Mechanics of Roller Chain Sprocket
Contact

Mahn Shik Kim
Glen E. Johnson

Design Laboratory, Mechanical Engineering,
and Applied Mechanics

University of Michigan, Ann Arbor, MI 48109-2125



enygr
UME) | 25




Mechanics of Roller Chain-Sprocket Contact!

Mahn Shik Kim?

Glen E. Johnson
Design Laboratory, Mechanical Engineering and Applied Mechanics,
University of Michigan, Ann Arbor, MI 48109-2125

Abstract

The contact phenomenon between a roller chain and sprocket was investigated using a
new mathematical model which, unlike previous models, made it possible to predict the
load distribution without resorting to assumptions about the distribution of the contact
points. It was found that the distribution of contact points on the sprocket is affected by the
external loading condition, and this relationship was determined. Effects of friction and the
dimensional variations in the chain pitch and the sprocket pitch were also investigated.
Link tension predicted by the simulation showed excellent agreement with experimental

data reported by Naji and Marshek.
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1 INTRODUCTION

An extensive analysis of the contact phenomenon occurring between the roller chain
and the sprocket can be found in Binder’s classical textbook [1] published in 1956. In the
early 1980’s, Naji and Marshek [2, 3, 4] complemented Binder’s work by theoretical and
experimental investigation of the contact phenomenon under quasi-static conditions. The
kinematics of the roller chain drive are quite complicated due to non-trivial geometry of the
sprocket tooth, manufacturing tolerance, and the possible change in clearances between
components caused by wear. Several simplifying assumptions on the geometry of the

roller chain drive were made in previous studies.

The geometry of the sprocket tooth standardized by ANSI [5] is defined by four
different curvatures as shown in Fig. 1.1. The curve which is at the bottom of the tooth
form is often called the seating curve while the curves next to the seating curve are called
working curves. The radius of the seating curve is designed, in the FAN SI standard, to be
slightly bigger than that of the roller. Therefore, the trajectory of the center of the roller on

the seating curve is still a circular arc, although the radius of the arc is very small relative to

that of the roller.

The curvature difference between the roller and the seating curve was neglected in
previous models and, therefore, the trajectory of the center of the roller on the seating curve
shrank to a point instead of a circular arc as shown in Fig. 1.2 (a). Consequently, the
angle of the resultant normal contact force applied on the roller by the sprocket could not
been determined from physical reasoning by most models. One exception to this is the

“stiff link - soft tooth” model devised by Gerbert [8].

Binder assumed that the angle of the contact force on each tooth with respect to the

tooth is constant. But he made no comment on how to determine the value. In the model
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of Naji and Marshek a number of rollers on the high tension side contact the tight side tooth
flanks and the rest contact the slack tooth flanks. It was further assumed in their model
that, if the roller contacts the seating curve, the angle of the normal contact force is constant
with respect to axis of the symmetry of the tooth form. The value of the pressure angle
used in the theoretical prediction of Naji and Marshek on the chain tension was selected to

provide good agreement with their experimental data.

The angles of normal contact forces on the sprocket strongly affect the distribution of
contact forces and chain link tensions. It will be shown that in a reliable roller chain drive
the rollers contact not only the working curve but also the seating curve. Therefore, the
angle of the normal contact force not only on the working curve but also on the seating

curve should be precisely estimated to correctly predict the load distribution of the chain

and the sprocket.

A new model which enables us to determine the load distribution without resorting to
any assumption on the distribution of the contact points is developed. It is shown that the
distribution of the contact points on the sprocket is in fact determined by the loading
condition. In the new model the curvature difference is included and the trajectory of the
center of the roller on the seating curve composes a circular arc as shown in Fig. 1.2 (b).

Refined modeling of the friction forces is also incorporated.

2 DISTRIBUTION OF CONTACT POINTS

In this section, the geometric relationship between contact points on the sprocket
surfaces is derived. Only steel roller chains and steel sprockets standardized by ANSI are
considered. The chain and the sprocket are regarded as two-dimensional bodies and any
variation in the direction parallel to the axis of the rotation of the sprocket is neglected.
Furthermore, point contact is assumed and the effects of elastic deformation of the chain

and the sprocket are neglected.



The tolerances on the chain pitch and the sprocket pitch are not given by the standard
explicitly. However, they can be computed from the tolerances on the chain length and the
sprocket diameter given by the standard. New chain should have an over-length error, and
the error in the length increases in the course of operation because of wear between the pin
and the bushing. On the other hand, the error in the sprocket pitch can be either negative or
positive. The effect of a negative error in the sprocket pitch is similar in many aspects to
that of a positive error of the same magnitude in the chain pitch. The tolerance on the
sprocket pitch turns out to be, in general, larger than the tolerance on the chain pitch.
(Detailed treatment of the tolerances on the chain pitch and the sprocket pitch can be found
in Kim [7].) Therefore, the error in the sprocket pitch should be also considered whenever

the effects of the error in the chain pitch are discussed.

The system to be handled here consists of a sprocket and a segment of endless chain
wrapping the sprocket as shown in Fig. 2.1. Without loss of generality it can be assumed
that the sprocket rotates counter-clockwise. Each roller and each link is given an integer
index for convenient mathematical manipulation. Roller 1 is defined as the roller that has
most recently come in contact with the sprocket. Roller 1 s located at the end of the high
tension side for the driver sprocket, whereas it is at the end of the low tension side for the
driven sprocket. The roller j follows roller j+1 in the direction of rotation of the sprocket.
m is the instantaneous number of rollers in contact with the sprocket. The link between

roller j and roller j+1 is denoted as link j+1.

To locate the contact point, coordinate € is defined here along the curve of each tooth of
the sprocket as shown in Fig. 1.1. Each point at which two different curves meet is
assigned an integer from — 4 to 4 from the left end to the right end of each tooth. The
coordinate has a linear scale within each segment. When & is used with a subscript, it

denotes the & coordinate of the corresponding roller.

The typical relationship between t‘,‘, ,1» the & coordinate of the contact point of roller j+1,



and &, that of roller j, is shown in Fig. 2.2. The graph was obtained for a single pitched
roller chain with pitch of 0.5 inch and matching sprockets of 12, 24, and 36 teeth. The

graph is symmetric about line éj = §j. An analytical procedure to compute the location

of a roller from that of neighboring roller can be found in Kim [7].

Obviously, the contact points of all the rollers on the sprocket can be located if any one

of them is somehow known. Fig. 2.3 illustrates graphically how to determine &, &;, and
so on sequentially from the values of &, in two different cases. It can be noticed that the
distributions of contact points of the two cases shown in Fig. 2.3 are quite different from

each other.

In fact, if &, and & are & coordinates of points R and L shown in Fig. 2.3 respectively,
the series &;, &), ..., &, can be classified by the five cases as follow:
Case I11If £, > &p, then éj. > 5,'-1 (G=2,3,..,m)
Case ITIf & =&, then &y =6 = .=, = &p
Case IIT If &, > &, > &, then &; < §i-1(G=2,3, .., m) and converges to &
Case IVIfE =, then &, =&, =..= & =&
Case VIf £, < G, then éj > 5;‘-1 (G=23,..,m)

It can be observed that the series are characterized by the two specific points marked as

R and L in Fig. 2.2 and 2.3. They will be called the “transition points” from here on. The

£ coordinates of the transition points, &, and &, can be computed analytically. The

algorithm to compute the transition point & is listed in Kim [7]. Note that & =-&p

For a chain and a sprocket which have exact reference dimensions, the transition points
stay in the working curves very close to the border between the seating curve and the
working curve (=1 or— 1). The locations of the transition points can be affected by the
changes in the chain pitch, the sprocket pitch, and the radius of the working curve. Chain

pitch, sprocket pitch, and the radius of the working curve of a real sprocket can differ from



the reference values due to manufacturing errors and wear. Chain pitch and the radius of
the working curve change in the course of operation due to wear; sprocket pitch is not

affected by wear.

The transition points move further toward the inside of the working curves as the chain
pitch increases (equivalently, as the sprocket pitch decreases) and as the radius of the
working curve increases. Fig. 2.4 shows the location of transition point R of 12-tooth and
24-tooth sprockets for No. 40 and No. 80 chains. The ranges of tolerance on the chain

pitch covered in Fig. 2.4 is the same as those allowed by the standard.

Distribution of contact points is not determined solely by the geometrical relationship.
It is determined only when the equilibrium equations of the system derived in Section 3 are
solved along with the geometrical relationship. Therefore, discussion on the five cases of
contact point distribution is continued in Section 4 after the force and moment equilibrium

of the system is discussed in Section 3.

3 QUASI-STATIC EQUILIBRIUM OF THE CHAIN AND THE
SPROCKET IN CONTACT

In this section, quasi-static force and moment equilibrium of the chain and the sprocket
in contact is derived. The friction forces and torques appearing in the equilibrium equations

are modeled in accordance with the laws of Coulomb friction.

It is shown that the kinematic variables appearing in the equilibrium equations can be
computed if the location of any one of the contact points on the sprocket and the direction
of its instantaneous movement are known. It is also shown that the equations can be solved
under certain conditions including the case of practical interest where tensions of two chain
spans wrapping the sprocket are given. A closed form solution is not available since some

of the equations governing the relationship between the kinematic variables are highly non-



linear. The equations can be solved numerically by iteration at any instant or, equivalently,

at any sprocket angle. The procedure for the solution is also presented.

3.1 Equilibrium Equations

Equations governing quasi-static equilibrium of each element in Fig. 3.1 are derived.
Both scalar variables and vector variables are used to denote forces and torques. Vector

quantities will be represented by bold characters and the scalar quantities by plain

characters.

Several angles and three sets of unit vectors shown in Fig. 3.2 are used. Definitions of

angles are shown in Fig. 3.2. Vectors X; and y; are unit vectors fixed in tooth j and
mutually perpendicular to each other. Vectory ; is parallel to the axis of symmetry of the
tooth. Vector z is a unit vector equal to x X Yo Vector p j is a unit vector normal to the
tooth surface directing from outside to inside at the contact point with roller j. Vector T, is
perpendicular to normal vector . Vectors p; and T; are obtained by rotating unit vectors
X; and \f respectively by angle [3jcounter-clockwise. Similarly, unit vectors tj and v; are
obtained by rotating unit vectors X; and y; respectively by angle o, counter-clockwise. All

angles are measured with respect to axis x ; and defined positive counter-clockwise.

The formulas derived in this section may be sensitive to the orientation. From here on,
subscripts i-2, i, i+2, and so on will be used to denote pin links and subscripts i-1, i+,
and so on for roller links. The orientation of elements relevant to any term with a subscript
which includes i should be in accordance with Fig. 3.1. If the formula is not sensitive to

the orientation subscript j instead of i is used.

Let N.and F; be respectively the normal and the tangential components of the contact

force on the sprocket by roller j. Rollers i and i+1 are connected to roller link i+1 as shown

in Fig. 3.1. LetQ ; and § i (j =1, i+1) be respectively the resultant force vector passing



through the center of roller j and the accompanying torque in the z direction on roller j by

roller link i+1. From the free body diagram of roller j in Fig. 3.1 we have
Q;=N;p; +F;1; (j=i,i+l) (3.1)
S;i=RpF; (j=ii+l) (3.2)
where R, is the radius of the roller.

Let the contact force by link j~1 on link j passing through the center of the joint be Pj

and the magnitude of the accompanying torque in z direction be U i Equilibrium for pin

link { yields
P, =P, (3.3)
U_-U+pevi-P;=0 (3.4)

where p- is chain pitch. And, for roller link i+1, we have
P, +Q+Q,, =P, 3.5)
=Pc Vi Qi =S - Ui =Sy ==Pc Vi Pi= U (3.6)
Supplementary information on the relationship connecting the tangential forces and the

torques to the normal forces is necessary for the equilibrium equations derived above to be

solved. This information is supplied from the following friction model.

3.2 Friction Model

Relative motion, or sliding, among the elements of the chain and between the roller and
the sprocket is necessary to satisfy the kinematic requirement for the continued motion of
the sprocket and the chain. Sliding can occur on the surfaces between the tooth and the

roller, between the roller and the bushing, and between the bushing and the pin.

Angle n, the angle between two consecutive chain links, changes as the location of the



contact point changes. The pin should slip against the bushing to accommodate the change

in angle 7.

Any contact force passing through the contact point can be replaced by the same force
whose line of action passes through the pin center and an additional torqué. The magnitude

of torque Uj can be expressed as

U;=sign () —==LE=R,|P| (j=i,i+1) 3.7)

V1+ g
in which f1,5 is the coefficient of kinetic friction between the pin and the bushing and R is

the radius of the pin, and the operator sign (-) is defined as

’ 1,ifx>0
sign () =1 0, ifx=0 (3.8)
|21 ifx <0

Note that the friction torque U; is not determined by Eq. 3.7) when there is no relative

motion of the pin against the bushing. Although this may happen in a chain drive operating

at extremely slow speeds or exercising intermittent motion, it will not be considered here.

The roller can roll either with slip or without slip on the tooth surface. It is assumed
here that the roller slides, if it does, only on either the surface of the sprocket tooth or that

of the bushing.

If roller j slips on the tooth surface, the magnitude of the friction force F ;% on the
sprocket by the roller j is equal to pp¢ N; where [tz is the coefficient of kinetic friction
between the roller and the sprocket. The direction of friction force F ; is determined by the
direction of the motion of the contact point on the roller relative to the contact point on the
sprocket. Let the instantaneous angular velocity of the roller which is assumed to roll

without slip be 6. Then, the direction of the relative motion of roller j, which this time
slides on the sprocket, is determined by sign (dj— éj) if link j is a roller link, and by

sign (}'? - éj) if link j is a pin link. And it holds F = F js where



sign (. — 6.) tpe N. forj =i

F,-SJ. R o (3.9)
\mgn (0py = 6;41) Hps N, for j=i+]

in which pi, is the coefficient of kinetic friction between the roller and the sprocket.

Torque § f is determined from Eq. (3.2).

If roller j rolls without slip on the tooth surface, sliding occurs between the roller and
the respective bushing. In this case, resultant force Qj passing through the roller center and
the accompanying torque S jon the roller by the bushing will have a similar relationship to

that between force Pj and torque UJ That is, it holds § ;= SIB where

Isign (7 — éi)———E—B-&——RB|Qi| forj=i

A 2
SjB _ L+ Ugp (3.10)

\Sign(aiﬂ‘ém) a R5|Qy,,| forj=i+l

—TBR __
V1+ ujp
where p15p is the coefficient of kinetic friction between the bushing and the roller and R is

the outer radius of the bushing. Friction force F; and torque S; can be expressed in terms

of normal force Nj from the simultaneous solution to S ;= SjB, Eq. (3.1), (3.2), and (3.10).

This leads to F; = F f where

N R
sign (7; — 91.)«/ = B“BRz = N; forj=i
2 -
J . . : R o ’
mgn(aiﬂ—em)v > B#BRZ - N,,, forj=i+l
Ry + Mg (RR_RB)

If the magnitude of friction force F f; is less than F jﬁg, sliding occurs between the

bushing and the roller. Otherwise, sliding occurs between the sprocket tooth and the roller.

In other words, friction force F ; is given by



B

F
i Hpr Rp < kg VR + ife (R,% - Rj)
— F Fo) L
Fj—Kij, Kj—-Fs (]-z,z+1) (3.12)
L otherwise
Nj

And torque § j becomes

Ry F

L =R (=it (3.13)
J

Si=K N, 1=

The directions of the friction forces and the accompanying torques are determined by
sign (f]j), sign (¥, — éi), and sign (&, — GM) in Eq. (3.7), (3.9), (3.10) and (3.11).
Note that angles o, ,Bj, Yo Mjp and Bj ¢=1,2,..,m)except @ and ¥, are determined
from éj’s which in turn can be determined if any one of them, for example &,, is known.

Angle o, and angle 7, are determined by the angle of the sprocket with respect to the chain

spans.

Due to the geometry of standard chains and sprockets it holds without exception that

o'tj < éj unless j = 1 and that 'yj < éj unless j = m. Thus we have

[sign (@ - 6,), ifj=1

sign (@-6) =1~ . . (3.14)
|- sign (§)) = sign (£ =sign (&), ifj#1

and

sign (7, — 9m), ifj=m

. . . ' 3.15
- sign (ej) = sign (gj) = sign (61)’ ifj#m G4

sign ()'/j - éj) =

In other words, the friction forces on the sprocket teeth (except teeth 1 and m) have the
same direction as the movement of the contact point of roller 1. The directions of the
friction forces on teeth 1 and m are not determined solely from geometrical reasoning.

They can also be influenced by instantaneous loading conditions. Computation results

obtained for a wide range of conditions indicate that it holds that ¢, > él and > ém.



However, no presumption about this is necessary to solve the equilibrium equations as will

be shown later. Note that sign (¢;) = sign (7,) =-1. The friction force on each tooth
except tooth 1 and tooth m is toward the direction of decreasing & in Case III; it is toward

the direction of increasing & in Cases I and V.

3.3 Solution Procedure

Let the components of force P j parallel to unit vectors t; and Vi be T and Vj

respectively. That is,

P —Tt+ij (=1, i+l) (3.16)

From Eq. (3.4), (3.7), and (3.16) we have

pc V; = {sign (1) - sign (ﬁi_l)} j"’i_R VT? + V7 (3.17)
Hpp

Solving Eq. (3.17) for V; gives

[sign (1) - sign (1,_;)| tpp Rp /P (3.18)

Vi=x/'T,, /=

l’

V 1+ pugy + [sign (1) - sign (1,_) (pg Rp /P

‘ +2 (theratio of Vi, to T; .+2) can be obtained by replacing i+2 for i in Eq. (3.18).

Then, by use of Eq. (3.3) and (3.16) the ratio of V. 1 0T K +1, can be computed.

: vV
K":- Vi : (Ti+2 gt x+2 Tip V x+2) +1 _ S0 My — Ki+2 €0S ;) (3.19)

i+1 .
Ti+1 (Ti+2 ti+ Kl+2 T+2 x+2) t —COS My~ z+2 SIN T4y

And from Eq. (3.7), (3.16) and (3.18) torque Uj can be expressed as

Uj=kVT, «¥=sign (i) J“PB_M/ +(VP (=ii41) (3.20)

Substituting Eq. (3.16) and (3.1) along with Eq. (3.12) and (3.18) into Eq. (3.5) and

considering two components parallel to t; ; and v,,, respectively give the following two

scalar equations.



F o Foo
T, - N;(cos v,~ kf sin vi) +N,,, (cos 0, + &Fsin @)

i+l

v N (< F _ : L F
K1 T — N (Sm V; + Kj COS Vi) Niv (S“‘ @iy — Kiyq COS ‘Pi+1)

=T, (sin 0, + kY cos 7 (3.22)

Similarly, Eq. (3.6) can be rewritten as

U ~ F s
~ &Y, Ty +{pc(sin v; + & cos v)- KS)N; = K5 Ny

={pc (sin m; + x/ cos ) - k¥ } T; (3.23)

The three scalar equations, Eq. (3.21) to (3.23), can be solved simultaneously for N,

N.,,, and T,,, if the values of T; and the kinematic variables are known.

i+1°

From Eq. (3.3) and (3.16) we have

Ti+1 = (Ti+2 hip t Vi+2 ' vi+2) b = (" COS My — KKZ sin ni+1) Ti+2 (3.24)
Thus we can express T,,, in terms of T;,; and kinematic variables as
T . = Tin (3.25)

i+2 Vv .
= COS My, — Ky SIN Ty

It is sometimes convenient to use the forces at the mid-points of the chain links instead

of the forces at the joints, especially when they are compared with experimental data. Let
T; be the tension of the link j at its mass center. Then, from Fig. 3.1, we have
T, =P, t;=T, . (3.26)

*

Ty = (Piy + Qi) by = Toy + (005 @1y + fy sin 03,) My (3.27)

Eq. (3.21) to (3.26) hold for all values of j except for link 1 and link m+l if they are
roller links. If link 1 is a roller link, Fy =N,=0and 7, = 0. Then, from Eq. (3.26),

(3.22), and (3.23) for i+1 = 1, we have, assuming U, = 0, the following simultaneous

equations for T, and N,.



N

{ 1 cos @, + k7 sin @,
0

Pc xY - Y pc( sin @, + kf cos ‘P1) Ky

-

T*
! } (3.28)

T, and N, can be computed by solving Eq. (3.28).

If the link m+1 is a roller link, setting i = m and noting that N, =0 in Eq. (3.21) and

(3.23), we have

{Tm+1}_ —(cosnm—KVsmnm \T
- pc(sin n,,+ Ky cos nm) KV ‘ "

m

1 —(cos v, - kE sin v,]
0 pe(sin v, + &F. cos v,,) - &

(3.29)

[t has been shown that values of N, Tl 1 Nivp and T;;z can be determined if we know
the value of Ti* and values of the kinematic variable. A typical problem will be one in
which T} and T}, are given. In this case, "searching" for the proper value of £, which
yields the given value of T, , | is required, since the positions of the contact points of the

rollers are not known.

Since the endless roller chain is composed of roller links and pin links alternately
assembled, the behavior of the chain drive cycles with a period of two pitch angles. Thus
the solution obtained over two pitch angles represents the complete solution. Numerical
solutions can be obtained at any finite number of sprocket angles. Assume that the
sprocket angle ¢ is defined so that it increases as the sprocket rotates. An algorithm to
obtain the solution at any given value of sprocket angle ¢ is as follows:

Step 1 Assume a value of &,.

Step 2 Determine sign (él) by noting that sign (él) < 0if & < &pand sign (51) >0
otherwise.

Step 3 Compute all the angles in Fig. 3.2 at ¢ and &,.

Step 4 Compute also those angles at ¢ + Ap and &, + AE,. A¢ is very small and

positive; A&, is very small and positive if sign (51) > 0 and negative otherwise. Then,



compute sign (1)), sign (7; = ), and sign (&, - 6,,,) in Eq. 3.7), 3.9), (3.10) and
(3.11) by assuming that
sign () =sign{n (€, + A&, ¢ + Ag)- 1 (&, )} (3.30)

Step § Comphte all the forces including T . , , by use of equations derived in this section.

m+1
Step 6 Compare the computed value of T; .1 and the given value. If the difference is

greater than the given allowance, guess a value of &, again and repeat step 2 to 4. Repeat
this until the difference between the computed value of T;; .1 and the given value falls

within a given limit.

Step 4 can be skipped if one uses the facts described by Eq. (3.14) and (3.15) and
assumptions that sign (¢, - 91) = sign (7, — ém) = -1 and that sign (7'7].) = (). The first
assumption is baséd on the fact the possible variations in ¢, and ¥,, are much larger that
those in 6, and 6 . However, the first assumption can be checked and corrected, if
necessary. On the contrary, the second assumption corresponds to neglecting the friction
torque between the pin and the bushing. Although the error introduced by this
approximation may not seriously degrade the accuracy of the computation, use of this

approximation is basically a matter of user’s discretion.

The computed value of T, monotonically changes as the value of &, changes.

m+1

Therefore, any conventional numerical scheme for the solution of nonlinear equations, such
as the bisection method or Newton’s method [6], can be incorporated into step 5 to find a

. *
satisfactory value of T, _ ;.

4 RESULTS

In this section results obtained by the analysis presented in the previous sections are
discussed. First, a general discussion of the result is presented. Then, factors affecting the

load distribution of the system are discussed. Finally, the chain tension data for the



experimental system studied by Naji and Marshek in [2,3] are compared with the results

obtained by this simulation.

4.1 General

If friction is neglected, Eq. (3.21) to (3.27) are reduced to

« sin -
J
sin(v. + <p.) . ;
N=—vot "JT (4.2)
J sin v, J

The ratio between tensions of two adjacent links and the ratio between the normal

contact force on the sprocket and the link tension are determined basically by the angles ¢
and v, (see Fig. 3.2). Friction changes the ratio slightly. Note that angle @; is the angle
between link j and the normal vector at the contact point and angle v; is the angle between
link j+1 and the normal vector. The angles of links j and j+1 with respect to tooth j (angle
o and Y, in Fig. 3.2 respectively) are little affected by the change in the location of the
contact point. Thus, angles v; and @; are affected primarily by the location of the contact
point of roller j. This implies that locating contact points correctly is very important for

accurate prediction of link tensions and contact forces.

The ratio between tensions of two chain spans wrapping the sprocket can be expressed,

from Eq. (4.1), as

* . . .
T, _sing sing, sing, 43)
T, sinvp siny, sinv,_

All the angles except ¢, and v, shown in the right hand side of Eq. (4.3) can be computed
from &,. Angles ¢, and v, are determined from the instantaneous angle of the sprocket

with respect to the two chain spans. For fixed ¢, and v,, the tension ratio is a monotonic



function of ¢,.

In Case I, it holds that 0 < QST < th— (=1,2,.. m). More specifically, it
holds that sin @, < sin v, sin @; < sin v, (=23,..,m-1), and sin @, <sin v, . The
equalities in the first and the third equations hold at the instants of engagement and
disengagement respectively. This yields, from Eq. (4.3), that T; 41 < T: . Due to the
numbering convention for chain links and the direction of rotation of the sprocket we
assumed (as shown in Fig. 2.2) it should be satisfied that T, > T} for the driven
sprocket. Therefore, Case I cannot occur in the driven sprocket. Similarly, it holds that
T; > T; in Case V and cannot occur in the drive sprocket. Cases II and IV would occur

if the tension ratio T ;m /T{ were to fluctuate according to the periodic changes in the angle

of the sprocket, or, angles ¢, and v . This condition is not met by a normal chain drive in

motion. Case III can occur for both the drive sprocket and the driven sprocket.

In Case I, the tension ratio T; H/Tr is smaller than in Case III. Case I occurs in the

drive sprocket if the slack tension is extremely low relative to the tight tension and/or only a
small fraction of the total number of teeth are in contact with the chain. In this case, the
roller moves outside the tooth as the sprocket rotates and derailment can possibly occur (see
Fig. 2.3). A similar argument can be made for the driven sprocket in Case V. Obviously
Cases [ and V do not represent desirable operational conditions. It is possible to compute
the value of the tension ratio at which the distribution of contact points transitions from
Case I or V to Case III. Case III is the most desirable éase and it occurs in most chain

drives designed in accordance with conventional design practice.

This line of arguments provides the theoretical basis for the conventional practice of
selecting relative shaft position. It is said that the most favorable operating conditions are
obtained when the drive approximates the horizontal [9]. It is also recommended that the

larger sprocket should be placed in the lower position if the drive is not horizontal. When



the slack span is horizontal, the slack tensions of the two sprockets are positive due to
gravity. As the inclination angle of the drive increases, the slack tension of the sprocket in
the lower position decreases and it becomes more probable that it will exhibit the contact
point distribution of Case I (for a drive sprocket) or Case V (for a driven sprocket) rather
than Case III. ~ Since the possibility of having a Case III distribution increases as the
number of teeth in contact increases, the larger sprocket should be placed in the lower
position. If the condition for a Case III distribution is not satisfied, use of a tensioner

sprocket should be considered.

Note that a symmetric distribution of the contact points on the drive sprocket in Case I
can be found from a distribution of contact points on the driven sprocket in Case V, in
which fj of the drive sprocket is replaced by -ém_j. Similar arguments can be made for
distributions of the contact points of both the drive sprocket and the driven sprocket in Case
III. Furthermore, the link tensions and the contact forces on the sprocket can be exactly
symmetric (or T; of the drive sprocket is equal to T;;-j+1 of the driven sprocket, etc.), if
there were no friction. As was discussed in Subsection 3.2, the directions of the friction
forces on the sprocket are not affected by whether the sprocket is the drive sprocket or the
driven sprocket. They are determined by the direction of the movement of the contact
points on the sprocket and the direction of the rotation of the sprocket. It is assumed that
the sprocket rotates counter-clockwise. The contact points on the drive sprocket in Case I
move in the same direction as those on the driven sprocket in Case V. In Case III, the
roller comes in contact with the sprocket at a point very close to transition point R as it
engages with the sprocket. Then it moves toward the other transition point L until it
disengages from the sprocket. Thus if friction is involved, symmetry between the drive

sprocket and the driven sprocket no longer exists.



4.2 Factors Affecting the Load Distribution

There are several factors that can affect the load distribution of the chain and the
sprocket. The effects of the tension ratio of the two chain spans, friction, and the
dimensional variations in the chain pitch and the sprocket pitch are discussed in this
section. The link tension shown in the figures of this section represents the tension which
a link experiences from the instant of engagement to that of disengagement as the sprocket
rotates. The angle of rotation in the figures of this section is defined such that it is zero
when the link of interest engages with the drive sprocket or when the link disengages from
the driven sprocket.3 Since the two chain spans are assumed to be parallel, the angle of
rotation is 180 degrees when the link engages with the driven sprocket and disengages
from the drive sprocket. Therefore, the angle of rotation changes from zero to 180 degrees

for the drive sprocket and from 180 to zero degrees for the driven sprocket.

The ratio of the slack tension to the tight tension has significant effect on the load
distribution of the sprocket and the chain. Fig. 4.1 and 4.2 show the tension of a pin link
on the drive sprocket and the driven sprocket respectively. They were obtained with No.
2040 standard steel chains and matching 31-tooth steel sprockets under five different ratios
of the slack tension to the tight tension. The same drive and the same tension ratios were
used in [2 and 3]. The load distributions have almost the same value up to a certain
sprocket rotation angle regardless of the tension ratio. This is because of the fact that the
contact points of the first several rollers at the side of the tight tension stay very close to the

transition points as shown in Fig. 4.3 and 4.4.

Existence of friction between the bushing and the roller and between the roller and the

sprocket makes the load distribution of the drive sprocket different from that of the driven

3The link tension is maximized when the angle of rotation is zero. The definition of the angle of
rotation is the same as used by Naji and Marshek (2, 3].



sprocket. Fig. 4.5 shows the tension of a pin link for various values of the coefficient of
kinetic friction for the bushing and the roller. The slack tension is equal to the tight tension
in Fig. 4.5. If no friction exists, the tension on the drive sprocket is exactly the same as
that on the driven sprocket. The tension drops more quickly after the chain link engages
with the drive sprocket as the friction coefficient decreases. The friction between the pin

and the bushing has little influence on the load distribution.

The dimensional variations in chain pitch and sprocket pitch significantly affect the load
distribution. A negative error in the sprocket pitch showed almost the same influence on
the load distribution as a positive error of the same magnitude of the chain pitch. The net
error in chain pitch used in Fig. 4.6 is defined as the error in the chain pitch minus the error
in the sprocket pitch. The effect of the net error in the chain pitch is reduced as the chain

elongates as shown in Fig. 4.6.

Fig. 4.7 and 4.8 show simulated tension of a pin link for one of the chain drives
measured by Naji and Marshek in [2 and 3]. The net error in the chain pitch used in the
simulation is approximately 0.007 inch per pitch (or 0.084 inch per foot). The coefficient
of kinetic friction used in the simulation is 0.08 which is within the typical range for
lubricated steel surfaces. Estimated link tension shown in Fig. 4.7 and 4.8 shows an
excellent agreement with the measurement by Naji and Marshek (as shown in Fig. 4.9 and

4.10)* respectively.

Estimated values of the coefficients of the kinetic friction and the net error in the chain
pitch are used in the new analysis for a quantitative prediction of the contact phenomenon in
roller chain drives. Estimated values of the coefficients of the kinetic friction and a constant

value for the pressure angle were used in previous analyses.

4Fig. 4.9 and 4.10 are listed here with the permission of Dr. M. R. Naji.



The primary argument in favor of the new analysis is that the net error in the chain pitch
can be measured or, at least, related to the physical dimensions of the chain and the
sprocket. The effect of the dimensional variations in the chain pitch and the sprocket pitch

can be fully appreciated by the new analysis.

Finally, a recent experimental investigation [10] found strong spikes in the chain
sideplate force as the point where the roller exits the load sprocket and at the point where
the roller enters the motor sprocket. Chain speeds were in the moderate to high range in
this study, and this suggests that the load distribution problem may be significantly
complicated by dynamic factors (impact and inertia) at higher speeds. This is an excellent

area for future research.

5 CONCLUSIONS

The contact phenomenon between a roller chain and sprocket was investigated using a
system model which includes significant geometrical detail as well as friction effects. The
distribution of the contact points on the sprocket is derived from the model (rather than
assumed), hence a logical prediction of the contact phenomenon is possible. Comparison
of the simulated link ‘tension with existing experimental data [2, 3] showed an excellent

agreement.

- It was observed that the distribution of contact points on the sprocket is affected by the
external loading condition, and this relationship was determined. The distribution of the
contact points can be classified practically into two different cases. In the first case the
contact between the chain and the sprocket occurs outside the two points identified as
transition points (symmetrically positioned on each tooth). This tends to happen if the ratio
of the slack tension to tight tension is extremely low and/or if the number of teeth in contact
is small. The load on the sprocket is more concentrated on the first several teeth at the side

of the tight span in this case than otherwise. Moreover, the rollers in contact with the



sprocket can be easily stripped out from the sprocket, and the motion of the chain drive can
become jerky. This can be avoided by use of an idler sprocket. In the second case, the
contact between the chain and the sprocket occurs between the transition points and reliable
power transmission is achieved. This condition is satisfied by most chain drives designed

in accordance with conventional guidelines on the selection of relative shaft position.

The locations of the transition points vary depending on the dimensional variations in
the chain pitch, the sprocket pitch, and the radius of the working curve. Those variations
are caused by manufacturing tolerance and wear. The transition points of a roller chain
drive with dimensions that correspond to the nominal values given in the ANSI standard
(5] reside close to the border with the seating curve. As the chain elongates the transition
points move toward the inside of the working curves. But, the transition points of any
chain in workable condition will stay within a small portion of the working curve next to
the seating curve. The contact points of the first several rollers from the end of the tight

span remain very close to the transition point at the side of tight span.

Suggestions for correct interpretation of some terminologies used in the relevant ANSI
standard [5] can be made. In the standard the pressure angle’ is given for different cases.
The “pressure angle for a new chain” is denoted as the pressure angle of the inner end point
of the working curve (the border point between the working curve and the seating curve).
This seems to be a good approximation for the first several rollers from the tight span,
since they remain very close to the transition point and the transition point for a new chain
resides very close to the inner end point of the working curve. But, it should be also
noticed that some of the rollers may contact the seating curve. The “minimum pressure
angle” is denoted in the standard as the pressure angle of the outer end point of the working

curve. This should not be interpreted as an implication that a fully elongated, but

5In fact, the definition of the pressure angle cannot be found from the standard. It is defined in Ref. 1
as the angle ¢ in Fig. 1.1.



workable, chain may have this small value of the pressure angle.

REFERENCES

1. Binder, R. C., 1956, Mechanics of the Roller Chain Drive, Prentice-Hall, Englewood
Cliffs, New Jersey.

2. Naji, M. R, 1981, On Timing Belt and Roller Chain Load Distribution, Ph. D.
Dissertation, University of Houston, Houston, Texas.

3. Naji, M. R. and Marshek, K. M., 1983, “Experimental Determination of the Roller
Chain Load Distribution,” ASME Journal of Mechanisms, Transmission, and
Automation in Design, Yol. 105, pp. 331 - 338.

4. Naji, M. R. and Marshek, K. M., 1984, “Analysis of Roller Chain Sprocket Pressure
Angles,” Mechanism and Machine Theory, Vol. 19, No. 2, pp. 197 - 203.

S. American National Standards Institute, 1975, “Precision Power Transmission Roller
Chains, Attachments, and Sprockets,” ANSI Standard B29.1 - 1975, New York.

6. Conte, S. D. and de Boor, Carl, 1972, Elementary Numerical Analysis, McGraw-Hill.

7. Kim, M. S., 1990, Dynamic Behavior of Roller Chain Drives at Moderate and High
Speeds, Ph. D. dissertation, University of Michigan.

8. Gerbert, G., 1989, “Tooth Action in Chain and Timing Belts,” International Power
Transmission and Gearing Conference - Vol. 1, Book No. 10288A - 1989, ASME,
NY, pp 81 - 89.

9. Bouillon, G. and Tordion,G. V., 1965, “On Polygonal Action in Roller Chain Drives”,
ASME J. Engineering for Industry, Vol. 87B, pp 243 - 250.

10. Conwell, J. C., 1989, An Examination of Transient Forces in Roller Chain Drives,
Ph.D. dissertation, Vanderbilt University.



Working Qurve Working Curve
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N: Number of Teeth
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the standard.

Fig. 1.1 Standard Sprocket Tooth Form for Roller Chains
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« Contact point on the seating curve can be located
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Fig. 1.2 Differences in Modeling of the Contact Point on the
Seating Curve
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Fig. 2.1 Roller Chain Drive
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Link tension normalized by the high tension

Chain number: 2040 (Double pitch chain, pitch: 1 inch)
Number of sprocket teeth: 31

Roller - bushing kinetic friction coefficient: 0.08
Bushing radius/roller radius: 0.75

Net error in the chain pitch: 0

Low tension/High tension
-0—0- .03
——7/ .25
-O0—0O- .50
—-r—— .75
% 1.0

30 60 90 120 150 180
Angle of rotation - degree

Fig. 4.1 Pin Link Tension on the Drive Sprocket



Link tension normalized by the high tension

3

Chain number: 2040 (Double pitch chain, pitch: 1 inch)
Number of sprocket teeth: 31
Roller - bushing kinetic friction coefficient: 0.08
Bushing radius/roller radius: 0.75
Net error in the chain pitch: 0
.+|
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Fig. 4.2 Pin Link Tension on the Driven Sprocket
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Fig. 4.3 Locations of Contact Points for the System in Fig. 4.1
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Fig. 4.4 Locations of Contact Points for the System in Fig. 4.2




Link tension normalized by the high tension

Chain number: 2040 (Double pitch chain, pitch: 1 inch)
Number of sprocket teeth: 31

Ratio of the slack tension to the tight tension: 1.00

Net clearance on the chain pitch: 0.000 inch

*

Sprocket, Friction coefficients
—-0—~ No friction**
~/x—/x Drive, 0.06
-O—O- Drive, 0.12
——— Driven, 0.06
—3¢—3- Driven, 0.12

* Constant value of the coefficient of kinetic friction is used for
pin/bushing, bushing/roller, and roller/tooth surfaces.

** The tension of the chain on the drive sprocket is exactly the
same as that on the driven sprocket in this case.
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Angle of Rotation (in degrees)

Fig. 4.5 Effects of Friction on Pin Link Tension
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(b) Pin Link Tension on the Driven Sprocket

Fig. 4.6 Effects of the Net Error in the Chain Pitch on Link Tension



Link tension normalized by the high tension

Chain number: 2040 (Double pitch chain, pitch: 1 inch)
Number of sprocket teeth: 31

Roller - bushing kinetic friction coefficient: 0.08
Bushing radius/roller radius: 0.75

Net error in the chain pitch: 0.007 inch

Low tension/High tension
-0—0- .03
-N—2/ 25
-O0—0O- 50
——— 75
-3¢ 1.0
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L T

30 60 90 120 150
Angle of rotation - in degree

Fig. 4.7 Simulated Pin Link Tension on the Drive Sprocket
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Link tension normalized by the high tension

Chain number: 2040 (Double pitch chain, pitch: 1 inch)
Number of sprocket teeth: 31

Roller - bushing kinetic friction coefficient: 0.08
Bushing radius/roller radius: 0.75

Net error in the chain pitch: 0.007 inch

Low tension/High tension
-0—0- .03
D0 25 o i
-O0—0O- .50
——=— .75
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Angle of rotation - in degree

Fig. 4.8 Simulated Pin Link Tension on the Driven Sprocket
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