @ P is a probabilistic measure of subsets from J. Either
random variables, random processes, or random fields can play the
role of w In these cases the space Q and probabilistic measure P
are to be determined in accordance with the type of random
factor. The most frequent 1is the case when realizations w are
vector of finite - dimensional space Q =R" F is a Borel
o-algebra, and a  probabilistic = measure is given by the
probability density p(x). Assume that certain functionals &(u,w)
and Q(u,w) are given that characterize the quality of strategies
u € U selected from the set of feasible strategies U. In the
future, to simplify the designations, we will use the symbol w
for random factors as well as for its particular realization if
it will not lead to misunderstanding. When the static problems
considered, the functionals ®&u,w) and Q(u,w) are given in an
explicit form, and when the dynamic problems are considered, the
functionals ® and Q are given in form of integrals, differential
or difference equations. Parameters and functions can play the
role of a strategy in static problems. Programmed control,
positional  control( the control law), and an algorithm of
estimating can play this role in dynamic problems. The set U of
feasible  strategies gives not only the type of strategies
mentioned above, but it also shows technical constraints imposed
on the values of u. For example, the values of programmed control

can be restricted by the constraint | u(t) | =1 for all
t € [0,T] and the function u(t) can be assumed
piecewise—continuous. Let us assume, in  future, that the
functionals &(u,w) and Q(u,w) are measurable with respect to w
for each strategy u € U. This assumption is satisfied in the

majority of practical problems and gives us an opportunity to
consider the following probability functional

A — : .

Pw(u) = [P(qu,u)’ Sgp,u ={w: ®uw) =9 Quw) =0} I
where ¢ is a certain  parameter. The  probability Pw(u-
characterizes such an event that the functional ®&u,w) will no!
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exceed the threshold ¢, and Q(u,w) will not be positive. Usually,
in technical problems there are some demands which one has to
satisfy in the first place. The constraint Q(u,w) = 0 plays the
role of these demands in this case. The fulfillment of the other
constraints can be less categorical. At last, one can increase
the  threshold ¢ to satisfy the constraint Q(u,w) = 0. For
example, the functional @u,w) can characterize the consumption
of the control resource, and Q(u,w) can characterize the control
precision, or vice-versa, depending on the control goal. The
considered functional can be interpreted as a convolution of two
criteria.

In  these terms, a direct probabilistic problem can be
formulated as follows. One has to select a strategy u_ as to

¢
maximize the probability functional Pq)(u):
A 1
u = arg max P (u), ¢ € R". (2)
¢ ueU ¢

By analogy, an inverse probabilistic problem consists of choosing

such a strategy u, as to minimize the quantile functional @a(u):

A .
u = arg min & (u), « € (0,1) (3)
@ uelU ¢
where by definition the quantile functional Qa(u) is @ minimal
threshold ¢ guaranteed with a probability a:
A
¢

a(u) = min {¢: Pw(u) 2 (. (4)

Note that a direct probabilistic problem of optimization can be
reduced to a stochastic problem with the optimality criterion in
the form of mathematical expectation
A
arg max M [x(Sy, )] (5)

if we introduce a characteristic function X(Sw,u) of the set Sq),u
which is equal to zero when w ¢ S u and which is equal to unity
when w € Sw,u' However, methods of optimization of mathematical
expectation greatly depend on smoothness of functionals that are
under the: sign of mathematical expectations. This property is not
present in this case due to discontinuity of the function yx. That
is why direct problems require a special study. The quantile
statement (3) <can not be reduced, in principle, to the
expectation problem (5). This happens since in order to calculate
the quantile functional ®,(u), one has to minimize the parameter

Upm

-7 -



¢, and, moreover, calculate the functional P _(u) for every fixed
¢. A number of works consider a series of functionals

P(u) = P{w: Q(u,w) =0}, i=I,n

and demand that each functional be not lower than a certain given
threshold: Pi(u) z «. (the so—called per-line-chance-constraints)

A certain deterministic function <I>O(u) is a quality criterion of
the strategy u in this case. Such statements are called problems
with chance constraints. One has to stress again that problems
with chance constraints are a special case of inverse problems
with a quantile criterion. Indeed, if in problem (3) the
objective functional <I>(u,w)=<I>o(u), i.,e. it does not depend on a
random vector w, we arrive at a problem of minimizing the
functional <I>o(u) under the constraint

P {w: Quw) = 0} = a

And  vice versa, if we consider the generalized strategy
u = (u,9), then the problem of minimizing ¢ with the constraint
P(p(u) 2 o is a problem with chance constraint

EO = arg %lm ¢ (u), P,(u) z a

The problem with a chance constraint sometimes can be
reduced to the quantile problem without the additional constraint
Q(u,w) = 0. In many practical cases, we can obtain this by a
change of variables. Such an example will be given in the third
lecture.

Now we will discuss a simple example of a problem with a
chance constraint.

<I>o(u1, u2) > mlnlnu
1, 2
- = <0 2
P{-& +u +w, =0, u +u =w, =0} 2a
We can change the variable
) Uy = Uy = ¢

Then the problem will become
<I>o(u1, u2) > min

P{u, + w, = &, u +u, =w, =9} =

1



P(max{u, + w,, u, +u =w,] =%}z

1

We can say that we now have the quantile optimization problem
®,(uy, uy) > min_,

where @a(ul’ u2) oy

with an o-level quantile of random variable distribution

<I>(u1, Ug, Wy, Wo) = max[u1 +w, u, +u

. + w2].

N 2

It seems to me that the problem with chance constraints is more
difficult than the quantile optimization problem, which is an
ordinary unconditional optimization problem.

Let’s consider one more problem statement. The functionals
$(u,w,z) and Q(u,w,z) will now depend on the parameter z with the
values from some space Z. Let's fix ue€ U and consider all the
values z such that

Z 4 {z: Pa(u,z) 2 of.

It is obvious that if Zw,a(ul) p) Zgo,a(uQ)‘ then the strategy u,
is better than the strategy Ug. Therefore, we can use the
information about the size of Zw,a(u) to make conclusions about
the efficiency of strategy u. The set ZKD, ou) is called the set
of absorption of o-level for strategy u € U. The maximal o-level

set of absorption is

Zw9a =ul€JU Zw,a(U)
The actual purpose of the absorption set Z is to determine the

@,
set of values of z for which it is possible to find a strategy u

guaranteeing the fulfillment of a probabilistic constraint
P{w ®u w, z) =9, Qu w, z)=0}2a

At the end of this section let us consider
minimax—probabilistic problems of optimization, in which there
are  simultaneously random and uncertain factors. For example, an
objective functional &(u,w,m) can also depend on an uncertain
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factor meH. Then, one can consider the following functional
instead of probability functional such as (1)

Hoy - M
PV)(U) ;)2}5 Pw(u).
A strategy that maximizes a probability functional when there s

the worst disturbance m, is considered as an optimal strategy utl
in this case. Such problems can be called maximin - probabilistic
ones. Stochastic differential games in which a random factor
makes a differential game more complicated, are considered to
belong to a class of problems like that. In addition to the
method mentioned above, there can be another combination of
random and uncertain factors. Let a probability measure P be
given from some family II. In this case, the quality of the
strategies can be characterized by the functional

Pg(u) = inf P (u).

A situation when there is a game of two players in mixed
strategies, is also possible. In this case, a payoff function
will depend on two strategies p and q, which are random factors
for which a probability functional P (F ,F) can be calculated,
and distributions of these strategies ‘épagd Fq will play the
role of strategies u and v. Thus one arrives at the problem of
optimizing a functional:

E .
P(Fy) = inf . Py(F,F)
q

Direct Methods for Solving Probabilistic Problems

Let us consider two main approaches to solving probabilistic
problems, which unite the groups of direct and indirect methods.

Methods which are based on the direct calculations of the
functiona1§ Pw(u) and <I>a(u) can be considered as direct methods.
For example, in the finite—-dimensional case, it is sometimes
possible to calculate integrals analytically, or the numerical
procedure for calculating them is comparatively simpler.

Let’s consider the statistical simulation method which is
usually used for the numeric  calculation of statistical
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characteristics ~ which  can't be calculated analytically.  When
using this method, the functionals Pq)(u) and @a(u) are calculated
for every feasible strategy u € U, and then the known methods of
deterministic  optimization, for example, nonlinear programming
methods, are used in the case when U ¢ R™.

Let's consider the details of using statistical simulation
methods for calculating the functional a = PQO(U) = P{S ,u}, where

¢
S(p,u= {w: ®(u,w) = ¢, Qu,w) = 0}.

The method which is used for the estimation of probability
P{S,,u} is based upon the Muavre-LaPlace theorem, which states
that the frequency W_~of a random event S u in n trials, as a
random variable, is asymptotically Normal as n tends to infinity.
Let the trials be independent and the probability of event Sw,u
in any trial be equal to a Then we can obtain the lower bound
for the probability « This lower bound is guaranteed with
probability B as can be seen in the equation below.

W -«
P Wi/ z e -
vV oa(l-o)

In this equation B is the confidence probability (secondary with
respect to «). In this equation it is assumed that the number of
trials is fixed, but in actual problems one wants to find the
number of trials which insures that the frequency Wrl is close to
the probability o« being estimated. [f we solve this equation with
respect to u then we obtain

on_ + pX(1-a)-|p|V 4n (1-0)+p(1-0)’

n_. = + 1
min

where [*] is the whole part of the number, ng is the number ol

successful trials in a series of n trials, and W, is ng divided
by n. In this equation the guaranteeing number of trials depends
on the confidence probability B (or p) and on the number of
successful trials n. The function N (0g) is a step function
and can be plotted as follows (Fig. 1) (for a = 0.999.
B = 0.9999). If in m trials we get the point which is under the

curve, then the actual probability P(A) is greater than or equal
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n-n <420.999; p=0.9999

(m,m-ms )

1 L] i} i
10000 20000 30000 n

Fig. 1

to a, and this statement. is true with confidence probability B.
[t can be seen on the plot that if ng is equal to n (all of the
trials are successful), then fifteen thousand successful trials
must be performed in a row. If there is one unsuccessful trial,
then n increases considerable to hundreds of thousands.

Why does the number of required trials n increase
considerably when the number of successful trials n, grows? Let
us consider a simple example. Suppose random variable &u,w) has
a normal distribution, then the density plot p(¢) looks as
presented on Fig. 2. From the plot you can see that the quantile
¢, for distribution ®(u,w) is the right bound of figure which has
an area equal to &  Suppose that the area is calculated
numerically, and the error of this calculation is €=0.01, the

necessary probability level «=0.99. In this case it can happen
: A
that the quantile estimate <I>a equals to infinity. This situation

happens due to so called asymptotic unstability of quantile $, in
parameter a.

~If it is necessary to integrate differentiable equations to
obtain the result in each trial, as is the case in the estimation
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pl(y>

of the probability of successful léndings, then the number of
calculations will be extremely high.

The other disadvantage of this procedure is the difficulty
of setting the confidence probability level B. For example, in an
actual problem one may evaluate a probability a = 0.999 with a
confidence probability B equal to 0.9. However, the number of
necessary trials Noip considerably depends on the confidence
probability level B. In addition, the Muavre-LaPlace theorem
states that frequency only has a Normal distribution when n tends
to infinity, but for finite n this is not true, and we have to
define a new confidence probability (which is tertiary with
respect to «).

It is possible to wuse another method to combine the
statistical ~ simulation = method with the search optimization
method. These methods must be wused in parallel, and not
consecutively. The group of methods that are constructed in this
way is called the stochastic approximation methods. It is not
necessary to perform many trials series of the computer
simulation for each step of the optimal“ strategy search. Only one
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series is necessary because it is combined with the strategy
search. This is the main advantage of this group of methods. The
rate of convergence for these algorithms is wusually higher than
the rate of convergence for optimization methods with the
statistical simulation. The main difficulty in designing such a
method is in determining the convergency condition. One algorithm
from this group, the stochastic quasigradient algorithm, will be
discussed in the third lecture.
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Lecture # 2
Indirect Methods for Probabilistic Problem Solving

In the previous lecture, [ discussed several direct methods
which are being used for probabilistic problem solving. In
addition to these methods, 1 will now consider four indirect
methods for probabilistic problem solving. [ will apply them to
quantile optimization problem solving, though they can also be

used for solving other probabilistic problems.
1. The Mean-Square Method

A lot of results have been obtained in the theory of
stochastic  optimization which are based on the mean-square
optimality criteria. Therefore, it is only too natural to wuse
these results in order to solve probabilistic problems. The
Mean-square method is based on the Chebyshev's inequality. To
make the method clear, let’s assume for the simplicity that there
is no the constraint Q(u,w)<0, and a functional &u,w) has the
form @(u,u;)éléo(u,w)—?\o(u)L Consider a mean-square criterion
@M(u)éM[¢0(u,w)—A0(u)]2 instead of a  quantile functional
According to the Chebyshev's inequality =ne has



Plo 185(w00-Aglu) 120 | = ()70

A

if Ag(u) M[@(u,w)]. As the following inequality is true,

Pyu)= 1 - lP{w: |8 (1,0)-A (1) |29 } > 1 - @ (u)/¢?

the probability functional le(u) is indirectly maximized when the
mean-square criterion <I>a(u) is minimized in ueU. The quantile
functional is estimated similarly.

Note that a mean-square strategy differs greatly from
strategies Uy and U because the Chebyshev’'s inequality gives a
rather rough estimate, especially when the values of a and P, (u)
approach the unity. Note also that a mean-square strategy u,, does
not depend on parameters ¢ and « which are present in the
probabilistic problems. This fact stresses its roughness.
However, in some cases the mean-square strategy is a good
approximation and sometimes coincides with U and Uy This is
true when u and ¢ are vectors, the density p(x) of a random
vector w has a symmetric form p(x) 4 f[llx—melR], the objective
function may be expressed as follows: ®(u,w) 4 g[IIAw + Bul lw]

functions f(.), g(.) are continuous and strictly monotonous.
2. The Deterministic Equivalent Method

The deterministic equivalent method was historically the first
proposed . indirect method. According  to this method, a

probabilistic constraint P (u) 2= « which is an inequality, i~

ol
replaced by the equality constraint

Plar 8(u0)-p = g,(u), Qu.o) = gy} =



and then the vectors gl(u)SO and gQ(u)SO are searched for. This
method is discussed thoroughly in many references, and thus I

will not discuss it in my lecture.
3. The Minimax Method

The main idea of the minimax method is the following: let's
fix an arbitrary confidence set E from the elementary event space
Q. The confidence set E is the set with probability measure
greater than or equal to « ie P(E) 2 o« Such sets form the
whole family of sets

Eaé{E: [P(E)Zoc}
Now [ will assume that an uncontrollable factor w is not random
but an uncertain factor with the uncertainty set E., ie ® € E
(w belongs to E). The control strategy u € U (from set U) will be
considered fixed. Let’s examine the maximum functional:

¥ (E,u) = wsgg % (u,w)

and try to solve the minimax problem (assuming that Q(u,w)=0 ):

uf = arg min ¥ (E,u), goE 4 inf ¥ (Eu),
' uel ueU
where uf and ng are the minimax control strategy and the minimax

value of functional &(u,w). Is this minimax problem connected
with original quantile problem? For simplicity [ shall assume
that Q(u,w)= 0 and that solutions to these problems exist. The

answer is “yes”. This connection is established in the following

theorem.

- THEOREM 1. The pair (uE, goE) is a guaranteed solution

for the quantile problem



0 Bo, )=t ) svEDEFE VECE,
where ¢, = inf & (u), «a € (0, 1),
o = ind () 0, 1)
u, = arg min ¢ (u)
« d ueU OL(
Proof. Let E € Ey, « € (0, 1) and the pairs (uy, @), (u° ¢

(the solutions in quantile and minimax problems) exist.

Consider a set S

o, uf
s. .2 { o @ (uEw) = ¢F } - {wz ¢ (uEw) = sup 8(uE, v) }
¢,u we
because wE=l/1(E,uE) = suEQ(uE,w). Thus the set S . . contains the
Wwe $,u
set E. Thus, the probability
A
P_.wHEP(S ) 2 P(E) = a,
WE q)E,uE
and so P E(uE) > o. Remember, that the definition of quantile is:
¢
8,(u5) & min { o Pyuf) = o}
The inequality P E(uE) 2 o, therefore implies that
¢

<I>a(uE)S goE. The strategy uf is not necessarily optimal for the

minimization of quantile functional & (u), and so @a(ua)sé &uE).

After combining all the above inequalities we will get the

necessary statement of the theorem. g

Thus, the minimax methods give the possibility to find

solution for the quantile optimization problem.  The  upper

estimation q)EZ Oy IS true for any confidence set E from the

family of sets IEoc (E € IEa). But, if we use not the best E from

lEa, then, first of all, the upper estimate obtained will be too

rough, and secondly, it can be more difficult to obtain the
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solution of the minimax problem than the solution of the original

quantile problem.
4. The Generalized Minimax Method.

The possibility to obtain the quantile estimation through
solving a minimax problem is demonstrated by the generalized
minimax method

Vo= égé-:a iffefu Sli)peEq> (0

The main idea is that we can choose such a confidence set
Eae E(x’ that the quantil% estimation will be equal to the real
value of quantile ¢, = ¢ ® . This confidence set Ea is called an
optimal one.  This problem is interpreted in terms  of
two-person—zero—sum—-game theory in the following way. The second
player (w € E, which is nature) seeks to maximize the damage
caused to the first player knowing the first player's strategy
and his own opportunities, which are defined by the set E. The
first player, without knowing the second player strategy, seeks
to minimize his losses by choosing his own strategy and worsening
the second player’'s opportunities. This is achieved by choosing
the  best  confidence set E, i.e. the  second  player's
opportunities.  This  problem is the problem with  dependent
variables, and it is known that this type of problem is unstable
in criterion. That is why the initial stochastic problem can be
solved onfy with a high consumption of time necessary for many
numerical calculations. The most difficult step in the obtained
problem is to find the optimal confidence set E . We will discuss

the‘generalized minimax approach before discussing the ways ol



choosing the set Eoc'

At first, 1 shall give some definitions. 1 will say
that the minimax problem is equivalent to the quantile problem if
the strategy u_, exists and the following three conditions are

a
satisfied:

LOWE, Uy = 8,

2. For any Ug 3 Eoc such that \If(Ea, u) = <I>a(u

o o

3. For any pair (E,uy) it is true that YE, T, = P(lg),

where u, is an optimal strategy in the quantile problem, (B t,)

is an optimal pair in the generalized minimax problem.

THEOREM 2. The quantile problem is equivalent to  the

generalized minimax problem.

Proof. Let the strategy wu, exist, and so ¢,= & (u

o 14 (X)'

definition of quantile is
Consider the probability functional of optimal strategy u,:

p¢a(u°‘) é P {w <I>(ua,w) < goa}

Now let us designate E = {w P(uyw) = 9, and consider the

A

u) = min { ¢: P z o}

maximum functional

WE,uy) = sup, 8uy,0) = 0 4 % (u

)
oo
w ek,

Thus, the second condition of problem equivalency is satisfied.

Now consider the pair (B, ¥, which is optimal for the
generalized minimax problem. I will use the minimax estimates

obtained in the previous part of this lecture.



B B
. <0 (u%) = uE, uY Ly

As thé second property is already proved, | can use it to find
out that ¢, = YEy u,). The pair (€, Uy), as you remember, is
optimal in the generalized minimax problem. That is why the last
inequality is consistent only if it is a strict equality. And
this means that the conditions 1 and 3 of problem equivalency are
satisfied and, thus the quantile problem is equivalent to the
generalized minimax problem. m

The equivalency proved above is a base Jor the confidence
approach.

At the end of this part [ will give the formula for building
the confidence absorbed set in the case when the function
$(u,w,z) depends not only on u and on w, but on z.

Z = U Z (u,w),
. EeE,, ueU wQE ¢

where Z(p(u,w) 4 { . ¢ (nwz) =9 } :

This  formula is equivalent to the generalized minimax
problem in which the search for an upper bound is substituted by
the intersection of sets and minimization is substituted by the

union of sets. This formula is deduced in the same way as the

generalized minimax problem.
5. Bilateral estimates for quantile functional .

Now [ shall consider the additional opportunities which the
confidence approach gives us when it is used forrp quantile
problem solving. First of all, using this approach it is possible

to  obtain  bilateral estimates for a quantile  functional



Subject to the different conditions, it is possible to obtain the
estimations, which will be given below in Lemmas 1, 2, 3, and 4.

Lemma 1. [f the function &u,w) is continuous (both in u
and in ®w) and quasi—convex in w € R" for all ueU, probability
measure P and  Lebesque measure are mutually  absolutely
continuous, and the confidence set EefEa is compact, then

v,(Eu & inf 8uw) =8 ) = VE) - sup 8(u.0),

wedE

where 9E is the boundary of set E, and the quasi—convex function
®(u,w) is the function for which the Lebesque set

Sﬁp u 4 { w d(uw) = ¢ } is convex for all ¢.

The estimates presented are the base for the numeric
procedure of the confidence set transformation. These
transformations of the confidence set E_ are aimed to make it as
close to optimal set as possible. When using this procedure, in
correspondence with the generalized minimax method it is possible
to obtain that the estimates

¥ (E ,u) — & (u), V*E ,u) — & (u),
*(,,u)nwa() (")nem“()

i.e. the upper and lower estimates are coming close while the
probability measure of set E remains the same at the every n-step
of procedure.

Now let’s define the a—-order kernel of measure P. The

o—order kernel of measure P is the set Saé n E,, Which is the
llall=1

intersection of all possible confidence hali—spaces

Af T _
E, & { o aTw = b(a) } lall =1,

where parameter b(a) is chosen to provide P(E, )=a. Note that

a,x

the -~ set S, belongs to all convex confidence sets E with



probability measure a.

Lemma 2. Let the objective function &(u,w) be continuous
and quasi—convex in @ €R" for all ueU, the Probability measure P
and  Lebesque  measure are  mutually  absolutely  continuous,
«€(0.5;1), and optimal strategy U exist in the quantile problem.
There is the following quantile estimation for the kernel Sy

S

‘P*(Sa,u oc) = II/*(So‘,uo() A su <I>(ua,w) = 9y
wed o
S
Thus, the value ‘IJ*(Sa,u oc) is the lower estimation for the

minimal quantile Oy

Lemma 3. Let the objective function &u,w) be continuous
and quasi-convex in ®w € R" for all ueU, and confidence set E be a
convex polyhedron. Then

Bolu) = e g = R

where J(E) is the set of all vertexes of the polyhedron E.

In this case one has to look over all the vertexes of
polyhedron E in order to find out the value of the maximum
function WE,u). And if the function &u,w), in addition to the
conditions mentioned above, is convex and piece wise linear in u,
then maximum function WE,u) will also be piece-wise linear in u.
If, besides that,. the set of feasible strategies U is a convex
polyhedron, then the minimax problem can be reduced to a linear
programming problem. In this case, one can easily obtain the
upper estimation of a quantile ¢, = cpE, while the solution of a

quantile problem is very difficult.

Now let’s consider the deviation of* the set Er from the set



E ie  dE.E) 4 su inf_ llo-o)l.
r w€E \E w,eE

Lemma 4. Let the objective function &(u,w) be continuous
and quasi-convex in ®w € R" for all ueU and also satisfy the
Lipschitz type condition, i.e.

B(u0,) - Huw)| <k I o wlf

1

for any w,, w®, such that Ilw1ll >R, Ilw2ll >R, lw,- W, | <9, where

e
k,,R,6 >0. Let the probability measure is a Gaussian measure
corresponding to the standard normal distribution with zero
expectation and the unit matrix of covariances, confidence set E
be a sphere Er with radius r, IP(Er)= .

Then wunder the assumptions mentioned above the following

estimates are valid:

E E E
0 '=YE,u" =z g,z YE u") - kd?(E,E),

and moreover,

YE,u') - ¢, =0 asa—1

This lemma states that when a is increasing, the lower and
the upper quantile estimates tend to each other. [t means that
when o« is close enough to 1, the minimax estimate q)Er becomes
very close to quantile @, and is still an upper estimation. It is
interesting that the minimax estimate is more precise when
probability level o« is higher, and the complexity of the solution
does not depend on a« It is not correct when one uses the
statistical simulation method or the mean-square method, because
their errors increase as o increases.

The usefulness  of the  estimates  obtained  will be

demonstrated in the third lecture when designing the 2nd and the

3rd algorithms for quantile function minimization.

- 10 -



Remark.  The proofs of lemmas presented above can be found in

the book: V.V.Malyshev, A.l Kibzun.
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Lecture #3

Three Algorithms for Quantile Function Minimization

The methods for solving probabilistic  problems  which  were
considered in the previous two lectures give us the opportunity
to begin the design of algorithms for solving them. Three
algorithms will be discussed. The first one is based on the
direct method; the second and the third ones are based on the
confidence method. Two examples which show the particularities of
these algorithms will be given.

1. The Direct Algorithm.

At first, 1 will consider an algorithm based on the direct
method. let the following conditions hold:

A) The objective function &(u,w) depends monotonically on a
quasi—convex function t(u) for any w and is continuous in ueU and
w;

B) The random vector w has the Standard Normal distribution
N(0,I);

C) The set U of feasible strategies is compact in R™. Now |
impose no constraints on the dependence of the objective function
®(u,w) on w except continuity. These requirements will be set
below after introducing some new constraints. Under the given
assumption, the quantile of the objective function will be
continuous and quasi—convex function in u

Suppose for any u it is possible to obtain the sample ol
values  {®(uw)}'  of function ®uw) , where {w} = ar
independent realizations of the random vector . Let’s designate
them as {<I>i(u)}ti=1 the ordered series of the sample, i.e the



values of the objective function <I>(u,wi) arranged in increasing
order. Under the assumptions made above, the random variable
®(u,w)  has a continuous cumulative distribution for any ueU.
According to the Central Limit Theorem, the middle terms of the
ordered series can be represented as t tends to infinity as:

]t W5 (dsa'()u)) t

u

where [a-t] is a whole part of the value a-t , a€(0,1); v is a
random variable with Standard Normal probability density; p,(9)
is a probability density function for the random function &(u,w);
a(u) is an o-level quantile of it's distribution. From the
representation above it follows, that the statistic

%) & 80
are asymptotically unbiased and - consistent estimate of the
quantile <I>a(u) for any ueU. Moreover, the bias of the estimate

2(u) & 18,(u) - ME(w)]]
has an order o(1/t) uniformly on any compact set U, i.e. there
exists a constant c<w which doesn’t depend on t such that
2u) S §

for any ueU. The estimate $t(u) turns out to be suitable when
working with high order quantiles («>0.99). That is why the
necessary sample size cannot be less than Taé[T%i]H. Otherwise
the estimate is insensitive to variations of &  Moreover, since
the asymptotic representation is valid only for middle terms, it
is necessary for the extreme terms to be in mean greater than the
value of the minimal quantile. And it means that the sample size
has to be at least several times more than Toc‘ In addition, every
time one is going to get the quantile estimate, he has to build
the  empirical  cumulative  distribution  function  for  random
variable &(u,w).

Let's consider the estimate of the other type which is based
on the wuse of asymptotic properties of extremal order statistics,
i.e. the  largest terms of the ordered series of sample
{Qj(u)}tj=t_k, k<<t. Just as the distribution of the middle terms
of the ordered series can be found (and is Normal), the Ilimiting
external order statistics distribution can also be found in some
cases (but it is not Normal). In particular, for the most well
known distributions of the random variable ¢ (for example, the

-9 -



Normal distribution,  Exponential distribution, ~Gamma-distribution
etc.) the asymptotical behavior of extremal order statistics
obeys the law:
Fg(¢) = exp(-exp(~)),peR

In this case the random variable & is a random variable of the
exponential type. Totally there exists three types of limiting
distributions  for the extremal statistics, but the exponential
type is the most common one.

[ will assume later that in addition to condition A the
condition A’ also holds:

A’) The nature of dependence &(u,w) on w is such that the
random variable &u,w) is a random variable of the exponential
type for any ueU.

The knowledge of these laws gives us the opportunity to
calculate the estimate of the quantile function wusing the sample
with the size less than or equal to T, in a relatively simple
manner. Let’s consider the estimate

B(u) & B ) - KB (u)-,_(w)]
where <I>t(u) and <I>t_1(u) are the last two terms of the ordered
series of the sample of the size t>1, p=0.5772 is the Euler
constant.

Lemma [. 1f a random variable ®(u,w) is of the exponential
type for any ueU, then the error of the quantile estimate

2 0) & | M (W] - g0) | = o/t

is of order o(1/t) uniformly in ueU. Here t=[1—_a]+1' Thus, the
statistic ®(u) calculated using a sample of the size t can be
used as a quantile estimate, and moreover its bias zt(u) will be
less as the quantile order « tends to one. It should be noted
that the obtained estimate <I>t(u) is considerably simpler than the
previous @t(u) since when taking the sample it is necessary to
remember only the two worst realizations to calculate the
estimate ®,(u). On the other hand, when calculating the estimate
%t(u), it is necessary to remember them and put the whole sample
in order. This is a difficult problem when the sample size s
considerable. The simplicity of the mentioned above estimate
gives us the opportunity to wuse it in stochastic recurrent
procedures in which it is necessary to estimate the quantile
function repeatedly for several values of u. .



The random  vector gt will  be called the stochastic
quasigradient of the quantile function

N
~ ~

m -~
gt(u,a)s—é-gia[ét(ﬁl,...,ﬁi+a,...,un)—cpt(ﬁl,...,ui-a,..,,?im)]
where ﬁ'i are independent random variables uniformly distributed
upon segments [ui—a,ui+a], e. - are unit co-ordinate vectors,
i=T,m, a is a smoothing constant. Consider the stochastic
quasigradient algorithm for quantile function minimization.

u“*‘:nu(uk—pkgtk(uk,ak)),u°e U

where HU is an operator which projects a‘ vector from space R™ on
its subset U.

Theorem 1.Let all the conditions mentioned above A, A’, B, C
hold. Moreover, let the parameters of algorithm obey with the
following conditions:

oy 0

o = , 2w | /(a, t
Lo=w. Lipy'<a Lip)/(a,t) <a

k
akeO,tkem,$k+0,pk>O,ak>O

Then all of the Ilimit points of sequence of the stochastic
quasigradient algorithm vectors u¥,  with probability 1 belong to
a set of extremal points of the quantile function.

The algorithm  described above belongs to a class of
stochastic  approximation algorithms that are similar to the
algorithm of the projective gradient which is wused for the
minimization of  deterministic  functions. In  the  stochastic
quasigradient algorithm the quasigradient £ (u,a) plays the role
of a gradient. The quasigradient is in mean turned to the
direction of the quantile function gradient (if this gradient
exists). The parameter P, plays the part of a step length. The
setup parameters of the algorithm pk,ak,tk can be chosen by using
the considerations equivalent to the considerations used during
the derivation of the stochastic approximation algorithm The step
length p, has to be long enough to provide the opportunity to
reach any point in R™ from the initial point ule R™ (the

0
condition ¥ p =w ) but on the other hand the length of step  has
k=1

. 00
to tend to 0 ( the condition YTp P <w ). The sample sicc
k=1

-4 -



has to increase to infinity since the biased quantile estimate
$(u) is used and the bias of this estimate tends to 0 as the
sample size increases ( the condition t>o ). The length a, of
test  step that is used for calculating the quasigradient
gtk(uk,ak) has to tend to 0 (the condition ak->0) but slower than

the sample size increases ( the condition k/(at) - o )
Moreover, the length of current test step must be more than the

20
algorithm step length p, ( the condition Z(pk)/(aktk)@o ).
1

The given conditions hold,  for example, when
pk=p0k_],tk=t0k2/3, and akzaok"v3 where Py is the length of the
initial  step, tO is the initial sample size, and a, is the

initial test step length. It follows that the sample size
increases quickly enough. It's essential for the effectiveness of
the algorithm to choose good enough initial parameters of the
algorithm Uy Pyt g The successiul choice of these parameters
gives us the opportunity to obtain a good estimate for the
quantile  problem  quickly. The method for choosing  these
parameters depends considerably on the problem statement and so
it is impossible to give universal recommendations.

At the end of this section | would like to make an important
remark concerning the connection between the quantile
optimization problems and minimax ones. Suppose the following
minimax problem is under the consideration:

u,=arg min max $(u,w)=arg min YE,u)
0 ueU weE uelU '
where E is a set of feasible values of uncertain vector weR"™ A

set E is convex and compact. Let the function &u,w) satisfy
conditions A and C given at the beginning of this lecture.

The solution to this problem may be very difficult because
of the complex dependence of the objective function in . Instead
of solving this problem it is possible to look for the solution
to a quantile problem with the same objective function &(u,w) and
with a random vector w distributed Normally with the parameters:

miMa], KEM[(o-m)(@-m)"]
The covariance matrix K and the vector of expectations m are
chosen to provide the best approximation of the uncertainty set E
by the ellipsoid of concentration:

Eé{ w (w-m)'K (0-m) = r )
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with the probability measure that is equal to o« The value o will
be considered as the level of objective function quantile. The
algorithm described above is used to minimize it. The quantile
estimate @a(ua) has to be chosen in some sense to minimize the
value of the maximum function lI/(E,uo). Thus, a minimax problem
can be transformed to a quantile optimization one. But in some
cases it is advantageous to act conversely. Let's consider the

following algorithm.
2. The Minimax Algorithm.

Let's now consider the minimization algorithm based on
the minimax estimates of the quantile function. We understood
from the perfunctory analysis of the algorithm in the first
section that the convergency rate is not high. The cause of this
situation is  the high sensitivity of quantile criterion to
computational ~errors. It was noted in lecture #2. Using the
minimax estimates of the quantile, we can hope to find the
approximate solution of an original problem, and the convergency
rate  to this approximation will be higher.  Moreover, the
conditions for wusing the direct algorithm are rigid enough. In
particular, it is required for an objective function &u,w) to
depend monotonically on a quasi-convex function t(u). Now [ will
try to weaken this requirement.

Let the random vector w still have standard Normal
distribution N(0,I). The set of feasible strategies be compact,
i.e. conditions B and C formulated above hold. However, the
following condition must hold instead of A and A’:

A’) The objective function ®&u,w) is a continuous function
both in ueU and in w. Let it be quasi-convex in ueU for any w and
pseudo—convex in w for any ueU.

The pseudo-convexity of a function &u,w) in ® means that
the  objective  function is  differentiable, i.e. its gradient
VwQ(u,w) exists in any point ®w and the following condition
holds:

if V,®(u,0)(,~0) = 0 then &1, 0,)29(11, )
Under the given assumptions, the maximum function

A
2 ®(u,
W(u) 3255 (u,w)

-6 -



where JE is a surface of a confidence serer~ E, ie. P(E)=a, will
be quasi-convex in u. In lecture #2 | showed that the maximum
function Y(u) is an upper estimate for the quantile function
<I>a(u), i.e. w(u)zéa(u). And  furthermore, the estimate becomes
closer to the real value Qa(ua) as the wvalue of probability «
tends to 1, i.e w(u)—d)a(u) > 0 a a -» 1. That leads us to
beleive that a maximum function might be a good estimate for
quantile function. Now | will describe the stochastic
quasigradient algorithm for quantile function minimization which
is similar to the one described above.

The following function will be used as a statistical estimate
of a quantile function : '

b = gy + 25 -y, (w)]

where n is a dimension of the space Q=R", wt(u) and *"HW are
the two last terms of the ordered series of the sample of
objective function values &(u,w.),j=1,f, t is the sample size; w.
are random vectors uniformly distributed on the surface GE of the
confidence ball E. Thus the statistics \bt(u) are estimates of the
quantile  function @ since w(u)zéa(u) and wt(u) is an
estimate of Y(u).

Recall that when the quantile function statistical estimate
was found, as in the previous section, it was assumed that the
random variable ¢(u,w) is a random variable of the exponential
type. And it means that the range of values of the objective
function®(u,w) is the whole real Iline R In this case, the
statistical estimate of the maximum function yY(u) is considered.
If the function &u,w) is continuous in w, then the maximum
function Y(u) will be bounded above and below on thesphereE. Thus
the random variable &(u,w) with ® chosen on the surface JE can
not be a variable of the exponential type. In this case it s
possible to show that the random variable &u,w) is a variable of
the truncated exponential type, i.e the Ilimiting distribution of
the extremal ordered statistic wt(u) is the following:

u

olt)

F ={ exp(~(—¢?)), =0
¥ 1 , >0

where ¥ = =5~ m is a dimension of the space Q=R™. For



simplicity, it will be assumed that in the future the level
surface {w®(u,w)=¢} has first order tangency with the sphere 4E.
Otherwise, the constant ¥y is equal to T—;} where r is an order of
tangency of these surfaces. This statement can be formulated more
precisely in this way :

Lemma 2. 1f the conditions A*,B,C are fulfilled and the
random vector u is uniformly distributed on the sphere GE, then
the objective function &®u,w) 1is a random variable of the
truncated exponential type, and the error of the maximum function
estimate )

2(w) & | M [ (w-dw) ] |
is of order o(1/t) uniformly in ueU.

Let’'s now consider the stochastic quasigradient of the
maximum function

m -~ N

£ (ua) & %3_z][wt(’i1,...,ui+a,...,ﬁ’m)—wt(ﬁ1,...,ui—a,...,?;m)]ei
where 'ﬁ'i lare independent random variables uniformly distributed
on the segments [ui—a,ui+a]; e are unit coordinate vectors in
the space R™; a is a smoothing constant.

The stochastic quasigradient algorithm for the maximum
function minimization will be the following:

uk”:HU(uk—-pkgtk(uk,ak)), u’eU

where HU is an operator which projects the vector from space R™
on its subset U

Theorem 2. Let conditions A",B, and C for the problem
statement hold, and the parameters of the algorithms obey' the
following conditions:

(%)
Wew

n
Lp =o , Lp <@, Lp/(al)<e,
k

a—>0,tk—>co,aktk—>co, —>0,ak>0,pk>0

Then all of the limit points of the sequence of the stochastic
quasigradient algorithm vectors uk belong with probability 1 to
a set of extremal points of a maximum function.

[ must remark that the constraints on the parameters are
similar to those in the previous section. The differences here
are the requirement that both the test step length a  and the

sample size '[k increase simultaneously, i.e. k/(aﬁ%ﬁ/(m")) > 0.



The last requirement depends on the dimension n of the random
vector space R". When the dimension is greater than 3, this
requirement results in the sample size increasing at a higher
rate  than  analogous  parameter in  the quantile  function
minimization algorithm (when all other parameters are the same ).

3. Landing Runway Area Minimization.

Now a comparatively simple example will be considered. This
example will be wused to illustrate the possibility of reducing
the problem  with the chance constraint to the quantile
optimization problem. Peculiarities of the direct and the minimax
algorithms discussed ahove will also be shown.

Let L0 be a nominal length of the aircraft landing runway.
Let &L and gz be random longitudinal and cross errors of landing
the aircraft caused by wind influence during landing. These
errors are nonlinearly connected with the longitudinal (wL) and
Cross (wz) components of the horizontal wind w (w=col(wL,wz)).
For simplicity, it will be assumed that magnitudes of components
W and w, are not changed during every landing. If the aircrait
is controlled only through the angle of it’s roll then the error
components at the moment of landing will be

€ =800 tap 0,107, §;=85,0,07, a5=0
where a0 8y, Aare  given scalar  coefficients, 0 and o,
the mean square deviations of the longitudinal and the cross wind
components, W and w, are independent random variables with
standard Normal distributions, i.e. with <zero expectations and
unit variances. A similar model for describing a reaction under
disturbances is wused in a “Buran” shuttle spacecrait control
system. Now it is possible to state the problem of choosing the
positive parameters L,L,,Z of the runway which play the role of
“reserve” in case of undershoot, overshoot, and cross miss,
respectively. These parameters have to provide that the minimal

are

area of the runway :
S(L;, Ly, 2)=2Z(L+L+Ly) - L min .
1 -2
When the constraint guaranteeing a successful landing with a
probability not lower than given a holds:

P{w, .0, -L =g =L,, |§ZISZ}2a
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A reduction in the total area of the runway results in a lower
cost of construction. This problem is an example of a typical
problem with chance constraints. Now it is possible to show how
this  problem can be reduced to an unconditional quantile
optimization problem. First, replace the variables:

_L1 _ /Lo-i-L1+L2 _
L11=E—2- , L12= T , b =v QZ(LO+L1+L2)

Z(u2,¢)=2%2 ,
(ug®-Ly)u,
Ll(“r“z'q’):__ﬁT '
112<I>—L0
Ly(uy g &)= —
Now re-write the original constraints with the new notation:

Then,

u1+1 LO
— . — <
2,(uyuy,0, ,0,)= T (ULal1w2+31202|wZ|)+u2 =@ -
ul+1 L0
- —_— <
(U uty, 0, 0y)= i (0L311w2+a1202|w2|)+u2 =¢
= <
<I>3(u2,wz)-2322u20‘2wz =9
=__ <
<I>4(u2,wz)- 2322”202(‘)2 = ¢

and introduce the objective function as the maximal of the four
functions mentioned above:

. <I>(u1, u2,wL,wZ)=iT?_%{Qi(ul,ug,wvwz)}

Now it is possible to reduce the original problem with chance
constraint to the unconditional quantile optimization problem

By uy) > i
where <I>a(u1,u2) is the o-order quantile of the random variable
@(ul,uQ,wL,wz) which can be found from the inequality:

P{w: <I>(u1, Uy, @), wZ)SQa}Za

The square of a quantile function is equal to the
original criterion
Qé(ul,u2)=S(L1,L2,Z)
Since the area of the runway is a positive value and the function
<I>a=w_/§ is strictly monotonic, and thus, minimization of S s
equivalent to minimization $,=vs.
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This quantile optimization problem was solved by using both
of the algorithms described above. | want to remark here that the
minimax problem could also be solved, in this case, without using
the stochastic quasigradient method. In fact, thanks to the
piece-wise linear structure of an objective function, its
maximum on the confidence circle dE can be found analytically. It
is necessary to consider the points of tangency between the
confidence circle and the level curves of an objective function.
After the maximum function y(u) is found, one can use convex
programming methods for minimizing it. It is easy to check that,
in this case, the objective function is convex in u and in u,
This means that the maximum function Y(u) will be convex also.

This example is used here for illustrative purposes. The aim
is to analyze the peculiarities of the stochastic quasigradient
algorithms. An example of this is the comparison of time
consumption of the algorithms.

The problem has been solved by IBM-PC/AT-286 when:
a,= 20 sec.,a12=—20 SeC.,899= 3 sec.,L0= 1500 m,0, =0,= 5 m/sec.

The table written below indicates the results:

fime of
o algorithm |S[km i counting u u,
[sec. ]
0.99 direct 0.17 85 1.88 | 26.3
minimax 0.202 20 1.48 | 24.4
0.999 direct 0.236 210 1.96 | 23.3
minimax 0.265 30 1.48 | 21.3
0.9999 direct 0.304 720 2.03 | 23.3
minimax 0.324 55 1.48 | 21.3
0.99999 direct 0.366 3600 212 | 19.2
minimax 0.38 70 1.48 16.3
0.999999| direct 0.422 25200 2.2 18.1
minimax 0.432 90 1.48 | 17.4

The table shows that as & increases the upper estimate ol
the quantile of runway area becomes closer to the true value o1
quantile. However the convergency rate is not high. Use of the
direct algorithm provides an opportunity to obtain the optimal
solution through the direct minimization of a quantile function
The estimate found by the minimax algorithm is greater than the
true value of the runway area quantile. But the minimax problemn
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solution is weakly dependent on the probability level o as soon
as this level is essential for time consumption on direct
algorithm. For example, to make calculations wusing the direct
method when o« is equal to 0.999999, it was necessary to use a
more powerful computer than the IBM-PC/AT-286.

In practice, it is more useful to combine the two
algorithms. For example, one can quickly obtain a good initial
approximate solution using the minimax algorithm and then improve
the solution using the direct algorithm.

4. The Linear-Quadratic Algorithm.

Consider the following algorithm which is an advanced

minimax  algorithm. Suppose  that the  objective function:
$(u,w)= max <I>(u W)

AT, T 1“5? .

where .(u,0) = (ua+b )wH(ut+d) C(ut+d)+q, i=T,n is

piece-wise linear in the random vector W and piece-wise quadratic
in the strategy u. As wusual, I will assume that the random vector
w has a standard Normal distribution N(0,I). To estimate the

quantile & (u,) of the random variable ®(u,w), I will use the
minimax estimate

é (u) = inf su max_ 9 (u,w)

e ueU wedE i=T,n '

where GE is the sphere of the confidence ball E, P(E)=a. Suppose
that the set U of feasible strategies u is a convex polyhedron.
As soon as the functions Qi(u,w) are convex and continuous in u
and in o for any i=I,n, then the maximum function ®&u,w) will
also be convex and continuous in u and in . Thus the upper
bound of an objective function ¢(u,w) on the sphere JE s
attained and, therefore, the supremum can be replaced by the
maximum. Moreover, the maximum funetion

A
Y(u) = max P(u,w)
wedE
will also be continuous and convex in u. Thus the minimum will be

attained on a convex polyhedron U. The original minimax problem
is reduced in this way to a convex programming problem

Y= min Y(u)
ue
In this case the maximum function can be written explicitly. The

maximum of the function ®&u,w) on the sphere GE is attained at
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the points of contact with the hyperplanes when the strategy u is
fixed.
The equations |
(uTai+bT)w+(u+di)TCi(u+di)+qi=g0, i=T,n
describe hyperplanes of equal value of the function ®(uw)=¢. If
r is the radius of asphere E, then it is possible to find n points
where the objective function ®(u,w) reaches it's maximal value

T (aiu+bi) .
Thus
W(u)= max [[aut+b |-r + [utd, (|C+q]

where ||u+d ]|2A (u+d )TC(u+d) To solve the convex programming

problem of w() minimization, it is possible to use known methods
of the wundifferential optimization. Here [ will not discuss them
in detail. But, for example, one method of solving this problem
is the subgradient algorithm

k+l= 1 k m ) g V'ﬁ( )
o T gty )

where Vl/J(uk) is a sub gradient of function y(u) in point uk,

q=1min q, is a minimal value of the free parameter in this
<i=<n
function. It is known that a convergency rate of this algorithm

decreases if the function Y(u) is not differentiable at the
minimal point.

To solve this problem, it is also possible to use the
generalized simplex method, which is especially effective in this
case.

I would like to note that in particular cases the convex
programming problem will become simpler. For example, if the
functions

Qi(u,w)-é-uk aiTw+c'iru+qi, i=1,n
i

(is a certain k-th component of vector wu, then the
i
maximum function Y(u) is piece wise linear:

Y(u)= max [u, lla fr+c, u+q]
1=i=n 1
Thus the programming problem of maximization of this function on

a convex polyhedron reduces to a linear programming problem

where u
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wr=min Y(u)
ueU
[t is possible to use the simplex method to solve this problem.

The efficiency of this method is comparatively high and the
solution is found after finite number of steps.

[ would Ilike to call your attention to the fact that the
obtained minimax estimate wr can be considerably excessive with
respect to the real quantile @a(ua). The error of this estimation
can be evaluated in an indirect way by calculating the difference
between the wupper estimate wr and the lower estimate ws. The
latter can be found in the following way. Since the objective
function in this case is a convex function and, therefore, it is
possible to consider the o-level kernel of Gaussian measure. In
this case, it will be a sphere Sy With a radius p defined by the
equation

P{ w: W =p}=a
Then, according to lemma 3 from the previous lecture

1/ 4 min max ®u,w) = §
P ueU weds,

For calculation of the lower estimate it is possible to use the
same algorithm that was used for the -calculation of the upper
estimate wr, but the radius of the confidence ball will be o
instead of r.

It it turns out that the difference between the two
estimates is close to zero, i.e. wr—wpzo, then the minimax
estimate can be considered satisfactory.  Otherwise, it is
possible to use the following method to improve this estimate: Let
u. and u  be the strategies corresponding to the upper and the
lower quantile estimates. These strategies are found when solving
the corresponding minimax problems. One can use a statistical
simulation ~ method for calculating the quantiles <I>a(up) and
@a(ur). Next, one chooses a new sphere with radius X=(r+p)/2
Solve the minimax problem again for this sprere The result is a
new strategy u, and a new quantile @a(ux). Then the dichotomy
method is used until the minimax value of a quantile is found:

u

ol )

Y,= min & (u ), R=arg min & (u)
X hsxsr & K psxsr ©
Let’s denote by Up the minimax strategy found for the sprere E,

with a radius R. This procedure is based on uni-modal dependence
of quantile function <I>a(ux) on radius x. The obtained quantilc
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estimate waétba(uR) is still the upper estimate of the desired
value <I>a(ua) , but it is closer to <I>a( o than the minimax
estimate Y. In practical problems, only a few steps are needed
for the improvement of the minimax estimate ¥ _

u

5. Water-Supply Optimization For a Desert Region.

Consider the model of water-supply for a desert region.
Suppose that the region can be supplied with water carried from
other regions or with water obtained using solar batteries. The
model describing the way that the water reserves change in time
can be stated in the following way:

z.., = min {z,u } + u + u 0 - h, z=0, i=T,N

where z.,, is the remainder of water at the end of i-th month;
Uy, is an area of solar battery; uy ., is a tank volume where the
remaining water is kept; u, i=T,N is the amount of water carried
to the region during the i-th month; h. is the known consumption
of water during the i-th month; ) is an output of the solar
battery during the i-th month. It is supposed that w. are random
and mutually independent variables, and they are Normally
distributed N (mi,o%). The requirement is to keep the water
reserve  grater than zero during all the months and the
probability of the event that there is some reserve must be
grater than or equal to w '

P{w:min z 20}2za

i=1,N+1
The other requirement is to provide the minimal expenditures,
_ N
ie. _ .
<I>O(u) = coz U+ Cy ., + Coliy o > min,
— ueU
where U ={u:u 20, i=1,N+2 }; =col(uy,....u\ o) €5 18 the

cost of the delivered water; ¢, is the cost of a solar battery;
c, is the cost of a tank. This problem is the problem with chance
constraint. But it can be reduced to a quantile problem by
changing the variables. For simplicity [ will consider the case
of two months, i.e. N=2. Change the variables:

u, = <I>0 - 2u4a2, u, = (<I>0 - u4)/232; 0=u,s= <I>O
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Then the probabilistic constraint transiers to the following:

P {u)],w2 ; rflz:n;_s @i(u,w) < <I>O I
where
d(uw) = 2a uy + 2a,u, - 2a u,0, - U, 2a_h,
<I>2(u,w) = —232u2 - 232u$w2 - u, QaOh2
D, (u,w) = 2a,uy — 22 uy(w + w,) - U, 2a _(h +hy).

In this case <I>0 is an o-order quantile of random variable

max__ & (u,w).
i=1,3 .
The three above presented algorithms were used to solve this

problem. In the third algorithm due to the structure of an
objective function one gets a linear programming problem. It
happens since all the functions @i(u,w) contain the same
control parameter u, multiplied by the random parameters.

The results are presented in the table below. The input data
in the problem were the following:

a,=25 [rbl/m’}; a,=5 [rbl/m’}; a,=10 [rbl/m’};
h=80 [m I h,=120 [m ) m=0.12 [m J; m,=0.15 [m J;

a the cost ¢ [ rbl] time consumption for
solving us ing IBM PC/AT
[secongs]
direct | minimax | linear direct minimax l inear

0.9 4151 4258 4196 360 210 10

0.99 4389 4478 4407 1200 370 10

0.999 4614 4671 4629 4000 630 160

0.9999 4783 4854 4789 12500 800 600

0.99999 | 4930 5000 4939 40000 1100 1200

As you can see from this table, the minimax algorithm gives the
overestimate for the quantile, but the time necessary ior
calculations is only slightly dependent on the probability a @i
the probai)ility level close to 0.99999 then the time consumptions
for the minimax and the linear algorithms are approximately the
same. It happens since when wusing the linear algorithm it s
necessary to make statistical simulation in every step of the
algorithm and the amount of calculations increases as «
increases. But the time consumption when using linear algorithm
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is considerably less than when wusing direct algorithm as in
linear algorithm only one parameter is chosen, and in direct
algorithm four parameters are varying. The linear algorithm gives
the overestimate also, but the errors are smaller than when using
minimax algorithm. A more powerful computer than IBM PC/AT was
used to find the solution for the probability level «=0.99999
using direct method. [ must also note that if the statistical
simulation is used consecutively with the random search method it
results in  increasement of the time consumptions that s
necessary for the direct algorithm.
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