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Objective: Self-reported sleep disturbances are present in over 80% of
patients with depression. However, sleep electroencephalography
(EEG) findings, based on overnight polysomnography have not always
differentiated depressed patients from healthy individuals.
Method: The present paper will review the findings on sleep EEG
studies in depression highlighting how recent technological and
methodological advances have impacted on study outcomes.
Results: The majority of studies, including our own work, do indicate
that sleep homeostasis and sleep EEG rhythms are abnormal in
depression, but the sleep disturbances were strongly moderated by
gender and age. Melancholic features of depression correlated
significantly with low slow-wave activity in depressed men, but not in
depressed women. Women with depression showed low temporal
coherence of sleep EEG rhythms but the presence or absence of
melancholic features did not influence correlations.
Conclusion: Diagnostic classification schemas and clinical features of
depression may influence sleep EEG findings, but gender may be a
more important consideration.
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Summations

• Sleep EEG abnormalities are evident in depression but are strongly influenced by age and gender.
For the most part, sleep microarchitecture, based on sleep EEG frequency analysis, is more likely to
differentiate depressed patients from healthy controls than are standard measures of rapid eye
movement latency or insomnia.

• Men with depression show reduced slow-wave activity in non-rapid eye movement sleep and
impaired homeostatic response to sleep challenge. Women with depression show low temporal
coherence in sleep EEG rhythms. Additional data indicate that low temporal coherence may be a risk
factor for depression in females evident before the onset of the first episode.

• Diagnostic classifications and clinical features of depression are also important considerations in
sleep studies; however, melancholic features of depression were strongly correlated with sleep
abnormalities only in men but not in women.

Considerations

• Some of the studies discussed in the paper included only small sample sizes with the inclusion of
broad age groups. To fully assess gender and age-related changes in sleep, large-scale studies are
necessary.

• Few studies include longitudinal assessment of sleep EEG. These data are essential in determining
the clinical utility of sleep EEG in predicting course of illness.

• Sleep, melancholia, and the issue of age of onset and period of greatest risk for depression needs to
be revisited.
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Introduction

Interest in the relationship between sleep abnor-
malities and depression has a rich history with
more than 1500 published articles since the 1960s.
This paper will review the studies of sleep abnor-
malities in patients with depression and discuss
how moderating variables such as age, gender,
diagnostic typologies and patient subtypes have
influenced results. The ways in which technological
and theoretical advances in sleep research have
contributed to understanding the pathophysiology
of depression will also be discussed.

Nomenclature

As the nomenclature for describing sleep physiol-
ogy differs across studies, we define several key
terms that will be used throughout the remainder
of this paper. Sleep macroarchitecture refers to the
measures derived from visual stage-scoring of sleep
electroencephalography (EEG) including sleep
latency, rapid eye movement (REM) latency,
total sleep time, and the minutes and percentages
of stages 1–4 of non-rapid eye movement (NREM)
sleep, REM and awake. Sleep microarchitecture
denotes the parameters derived from all-night,
computerized, quantitative EEG analyses inclu-
ding incidence, amplitude and power in five stand-
ard EEG bands: beta, sigma, alpha, theta and
delta.
Slow-wave sleep refers to stages 3 and 4 of

NREM sleep and specifically requires the presence
of very high amplitude delta waves (>75 lV) for
more than 20% of each 30 s epoch for stage 3 and
more than 50% of the epoch to define stage 4 sleep,
according to standard criteria (1). Slow-wave
activity (SWA) refers to delta, amplitude and
power in NREM sleep and requires neither a
minimum amplitude nor a percentage of the epoch
criterion. Slow-wave sleep is concentrated in the
first half of the night and is not usually evident in
the latter half in adults (2). Note, however, that
SWA does recur even in late NREM sleep periods.
Throughout the night, delta amplitude and power
show a very consistent 90 min ultradian rhythm,
although amplitude and power are highest in the
first or second NREM period and decline over the
night. Thus, the dynamics and temporal organiza-
tion of SWA differ substantially from slow-wave
sleep measures (3–8).

Theoretical views of sleep abnormalities in depression

The majority of studies on macroarchitecture
have reported abnormalities in the timing and/or

distribution of REM and NREM sleep stages as
primary characteristics of those with major depres-
sive disorders (MDD). Specifically, early REM
onset (i.e. short REM latency, REML) increased
REM time and decreased slow-wave sleep have
been described in MDD. Most of the current
theories regarding the mechanisms underlying
sleep disturbances in MDD assume that there is a
reciprocal relationship between REM and slow-
wave sleep control mechanisms, such that a shorter
latency to the first REM period results in reduced
slow-wave time in the first NREM period. The
issue that remains debated is whether the primary
disturbance is one of REM or slow-wave regula-
tion. McCarley (9) postulated that sleep distur-
bances in MDD were largely because of increased
cholinergic activation that resulted in the early
onset of REM sleep. This model, based on animals
studies (10, 11), assumes that cholinergic neurons
in the pontine reticular formation of the brain stem
are activated during REM sleep, whereas noradr-
energic/serotonergic neurons in the locus coeruleus
and dorsal raphe are deactivated. Thus, the neu-
rotransmitter systems involved in REM sleep
control are reciprocal and responsible in part, for
subsequent REM/NREM sleep cycle oscillations.
He reasoned that an early onset of REM sleep in
MDD (i.e. short REML) reflects an imbalance in
normal cholinergic/aminergic neurotransmission
that produces disinhibition of REM sleep (9).
There has been fairly strong support that the
administration of cholinergic agonists indeed trig-
gers an earlier onset of REM in both animal and
human studies (cf. 12–16). However, establishing
an even greater cholinergic response during sleep in
those with MDD has been more equivocal (17–19).
Most studies have shown a shorter mean REML in
response to cholinergic challenge in those with
MDD, compared with healthy controls. However,
the reported inter-individual variability within
both MDD and control groups is often extremely
large (13, 14, 16). Nevertheless, there is little
evidence to refute increased cholinergic activation
as a model of sleep disturbance in MDD.
An alternative approach to understanding sleep

disturbances in MDD has focused on NREM
sleep. Rather than REM disinhibition, Borbély and
colleagues have suggested that sleep regulation and
homeostasis is impaired in those with MDD (20,
21). This hypothesis is based on the two-process
model of sleep regulation (22, 23), where the
amount of SWA at night is determined by the
amount of prior wakefulness, the level of sleep
propensity during the day and depth of sleep at
night (Process S). Process S accumulates during
waking hours as slow-wave sleep propensity rises
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and dissipates over the night. Measuring the
temporal evolution of SWA during NREM sleep
is presumed to approximate Process S and thus,
there is an exponential decline in SWA across
successive NREM sleep periods. The second pro-
cess (Process C) reflects the circadian control of
sleep propensity that is highest at 3–5 a.m. when it
is very difficult to overcome the need to sleep and is
lowest at 4 p.m., where sleep propensity is min-
imal. Process C is presumed to reflect internal clock
control of circadian rhythms, the threshold for
maintaining wakefulness and REM sleep control,
and is unaffected by the amount of prior wakeful-
ness. It is assumed that in a healthy brain, the
propensity for REM sleep increases as SWA
dissipates, thus explaining the short duration first
REM period when SWA pressure is high, and the
increase in REM as SWA dissipates across the
night (22, 23). Thus, the time course of SWA
approximates Process S, not the total amount of
SWA.
With regard to MDD, Borbély & Wirz-Justice

(23) proposed that the reduction in slow-wave sleep
reported in some patients with MDD resulted from
impairment in Process S, with diminished accumu-
lation of sleep pressure during the daytime and
reduced dissipation of SWA at night. Thus, both
slow-wave sleep time and SWA are reduced in the
initial NREM sleep period, allowing an earlier
onset of the first REM period with a longer
duration. In a later review article Wirz-Justice
(24) further postulated that extending prior wake-
fulness or sleep deprivation would normalize SWA
regulation and Process S in MDD. Note, however,
that the only evidence cited in support of the
proposed Process S deficiency in MDD was the
antidepressant effects of sleep deprivation and
relapse after recovery sleep and reduced slow-
wave sleep time coupled with short REM (21). As
pointed out by Wirz-Justice (24) and van den
Hoofdakker and colleague (25, 26) the hypothes-
ized impairment in the regulation of SWA has not
been adequately tested.
Both the Process S deficiency hypothesis and the

increased cholinergic activation model of MDD
share the same primary assumption, that the
timing and duration of REM and slow-wave
sleep are reciprocal and interactive, and that
increasing one will result in a compensatory
decrease in the other. Moreover, this same recip-
rocal relationship is assumed to underlie REM and
slow-wave sleep cycles in healthy adults. Interest-
ingly, this assumption is not usually tested empi-
rically, with two notable exceptions. Although not
a direct test of the Process S deficiency hypothesis,
van den Hoofdakker and colleague have tested the

assumption that REM and slow-wave sleep are
reciprocal. In the first study, the production rate of
slow-wave sleep was evaluated in nights with sleep
onset REM periods (SOREM) vs. nights with
�normal� REML. They reasoned that the accumu-
lation of slow-wave sleep time in the SOREM
nights would be lower than on normal nights if
REM and slow-wave sleep were reciprocal. No
differences in slow-wave sleep accumulation were
found between short and normal REML nights
(25). Further, Schulz and Lund (27) argued that if
short REML was the result of decreased slow-wave
sleep propensity, then the amount of slow-wave
time should correlate with REML in patients with
MDD. Significant correlations were not found.
Results from our own work also indicate no
correlation between REML and SWA in the first
sleep cycle in either patients with MDD or healthy
adults (28). These data strongly suggest that REM
and SWA in the first sleep cycle are not reciprocal
but do not address whether SWA is reduced or if
the regulation of SWA is impaired in those with
MDD. Only a handful of studies have evaluated
SWA in MDD and to our knowledge, only one
study has examined the regulation of SWA in
MDD (29).
Nevertheless, the Process S deficiency model has

several benefits over the increased cholinergic
sensitivity hypothesis. First, the former approach
accounts for abnormalities in the timing of sleep
onset, intermittent awakenings during the night,
decreased SWA as well as decreased slow-wave
sleep and REM timing abnormalities. Secondly, it
allows specific predictions about the effects of
manipulating prior wakefulness, sleep restriction
and deprivation, and thus permits an evaluation of
sleep regulatory control mechanisms rather than
simply providing a descriptive explanation for
changes in sleep architecture. The cholinergic
hypothesis accounts for REM sleep timing abnor-
malities but does not address NREM sleep abnor-
malities per se except as a consequence of REM
disinhibition. Further, increased light stage 1 sleep
and intermittent wakefulness are not addressed by
McCarley (9). More recent revisions of reciprocal
interaction models of normal sleep do allow for
intrusions of wakefulness but the applicability to
sleep in MDD has yet to be established (30, 31).
There are also practical limitations to testing the
cholinergic sensitivity hypothesis, namely that
cholinomimetics are often associated with signifi-
cant and fairly long-lasting side-effects including
nausea and vomiting and the discomfort and sleep
disturbing effects of sleeping with an indwelling
catheter. Further, the applicability of the choliner-
gic model in MDD depends on the presence of a
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REM sleep abnormality. Impairment in the regu-
lation of SWA does not depend on the presence of
short REML nor is the amount of SWA in the first
sleep cycle correlated with REML (28, 32). Most
importantly, assessing whether sleep regulation
and homeostasis is impaired in depression requires
a sleep challenge paradigm where SWA response is
assessed.
Nevertheless, both models of sleep regulation

continue to be viable explanations of sleep EEG
abnormalities in depression research. We will now
review the findings on sleep abnormalities in
depression.

Subjective sleep disturbances

Sleep disturbances are key features of depressive
symptomatology, with subjective sleep complaints
in more than 80% of depressed patients (33).
Historically, insomnia has been the most pervasive
self-reported sleep disturbance appearing in the
literature as hyposomnia as early as the 1920s (cf.
34) and continuing with classifications of sleep
onset insomnia and early morning awakenings
with an inability to return to sleep in later studies
(33). There are numerous studies that highlight the
prevalence of insomnia in those with mood disor-
ders (35) and the prevalence of depression in those
with insomnia complaints (36–38). Further, those
with both sleep onset and increased nocturnal
awakenings (i.e. sleep maintenance insomnia) had
greater symptoms of depression than those with
either sleep onset or sleep maintenance insomnia
alone (39). Persistent insomnia has also been linked
to increased risk of relapse and recurrence of
depression and to increased risk of suicide in adults
(35, 40, 41) and in adolescents with depression (42,
43).
There is also ample recognition of the relation-

ship between sleep and depression in almost all
diagnostic and symptom severity assessments in
use worldwide (44). It should be noted however
that most of the depression severity rating scales
focus more on insomnia or reduced total sleep time
including both the Montgomery-Asberg, and
Hamilton Depression Rating Scales. However,
insomnia is not the only sleep complaint in those
with depression. It is estimated that 15–35% of
patients complain of hypersomnia, and difficulty
getting up in the morning, although most studies
suggest that this is more characteristic of atypical
features or in patients with bipolar illness (45–48).
A recent study by Parker et al. (49) indicated that
hypersomnia was more prevalent than early mor-
ning awakening in bipolar and both melancholic
and non-melancholic unipolar depressed patients.

Prevalence of hypersomnia decreased with age in
all subtypes of depression, but it was only the
melancholic and bipolar patients who showed an
increase in early morning awakening with increa-
sing age of patients (49).
Taken together, these findings highlight the

prevalence of self-reported sleep disturbance and
the association between persistent sleep problems
and a poor clinical course, regardless of whether
the primary complaint is hypersomnia or insomnia.
For the most part, objective sleep measures based
on laboratory sleep EEG and polysomnography
(PSG) have been considered among the most
reliable biological features of depression.

Laboratory-based sleep studies

Sleep macroarchitecture

Numerous overviews of normal sleep macroarchi-
tecture, based on visual scoring of sleep EEG, have
been published in the last 30 years (50). In healthy
adults, sleep onset occurs 10–15 min after lights
out, followed shortly thereafter by the progression
of deeper stages 2, 3 and 4 of NREM sleep. The
first REM period terminates the first slow-wave
sleep (stages 3 and 4) episode and occurs about
90 min after sleep onset. The first REM period is
short in duration (1–5 min) but lengthens progres-
sively across successive REM periods. NREM and
REM sleep alternate throughout the night at about
an 80–120 min period length. However, slow-wave
sleep is concentrated in the beginning of the night
and is not present in abundance in the latter half
except in younger adolescents and children. Short
duration intermittent awakenings do occur in both
healthy children and adults, but generally only 2–
5% of total sleep time.
The �classic� laboratory sleep profile of a symp-

tomatic, but unmedicated, adult with MDD is a
prolonged sleep latency (sleep onset insomnia),
bouts of intermittent wakefulness (middle insom-
nia), increased light, non-restorative stage 1 sleep,
decreased slow-wave sleep, a shortened latency to
the first REM period accompanied by increased
phasic REM density and an early morning awake-
ning, also known as late or terminal insomnia (3,
50–52). However, early research assumed that
insomnia and sleep fragmentation were non-speci-
fic characteristics of sleep in a variety of psychiatric
illnesses, but that REM sleep abnormalities were
more specific to depression (53–55). Several studies
indicated that significantly shorter REML, a pro-
longed first REM sleep period and increased phasic
REM activity were characteristic of those with
primary depression (56, 57). In fact, much of the
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early work from the Pittsburgh group pointed to
short REML (REML) as a biological marker for
depression (58), prompting a long-standing interest
in sleep abnormalities in psychiatric illness and a
tremendous growth in laboratory studies of depres-
sion (59).
Subsequent work has indicated that using a cut-

off of 65 min may provide the most sensitive and
specific discriminator those with short REML (60),
and one that best correlates with terminal insomnia
appetite loss and unreactive mood (61). In addi-
tion, Rush and colleagues also showed that short
REML predicted antidepressant treatment
response to tricyclics (62, 63) and to placebo non-
response (64). Short REML may also persist into
clinical remission (65–67) and may also be evident
in the first-degree non-affected relatives of
depressed patients (68, 69). Roughly half of those
who show short REML also show dexamethasone
non-response (70), particularly among endogenous
depressed patients (65). In addition, short REML
may be more prevalent in acute, recurrent depres-
sion (71, 72) and are associated with a worse
clinical course with greater risk of relapse and
recurrence (73).
However, REM sleep findings have been much

less consistent in recent studies. A meta- analysis of
177 published studies indicated that short REML
was not specific to depression and that no single
sleep measure reliably differentiated patients from
controls (74). Lauer et al. (75) has concluded that
REM sleep abnormalities in depression are not
evident until the fourth decade of life. Our own
studies have failed to demonstrate significantly
shorter REML in depressed adults regardless of
age (28, 32, 76, 77) and for the most part in
depressed children and adolescents (78). The issue
of age-related changes in sleep EEG is discussed in
greater length below. On the other hand, computer
analysis of sleep EEG frequencies, or sleep micro-
architecture, has been more successful in differen-
tiating patients form controls (4, 79).

Sleep microarchitecture

There is some evidence that increased fast-fre-
quency beta activity and elevated alpha are present
during sleep in depressed patients (52, 76, 80–82),
consistent with hyperarousal and increased sleep
fragmentation among depressed patients. These
findings are also in agreement with PET brain
imaging studies demonstrating a lower decrease in
relative regional cerebral glucose metabolism from
the pre-sleep period to NREM sleep (83). How-
ever, there are a few studies that suggest that beta
activity may be higher in primary insomnia than in

depression (84). On the other hand, the finding of
increased fast frequency EEG activity in depression
is also consistent with waking EEG studies (85).
Nonetheless, there is additional evidence that the

synchronization of EEG activity during sleep is
compromised in depression. Temporal coherence
of sleep EEG activity recorded from the right and
left hemispheres and in the synchronization of fast
and slow frequency EEG is significantly lower in
depressed adults (76) and adolescents (78, 86).
Similar results have been obtained in the assess-
ment of waking EEG activity and coherence
among electrode site (87).
In addition, lower temporal coherence and

decreased synchronization of fast frequency activ-
ity during sleep may also be evident whether
patients are symptomatic and unmedicated or in
clinical remission (82) suggesting that these sleep
microarchitectural abnormalities may be trait-like
features of the illness. Moreover, low temporal
coherence is also present in those at high-risk for
depression based on family history (88) but
particularly among adolescent girls with a maternal
family history of depression (89). The latter study
also showed a greater risk for onset of depressive
symptoms 3–5 years later in those high-risk girls
with the lowest temporal coherence. These findings
are in general agreement with those of Modell
et al. (90) and Giles et al. (68, 69) focusing on short
REML as a risk factor for subsequent depression.
Unfortunately, we have not shown a significant
relationship between REML and temporal coher-
ence in any of our studies but continue to show
consistently lower temporal coherence among
females with depression, regardless of age.
Other studies have shown that it is primarily

SWA in NREM sleep that differentiates patients
from controls. Borbély et al. (21) demonstrated
lower SWA in nine adult unipolar, unmedicated,
depressed patients compared with age- and gender-
matched healthy normal controls. This initial
finding was confirmed in a group of younger
patients with MDD (20–30 years old), compared
with age-matched controls (91). SWA did not,
however, differentiate older patients (>50 years)
from gender-matched controls in the same age
range (92), and may not be a characteristic of
bipolar patients (93).
Kupfer et al. (94) have also utilized delta wave-

count statistics, based on period amplitude analysis
to quantify the incidence of SWA in NREM sleep.
In several studies, they have reported lower delta
wave counts in patients with MDD compared
with controls, and these differences were largely
restricted to the first NREM period of the night
(94). In fact, Kupfer’s group has suggested that
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delta wave counts in patients with MDD are higher
in the second NREM period than in the first. It has
also been suggested that this delta ratio is related to
the clinical course of illness and symptom severity
(50, 94–96). Other studies have failed to confirm
higher SWA in the second NREM period in
depressed patients (77). Most subsequent studies
have demonstrated lower SWA in NREM sleep in
depression (28, 32), with one exception (97).
Considering both historic and more recent work,

it appears that earlier studies were much more
likely to show significantly shorter REML, sleep
onset insomnia and early morning awakenings.
Although findings have been more robust with
sleep microarchitecture measures, they are not
entirely consistent across studies. Regardless of
whether it is SWA in NREM sleep, a distinct EEG
profile during REM sleep or low temporal coher-
ence that identifies patients with depression, all
these findings do suggest that abnormalities in the
timing of the REM/NREM sleep cycle and more
globally in the organization of the sleep/wake cycle
are core features of depression. There are, however,
a number of methodological issues and procedural
changes that are likely to contribute to discrepan-
cies among studies.

Factors influencing sleep abnormalities in depression

Age and sex effects

Interestingly, the studies which have failed to show
SWA differences between patients and controls
have largely included middle-aged depressed
patients (97, 98). Although the early work of the
Pittsburgh group (Reynolds et al., 1983) had sug-
gested that sleep disturbances were more profound
in older depressed patients, more recent data have
shown that differences between patients and con-
trols may be more prevalent among younger adults
and diminish with increasing age (28, 32). As
circadian rhythms tend to phase advance, REML
gets shorter and more general sleep disturbance
increases with age in healthy individuals, it is no
surprise that studies are less likely to differentiate
between patients and controls. Clearly, however,
this is not the case with very early onset depression
as few studies show consistent sleep EEG abnor-
malities in children with depression (cf. 100). Both
sleep macro- and micro-architectural abnormalities
are more prevalent in adolescents with depression
but are also strongly moderated by gender (78, 86).
In addition to lower temporal coherence, females
with depression are also more likely to show
significantly weaker circadian amplitude than
depressed males, and spend significantly less time

in bright light (101). Importantly, low circadian
amplitude was also evident even in 8- to 12-year-
old depressed girls, one of the few studies to
identify abnormalities in young depressed patients.
On the other hand, boys with depression were
more likely to show reduced slow-wave sleep and
short REML than girls, but only among adoles-
cents. Other studies in adults also indicate that age
and gender are important moderating variables.
In a large-scale study of 302 MDD men and

women, Reynolds et al. (102) demonstrated signi-
ficant gender main effects for slow-wave sleep and
delta wave counts across the whole night and
particularly in the first NREM sleep period. Men
with MDD had less slow-wave sleep and lower
delta counts than women with MDD. Moreover, a
NREM period by gender interaction was found,
suggesting that the temporal distribution of delta
wave counts differed for men and women with
MDD. Gender differences in both slow-wave sleep
and delta wave were also evident in younger
patients (20–29 years old) with MDD and dimi-
nished with increasing age, though not monotoni-
cally. Reynolds et al. concluded that age effects
were stronger than gender differences and there
was little evidence of a differential maturational
time course in men and women with MDD.
Published reports from our own group are not
consistent with the interpretation of Reynolds
et al. The discrepancy, however, can be easily
reconciled. First, in the study of Reynolds et al.,
delta wave counts were lower in both younger and
older MDD men than in women. Thus, women
with MDD retained more delta even later in life,
providing evidence that the maturational time
course differs from men with depression and that
gender differences in the pathophysiology of
depression may persist throughout adulthood.
Several of the recent studies in our laboratory

have focused on gender differences in SWA regu-
lation in patients and controls. The initial study of
22 patients and 23 controls revealed significant
group by gender interactions on the amplitude and
power of SWA across successive NREM periods,
and SWA time course (103). Men with MDD had a
significantly slower rate of decay with lower
predicted SWA power and amplitude parameters
from exponential regression analysis, compared
with all other groups. Women with MDD, healthy
men and healthy women did not differ from each
other. Most importantly, a comparison study with
schizophrenic men indicate that abnormalities in
the time course of SWA were specific to MDD.
Although some men with schizophrenia showed
lower SWA amplitude than healthy men, they did
not differ on the accumulation or dissipation of
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SWA over NREM sleep time. The men with
MDD, on the other hand, differed significantly
(P < 0.05) from both healthy and schizophrenic
men.
That baseline SWA was more likely to be

abnormal in men with MDD was replicated in a
follow-up study of 131 subjects, 20–40 years of age
(104). Analysis of SWA across successive NREM
periods produced a significant group by gender
interaction, although this effect was largely restric-
ted to the first NREM period. Again, SWA in the
men with MDD was significantly lower compared
with all other groups, with no significant differ-
ences among NC men and women and women with
MDD. Approximately 70% of men with MDD fell
below mean SWA in the control group. By
contrast, only 20% of women with MDD fell
below the mean SWA for healthy women. Expo-
nential regression analyses confirmed that the time
course of SWA was abnormal in men with MDD
whereas no differences were found among NC men
and women, and women with MDD. Men with
MDD showed both lower predicted SWA with a
slower accumulation and dissipation across the
night. Regression parameter estimates in men with
MDD were outside the 95% confidence intervals of
all other groups (P < 0.05), whereas normal
control men and women and MDD women did
not differ from each other. It is difficult to reconcile
these findings with the suggestion that gender
differences are because of factors such as skull
thickness as both disease- and sex-dependent
components were identified. If gender differences
were due simply to divergent electrical conductiv-
ity, then no interaction with group should be
evident. Further, both the time course and ampli-
tude differentiated men with MDD from all other
groups. Such findings make a stronger case for
sleep regulatory processes that are influenced by
both disease and gender. The definitive test of the
SWA regulation hypothesis would require directly
manipulating prior wakefulness and homeostatic
regulation of SWA. Although numerous sleep
deprivation studies have been conducted in patients
with MDD, only one study outside our own work
has evaluated delta response to sleep deprivation
(97). This small study (n ¼ 7) indicated little
change in delta activity after sleep deprivation,
supporting impaired sleep homeostasis.
An ongoing study of SWA homeostasis in our

own group has shown a blunted SWA response to
a 3-h sleep delay in men with depression in
addition to reduced total SWA power on both
baseline and delay nights compared with healthy
men and women. By contrast, women with depres-
sion showed the largest response to sleep challenge,

supported by a significant group by sex interaction,
as seen in Fig. 1. These results indicate that SWA
regulation and sleep homeostasis are impaired in
depression, but add the caveat that is heavily sex-
dependent. As this study included only 20- to 40-
year olds, it is not clear whether those younger and
older would show the same sex-dependent home-
ostatic abnormalities and whether a complete sleep
deprivation protocol would elicit a larger SWA
response in the depressed men (105).
Taken together, these findings strongly support a

differing pathophysiology of depression in males
and females. Males with depression are more likely
to show impairment in sleep homeostasis, whereas
females are more likely to show biological rhythm
abnormalities and chaotic sleep EEG organization.
The maturational changes in sleep EEG may also
be sex-specific.
In summary, a number of methodological and

theoretical developments in sleep research have
permitted a more refined assessment of sleep
abnormalities in depression. It certainly appears
that some microarchitectural features of depression
are present during an index episode, in clinical
remission and are evident in those at high risk for
depression. However, there are also clinical issues
that influence study outcomes.

Diagnostic features and subtypes of depression

One the one hand, the Diagnostic and Statistical
Manual of Mental Disorders (DSM) has lead to
more uniform and standardized procedures for
the diagnosis of depression, but it may have
contributed to a decreased likelihood of detecting
significant sleep abnormalities in depression. For
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Fig. 1. Slow-wave activity (SWA) response to a 3-h sleep delay
in the first four non-rapid eye movement (NREM) sleep peri-
ods in healthy control men (HC M), healthy control women
(HC W), depressed men (MDD M) and depressed women
(MDD W), expressed relative to baseline SWA.
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example, earlier studies that included only melan-
cholic patients or endogenous depressed patients
were more likely to differentiate patients from
controls than subsequent work focusing on major
depressive illness from DSM-III and DSM-IV. It is
not clear however, to what degree diagnostic
schema and methodological differences have con-
tributed to the discrepancies between the early and
more recent work.
As discussed above, there is also good evidence

that insomnia in the extreme is associated with
mania and the hypersomnia often accompanies the
depressed phase in bipolar patients. Moreover, one
would expect more severe sleep disturbance, par-
ticularly insomnia, in melancholic patients in
whom early morning awakening is a key feature
(49). One would also expect increased REM sleep
among those with loss of appetite and weight loss
(61), and perhaps greater fast-frequency EEG
activity, indicative of increased arousal (4). Loss
of homeostatic sleep drive might also be more
prevalent in the more severe, anhedonic, psycho-
motor-retarded patients. Part of the difficulty in
determining the source of variance between older
and newer sleep studies is that few recent sleep
studies assess melancholic features or include
psychotic depression.
To try and address part of this issue, we used

our data archive of sleep EEG studies to conduct
a preliminary study of which features of depres-
sion correlated with SWA and biological rhythm
abnormalities. Low SWA and an abnormal time
course was associated with increased suicidality
(ideation and attempts) and higher symptom
severity. Moreover, those with the lowest SWA
also showed the greatest psychomotor retarda-
tion. REM sleep measures were not strongly
correlated with clinical features of depression.
These findings are consistent with impaired sleep
homeostasis in more severe depression. However,
the effect was significantly stronger in males than
in females (r ¼ )0.38 vs. r ¼ )0.29, respectively).
On the other hand, low temporal coherence was
associated with an earlier age of onset of
depression, positive family history of depression
and incomplete inter-episode recovery. The sex
differences in SWA and temporal coherence
decreased with age as did the correlations
between sleep and clinical features and fewer
sex differences in sleep or clinical features of
depression were evident in those patients over
40 years of age. Further, there was only a slight
tendency for sex differences in temporal coher-
ence to be less dramatic in those with melan-
cholic features, but the effect was very small and
not statistically significant.

Most importantly, SWA regulation was signifi-
cantly related to melancholia in men but neither
temporal coherence nor SWA not in women was
influenced by melancholic features. Melancholic
men had the lowest accumulation of SWA and
flatter dissipation across NREM sleep than either
melancholic women or non-melancholic subjects of
either gender (P < 0.004). Women with melan-
cholic features showed a higher accumulation of
SWA than non-melancholic women, but it was not
outside the 95% confidence interval. There was
also no significant difference in temporal coherence
between those women with and without melan-
cholic features (F < 1). In short, not only is
impaired sleep homeostasis more likely in
depressed men, but it is most impaired in those
men with melancholic features. This does not
appear to be the case in depressed women. Taken
together, these data strongly suggest that it is not
melancholic symptoms per se that are associated
with the sleep disturbance, but is the interaction
with gender. However, all of the patients included
in the studies from our archival analysis and from
all of our published studies, were classified accord-
ing to DSM-III and DSM-IV criteria and thus the
discussion of melancholia, sleep and gender above
is restricted entirely to melancholia as a specifier
for major depressive disorder. Unfortunately, there
are two few recent studies to determine if our
findings generalize to the broader conceptualiza-
tion of melancholia. However, there is growing
support that clinical features of depression differ
between men and women, well beyond biological
measures.
In a recent sample of over 1400 depressed

patients, recurrent depression was more prevalent
in women than in men, and women had more
episodes of depression over their lifetime (104).
Positive family history was also more prevalent in
women with depression accompanied by an early
age of onset of the first episode of depression (105).
These findings are consistent with our own archival
analysis pointing to more disturbed sleep EEG
rhythms in women with a positive family history of
depression and a worse clinical course. This, cou-
pled with the findings of the Morehouse et al. (89)
study, strongly suggest that low temporal coherence
is a strong biological risk factor for depression that
is sex specific. It is possible that low SWA and
impaired sleep homeostasis is a primary biological
risk factor for depression in males, although this
awaits further exploration. There is heuristic appeal
to view depression as the mood response to the loss
of appetitive drive and homeostasis.
It is also not clear whether bipolar illness is

associated with the similar sleep abnormalities. The
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majority of studies have shown that sleep loss or
sleep restriction is associated with an increase in
manic symptoms and that extreme insomnia char-
acterizes a manic episode (108). Our own data has
shown that bipolar patients in the depressed phase
are more likely to extended sleep and hypersomnia,
than are unipolar patients (cf. 109). Very early onset
bipolar illness in childhood has been associated with
significant insomnia, a reduction in sleep continuity
and more awakenings than control children (110).
These data are quite distinct from the findings in
unipolar depression discussed above, where sleep
abnormalities are not evident until adolescence (78).
Further, some studies suggest that the degree of
insomnia predicts risk of future episodes of mania
(111). However, other studies have suggested that
the degree of sleep disturbance, and insomnia in
particular, predicts future episodes of depression in
bipolar patients, but does not predict mania (112),
and more often in women than in men (113). It is
not yet clear whether sleep microarchitectural
abnormalities are also evident in bipolar illness.
Regardless, subjective sleep assessment and sleep
laboratory abnormalities play a key role in identi-
fying the symptoms and risk for depression.
Although the diagnostic features and classification
of depression does influence sleep EEG abnormali-
ties, gender and age plays as important a role in our
view. The distinction between depressive subtypes
maybecome clear as additional evidence on age- and
gender-related influences on sleep regulation and
biological rhythms and potential sex differences
are evaluated across diagnostic classifications.
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