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SUM GRAPHS AND GEOGRAPHIC INFORMATION

Sandra L. Arlinghaus, William C. Arlinghaus, Frank Harary*
Abstract

We examine a new graph theoretic concept called a “sum graph.” display a new sum
graph tonstruction, and prove s new theorem sbout sum graphs (sum graph unification
theorem| venfring the construction. The sum graph is then generalized. ultimately as an
augmented reversed logarthmie sum graph, so that it is useful in dealing with large sets of
geograpiuc information, The generalized form permits 1) the compression of large data sets,
and 2} the simultaneous consideration of data sets at varous levels of resolution.

The advantages of employing sum graph unification and the angmented reversed loga-
nthmic sum graph to handle data sets are llustrated by hypothetical example; as a data
structure, the vanous forms of sum graph data management provide compact handling of
data and do so in a manner that permits vanability of resclution, at multiple levels {unlike
the quadtree). within & single laver of mathematical manipulation

Our interest in creating, end exploring, this sort of data structure rests in searching for
structures that are translation mvapant Data structures resting on geographic direction,
such as the quadtree, seem destined not to be translation invariant; structures that are not
tied 10 the ordenng of the space in which they are embedded, but only to &n ordering withm
the structure itsell, have the potential to be translation invariant.

Geography and graph theory have a long history. of interaction: the Four Color Problem
{now Theorem) and the Konigsberg Bridge Problem of graph theory arose as geographical
guestions. As geography has siimuiated mathematical creation, go too has the body of theory
developed by graph theorists stimulated careful analysis of various geographical networks, It
15 within this well-establbshed spint of interacuion, and within the technological framework
wheze electronic processing of data may be characterized using graph theory, that we examine
2 new graph theoretic concept, called a sum graph. as a theoretical data structure.

In this structure, the numencal pattern of the labels of the nodes in the “sum graph” will
be dictated by the linkage pattemn in the underlying data, rather than the other way around,
which is more conventional. Thus, data that are “hnear” (sequential), such as data streams
in a raster mode, will be represented by a sum graph whose linkage pattern is linear, thershy
foreing a certain style of label to be present on the associated nodes. We demonstrate the
theoretical coneepts in this paper using examples limited to the linear case because it is easy
o express and because it has wide applicability,

Thus, the first section introduces the reader to elements of the abstract development
of sum graphs, focusing only on those concepts that will actually be applied. The second
section shows how to force “correct” labelling of “sum graphs” to permit the simultanesus
consideration of data at multiple levels of resolution within subsets of a data set that is
linezr in character. The third section introduces the concept of “logarthmic sum graph”
used to comprese large data sets into subsets within bands of width of one unit — & critical
strategy as the length of the bnear sequence (data stream) increases. The fourth section
mtroduces the “reversed sum graph" which also permits simultaneous consideration of data
al more than one scale and does so with optimal labelling within bands of one unit. The
fiftk section introduces the “angmented reversed loganithmic sum graph,” & graph combining
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the desirable elements of previously considersd structures sugmented by a sel of linkages,
induced by the numencal labelling of subsets, that permits inclusion of data at vadable levels
of resclution and offers a means to hnk that data between, in addition to within, subsets:
Throughout, we show how to use these concepts in a small application denved from a set of
data concerning North Amercan cities.

1. Sum Graphs

Definition ! (Harary, 1989)

Let 5 bea set of n distinet positive integers. Define the sum graph G7(5) as follows:
1. G(5} has n nodes, each labelled with a different element (number) of 5;
2. there 15 an edge between two nodes labelled o and b ifand only fa <b £ 5.
Example |

Figure 1 shows the sum graph of 5; = {1,4,5,7,8,9}. 5 is a set of arbitranly chosen
labels for the nodes. Because the label “8° i5 an element of 5, _ it follows that the edge linking
4and 5 (4 =35 =19) is present in the graph. Because the label “8” is not an element of S
there 15 an edge linking 1 and 5 (1 -5 = §) A number of theorems concerning sum graphs
appear in the mathematics literature (Harary, 1990; Bergstrand et ol, 1990, 1991). We
state those results withoul proof; others wishing to employ these methods should read with
understanding the proofs in the mathematics literature, lest the methods be inappropratels

applied in different situations. First note that the largest number in S eannot be the label
of a node joined to any other node.
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Figure 1.
G7(51): the sum graph of {1,4,5,7.8,8}.
Reader is to solidify any dashed lines with & pencil

Lemma ] (Harary, 1990}
Every sum graph conteins at leasl one isolated node.
Example 2:
The sum graph of 55 = {2,3,5, 6,10} 1= displayed in Figure 2.

=
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Figure 2.

G7(52): the sum graph of {2, 3, 5,8, 10}.

Lemma 1 assures that the node labelled 10 is isolated. Example 2 illustrates that more
than one 1solated node is possible: hence, the phrase “at least® in the statement of Lemma
1
Defintticn 2 (Harary, 1969]

Two graphs Gy and G; are isomorphic is there is a one-to-one correspondence f between
their node sets such that, for any two nodes a and b in G, {@,b) is an edge in Gy if and only
i (fla), F'(k)) is an edge 1o Gs. Thus two graphs are isomorphic not only when they lock
the same, but perhaps have diffierent labellings of the nodes, but they are alsc isomorphic
when the graphs do not look alike but have the same connection pattern — as are views
of the same digital terrein model from different vantage points. Figure 3 illustrates this
phenomenon for the graph of the octahedron. lsomorphic structures are invanant under
geometnic translation.

Natation Given 2 set 5 of positive integers, write k5 = {kz 12 £ 5},
Theorem I (Harary, 1990)

W G™(5) is & sum graph and §' = k5, k a positive integer, then GT(5) and GT(S5")
are isomorphic,
Example 3

Consider the sum graph of Example 1, G7(51) with & = {1,457, 8 9}. When & = 3,
we have §) = {3,12 15 21, 24,27}, The distributive law of algebra guarantess that exactly
the same edges will appear i G7(5)) as in G7(51). For example, because 5 & 51, 1 and
4 are adjacent in G 7[5, ); becanse 3.5 £ S1:3-1 and 3-4 are adjacent in GT(5}), since
d:1—3+d = 3.(1+4). Thus, G7(5:1) and G7(5)) have the same edge structure (but different
node labellings, hence, perhaps, different geopraphic positions), so they are isomorphic.

One interesting structure a sum graph might have is a graph-theoretic path (Harary,
1968)

Definition 3 (Niven and Zuckerman, 1960)
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Figure 3.
The octahedron in two different views (View A on the left: View B on the right)
The reader should draw it

The sequence of Fibonacel numbers F, is defined as follows: Fr=1, Fy=2,Fo=
Facs —Fa_; when n > 2. For example, the first nine slements of this sequence are 1, 2,3,
o, 6, 13, 21,34, 55.

Theorem 2 (Harary, 1990)

U3 ={F,F; .. Fp}is the set comsisting of the first » Fibonacs numbers. then
G7(5) consists of a path connecting F: and Fp-i and the isclated node Fj.

Example 4
Let 53 ={1,2,3,5, 8 13,21,34,35}. Then G*(53) is the graph of Figure 4.

2. Sum Graph Unification: Construction

One of the charactenstics that distinguishes a sum graph from other graphs is that the
algebraic rule assigning edges forces the sum graph to have at least one isclated mode. Thus,
m aligning this graph-theoretic concept with gesgraphic notions, one might, at the cutset,
be tempted to look for applications that reguire “isolating” cne geographic location from
a sel of others, as in site-selection for toxic waste sites; for prisons, er for other similar
societally-obnoxious facilities.

Further reflection suggests, however, that the power behind this “isolation” might be best
exploited by considering the isolated node as one with linkages not visible at the graph-scale
shown, much as inset maps generally do not reveal linkages o the larger-seale maps they
medify. Thus, this cartographic conception of the isolated node as 2 node with invisible edges
will provide a systematic method for shifting scale, or varming resolution, without disturbing
the associated spatial structure. The isolated node acts as a “cataloging” node functioning at
& seale different from the content it catalogues (the term “isclated” will therefore be reserved
for the graph-theoretic case; when viewed in & geographic comtext, the “isclated” node will
b referred {0 a5 2 “cataloging” mode to emphasize this role),

Consider three disjoint sets of nodes, 4, B, and €, with a linear linkage pattern joining
#uch (Figure 5). The linear linkage pattern of each path is based on some sedal arrangement
of data, such 2s data ordered by longitude from east to west,
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G={53): A Fibonacel sum graph containing a path and an isolate

It is not difficult to obtain the paths, Py, Py, Pj of Figure 5 as three distinct sum graphs
using Theorem 2. Fibonacd lzbelling of the nodes of Figure 5, shown in Figure §, gonerates
\as sum graphs) exactly the path-patterns of Figure 5; eg.. the edge joining 2 to 31 A is
present because 2 + 3 = 3 s also a node label. An additional node. a cataloging one, is
necesserily introduced in each sum-graph, A, B, and ¢ of Figure 6. When the label of &
cataloging node is used as a label for an entire configuration, this sum graph represents not
only the linear linkage within the path, but also, at the same time, represents infarmation
{as a label] for the entire path. Information at different cartographic scales is displayed
amultanecnsiy.

In Figure §, the simpie Fibcnacel labelling scheme of Theorem 2 produced three distinct
sum graphs. Because the same labels are re-used, it would not be possible to compare
information concerming these distinet sum graphs. Stmng-_-r theoretical results follow: results
that will permit such comparison, while retaining the desirable asset of ssmultanesus display
of data at different cartiographic scales

Consider, as a whole, the set of twelve nodes from Figure 5. Find 2 sirategy for labelling
these nodes that will prn:du:-: exactly the three pathe of Figure 5 as subgraphs of a single
sum graph. Viewing the three parte of Figure § as subgraphs of a single sum graph will
guarantes distinct labels for distinel nodes while retaining scale-shift characteristics,
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Figure 5.

Three graphs, Left, Middle, and Right, representing senal linkage of data.
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Figure 6.

The thres distinet Fibonaco sum graphs showing the paths
Fy [on the left), P; {middle), and Py (nght).

One way to achieve such a labelling 15 as follows. Assign Fibonacel numbers consecutively
{gtarting with 1) to the nodes of one subgraph (A, in Figure 7). Continue this scheme to a
node of subgraph B; thus, i1n Figure 7, A has nodes with labels 1, 2. 3 and one node in B
has label 5. It might be natural to label the next node in B with the next Fibonace number
— 8. However, this would introduce an unwanted edge between 3 and 3. So, label the next
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node with one more than the next Fibonacel sumber — in this case 8 — to remove the
possibality of introduding unwanted edges, Lebel the remaining nodes in the Fibonacci-style
with 5 and § as the first two elements. Continue this scheme through to one node of subgraph
C (labels 14,23, and 37 are thus introduced}. The second node in the third subgraph must
not be labelled 60, or else an nnwanted edge 1= mtroduced boking 23 to 37. Call the label of
the second node “61". Continue labelling in the Fibonacd style wsing 37 and 61 as the first
two elements of a Fibonaco-stvle label-generating scheme. In the case of Figure 7, all nodes
are now labelled: a single extra node whick is a cataloging ome, it also labelled. All paths
of this single sum graph are exactly those desired. The label associated with the cataloging
node, 416, is the catalogue number for the entire configuration; other labels describe the
Iocal, linear linkage patterns. Distinct labels correspond to distinet nodes in such a way that
only desired paths are introduced between nodes. A single added cataloging node permits
assocating information with a label for this node at the scale of the entire configuration —
in the manner of object-oriented data struciures

1 = 3 T 37 .
2 T g 61
d o 14 1I- 98 =
23 = 150 =

257 »

416 =

Figure 7.
A Fibonacci-style of labelling for a sum graph with one cataloging node (416)

showing the paths P; (on the left), P, (middle), and Fg (mght) as subgraphs

Thus, two levels of vanability in resolution are displayed — that of the linkage pattern
within individual subgraphs, and that of the weight of the entire graph, reflecting to some
cxtent on the size of the data set, and the style of its subgraphs and their pattern of internal
connection (had the subgraph in the middle terminated at 14, the subgraph on the mght
pwith an added edge) would have begun with 23 and had an isolated node with label 419),

Stronger yet would be to construct a single sum graph from which desired paths would
emerge (a5 in Figure ) and in which distinet paths would correspond te distinetly-labelled
cataloming nodes az in Figure 6. The notion of wanting one cataloging node per desired path,
in order to ensure greater variability in resolution, motivates the following definition,
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Definition 4

Suppose a set of n nodes is partitioned into ¢ subsets. Further suppose k of these subsets
cortam more than one node. To each of these k subsets add a node. The resulting £ subsets
will be celled “constellations® (Figure 8},

Figure 8.
Thres constellations, Left, Middle: and Hight, partition a distribution of nodes

Now we return to the example of Figure 5, with three nodes added to make three con-
stellations (all with more than one nede, as i Figure 6], We seek some labelling for the
entire set of constellation nodes (Figure 8), s nodes of a single sum graph, that will

1. produce the paths Ps. Py, P
2. produce cataloging nodes within the subgraphs containing Py, Py, P::
4. make retrieval of path structure ample.

Because there are paths that are to be retrieved as subgraphs of a single sum graph, some
sort of Fibenacei or Fibonacei-style labelling will be needed (Theorem 2). The labels from
Figure 5 cannot be chosen because under that circumstance distinet nodes do not have
distinct labels. Theorem 1 suggests that distinctness in labelling as well as retention of
path ctructure is achieved by multiplying Fibonace numbers by constants. Thus, the issue
15 4o know what values to choose as these “multipliers” so that distinctness of node labels
[tequired by Definition L) s ensured. Example 5, below, suggests a general construction
that will satisfy these conditions. It will be proved in full generality in Theorem 3.

Ezample 5

1. To ensure path structure, give the underlying Fibonaca label pattern of 1.2.35;
Lada 1235813 to, respectively, the left, middle, and nght constellations ( Definition
4] the node pattern of Figure 8. To produce a set of suitable multipliers for these nodes,
proceed to step 2.

2. Choose the smallest prime number greater than the sum of the largest and next largest

al
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Figure 9.

Sum graph denved from Figure 6 using the base multiplier and its poWers,
wniing = = 23 for brevity.

numbers used in the underlving Fibonacd pattern. In this case, 13 is the largest number
in the underlymg Fibonacel pattern and 8 is the next largest, so choose 23, the smallest
pome number larger than 13+8=21 (chocsing 21 would introduce an unwanted edge). This
number will be the multiplier for cne constellation (in this case, we arbitranly choose to nse
it for the left-hand constellation)

4. Use suceessive powers of 23 (23 functions therefore as a base-maltiplier] to label
the nodes of successive constellations. In this case, 23° is used as the multiplier for the
Aght-hand constellation. The nodes are now labelled as shown in Figure 8

When this set of nodes is used as the set 5 of Definition 1, the resultmg sum graph 15
isomorphic to the union of the three sum graphs in Figure 5. The fact that three cataloging
nodes are introduced by this procedure gives an indication from each coeficient of the cata-
loging nodes of size; shape, and connection pattern of the subgraph it represents {az did the
single cataloging node of 416 for the entire graph in Figure 7). The set of steps in Example
o may be stated more generally as in the Construction below,

3. Cartographic Application of Sum Graph Unification

The following application will show how the labelling produced by the Sum Graph Uni-
fication Construction might be used. Consider a set of seven North Amencan aties together
with selected suburhs of those cities (Table 1.1), Column 1 in Table 1.1 lists these eities znd
suburbs in seven groups as metropolitan areas (the latter named in all upper case letters):
constellations. To consider the east-west extent a proposed metropolitan mass transit svstem
might need to cover, the longitude 1z also associated with each location (in column 2 of Table
L1). The sequential ordenng of cities and suburbs, by longitude from east to west. describes
& path within each constellation linking these nodes. The metro area node is a cataloging
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Construction: Sum Graph Unification

Given a set of nodes partitioned into constellations. To ensure & prescribed path structure
hinking the nedes, that can be retrieved electronically entirely (only) from the numerical
characteristics of the labels for the nodes, assign labels in the following manner.

1. Lebel the nodes of each constellation with Fibonasea numbers, in order, begimning
with the label “1" in each constellation,

2. Find = base multiplier for each Fibonaca label. Form the sum of the two largest labels
from step 1. The smallest prime number greater than this sum will serve 4= a multipher.
Use this prime base multiplier as the multiplier for labels of the nodes in one constellation.

3. Use successive powers of the prime in step 2 as multipliers for labels of the nodes in
successive constellations.

node not hooked into the path, Column 3 associates a Fibonaco number with each node of
the emtire distribution of nodes (step | in the Construction). Column 4 shows weights for
the nodes by constellation; 37 1s the base muitiplier because it is the smallest prime greater
than 21+13 (steps 2 and 3 in the Construction). Columm 5 shows the product of columns 3
and 4; distinct nodes have distinet labels,

Suppose the entire st 15 rearranged by longitude. independent of constellation: positions
of data within all but the New Orleans constellation remain the same. In the New Orleans
constellation, the suburb of Metaine 1s shified from the New Orlsans constellation to the St.
Louis constellation (between E. St. Louis and Lemay), That Metaitie jumps metropolitan
area i evident from the factored weight associated with it; it belongs to constellation 7,
that of New Ocleans, as its exponent in the factored weight shows (Table 1.2). Thus, the
sum graph node lzbel shows that 1t 15 out of regional order and provides a direct means to
re-sort it back into regional order. Rank-ordering or other conventional means would not do
so: rank ordering does not show which city belongs in which constellation. These sum graph
node labels offer a way to organize data and to retrieve predetermined sequential order of
miormation from a jumbled data set. The node labels are somewhat large in magnitude, but
that is irrelevant in this particular application. It may be mmportant in others, and thusit is
to this iszue and to the related one of data compression that the remainder of the material
is direcied

4. Sum Graph Unification: Theory

The example above may prove = wseful source of mental reference points on which 1o
base the formal proof of the following lemmas needed 1o probe Theorem 3 below. The first
Lemma will prove that there are no unwanted edges linking nodes within constellations and
the second one will prove that there are no edges inking nodes between constellations.

For the most part, Theorem 3 is just a formabization of the method developed in the
example based on Figure 9. However, additional details are necessarv to allow for constel
lations of a single node (in these cases no new node is added). One might interpret guch a
node ag 2 small city with no suburbs. (Readers wishing to examine the rigor of this method
should read Theorem 3 and associated material with care; others might wish to skip to the
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next section; |
Lemma 3a

Let @, b, £, 1, j be positive integers. If p > a = b, and p > e, it is impossible for
aspt i et = i gt
Proof

Note that a -pf+h_-pi =g ~blpl < p™! S ec.pliify > 1. Similary, if 5 < i,
c-pl < p'<a-p'+b-p'. Thus in either case, the equation of the lemma 15 impossible

NOTE: We will want to choose p greater than the sum of the largest two cccurnng
Fibonacc mumbers. For example, suppose 21 is the largest occurring Fibonaco number.
Then 21 +23% = 2-23% = 23%*! o using 23 as the base multiplier would introduce an edge
between the modes 21 -237 and '2-23°
Lemma 3b

Let a; b, ¢ be positive integers, p > a +b. Let o, y, = be positive mtegers, = =2 y.
Then a -p® + b -p¥'= ¢ p* ic impossible.
£roet

Without loss of generality, assume =z < y. Then, p? < a p* +b-p¥ < (g +b)p¥ < p¥ 1,
Thus, for the squation to be possible;, z =y But then a+p® = 0{modp); which is impossible,
sinee nP:{FI+1 E 'P!'I
We now formalize the ideas exhibited in the construction of Example 3.
Diefinition 5 {Harary, 1970)

A hinear tree is a path, A lLinear forest is & union of disjoint Bnesr trees.

Theorsm 3 (Fibonacei sum graph unification)

Suppose we are given a sei of n nodes, which are partitioned into ¢ subsets, k of which
contain more than a single node. Then there is a set § of n + k suitably chosen positive
integers whose sum graph G 7(5) consists of ¢ isolates (k additional nodes and ¢ — k& nodes
from single-node subsets] together with a linear forest of & nemtnivial paths.

Proof:

Suppose that the n ongnal nodes are a1, a2, ..., @, Divide these into the { desired
subsets

{I-'.l_- I12| o 'Il?:l.j}

'{1?_1. E ) PR 1!3113}

'[1"1]1351---=tn¢}
where ny +mg+-:-+ny=mn. Let N =2+ max{ni ns, ..., n:}. Let p be the smallest prime
greater than Fpy, the Nth Fibonaca number. Now label n + &k nodes as follows:
L Hn; =1, label z;; with p' |subsets with exactly one node),
2, W n;#1, label 25 with p*, =i with 2p',... &, With p"Fﬁt., and a new node y, with
p'Fi1q, (subsets with more than one node).

Follow thiz procedure forall 1, 1 <4 <, Let 5 consist of the oniginal nodes together with
the new y:s. Now consider constellations eonsisting of the nodes labelled z; if i = 1 and the
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nodes {z;1, . ... T ¥ip 18 ¢ = 1. Then Theorems 1 and 2 assure that thers are Fibonaco
paths =i, 24, . .- 2i; and that y; is not adjacent to x4 forany e (1 £a <n;) Lemma 3a
asgures that there are no edges within a constellation other than the Fibonaco path, Lemma
db assures that there are no edges between constellations.. Thus, the theorem is proved.

5. Logarithmic Sum Graphs

The procedure displaved in the Construction, and proved in Theorem 3, meets the oo
tenia of producing desired paths, from the Jabelling scheme alone, each with a corresponding
cataloging node, as subgraphs of & single sum graph. In cases based on large data sets, the
multipliers get very large very quickly. However, if the loganthm (using the base multiplier,
T, as the base of the logamthm) of each label 15 taken, this issue of apparent significance
vanishes {Table 2). In the example on which Figure 8 was based, the values of the multipliers
transformed by the log base 23 display clearly the constellation structure. The nodes asso-
ciated with all entries with integral part “1" are grouped in a constellation, all with integral
part “2” in apother, and all with integral part' “3” in vet another. The integral values serve
as & data “key" 1o tlus data structure. The fractional values are, of course, the same from
subset to subset, exhibiting the same underlying Fibonaco linkage pattern from subset 1o
subset. The largest value in each subset i¢ the cataloging node; if other nodes were 1o be
meluded in, for example, the third constellation, those also would have a loganthmic value
greater than 38180367 but less than 4. Thus, mdependent of how many nodes thers are
n & single constellation, all the loganthmic labels are contained in a band of real numbers
one unit wide: d 15 a greatesi lower bound [which 15 attained), and 4 iz an upper bound for
labels 10 the third constellation. Further, the loganthmucally - transformed labels inerease
additively: thers are only as many different data kevs as there are different constellations,

1 . 2 » i =
1.22 202 » 3.22 :ll
135 » 235 = 335 .
151 = 251 = 3.01 =

2.66 w J.66 e
381 =
Figure 10,

Logarithmic sum graph

it
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When these logenthmic labels are attached to the nodes of the graph in Figure 9 we
refer to the resultng graph as a “loganthmce sum graph” (Figure 10). Note, however, that
even though thie graph i 1somorphic to the sum graph of Figure 9, it 15 not 1tself a sum
graph {in much the way that a truncated cone is not itself a cone, even though it is derived
from a cone)

From & purely theoretical standpoint, it is possible to identify the constellation to which
t node belongs very simply from its assigned multiplier. For, if p is the base multpler, a
node whose multiplier is N'=a«p" has k < log, N < k + 1, since a < p. Thus, a node
with multiplier N belongs to constellation k if and only if [log, N| = k (where brackets
denote the greatest integer funciion). (From a computer standpoint, one must be careful,
sinee occasionally computational error maght make ]cl-gPpi" < k computationally, Adding
a sutably small amount 1o log, N before determiming its constellation should avert this
difficulty.] In fact, it seems easier computationally to store log N rather than N a5 a
multiplier, since thes much smzller numbers can be stored. This motivates the following
formal characierization of loganthmic sum graphs.

Defintion 6
Let 5 be a set of n distinct positive integers, p a prime, Define the loganmthmic sum
graph, relative to p, G7(log,5) as follows:
1. G*(log,5) has n nodes, labelled with the n different labels {log,z | =z £ 5}
2, there is an edge betwesen two nodes labelled a and b if p° +p = 5.

Loganthmic sum graphs retain all the advantage: afforded by Theorem 3, and they make it
possible to handle large data sets more =sasily

6. Reversed Sum Graphs.

In the procedure of Theorem 3, and in the logadthmic modification of that procedure
to accommodate large data sets, the cataloging nodes all have the largest labels within their
subgraph. It mught be useful, in some situations, for the cataloging nodes to have the smallest
labels within their subgraphs. For this purposs, we define the notion of a “reversed” sum
graph.

Defimition T

Lzt 5 be & set of positive integers such that the som graph G7(8) [logarithmic sum
graph G7(log, 5| 1= partitioned into constellations such as those of Theorem 3. Define
the reversed sum graph “G(5) ‘reversed logarithmic sum graph TG(log, 5 )|, isomorphic to
G*(5) |G*(log, S}, as follows. If the nodes in a given constellation have labels a; < a3 <

4. % @p, telabel them ap@p-1,...,21. That 15, the node labelled a; is mven the new label
fpii~i. (Note that single-node constellations are not affected.)
Example 6

Let 54 ={1,2,3.5,8,13}. The graphs G7(5), TG(S) are dizplayed in Figure 11. [As
it the case of the loganthmic sum graph, note that a reversed sum graph (Definition 7) is
not itself a sum graph. )

As Defimtion 7 suggests; logarthmic sum graphs may also be reversed. Figure 12 shows the
loganthmic sum graph of Figure 10 and its reversed logarthmic sum graph. Reversed sum
graphs, loganthmic or not, always assign an integer, the data key, to the cataloging node.
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Figure 11.
A Fibonaca sum graph G7(5) (left)
and its reversed sum graph TG(S5) (nght):

This feature i¢ particularly impeortant in the case of the logarithmic representation, when
data might be added to or deleted from a single subgraph, all with integral part of their
labels identical to that of the cataloging label

7. Augmented Reversed Logarithmic Sum Graphs

Reversed loganthmic sum graphs single out cataloging nodes as the only nodes with
mtegral labels, It may be useful to consider linkages within the set of cataloging nodes
and to “augment” the reversed logarithmic sum graph with edges displaving these inkages
{Figure 13}

Definition §

The avgmentad reversed loganthmic sum graph, ARL sum graph, denoted ~A(log, &),
consists of the nodes and edges of "G{log,.5) together with all edges linking the nodes with
integer labels 1n TG(log,S). Thus, TA(leg,5) = TG{leg, 5) U { complete graph on nodes
with integer labels in TG (log, 5}
1f m is the numbier of nodes with integer labels in TG(log, 5}, this augmentation adds (7]
edges to the reversed sum graph "G(log, S). The ARL sum graph is not itself a sum graph.
Augmented reversed logarithmic sum graphs retain all the charactenstics of Theorem 3, have
the computational advantage of logarithmic sum graphs in handling large data sets, permt
the reverse sum graph strategy of integral labelling of the catzloging node, and have the
added feature of displaving the complete linkage patiern among cataloging nodes. Linkage
patterns emerge both at the local scale and at the more global cataloging seale.
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Figure 12.

Logarithmic sum graph (top) and reversed logarithmic sum graph (bottom).

8. Cartographic Application of ARL Sum Graphs

The labels of Table 1.1, derived from the Sum Graph Unification Construction, offer a
way to organize data and to retmeve predetermined sequential order of mformation from a
jumbled data set. The relative sizes of the weights for the nodes in Table 1.1 are, however,
awkward. A simple way to overcome this awkwardness s to take the logarithm of the node
weights (1o the base of the base multiplier), Thus, in Table 3, column 6 shows the logy; of
each node weight determined in Table 1.1 (listed in column 5 of Table §). The constellation
pumber is easily read ofl as the integral parl of the logarithm and all entnes for a single
constellation are contained within a band of values one unit wide: When the labels are
reversed, the ntegral label corresponds to the cataloging node. This reversed loganthmie
sum graph [represented by Table 3) retains the favorable characteristics of Table 1.1 for
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1.l = A0 . J.81 »
L.ad -II 251 » 3.68
1:22 = 2.35 .!. 4.0l
I . 2222 » 4,35 .
e . &:22 !-
3 =

Figure 13.

ARL sum graph denved from a reversed logarithmic sum graph
Reader should draw edges joining nodes 1 and 2, 2 and 3, and 1 and &

sorting of data; the node labeling scheme of Table 3 15, however, easy to handle.

The augmentation aflorded by ARL sum graphs permits sigmificant compression of data,
particularly In large dasa sets, as it retamns the favorable charactenstics of the reversed
loganthmic sum graph noted above. To illustrate this capability, we present the following
application

Comsider the set of 38 cities and metropolitan region: labelled m Table 1.1. One set
of data that is often stored is distances between places {“distance” is used as an example).
Generally this sel is stored in a sguare aray, or better, sometime: in an upper- or lower-
triangular matrix

Sum graphs can reduce greatly the number of entriss that need tc be stored. Table 4.0
shows a complete set of great-drele distances between metropolitan areas. Each metropolitan
area 15 assigned the latitude and longitude of the city for which it 18 named. Thus, particular
sets of geographic coordinates are viewed simultaneously at two different scales. Tables 4.1
1o 4.7 show complete sets of great-arcle distances among the aties 1 cach of the seven
metropolitan areas (constellations),

The distance between Livoms and Scarborough (for example), which does not appear
directly in any of the set of Tables in Table 4, may nonetheless be obtamed by summing the
distances from Livonia to DETROIT, from DETROIT to TORONTO, from TORONTO
to Scarborough (Figure 14). The algonthm displayed in Figure 14 shows how 1o uge the
reversed logarithmic node lzbel of two arbitrary nodes to determine the distance between
them using only theentnes in Table 4.0, between metropolitan areas {constellations), and in
Tables 4.1-4.7 (showing local linkapes within each constellation), The distance so-obtaned 15
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not tsell & greal-circle distance but it may well be a distanee more realistically representing
current ar-travel circumstances.

DETROIT — TORONTO
Livonia — Scarborough
Figure 14.

Commutative diagram showing distance caleulation scheme using Table 4; algorithm showing
how to find distance within Table 4 using the data key provided by the reversed logarithmic
sum graph label

Algorithm

L. Assumpiion: the cataloging city is also the dty with the lowest non-mtegral lzbel in its
constellation

2. Find the distance from 2 aty with a node with reversed logarithmic sum graph label 5.z
to one with label by, <k (and z <y if j = k)
g If 7 =k, use Table 47 to find the distance from j.z to jy.
b gk,
i use Table 4.0 to find distance between cataloging cities § and k.
i, use Table 4.7 to find distance from jlowest to jo.
m. use Table 4.k to find distance from k lowest to ky.
Add the results of i, ii. and m to find the required distance.

_ There are 32 different cities in this example. An upper-trangular 32 by 32 matnx of
I:E;:I = 496 different entries would normally be required to find between-city distances. Using
the sum graph method, shown in the algorithm of Figure 14, requires the use of & smaller
Tables: Table 4.0 for distances between cataloging node cities and Table 44, 1 < < T, for
distances of cities in constellation 1 from cataloging city i. The latter procedure, compased

of smaller matnices, Teguires storing (from each matnx) a total of

(?J " (E AN (5) G EJ oAy 19
2 2 2) " \2 2/ " \2 2\
=21 1546+ 10+15~10 =3 + 3 = 83 separate entries. In this case, sum graph methods

afford a compression ratio of about 6 to 1 over traditional methods.

With larger date sets, the compression ratio becomes much more substantial. Given a
data set of 10,000 entries to be partitioned into 100 constellations of 100 entries each, tradi-
tional methods using an upper triangular matrix would require that {mfm:l = 48, 995, 000
entries be stored. Sum graph methods would require storing I:lg}] entnes for Table 4.0 and

(2") entries for each of Tables 4.4, 1 <i < 100, for a total of 101 - (1%%) = 499, 850 entries.
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In this case the compression ratio 15 100 to 1. If instead the 10,000 entres are partitioned
in a different manner, different compression ratios result. If 1000 constellations of 10 entres
each are used, the comresponding compression ratio is 91.8 to 1; if 10 constellations of 1000
each are uged, the compression ratio 12 10,08 to 1. Clearly the manner in which the partition
15 selected is important, Larger data sets bring even larger compression ratios: if 1,000,000
data points are considered, and are partitioned into 1000 comstellations of 1000 each, the
corresponding compression ratic 15 1000 1o 1.

Any process of this sort alst needs to accommodate the insertion of new data; when
it does so without having to alter existing structure, it is “dynamic” The Sum Graph
Unification Construction is dvnamic to an extent. Table 5 shows part of the data set of
Table 3 with Ann Arbor added to the Detroit metro arex, Only the one constellation needs
relabelling, all others remain undisturbed. If, however, enough new entries had been added
to force an increase in the prime base multiplier, then a global change would have been
required for that single entry (generally easy to achieve electronically). None of the formulbe
would have reguired alteration.

“Dynamic” tables of this sort might see application as on-board mapping systems in
cars or buses giving optimum route displays in an interactive mode (so-called TVHS or other
commoniy-used acromyms). So data becomes accurate more guickly in response to changing
traffic patterns tramsmitted to the vehicle in some sort of interactive fashion. Advances
i theory can bring advances in technology to the level of affordable cost and widespread
application. The application of sum graphs might be one effort in that direction.

9. Summary

We have taken 2 tool from graph theory and specialized it in a number of directions in
order to deal with various types of problems thai often arse with data structures. Table
. 8 organizes these specializations in capsule format. Independent of how the sum graph
1t specialized to adapt to vanous difficulties in data management, however, the linkage
pattern between nodes in a sum graph is determined by node weight alone, which is deqved
from whether or not one node is linked to another. Thers is no reliance on geographic
direction or on any sorl of other relative ordening based on the underlying space in which
the nodes are embedded. Hence, the sum graph data structure has 2 theoretical base free
from directional bias and 1s perhaps therefore, translation invariant. Determining whether or
not this theorstical date structure offers a graphical application at the level of GIS theory-
as i the guadtres) that permite translationa] invariance of the structure (independent of
pixel shape} under GIS constraints, appears a significant next step in brnging theory into
practice
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TABLE 1.1:

Analysis according to sum graph unification construction
City LONG- FIBO. BASE FACTORED NODE RANK
Suburb ITUDE NACCI MULTI- WEIGHT WEIGHT ORDER
METRC west LABEL PLIER
Salem 70 54 1 37 1-37 37 |
Lynn T a7 2 a7 23T Td 2
Cuincy T1.00 3 37 3-37 111 3
Brockion 71 0 5 37 537 185 4
Cambrdge 7107 8 37 g .37 206 A
Boston 71 OT I3 2T 18 =37 481 i
BOSTON 21 a7 21 : 37 TiT T
Longuewsl 7330 1 37+ 1-87° 1369 ]
Verdun 73 34 2 37° 2. 37¢ 9738 o
Montreal 73 35 3 372 B ATE 4107 10
Laval 73 44 5 37= 537" 43 11
MONTREAL B 372 B.372 10052 12
Camden 75 06 1 ki 197" 50653 13
Philadelphiz 75 13 2 373 2.37° 101306 14
Upper Darby 75 1¢ 3 37 3-372 151959 |
Normstown 75 21 5 374 5.373 253265 16
Chesier 75 29 & a7 g-37° 405224 7
PHILADELFHIA 13 373 1337} 58480 I8
Scarborough 7812 1 37 1-378 1874161 19
Toronto O3 2 a7d 2.a7% 3738322 20
North York 79 25 3 a7 3374 56822483 21
York 79 29 5 a7i 5.37% 9370805 23
Etobicoke 7034 R 3Tt E.37d 14303288 23
Mississauga 79 37 13 art 1%+ 374 24364093 24
TORONTO 21 a7h 21 374 35357381 25
Windsor g3 00 1 37s 1378 69343957 26
Warzen 83 03 2 375 9 .379 138687014 27
Detroit 8310 3 378 3-.378 208031871 28
Dearhomn 83 15 5 378 5-37° 346719785 20
Livoniz 8323 8 378 §-37° 554751656 30
DETROIT 13 37* 13 .378 001471441 31
ot 1, 90 10 1 376 1:378 0565726409 32
St. Lous g0 15 2 378 2378 5131452818 33
Lemay a0 17 3 are 3.37° 7607179227 34
ST. LOUIS 5 a7é 5.g78 12828632045 35
New Orleans 90 03 1 <) 1377 04031877133 36
Marrero onos 2 377 2..377 189863754266 3
Metairie BT 377 3377 284705631399 38
NEW ORLEANS 5 37’ 537" 474650385665 30

b
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TABLE 1.2:

Analysis according to sum graph unification construction
Two constellations ordered from east to west by longitude

Citr LONG- FIEQ- BASE FACTORED NODE RANK

Suburb ITUDE NACCl] MULTI. WEIGHT WEIGHT ORDER

METRO west LABEL PFLIER

New Orleans 2005 1 il 137" 04931877133 36

NEW ORLEANS 5 377 St 474650385665 30

Marrero ag g 2 377 et 189863734266 37

E. 5t, Lounis 90 10 1 3Te 1378 25RAT2E400 32

Metaine g0 11 3 377 3377 JRATO5631300 3R

S1. Lows 80 15 2 378 22378 5131452818 33

ST. LOUIS 5 a7o 5379 12828632045 35

Lemay 2017 3 e 3378 7697179227 34
TABLE 2:

Multipliers and their logarithms to the base
of the base multiplier of 23
for the example of Figure 7.

Multiplier Loganithm, base 23
1.23 =23 |

2.93 =46 12210647
3.25 =09 1.2503793
523 =115 1.5132064
1.23% =520 2

2.23% = 1058 22010647
3-23% = 1587 23503793
b-23* = 2645 2.5132964
8 .23% = 4232 2 6631042
1-23% = 12167 3

2.03% = 245344 3.2210647
3 .23 = 36501 3.3503703
5-23° = OR35S 3.5132064
§.923° = 67336 3.6631042
13 -23% — 158171 38180367

fi4



SOLSTICE

TABLE 3:
Table 1.1 labelled as 2 reversed logarithmic sum graph

City LONG- FIBO- BASE  FACTORED NODE LOG
Suburk ITUDE NACCI MULTI WEIGHT WEIGHT BASE
METRO LABEL FLIER 37 NODE
Salem 70 34 21 37 21 .37 T 17466857
Lynn 70,57 13 37 1337 48] L.620043
Quiney 7L 00 8 37 837 205 L.500874
Erockton 7101 5 37 5= 3F 185 1.304708
Cambridge 7107 3 a7 3-37 111 1260450
Boston TLOT 2 37 T AT T 1.169881
BOSTON 1 37 1,37 37 1
Longueuil TRan B ar: 8372 10052 2.500074
Verdun 7334 5 37t 5.372 G845 2394708
Montreal Ta:3D 3 i 3437% 4307 2268430
Laval 78-44 2 ar? 95372 2738 2.169861
MONTREAL 1 37 1.37° 1369 2
(Camden 75 06 13 27k 13,375 GEE480 3.620043
Phil. 7512 8 i B.37% 415224 3.500074
T. Darby 75 16 5 378 5-37% 25265 3.364708
Norris. 7521 3 374 3372 151858 3260430
Ohester 7522 2 37" i 101306 3169001
PHILADELFPHIA 1 373 1:377 50653 3

Scar, 7812 21 T 2137 39357381 4.746657
Tarante 7923 13 37+ 13 374 24364003 4 629043
NYark 7025 R 37 8-37% 14003288 4.500974
Cork 79 20 5 371 5374 0370805 4.304708
Etobicole T9 34 3 37" gaar 5622483 4.269430
Misst. 7937 2 3 2374 3748322 4.16999]
TORONTO | 3t 137 1874161 4

Wind &3 00 13 a7s 134375 a01471441 5.620043
Warren 83 03 8 a7s 8375 554751656 5.300074
Detrait 83 10 5 e R i 346719785 5.304708
Diearh. 83 15 3 a7h 3377 208031871 5.260430
Livoma 83 23 2 a7 2375 138687014 5:169991
DETROIT 1 378 1:375 60343057 5

ESLou 00 10 5 378 5+37% 12828632045  6.304708
SLou a0 15 3 378 3-37° TEOTITH227  B.262430
Lemay 9017 2 : bl 2.37" 5131452818  6.160001
ST. LOUIS 1 37t 1.37°8 2565726400 6

NO-d 9008 5 a7t 5377 474650385665 7.304708
Marr an o 3 37° 3.-3717 2847956313099  7.260430
Meta af 11 2 377 o Syl 180863754266  7.160901
KEW ORLEANS 1 377 L+ 37" 04931877138 T

1
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TABLE 4.0: Distances between all metro areas
BOSs MONT PBHIL. TOR DET SL NO

BOSTON 5 235 263 428 615 1034 1349
MONTREAL i S84 212 323 874 1394
PHIL 0 23l 444 Bil& 108G
TORONTG 0 211 B2 1112
DETROIT 0 452 936
ST LOUIS 0 298
NEW ORLEANS ¥

TABLE 4.1: Boston-area cities
Salem Lynn  Cuincy Brock: Cambr  Boston

Salem 0} 4.24 185:] 1.6 153 21.4
Lynn 1 15.1 27.8 102 IR
Guincy I 12.6 10.9 3.96
Brock. 4] 22.4 13.6
Carabr. i B.21
Boston ]

TABLE 4.2: Montreal-area cities
Longne. Verdun Laval Mont

Longuenil 0 6.6 11.3 4.64
Verdun il g.2q 3,04
Laval 1] 7.35
Montrea! [

TABLE 4.3: Philadelphia-area cities
Camden Chester U Darby  Noms. Phila.

Camden {l 15.2 8,12 15.3 Ta0
Chester ] o654 184 13.0
Upper Darby { 11:2 3.5
NOITIELOWD 1] 10.7
Philadelphia 0

TABLE 4.4: Toronto-area cities
Scar. Miss. N, York York Etab. Tor

Scarborough 0 243 110 148 185 108
Mississanga ¥ 17.9 104 627 135
North York i 766 118 B.23
York 0 470 512
Etohicoke L .23
Toranto 0

TABLE 4.5: Detroit-area cities
Windsor Warren Dear.  Livoniz Detroif

 Windsor 0 16.3 12.8 2007 218
Warren o 20.0 19.5 13.9
Dearbor i 10.5 B.27
Livemia [ 11.5
Detroit {

53]
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TABLE 4.6: 5t. Louis-area cities
E 5. L. Lemay 5t Loums

E. St Louis: 0 .20 4.49
Lemay 0 1.79
£t Loms i

TABLE 4.7: New Orleans-area cities
Mei., DMar., New 0O,

Metaine 0 761 5.98
Marrero ] .84
New Orleans 0

SOLSTICE




Summer, 18983

TABLE 5:
New data added — Ann Arbor
City LONG- FIEOQO:- BASE FACTORED NODE LOG
Suburh ITUDE NACCI MULTI- WEIGHT WEIGHT BASE
METRO AREA LABEL FPLIER 37 NODE
Wind R3O0 21 3 21372 1466223007  5.746657
Warren B3 03 13 37 13- 378 801471441 5628043
Dietroit 8310 8 12 8372 554751656 5.508074
Deark 8315 B i 5-37" B6T19785 5.304708
Livomiz 8328 3 are 3.37° 208031871 5269430
Ann Arbor B343 2 3 2375 138687914 5.169981
DETROIT 1 are 1-375 69343957 5
ESLou an e 3 a7e 5378 12828632045  6.394708
Slou g0 15 3 e 337" TEOT1T9227  6.2608430
Lemay Q017 2 aye 24378 5131452818  §.169991
ST. LOUIS 1 78 1:378 2565726409 6
Nzl 90 05 3 il 5377 4T4659385665 7.394708
Marr a0 06 3 37" 3-37 2847956313908 7.269430
Meta o011 2 37 2377 189863754266 7.160091
NEW ORLEANS 1 37 1.37" 04031877133 7
68
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TABLE &:
Specializations of sum graphs

Type of graph

Sum praph
{Figure 7)

Sum graph with base multipher
(Fignre 9)

Logarithmic sum graph
{Figure 10)

Reversed sum graph
{Figure 11)

Augmented reversed loganthmic

gim graph
(Figurs 13)

Characteristics

Variable resolunon at

local and global scales, only
Shape, size, and connection
pattern of parts to whole
suggested by global label
Vagable resolution at
mtermediate and global scales.
Relative shape, size, and
connection pattern of parts
to whole suggested by multiple
labels assocated with split
TegIons

Confines sum graph labels 10
a single unil for each
subgraph, Deals well with
split regions; is not itssli

a sum graph. Label on
cataloging node suggests
relative shape, size, and
connection pattern of parts
to the whole

Not 1tself a sum graph. Sole
function is to assign an
mtegral value to the
cataloging node of each
subgraph.

Combines characteristics

of logarithmic and reversed
sum graphs. Added edges
Join cataloging nodes.
Linkage patterns are
suggested at local,
intermediate, and global
levels of resoluticn.
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