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ABSTRACT

When a binary communication system transmits symbols through
a bandlimited channel, the received symbols will generally overlap in
time, giving rise to intersymbol interference. In the presence of noise,
intersymbol interference produces a significant increase in the system
probability of error. The problem of intersymbol interference and noise
is considered here for known, linear, time invariant channels and with
added white Gaussian noise. Although a particular underwater acoustic
channel is used as a source of motivation, the results presented are
equally applicable to other communication channels.

Traditional approaches to the intersymbol interference problem--
spectrum and transversal (time) equalization are examined. A basis for
the comparison of intersymbol interference problems using the concept
of phase equalization, is given. A major assumption which limits the
interference to that caused by adjacent symbols is made. This assump-
tion is shown to be equivalent to restricting the transmitter to reason-
able signalling rates relative to the bandwidth of the channel power spec-
trum. All subsequent analysis and evaluation are done under this assump-
tion.

Several linear filter receivers prevalent in the literature--the
matched filter receiver, the transversal filter receiver, and the opti-
mized linear filter receiver--are reviewed and evaluated. Two easily

implemented nonlinear receivers, the switched-mode receiver and
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the iterated switched-mode receiver, are considered as alternatives to

the more complex optimized linear filter receivers. The iterated switched-
mode receiver, which is described for the first time here, is shown to
perform better than any optimized linear receiver when intersymbol in-
terference is moderate. Finally, the optimum (likelihood ratio) receiver

is described and evaluated to provide an absolute lower bound on error
probability for a given intersymbol interference problem.

A comparison of the error performance of the receivers shows
that if intersymbol interference is reduced to moderate amounts by
proper choice of signalling rate, then the easily implemented iterated
switched-mode reéeiver gives near intersymbol interference free per-
formance. For higher signalling rates and consequently larger amounts
of intersymbol interference more complicated receivers are required
to achieve near optimum performance and even the performance of the
optimum receiver is significantly worse than intersymbol interference

free performance.
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FOREWORD

This report considers a practical problem in underwater com-
munications--intersymbol interference. Four major contributions are
presented. First, the extent of intersymbol interference in a given
situation is shown to be dependent on the autocorrelation function of
the received symbol instead of the received symbol itself. Examina-
tion of the received symbol usually indicates more intersymbol inter-
ference than is actually present. Second, several traditional and
proposed receivers are compared on a consistent basis, indicating
the trade-offs between system error performance and system
complexity. The optimum (likelihood ratio) receivér is included in
the comparison to provide a lower bound on error performance.
Third, an easily implemented nonlinear receiver whose performance
is close to that of the optimum receiver in many practical cases is
described. Finally, a rule-of-thumb is given which relates trans-
mission rate, error performance, and system complexity. The above
contributions should be of considerable importance to a designer of an

underwater communication system.
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CHAPTER 1

INTRODUCTION

This paper is the result of a study of the general underwater
acoustic communications problem, using experimental results from
a comparatively well-known channel. Because of the complexity of
the general problem, a specific, but important aspect of the problem,
is considered: intersymbol interference in binary signalling systems.
Restriction to binary signalling systems provides considerable simpli-
fication in both analysis and implementation. Intersymbol interference
occurs in such systems when the received symbols overlép one another
in time, increasing the probability of error. Channel phenomena which
produce irregularities in the received power spectrum, such as multi-
path and selective fading, are sources of intersymbol interference.
Although underwater acoustic channels are the frame of reference for
this study, application to other channels is easily accomplished.

For binary communication systems in the absence of intersymbol
interference, the classical theory of signal detectability provides the
basis for the design of the optimum (likelihood ratio) receiver (Ref. 1).
Only a limited number of studies have been made which consider the
intersymbol interference problem, however. These studies deal with
the determination of the optimum linear filter receiver for a given situa-

tion (Refs. 2, 3, 4). Aein and Hancock have demonstrated an easily



implemented nonlinear receiver which is superior in performance

to their optimum linear receiver (Ref. 2). A major objective of this
paper is to extend the theory of signal detectability to intersymbol
interference problems by analysing and evaluating the optimum (likeli-
hood ratio) receiver. A comparison of the above receivers with those
used in practice is also made.

In subsequent discussion, we often refer to experimental re-
sults from the Miami to Bimini test facility of the Michigan-Miami
("Mimi'"') project as a source of motivation (Ref. 5). Some significant
aspects of the Mimi channel are sketched in the next section. We then
discuss the working assumptions of the paper and ways in which these
assumptions may be relaxed. Finally, the major conclusions and con-

tributions of the thesis are summarized.

1.1. The Mimi Channel

The Mimi project is a joint effort by the Institute of Marine
Science of the University of Miami and Cooley Electronics Laboratory
of the University of Michigan. The Mimi test facility has two features
which distinguish it from other facilities. First, both the transmitter
and receiver hydrophones are in permanently fixed positions. This
allows repetitive study of exactly the same physical channel. Second,
very stable (1-2 parts in 1010) oscillators are available at both the
transmitting and receiving sites, which allow coherent averaging

and analysis of the receptions. In this section we will sketch the



physical structure of the channel and several of its features which are
relevant to the communications problem.

The basic Mimi channel consists of a transmitting transducer
and reflector at Fowey Rocks near Miami, Florida, and receiving
hydrophones at North Bimini Islands, Bahamas, 43 miles to the east
as shown in Fig. 1.1. For the first 13 miles from Fowey Rocks the
depth is sloping to 400 meters. Near the end of this shelf is the mean
center line for the Gulf Stream, which is a source of turbulence. Be-
yond the first 13 miles the depth drops off abruptly to 800 meters
until Bimini is reached. Ray path computations indicate bottom re-
flection combined with surface reflected and/ or refracted modes of
propagation in the channel.

Two fundamental limitations are placed on the channel by the
transmitting transducer and reflector. The first is that the nominal
bandwidth of the transducer is 100 Hz centered at a 420 Hz carrier
frequency. This limitation is due to the construction of the trans-
ducer and the beam forming reflector. One can view the bandwidth
restriction by considering the '""Q" (center frequency/bandwidth) of
the system, which indicates the system is wide band, i.e., 1.0 MHz
at 4, 2 MHz would be a wide band in HF radio. Alternatively, when
typical information rates are considered, the system appears narrow-
band, i.e., a 100-wpm teletype requires a bandwidth of at least 80 Hz,
We see that, relative to common information rates, bandwidth is a

significant limitation.
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The second limitation due to the transmitting transducer is a
peak power limitation. Ceramic elements in the transducer are sub-
ject to fracture and/ or fatigue at high power levels. Because of the
great difficulty and expense involved in obtaining a replacement trans-
ducer, the system is normally operated well below its specified rating.
Even if more durable transducers were available, cavitation in the
water surrounding the transducer would provide a peak power limita-
tion. The effect of the peak power limitation on the communications
problem is to severely limit the waveforms which may be transmitted.

Noise is a major problem in the Mimi channel. In travelling
the 43 mile distance a signal is attenuated by 105 to 135 db, yielding
S/ N ratios in the range -10 db to + 20 db in a 100 Hz band. The pre-
cise form of the noise is largely unknown at the present time. Non-
thermal noise such as ship or biological noise is known to be present,
and hence an accurate description of the noise would be difficult.

Two types of signals have been used to measure the channel
spectral characteristics: continuous wave (CW) signals and periodic
pseudo-random (PR) signals. CW signals allow high S/ N analysis of
a single spectral line, usually at the 420 Hz center frequency. Results
of these CW transmissions indicate very slow (less than 10 cycles per
day) phase changes of the received signal relative to the coherent
reference. During these same tests the amplitude of the reception was

noted to fluctuate considerably, occasionally becoming undetectable. Two



tone (two simultaneous CW) tests indicate similar phase characteristics
on both spectral lines, but with independent amplitude characteristics.
Both forms of the CW experiment suggest the Mimi channel is amazingly
phase stable and subject to a time variant frequency selective fading.

The wide band PR signals can be employed to measure the spec-
trum of the Mimi channel. This spectral analysis is done by cross-
correlating the received signal with the original pseudo-random signal
and then performing deconvolution techniques to obtain the complex
channel spectra. Figure 1.2 shows a typical complex impulse response
and corresponding spectrum based on a 5-minute coherent time average
of data taken in February 1965. * Figure 1.3 shows the autocorrelation of
the impulse response and the corresponding spectrum, which is the
channel power spectrum. ** The plotted data (which has been subjected
to discretionary filtering) is believed representative of the form of the
spectra to be expected in the Mimi channel.

From the spectra of Figs. 1.2 and 1. 3, the selective fading
effects of multipath are apparent. Two distinct null frequencies in the

effective 50 Hz bandwidth are indicative of selective fading. The linear

*In this and subsequent discussions of the channel, we represent the real
bandpass waveform as a complex low pass waveform a(s> is usually done.
The complex low pass waveform is given by M(t) el o where M(t) is
the magnitude waveform and 6(t) is the phase waveform. The physical
bandpass waveform is given by M(t) cos [ 2m(420)t - 6(t)] .

**The autocorrelation function is a conjugate symmetric complex wave-
form because of the complex low pass representation of the impulse.
The autocorrelation of the physical bandpass waveform is given by
one-half the real part of the complex autocorrelation.
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phase characteristic in the third (highest frequency) sub-band suggests
that energy in this sub-band arrives later than that in the other two sub-
bands. This assertion is borne out in the time domain by the delayed
peaks in the impulse response. Such a late arrival may also be attributed
to multipath.

Another significant feature of the Mimi channel is the presence
of time variations of different time orders. Long term variations de-
pendent on the time of day; tides and weather have been observed in
both the CW and PR sequence transmissions. Sequence transmissions
have shown very slight changes in the channel spectrum over a 5-minute
interval. Studies using receiving hydrophones close (3 miles) to the
transmitting site indicate the presence of an amplitude modulation
effect caused by wave height. The time order of this effect is of
the order of 1to 10 seconds. More rapid time variations in the channel
may also be present, but are difficult to distinguish from the noise.

Other interesting features of the channel are known to exist.
Indeed, further analysis of the Mimi channel is a continuing project.

We summarize the major features of the channel below:
1. Limited bandwidth: ~ 100 Hz
2. Transmitter peak power limitation
3. Low received S/N ratios: -10to +20 db
4, Multipath/ Selective fading effects: Figs. 1.2, 1.3

5. Time variations of different durations: 5 min., 5 sec.
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Although the Mimi channel is a very specific channel, the above effects
are generally encountered in underwater acoustics and hence we expect
to be able to generalize results obtained for the Mimi channel to other

situations.

1.2, Assumptions

In order to study the communication problem on a firm theoretical
basis, several simplifying assumptions are made. These assumptions
take on varying degrees of importance and many of them may either be
relaxed or cqnsidered worst case assumptions. In this section we state

the working assumptions for the Mimi channel discussed previously.

Transmitter

A major assumption of this work is that the transmitter is re-
stricted to binary signalling. That is, in any one time interval T ,
the transmitter may transmit only one of two signals ql(t) or qz(t).
The signals ql(t) and qz(t) considered will usually have low peak to
average power ratios. More important, however, we assume that a
detailed knowledge of the channel spectrum (beyond bandwidth and
center frequency) is not available to the transmitter. This precludes
the use of signals which are carefully chosen to smooth out irregular-
ities in the channel spectrum.

Restriction of the problem to binary signalling has two desirable

effects. The first is to simplify the analysis by allowing the use of
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likelihood ratio procedures. The second is that the implementation of
the transmitter is significantly simplified. Furthermore, studies have
shown that binary signalling is a reasonable method of signalling at the
S/ N ratios encountered in the Mimi channel (Ref. 6).

The assumption that details of the channel spectrum are unknown
to the transmitter is a realistic assumption in most underwater acoustic
channels. In order to have the transmitter know the channel spectrum
in detail, either the spectrum must not change at all with time or the
communications system must have a feedback link. Even when the
communications system is capable of two-way operation, the problem
of maintaining an adequate, up-to-date knowledge of the channel at the
transmitter is comparable to the original communications problem in

difficulty.

Channel

The simplifying assumptions on the channel are comparatively
numerous; however, most of them are acceptable from a practical
viewpoint. We will assume that the channel is a time invariant, band
limited, linear system with white Gaussian noise added at its output.
Let us discuss these assumptions one by one.

As mentioned in the previous section, the Mimi channel (and
other underwater acoustic channels) has significant time variations
occurring in it. These variations, however, occur at a much

slower rate than the information rate at which a communication system
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could be expected to operate. For example, the fastest time variation
in the Mimi channel observed to date has a time order in the range of

1 to 10 seconds, while the duration of a single symbol at 100 wpm, for

example, is approximately 20 ms. Thus, over the time duration of a

single symbol the channel is expected to change very little. Time vari-

ations in the channel spectrum have been observed to have even a
longer time order, nearly 5 minutes.

The assumptions that the channel is bandlimited and linear are
also borne out in practice. As mentioned earlier the transmitting
transducer-reflector imposes a definite bandwidth restriction on the
channel. The linearity assumption can be considered a reasonable
approximation since, with the exception of the region immediately
adjacent to the transmitter, signal energies throughout the physical
channel are very small. The transmitter peak power limitation men-
tioned earlier also tends to reduce the chances of nonlinear behavior
by the channel.

The added white Gaussian noise assumption is more difficult to
justify. Although only limited noise studies have been made to date,
evidence is available to indicate the actual noise is both non-white and
non-Gaussian. Because of the lack of a good description of the channel
noise and the obvious advantages of a white Gaussian noise model, this
assumption is made anyway. We note, however, that for a given noise

power, N , white Gaussian noise is a ""worst case' form of noise. That
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is, if a system is designed on the basis of white Gaussian noise of power
N, then its performance in different noise of the same power will be no
worse than its computed performance. The potential of using peculiari-
ties of the noise to obtain better performance is eliminated by this as-
sumption. Nevertheless, the added white Gaussian noise assumption

allows us to gain considerable insight into the overall problem.

Receiver

We will assume that the operation of the receiver is coherent
and synchronized with respect to the transmitter, Moreover, we as-
sume that the noise-free outputs of the channel, p'l(t) and p'z(t) due
to bothtransmitted symbols, ql(t) and qz(t) are known exactly. If the
transmitted symbols are known, as they usually would be, this assump-
tion is equivalent to a knowledge of the channel spectrum. The assump-
tion that the noise-free received symbols are known exactly greatly sim-
plifies subsequent analysis.

Since the availability of highly stable oscillators is one of the key
features of the Mimi channel, the coherency and synchronization assump-
tion is immediately valid for the Mimi channel. The problem of inco-
herent communications is somewhat more difficult than the coherent
problem; however, the results for the coherent problem provide a basis
for the study of the incoherent problem. Synchronization is a well-

studied problem from other communications work.

The assumption that the noise-free received symbols p'l(t) and
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p'z(t) are known exactly can be well approximated in practice through
transmitted reference techniques similar to those used in HF radio
(Ref. 7). In a transmitted reference technique the transmitted signal
has two components: an information component and an unchanging refer-
ence component. Usually the two components are made orthogonal. At
the receiver, the reference component is processed over a long (relative
to the symbol duration) time to achieve a high S/ N estimate of the noise-
free channel response. In such systems a weighting factor is often in-
troduced to allow the estimate to '"track' slow time variations. Although
more elegant methods of obtaining an estimate of the channel response
warrant further study, the transmitted reference technique currently
appears to be adequate. Incidentally, the estimate of the channel re-
sponse afforded by this technique may in some systems (i. e., Mimi
project) be of interest by itself.

The above assumptions sufficiently simplify the basic communi-
cation problem to allow a rigorous analysis. In summary we list these

assumptions and their motivations below:

Transmitter:
Binary signalling Easy to implement and efficient
Peak power limitation Common transducer property

No detailed knowledge of channel True unless feedback is used
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Channel:

Time Invariant True over short times

Bandlimited Common transducer/ reflector
property

Linear First order approximation

Added white Gaussian noise A "worst case' assumption

Receiver:

Coherent and Synchronized | Available at Mimi facility

Operation

Exact knowledge of noise free Possible with transmitted

symbol reference

The objective of the systems considered here is to minimize the average
probability of error at the receiver for long sequences of transmitted
symbols,

Two other relatively trivial assumptions are also being made for
convenience in the analysis. The first is that the transmitted symbol
values are equiprobable and independent, a very common and reasonable
assumption in a communication system. The second is that the noise
free input symbols to the receiver are binary simplex symbols; that is,
the noise-free input symbol to the receiver is either p'(t) or -p'(t).

If the actual received symbols p'4(t) , p'z(t) are not binary simplex,

but are known exactly as assumed above, one can obtain simplex symbols
| !
p'((t) + p'y(t)
2

by subtracting from the reception.
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1.3. Intersymbol Interference

When binary symbols are transmitted through a band limited chan-
nel, the received symbols in general will overlap in time, giving rise to
intersymbol interference. We will later see that irregularities in the
channel power spectrum such as selective fading notches increase
intersymbol interference beyond that encountered in an ideal bandpass
channel. If noise is not present at the output of the channel, a simple
linear filter often called an equalizer, can be used to reduce intersymbol
interference to a large degree. On the other hand, if noise is present
in the systems, the use of the equalizer may severely degrade system
error performance. This second problem of intersymbol interference
in the presence of noise is the key problem of the idealized Mimi chan-
nel described in the preceding section and is the subject of this study.

To demonstrate the importance of the intersymbol interference
problem, we will consider a heuristic example using the Mimi channel.
Inspection of the power spectrum of Fig. 1.3 suggests the useful band-
width of the channel is approximately 50 Hz. By using biphase signalling
with a signal duration of 40 ms, the major lobe of the transmitted signal
spectrum will be passed by the channel, * Figure 1.4 depicts the time wave-
form and spectrum of a single 40 ms symbol on the same scale as the

earlier figures. By multiplying the complex spectra of the 40 ms symbol

*
In biphase signalling, the transmitted symbols are pulses of carrier,
1800 degrees out of phase with each other.
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and the channel, the spectrum of the received symbol is found. Figure 1.5
depicts the spectrum of the received symbol and the complex time wave-
form of the received symbol. From Fig. 1.5 we note that the received
symbol has significant energy over more than 200 ms.

If the 40 ms symbol is used in the heuristic biphase modulation
communication system, there will be portions of at least five symbols
in every 40 ms interval at the receiver. Depending on the particular
values of the interfering symbol, this overlap will bias the decision on
the symbol in question one way or the other. The net effect, of course,
is to increase the probability of error for the system beyond that expected
from the added noise. An increase by a factor of ten or more in the prob-
ability of error is typical.

In the second chapter we deal with the general intersymbol inter-
ference problem in detail. Until then the above discussion will provide

an adequate background.

1.4. Summary and Contributions

In the next chapter, we discuss several traditional approaches to
the intersymbol interference problem and their limitations. The notion
of phase equalization is introduced to characterize the problem in terms
of the power spectrum of the received symbol. The degree of intersymbol
interference is defined and a major assumption concerning it is made.
This assumption is shown to be equivalent to the limitation of signalling

rates to reasonable values.



19

2°T °314 jo [auueyd TwIy 1e21d4] ayj ySnoayj passed
[oquids ae[ndue)oed SW O B Jo WwNnIoads pue WIOJOABM W) PaAToddy G°f °S1d

(zH) J ‘Aouanbaxjg

0S .wav Se .va 00 .ow.v SL .mm_m 0S°LSe
L 4 ™ T m
18
8
i 1
wnpooads aseyd §
(zH) 3} ‘Aousnbarg
0S°eLy S¢ .mwv 00 .omv SL .mm.m 0S°LSE,
| T 1 m
1o
o
+
Ta
o
T
.

winxjoads apnjtuden

o

(09s) 3 ‘owurg,
02" 00" 0z-~ or - 09°-,

WJIOJOABM aseyq

(098) 3 ‘awury,

nol

(VA 0Q* 0c°- (1) el 09°~

NV

—{SW 008 |— +

WLIOJPABM apnjruSey —

[ 00°08%~

0°08t




20

The third chapter reviews the class of linear receivers using a
convenient vector space notation which allows meaningful visualization
of receiver operation. Three types of linear receiver prevalent in the
literature are considered, the matched filter receiver derived from
classical detection theory, the traditional transversal filter and the
optimized receiver. The optimization involved in the third receiver
is done for a number of different classes of varying degree of complexity
in implementation. Finally, comparisons are made between the linear
receiver types.

In the fourth chapter two nonlinear receivers are described and
evaluated. These receivers are of interest because of their ease of imple-
mentation and good performance. The first receiver is due to Aein and
Hancock (Ref. 2), the second is described for the first time in this paper.
The performance of the nonlinear receivers is compared with that of
various linear receivers. In many instances the second nonlinear re-
ceiver performs better than the difficult-to-implement optimized linear
receiver.

The fifth chapter describes and evaluates the optimum receiver
for the intersymbol interference in noise problem. This receiver com-
putes the likelihood ratio for each received symbol and bases its decision
on it. The optimum receiver is significant because of the absolute bound
on performance and the insight it provides.

In the sixth chapter the conclusions of the paper are summarized
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and topics for future study are suggested.

Contributions

This study emphasizes the importance of the power spectrum of
the received symbol as opposed to the complex spectrum of the received
symbol on the intersymbol interference problem.. By working with
power spectrum and limiting the amount of intersymbol interference to
a reasonable amount, a common basis for the comparison of traditional
and proposed receivers is found.

A new nonlinear receiver is suggested as a practical alternative
to the complicated optimum linear receiver. This receiver is simple to
implement and performs remarkably well.

The major contribution of this thesis, however, is the design and
evaluation of the optimum (likelihood ratio) receiver. The optimum (like-
lihood ratio) receiver is important for two reasons. First, its performance
provides a lower bound on the error probability for any other receiver and
hence provides an absolute measure how a given receiver performs.
Secondly, the basic form of the optimum (likelihood ratio) receiver shows
the necessity of using information on both past and future symbols in
making each decision. This provides a basis for future design of easily
implemented, near optimum receivers.

A comparison of the optimum receiver with various linear and

nonlinear receivers is made. This comparison provides a useful rule
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of thumb for the system designer who wishes to trade off error per-

formance, ease of implementation, and information rate.



CHAPTER II

INTERSYMBOL INTERFERENCE

The general problem of intersymbol interference in binary sys-
tems with noise is considered in this chapter. We first note several
approaches to the intersymbol interference problem which are fre-
quently used in practice. The important concepts of phase equalization
and the dependence of receiver performance on power spectrum are
introduced. A convenient characterization of the intersymbol inter-
ference problem and a measure of the degree of intersymbol interfer-
ence are also given. Finally, a key assumption regarding the degree
of intersymbol interference in practical systems is made and justified.

In this and subsequent chapters it will be helpful to distinguish
between the terms "filter'" and ''receiver.' By a filter, FL , we mean
a linear, time invariant system which maps finite energy waveforms
into finite energy waveforms, FL: L2 - L2 . The question of realiza-
bility of the filters described here will be ignored, since adequate
approximations are usually possible., A receiver, %, maps finite
energy waveforms (the received signal) into binary decisions on sym-

bol values &: L2 - { + 1} . Although a receiver may have a linear filter

within it, a receiver is inherently a nonlinear device.

2.1. Traditional Approaches

Most of the traditional approaches to the intersymbol interference

23
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problem involve the use of a single linear filter followed by a sampler
and threshold device as the receiver. This class of receivers will be
referred to as the linear filter receiver class. The third chapter deals
with this class in detail. Figure 2.1 shows a block diagram of a binary
communication system in which the symbols + q(t) are transmitted
through a channel, C(w), (meeting the assumptions of Section 1. 2) and
are received using a linear filter receiver. * It is easily shown that for
the equiprobable binary simplex signals assumed here the best decision

threshold is zero.

Spectrum Equalization

Spectrum equalization methods arose from applications where
the reception was essentially noise-free; i. e., land-line teletype. De-
signers realized that variations in the amplitude and phase spectra led
to distortion of the received symbol and, consequently, intersymbol
interference. The obvious solution was to introduce filters, appropriately
called equalizers, to flatten the amplitude spectrum and to linearize the
phase spectrum. The design of such filters has been the subject of much
study by circuit designers.

The basic objective of traditional spectrum equalization techniques
has been to reduce the time duration of the received symbol, and hence,

intersymbol interference. This simple notion can be put on a quantitative

*
We represent time waveforms using small letters and represent their

Fourier transforms by corresponding capital letters. For example, the
Fourier transform of the symbol q(t) is Q(w).
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basis by considering the RMS time duration, TRMS’ of the received

symbol, p'(t) . The time center 7. of p'(t) is defined by

+ 0

a1
= | tipr®a (2.1)
-0
+ 00 9
E 2 [ lp®i%adt (2.2)
-0
Then the RMS time duration of p'(t), 7 is defined as the deviation

RMS
of lp'(t)l‘2 about To o normalized by E.

+ a0

2 Al 2 2
TRMS © B _foo (t-7,)%1p' (017 at (2.3)
Thus 7 is a measure of how compact the energy of p'(t) is in time,

RMS

We will choose our time origin so that T. = 0 in the following discussion,
A convenient equality derived from Fourier transform theory al-
lows us to relate the RMS time duration of p'(t) and its complex spec-
trum, p "(w) = Q(w)C(w). Let A(w) be the magnitude spectrum of
p'(w), and let ¥(w) be the phase spectrum of p'(w) . Using Parseval's

theorem, one may show that:

+ 00 T 2 2
% f P12 at = S (dA(w)) + A%w) (d‘”(w)) dw
- 00

(2. 4)

where we have chosen the time origin so that T, = 0, (Ref. 8, page 62),



27

We see that by reducing the magnitude of the derivative d?j)w) or the
derivative dy (@) the RMS time duration of p'(t) is reduced. This,

dw

of course, is the purpose of the traditional spectrum equalizer.

Figure 2.2 shows a receiver using spectrum equalization. We will
assume that intersymbol interference is completely eliminated at the out-
put of the equalizer, EF(w) . Then the classical theory of signal detect-
ability indicates the (matched filter) form of the optimum post-equalizer
receiver., Let the spectrum of the equalizer output be p "(w) =
Q(w)C(w)EF(w) , then the transfer function of the optimum post-equalizer

receiver, FL (w) is given by

OPT

_ [pr@]

FLOPT(w) = 1N”(w)!2 (2. 5)
where *indicates complex conjugate and !N”(w)l2 is the power spectrum
of the noise at the input to the post equalizer receiver (Ref. 9). Since the
equalizer generally has a non-white spectrum 1N"(w)12 will not usually
be white.

Let us compute the overall transfer function FL(w) of the linear

filter portion of the receiver shown in Fig. 2.2. We have

(,0 "(w>) - [QW)C)EFW)]" (2. 6)

and

2

IN"(@)1? = JEF(w)] (2.7)
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since the noise at the input to the equalizer is white. The overall transfer

function FL(w) is then

FL(w) EF(w)Q*(w)C*(w)EF*(w)/l EF(w)1? (2. 8)

Q@)C*(®) = [p'()]* (2.9)

The above reduced transfer function FL(w) is seen to be that of a filter
matched directly to the output of the channel.

The result given by Equation 2.9 is very interesting. Even when
the equalizing filter EF(w) is completely successful in eliminating inter-
symbol interference and when the optimum post equalizer receiver is

used, the optimum post equalizer filter FL (w) contains a factor

OPT
1/ ]N"(w)l2 which cancels out the effect of the equalizer. The overall
transfer function after this cancellation, given in Equation 2.9, is that

of a filter matched to the channel output and does not contain any distinct
equalization factor. Furthermore, the performance of the receiver given
by Equation 2.9 is very poor.* Thus the spectrum equalization technique

is not effective in reducing the effects of intersymbol interference in a

communication system.

Transversal (Time) Equalization

Another approach to the intersymbol interference problem is to

*
This is shown in Section 3. 2
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use a transversal filter receiver (Ref. 10). Such a receiver evolves from
consideration of the system time response rather than its spectrum and
has the advantage that intersymbol interference is completely eliminated.
As with spectrum equalization techniques, noise performance is not taken
into account in the design.

The basic notion of the transversal filter receiver is very simple.
If receiver decisions are to be based on the filter output sampled every
T seconds, then if the superimposed responses of consecutive symbols
go through zero every T seconds, intersymbol interference is elimi-

nated. Figure 2.3 depicts the response of a typical transversal filter to

A Response to received symbol, e(t)

\l L/—\i . t
0 T 2T 3T

Fig. 2.3. Typical transversal filter response to a received symbol
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a received symbol. Since the superposition of such waveforms shifted
by multiples of T has a non-zero component from only one symbol
every T seconds, intersymbol interference has been completely
eliminated.

Transversal filter receivers are used because of their effective-
ness in eliminating intersymbol interference and the ease with which
they may be implemented using a tapped delay line. Figure 2.4 shows a

simple seven-tap transversal filter receiver. The outputs of the delay

Input

Delay Line

je T =

Threshold
At —® Decisions
Zero

Sampler

Fig. 2.4. Seven tap transversal filter receiver

line taps (spaced T seconds apart) are weighted with adjustable coeffi-
cients and then added. The tap coefficients may be set by cycling a noise-
free received symbol through the delay line with T second delays and
adjusting the coefficients to obtain zero output at all but one delay. Con-

siderable study has been done to achieve "automatic equalization' by
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having the receiver continuously adjust the tap coefficients to compensate
for slow channel variations (Ref.10).

Since the transversal filter receiver completely eliminates inter-
symbol interference, it is the optimum receiver in the absence of noise.
One might be optimistic and hope that good intersymbol interference per-
formance and good noise performance go hand-in-hand. Unfortunately,
this is not the case and one must trade noise performance and intersymbol
interference performance against each other in order to obtain the best
overall system error performance. The following brief discussion
illustrates the necessity of compromise.

Consider the system shown in Fig. 2.1. If no intersymbol inter-
ference is present, classical signal detection theory indicates the use of

a matched filter receiver, that is,

FLyp(®) = [Q(w)C(w)] * (2. 10)

For a transversal filter receiver with a filter symbol response e(t) having

the required zeros at all but one multiple of T seconds, we must have:

E(w) = Q(w)C(w)FL (2.11)

Thus the transfer function of the transversal filter, which is optimum in

the absence of noise, is given by

E(w)
SEICE) (2.12)
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Comparing Equations 2. 10 and 2. 12 shows that the matched filter and the

transversal filter are equal only if

E(w) = 1Q)C(w)!? (2.13)

which implies that e(t) is the autocorrelation of the channel symbol re-
sponse. This is an unlikely occurrence in realistic channels and, in

general, FLMF(w) and FL,.(w) are different. Thus the optimum

TF(
no-intersymbol interference receiver derived from detection theory and
the optimum no-noise receiver derived above are different and a compro-

mise between the approaches is needed.

Transmission of Special Signals

The above discussion suggests an effective but impractical method
of handling the problem of intersymbol interference in noise. Suppose

that the transmitted symbol, q(t) , is carefully constructed so that

E(w)

1Q)1? = ;
IC(w)1

(2. 14)

where e(t) has the desired zeros at all but one multiple of T seconds.
Then Equation 2. 13 is satisfied and the optimum interference-free re-

ceiver FLMF(w) and the optimum noise-free receiver FL, . _(w) are

TF

identical. Hence, we have achieved both optimum noise performance

and optimum intersymbol interference performance.



34

Although appealing from a receiver design point of view, the
above approach does not meet the specified assumptions given earlier.
Contrary to our assumptions, this approach requires that the transmitter
know the channel power spectrum and also that the transmitter be unre-
stricted in terms of peak power capability. These drawbacks eliminate

this system from further consideration here.

Transmission at Slower Rate

Perhaps the simplest method of coping with intersymbol interfer-
ence is to increase the symbol duration T to the point where the inter-
ference becomes toierable in some sense. Although this is a simple and
common method of avoiding the problem, it forces the system designer
to accept a loss in rate without indicating the trade-off in error perform-
ance. Another disadvantage to this approach is that longer symbol
durations may be contrary to other aspects of system design. For
example, to reduce the effects of sudden channel fades it may be de-
sirable to send one symbol in several short pieces separated in time
(time diversity). The use of long transmitted symbols would impose a
severe limitation on such a time-diversity system.

A major result of this study is that intersymbol interference is
essentially due to a bandwidth limitation on the received power spectrum
and that the transmission rate should be chosen in the light of this band-
width limitation. We will provide analysis, however, which indicates

the initial trade off between transmission rate, intersymbol interference
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and system error performance.

2.2. Characterization of the Problem

In this section we describe measures of the severity of a given
intersymbol interference problem. We will show that the amount of
intersymbol interference is directly related to the power spectrum of
the received symbol, and hence, can be viewed in terms of a bandwidth
limitation. We also define an integer M , known as the degree of inter-
symbol interference, to indicate the amount of overlap of the received

symbols.

Phase Equalization

An important problem for the system designer is to determine
the actual extent of intersymbol interference in a given practical situa-
tion. One approach to this problem is simply to measure the duration of
the received symbol -- the longer the duration of the symbol the more
severe the intersymbol interference problem would be expected to be.

As we will soon see, this approach can be very misleading for a practical
channel because it usually indicates more severe intersymbol interfer-
ence than is actually present.

To provide a consistent measure of the extent of intersymbol inter-
ference in a given situation, we consider the equalization of the phase
spectrum of the received symbol. Let p'(w) be the complex spectrum
of the received symbol. Then the phase-equalizing filter PEF(w) is

defined by:
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/o'(w) PEF(w) = 1p"(w)l = p(w) (2. 15)

That is, the spectrum p(w) of the output p(t) of the phase-equalizing
filter is equal to the magnitude spectrum |p'(w)! of the input p'(t) to
the filter. Since [p'(w)| is always positive and real, the phase spec-
trum of P (w) has a constant value of zero and thus the term phase
equalization is appropriate.

Consider the two systems shown in Fig. 2.5. The phase-equal-
izing filter PEF(w) in system No. 2 equalizes the phase spectrum of
the received symbol, and hence, system No. 2 is called the phase-
equalized system. Because the phase-equalizing filter has a white

magnitude spectrum, the noise at the receiver input to system No. 2

has exactly the same statistics as that of system No, 1. On the other

n(t)
p(t)
—1 Qw) Clw) t)+ Rec;liver |
System #1 (Unequalized)
n(t)
t
p(t) ethen "
- Qlw) C(w) | PEF(w) Re;glver

System #2 (Phase equalized)

Fig. 2.5. Unequalized and phase-equalized systems
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hand, since the spectrum p (w) of the output of the phase-equalizing
filter has a constant phase, dy (w)/dw is zero and, from Equation
2.4, the RMS time duration of p(t) is less than or equal to that of
p(t) . Thus by using phase equalization we can reduce the RMS time
duration of the received symbol without changing the noise problem.
This is in contrast with the general spectrum equalization technique
described earlier, in which the noise power spectrum is changed as
the RMS time duration is reduced.

Figure 2.6 depicts the response of the Mimi channel to a 40 ms
rectangular éymbol with and without phase equalization. Analysis of
the unequalized received symbol indicates the symbol has 90% of its
energy within 165 ms and that there will be components of at least
four symbols in each 40 ms time interval. The phase-equalized sym-
bol has 90% of its energy within 50 ms indicating much less intersym-
bol interference than one would expect from inspection of the unequalized
received symbol. By phase equalization the RMS time duration of the
received symbol is reduced from 48 ms to 26 ms.

The relationship between the unequalized received symbol p'(t)
and the phase-equalized symbol p is interesting in that it relates the
amount of intersymbol interference after phase equalization to power
spectrum. Since the magnitude spectrum of PEF(w) is white, the

power spectrum of p'(t), | p'(w)}z is identical to that of p(t), lp(w)lz.
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From Equation 2.4 we see that any waveform for which &) / dw is
zero will have the smallest possible RMS time duration of all waveforms
having the saﬁe magnitude spectrum, or equivalently, the same power
spectrum. Since dyY(w)/ dw is zero for a phase-equalized waveform,
we conclude that among all waveforms having the same power spectrum,
the phase-equalized waveform has the smallest possible RMS time
duration,

From the power spectrum .1 P '(w)l2 of the received symbol
p'(t), the waveform of the corresponding phase-equalized symbol p(t)

can be found

pt) = FL [le'(w)lz] (2. 16)

where F_1 [ Z(w)] is the inverse Fourier transform of Z(w). Since

Tp'(w)tz is a power spectrum, J !/0'(@.))]2 is positive and real. The
inverse transform of a positive and real spectrum is conjugate symmetric
in time,

By relating intersymbol interference to the power spectrum of
the received symbol, considerable insight is gained. For example,
consider the phase-equalized magnitude response and power spectrum
of a 40 ms rectangular symbol passed through the Mimi channel shown
in Fig. 2.7. Figure 2.7 also shows these functions for a flat bandpass
channel having the same nominal bandwidth. Because of the notches

and irregularities in the Mimi channel power spectrum, one would



40

[duueyd ssedpueq [Bap1 jusareainba y3noayj pue
[Puueyd TWIN Y3noay) [oquis sw Qp Jo wnajdads tamod pue asuodsaa sawry, g “S1g

[ouueyo ssedpueq jey} jusajeamnba ysnoayy,
(zd) j ‘Aousnbaay

0S .NN._W SZ .mv.v 00 .om.¢ SL .mmm 0S°L9E,
¥ LJ T w
i
@91 TS
o
winajoads apnjrudep
(298) 7 ‘oz,
ﬁ. cm. X om owu.. g»... cwh...
) 18
4
I ©
i
T
sw ] = SH | 1(3)I | ‘_L..
waojoAseM apnjudery

[uueyd 1wy Yy3noayg,

(ZH) J ‘Aouanbaayq

0S"2LY T wwv 00 .oNrw SL .mm.m 0S°L3€
L Y \ 1 m
+
+in
(o]
m)g +
2 (™) 5
wnajoads apnjuden i
| (998) 3 ‘omry, )
08" o -l vl e - o - o.-.
| . 8<< . 7\/\,\ " 8
1
tin
Qo
sw gz = SN, [ -
UILIOJoABM SpNjTUSEN | 8




41

expect to achieve different system performance through the two channels.
An intuitive way of expressing this is to say that the bandwidth of

the Mimi channel is reduced by the notches and irregularities in its
power spectrum. Because these same notches and irregularities in

the channel power spectrum produce intersymbol interference, we are
led to the intuitive, but productive conclusion that intersymbol interfer-
ence (after phase equalization) is caused by signalling too fast for the
bandwidth of the channel.

Before proceeding further, it is important to point out that it is
seldom necessary to use a separate phase-equalizing filter PEF(w) in
a receiver. As will be seen later, most receivers perform a cross
correlation of the reception with the noise-free received symbol p'(t) .
Since the noise-free output of such a correlation process is the auto-
correlation function of the received symbol, the output waveform of
the correlator is the same whether or not phase equalization is used.
Thus in many instances it is not necessary to realize a separate phase-
equalizing filter.

In subsequent discussions we will assume that the received
symbol is phase-equalized. This means that the received symbol p
will have the minimum RMS time duration of all waveforms having the

same power spectrum and that it will be conjugate symmetric in time.

Degree of Intersymbol Interference

In order to work with the intersymbol interference problem
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conveniently, it is helpful to limit the amount of intersymbol interference
due to a single received symbol. This may be accomplished by defining
an integer M, known as the degree of intersymbol interference, as the
smallest integer multiple of T completely contained in the ""duration"

of the phase-equalized received symbol. For example, if the phase-
equalized received symbol duration is less than 3T but greater than

2T , the degree of intersymbol interference is two, M=2., The M=0
case corresponds to no intersymbol interference.

Practically speaking, it is unlikely that a received symbol will
have a finite time duration due to the bandlimited nature of the channels
considered here. Because of this it is necessary to use some reason-
able measure of symbol duration. Since signal energy plays such an
important role in classical detection theory, a reasonable criterion
is that some specified percentage of the energy, 7, be within the re-
ceived symbol duration. The effect of the energy outside of the symbol
duration under this criterion depends on the particular power spectrum
and receiver under consideration. At present, a requirement that 90%
of the symbol energy be contained in the symbol duration, 7 =90%, is

believed to be adequate.

2.3. The M =1 Assumption

The remainder of this paper is concerned with intersymbol inter-
ference problems in which the degree of intersymbol interference is one

(M =1). That is, the duration of the phase-equalized received symbol



43

is less than 2T . This is a major assumption; however, it can be con-
sidered equivalent to a restriction to moderate signalling rates through
the channel. The relation between the M =1 assumption and signalling
rate is discussed below.

Suppose that we are to use binary simplex signalling to communi-
cate through a given channel, such as the Mimi channel. At the outset,
both the transmitted symbol duration, T, and the waveform of the trans-
mitted signal, q(t), are free variables. Of course, restrictions such as
bandwidth and peak power limitations impose constraints on these vari-
ables. It is important to note, however, that the symbol duration, T,
and the bandwidth of q(t) can be adjusted practically independently of
one another. For example, by using a block-coded binary signal one can
obtain a wide bandwidth signal having a long-time duration (Ref. 11).

From the earlier discussion on phase equalization we know that
the time duration of the received symbol, and consequently intersymbol
interference, is reduced if the power spectrum of the received symbol
is nearly white. Furthermore, from Equation 2. 16, we see that the
duration of the phase-equalizéd symbol is reduced as the width of the
power spectrum is increased. Thus the ideal power spectrum of the
received symbol is wide band and white, independent of the duration of
the transmitted symbol. Since the channel spectrum is unknown to the
transmitter, the best transmitted signal also has a wide band and white
power spectrum, again independent of its duration T . This is a well-

known result.
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Let us temporarily neglect the constraints on the possible trans-
mitted waveforms in order to examine the effect of the channel alone on
the intersymbol interference problem. Suppose that we use an impulse
function as the transmitted signal and that the transmitted signal dura-
tion (in this case the time between impulses) is T . Then the trans-
mitted power spectrum is white and the power spectrum of the received
symbol is simply the channel power spectrum. The phase-equalized
channel impulse response is then the waveform of the phase-equalized
received symbol, using the widest possible transmitted waveform.
Figure 2.8 depicts the phase-equalized impulse response for the Mimi
channel.

Given the phase-equalized impulse response for a channel and
an energy criterion, 7, on the phase-equalized received symbol dura-
tion (i. e., 90% of the total energy is within the symbol duration), we
can determine the '""duration' of the received symbol. Figure 2.9 shows
the duration of the phase-equalized impulse response for the Mimi chan-
nel as a function of the percentage of energy in the response duration.
From the assumed duration of the received symbol found above, we can
find the shortest transmitted signal duration for which the M =1 assump-
tion is valid.

For example, consider the Mimi channel with a duration criterion
based on 90% of the total energy being within the phase-equalized received

symbol duration. From Fig. 2.9 we see that the symbol duration is
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Fig. 2.9. Received symbol duration based on 7
as a function of n for the Mimi channel
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approximately 112 ms, and hence, under this criterion the M =1 as-
sumption is valid, for T > 56 ms. The bandwidth of the channel power
spectrum for the Mimi channel is less than 50 Hz, as can be seen from
Fig. 1.3. If this bandwidth were that of a flat bandpass channel, a
reasonable signalling rate would be 25 symbols per second, which re-
quires a 40 ms symbol. Thus we see that for this particular example,
the M =1 restriction is equivalent to requiring that the signalling rate
be slightly slower than for a flat bandpass channel. Because of the
severe notches in the actual channel power spectrum, one would not
expect to signal at the ideal channel rate.

The foregoing discussion was based on the use of ideal trans-
mitted signals which cannot be used in practice. To go from this
idealization to a practical peak power limited signal set is the rela-
tively well studied problem of generating wide band, flat power spec-
trum signals having good peak-to-average power ratios (Ref. 11).
Pseudo-random sequences are one convenient and common solution.
Although we do not consider this problem in this thesis, we offer as a
simple example, the three-digit, 60 ms ''perfect word" symbol shown
with its spectrum in Fig. 2.10. The phase-equalized received symbol
(after the channel of Fig. 1.2) is shown in Fig. 2.11. Signalling with
this particular symbol corresponds to M =1 with more than 94% of
the energy within the symbol duration.

In summary, limiting the intersymbol interference due to adjacent
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symbols (M =1) is equivalent to a restriction on the signalling rate.

The phase-equalized channel impulse response and the "enclosed energy"'
criterion 7, for the duration of the response provide the information
required to calculate an upper bound on the signalling rate for which

the M =1 assumption is valid. We have seen that for the Mimi channel
of Fig. 1.2 and an "enclosed energy" criterion of 7 =90%, the resulting
upper bound on signalling rate is very close to the rate for a flat band-
pass channel. Furthermore, the M =1 restriction may be maintained
using peak power limited signals with a relatively minor decrease in

rate.



CHAPTER III

LINEAR FILTER RECEIVERS

A linear filter receiver or correlation receiver is a receiver in

which decisions are made on the basis of the sampled output Lk of a

linear, time invariant filter. K L > 0 the receiver makes a d =+1

decision indicating the value of the kth symbol, bk , was +1, if Lk <0

L T
a dk = -1 decision is made. Figure 3.1 depicts the general linear filter

receiver.
Inf)tl;t Samgler Threshold | Decisions_d,
X resho cisions
MRS I |
(w) 0,T,2T, ... at >
Zero

Fig. 3.1, General linear filter receiver

Linear filter receivers have been studied comparatively inten-
sively in the literature (Refs. 2, 3, 4). The purpose of this chapter is
to review these earlier efforts in a common frame of reference. We

first consider the general operation of linear filter receivers and their

*
This is simply a sign convention.

51
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performance. Special forms of linear filter receivers, such as the
transversal filter receiver are considered under the assumption of a
phase-equalized, unit degree of intersymbol interference (M =1) symbol.
Finally, we consider the optimization linear filter receiver for various

optimization constraints.

3.1. General Discussion

In this section we consider the operation, error performance and
canonical form for the class of linear filter receivers. Although we will
quickly return to our assumption of a unit degree of intersymbol interfer-

ence, the materialbpresented in this section is for the general problem.

Operation of the Receiver

Let p(t) be the waveform of a single, noise-free received symbol
due to the transmission of a symbol of value +1 at time t=0. Let
bO. . obm, bi =1 1 be the transmitted symbol values in a finite dura-

tion transmission. Then the actual reception, x(t) is given by

m

x(t) = % bp(t - iT) + n(t) (3. 1)

where n(t) is white Gaussian noise of noise power density NO watts/ Hz.
Let h(t) be the impulse response of the time invariant linear

filter H(w) which represents the linear filter portion of the receiver

shown in Fig. 3. 1. We will not require that h(t) be physically realizable

since an approximate realization of H(w) can be generally obtained.
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Then the response of the filter to the reception x(t) at time kT, L

k’
is given by
+ 00
L = [ x@®)h(kT - t)dt (3. 2)
- 0
Define
~k
h (t) = h(kT -t) (3.3)
then
+ o0 ~k
L, = [ x@t)h (t)at (3. 4)
-00

If x(t) and h(t) are of finite energy (a realistic assumption), then x(t)
~k
and h (t) are vectors in the Hilbert space L2 which is referred to as

signal space. In signal space Equation 3. 4 defines the dot (or inner)
~k
product of x(t) and h (t). Suppressing the time variables t, T we

can write Equation 3.4 as

~k

Lk =Xx*h (3.5)

Equation 3.5 gives the geometrical interpretation that the correlator

output at time kT 1is proportional to the projection of the received wave-
~k

form vector x onto h ., This geometrical idea provides a simple

visualization of the operation of a linear filter receiver. Since the re-

ceiver makes a dk = 41 decision if Lk >0 and a dk = -1 decision if
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Lk < 0, the hyperplane D

' through the origin defined by

x*h =0 (3. 6)

partitions the signal space into two half spaces. I the reception x lies
~k
in the upper half space (x*h > 0) a dk =+1 decision is made, if
~Kk
X lies in the lower half space (x* h < 0) a dk = -1 decision is

made. Figure 3.2 depicts a possible visualization of this operation. Sub-
sequent decisions, dk+ [+ » are obtained by comparing x with the

corresponding hyperplane Dk+ 1% etc.

Performance of the Linear Filter Receiver

The probability of error on the kth symbol is the probability

that Lk will be negative (and the resulting decision, dk = - 1) when,

in fact, the transmitted symbol was positive, bk =+1.% Let Bk be

the set of all possible m dimensional vectors bObl‘ . 'bi' . .bm , itk

where bi =+ 1., Then we can define

P, (k)

P[L, < 0b_=+1] (3.7)

1
== ), P[L_< 0lby..b ,b =+1]  (3.8)
2" B,

*
Because of the symmetry of the problem, the probability that Lk is

positive when bk = -1 also equals the probability of error.
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Fig. 3. 2. Decision plane of a linear filter receiver
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since the symbol values, bi , 1 # k are assumed equiprobable. The

probabilities P[ L, < 0lbj...b b = +1] are easily computed

as we see below.

Suppose that the transmitted symbol values are b,... bm where

0

bk =+1. Because the input noise is Gaussian, the sampled filter output

Lk is a random variable having a Gaussian density function. Its mean is

given by

. ~k
Ibr...b_b =+1] = E (pk+ Z bip1+n)-h
’ ik

(3.9)

where p1 denotes the L2 waveform, p(t - iT). Because the noise has

a zero mean, we have

~Kk ~Kk
— —_— . k i.
E[L ! bg-+-Ppby = +1] = b p 4 .Z b.p +h  (3.10)
i#k
The variance of Lk is given by
Var[LklbO...bml,ok=+ 1] = Nolh 1%/ 2 (3.11)

where N0 is the one-sided noise power density of the white input noise.

Let ¢(u) be the zero mean, unit variance Gaussian density function, then
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B[ L, <01bg...D, by =+1] =_{o¢ (\/ '“kr? .) du
.1
X Ny Ih /2
(3.12)
T o~k AR~k
h - p + Z bpl- h

(3.13)

where & (u) is the cumulative distribution function of ¢(u). Substituting

Equation 3.13 into Equation 3. 8, we obtain

~k o, MFE g
h °p+2bip1'h

P = ) @ S E— (3. 14)
2™ B, ( ~k )
i N, b . /2 /A

The above equation gives the probability of error for the kth decision as

a function of the received symbol p , the filter impulse response, h, and

the noise power density, NO .

In general, Pe(k) will depend on where the kth symbol is located
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in the transmission. Since we are considering communications systems,
it is reasonable to assume that the transmission consists of a very large
number of consecutive symbols; i.e., m = 103 . Under this assump-
tion the effect of the beginning and end of the transmission on the sys-
tem error probability (the average of Pe(k) over k) is negligible.
Hence, we will consider the kth symbol to be located in the center of

a very long sequence of transmitted symbols and that Equation 3. 14

therefore gives the system probability of error Pe .

Canonical Form of Linear Filter Receivers

The foregoing discussion is sufficient to develop a canonical
model of all linear filter receivers. This canonical model illustrates
the effect of the filter impulse response h and suggests a convenient

implementation for linear filter receivers.

o~

Let Hk be composed of two orthogonal components h 1 and
Nk ~

h2 where hk1 is inthe m+1 dimensional subspace H1 spanned

by the time-shifted received symbols p1 =p(t-iT), i =0...m, and

~

where h 9 is in the orthogonal complement, H2 , of the p1 . That
is
LR Lo (5 =0..m) (3. 15)
pr Ny = (i =0...m .
~k

if andonly if h_, ¢ H,. The correlator output L. is then given by

2 k

2
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~k ~k
L = . h ) (3-16)
Kk X ( L + h2
= Vb pt o - .
Tl iP 1 + n'h1 +n 9 (3.17)
~k

The thirdterm n-° h is a zero mean Gaussian random variable with

variance N, lh /2.

~Kk
We note that any vector h 1 in H1 can be presented as
~k m
= ) C (3.18)
i=0

~k
since by definition, h L

Consider the system shown in Fig. 3.3 in which a filter matched

belongs to the subspace spanned by the p1 .

to p, p*(w) is followed by a tapped delay line. The output of the i
delay line tap (which corresponds to a delay of jT seconds) is weighted
by Cm—j and the weighted outputs are summed in the first adder. The
output of the first adder, plus a zero mean Gaussian noise waveform n'(t)
having noise power N |h | / 2 is sampled at time kT to give Lk

which is compared to a threshold in the usual manner. The noise n' is
included in the system shown in order to simulate receivers in which
‘h \ is non-zero as we shall soon see.

The impulse response, h, of the matched filter-delay line-first

adder section of the receiver is given by
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m
h = ) C_ .pl-t+jT) (3.19)
=0

(3.20)

I
g
Q
8
™

where pJ = p(iT - t).

Then the output L' of this section of time kT due to the reception x is

k
Ly = [ x(t) h(kT-t) dt (3.21)
m
= [x(t) ), C_ .plt-(k-j)T) dt (3.22)
S Ym-j
j=0
- x . ﬁf (3.23)
The sampled output of the second adder is then
i~k ~k
Lk=2bip1-h1+n'h1+n' (3.24)

~ 2
Since n' is simply zero mean Gaussian noise of noise power No‘h;{1 /2,

Lk is equal to the Lk given by Equation 3.17. From Equations

3.17 and 3.24, we see that the noise process n' internal to the
canonical receiver simulates the contribution, n - ﬁzk , of
the input noise in the H2 subspace. Thus by proper adjust-

ment of the coefficients C0 ces Cm and the noise power associated
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with n' any linear filter receiver can be simulated in the form shown
in Fig. 3. 3.

We note in passing that no separate phase-equalizing filter is
required with the canonical receiver. This is because the matched
filter portion of the receiver P *(w) forms the autocorrelation of
the noise-free symbol. Since the power spectrum (hence autocorrela-
tion function) of a waveform and its phase-equalized version are identical,
there is no need to precede the canonical receiver with a phase-equali-
zing filter. Nevertheless, the concept of phase equalization is confirmed--
linear filter receiver performance depends on the power spectrum (auto-
correlation function) of the received symbol.

One would expect that in any reasonable receiver design the magni-

tude | hzl would be zero since a non-zero |h2 serves to add noise to the

decision variable Lk. This is indeed the case. In Appendix A we show that

~Y

if h k., pk is positive then the probability of error Pe(k) is reduced by de-
creasing Ih2 to zero.  Any receiver in which h * 5™ > 0and |h 2| =0

will be referred to as an admissible receiver. Since the probability of
~k
error for any non-admissible receiver with h ° pk > 0 can always be

~k
reduced by making Ih 9 I = 0, we will usually consider only admissible

receivers in the remainder of this chapter. We note, however, that it is

* ~k
I h - pk is negative, the receiver decisions are of the wrong polarity,

even in the absence of noise and intersymbol interference.
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possible for a receiver with a well-chosen set of coefficients CO. .. Cm

k
and a non-zero |h2 to perform better than an admissible receiver

with poorly chosen CO. . Cm .

3.2. Matched Filter and Transversal Filter Receivers

Two simple linear filter receivers are considered in this section:
the matched filter receiver and the traditional transversal filfer receiver,
Unlike the previous section, we will assume that the received symbol p
is of duration less than 2T (M =1). Figure 3.4 depicts a stylized received

symbol that will be used repeatedly to clarify the meaning of the notation.

2T

Fig. 3.4. Stylized phase-equalized received symbol (M = 1)
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Note, however, that any realistic received symbol p will be time sym-
metric because of phase equalization. As a matter of convenience, the

axis of symmetry for the symbol is t =T as indicated in Fig. 3. 4.

Vector Representation

Vector space representation of the reception x over an interval
of length 2T is very helpful in understanding the matched filter and
transversal filter receivers. Let Pg be equal to p for 0 < t< T
and zero elsewhere and let Py be equal to p for T < t < 2T and
zero elsewhere. Then the reception xk in the interval (KT,kT + 2T)

where k > 0 is given by

5 = by 70 + b | K + o0 |+, 250 + 0

(3. 25)
where bi is the value (x1) of the kth symbol. This is illustrated in
Fig. 3.5 for the symbol shown in Fig. 3. 4.

P-1 b b

kT (k+1)T (k+2)T

Fig. 3.5. Noise-free components in the interval (kT, (k+2)T)
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Let us assume that b, =+1. Then the noise free reception con-

k
. k k k '
sists of a vector p = Py * Py plus one of four "interference wave-
forms'" dependent upon the values of b and b . Define the inter-

k-1 k+1

ference waveform for the kth symbol as

k k-1 k+1

A =b .p +b_.p (3. 26)
b b  k-1P1 k+1P0
k .
Both A +1-1 and A {41 2Te orthogonal to p~ since
k k k-1 k k+1 k
Pt By b T PagPr Pyt PPy Py (3.27)
k-1"k+1
and
k k-1  k+1 Kk
Po* Py =Py Pq (3. 28)
. k k
We write A, 4 L A_{;1 - However, Akll and Ak—l-l are not
orthogonal to pk unless pli:_l . plé =0
k o k-1 Kk
A% 1.1 =*2p; Py (3. 29)

from Equation 3. 27. Furthermore Ak and Ak:E

+1x1

( +1+1 . +1-1 -1-1 -1+1 ) 1

131 are orthogonal

2 2

k k k-1 k+1
A < AT, ' = b bl ‘p ’ + b, .b! p
bk-lbk+1 bk—lbk+1 k-1"k-1 |71 k+1"k+1 |70

(3.30)
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and by symmetry due to phase equalization

2 2
k-1 k+1
|p1 \ = |p0+ (3.31)
. k-1 k+1 c L
Since Py and Py are orthogonal in time we have
2 2 2
) Akb b = lpl;—l‘ + ’p18+1 (3.32)
k-1"k+1
2
= | o] (3. 33)
that is, all the interfering waveforms Akb b have the same magni-
k+1k-1

tude.
The relations derived in the preceding paragraph can be repre-
sented very simply in 3-space. One convenient choice of orthonormal

. A N A .
basis vectors € e and e, is

0’ °1° 2
S = p /16" (3. 34)
A _ A A
°1 7 +1-1//| 1-1 (3. 35)

A - [ A
. +1-1 +1+1 0 0 (3. 36)
= A A TN T A .
2 ‘A+1+1 [ +1+1° eO] e0 [ +1+1 e1 €1

Figure 3.6 depicts the relations given above for a typical interference

problem.
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Before proceeding further, we will relate the quantities described
above back to '"real world quantities.' The quantity lpl2 is the energy of
a single noise-free symbol, which is also the value of the autocorrela-
tion function R(7) of the received symbol at zero. From Fig. 3.5

k. k-1 k . ktl
Py " Py Py Py

Il

(3.37)

R(T) (3. 38)

Thus all of the quantities describing the phase-equalized, M =1 received
symbol are given by the autocorrelation function R(T) evaluated at 0

and T . The normalized autocorrelation function r(r) is
r(t) = R(1) / R(0) (3.39)

From time symmetry and the M =1 assumption one can show that
Ir(T)! < .5 . The case when r(T) =0 corresponds to the no-intersym-
bol interference case.

The effects of noise on the problem can be conveniently included
by dividing the magnitudes of all waveform vectors by NO/ 2, making
the resulting variance unity. Under this convention the magnitude of p

becomes \/:1- where

d = 2E/ N, (3. 40)

is the index of signal detectability used in classical detection theory. For
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binary simplex signals in the absence of intersymbol interference, the

smallest probability of error is given by classical detection theory as

Pe = & (- /d) (3. 41)

This represents a lower bound on error probability for all systems with

intersymbol interference.

Matched Filter Receiver (MFR)

The matched filter receiver (MFR) is the simplest possible solu-
tion to the intersymbol interference in noise problem. If intersymbol
interference is not present, classical signal detection theory indicates
the MFR to be the optimum (likelihood ratio) receiver. Because inter-
symbol interference is not considered in the design of the MFR, sys-
tem performance is degraded when intersymbol interference is present.

We will define the MFR as the linear filter receiver for which

h =op (3. 42)

Interms of the canonical receiver given in the preceding section, this

means that all but one of the delay line tap coefficients is zero, or equiv-

~k
alently, no delay line is used. Since h is entirely within the subspace
~k
H1 ) l hz l = 0 and no noise source is required either. From this
~k 2
and the fact that h -+ p~ = |p~| > 0 we see that the MFR is an

admissible receiver.

There is another way of interpreting the term '"matched filter



70

receiver, ' however. An intuitive approach is to carefully select a seg-
ment of the received symbol ps(t) having a duration less than or equal
to T, and match a filter to it. The segment would be chosen so as to
have a large amount of signal energy and little intersymbol interference
in it. In general, a filter matched to ps(t) would not be an admissible
receiver in the sense of the preceding section and we do not consider
it here.

The operation of the MFR in terms of the 3-space representation

of xk is apparent. The equation of the decision plane is

X*p =0 (3. 43)

Note that the direction of the decision plane does not depend on the inter-
symbol interference, (see Fig. 3.7).

Equation 3. 14 with h K = pk gives the equation for the system

error probability., Because of the unit degree of intersymbol interfer-
. ~k
ence (M =1) assumption p1 *h =0 for i<k-1 and i> k+1.

o124 p KL. kL kel Kk
1 P k-1P1 7 Po T Pke1Po T P2
P =— ) & -

e m
2 Bk Ipl VNO/Z

(3. 44)

Combining terms we obtain:

_ e
= 1/4a121 o (- Ipl |[1+r(T) (bk_1+bk+1> Ny/2 |

bk- lbk+1

(3. 45)
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Writing the above explicitly in terms of d

P = 1/4@[-%?(14»21«@))] +1/2@[—ﬁ]+1/4@[-x/ﬁ(1-2r(T))]

(3. 46)

Note that for r(T) near zero the system probability of error approaches

that for the interference free receiver, as one would expect.

Transversal Filter Receiver (TFR)

The transversal filter receiver (TFR) represents a traditional
approach to the intersymbol interference problem. The TFR completely
eliminates intersymbol interference but at the expense of performance
against noise.

The defining characteristic of the TFR is that the linear filter

output is uneffected by the interfering symbols, that is
h - x =L (3.47)
does not depend on bi , i# k. From Equation 3.1

~k k ~k . ~k ~k
"x =bp °h +.Z bipl *h +h °n (3. 48)
ik

In order to have the desired independence, we must have

pb*h =0 (3. 49)

~K
forall i k., I p* - p~ $+ 0 forall i #k, this implies that h
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must have a non-zero component in the H2 subspace and hence the TFR
is not an admissible receiver in the sense of the preceding section. *
Since the TFR is a traditional and commonly used receiver, it will be
analyzed even though it is not an admissible receiver.
Since the probability of error can be expected to increase with
~k

the magnitude of the component of h  in the H2 subspace, it is de-

sirable to make this component as small as possible while satisfying

~k
Equation 3.49. This can be done by making h zero outside the inter-
~Kk

val (kT , (k+2) T) and making h satisfy

~k k-1

h - P = (3.50)
and

~k k+1

h - Pg =0 (3.51)

The preceding equations describe a tilted plane in the 3-space repre-

sentation of xk which is parallel to the plane of the interference vec-

tors, Ak Figure 3.8 depicts the decision plane for the TFR.
b, b
k-1"k-1 1
Equations 3. 50 and 3.51 above allow the determination of h

Let

~k

_ k k-1 k+1

h p+ clp1 +¢ohg (3.52)

then

N :
From the definition of r(T) we see that p1 . pk = 0 forall i#k if
and only if r(T) =0, that is, if there is no intersymbol interference.
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~k k-1 -
. k k-1 k., k-1 k-1 k-1 k+1
h Py = Py Py +py Py ¢ Py + CyP1 Py
(3.53)
kK k-1 k-112
= pyc Py * cllp1 | =0 (3. 54)
since plz 1 plz—l and plf_l 1 p18+1 . Solving for ¢,
cy = -2r(T) (3.55)
Similarly,
~k  k k. k-1 k|2
h' *pg =Py Py + colegl (3.56)
and
(3. 57)

Cq = -2r(T)

The probability of error for the TFR is found directly from Equa-

tion 3. 14; however, because of Equations 3. 50 and 3. 51, the expression

is very simple

(3. 58)

e
No/ 2

Now we have, from Equations 3. 54 and 3. 56 above
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~k _
b = 1Py e (mpg e (359)
- 19592 [1- 4((r)? | (3. 60)
thus
P = cp[- va (1 - 4(r(T))2] (3. 61)

Note that as r(T) goes to zero, the probability of error approaches that
of an interference free receiver, as one would expect. As r(T) ap-

proaches .5, however, the probability of error approaches .5, the

)
worst possible error probability.

Figure 3.9 compares the error performances of the MFR and TFR
as a function of {r(T)| for a d of 10. Also shown in this plot is the
performance of an interference-free receiver operating witha d of 5
and 10. Error probabilities of both the MFR and TFR increase rapidly
with 1r(T)! . With the exception of a very small region (lr(T)] > .45)
the TFR performance is superior to that of the MFR.

A natural question arising from this comparison is why does the
TFR, which is not an admissible receiver, perform better than the MFR
which is an admissible receiver. The answer to this is that ""admissible"
means that components of ;k which add only noise to L

k
~Kk
eliminated. By eliminating the component of h inthe H 5 subspace,

have been

a TFR can be converted into an admissible receiver and the probability
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0.10 —

- MFR

TFR
Interference free
receiver d = 5
0.01
P
e
0.001
Interference free receiver d = 10

0.0001 | | | ] |

0 0.1 0.2 0.3 0.4 0.5 I ()1

Fig. 3.9. Comparison of MFR and TFR for d = 10
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of error reduced. Unfortunately, this modification destroys the charac-
teristic of eliminating intersymbol interference and the receiver loses
its identity.

A word of caution is necessary with regard to error probabilities.
At first glance, it appears that the TFR gives a loss "of just 3 db" in
performance at lr(T)’l = .35, since its performance at [r(T)| =.35 is
equal to that of an interference-free receiver operating witha d of 5.
In many problems a depreciation in performance of 3 db in some sense
is negligible. On the other hand, in communications systems such as
the one considered here '"just 3 db' may be a large factor. For ex-
ample, suppose the binary simplex system is used to transmit 5-bit tele-
type characters. If the bit probability of error Pe is .00078 then
the probability of a character error is .0039. I the performance of
system is degraded by '"just 3 db'" the probability of a character error
becomes .0614. Thus a '"db down from ideal'" measure of system

performance is a crude measure for teletype systems.

3.3. Optimized Linear Filter Receivers

In Section 3.1 the canonical form of all admissible receivers
was developed. For each set of tap weights Cj , a different admissible
receiver is obtained using this canonical form. A very natural ap-
proach to the receiver design problem is to determine a set of Cj 's

which gives the smallest probability of error. The resulting receiver
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would then be the optimum linear filter receiver. * Since the number

of symbols in the transmission, m+1 , is normally very large, it is not
practical to use the m + 1 tap delay line of the canonical receiver.
Instead, it is necessary to constrain the pfoblem by limiting the num-
ber of taps the receiver is allowed to use. The receivers resulting
from such constrained optimization are called optimized linear filter

receivers and are studied below.

Probability of Error

Consider the admissible linear filter receiver with 2q+1
taps shown in Fig. 3. 10. Let the weighting coefficients of the taps

be w_q. ceWge oo W+q where W_q is the weight of the tap repre-

senting the longest time delay. To avoid realizability difficulties,
the time origin for the output of the adder is taken qT seconds
after the time origin of the input. The system impulse response is

then given by

+q
~1i
h = W, P (3. 62)
i=-q

~1i

where p - p(iT -t) and the probability of error can be determined

from Equation 3. 14,

b 3
Here we have made the assumption that the optimum linear filter re-

ceiver is an admissible receiver. S\i}&ce the probability of error for
any non-admissible receiver (with h ™ . pk > 0) can be reduced by

setting | h2 ! = 0 this is a very reasonable assumption.
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Let
~k td L
i
h =) wpo (3. 63)
. i
i=-q
then
a2 fa o+ . .
lh l = Z Z wiwjp1+k . p]+k (3. 64)
i:—q j:—
5 +q qa-1
= 1p! 24 2p8+ it
p i:Z-q W, o+ 2p0 Py i LA (3. 65)
because of the phase equalization and M=1 assumptions, we have
K .
p pk+1 = Ipl2 if i=0 (3. 66)
k k+i k k-1 .
p P = Py " Pq ifi=21 (3. 67)
pk ' pk+1 =0 otherwise (3. 68)
from the preceding section. Let p = (b b ) and

k-q-1""" "k+q+1

W=(W _«u. W+q) then one can show by a similar procedure
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Nk k . k 2 - — I
ho o pt+ ), b B = 1p1%Z (o, W)+ py - py Zy (b, W)
ik !
(3. 69)
where
itk
i=-q+1
= b b
Zz(b,W) cq-1%-q * PqVoqa1 +i :Z_l b1(wi-1Wi+1) +W_y
(3.71)

i Wi—lwi+1) * bqwq-l * bq+1wq

Substituting Equations 3. 64 and 3. 69 into Equation 3. 14 and converting to

the real world parameters d and r(T) yields the probability of error

for the receiver with the tap weights given by w | Pe(w)

[ - 2y
~ . Z, (b, w) + (T) Z, (b, W)
P (w) = JZail EJB ® | - w/'E'< - » 5
Z wiz + 2r(T) E LA
L . -4 i=-q J.,

(3.72)
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When r(T) is zero and W, = 0 for i # 0, the above equation gives the
probability of error for an interference-free matched filter receiver as
one would expect.

The optimized 2q+1 tap linear filter receiver, OLFR2q+1 , is
defined as the canonical receiver having 2q+1 taps with tap weights

*
givenby W © which minimizes P (w). We note in passing that the

MFR can be considered to be the OLFR the simplest admissible re-

1 H
ceiver possible.
Determination of Tap Coefficients
In order to construct and evaluate the OLFR the optimum

2q+1

tap weights w * must be determined as a function of both d and r(T).
Equation 3. 72 is sufficiently intractable to preclude useful analytic ex-
pression for w . Both Aein and Hancock (Ref. 2) and Aaron and Tufts
(Ref. 3) have used the calculus of variations to derive the necessary co-
efficients for their analogous equations. Unfortunately, in both cases,
their approaches produced equations as horrendous as Equation 3. 72
and they resorted to numerical search techniques. We have therefore
approached the problem directly by using a trial-and-error search tech-
nique to determine \—)v- *

Several simple observations make the direct search for w

easier. A convenient normalization is to take w0 =1. Because the

* ' = %
The implicit assumption that there is a unique w  is borne out by the

work of Aaron and Tufts, Ref. 3.
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received symbols are symmetric due to phase equalization and their

values b, are independent, the effects of b, . and b_ . on the kth
k k+i k-i

symbol decision dk are the same. Hence the tap coefficients are sym-
'metric, that is, WoEW If the weights w,, are to help eliminate

the interfering components of b the weights must be negative, or

kx1’
they will actually increase the intersymbol interference. Proceeding in
this manner indicates that the tap weights Wi must alternate in sign.
Because the output of the tap corresponding to W represents a direct
indication of the value of bk , Whereas the other taps serve to eliminate
intersymbol interference, one would expect the magnitudes of W, (i#£0)
to be less than Wo = 1. These observations have been borne out by
numerical analysis of Equation 3. 72 and serve to reduce the search

space to a unit cube in q-dimensional space.

Figure 3.11 dépicts the optimum tap weights for OLFR,,, OLFR

3 5’
and OLFR,7 as a function of {r(T)! fora d of 10. These weights were

obtained by searching over the unit cube with an effective resolution of
. 025, that is, the coefficients are within .025 of their true value. This

resolution is considered sufficient because of the smooth variation of

Pe (w) with w and more elaborate techniques, such as the steepest

descent technique do not appear necessary.

Performance

In Fig. 3.12, the probability of error for the OLFR OLFR

1’ 3’
OLFR5 , and OLFR7 receivers is shown as a function of |r(T){ for a
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/ —w'1 OLFR(2T)

/ -w} OLFR,

- wi OLFR5

—w’i OLFR

w* OLFR,7

2
w* OLFR
9 5

-w* OLF
T N8 T

0.1 0.2 0.3 0.4 0.5

[ r(T)I

Fig. 3.11. Optimum tap weights for OLFR,, OLFR

OLFR,7 d = 10

3’ 5’
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0.10 ,
- /
i / OLFR,
B / OLFR,
. / OLFR,
0.01 /

OLFR, = MFR/ OLFR(2T) /

llll!

T
R

7
0.001 |- -
0.0001 , | | | |
b D2 p» D3 D3 D>

I r(T)]

Fig. 3.12. Probability of Error for OLFR,, OLFR,, OLFR

1’ 3’ 52
OLFR, d = 10
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d of 10. This figure shows that a very significant improvement in error
performance is obtained in going from one tap (MFR) to 3 or more. There

is little improvement between the 5~and T7-tap receivers, however.

Another Constraint

Another way of constraining the optimization is to limit the
duration of the filter impulse response to some specified amount. This
constraint may be a reasonable one in implementations of the linear fil-
ter which correlate a stored reference, ;l‘k , with the reception. Re-
ceivers evolving from this constraint will ndt be admissible receivers
but will have performances intermediate between that of the longest
OLFR having an impulse response duration less than the constraint
duration and the OLFR having two additional taps. We consider only

the case in which the impulse response is limited to 2T .

~k b 3
Let h be of duration 2T and of the form

~K k-1 k k+1
- 1 !
h. wlipy P WP (3.173)
We wish to determine the constants w' which minimize the probability

+1

of error. From symmetry arguments similar to the ones given earlier,

' — ' - ! : { 3
W g Wi and -1< Wi < 0. The optimum value of LA is

shown as function of }r(T)] is shown as a dotted line for d=10 in

* ~k
One can show that h  should have this form from arguments analogous
to those for admissible receivers.
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Fig. 3.11. The error performance of this receiver, known as the opti-
mized linear filter receiver over a time duration 2T , OLFR (2T), is
shown as a dotted line in Fig. 3.12. As expected, its performance lies
between that of OLFR1 and OLFR3 .

A major advantage to considering the OLFR (2T) is the insight
it provides concerning the MFR and TFR. Since '}; is of duration 2T,
the decision plane of the OLFR (2T) can be completely represented in
the 3-space shown in Figs. 3.7 and 3.8. Figure 3.13 depicts the decision
plane for these three receivers. The intermediate position of the
decision plane of the OLFR(2T) between those of the MFR and TFR,

indicates the trade-off between intersymbol interference elimination

by the TFR and good noise performance by the MFR.
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CHAPTER IV

TWO SIMPLE NONLINEAR RECEIVERS

The two receivers considered in this chapter are nonlinear re-
ceivers because their decision variable Lk is not a linear function of
the reception. There are many possible nonlinear receivers which
could be studied. The two receivers studied here, the switched-mode
receiver and the iterated switched-mode receiver, are important be-
cause of their ease of implementation and comparatively good perfor-
mance (relative to the optimized linear filter receivers). The first of
these receivers, the switched-mode receiver, is a direct extension of
a receiver of the same name proposed by Aein and Hancock (Ref, 2).*
The second receiver, the iterated switched-mode receiver, is des-
cribed for the first time here. Chapter V will show that the optimum
(likelihood ratio) receiver is a nonlinear receiver and thus these re-
ceivers belong to a promising class of receivers.

The underlying principle of both the switched-mode receiver
and the iterated switched-mode receiver is very simple. Suppose that

the receiver is to make a decision on the kth symbol. Then if the

values of the interfering symbols bk—l , bk+1 were known their

*
Aein and Hancock (Ref. 2) appear to have been the first to make the
important observation that a simple nonlinear receiver can perform
better than a complicated optimized linear filter receiver.

90
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"interference' could be subtracted out to give an interference free kth

symbol. Since the objective of the receiver is to produce decisions

o+ b s

it seems reasonable to use symbol decisions to subtract out the inter-

do. .o drn which are equal to the transmitted symbol values b

ference to make even better symbol decisions. This sort of ""boot strap"

technique is the essence of both receivers.

4,1. The Switched-Mode Receiver

The switched-mode receiver (SMR) represents an elementary
receiver using decisions to subtract out interference. Consider the

receiver shown in Fig. 4.1 which uses a matched filter, p *(w),

Sampler v Decisions
Input x \ Threshold | 9y = %l
— > pr) at >
0,T,2T,... Kk - zero
k-1 Kk
k-11 " Po

k-1 k ( ) Delay of —J
Pq p X T seconds

-1

Fig.4.1, Heuristic implementation of the switched-mode receiver
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and a decision circuit containing memory. At time KT , the sampled

'

output, Lk , of the matched filter is

(4. 1)

where we have used the notation introduced in Chapter III. The first and
third terms in Equation 4.1 represent the intersymbol interference due
to the k—lth and k+1th symbols; if they could be eliminated, the
receiver performance would be that of an interference-free
receiver.

Suppose that at time KT , the receiver has already made a de-

cision d__. on the (k—l)th symbol, Form a new decision

k-1

variable Lk , which is dependent on the previous decision dk—l .

k

L =L - Py (4.2)
k - DT %o1Py :

2
k-1 k k+1 k a
= by - ey e B IeT ey g ekt (43)

If the system is working with a low probability of error the first term in
Equation 4. 3 will be zero most of the time. Thus we have succeeded in
forming a decision variable Lk in which there is less intersymbol inter-

]
ference than in Lk . A receiver whose decision variable L., is formed

k

according to Equation 4. 2, such as the receiver in Fig. 4.1, is called
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a switched-mode receiver (SMR). We note in passing that since
dk-l =zx1, Lk is not a linear function of the reception and, hence,
the receiver is nonlinear.

The evaluation of the SMR's performance is straightforward.
Let P0 be the probability of error for the kth symbol given that de-
cision dk-l is correct and let P1 be the probability of error for the
kth symbol given that dk-l is incorrect. Further let Pe(k) be

the probability of error for the kth symbol. Then

Pe(k) = Plpe(k -1)+ Po(l - Pe(k-l)) (4. 4)

If the kth symbol is in the center of a long sequence of transmitted

symbols, Pe(k) is the average probability of error, Pe , for the sys-
tem., Using

Pe(k) = Pe(k-l) = Pe (4.5)

Equation 4. 4 can then be solved for Pe

P,

Pe = 1—(P1-P0) (4. 6)

If there were no intersymbol interference, Pl‘ and P0 would be equal

and Equation 4.7 gives the probability of error for the optimum, inter-
ference free receiver. On the other hand, if intersymbol interference

is severe, P1 becomes much larger than P, and Pe increases

0
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considerably over P0 .

We proceed in a general manner to compute the probabilities P0
and P_ . Suppose that L _ is the output of the matched filter P *(w)

1 k
with a constant term of the form ¢ pli:_l . pk + B pk . plgﬂ added.

2
ok k k. k+l k
Lk = apg P +bk|p | + Bp P  +ncp (4.7)

The distribution of Lk , f(Lkl bk , a,B) is Gaussian since Lk con-

. . . k
sists of a zero mean Gaussian random variable, n* p , plus a constant.

- 2
k-1 k lk k  k+l
L (0! Py p by o +Bp p )

f(Lk!bk) a’B) = ¢

L.

(4.8)

Suppose that decisions are based on a comparison of L, with zero in

k

the usual manner, Then the probability of error Pe(a , B) is given by

— -

‘k\z k-1  k k+1 k
P tapy o p o+ Bpy P

,Pkl NNy /2

Pla,B) = &

i

Equation 4.9 can be written very simply in terms of the parameters d

and r(T) introduced in the preceding chapter.

e

P(a,B) = & [— vd <1+(a +B)r(T))] (4. 10)
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To determine PO , the probability of error for the kth symbol

given that the decision d, .y Was correct, we use Equation 4.3

k| 2
L =bk|P| thgby TP P

k

and

P, = > P(b,, )P, (b, ;) (4. 12)
bk+1 =+ 1

Py = 1/2 @ (—\/CT(1+r(T))) +1/2 q:(- w/a—(l—r(T))> (4. 13)

Similarly, P 1 the probability of error for the kth symbol given that

the decision dk-l was incorrect can be found. Under the condition that

dk-l is incorrect, Lk is given by
L = % -1, k+bf 2+b k. gkl K (419
k ~ Pk-1P1 TP TP k+1? Pop 1 '
and
Py =) P(by_1:Ppp1) Pl 450y ) (4. 15)
b, ,b =% 1

k-1"k+1
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P, = 1/4

o <— \/H(1+3r(T))> + @ (— \/E(1+r(T»>

(4. 16)
, @(_ ﬁ@-r(T)) + cp(— fa‘(1-3r(T))>

As noted earlier as the intersymbol interference is reduced (r(T)- 0),
P1 approaches PO; PO in turn approaches the probability of error for
an interference free receiver.

The third section of this chapter compares the performance of the
SMR with the various linear filter receivers.

The implementation of the SMR shown in Fig. 4.1 is certainly
not the easiest one. Since the effect of the decision circuit is simply to
bias Ll'{ one way or the other, the system is equivalent to one which

has a variable threshold I‘(dk_ 1) at time kT where

k-1 k
d._qp1 P (4. 17)

1

T ()

d, _,R(T) (4.18)

If a receiver gives a decision dk =+ 1 if L;{ > I‘(dk_l) and a decision

!

dk =-1 if Lk <T (dk-l) , the decisions will be exactly the same as
those of the SMR shown in Fig. 4.1. Figure 4.2 shows the simplified SMR.
The fact that the threshold is switched by the preceding symbol deci-

sion in this realization gives the receiver its name,
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Tnput Sampler DZCIS:O;;S
X ) Threshold k
— > P - >
0,T,2T,... r(d,_,)
A
-1
Delay of <
T seconds

Fig. 4.2. Simplified implementation of the switched-mode receiver

4,2, Ierated Switched-Mode Receiver

Although the SMR discussed in Section 4. 1 uses earlier decisions
to try to eliminate the intersymbol interference of the preceding symbol
‘it does nothing to eliminate the interference due to the subsequent sym-
bol, At first this seems like an inherent limitation on a decision ori-
ented receiver, since the decision on the (k+1)th symbol is to be made
after the decision on the kth symbol. This limitation is circumvented
by making two decisions on each symbol: a "first guess' decision and
a final decision. This idea of a double decision process is the founda-

tion of the iterated switched-mode receiver (ISMR).
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It is helpful to temporarily consider a complicated realization of
the receiver before developing a simpler implementation. Suppose that

the output Ll'«: of a matched filter, p*(w), is stored for all values of

k, 0< k < m during a transmission. Then for each Kk, Ll‘«: is
given by Equation 4.1. Let the '"first guess' decisions dl(i be made
on the basis of a comparison of Ll'{ with a zero threshold in the usual
manner. The decisions dﬁ are identical to those that would be made
by a MFR under the same conditions. From Equation 3. 46 the proba-

bility of error for the decisions d{z is

PO - 1/4 @ [-Va(t+2x(T)] +1/20(-vd) + 1/4 0 [4&(1-21«@»]

(4.19)

Given the stored matched filter outputs L, and the stored deci-

k
sions dﬁ , subtract the interference from L;{ in a manner analogous
to the SMR. Let
_ ' _ o0 k-1, k 0o k+l, Kk
Ly = Ly~ qpy 7P ~deqPy " P (4. 20)

9
_ 0 k-1 k lkl 0 kil k. k.
= _y-d ey Trpreby |pt| b md Jpg PR D

(4. 21)

If the decisions d](i have a low probability of error, the first and third

terms in Equation 4. 18 are zero most of the time and intersymbol
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interference is eliminated from Lk . The final decisions dli of the

ISMR are made by comparing Lk to zero. Since Lk is not a linear

function of the reception, the ISMR is a nonlinear receiver,
We can determine the probability of error for the ISMR's final

decisions easily. Let P,. be the probability that dli is in error

00

given dl?:-l and d12+1 are correct and let P_. be the probability that

11

1. . . 0 0 .
dk is in error given that dk+1 and dk-l are incorrect. Further,
let P01 be the probability that dli is in error given that exactly one
o] 0 s - 1
of dk-l ) dk+1 is incorrect. Then the probability of error Pe for

decision dli is simply

_ 0 0 o) 0
Pe = POOP [dk-l’ dk+1 both correct] + POIP [one of dk-l’ dk+1 correct]

o o (4. 22)
+ P11 P [both of d 12 dk+1 1ncorrect]

Decisions d° and d° are independent of each other since they are
-1 +1

t
based on Lk—l and L;<+1 which, in turn, correspond to disjoint time

intervals. Thus Equation 4. 22 can be written in terms of the "first guess"

probability of error PZ as follows

1 _ _p0 2 010 0,2
Pe = Poo(l Pe) + 2P01(1-Pe)Pe + P11(Pe) (4. 23)

The probabilities P and P are easily computed from

00’ Po1- 11
Equation 4. 21 under the appropriate condition and Pe(a , B) given by
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Equation 4. 10.

Py = P,(0,0) (4. 24)

= (-V/d) (4. 25)

P, = ) > P[bk+1]Pe(0,2bk+1) (4. 26)
kel E 1

=1/2¢ <—w/_a_(1+2r(T))> +1/2® <-\/E(1-2r(T))) (4. 27)

P11 i b Zb =+ 1 P [bk"l’bk-i-l] Pe(zbk_l’ 2bk+1) (4. 28)
k-1"k+1" ,

= 1/4% (-«Fd (1+4r(T))) +1/20(-Vd) + 1/ 4 c‘b(-«/a(l-‘lr(T))) (4. 29)

The above probabilities can be substituted into Equation 4. 23 to give the
probability of error for the ISMR.

The implementation suggested by the above discussion is unneces-
sarily complicated for practical applications. Just as in the SMR, the

receiver can be considerably simplified by using a variable threshold

T(dy g0y, ) Let
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0 0 _ 0 k k-1 o k k-1
Tl e,y = %1Po" P1 * datPr ™ Po (4.30)

R(T) [dﬁ_l + d12+1] (4. 31)

]

Then a receiver which compares Lk to I‘(dﬁ_l, d12+1) makes exactly
the same decisions as the complicated implementation given earlier.
Note that there are actually only 3 distinct values for I‘(dﬁ_l, d12+1):

+ 2R(T) and zero. Figure 4.3 depicts a possible implementation of the
ISMR.

Before continuing to the comparison of the ISMR with other re-
ceivers in the next section, a word of caution about the ISMR is neces-
sary. From the preceding discussion of the ISMR it seems reasonable
to consider a multi-decision process in which an entire sequence of
decisions dﬁ. .o dll{ is made on each symbol in a logical extension of
the ISMR procedure. The hope of such a procedure would be that the
final probability of error PZ is reduced by making more preliminary
decisions. Unfortunately this is not the case, as the interdependence of
errors producéd by more than two decisions in each symbol leads to an
actual increase in error probability over that of the ISMR. Thus this

logical extension of the ISMR procedure is of no avail.

4,3. Comparison with Linear Filter Receivers

This section compares the nonlinear SMR and ISMR with the

linear filter receivers discussed in the preceding chapter. The
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comparison is made taking into account the ease with which a receiver

may be implemented.

Switched-Mode Receiver

Figure 4.4 depicts the probability of error for the SMR and the MFR,
TFR and OLFR of the preceding section. In terms of error performance,
the SMR is superior to the MFR for all |r(T)|] and is roughly comparable
to the TFR and OLFR3 . The OLFR5 , the next more complicated opti-
mized linear filter receiver, is noticeably superior to the SMR.

The SMR offers several distinct hardware advantages. First,
the SMR requires only a single digital delay; i.e., a flip-flop, to remem-
ber dk-l , whereas the TFR and OLFR receivers require an analog de-
lay of at least 2T seconds. Second, the SMR has only a single vari-
able, I‘(dk_ 1) which must be adjusted whereas both the TFR and OLFR
receivers require the adjustment of 2 or more tap coefficients. Finally,
the single variable r(dk-l) of the SMR is simply the autocorrelation
of p(t) evaluatedat t=T . Both the TFR and OLFR require weighting
coefficients which are relatively difficult to obtain,

From the above considerations, the SMR may be an acceptable
substitute for either the TFR or OLFR3 because of its ease of imple-
mentation. On the other hand, the SMR performance is noticéably
5* The SMR does ap-

pear to be an improvement over the simple MFR.

worse than that of the more complicated OLFR
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0.10

i OLFR,

i MFR = OLFR,

OLFR

0.01 S
0.001
0.0001 | | 1 | |

0 0.1 0.2 0.3 0.4 0.5

| r(T)]

Fig. 4.4. Comparison of SMR with MFR, TFR, and OLFR3 5
b
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Iterated Switched-Mode Receiver

Figure 4.5 depicts the probability of error for the ISMR and the
MFR, TFR and OLFR. The outstanding feature of this figure is that
for [r(T)! < .25, the ISMR performs better than any linear receiver.
For [r(T)! > .25, the ISMR performance is nearly that of the OLFR3 .
By comparing Figs. 4.4 and 4.5, we see that the ISMR performance is
superior to that of the SMR for |r(T)| < .4. Thus the ISMR is an ex-
cellent performer in moderate intersymbol interference and an accept-
able performer under more severe conditions,

The ISMR shares with the SMR a significant ease of implemen-
tation. The ISMR can be implemented using one digital delay (i. e.,
flip-flop) and one analog delay of T seconds, which is easier to ob-
tain than the long analog delays required by the TFR and OLFR. As
with the SMR, only a single variable I"(dk_l, dk+1) must be changed
as p(t) changes and this variable is easily computed from p(t) .

The ISMR represents an increase in complexity over the SMR.

If a communication system is designed so that on the average,
the intersymbol interference is only moderate, i.e., 1r(T)}<.25, the
ISMR is an excellent choice of receiver. Since larger amounts of inter-
symbol interference lead to considerable increases in the probability of
error for any receiver, one might use [r(T)! < .25 as a reasonable
restriction. Thus the ISMR is an important receiver in communications

systems with intersymbol interference and noise.

As a final comparison, consider a system for the Mimi channel
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Fig. 4.5. Comparison of ISMR with MFR, TFR, and OLFR3 5
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shown in Figs. 1.2 and 1. 3 which uses the 60-ms perfect word symbol

shown in Figs. 2. 10 and 2. 11. When this symbol is transmitted through

the Mimi channel, approximately 94% of the signal energy is within

2T = 120 ms for the phase-equalized received symbol, and hence the

M =1 assumption is valid. The value of r(T) found from the auto-

correlation function of the received symbol is found to be -.2.
Assuming a d of 10, which corresponds to a received S/ N of

approximately 3 in a 50 Hz band (+ 40db), the probability of error for an

interference-free receiver is . 00078. For a simple MFR the probability

of error is ..0076, approximately 10 time‘s that of the interference-free

receiver; for a traditional TFR, the probability of error is . 0019 or

about two and a half times that of the interference-free receiver, In

the same conditions the ISMR has a probability of error of only . 00099.

Table 4. 1 gives these results.
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Receiver Pe % increase in number of errors
over interference free receiver
—
Interference Free . 000783 0
MFR . 007615 870
TFR . 001876 140
OLFR (3 tap) . 001332 70
(5 tap) . 001191 53
SMR . 002962 280
ISMR . 000993 21

Table 4. 1. Results for system using Mimi channel (Fig. 1.2) and
a 60 ms perfect word symbol (Fig. 2.10), d=10, r(t)=-.2



CHAPTER V

THE OPTIMUM (LIKELIHOOD RATIO) RECEIVER

Up to this point we have considered receivers which either repre-
sented reasonable approaches to the problem, such as the TFR or ISMR,
or gave optimum system performance over a specified class, such as
the OLFR. In so doing, we have neglected a well-known result from de-
cision theory that states that optimum binary decisions (under any reason-
able criteria) should be based on likelihood ratio. None of the receivers
discussed so far base their decisions on likelihood ratio and, conse-
quently, they are suboptimum in the absolute sense. *

The reason for the neglect of likelihood ratio in earlier receivers
for the intersymbol interference in noise problem stems from the inher-
ent difficulties of the general problem. By imposing the requirement of
phase equalization and a unit degree of intersymbol interference (M =1)
analysis and evaluation are possible. Operating equations for the opti-
mum receiver with M > 1 have been derived; however, the equations
are quite complicated and offer no hope of evaluation. As mentioned
in Chapter II, for reasonable signalling rates, the M =1 assumption

is acceptable and hence the results presented here have practical

b 3
If there is no intersymbol interference ( Ir(t)l = 0), any of the linear filter
receivers bases its decisions on likelihood ratio, as can be seen from
classical detection theory.

109
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importance.

Because of the difficulties inherent in implementing the optimum
receiver, even for M =1, the subsequent analysis is, in a sense, a
mathematical exercise. Only in the most critical applications could
the complexity of the optimum receiver be justified. The major benefit
obtained from the analysis is the absolute bound on system performance
which it gives and the method of operation it suggests. The lower bound
on probability of error derived shows to what extent intersymbol inter-
ference is a fundamental problem and the optimum receiver's method
of operation provides guidelines for the development of practical sub-
optimum receivers.

The following section reviews the concept of likelihood ratio and
derives the operating equations for the optimum receiver. In the second
section, the time symmetry produced by phase equalization is used to
evaluate the receiver performance in a relatively simple manner.
Finally the performance and operation of the optimum receiver is
compared to the performance and operation of the receivers studied

earlier.

5.1. Operation of the Receiver

This section reviews the basic concept of likelihood ratio which
provides the basis for the optimum receiver's design. A convenient
transformation of the likelihood ratio is introduced which allows sequen-

tial operation and analysis of the receiver. Using this transformation,
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the operating equations for the receiver are derived.

Likelihood Ratio

Let x be the total reception, a waveform of duration (m+2)T
and let bk be the value of the kth symbol in x. Inthe reception x
there are components of other symbols whose values are independent
of bk , and added white, Gaussian noise. The likelihood ratio of the
reception x for the kth symbol lk(x) is defined by

p(x | bk =+ 1)
lk(x) =
p(x ! bk =-1)

(5. 1)

where p(x1 bk= +1) is the conditional probability (or probability den-
sity) of the waveform x given that the kth symbol has the specified
value.” A major result from binary decision theory states that the

likelihood ratio lk(x) (or any monotone function of it) is the best

possible indication of the value of the kth symbol. For the case in

which the symbol values b, =+ 1 are equiprobable and in which both

k

types of error are equally costly, as they are here, the classical
theory requires that lk(x) be compared to a threshold of one. If
lk(x) is greater than or equal to one, a dk =+ 1 decision is made,

if lk(x) is less than one, a dk =-1 decision is made.**

*More elegant definitions of likelihood ratio are available but unnecessary
for our analysis.

**The decision when lk(x) is equal to one is arbitrary, the decision indi-
cated here is simply a convention.
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The above results completely specify the optimum receiver, and
from one theoretical point of view, the problem is solved. To provide
useful results, however, a method of determining lk(x) from the re-
ception x must be found. To do this conveniently, a sequential form
of Equation 5. 1 and the log odds ratio transformation will be introduced.

Let x]. be the portion of the reception in the time interval
(jT, (j+1)T) and let Xj be the portion of the reception in the interval
(0, jT) . Note that Xm 9 =X Then from two forms of P(b

e %51 %)

we have

P(oy 1(X;p%) = X, 1P 1X) = Pl 1X)p(x, b, X) (5.2

Dividing Equation 5.2 with b,_=+1 by Equation 5.2 with b, =-1 we

k k
obtain
P(bk =+11 Xj+1) P(bk =+1 iX].) p(xj l bk = +1’Xj)
_ = . T (5.3)
P(bk =-1 [Xj+1) P(bk =-1 [Xj) p(xj lbk = 1,XJ.)

Define the log odds ratio of the kth symbol given Xj’ Li'( as

P(bk = +1 EX].)

j
L = 1In (5. 4
k P(b, =-11X)) )

k

and the log likelihood ratio of x]. for the kth symbol, as
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p(xj lbk = +1’Xj)

Inl (x,) = In (5. 5)
k™j - -
p(xj o, 1,X]-)

Then Equation 5.3 becomes simply

i _ qi-1
Lk = Lk + lnlk(xj) (5. 6)

That is, the log odds ratio at time j-1 is updated to give the log odds
ratio at time j using the log likelihood ratio. Figure 5.1 is helpful in

visualizing the above results.

Py-1 Py Pyt

(k-1)T kT (k+1)T (k+2)T

Fig. 5.1. Updating the log odds ratio Ly
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We now show that for equiprobable symbols the log odds ratio

m + 2
k )

with the log of the likelihood ratio of the observation lk(x) . From two

after the entire transmission has been received, L is identical

forms of P(bk,Xm +2)

P(bk =+ 1] Xm+2)p(X ) = p(Xrr1+z | bk =x1 )P(bk =x1) (5.7)

m+2

Divide Equation 5.7 with bk =+1 by Equation 5.7 with bk =-1 and
take the logarithm
P(b, =+1)
k
L™ -l (x) + In ——— (5. 8)
k P(b, =-1)

The last term is zero since the symbols are equiprobable. Thus in our

work the log odds ratio Lf{ and the log likelihood ratio lnlk(XJ.) are

the same. Since the log odds ratio is a monotone function of the likeli-
hood ratio, we will base decisions directly on log odds ratio. It is easy

to see that comparing the log odds ratio to zero (deciding d, = +1 if

k
Lf{n+2 > 0 and dk =1 if th{n+2 < 0) is equivalent to comparing

the likelihood ratio to one in the manner described earlier.

It is easy to determine the probability of bk given Xj from the

j

log odds ratio Lk

]
.5 (bk + 1)Lk

P(b, [X.) = : (5.9)

J
Lk

l+e
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In subsequent work it will be convenient to use the symbols Ll]< =+ @
to indicate that P(bk | Xj) takes on a value of one or zero; LIJ{ =+

signifies that P(bk=+1 lX].) =1 and P(bk = -1 in) =0,

Derivation of the Log Likelihood Ratio lnlk(xj)

The derivation of the log likelihood ratio lnlk(x].) is quite tedious
and the resulting equations are discouraging at best. Inspection of these
equations indicates the enormous difficulty involved in implementing the
optimum (likelihood ratio) receiver and, at first, evaluation of receiver
performance seems impossible. As we will see in the second section
of the chapter, evaluation of receiver performance is actually not too
difficult. Thus the equations derived here are important not because
one would try to implement them, but because they provide a basis
for the evaluation of the optimum receiver's performance.

With the above comments well in mind, let us derive the equa-
tions for lnlk(x]. ). As a convenience we consider four separate cases,
i<k, j=k, j=k+l, j> k+l. The first case, with j < k is the
easiest since there is no energy corresponding to kth symbol in

either X]. or in xj for j< k. Thus

Inl (x;) = 0. (i<k) (5. 10)

For the cases where j > k expand p(xj ! bk =31 ’Xj) in terms

of the four possible signals, determined by bj-l’bj , Wwhich are present
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in the reception xj . Let b= (bj—l’bj)’ then

plx; 1B, X;) = bZ P(bIby = £1,X))plx;1b,b, X) (5. 11)
. b,

-17]
Since the symbol values bj-l’bj are independent, the first factor in
each term of Equation 5. 11 can be written as a product. Further,

p(xj Ibb, ==zx1 X].) is completely specified by b so that the last

k

two conditions are superfluous. Then from Equations 5.5 and 5. 11

), B(b, ; Iby =+1,%; )P(b; 1by = +1,X)p(x; Ib)

b._{b.
Inl (x,) = Ll
k]
) P(bj_llbk = - 1,Xj)P(bj Ib_=-1, xj )p(x]. I b)
bj_lbj
(1> k)
(5. 12)

If j=k4 0, Equation 5,12 simplifies considerably since

P(b]. | bk , Xj) is either one or zero and P(bj_1 | bk , X].) is independent

of bk . The case where j=k=0 will be treated later.
ZP IIX)leb ’j:+1)
J 1
lnlk(xj)- = In (j=k#0) (5. 13)

ZP31 (X!bl,b—l)
]—1
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For j > k, Equation 5.12 also can be simplified. Since there
is no energy corresponding to the jth symbol in Xj , we have

b.ib ,X,) = .5. For j=k+1
p(b; 10y, X,) j

.5 é: p(x; 1b;_g =+1,b)
] (j=k+1) (5. 14)

lnlk(xj) = In
) b, .=-1,Db,
f,: px; 1b;_y=-1,b;)

J

For j> k + 1, Equation 5. 12 reduces to

.5 P(b. ,i1b, =+1,X, db. ,b.=+1 x.1b, .,b.=-1
b'zl (b, By =+1, X)) | Bx;Ib;_1,b =+1)+p(xIb._y,b. >f
J—

.5 ), P, b =-1,X) {p(x.!b, .,b.=+1)+p(x.1b. ,,b.=-1
Zl (b;_ylb, =-1,X;) 1plx;lb, ;,b,=+1)+p(x;1b,_;,D, );
]—

(> k% 1) (5. 15)

Equations 5. 10, 5. 13, 5. 14 and 5. 15 give the equation for the log likeli-
hood ratio in each of the four possible cases. We must now write the
probabilities in these equations in terms of the reception, x]. .

The determination of the probabilities p(xj]b) in the preceding
equations leads to some deep mathematical questions. These questions
concern the representation of a waveform by a finite dimensional vector
having independent components (Ref. 12). We avoid a lengthy discussion

- of this well-studied problem and merely state its result. That is,
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-5 + s, 12
NO b b

p(x; | b b)) = Ke (5. 16)

lx.|2 -2X.* S
] ]

where

_ j-1 j
s, = bj-lp + bjp (5. 17)
and the dot product is the L2 inner product used in Chapter III. The
constant K is the normalizing constant. The result given by Equation
5.16 is valid under what is essentially a bandwidth limitation.

Before proceeding further, we will normalize all waveforms in
the problem by dividing by ’\/ N, / 2 . Under this convention, Equa-
tion 5. 16 becomes

2 2
- 5(1x.1° - 2xj s, + lsbl )

p(leb) = Ke ] (5. 18)

which is a unit variance Gaussian density.
We can now determine the log likelihood ratio for each of the
three remaining cases, through the use of Equations 5.9 and 5. 18 and

much manipulation. From Equation 5.13, we have for j =k #0, ¥*

*
Equation 5. 16 does not, however, require a Fourier series bandlimited

assumption and hence does not lead to paradoxical results.

**Equation 5.19 is derived in Appendix B.
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k
L
k-1 i
. cosh + pl 1 (x, - p])
Inl, (x.) = 2x ] 4 1In 1 ] C 0
kX Py (j=k# 0)
k
cosh el +p 1 (x, + Pj)
2 Py i v Po
(5. 19)
8 g (x.,L¥ ) : (5. 20)
0§ “k-1 (j=k#0) .

Equation 5. 19 can be checked very simply. Suppose that the value of the

k-lth symbol is almost certain to be bk—l =+1, (-1) then Li_l

large magnitude and positive (negative) and the cosh functions approach

is of

an exponential., As the cosh functions approach exponential, the terms

common to both their arguments cancel and we have

. o j-1
khm OOlnlk(xk) = 2p0(xj T Py )

L -+ (5.21)
kol (j=k +0)
This limiting form of lnlk(xk) is the same as if bk—l were known
exactly and the interference component bk—l le-1 subtracted from xj .

The interference free difference is then correlated with the signal p]o

as one would expect.

After some manipulation the log likelihood ratio for j=k+1 can
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*
be found from Equation 5. 14

. cosh<pg) (x, - PJ'1—1)>
2x, ° p]1 + In 1 (j=k+1)
< )

lnlk(xj)

J ] J-
cosh pO(X + Py (5. 22)

ne

G, (x.) (j=k+1)
(5. 23)

Equation 5, 22 can also be readily checked. Suppose that bj =+1(-1) and

]
0

tive), This is equivalent to saying that the symbol value bj is pretty

that the component of x]. in the pj, direction is large and positive (nega-

well known. Then Equation 5. 22 becomes

. _ j ] L

11.m 1n1k (xj) = 2p:l (x]. z po) (j=k+1) (5. 24)
l .

[ x]. £ ©

Thus the limiting form of lnlk(>Lk+1) corresponds to the correlation of

pll_1 with the reception x minus the ""known' interference.

For j> k + 1, no particularly convenient simplification of
Equation 5. 15 is possible. Define the conditional log odds ratio

]' *kk
Lj-l(bk) as

*Equation 5.22 is derived in Appendix B.

Note that the symbol for the conditional log odds ratio L] ) always
has the condition in parenthesis, whereas the symbol for th uncondi-
tional) log odds ratio L}_l never contains parenthesis.
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g 6 - I‘J(b]._1 = +11Xj,bk) 5.5
i-1Vk) T Pb. , = -11X.b :
] (b;_q 1 J,k)
*
Then Equation 5. 15 becomes
I (-
o
j j +e
Inl (x) = (L 1(+1) - L] 1(-1)) + In
(+1)
l+e

| . - J .
.5 {L] 1(+1)1 . 2%, - po} .5 {L 1(+1) . 2% po}
e cosh(p]1 (x]. po)) + e cosh(p (x + po))

+ In

{L](1)+2x1.'p0} '5{ (1)+2XJ°P$}
e cosh(pll (x po)) + e cosh(p]11 (x. +p0))

(j>k+1) (5. 26)

For convenience write

lnlk(x].) 4 G2<xj,L;:_1(+1) ] 1( 1)) (i>k+1) (5. 27)

We note in passing that lnlk(xj) is zero for j> k+1 only if L;_1(+1) =

L;_l(—l) . This means that 1n1k(x].) is zero only when a knowledge of

b 3
Equation 5. 26 is derived in Appendix B.
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the kth symbol would not affect the decision on j—lth symbol. One
would expect as symbols j-1 and k are separated by increasing time
k(xj) would become small.

Although Equations 5. _10, 5.19, 5.22, and 5. 26 give lnlk(xj) for

amounts, Inl

all four possible cases, in Equation 5. 26 a new variable, the conditional

log odds ratio was introduced. In order to determine lnlk(xj) for

In a manner

j>k+1 we must also be able to determine L;._l(bk) .

analogous to that used in deriving Equation 5. 6

1(b ) = L] 1(b ) + Inl, _11B) (5. 28)

Lj- 1(

where the conditional log likelihood ratio lnl 1( 11 b ) is given by

Il (x. . 1b) =1 S e S b
nj-lxj-l ) = In— ) (5. 29)
p(xj-l ( bj"l == }Xj_ ’bk)

Because no energy corresponding to the j-lth symbol is contained in

(b,) =1Inl, ,(x b

-1 : ]
X, 1 Lj-l(bk) is always zero. Hence L k) -1

j- j-1 j-1 1Py

b

The conditional log likelihood ratio Inl. is derived in

j-1 %51 1)
essentially the same manner as the unconditional log likelihood ratio given

in Equation 5. 19, We have

Inl;_y(x;_11by) = G0<x]._1, Lg(bk)) (3> k+2) (5. 30)
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If j=k + 2, we interpret L}:;(bk) = L11§+1(bk) as having the singular

value bkoo , that is, of very large magnitude and of the same sign as

bk . Thus we have from Equation 5. 19

k+1 _ o k+1 k
Lk (bk =x1) = 2p0 (x - bkpl) (5.31)

Using the above equation as the starting point, we can derive L;:_
for all j> k+1 as required by Equation 5. 26.

One small problem must be cleared up before discussing the
operation of the receiver. This problem occurs at the very start of the
decision process when j=k=0. Since there is no preceding symbol,

we have

p(xq 1 by =+1)
lnlo(xo) = 1ln p(XO i bO - (j=k =0) (5. 32)
= 2X, * p0 (j=k=0) (5. 33)
0 0
4 Gy (x,) (j=k=0) (5.34)

which is the log likelihood ratio for an interference free reception, as
X certainly is.

The foregoing results are summarized in Table 5. 1.
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] 1n1k(xj) equation
i<k 0 5. 10
j=k=0 Gy(xg) 5.34
. k
j=k 70 G Ly _p) 5. 20
ik +1 G, (x. 5.23
i 1(%5)
i>k+1 ] - ] = - .
i>k+ G, (x SEINCHERVAS 2 INCH 1)) 5, 27
where
i =k+2, k+3, ... ) _ j-1 3
J ) Lj_l(bk) 0<x3_1, Lj_z(bk)> 5. 30
k+l B
Lk (bk) bkoo

ﬁ

Table 5. 1. Equations for the log likelihood ratio lnlk(xj)

Operation of the Receiver

The operation of the receiver is best understood by considering

the operation relative to a single symbol, b

transmission.

which updates L)

we discuss the memory requirements for such a receiver.

- ]
Since Lk

k H

is zero for j< k

in the interior of the

To go from this single symbol operation to a receiver

K for all symbols simultaneously is not difficult. Later
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k+1
Lk = lnlk(xk) (5. 35)

Go%, Li_l) (5. 36)

The quantity Lk is required to perform this computation. The log odds

k-1
ratio L11§-1 can be computed inductively with
Ll - arx) (5.37)
0 00 '
i+l iy,
L~ = GO(Xi’ Li-i) i=1,2,...k-1 (5.38)

From Equations 5.36 and 5. 38 we note that Lk

k-1 is dependent on X

k’

the entire reception up to time KT .

Given Lk+1 compute Lk+2

I Kk by adding the log likelihood ratio
k+1
k

lnlk(xk+1) to L

(5. 39)

Then given L§+2 compute Lg{ for j=k+3, k+4, ...m+2 inductively

i 4 j-1 Jl
L, = L+ Gz(xj_l,Lj_z( 1), L 5 (- 1)) (5. 40)

where
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j-1 . j-2 )

Lj_z(bk) = Go(x]._z,Lj_S(bk) (5. 41)
k+1
Lk (bk) = bkoo (5. 42)

Figure 5.2 depicts the process used to determine Lg( . The decision dk
on the kth symbol is made by comparing the log odds ratio LII? +2 to
zero in the usual way.

By operating in parallel many single symbol receivers of the form
described above, decisions can be made for all of the transmitted symbols.
It is easy to see that the memory requirements of such a receiver are
enormous. At each stage j, the receiver must have in memory the up-
dated log odds ratios L% ces L:]?-l

ceived up to this time. Furthermore, the receiver must also retain in

for the symbols which have been re-

]
that the total memory requirement at time jT is 3j-2 memory

memory the conditiqnal log odds ratios LJ._ 1 (bO) coe L}_l (b]._z) SO

variables. This memory requirement and the great amounts of com-
putation required, mé.ke this implementation of the optimum receiver
economically infeasible (in 1968) for transmission lengths encountered
in communications.

A natural compromise is to base decisions on only a portion of
the reception. That is, to base the decision dk on L11z+q (g << m+1-k)

m+2 Such an implementation requires 3q-2 memory

instead of on Lk .
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locations to process a reception of any length and gives the optimum de-
cisions based on the truncated reception Xk " Receivers of this type
are called truncated observation optimum receivers (TOOR). Figure 5.3
depicts the operation of a TOOR with q=3 . The author expects that

the difference in performance between the optimum receiver and a TOOR
with q~3 would be very slight. Even with the reduced memory require-
ment, implementation of a TOOR would be justified only in very critical
applications because of the computations needed.

In Section 5. 2 one method of operation for the optimum (likelihood
ratio) receiver in which the number of computations is greatly reduced
will be described. Unfortunately, this method has an even greater
memory requirement than the optimum receiver described above.

We note in passing that each computation of lnlk(x].) requires

J . These quantities can be ob-

0
tained as the output of filters matched to p]1_1 and p%) respectively.

the quantities x; - le_l and x; + p

Because the optimum receiver does not correlate the reception with the
noise-free symbol pj , it is essential that the optimum receiver be pre-
ceded by a phase-equalizing filter in order for the above results to be
valid. This is in contrast With linear filter receivers in which the first
element in the canonical form is a filter matched to pj , making pre-

vious phase equalization unnecessary. Thus the optimum receiver has

the additional disadvantage of requiring a separate phase-equalizing filter.
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Time (k+2)T X o Time (k+3)T
K+2 k+3
L+ Go > Tt
k+2 k+3 —a1)=
I"k+1(bk+1:+]'):+ ® ’ Lk+2(bk+2- )=+ a
G N
k+2 _ _ 0 k+3 ==1)=-
Ly 1Py ™17 = \ Ly oy g7~ 1)=- 0
k+2,. _ ) Go k+3 _
Ly (o =+D) \ Ly oy
G
k+2,, 1 k+3 _
Ly 41 (Pp=-1) \ Ly 1oPpar™" Y
k+3
L2 j ~_ Licr1
GZ
Kk+2 \
k+3
IJk—l 1 Li(
Decision Decision
on bk—l on bk

Fig. 5.3. Updating process used by TOOR (q = 3)



130

Insights
The notation associated with the operating equations given above
obscures the basic nature of the receiver's operation. To better under-

stand what the receiver really does consider the following explicit equa-

tion for Lm+2 .
k
k
Lyt ka1 K
cosh +p . (xk -pn)
m+2 2 1 0
Lk = In { Term A
Lk
cosh - k-1, (x, + k))
2 P1 *k TP
k k
+ 2xk Py + 2xk+1p1 Term B
k+1 k - 1
_ j=m+
cosh ("o - (i1 P1)>‘
+ 1n - Z lnlk(xj) Term C

k+1X k> j=k+2

(5. 43)

Term B in the above equation is recognized as simply the correlation

of the reception (xk » Xy 1) containing kth symbol with the noise-
free symbol pk . In the absence of intersymbol interference, the log

odds ratio from classical detection theory is given by Term B.
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The effects of Terms A and C can best be understood by consid-

il become large in

magnitude. Neglecting the second term in Term C, we have from

ering their limiting values as Lk-l and p18+1 + X

Equations 5. 21 and 5. 24

k+1

m+2 k k-1 k )
k+1P0

lim Lk = 2p0 . (x-bk_lp1 )+2p1 + (x-b

(5. 44)
k+1,
Pg xk+1-> bk+1°O

k
k-1 k

component of X1 in the p18+1 direction becomes large, the receiver

As the value of b becomes better known, lL _1'-— 0 , and as the
subtracts the "known" interference from the reception and correlates
the result with the noise-free received symbol. Terms A and C serve
to subtract components due to the interfering symbols from the deci-

sion variable Lf(n +2 .

The notion of "subtracting out" interference components is, of
course, the fundamental idea behind the nonlinear ISMR. In the ISMR,
however, the amount subtracted can take on only one of three possible
values. The optimum receiver, on the other hand, subtracts a continuous
valued amount which depends, in a nonlinear manner, on the entire re-

ception. Except for this difference, the operations of the optimum re-

ceiver and the ISMR are similar.
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5.2. Evaluation of the Optimum Receiver

At first glance, evaluation of the optimum receiver's performance
appears virtually impossible. By looking at the problem in a different
way, however, the evaluation can be done quite easily. This section
describes a method of evaluating the receiver's performance exactly
on a digital computer. This method of evaluation also provides in-
sight into the operation of the optimum receiver and suggests another
possible implementation.

The objective of evaluation is to determine the probability of
error for a single symbol located interior to a long sequence of trans-
mitted symbols. I the number of transmitted symbols, m+1 , is very
large, as we have assumed, this probability of error will be the sys-

tem probability of error Pe . Since the decision dk is based on

LIT +2 we must determine
P - P(L*2< 01b, = +1) (5. 45)
0
= | p@*?b, = +1)dL1r:1+2 (5. 46)
-00

The major problem of evaluation is to determine the density function

m+2
p(Lk * Ibk =+1) of the decision variable Llr{n *2 Ghen by =+1.

Determination of p(Llr{n+2 Ibk =+1)

The preceding section gave a sequential method of computing
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LII{n +2 starting with X, and working along in time until time (m+2)T.
The computation of Llr(n +2 is not dependent on which direction in time

the sequential operation proceeds. It is also possible to start with X el

and work backwards in time until time 0.

Let Xj be the portion of the reception in the interval (jT,(m+2)T).

The total reception x is equivalent to the pair X]. and Xj as shown

1)

in Fig. 5.4. Define the reverse log odds ratio Lk as simply

P(b, =+11Xj)

L = ~ (5. 47)
k _ .
b b b b b +9
/ \
/ \
/ \
/ \
t
KT (DT (k2T (k+3)T >

-— X >l X >

Fig. 5.4. Division of the reception x into Xk and )N(k
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From the discussion of the preceding paragraph,

m+2 20
L, =1Ly (5. 48)

Reiterating, the log odds ratio for the kth symbol given the entire recep-
tion does not depend on whether it was obtained by a forward operating re-

ceiver or a backward operating receiver.

Suppose that we conceptually ""burn the candle at both ends' by

k+1
k

the reverse direction to obtain L§+1 . We will now show that

operating in the forward direction to obtain L and then operating in

m+2 _ - k+l = Tk+l
L, =L "+ L, (5. 49)

and that given the value of bk , L11§+1 and ‘I?I?I are independent ran-

dom variables.
From Equation 5.8 ,

a2 P(x by =+1)
Ly " B&Ib, =-1)

(5.50)

P& g o= p(K 1Ky By =)
In (5.51)

Py, 1 | =-1) P(Xy | Xy 1 P =-D)

+1,

The only coniponent that Xk+1 and Xk +1 have in common is the wave-

form due to the kth symbol, since the noise is independent from interval
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to interval., Hence the condition on bk makes the condition Xk+1 un-

necessary,

e ~

Py, 1 lX1«:+1 , b) = pXp g Ibk) (5.52)

Substituting Equation 5. 52 into Equation 5.51

p(X, . |b =+1) X b =+1
k+1 Pk p( |b, =+1)
LE‘*Z = * = + In _ K1k (5. 53)
p =- .
k+1 "k p(X, ¢ [0, =-1)
k+1 “k+1
Lk + Lk (5.54)

Whenever the value bk of the kth symbol is given Llljrl and Eiﬂ

are statistically independent since their only common component is

specified.

Let us now continue our effort to determine p(Lm+2 | b

k k
s k+1 ~k+1 .
Under the condition that bk =+1, Lk and Lk are independent ran-

dom variables. Since Llr{n +2 is the sum of two independent random

. k+1 ~k+1
variables, Lk+ and Lk , the desired density function of L

=+1).

m+2
k

is the convolution of the densities p(L11§+1| b _=+1) and p(L§+1 b, =+1)

m+2

k+1 ~k+1
p(L, 7 lb, =+1) = p(L " [b =+1) @ pL b, =+1) (5.55)

We can go another step further. If the kth symbol is located in the
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s k+1
interior of a long sequence of symbols, the densities p(LkJr |bk = +1)

and p(i'i*'l Ibk =+1) will be the same because of the time symmetry (about

time (k+1)T) produced by phase equalization.” That is,

k+1|b +1) = p(Lk+1|b - +1) (5. 56)

and thus Equation 5.55 can be written

L2 |p = 41) = pLE o, = 41) @ pLft b, = +1)  (5.57)

The distribution p(Lk +1 |b

= +1) is relatively easy to obtain, as we
shall see.

From Equation 5. 20,

k+1 k
Lk = Go(xk , Lk-l) (5.58)

which is a mapping from the random variables representing the recep-

tion, x * p and x °* pk and the random variable Lk into a
! 1 0 k-1

new random variable Ll;l . Let us suppose that the distribution of
k+1 s k k+1l . k N .
Lk conditional to Lk-l , p(Lk ILk-l , bk = +1), is known. Later

in this section we will derive an. equation for this distribution.

k

+ o0
k+1Ib =+1) = [ p k+1|L b = +1) p(14§_1|lok=+1)de_1

o k-1’ "k

(5.59)

* . k+1 ~k+1 .
Of course, the random variables Lk and Lk themselves will

generally be different.
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Since there is no energy corresponding to the kth symbol in the portion

of the reception from which Lk

-1 is computed

p(Ls_ Ib = +1) = p(Lf ) (5. 60)

1 k ~ k
“ g p(Lk_llbk_l +1) + p(Lk_llbk_1 1) (5. 61)
Because of the symmetry of the problem
-k _ B 1k 3
p(Lk_llbk_1 = -1) = p( Lk_llbk_1—+1) (5. 62)
From Equations 5. 60, 5.62 and 5. 63,
kely, TP kel k )
oLy b =+ = [ ey Ly g, by =+D)
(5. 63)
k k
p(Lk_1 Ibk-l =+1) + p(-Lk_1 lbk-l = +1) .
2 dLy.q

From p(L(l)lb0 = +1) we can compute p(LllzJr1 lbk = +1) iteratively and
then convolve p(Ll];+1 |bk = +1) with itself to obtain p(LII{n+2 lbk = +1).
The system probability of error Pe can then be found from Equation

5. 46.

Intuitively one would expect that for sufficiently large k , that
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k+1

p(Ly

Ibk = +1) 1is stationary. That is,

k+1 k
p(L, Ibk =+1) = p(Ly_; |p_q =+D (5. 64)

Under this condition, then, Equation 5. 63 becomes

k+1 O kel |k
p(Lk Ibk =+1) = !w p(Lk ILk-l’ bk = +1)
(5. 65)
k+1 _ k+1 _
p(Lk Ibk =+1) + p(-Lk lbk = +1) y
2 ALy g

which can be reduced to a homogeneous Fredholm equation of the second
kind. Although the integral equation for p(Lllz+1 lbk = +1) is interesting

from a mathematical point of view, it is much easier to apply the induc-

k+1
k

sult of this inductive procedure is the solution to the above integral

tive procedure on Equation 5. 63 to obtain p(L Ibk = +1), The re-
equation and the solution is obtained with 2 or 3 iterations.
To initialize the induction process p(L(l) lbo = +1) is needed.

From Equation 5. 33,

(5. 66)

Lé is the output of a linear filter matched to Py - From either the dis-

cussion of Section 3.1 or classical detection theory
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p(Lg |b, = +1) = $(Lg - Va/5TT (5. 67)

where ¢(u) is the zero mean, unit variance Gaussian density function.

This is the initializing distribution p(Lé Ibk = +1) for Equation 5. 63 .

t

k+1

Determination of p(Lk k

|1, ;s b =+1)

Let us now determine the conditional density function,

i-l , bk = +1) . Although the derivation is long, it provides

k+1
k

insight into the operation of the receiver.

p(L I L

Let the reception Xy be represented in terms of its components

in the plane of the signal vectors plg and pli"l . Since L11§+1 _

. . k k
lnlk(xk) depends only on the inner product of xk with Po and Py

this representation is adequate. Define the orthonormal axes . and

0
A
u; as
~A _ k k
uy = po/ Ipol (5. 68)
k-1 k-1
Pq - (pl * /u\o)/l}O
A
uy = (5. 69)
k-1 k-1 , A \A
pl - (pl uO)uO
and let
k-i .
pl. = po b 1, i=0,1 (5.70)
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be the component of the pl.f"1 signal vector in the /1}]. direction. Then

we can represent the projection ;{k of the reception x_ onto the plane

defined by ) , /1?1 . Let xﬁ be the component of ;(k in the u, direc-

, ) _

tion and let X, be the component of X, inthe u 1 direction, so that
gkzi%+%q_ (5.71)

Figure 5.5 depicts the above relations for by = +1.

In terms of the real world quantities d and r(T) from Chapter

I,
Py = VAT (5.72)
= P * AL (5.73)
Similarly,
k| k-1 ,
Py * P1 = PpoPlo (5.74)
- ©(T) d (5. 5)

Thus the signal components are completely specified by the quantities d
and r(T) as in the receivers considered earlier.

1-1° P

the distribution of (Xlg , xli) is bivariate normal with unit variance (be-

We now determine p(xlg, x.i ILllz_1 , bk =+1). Given b

cause of the normalization of all waveforms by dividing by v N07 2" ) and
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X
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I
I
|
0 | Kk
Xy -l Py
1 [ >
] - ' | A
el U ot ame. o
00
Poy = 0

Fig. 5.5. Representation of Xy in the plane defined by Uy

A

u
1
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ko, k-l u
kP * Pk-1P1 - 0°

the components of the reception xg , xk are independent and

mean b Because the axes 0 are orthogonal,

p(;k i} (Xg xli I Pe-1 k) ( - (P00" k- 1plo)¢<’ﬁi'bk-1p'11>
(5.76)

. 0 1.k _ . : k
The density p(xk » X |Lk-1 , bk = +1) is then a weighted (by Lk-l)

sum of the above densities. Using Equation 5.9, we have

- k k -
p(x, L. qsb, =+1) = ) ), Pb, 1 |Ly.p) PR [P 15 By = +1)
k-1
(5.177)
Kk
_ 1 \ 0\ e
K o\® - (oo * P10)) A\ - P11) €
l+e k-1
+¢x0-('-')¢1+") ‘ (5.78)
k - ‘Poo T P10/)?\*x T P11 y

Thus the density function for the vector xk consists of two bivariate

Gaussian "hills" of generally unequal height as indicated by circles in
Fig. 5.5.

From Equation 5. 20,

ot = o6 b, 1) 5.9
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which, when Lllz-l is fixed, is a mapping from the two random vari-

ables Xlg , XIJ; into a single random variable, Lll?l

the auxiliary variable, one can show by the usual procedure that

. Letting X1(<) be

k+l .k _
p(Lk ILk—l’bk = +1)
0 1 -1, 0 .k k+1 k 3
_ p< % = G 050 L g Ty ) | 1 by +1> 10
i
0 1

(5. 80)

-1 . . k k+1 .
where GO is the inverse (given Lk-l and Lk ) of the G0 mapping

and J(xlc{), xi) is the Jacobian associated with G0 . The limits of the

above integral can be found by inspection of the G0 mapping, as will
soon be seen.

By studying the function G0 we can gain insight into the opera-

tion of the receiver. After considerable manipulation of Equation 5. 19

*
we obtain
-1, 0 .k kel, 1 k., 0
Gr0 (Xk’Lk-l’ Lk ) = 2p'11 ) Lk—l 2p loxk
\
- Lk+1 .
sinhjp! . p' LS I p;
, PooP10 3 %k Poo |
+ In )
—_ k+1 - ‘ (5- 81)
L
sinh{pl . p' A + kO,
Poo P 10 P %k Poo

*
Equation 5. 81 is derived in Appendix B.
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1, 0 _k k+1 1‘

Gy (k. L L) = x (5. 82)
. LE+1
One can show that X, 1is defined only in the interval o 5 - pb Op'l 0
" 00
o 1|y
< x —— t pbo p'IO which are the limits of integration for

1
Poo

the integral in Equation 5. 80. Similarly, one can show that

lim X]i *
= 3 ®
(5. 83)
k+1
R U b S
& T o727 * PooPio
00
k+1 0 . k
The curve, y(Lk 12 Ly ), of xk versus x, for fixed L, _; and
L11§+1 is S shaped and has an inflection point at
Lk+1
0 k 1 [ -k k+l . .
X =75 5 X —( Lk-l Lk .p10> . Figure 5.6 depicts
k k+ k k+1
y(Lk_l, K ) for selected values of Lk 17 Lk .
One may interpret Equation 5. 80 as the integral of the density
function of along the line y(L Lk+1) As Lk becomes large
% k-1 ' k-1
in magnitude and with sign given by bk-l , y(LE_I , L?‘l) is effectively
1
tical line at x° ={—— L b . ph p! Evaluati
a vertical line at x, ={-5 2 * b 1PpoPI0l( - Evaluating

Poo



145

4

01 = P ‘gz = (L)1 205 (. 01 74 jojorg t9r¢ 81a
I+Y o
G20 = (L)
o1 = d (00T) 4
(01 °0) 4 (0‘0)4
1
Sy




146

Equation 5. 80 along this line gives

Lk+1
k+lj.k _ - 0 _1__ k . . B
Py Ly b =+1) = p|x = 5=+ b_1P00 Pio(|Pro10 Px Y

+ 00 p(xlilbk_lbk = +1)

a%
Ty )

dxli‘

*

ax,

(5. 84)

~ k+1 _
= p(L, ‘bk_l,bk—+1) (5. 85)

k+1lLk . k

which would be obtained if bk-l

Thus as the magnitude of Li—l

approaches the distribution on L?l

becomes large, p(L =+1)

were actually known.

Numerical Evaluation of the Optimum Receiver

The foregoing equations for the evaluation of the optimum re-
ceiver are readily implemented numerically. This subsection briefly
summarizes the numerical methods used to obtain the results presented
in the next section and gives selected examples of the density functions
involved in the computations.

The conditional density function p(L

k+1 I L =+1) was

klk
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determined by performing the integration indicated in Equation 5.80. To

speed up the integration process different techniques were used on the

central and asymptotic portions of the ~y(L§_1 , 1;1

tion, the cases where |r(T)l =0 or |[r(T)! > .49 were treated separately

) curve. In addi-

due to the peculiar form of y(Lk 1’ k ) involved in these cases. The
resulting density functions resemble slightly distorted Gaussian densities

as shown in Fig. 5.7 for d =10, [r(T)} =

k+1|b

To determine the density p(L K = +1), the initial density

function p(LéIbk = +1) (Equation 5. 67) was represented by its values

taken at 40 equally spaced points on the real line. A matrix of 1600

k+1

entries corresponding to p(L ,L +1) taken over the same

klk

points was computed. Then the iterative process given by Equation
5. 63 was performed five times, with the density p(L |b +1)
apparently converging to its stationary value, the solution of the inte-
gral Equation 5. 65, in two or three iterations. Figure 5.8 depicts
L&+l b =+1) for k=0, 1, 2, 3 with d=10, r(T)=.5, a rela-

tively slowly converging case. *

After the determination of p(Lkak = +1) by the above pro-

m+2
k

Figure 5.9 depicts p(Li™ *|b, = +1) for 1r(T) = .0, .1, .2, .3, .4, .5,

cedure, the density was convolved with itself to obtain p(L lbk = +1),

d=10. A simple integration of p(L b

k

m+2 I +1) according to

*
The rapid convergence of p(L, [b, = +1) suggests that the performance
of a TOOR with q =3 probably is very close to that of the optimum re-
ceiver.
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Equation 5. 46 gives Pe . Representation of the density functions by 60
points instead of 40 showed no significant changes in any of the results.
Because of the relatively small number of points used in the represen-
tation, no attempt to analyze receiver performance for values of d

greater than 20 (Pe < .000004) has been made.

Two~-Pass Implementation of the Optimum Receiver

The method of evaluation for the optimum receiver has the
added advantage of suggesting what is perhaps the easiest implemen-
tation of the receiver. This implementation requires that the entire
reception be Astored and two separate analyses (passes) of the data are
made. Although this implementation has a large memory requirement
and does not allow real time analysis of the data, the operations per-
formed by the receiver are relatively simple. The performance of
this implementation is identical with that of the '"one-pass'' implemen-
tation given in Section 5. 1.

Let us consider a heuristic implementation of the two-pass opti-

mum receiver in which the reception x is stored on a long magnetic

k+1

tape. On the first pass the receiver computes the log odds ratio Lk

through Equation 5. 19 and records the result on a separate channel of

the magnetic tape. During the second pass the receiver computes the

. “k+l )
reverse log odds ratios L, ~ using exactly the same procedure as used

on the first pass and adds the result to the recorded value Lll?l to ob-

tain L11;1+2 . The receiver's decision dk is then based on Llr{n+2 .
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Figure 5.10 depicts this implementation of the two-pass processor.

5.3. Comparison of Optimum and Suboptimum Receivers

A major objective of the analysis and evaluation of the optimum
(likelihood ratio) receiver was to provide an absolute basis for compari-
son for the suboptimum receivers. This section compares the error
performance of four suboptimum receivers with the optimum receiver
and each other.

For the sake of clarity only four of the suboptimum receivers
have been selected for comparison: MFR, TFR, ISMR and OLFR,7 .
Each of these receivers is representative of one approach to the inter-
symbol interference in noise problem. The MFR and TFR were chosen
because they represent the approaches which neglect either the inter-
symbol interference (MFR) or the noise (TFR). The OLFR,7 represents
very closely the best possible linear filter receiver which could be used.
The ISMR was selected as a good example of an easily implemented non-
linear receiver.

The results presented here are for values of signal detectability
index d in the range from 5 to 15. The error probabilities for an ideal
interference-free receiver operating with signal detectabilities in this
range go from . 012 to . 00005. The lower limit was chosen because it
corresponds to what seems to be the highest probability of error one

might tolerate in a communication system. The upper limit was

selected because it represents a high signal-to-noise ratio case and



153

Two channel
magnetic tape
P A

Write
#2
L§+1
k G Forward
L’k—l 0 "0 pass
Delay of
T seconds
o~ V' ssamy

Two channel
magnetic tape

Read
#1
1 Xk+1
I:l}:+2 o
+1 Threshold dec1s1gns
at dk
Zero
Delay of
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Fig. 5.10. Heuristic two-pass implementatiori of the optimum receiver
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because the evaluation of the optimum receiver becomes difficult for
higher values of d. We will later see that our results are easily ex-
trapolated to other values of d.

In one sense, the result of our comparisons will be obvious--
the optimum (likelihood ratio) receiver always yields the smallest error
probability. The real objective, however, is to compare receiver per-
formances taking into account the cost of implementation. Such a com-
parison requires much subjective judgment and a detailed knowledge of
the particular problem at hand. The subsequent discussion is the author's
personal view relative to current technology and the Mimi channel. The

reader is free to draw his own inferences from the results presented.

Comparison for Constant d

Figures 5.11 through 5.15 depict the error probabilities of the four
suboptimum receivers and the optimum receiver as a function of [r(T)!.
This can be viewed as showing the effects of increased intersymbol inter-
ference for a fixed received signal-to-noise ratio. As suggested in Chap-
ter II, increased intersymbol interference is caused by signalling too
rapidly relative to the bandwidth of the channel.

The results show that the error probability for the simple MFR
increases rapidly with [r(T)!. When intersymbol interference is moder-
ate, the probability of error for the MFR is many times that of the other
receivers. -For example, if [r(T)| =.25and d= 10, the probability of

error for the MFR is about 15 times that of the optimum receiver, and
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Fig. 5.11. Probability error Pe versus | r(T)l, d=5
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Fig. 5.12. Probability error Pe versus | r(T)l, d=17.5
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about 10 times that of the ISMR. Even if the intersymbol interference
is very slight, i.e., Ir(T)| =.1, the use of the MFR can lead to a
twofold increase in the number of errors. I conclude, then, that a
better receiver than the MFR is necessary even when intersymbol
interference is not particularly severe.

The TFR, OLFR, and ISMR receivers offer improvement in

7
performance with less complexity in implementation than that required
by the optimum receiver. Among these three receivers, the relative
error performance depends considerably on [r(T)! andto a lesser
extent, d. For [r(T)! < .25 the ISMR is generally slightly superior
to the TFR and OLFR,7 in performance. On the other hand, if |r(T)I
> .25 the OLFR7 gives the best performance, the TFR and ISMR per-
formances are roughly comparable. In terms of implementation, the
ISMR is distinctly superior to both the TFR and the OLFR,7 .
The optimum receiver performs significantly better than the
suboptimum receivers such as the ISMR and OLFR7 only when [r(T)!
> .25 . Even though a substantial reduction of the error probability is
possible for |r(T)! > .25, the complexity of the optimum receiver
makes its ﬁse impractical. A reduction in signalling rate to reduce

Ir(T)] and allow the use of a simpler receiver such as the ISMR would

be a wise alternative to implementing the optimum receiver,

Comparison-for Constant |r(T)!

Let us now fix the amount of intersymbol interference, as given
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by Ir(T)l and examine the receiver performances as a function of d.
This is equivalent to fixing the channel spectrum and signalling rate

and observing the effects of varying signal-to-noise ratio. Figures 5. 16
through 5. 20 give the performances of the four receivers as a function
of d for Ir(T)} =.1, .2, .3, .4, and.5. The curve labeled IFR in
each of these figures represents the performance of an interference-
free receiver operating with the given value of d. The smoothness of
the curves allows us to extrapolate our general results for values of

d outside the range plotted.

Figures 5.16 through 5. 20 show that the pérformance of the MFR
relative to the interference-free receiver actually deteriorates as d
increases. The MFR is relatively more successful (in its limited way)
at low signal-to-noise ratios than at high signal-to-noise ratios. This
can be attributed to the fact that as the signal-to-noise ratio increases,
the error producing effect of intersymbol interference over-shadows
the effects of the noise.

Because the TFR represents the optimum receivér in the ab-
sence of noise, one might hope that as d becomes large, the TFR per-
formance would approach that of the optimum receiver. Figures 5.16
through 5. 20 indicate that this does not happen even for the larger
values of d considered here. This suggests that ''neglecting noise"
and using a "noise-free" receiver design is a poor approach.

For |r(T)| > .25 the performance of the ISMR relative to the
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optimum receiver depreciates in essentially the same manner as the
MFR as d increases. This can be attributed to poor ''first guess"
decisions used in the ISMR, which have the same probability of error
as the MFR. Thus the ISMR is not a suitable receiver for problems
with severe intersymbol interference and high signal-to-noise ratios.
However, |r(T)! < .25 the ISMR is a good performer for all values
of d.

The performance of the OLFR,7 depreciates slightly relative
to the optimum receiver as d increases, with greater depreciation
occurring when intersymbol interference is severe,

The performance of the optimum receiver, on the other hand,
actually improves relative to the interference-free receiver perform-
ance as d increases. This can be attributed to the receiver's better
knowledge of the interfering symbol values at high signal-to-noise

ratios.

Conclusions

The above results show that the amount of intersymbol interfer-
ence determines which is the best suboptimum receiver. K [r(T)! <
. 25, the ISMR is the best suboptimum receiver, both in error perform-
ance and in ease of implementation. Further, this remains true for all
d. If [r(T)! > .25, however, the performance of the ISMR is inferior
to that of the OLFR

7 and depreciates relative to the ideal receiver with

increasing d. The actual choice between the TFR, OLFR,, and ISMR

7
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receivers for |[r(T)! > .25 is a difficult one.

We can draw still another important conclusion from the results
presented. Since the system designer can usually control |r(T)| by
varying the signalling rate, the above results suggest a good choice of
signalling rate. When [r(T)|> .25, two undesirable things happen.
First, the receiver required becomes more complex, such as the
OLFR7 or TFR. Secondly, the probability of error for this receiver
is significantly larger than that for an interference-free situation. On
the other hand, if the signalling rate is reduced so that [r(T)l < .25, the
best practical receiver (ISMR) is easily implemented and gives near inter-
ference free performance. Furthermore, when [r(T)| < .25, theM =1
assumption on which the foregoing work is based is more likely to be
valid. Thus, I suggest as a general rule of thumb, the signalling}
rate for a binary communication system should be reduced to give
Ir(T)! < .25 in order to obtain both good error performance and a
relatively simple receiver implementation.

The 60-ms perfect word symbol described in Chapter II for the
Mimi channel of Fig. 1.2 provides an example of the application of this
rule of thumb. For this symbol we have |r(T)! = .2. Table 5.2

below gives the performances of the five receivers for d=5, 10 and 15

for this example. The ISMR gives excellent performance.



169

Z2°= |(1L)1] ‘1oquids paom jo9jrad sw-09 & pue
[euueyo 1TWI Suisn wajsAs J0j s}NSay  °Z °G 9Iqel

0082 $61ST0 " 0L8 GT9L00 621 020620 * HAN

00LT £16000 ° 0% T 9.8100 65 212020 ° N

68 207000 * €5 161100 eT 9TGSTO " Lyato

18 101000 * L2 £66000 * o1 08SH10 * MIAST

6 650000 * 9 928000 * L 6LSETO * ¥41dO

0 $S0000 * 0 €8L000° 0 L9210 ° g4l
w.HO.H.Hm C._. —— m.HO.H.Hm C..— — moHO,H.Hm ﬁw —— —_—
aseaIoU] 9 °1 aseaxou] % °1 aseoaou] 9% °1 1941999y

S —
GT =P 0 =P G=p




Chapter VI

CONCLUSIONS AND FUTURE STUDIES

In this chapter we state the major conclusions of this paper

and the future studies which they suggest.

6.1 Conclusions

Chapter II showed that the amount of intersymbol interference
can be related to the power spectrum or, equivalently, on the auto-
correlation function of the received symbol. This relationship was
shown from the existence of a waveform of minimum RMS time
duration which could be obtained through the use of a phase«
equalizing filter. Ripples or notches in the power spectrum increased
the RMS time duration of the received symbol and consequently
increased intersymbol interference. Thus intersymbol interference
could be viewed intuitively as a result of signalling too fast for the
bandwidth of the channel.

The dependence of intersymbol interference on power spec-
trum is important because the usual (unequalized) channel symbol
response often appears to indicate much more intersymbol inter-
ference than is actually present. The dependence on power spectrum
also indicates that the linear variations of different slopes in the
channel phase spectrum believed to be caused by multipath effects do

not produce intersymbol interference. Instead, the notches in the

170
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power spectrum caused by multipath effects (selective fading) are
the source of intersymbol interference. By examining the actual
channel power spectrum, an intuitive idea of a reasonable signalling
rate can be obtained.

The optimum (likelihood ratio) receiver was derived and
evaluated under the assumption of phase equalization and limited inter-
symbol interference. The results of this analysis are important not
because we would ever implement the optimum receiver, but because
of the insight into the design of suboptimum receivers which it provides.
Since the optimum receiver is a nonlinear receiver, the receiver de-
signer should look for good nonlinear suboptimum receivers instead
of the best linear filter receiver. The performance of the optimum
receiver also provides an important lower bound on the probability of
error in a given situation. |

Several common or proposed suboptimum receivers have been
compared with the optimum receiver on the same frame of reference:
phase equalization and limited intersymbol interference (M = 1). From
this comparison the system designer can determine the relative
merits of the various receivers for his particular problem.

The results of this comparison provide another important
guideline to the system designer. If the received signal has [ r(T)] <

. 25 then an easily implemented receiver (ISMR) can provide near

ideal performance. On the other hand, if | r(T)l > .25 more
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complicated receivers must be used and even with these receivers the
probability of error is significantly increased. From a practical
point of view, then it is very desirable to reduce the signalling rate
so that | r(T)! < .25.

An easily implemented nonlinear receiver, the iterated switched-
mode receiver (ISMR), which performs very well under the condition
| r(T)l < .25, has been described for the first time. This receiver
does not require the long tapped delay line of proposed linear filter
receivers and does not require carefully computed tap coefficients in
its operation. The ISMR represents an economical and flexible solution
to the receiver design problem when intersymbol interference is not

too severe.

6.2 Future Studies

At the conclusion of any theoretical study, the question arises
as to whether to pursue the theory further, or to jump into the perilous
experimental world for confirmation of the results. The most productive
approach seems to be the latter. A carefully controlled implementation
of a communication system through the Mimi channel would point out
the truly significant problems of underwater communications and
perhaps eliminate others from consideration.

Although actual implementation of a communication system
through the Mimi channel is the next logical step, several theoretical

problems are of particular interest. The problem of simultaneous
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channel measurement to provide a receiver with an up-to-date replica
of the noise-free symbol response is important. While transmitted
reference techniques suggested in Section 1.2 can be used, a portion
of the transmitted signal energy must be devoted to the reference.
One could hope that if the probability of error is sufficiently low, a
reference component .could be reconsfructed from a transmission
consisting of only an information component. The development and
analysis of such a technique would simplify both transmitter and
receiver design.

Another subject for future study would be to consider non-
binary communication systems such as M-ary signalling. By using
a larger number of transmitted symbols, the transmitted symbol
duration could be lengthened while maintaining the same data rate.
Hopefully, the reduced symbol duration in such a system would re-
duce the effects of intersymbol interference.

From a purely theoretical point of view, it would be interesting
to consider receiver designs when intersymbol interference is more
severe; that is, when M > 1. The operating equations for the optimum
receiver are known for such problems but offer no hope of evaluation.
Development and analysis of a good suboptimum receiver, analogous

to the ISMR would provide a reasonable approach to the problem.



APPENDIX A

PROOF OF THE DECREASE IN Pe(k) WITH A DECREASE IN | ﬁg |

Proposition

If hl; y pk > 0 then the probability of error Pe(k) for the

canonical linear filter receiver is reduced by decreasing | ﬁl?f | to zero.

Proof
Since }'Tl; is orthogonal to all of the pi, i=0,...,m Eq. 3.14
becomes
i ik )
| R Tt
P (k) = — ) |- (A.1)
) 2" AN (IRE 125 17512 /0
i 0t 1 2 ]
Let
~k k
y, =hy’p (A.2)
iZk .
= : .~k
yy(b) = i bp hy (A.3)
—1/\/N(lik12+lﬁklz)/2l (A.4)
Y3~ 0 M1 2 '

then Eq. A.1 can be written as
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P (k) = ;lﬁ L -vgry ¢ vy0) (A.5)
k

Let b = (bg---b;---b ) 1 # k, and let -b = (-b,...

y,(-B) = -y,®) (A.6)

Define | Bk[ as any set of 2™ vectors be Bk such that if

be | Bkl , then -b¢B Equation A. 5 becomes

K

Pe(k) = zl_m 3¢[ -y3(y1 +y2(6)>] +®[‘Y3 (y]_ - y2(BD ]f (A.7)
[Pl

Differentiating Eq. A.7 with respect to yg we have

dPe(k) i _ ~
e T R RS X ) KN AR A )] (A.8)
Y3 2 B, |

¢ (g - vB) 0[50y - yz@]g

Each term in the summation of equation A. 8 is positive if

Y1 > 0. This can be shown by considering the function

S(ul, uz)

S( ) = u1¢(u1) + u2¢ (u2) (A.9)

111,112
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which is strictly positive if u, + u, is positive. Let

1" Y%
Uy = ¥3(yy +¥5b)), uy=ys(y; - y4b)) then

U tu, = ¥V, >0 (A.10)

if ¥q > 0.
Since ¥4 > 0 by hypothesis from equation A.8 we have that

dPe(k)

~ay. is negative, so that Pe(k) is reduced by increasing
3

~k
Vg Since Vg is increased by decreasing Ih2 I, Pe(k)

~

is reduced by decreasing | h2 .



APPENDIX B

DERIVATION OF EQUATIONS 5.19, 5.22, 5.26 AND 5. 81

Derivation of Equation 5.19

Substituting Equations 5.9 and 5.18 into Equation 5.13 gives

for j=k#0

Inl, (x.) =

k(]

2 2
- 2%y S-1+1+|S-1+1|$

1+e
3 )
K '%3|xj| b S-1-1+|S-1-11§

k-1

In

1+e

2 2
Ke &1 '%{lle 'zxj's+1+1+'s+1+1\;

1+e k-1

1
Ke <1 e-zglle

1+e k-1

(j=k#0) (B.1)

Canceling factors common to the numerator and denominator we have
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, 1 K . 1
JiT Sl PN S 2 S
1n1k(xj) - X.* S L S 2 Lk +X.* S -5!S
JiSte17elS el | Pt Sl S
(j=k#0) (B.2)
Squaring Equation 5.17 we have
2 9

2 . j-1 -1 3 )

%, bl = 1P “2bybipy g+ (o] (B3

Inserting Equations B.3 and 5.17 into Equation B.2 and canceling com-

mon factors in the numerator and denominator gives:

1nlk(xj) =
]_3-1, -1, ] k SN RS RN LD S
eXJ (bg- P37 ") +p3 p0+eLk‘1+xj (p+ 1) - Py po
In - _ .
j_J-1, 3-1 ] k j ]
eJ (po Py )101 p0+eLk_1 ; (po+p1 )+p po

(j=k#0) (B. 4)

After mu1t1p1y1ng numerator and denominator of Equation B. 4 by

2
/ +xJ

e O we obtain
Lk Lk
k-1 k-1
ox. - o) +p1 - (- po) 2 '91 (X] po) 2
j 70])e + e
Inl, x.) = Ine { )
K\ k k
L L
0y (., +pp)+ —5 —Pl X, +PO - -—2— )
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Since
coshu = & F€& (B. 6)

we may rewrite Equation B.5 in the desired form (5.19)

. . L
j cosh(pll-1 . (xj - pJ) + 1;— 1)
lnlk(x].) = 2xj " Pyt 1n

. . L
cosh(pll~1 . (xj+ pg)) + 1;—1)

(j=k#0)

Derivation of Equation 5.22

Substituting Equation 5.18 directly into Equation 5.14 we ob-

tain for j=k+1:
1n1k(x].) =

r—~

Kle

1
T2

2 2
2%,y 1+ S é

2 . 2)
X517 2% X ]S gy ] 2

o

In
1
-2

K;..e

N[

‘%3 x.lz- 2x, 1417 ‘s+1+1i2§1
+ e ] ] »

7 2
. e_%;le B RS TSRl LETeY p

(j=k+1) (B.7T)
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Substituting Equation B. 3 into Equation B. 7 and canceling common fac-

tors in the numerator and denominator gives

‘s +pj—1,pj X s _pj-l,pj
j +1-1 "1 O+e j +1+1 "1 0
-1, 3

X.*S -p P
o ] -1-1 "1 0+e

X
e

1n1k(xj) = In

(j=k+1) (B. 8)
By inserting Equation 5.17 into Equation B.8 and multiplying by
-1
x -l
e we obtain
. P8 IR L) | VA L |
ox.- i1\ Py &P ) g (xympp )
B j 71 e + e
lnlk(x.) = lne { : 1 : 1 ]
] pn - X.+py ) -pnc X.+p3 )
e 0 ] +e 11
(G=k+1) (B.9)
We may rewrite Equation B.9 in the desired form (5.22):
1 cosh[%) . (xj—pll-lil
Inl (x,) = 2%, p) " +1n == e (5. 22)
k"] i1 i j-1 .
cosh [ (xj+p1 )

Derivation of Equation 5.26

From Equation 5.18 we have



e (B.10)

By substituting Equations B. 3 and 5.17 into Equation B. 10 and extract-

ing common factors we obtain

p(x].‘bj_l, b;i =+1) + p(leb]._l, b]. = -1)§

2 2
_1 2 -1 ] . j‘l}
é{\le M R U B R A 1

= Ke
j J ] ]
pnt x.-b. . p1)  -py- (X.-b. . p7)
LU e o 5 SORPRR S N B 18 (B.11)
.2 .2 .
1 2 j-1 j _ . -1
_ ke 2{"‘]" MR LT N L B R }
1y (B. 12)

gcosh pg) . (xj - b].__lp1

Equation 5.25 can be inverted to give
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1 ]
-IIijk) = (B.13)

]
L] 1( k)

1+e

Substituting Equations B.12 and B.13 into Equation 5.15 and canceling

common factors in the numerator and denominator, we obtain

1
L | (+1)
Il (x,) = In—=® -
kT 1
]
L. .(-1)
1+e -1
—x.'p]-1 . 1(+1) pJ_1 . 1
e cosh p]v(x +py) +e J cosh p]-( pJ )
07 "1 0 1
-1 ] j-1
-X.*p ) L; . (-1)+x.-p )
e ! 1 COSth(X+pJ 1)+eJl A coshp](x—pJ 1)
0 1 0 1
G>k+1) (B.14)
%L]._ (+1)
By removing a factor of e from the numerator and a factor
of e from the denominator and changing the resulting product

into a sum of logarithms gives the desired form of Equation 5.26.
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L3 (-1)
j j {+e 71
Inl, (x.) = .5{L: ,(+1) - L. (-1)) +1In .
k™ j-1 -1 L) (1)
-1
1+e !
] . _ ] oA
.5(L]._1(+.1)+2x]. 90) .5(Lj_1(ﬂt1)+2xj _po)
e cosh(pJ—l- x.-pl)) +e cosh(pJ_l- (x. +pl))
+1n 1 170 1 j
I . _ b .ol
.5(Lj_1( '1)+2x]. PO) ’5(Lj—1(_1)+2xj PO)
e cosh (pJ_1 . (x].—pg))) +e cosh (pll'1 . (xj+p] ))
(> k+1) (5.26)
Derivation of Equation 5. 81
We have, from Equation 5.70
k =, =«
Py = Pho Yo (B.15)
k-1 _ |, = . -
Py T PloYtPILY (B.16)

Then from Equations B.15, B.16 and 5.71 we obtain

kK 0
X " Py = X Pog (B.17)
k-1 _ 0, 1,
X' Py T X Pt X Pyg (B.18)
Let
kK1
R = Py * Pg (B. 19)

Pho Pic 3.20



from Equations B.15 and B.16.

(with j=k) as
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Lk
cosh——l-{;l +x0p' +x1p' - R
Inl. (x,) = 2x0p' + 1n 2 k10 k11
k 'k k 700 k
L
cosh| %=1 Op' + 1p' +R
3 "Xk P10 T *x P11
_ k41
= Lk
from Equations 5.6 and 5.10. Define
_ l- k 0 1 :I
£ = 2|y 4 ¥ 2% Py
a1 L0 ]
C =2y " - 2% pg

Then from Equations B.21 and B.22 we have

28

e

cosh (£ + x1

x P11~

R)

1,
cosh (¢ + X, Pyq t R)

1, 1 ,
E+x pyp- R -E-x pyy +R
e + e

1

e§+xkp11+R

1,
"S- X Py R

+ €

Rearranging terms in Equation B.26 gives

eZXk P11 + 2¢ eR—C e
R+¢

1

(R-¢)

e

- (R+{)

e

Then Equation 5.19 can be rewritten

(B.21)

(B.22)

(B.23)

(B.24)

(B. 25)

(B.26)

(B.27)
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Taking the logarithm of both sides of Equation B. 27 and solving for xl'{

gives
1 1

X = 5
ko 2pq4

sinh R- ¢

-2¢+1In R RTT

(B. 28)

The desired Equation 5. 81 is obtained by inserting Equations B. 22,

B. 23 and B, 24:

sinh(p' Pin- —— - xo P! )
_ K a0, 00 P10 2 k P00
X T2, ) k-1 "% P10 Kl ’

11 L
sinh\p! . p! . + —— - 0 Jo )
00 P10 D) *x Poo
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