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PARALLELS BETWEEN PARALLELS
Sandra Lach .ﬂ.rfrnghaus

U have a little shadow thal goes v and out with me
And what can be the use of him is mors than | con see.”

Robert Loms Stevenson
“My Shadow™ in A Child’s Garder of Verses

Abstract:

The earth’s sun introduces a symmetry in the perception of its trajectory in the
sky that naturally partitions the eartl’s surface inlo zones of affine and hyperbolie
geometry. The affine zenes, with single geometric parallels, are located north and
south of the geographic tropical parallels. The hyperbolic zone, with multiple ge-
ometnc parallels, 5 located between the geographic tropical parallels. Evidence of
this geometric partilion iz suggested in the geographic environment—in the design
of homses and of gameboards.

1. Introduction.

Subtle influences shape our perceptions of the world, The breadih of a world-view 1= a
function not only of “real”~warld experience, but also of the “abstract” -world context within
which that experience can be sirgetured. As Willlam Kingdon Clifford asked in his Postulates
of the Saence of Space (3], how can one recognize flatness when magnification of the landscape
merely reveals new wrinkles to traverse?

Geometry 15 a “source of form™ not only in mathematies [10], but alsa in the “real” world
|2]. Street patterns are geometne; architectural designs are geometne; and, diffusion patterns
are geometric In ths ELLI:d.P_‘l': Lhe geomettic notion of parallelism 15 examined in relation to the
manner m which the sun’s trajectory in the earth's sky is observed by inhabitants ai vanous
latitudmal positions: from. north and south of the tropics to between the tropical patallels of
latiude, A fundamental geometrical notion is thus aligned with fundamental geographical
and estronomucel relationships; this alignment 1= interpreted in cultural contexts ranging
from the design of rooflines to the design of board games.

2. Basic Geometric Background.

To understand how geometry might guide the perception of form, it is therefore important to
understand what “geometsy” mught be. Projective geometry is totally symmetne and oS-
sesses i completely “dual” vocabulary: "peoints” and “lines,” *collinear” and “comcurrent,”
and a host of others, are interchangeable terms [6]. Indeed, a Principle of Duality serves as
a lingwstic axs, or murror, halving the difficulty of proving theorems. Thus, hecanse “two
pomts determine a line” is true, it follows, dually, that “twe ines determine o pomt” 15 also
trug. The corresponding situation does not held in the Euclidean plane: two lines do net
necessarily determine a point because parallel lines do not determine a point 6.

Coxeter classifies other geometries as speaalizations of projective geometry based on the
notion of parallehism, depending on-whether a geometry admits zero, one, or ore than one
lings parallel to a given line, through a point nol on the given line (6] In the “elliptic”
geometry of Hiemann, there are no parallel lines, much as there are none in the geometry
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Figure 1. The hyperbolic plane,
a. Two limes m and m’ (passing through P ) are divergently parallel to line £.
b Two lmes m and m' [pagsing through P ) are asymptotically parallel to line .

of the sphere that includes great cireles as the only lines, any two of which interseci at
antipodal points. In “affine” geometry, there is exacily one line parallel 1o a given line,
through & point not on thail line. Affine geometry 1s further subdivided into Euclidean and
Minkowskian geometries. Finally, in the “hyperbolic” geometry of Lobachevsky, there are
at least two lines parallel to a given line through a point not on that line.

To wisuahze, intwitively, the possibility of more than one line parallel to & given line it is
nelpful to bend the lines, sacofiong “strajghtness” in order to retain the non— intersecting
character of parallel lines. Thus, two upward- bending lines m and m' passing throngh a
point P not on a given hne £ never intersect £; thev are divergently parallel to £ {Figure
La). Or, one might imagine lines m and m' that are asymptotically parallel to £ (Figure
1.b) [8].
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Elbptic geometry, with no parallels, and associated great—circle charts and maps have
long been used ag the bagis for finding routes to traverse the surface of the earth. The sug-
gestion here is that affine geometry, with single geometnc parallels, capiures fundamental
slements of the earth-sun svstem ouiside the tropical parallels of latitude, and that hyper-
bolic geometry, with multiple geomeinc paraJI-::lE. does so between the tropical parallels of
latiiude.

3. Geographic and Geometric “Parallels™.

As the Poraple of Duality 15 2 “meta” concept abomt symmetry 1n relation to projectire
geometry, sotoo s the earth-sun system in relation to terrestnal epace. The changing seasons
and the passing from daylight into darkness are sirmghtforward facts of hie on earth, often
taken for granted. Some individuals appear to be more sensitive lo observing this broad
relationship, and to denving nformation from it, than do others. Shadows may serve as
markers of orientation as well as of the passing of time.

3.1 North and south of the tropical parallels.

Individuals north of 23.5% M. latitude and those south of 23.5° 5. latitude always ook in
the same direction for the path of the sun: either to the south, or lo the north (not both)
Shadows give them hnear information only, as lo whether 11 is before or after noon; shadows
never lie on the south side of an object north of the Tropic of Cancer. The perceived path of
the sun i the sky does not intersect the expanse of the observer’s habitat, from honzon to
hommom. -|'|n:.-1| 1l 1= "parzl.'l|:l"' to that habitat. Nerth and South of the tropics there is but
one such parallel, corresponding to the one basic direction an individnal must look to fellow
bhe sun’s Lrajectory across Lhe sky

3.2 Between the tropical parallels.

Between the tropies, however, the situation s entizely different, OUn the equator, for example,
one must look half the vear to the north and half the year to the south to follow the path
of the sun. Thus, there are two distinct (asympiotic) parallels for the path of the sun
through the cbserver’s pomtl of perception. Shadows can lie in any direction, providing a
full compass—rose of straightforward information as to time of day as well asg o time of yoar
epparently a broader “use” of shadow than Sievenson envisioned!

This population is thus surrounded, in its perception of the external environment of

earth=sun relations, by the multiple parallel nction. (Thoze accustomed itoc primanly =n
Euclidean earth—sun trajectory might find this disconcerting.) This hyperbobic "vizion” of
the earth-sun system, suggests a consislency, for tropical mmhbabitants only, sstablished in
a natural correspendence of the perception of the exiernal environmenl and the internal
environment of the bramn. For. it 18 the contention of BH. K. Luneberg that hyperholic
geometry 13 the natural geometry of the mapping of visual images onto the brain [9],

4. The Poincaré Model of the Hyperbolic Plane.

Ta eee how this vanation i pereeption of the earth-sun system nught be refiected m real-
world settings, and to compare such settings between and outside the tropical parallels, 1 1=
necessary to understand one of these geometnies in terms of the other. Both Euclidean and
hyperbolic geametsies are single, complete mathematical svstems, They are not, themselves,
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camposed ol multiple subgeometnes, nor can one of them be dedoeed from the ather: they
have the mathematical attribuies of being categorical and consistent [6], A mathematical
evstem is categoncal if all possible (mathematical) models of Lhe system are structurally
equivalent 1o one another (1isomorphic) |13} these models are, by defimtion, Euclidean and
are therefore useful as tools of visuahzation. Because the hyperbobic plane 15 a categoneal
system, all models of it are isomorphic, Therefore, it will suffice to understand bul a single
one, and that one will then serve as an Euchidean model of the hyperbolic plane

Henri Poinearé’s conformal disk model (in the Euclidean plane) of the hyperbolic plane
i8], was inspired by comsidering the path of a light ray {in a crcle) whose velocity at an
arbitrary point in the arce is equal to the distance of the point from the arcular perimeter
i4]. To understand how the model works, a "dictionary” thal aligns basic shapes in the
nyperbolic plane with corresponding Euclidean objects is useful {Table 1, Figere 2) |8

The hyperbolic plane 12 repressnted as the disk, D, ntenior to an Euclidean circle O
Because the bounding circle, €', 1s not included, the notion of infinity 15 suggested by choosing
pointe of [} closer and cloger to this unreachable boundary. Peoints in the hyperbolic plane
coreespond to points in [} Lines in the hyperbolic plane correspond to diameters of D) or to
arcs of arcles orthogonal to © . These arcs and diameters are referred Lo as "Pomncaré” lines.
Becanse 7 12 not included 1 the model, the endpoints of the Poincaré lines are not includad,
suggesting the notion of two peints at infinity. Two Pomncare lines ¢ and m are parallel i
and . only if they have no common point. Thus, the disk diameter £ and the arcuolar arc,
m , orthogonal to ' are parallel because they do not intersect; however, the disk diameter ¢
and the croular are, m', orthoponal Lo © are not parallel becanse they do miersect (Figure

N
i. Hyperbolic Triangles and Quadrilaterals.

Any tnangle in the hyperbolic plane 15 such thal the sum of its angles 15 less than 180°,
When & tmangle is drawn in the Poincare model this becomes quite bebievalile; draw Poincare
bines £ and wm as digk diameters and draw Pomecaré line noas an are of a arcle orthogonal
to the disk boundary (Figure 2b} [8]. The tnangle formed in this manner has one side that
has “eaved-in” suggesting how it happens that the angle sum can be less than 180° (note
thal three dimmeters cannol inlersect 1o a triangle because all diamelers are concurrent at
the center of the disk). Trnangles formed from more than one Poincare hine that is an arc of
a arcle wounld become even more concave.

Because all frangles have angle sum less than 180°, there can be no rectangles |guadsi-
laterals with four night angles) in the hyperbolic plane. The idea that corresponds to that of
a rectangle 1s & quadrilateral with three night angles, one acute angle, and pairs of opposite
sides parallel (mn the hyperbolic sense). The sides, OF, 00, PR, and RO, of this quadri-
lateral are drawn on Poincaré lines that are segmenis of disk diameters or arce of circles
orthogoneal to the outer crcle [:]"igum e f}Q 15 ]'}ara.“r:t tee K and HQ 15 paralle] to F{}]
This guadnlateral is called a Lambert quadrlateral afier Johann Heinreh Lambert [B], cre-
ator of the “Lambert”™ azmmuthal equal area map projection [among others) [12] When such
a quadrilateral 15 drawn 1o the Poncaré model, the acute angle al & can be drawn to suggest
that its sides are divergent, asvmptotic, or intersecting, Here, these sides have hean drawn
to wntersect (Figure 2¢) and {o evidently compress the angle al R as a suggestion of the
angular compression [12] present in aszimuthal map projeciions (including those of Lambert)
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Tahle 1:
The Poincare conformal model of the hyperbolic plane
(referenced to Figure 2—after Greenberg)

Term in hyperbolic Corresponding term

geametry in the Poincaré model
i the Euclidean
plans

H;.-purhc-l-':_é p;!.:uu& Adisk, I, intenor foa
Fuchdean arcle, O

Pomd Pomnt, P, im the disk, [0:

Lin= 1. Ihsk diameter. £ not
including endpoints on 7 ); or
9. Arcs, m, m' . in [} of circles
orthogomal to £ (tangent lines
at points of intersection are
mutually perpendicular),
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around the projection center.

6. Tiling the Hyvperbohe Plane.

If ome wisws a map grd as a liling by guadrilaterals of a portion of the Euclidean plane,
then 1t might be instructive to consider a tiling of the “map” of the Pomncare disk model

Figure 2, The Pomcard Disk Model of ihe hyperbolie plane.

1. The diameter, £, i¢ a Poinecaré line of the model, as are arcs wm and m' which are or-
thogonal to the boundary €. The Poincaré lines { and m are parallel (do nol inlersect)
the lines £ and m' are not parallel [do intersect).

b. The sum of the angles of AQPC iz lese than 180%, The tnangle is formed by sides [,
m , 1| the Poincaré lines £ and m are diameters, and the Poincaré line n 15 an arc of a
circle orthogonal to C.

c. A Lambert quadrilateral with three right angles and one acute angle (PRE ). Pairs of
opposite sides are parallel.

by Lambert and other quadrilaterals (3], Gluing guadrilaterals together along Poincaré lines
produces a vanety of guadrilalerals (Figure 3). All have pairs of opposite sides parallel;
Poincaré lines represented as arcs are orthogonal to the outer arcle. Naturally, the tiling
CELT TLEVET r_'-:II::upir_*Et]F cover Lhe digk, because the digk boundary 12 aot included. Thue, Li]itlg_s
of this map have gquadrilaterals of shrinking dimensions as the outer circle 13 approached
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This permits hyperbolic “filings" to suggest the infinite; mdeed, they have served as artistic
mspiration for the "Lmitless” art of M. U, Escher |7)
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Figure 3. A partial iiling of the Poincaré Disk Model by quadnlaterals bounded by
Poinearé lines. Quadnlateral [GPQKR) 13 a Lambert guadrilateral with two sides drawn

HE:'.-':'Ilj'I:..I.'.Ii'iIZ' Lo t'.‘ilEll IZZI'|.|II'_‘T.

7. Triangles, Quadrilaterals, and Tilings Between the Tropies.

Ceoncern with home and family are universal humau values Typical American houses ex-
hitit Euclidean cross sections: r rectangular one from a side view and a pentagonal one, as
a toangular roofline atop a square base, from a head—on view, Western Sumatran Minangk-
abau house- types fit more naturally mto a non-Euchdean framework than they do into the
Euclidean ons, exhibiting hyperbolic cross sections as a Sacchen quadrilateral (two Lambert
quadrilaterals glued together along a “straight” edge (Figure 4a) 8]) when viewed from the
side, and as a concave, hyperbolic, triangle atop a (possibly Euclidean) quadnlateral when
viewed from the front (Figure 4b).
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Figure 4.

a. A Sacchen quadrilateral, formed from two Lambert quadnlaterals, Tf kas two nght angles
and two acule angles. Pairs of opposite sides are parallel, as drawn in the Poincare Disk
Maodel

West Sumatran Minangkabau house. Roofline iz suggestive of a Saccheri quadnlateral
Photograph by Jokn [} Nystuen

Games children play often reveal deeper traditions of an entire society. Az the sun

moves through its entire range of possible positions, shadows dance across the full range of
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Figure 5.

a Sodokan game board in Euclidean space. Markers travel along lines separating repions
of contrasting color and along arcular loops at the comers.

compass positions on Indonesian scil and come alive, as “shadow puppets.” in Indonesian
theatrical productions. Eleganl cut-ouls traced on goat skins and other hides are mounted
on siicks and dance in a plane of light between a single point-source and & screen, casting
their filigreed, shadowy cuthmes lugh encugh for all to see. The mouon: of the Indonesian
puppettesr are regulated by the world of projective geometry, with shadows stretching out
diffuse arms toward Lhe mfinite.

A commonly played Indonesian board game is "Sodokan,” a vanant of checkers [1. Two
people play until all of an opponent’s ten pieces, arranged nitzally on the inlersection points
of the last two lines of a § x 5 board [(Figure 5a), have been captured. Pieces move across
the board honzontally, vertically, or diagonally, one sguare al 2 time. What 15 unusual iz
the method of capture; to take an opponent's marker requires a “surpnse” attack along the
loops outside Lhe apparent natural gnd of the gameboard.

For example, with just two pleces remaning (3o that there are no intervening pieces |,
black mey capture white (Figure 5h). To do so, black must traverse al least one loop; m
the act of capiure, black can slide across as many open grid intersections as required to gain
entrv to & loop. Then, still in the same turn, black shides around the loop, re-enters the
game board, and continues to shde across gnd mtersections and loops antil an opponent's
marker is reached, and therefore captured.

The name, “Sodokan," means "push oul” [ts pame sesms to apply only loosely Lo Lhe
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Figure 5.
b. Sample of capture. Black captures white—a smgle move.

5 x 3 Euclidean game hoard (Figure 5a) because the loops are not, themselves, “pushed
cut” from the natural gameboard grid I they were, the corners of the Euclidean gnd would
disappear, However, when the game board is drawn on a grid in the Poincaré disk model of
the hyperbolic plane (Figure 5¢), the loops appear naturally from grid intersections outside
the circular boundary. A marker engaged m a capture on this nen-Euclhidean (hyperbolic)
board traverses the entire hyperbolic plane {“universe”), passes across the infimte and 1=
provided a natural avenue within the svslem for return 1o the universe. The loops are
naturally “pushed out™ of the underlying gnd, tiled partially by Lambert quadrilaterals;
they might suggest paths along which pods (11|, skipping across space, interrupt (sacrifice]
elements within the predictable universe of the life-space in the disk However, mmdependent
of speculation as to what such pathe might mean, the fact remams that it is within the
hyperbolic geometric framework, only, that this game board emerges as a parl of a nalural
grid svstem. Thus, capture 15 no longer a mystenous event from “outside” the system; the
change in theoretical framework, from an Euclidean to an hyperbolic wiewpoint, made it a
logical occurence:

A change in the underying symmetsy introduced order. The “meta” earth—sun system,
when viewed as that whizh introduces a symmetric partition of the earth according to bands
of sun-delivered affine and hyperbolhic geometry, offered order in understanding roofiine and
gamebcard shape where none had been apparent,

Scurces of evidence for other similar 1mterpretations are plentiful: from Indonesian calen-
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Figure 5.

¢ Sodokan game board drawn on the Poineard Disk Model of the hyvperbolie plane, The four
central quadrilaterals are Lambert guadnlaterals—the mtersecting versions of quadrilat
eral (OPQR) in Figure 3. When their sides are extended, the gameboard loops are

formed naturally by thesc gnd lines and their intersection pointe
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dars based an o nested hierarchy of cyeles; to the loops within loops creating the syneopated
forms charactenistic of Indonesian gamelan music. Perhaps Indonesians and other between-
the—parallels dwellers have escaped the asymmetne confines of Euchidean thought. enabling

them to include a comfortable vision of inhimty as part of the underlving symmetry of ther
daily crele of life.
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