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No matier whal the aren of scientific ressarch, whether sodial or physical, mathematical
thinking is involved, explicitly or implicitly. At the least. the precise formulation of a problem
entails some aspect of set theory and logic. Generally speaking, the working scientist uses
the term ‘mathematical model’ for whatever branch of mathematice he mayv be applying to
his present problem. On the sther hand, the purst mathemalican-logician insists stnctly
on the nse of ‘model’ to mean a certain interpretation of an abstract axiom svsiem 1 Lhe
real world,

We begin with a self-contained development of the concepts needed for the discussion of
research processes. This leads Lo the distinction between the real and abstract world, and
the interaction between them by interpretation and abstraction, A similat, but concepiually
different bifurcation is proposed for the twe levels of research: digging into the foundations
versus exiending the homzons of knowledge. These considerations are assembled into &
comprehensive Research Schema which enables a concize analysis of scientific discovery.
Classical illustrations are provided, mecluding true stones about Newton, Darwin, Freud.
and Einstein. We conclude with some subjective evaluations of acceplability of mathematical
models

1. What Are They?

We have just noted that the word ‘model’ has different meanmgs for the mathematician
and the scientist. When a mathematician uses the word, he is refernng to the physical or
social reabization of lus theory, On the other hand, when & scientist speaks of a mathematical
model, he means the aren of mathematics which applies to his work. Thus one (following
Abraham Kaplan, oral communication) could sav as a mnemonic aid that a model i always
the other fellow’s system. Contrariwise it also appears to be cuslomary by usage to refer to
“research” as whal poes on in your own domain,

In order to define a model rigorously, it is convenieni to develop (as in Wilder [4] or
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in a more elementary presentation, Richardson [3]) several notions in the foundations of
mathematics. Hecall from high sehool geometry that Euelid’s axioms are about as follows
(depending on wlieh book you read). The words “point” and “line” are nndefined terms.

Ay (Axiom 1) Every line is 2 collection of points.

Ay There east at least two points.

As If u and v are points, then there exists one and only one line containing v and v
Ag Il L 15 a line, then there exists & point not on L.

Ag If L 12 a hne, and v is a pomnt net on L, then there exists one and only one line L'
contaaning v which 15 parallel o L, 1e, LOL' =0,

Axiom 5 1s the celsbrated “Parallel Postulate” of Tuclid

An axiom system L = [P, A) consists of two sete: 2 set P of primitives and a set 4
of mxaoms. FPrimitives are the deliberately undefined terms npon which all definitions in the
system are based. Axioms are slatemenis which are assumed to be true. and from which
other statements called theorems, can be derived. Primitives and axioms serve to avoid so-
called circular definitions and cireular reasoming. Each axiom in the system is an assertion
aboul Lhe primitives.

Buclid’s axiom system consiste of two primitives, ‘point’ and ‘line’, and five axioms.
When Euchd developed geometry, he made 3 distinclion betwesn axioms and postulates
Hoth were statements whose truth was assumed, bul axioms were considered self-evident
while postulates were not! Ths distinction eventually proved unnecessarv and even unde-
sitable. and today axiom and postulate are synonyms.

We shall denote by T or T(E) the set of all theorems denvable from an axiom system
. Then a mathematical system (P, A, T) is an axiom system together with all theorems
denivable from it

An independent axiom A of ¥ is one which cannot be derived from the remaming axioms
An axion system is independent if every axiom is independent. In is called consistent if there
are 1o two contradictory statements in 7'(I},

One of the classical problems in 19th Century mathematics was to determine whether
or not Euclid’s Parallel Postulate, A5, was independent. The consensus of opinion was that
As was dependent, that is, 1t could be denved from 4y — A, Unsuccessful attempts lo
derive Az led to the discovery mstead of non-euclidean geometry. The two types of non.
euclidean geometry are now respectively called hyperbalic geemelry | Bolyai-Lobachewsk
mdependently} in which there can be many parallels to a line through a point, and elliptic
geometry (Hiemann) in which there can be no such parallel.

An interpretation of an axiom system is an assignment of meanmings te its primitives

which makes the axioms become true statements. The results of an interpretation of T is
called & model for ¥, This is the strict use of ‘model' mentioned earlier.

An axiom system is called satisfiable if it has at least one model. Two models, M; and
My of ¥ are isomorphic if there 5= & 1-1 correspondence between the elementz of M and
those of My which preserves every E-statement. In a categorical axiom system, any twe
madels are isomorphic.

To illustrate, consider an axiom system with primitives P = {5 o}, where 5 iz a set
of integers, and c, 18 chosen as an undefined term for a binary operation dencted a ob, in
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order to avoid preconceived notions that a familiar symbol ke o +b would bring to mind.
The following statements 4; — Ay are called group axioms, and any set § on which they
hold under the eperation o = called a group.

Ay [(Closure Law) & ie closed under o, that 15, if @ and b arein 5, aob iz in 5.

Az (Associative Law) Operation ¢ is associative, that is, a o (hoc) = (aob) oe for all
a, b,and ¢'in §.

As (Identity Law) There is a unique element i in 5, called the identity element, such
that got=1pa=ad forall a in §

Ay [Inverse Law) For every o in 5 there is a unique element, written o~ and called the
inverse of ¢, such that a ¢ a™? Y2a =1{. Each of the four group axioms i independent,

and go this 15 an independent wxom system. To verify that this axiom system is satisfiable,
we now display a model.

=¢T_

One model for this system 15 the set 53 = {1, —1} under multiplication ». Thus this
15 called & group of erder 2, 1., having jusi two elements. The identity element is 1. each
element has itself a= an inverse, and S ie obviously closed and associative, as can be seen
from the following multiplication table:

x{l—l

EI 1 -1
—1]-1 1

Another model for this axiom system is the set 85 = {'I:I! 1} under addition maodula 2.
We define the sum of o and b mod 2 to be the remainder of a + & after division by 2. Under
this operation, we ses at once from the next table that 59 15 closed and assocative, 0 iz the
identity, and each element is agam its own inverse. Thus Sy & also a group of order 2,

+ moad 2 Iﬂ 1

{1 ‘H |
111 1}
Mere generally, one can take S 1o be the set {0,1,2,.. . n - 1} and a cb to mean

¢ +bmodn. Then for each positive integer n, we get a distinel group of order » . Thus the
above axicm system for groups 1= not categorical, since it has many non-somorphie models.

These twe groups, &) and 53, are isomorphic since we can let operation % correspond
with + mod 2 and set {1, —1} to correspond with {0, 1}, All statements derivable from the
axioms still hold. That the two models are isomorphic is also shown in the fact that their
tables both have the following form:

o ‘n b
ala b
P

In fact, any par of groups with two elements are isomorphic, so il is custamary to speak
of “the group of order two.”

The study of group theory was onginally motivated by properties which are possessed by
the symmetries of a configuration, whether it be geometric, algebraic, architectural, physical,

4



Winger, 1992

or chemical. Tt is readily verified that symmetries satisfy the four group axioms. For example,
the imverse of a symmetry of a configuration is the corresponding symmetry mapping done
I reverse.

2. Two Worlds: Abstract and Empirical

The realm of research activity is naturally divided into two worlds: the abstract and the
empincal. The abstract world is generally regarded as the domain of the mathematiozn, lo-
gician, or purely theoretical physicist, while the empirical world is inhabited by experimental
scientists of many vaneties: physical, social, and others. (It has been established empirically
that the less scientific & subject, the more Likely it is that its practitioners call it a sclence,
Uutstandimg examples mclude (in alphabetical order|: divinity science, library seience, mili-
tary sciemce, political science, and secretarial science.| There is a growing tendency, however,
for people to live in both worlds in these mterdiseiplinary times

These whe work entirely in the ahstract world are engaged in deriving new theorems
either from axioms or from an existing theory or coherent body of theorems. Such results
are usually expressed m symbols rather than numbers, and rarely touch upon the real world

On the other hand, the inhabitants of the empirical world “work for & living." Some
bve m laboratones and perform experiments in order to collect meaningful data leading to
 sarentific’ theory

The two worlds are shown in Figure 1. The two loops, called theory building and
sxperimentation, represent purcly theorstical and purely sxperimental research.

Figure | exhibits a symmetric pair of directed links between the worlds, the first of
which can be called interpretation m accordance with the use of this word in the preceding
section, In a confroniation between these two worlds, the mathematician's theorems hecome
predictions aboul the real world, which can be tested by the scientist, If a prediction 1s

verified by an appropriate experiment, the scientist feels that the theorem really works. and
the mathematician has found a realization.

thaoyy
bullding

inrerarstariss

Aperi=
AR tATLIOMN

khstrection

Figure 1 — Two worlds. [Twe rectangles, representing the two worlds, are linked by a
left arrow and a right arrow. The lefl rectangle is labelled *Abstract™: the right rectangle
1t labelled “Empincal” The nght arrow, from the abstract world to the empirical world is
labelled “interpretation.” The left arrow, from the emmrcal world to the abstract world is
labelled abstraction. A loop, labelled “thecry building” is atlached to the upper left of the
abstract world, A loop, labelled “experimentation,” is attached 1o the upper right of the
empirical world. Inserted by Ed.]
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If the predictions are entirely incorrect, the model cannot be used. However, in cases
where the predictions are not verified, vet are “rather close” to correct, furither abstraction
18 In order to construct a working model. This abstraction in the light of the experiment
may suggest alternate hypotheses wlich should tesult 1 new theorems. These theorems
hopefully will lead to better predictions than previously, snd to a working model.

3. Two Worlds: Two Levels

Each of our two worlds may be divided imto two levels. A= we have indicated, the
upper level of the abstract world deals with the development of mathematical svstems by
the denivation of theorems. We have discussed imteraction between worlds st this level by
means of interpretation and abstraction. In this section we shall ohserve that this same type
of interaction can oceur ai the lower level,

The lower level of the abstract world deals with the foundations of mathematics. axioms,
and logic, The research activities might involve trving to prove consistency or independence
of an asmiom svstem.

A rather esoteric and dramatic recent example of an important discovery at this level
15 given by the defimitive work of Paul Cohen [1]. It is knmown (see Wilder [4] for example)
that n 1 —1 correspondence can be constructed between the natural nembers 1, 2, ... &nd
all the mtegers, ... -3, =2, —1, 0, 1, 2, ..., and between the imtegers and the rational
numbers.. These three sets of numbers are all said to have the same {infinite) cardinality
which is conventionally denoted Ry,

It 15 also known that there are more real numbers than integers. The real line is sometimes
called the continuem, and so ¢ 1= written for the number of reale. The continwum hypothesis
states that there is no infimite set with cardinality between Ky and ¢

Cohen proved that the continunm hypothesis (as well ag ite negation) is consistent with
the usual axioms of set theory, As & conseguencs, it i= imdependent and can neither be proved
nor disproved in that axiom system. Analogous to the development of non-euclhidean geome-
try, two enlirely different axiom systems have been created; one by assuming the contineum
hypothesis, and the other by taking its negation. Cohen also proved the independence of the
“axiom of choiee.”

On the other hand, the lower level of the empirical world also deals with foundations,
but in the form of the basic laws of science. Kepler's Laws of Planetary Motion, Darwin's
Law of Natural Selection, Newion’s Laws of Motion, Kirchhoff's Laws of Electricity, and
Einstein's Law of Specal Relativity are all there.

The link between the two worlde at this lower level is guite analogous to that at the
upper level, Thus mmterpretation of an axiom leads 1o a basic law about the real world, while
an abstraction, a coherent set of scentific laws becomes an axiom system. The schematie
represenfation of interaction between the two worlds is shown in Figure 2.

4. Two Levels: Derivation and Selection

Having discussed interaction between the two worlds, we shall now establish links be-
tween their upper and lower levels. The process of chimbing from the lower level Lo the
upper it the absiract world can be regarded as derivation. For we begin with an axiom
gysiem and then, sometimes painfully, derive progressively complicated theorems o obtain
a mathematical sysiem.
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Abstrant Empirical
E“—I interprotation I_‘j
THeECTamS " Data

abstraction

interpretation
Axioms 3 Laws
| | abatpaation | |
Figure 2 — Interaction between the two worlds. |There are four rectangles in this

figure, arranged at the upper left. upper nght, lower lefl, and lower nght.. The twe uppers
have a left arrow and nght arrow linking Lthem, as do the two lowers. The upper left rectangle
1 labelled “Theorems”™; the upper right, “Data”; the lower left, “Axioms”; and, the lower
right "Laws.” The right arrow it each case 1s labelled “interpretation.” The lefi arrow in
each case iz labelled “abstraction.” The left hand side of the figure iz labelled “Abstract™;
the nght, “Empincal.” There 15 2 loop attached to each of the four rectangles. Ed.|

Now consider how one goes from the upper level to the lower. From an existing bodv of
theorems, an axiom system 15 to be built. To accomplish this, we select a body of particularly
approprate and fruitful theorems to use as axioms. This process of selecuon velds a small,
more manageahle and often more powerful svstem, which 1= conducive to the derivation of
new theorems.

Selection in the empirical world invelves collecting and studying vast amounts of data,
and ohserving a pattern which may suggest a general law. Thuos 1t is actually the mduction

DrOLess.

There appears o be no direct link in the empincal world from the lower level to the
upper. Dervation does ocour, and in fact uses the deduction process, but again and again
we find that 1t takes the "long way around,” as shown in Figure 3. One begins with several
soientific laws {lower nght), and abstracts them to formulas (lower left) from which theorems
can be derived (upper left) which make predictions about the teal world (upper nght). It is
convenient, however, Lo draw the link representing denvation direcily as well, as we do later.

In general, innovative research is initiated in the upper level, and particularly in the upper
nght guadrant. This 1= due to the fact that the great majority of natural and fundamental
questions anse from an atiempi to obgerve or explain empirical phenomena. In fact, most
research 1z dome at the upper level, both right and lefi, while almost no one continuously
remains at the lower level

For example, in ancient Egypt, the discovery of geometnc formulas was necessitated by
the search for improved technigues in messuring and surveving. Problems w geometry were
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Theoreans L Data
P
Axioms % Laws
Figure 3 — Denvation in the empirical world The four rectangles of Figure 2, are

imked with three arrows from Laws to Awome to Theorems to Data, Ed. |

solved long before Euclid orgamized the subject in an axiomatic formulation.
3. Research Schema

We contend that the above Research Schema represents all the types of interaction
between the absiract and empircal worlds duning the processes of research and discovery
Its two disgonal hoks are shorlcuts which represent research processes that po directly to
“opposite’ quadrants, There do not seem to be any directly ascending diagonal links.

It is rarely but definitely possible to predict sciemtific laws from a body of theosems
without actually working with experimental data. This is represented by the diagonal from
upper left to lower nght in the Research Schema We shall see that Einstein took this route
i lus formulation of the theory of special relatively

The shortent from experimental data to axioms, skipping the formulation of laws, ocea-
sionally ocours in the social sciences when a careful analvsis of data patterns produces & set
of formulas that can be taken as axioms. These are then interpreted, and hopefully suggest
an empirical law, without the selection process.

When considering routes between the two worlds, one must also allow for traversing loops
al any guadrant one or more times. The upper right loop, for example, when traversed several
times, indicates repeated efforts in observation and collection of date, before attempting to
select corresponding laws.

(e must also note that the most direct route 15 not often taken in research. This will
become evident mn the next section when we take a closer look at particular cases of discovery.
6. Sketches of Discovery

We ghall illustrate the Hesearch Schema with the work of geveral men wheo represent
vaned branches of scence and mathematics. We begin with Euclid, whose work in the ax-
wmatization and denvation of what we now call euclidean geometry 1s represented schemat-
ically in Figure 5. It has been gaid that the ultimate recognition of & man’s contribution is
conferred when his name is made an adjective and not capitalived |

Euclid: Although Euclid is the acknowledged father of peometry, his main contribution
was to 1ts organization rather than to its degvation. The early Egvptians already knew the
rudimentzs of geometry, including a form of the pythagorean theorem, and formulas for the
ares and volume of many geometne figures, Thus we attribute the upper night quadrant i
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Figure 4. Research schema. [Draw Figure 2. Label the loop on “Theorems” as “theory
building”; ihat on “Data” as “expenimentation”: that on "Axioms® as “axomatic archae
ology”; and, that on "Laws” as “empirical archaeology.™ Add up and down vertical arrows
Joining the rectangles; label the downward arrow in each case as “selection”; the upward as
“derivation.” Uraw the two disgonals — one with an arrow to suggest going from “Theorems”
to “Laws” and the other from "Data” to “Axioms” Ed.]

[ Thearams of ‘_ Egyptian

SHEATY 1 L
Gtﬂl?.ﬂ:!":f' . rvations on
TEaSUTE

il Axioms af
Bacmetry

]

Figure & — Euclid’s Research Schema. [Draw three rectangles: upper left, upper right,
lower left. Label them, respectivelv., "Theorems of Geometry,” “Egyptian observations on
measure,” “Axioms of Geometry” Add a loop to the two rectangles on the left. Join the
upper left and lower lefl rectangles by an up arrow and & down arrow. Draw an arrow from
the upper right to the upper lefi rectangle. Ed |

Figure § to the Egyptians. The emphasis on proof, however, was introduced by the early
Greeks and Euclid’s contemporanes developed many of the theorems of geometry, Euclid
selected the five axioms above from emsting results. He then proved from these all the
theorems of geometry then known and a few new ones, and presented a logical organization
of the material in an exhaustive text. By today’s standards, Eueclid’s axiomatic work is not
nigorous, but 11 was an outstanding accomplishment for its lime.

Newton: Unlike Euclid, Newton cccupied every guadrant of the Research Schema. His
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Figure 6§ — Newton'’s Hesearch Schema. |Draw four rectangles: upper left - “Theorems
of Calculus”; upper nght = left half labelled “Vertfication” nght half labelled “Collection of
Data”; lower lefi — Abstractiom of Laws of Motion; lower right - “Laws of Motion.” Join the
rectangles with arrows forming 2 rectangular cvcle oriemted in & cockwise direction. Add
a loop to the lower left rectangle; label the loop "Formalization of Caleulus by Cauchy.”
Add a loop to the upper nght rectangle; label the loop *Galileo.” Link the "Galilec” loop to
the down arrow as a dashed line separating “Verification” from “Collection of Data” in the
upper right hand box. Ed.|

first work waz on the upper level of the empirical world, where he experimented in chemistry
and optics while still a student, Newion's most tmportant results, however, were not derived
irom his own data, but from the work of those before him. His formulation of the Laws of
Moton was mduced from Galileo’s extensive experimentation. Hence we credit the upper
right Joop in Newton's Hesearch Schema 1o Galileo. Newton's Laws of Motion have been
stated as follows:

l. Every body will continue in it state of rest or uniform motion in a straight line unless

it is compelled to change thatl state by impressed foree,

2. The rate of change of momentum is proportional to the impressed force and takes place
in the line in which the force acts,

3. For every action, there 15 an equal and cpposite reaction.

Newton lell the empirical world and entered the abstract by expressing s laws sym-
nolically as equations. His work with these resulted in the discovery of both differential and
integral caleulus. Others independently discoversd these concepis, but it is belisved thal only

Newton and Leibmatz {(who discovered celeulus independently) realized that differentiation
and mtegration Were INVerse processes.

Calenlus did not become mathematically precise until the next century when Canchy
introduced the necessary concepts of limit and infinite sequence. We draw a loop 1 the
lower left guadrant of Figure 6 1o represent Cauchy's work in the foundations of caleulus,

Tl new branch of mathematics readily produced an abundant supply of theorems The
predictions which resulted were tested 1n the laboratory, and found to be entirely correct
within the range of current measuring instruments.

Emstein: Fventually, more accurate measuring deviees revealed that Newton’s Laws of
Motion could not explain the behavior of light on either the microscopic or astronomical
level. Furthermore, the Michelson-Morley expenment proved conclusively that “ether” did
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Figure 7 — Einstein’s Research Schema. |Draw four rectangles. Label upper left:
“Theorems for Special Relativity”; upper right - “Michelson-Morley ‘and others”; lower

left — "Formulas®; and, lower nght 15 split (by a dashed line) - top hali “Laws of Light
Motion,” bottom half "Special Relativity Thecry.” Arrows from upper left to upper night
“prediction”; from wpper nght 1o lower right - “selection”; from lower nght to lower left;

from lower left to upper left = “derivation.”™ Ed.

naol exigt, These dizcovenies led to a pessod of great activity i physics pioneersd by Albert
Finstem

Liks Newton, Finstein’s major work resulied from data collected by scientists before
him. Linstein was a purely theoretical physicist, and never worked in the upper right gquad-
rant of the Research Schema himself DBut he certainly stimulated an enormouns number
of expennments there. He proposed the following empirical axiom system as laws of light
mction

1. No physical object can travel faster than the speed of hght.

2. The speed of light depends not at all on the relative positions of the source of light and
the abserver, or their relative speeds.

3, The mass at a velocity v of a particle equals its mass at velocity 0 divided by /1 — v?/ef,
where e 15 the speed of light.

Einstein abstracted these three laws to an axiom system, from which he denved the
body of theorems interpreted as the theory of special relativity. He found that in particular,
his distance formulas for relativity theory were related to those of hyperbobe non-euchdean
geometry; thus relativity theory provides a physical medel for hyperbobe geometry, The
Research Schema for this discovery is shown in Figure 7. We begin in the upper night with
the Michelson-Morley experiment, and then go to the Laws of Motion of Light in the lowes
right, and their abstractions in the lower lefl. From there we go to the theorems of special
relativity in the upper leff, and finally to the experimental verification in the upper right
where this cycle started. Einstein then went around this cyele agan with his more refined
theory of general relativity, which led 1o more precise predictions of physical measurements,

Darwin; Charles Darwin spent most of his life doing research in only one quadrent
of the Hesearch Schema, the upper nght. His research career began when he became the
official naturalist on the good ship Beagle, and embarked upon 2 five-year voyage. He made
observations on all speaes of ammals he could find, and teck veluminous notes. Durnmg
the remainder of his life, Darwin analyveed and classified these notes and all other available
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Data
Theory of
Evalutlien
Figure 8 — Darwin’s Research Schema. |[Diraw two rectangles, one above and one
E t Bles,

pelow, The top one is labelled “Data”; the bottom one is labelled “Theory of Evolution ”
Lhere are three loops attached to the top one. There &= a line linking the two rectangles.

Ed.

information. The climax of his work was the formulation of his Law of Natural Selection
und his Theory of Evelution.

Darwin’s theory asserts that all animal species have descended from a common ongin
The variety of species results from “natural selection” in which those animals which are
best adapted te their environment suevive. Due to occasional mutations, certain animals
1 a species are betier able to survive than others. Thess mutations may be passed o Lo
their ofispring who an turn will tend to survive and reproduce, eventually resulting in a new
species which has been naturally selected,

Madical
Practice

Psychoanalytic
Theooy

Figure % — Freud’s Research Schema, |[Draw two rectangles, one above and ane below
Label the top one “Medical Practice.” Label the bottom one “Psychoanalytic Theory” Join

the two rectangles with an up arrow and a down arrow. There is a loop attached to the top
rectangle. Ed.|

Frend: Sigmund Frend, bike Darwin, stayed in the empincal world, In fact, their Research
Schemata are quite alike, as seen in Figures 8 and 9. He began with a medical degree
and turned from general practice to specialization. Freud (in collaboration with J. Breuer
uutially ] did research in the treatment of “hystencal” patients who had physical symptoms
for which no physical cause could be found. He inferred from the study of many cases
that the symptoms could be traced back o some repressed childhood tranma, and went on
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to develop the concept of the subconscious together with the id, ego, and superego. Fiest
through hypnosie, and later through “free assoaation,” Frend was able to induce himself and
his palientz to recall these forgotten expenences, and alleviate their symptoms.

Much of the psychoanalytic theory which Freud developed is still highly controversial
today, although it has made a lasting impact on the development of many modern theones
in psychology.

Thers has been a highly publicized report of the proaf of & deep and important theorem
by a mathematician while boarding a bus in Paris. It may be just as true as the anecdoie
about Newton's finding his Iaw of gravitational atiraction when an apple fell off its tree and
landed on his head This sort of phenomenon does occur, but fortunately is not an intrinsic
part of the discovery procedure. ln the words of Hans Zinsser,

It is an erroneous impression, fostered by sensational popular blography, that sci
entific discovery is often made by inspiration _.. . Ths is rarely the case. Ewven
Arclumedes' sudden mepiration in the bathtub; Descartes’ geometrical discoveries in
his bed; Darwin's flash of lucidity on reading a passage m Malthus: Kekule's vision of
the closed carhon ring eame to him ou top of a London bus: and Einstein's bolliant
solution of the Michelson puzzle in the patent offics in Bern, were not messages out
of the blue. They were the final co-ordinations, by minds of gemins, of innumerahble
accumulated facts and impressions which lesser men could grasp only im their un-
correlated isalstion, which — by them — were seen m entirety and integrated into
general principles. The scientist takes off from the manifald observations of pre
decessors, and shows his intelligence, if any, by his ability 1o discrimimate hetwesn
the mmportant and the negiigible, by selecting here and there the significant step-
pingstones that will lead seross the difficulties to new understanding. The one whe
places the last stone and steps across to the lerra firme of accomplished discovery
gete all the credil. Only the initiated know and honor those whose patient integoty
and devolion Lo exact observation have made the last step possible.

When & researcher has become sufficiently steeped in his problem, he has amassed enough
meamingiul data (mathematicians also accumulate data via “thought-experiments") 1o per-
ceive the proper pattern and conceive the correct conjecture. This is a necessary but not
sufficient step loward sstablishing a theorem. A proof, which is valid, must be supplied; ath-
erwise, the asserfion remains a conjecture. The two talentz of comjecture and proof appear
to be quite geparable

7. What Should They Be?

It 15 becoming more fashionable to use mathematical models as 2 powerful analytic device
for advancing scientifie research in a remarkable variety of disciplines. This usage is certainly
not anwarranied, since models, when nsed with care and discretion, can and should be of
great value m the clanfication of existing problems and the formulation of mporiani new
ones. Unfortunately, it seems that models are misused all too often. The word ‘model’ is
sometimes bandied aboul by people with Lttle conception of its real meamng simply because
it 15 au courant. They don't even define ‘model’, but nse the word to suit thetr own purposes

A model need not be impressively confusing in order to be valuable. In fact, one of the
main contributions of & model lies in its ability to simplify a problem, and so 1t should be
no more complicated than pecessary.
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Nesther should a model be symbol-rich but idea-poor. Medels whieh hide minizenle con-
tent behind 2 mass of symbolic formulas tend to look impressive, but add nothing. “Mystery
18 0o criterion of knowledge.” For example, a recent paper in a leading psychological journal
had only one abstract idea: the number of elements in the union of two sets is the sum of
the number of elements in each minus the number they have in common. Alas, the anthor
apparently did not recognize it as the simplest special case of the Principle of Inclusion and
Exclusion.

Another unfortunate use of mathematical models occurred in a published paper i so-
ciology an which there were ten axioms and zero theorems. However, an interpretation was
then given which resulted in ten “empinical theorems.” one for each axiom. This 1-1 corre-
spondence between axioms and empineal theorems simply involves the preparation of axioms
which will yield desired empirical assertions

Furthermors, an axiom system should not be constructed for the artificial purpose of
deriving just cne theorem which has already been verified statistically. Clearly such & model
only clutters the hterature and does not mvelve genume derivation.

We do not wish to lay all the blame for the misuse of mathematica] models on scholars
m the empineal werld: 11 occcurs in the abstracl world as well. The following passage by
the eminent hngnist Gustave Herdan (2] shows the dual roles ibe two world: can play in the
misuse of models.

Without going into details, T will only mention a certain quantitative relation known
to lnguists as the ‘Zipf law’. Mathematicians believe in it as a law, becanse they
think that lingwsts have established it as a relation of linguistic facts, and linguists
believe in it because they, on their past, think that mathematicians have established
il to be a mathematical law. As can be shown in five minutes, it 1= not a law at all
In the sense im which we speak of natural laws,

Loosely stated, this law of Zipf proposes a high correlation between the frequency of use
of words and their brevity

Another typical superficial use of mathematical models involves the bland assumption
that the most elementary parls of an existing branch of mathematics apply unchanged 1o a
problem in social science, Typical examples include high school algebra, coordinate geometry,
matrix manipulation, graph theory, and the probabilistic theorv of Markov chains. In such
models, the typical procedure is to assign empincal terms {o the mathematical vanables
by way of imterpretation at the lower level. Then the exsting theorems and methods of
calculation are translated at the npper level into statements which are claimed to be new
empitical findings.

What, then, should mathematical models be? We have suggested that they should lead
te new Lheorems, but this is nol always necessary, The precise thinking involved in the
careful formulation of an axiom system will lead to an improved conceptualization of the
empirical phenomena at hand, This in turn can suggest the proper variables to measure,
and perhaps an approach to the measurement problem.

sometimes an sasting area of mathematics can be gquite useful as a mathematical modsl
provided it 1= augmented by one or more new axioms suggested by the real world, The most
productive models, however, have involved derivation. For it 15 only after the denvation of
new theorems that unexpected and far-reaching predictions can be made. From a math-
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ematician’s viewpomnt, it i best if derivation leads to nontrivial thecrems. which actually
qualify for publication in the mathematical literature. To summarize, it is our personal
anc perhaps controversial conlention that mathematical models will lead 10 significant and

natural growth in both the absiract and empinesl worlds
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