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Imperfections in the Uniform Plane
Michael F. Dacey
with Forewords by John D. Nystuen, The University of Michigan

In thie section, Solstice Board member, Johm D). Nystuen, selects a paper from the col-
lected papers of the Michigan Inter-University Community of Mathematical Geographers
(MICMOG) (of which he is Editer) to reprint here, some 30 vears after its inifial presenta-
ten. In addition to the reprint of work of Michael Dacey, Nystuen’s original Foreword, and
mtreduction of Dacey and his work lo the assembled MICMOG group, is also reprinted. In
addition, & new Foreword by Nystuen takes s look at the Dacey paper in retrospect. The
paper is reprinted with permission of Nystuen, om hehalf of the Michigan Inter-University
Community of Mathematical Geographers.

Foreword, December, 1944

John D, Nystuen

Tharty vears ago Michasl Dacey contributed to the development of spatial statistics in
highly original ways. Many of the ideas he used and introduced to the literature in the 19605
are now part of generally accepted spatial theory. For example, he was one of the first to
use the idea of a dimensional transformation to permit evaluations of the spatial association
of point and area phenomena. The transformational approach proved useful as a genersl
concept as Keith Clarke has demonstrated in his interesting book (Clarke. 1990),  Arthor
(retts, a colleague of Dacey's, and Barry Boots used many of Dacev's idess in their book
(Getis and Boots, 1978) about modelling spatial process.

Today. vigorous effort 18 being expended on incorporating spatial analvsis functions into
(Geographic Information Systems {GIS) sofiware. We are re-issuing ons of Dacey's seminal
works to bring 1o the attention of contemporary scholars an important source of many of
the concepls now becoming accessible to general uses of GIS technology. Dacey’s work now
speaks to another generation.

References

Clarke, Keith C, 1880, Analytical and Computer Carfography, Prentice-Hall, Englewood
Cliffs, N.J.
Getis, & and Boots, B. 1878, Models of Spatial Processes, Cambridge University Press,
Cambridge.
Foreword, May. 1964

John D). Nystuen

We are pleased Lo present to our readers a paper by Professor Michael T Dacey. Many
ol us are aware, if only vaguely, of his provocative and voluminous writings. Professor Dacey
has penetrated deeply into realms where few, if any, have gone before. He travels alone and
has lefi but a thin trail of mimeographed papers as scent. The track is now long and difficult
to follow and he does not rest. He has allowed one of his works to become discussion paper
#4 of our series. We hope this will expose hie activities to a wider andience. Some may he
mspired to join him in the new work that he is doing. 1 hope so. Certainly we mus keep
m contact with him. Regrettably many of his results depend upon his previons statements
2]
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now difficult to obtamn. | will attempt in this foreword 2 shorl review of the pertinent ideas
by way of & summary of this paper. | have also added, with his permission, a glassary of
symbols at the end of the paper.

Michael Dacey has for several vears explored abstract spatial patterns using probabilistic
methods. This paper is one of a senes of such studies. Most of the work provides empirical
examples of the concepts. The contrast in methodologies displayed between discussion paper
#d (W, Bunge, “Patterns of Location”) and this one is marked, Professor Bunge turne away
from probabilistic formulations {see page 3 of “Patterns of Location®) and Professor Dacey
rejects deterministic models (see page 1 below). | beliove the relative worth of these two
broad approaches to abstract geography will receive increasing aitention in the literature.
There 15 much precedent for concern over this question in other disciplines. Clearly Daces
accepts Lhe value of & probabilistic approach.

It may aid the reader if the paper 15 viewed as consisung of six parts.

1. Professor Diacey first deseribes an abstract model of imperfections in a uniform plane.
The charactenstics of this model are specified 1n o general way. | believe that Professor
Dacey is the first to suggest models where non-random patterns are disturbed by random
vaniables (see Dacey and Tung, 1062).

2. The point pattern which results from the above mentioned model 18 to be spmmarized
guantitatively in such a fashion that it can be compared with some actual geographic
point pattern. Professor Dacey calls upon his previous extensive investigations of nearest
neighbor statistics to do this job ', He specifies how measures of the distances Lo the
ist mearest, dnd nearest, ... kth nearest neighbors of a sample of ponts i the pomi
pattern may be used to deseribe the point pattern by probability distributions of these
lengths, The strategy is to then compare the probability distributions of the model with
a geographic pattern using o simple y¥ statistic. Professor Dacev is aware thal nearest
neighbor methods may be used to compare point-to-area relations as well as point-to-
point relations. A point pattern is not simply a set of pomnts. The peints cccupy a space
for which & metric is defined. The metnc makes possible distance measures between the
points. The fact that there 1= 2 space creates the boundary problems mentioned in the
text. The original purpose of these statistics was to test if points were more clugtersd
orf more even than random. Imagine a study area which is mostly empty but has in
one small region an even distribution of pomts. Measuring distances between points and
using the nearest neighbor test wonld indicate a pomnt pattern more even than random.
In one sense, however, they are clustered for they occupy only a small section of the study
area. There is a strategy for this situation. Use another point set to represent the aren.
This may be done by using an even distribution of points in the area or by assigning
pomts to the ares at random. The second set of points now represents the study area.
The area has been abstracted into a point pattern and the nearest neighbor method may
be nsed. Measures between the two point sets now reveals the ariginal point pattern to
be clustered, The decision concerning which method to employ depends upon whether
the phenomenon studied has a postulated interaction of point-to-point or peint-to-area.
The text indicates the procedure for using either method

o, Theoretical order distances are specified by equations (16) and {17). The probability
functions are made more expheit and operational by assuming each lattice point is dis-
turbed by the same two dimensional normal varate. Professor Dacey has ample evidence
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that these particular probability distributions are useful for this purpose ?

Sclutions of the equations in the previcus section would yield an analytic solution regard-
ing expected order distances for various disturbance models. However, these equations
prove very difficult to evaluate. Recourse to a simulated solution is sought, An almosi
periadic disturbance model 15 postulated. Ite parameters are estimated from data on
an actual pattern of urhan places in lowa. Using these parameters, a set of pointe con-
forming to the structure of the theoretical model 15 generated with random digits and
tables of normal deviates. This artificial pattern is one of many possible representations
of the theoretical pattern. It is presumed to display the type of pattern expected fram
an analytic solution if one could be found.

The author now has two patterns: one, a simulated theoretical pattern which conforme
to the structure of the model; and the other, an actual urban place pattern in Tows, He
also is able to make the appropriate nearest neighbor measures which charactenze cach
pattern. The frequency distributions are then compared using the yv¢ statistic.

In an addendum, the author presents further testing of his model by taking advantage of
a computer program which generates the distance measures required. The paper ends.

It must be clear 1o the reader from the comtents of this paper that Michael Dacey

nas indeed traveled over much ground. He has previously developed many of the results
needed m this study. Many of his solutions and applications are ingenions. He exhibits an
understanding of the theoretical implications of his work, He has 2 wide knowledge of the
literature on probalulity and is able to adept simulation methods and computer technology
to his purpose. All he lacks is someone to talk 1o,
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Endnotes

1. Examples of his statements on nearest neighber measures include: “Analysis of Central
Place Patterns by Nearest Neighbor Method,” Seattle, May 1959, mimeographed; “Analysis
of Central Place and Point Patterns by a Nearest Neighbor Method.” Proe. of IGU Sympo-
sium in Urban Geographv, Lund, 1960, pp. 55-75; “ldentification of Handomness in Foint
Patterns,” (with Tze-hsiung Tung), Philadelphia, June 1962; mimeographed (Dacey and
Tung is now forthcoming in the Journal of Regional Science, v. 4

9, See references at the end of the paper and also: “Order Neighbor Statistics for a Clase
of Random Patterns in Multidimensional Space” Annals. Association of Amencan Geogra.
phers, v. 53 (Dec. 1863): 505-315, “Certain Properties of Edges on a Polygon in a Two
Dimensional Aggregate of Pelygons Having Randomly Distribnted Nuclsi,” Philadelphia,
June 1963, oumeographed
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Imperfections in the Uniform Plane
Michael F. Dacey

Wharton School of Finance and Commerce
Unaversity of Pennsylvania
See end of article for additional information
A statistical formulation of the spatial properties of central place sysiem is proposed
Currently, the theoretical locations of central places are specified by geometinc or algebraic
quantities. This type of statement leads to certamn rejection of central place models, for 1t 15
inconcesvable that any observed pattern of central places corresponds exactly o the specified
geometry, A probabilistic formulation 1s prefersed for empirical analysis because deviations
from the precise locations are contained within the statement of the model

In the classical theory of Christaller (1933) and Losch (1939) central places form 2 honey-
comb patiern or hexagonal lattice on the undifierentiated, unbounded plans. A probabilistic
statement of this location patiem incorporates deviations from the precise lattice locations,
and the dewnations are subject 1o stochastic processes. This mitial formulation of a proba-
bilistic central place distnbution uses the concept of imperfections in the uniform plane to
define these deviations. Imperfections may be combined with Lhe central place geometry
in many ways. Here one basic formulation and two closely related models are proposed.
The models possess some properties of the Chrnstalles-Losch system and evidently are not
inconsistent with the spint of central place theory.

This report has two purposes. Firsl, a general model of imperfections i the umiorm
plane is constructed. Second, the application of a particular model to a map patiern s
evaluated.

The map pattern of urban places mm lowa has been selected for an 1imtial examination
of the imperfection concept. The empirical test involves interpretation of parameters of the
model in terms of phenomena commonly studied by geographers and estimation of these
paramelers from the Iowa map pattern, Because the formal statement of the model contams
equaticns that are difficult to evaluate analytically, this initial study has used a simulation
technique to obtain summary measures on theoretical patterns. Properties of a fabneated
pattern are compared with the lowa map patiern, and the level of agreement iz found ac-
ceptable to the first approximation.

The Chrnstaller Spatial Model

The theorsticel distnbution of central places may be expressed i terms of a plane lattice,
Let P orepresent a plane symmetry lattice. Choosing any arbitrary point of this lattice as
an origin point €, the location of any other given latlice point can be defined with respect
lo this ongin by a vector T

T'=wuty+uvla {1}

where v and = are integers. The vector notation 1mplies that the plane 15 constructed as
a hnear lattice having a translation period t; which is repeated periodically at an mterval
ty. The translation perieds £ and {7 may be regarded as vectors separated by the angle g.
Using K to denote a collection, the lattice points of F are defined by

P=KT = K{ut; +vts) (2
25
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Central place theory conventionally uses a hexagonal lattice for which the translations
t; and {3 are of the same umt length and the angle of periodic rotation i g = =/3.

A more general discussion is obtained by not restricting attention lo the lhexagonal
lattice.  In this report P represents any plane lattice which may have a three-, four-, or
aix-fold axs. In applying the lattice to a particular problem, the translation perieds ¢ and
tz and the angle of rotation gy need specification

Types of lmperfections in the Uniform Plane

Three types of imperfection m the umform plane are studied in thes repori. These
imperfections are closely related to certan londs of imperfections found mn nearly perfest
crystals. An antroduction to crystal imperfections e found in Van Bueren {1961, especially
Chapters 2-4) and an excellent synthesis of the concept of imperfection in the solid state is
given by Seitz (1952} The basic principles of our formulation draw heavily upon coneepts
nsed m the study of crvstals and the solid state; the mathematical formulation is. however,
quite different.

The imperfections under consideration are identified as (i) dislocations or disturhances,
{1} vacant lattice sites and (i1} interstitial points. These three types of imperfections are
mosi easily defined by considenng two maps containing point symbels.  For the present
purposes assume Lhe maps have identical area and pumber of points, One map represents a
finite domain of the lattice P, The other map, called 5, may show fabricated locations or
the positions of actual objects. Figure 1is “good™ map § overlaid on a square P

i. The term dislocation is more descriptive of the first imperfection, but it has o definite
meaning in crysiallography and sobd state physics; so we shall call this imperfection

a disturbance. A disturbance occurs when the locaton of a point 15 not exactly at a

theoretical lattice site but iz 'sufficently’ close so that with high degree of certainty a

disturbed point is correctly associated with its theoretical location.

1. A vacant lathice site occurs where ne point 15 “close’ to n theoretical lattice site. Where
two of more points occur in the vicmity of a lattice site, it is not called a vacant lattice
sile even though the one point correctly asscciated with that theoretical location may
not be 1dentifiable.

ui. An interstitial imperfection oceurs in the uniform plane where a point is not identified
with any lattice site. Interstitial locations ccour where 2 point is teo distant from a
theoretical location to be associated with high degree of certainty with a particolar
lattice site, or where two or more points are located ‘close’ 10 a lattice site and the one
point correctly assigned 1o that theoretical location is not identifiable.

These imperfections are nol given precise definitions. In constructing the imperfection
model more precise definitions are given.

A Model of the Imperfect Plane

One basic formulation and two modifications are descnbed.  All imperfections under
consideration are the result of stochastic processes, in the space rather than the more com-
mon bime dimension. The principal [eature of an imperfection model is the imperfection
n pattern related to disturbances or shocks from geometrically exact locations (Figure 1}
Whle this single type of imperfection 15 adequate for many physical svstems, it is probably
Lot restnichive to encompass patierns formed by economic, social or cultural svsiems. To
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handle complex map patterns two addilional {ypes of two dimensional stochastic processes
ware studied. One type of imperfection generates interstitial points and is defined by a two
dimensional, uniform, randem vanable. The other type of imperfection generates clusters
of points and 15 defined by spatially contiguous probability distnbutions. Because the pat-
tern of urban places in lowa is relatively homogeneous and contains no examples of large
metropolitan centers, it was not necessary to incorporate a contagious process in a model for
the lowa map pattern. For this reasom, only the first two types of imperfections are discussed
in thie report.

The Disturbance Fffect

Eacli lattice poinl of P ie associated with & siochastic variable £, The £ is the dis-
turbance variable and defines the realized location of a point with respect to its theoretical
lattice site. It 1= convenient to separate £ nto its two polar components: a distance p and
a rolation angle 8. So, £ = (p. ).

The displacement of the point s, from ils equilibrivm position (at; + 82} 15 given by
the random vanable £, So. the disturbed position of thas pomnt s

Sap =0ty + bla -+ Eau (3]

11 1z assumed that the same stochastic vanable 15 associated with each lattice site, Then, of
2 point 15 disturbed from each lattice site the collection of randomly disturbed points 1s

51 = Kluty +uvts + 48], (4)

u and v mtegers. This notation indicates that £ has translation penod ¢y which 15 repeated
pericdically at an interval £z, In tlns sense the stochastic vanable 13 carried through space
and 15 agsociated 1o thrn with each lattiee site. Accordingly, in peint set 57 each lattice site
(@i + B2) has exactly one corresponding disturbed point &,

Vacant Lattice Sites

It 1s not necessary to apply & disturbance to each lattice site. Instead a lattice site and
the variable £,; mayv be taken in conjunction with a binary or on-off operator which nullifies
the vectors defining some disturbed poinls so thai the correspending lattice sites are vacant
As a consequence, there 1s a sparser network of disturbed points than lattice sites Becanse
a disturbed point 15 not asseciated with each lattice site, the disturbance term 1= said to be
repeated almost periodically, A more precise definition of the almost periodic disturbance is
gIVETL.

A binary operator to produce vacant lattice sites 15 defined for (afy = bts), denoted
symbols by Z.5, such that for 0 < A <1,

Sas =1, with probability A
Bap =0, with probability 1 —A. (3]

The vectors defiming location of the disturbed point 5.4 are multiplied by 9. so that the
disturbed point iz realized with probability A and is not defined with probability (1—A). In
more precise form, the location of the disturbed point having equilibrium peosition (el +Hz)
15

sap = Faplaty + btz + Equ) (5]
BT
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Figure 1. Map of imperfection model. Most symbols show disturbance effect on a square
lattice. There are two vacant lattice sites, and two examples of mterstitial points. Mosl map

patterns are, of course, not this regular, This figure shows a six by four square lattice which
has been altered as suggested.

with the usual convention that ., = [} does not define & point at the lattice site 0, So, for
Hai = 0 the disturbed point 54, does not exist, while for 3.4 = | location is found precisely
in the manner for the penod disturbanes.

Each lattice site 15 associated with the same stochastic vanable and with the same binary
operator. Accordingly, the relation (8) = carned through space with translation penod i
repeated periodically at interval £9. The collection of points generated by the almosi penedic
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disturbance is
De= Ktﬂml{ﬂil + vty + L) I:?':I

a and v integers. The 3 is completely identified by the underlying lattice P, the prabability
A, and the parameters specifying the components p and # of the stochastic variable £. [t 15
summarized by the parameter set S{ty,tx A4, €],

Uniform Handom Disturbance

This collection of points, denoted by B, is a random peint sel. To make the definition
explicit, an arbitrary origin is selected and the lattice pont £ of P is convenienl. The H 15
specified by the theoretical frequency of points within distence r of the origin. Where the
parameter 4 is the expectation that a unit ares contains a peint belonging to R, put

= 711-'? (B)
where = = (I, The frequency p describes any arbitrary digk of radins ., so that the distn-
bution £ 1= independent of the specified origm. It 1= a property of R, Feller [1857) that the
distribution conforms to & Poisson process. The probability of finding exactly j points of B
within any disk of radius » is p?e7?/51
Definition of the Basic Medel

The model to be considered in thie report i defined by the combination of an § and the
R point sets; call this model M and

M=5UR ()

This model is summarized by the parameter set M(fy, 124, £;p), where p = (A+7) Fora
model containing S and R points only, g 1s the mean density of points per nmt area
Several interesting formulations of A are defined by special values of the parameters A
and .
The periodic disturbance model My is given by A = 1, for one disturbed point 1
associnted with each lattice site. A complete periodic disturbance model also has v =0, for
cach point 15 disturbed from a lattice site and there are no random points from K.

The almost perodic disturbance model, called My, 15 given by < A < 1. The magni-
tude of v determines if Mz has a one-to-one correspondence of points o lattice sites or if
M2 has more or less points than lattice sites. Il 4y =1 -4 the theoretical density of points
belonging to Sz and K equals the density of lattice gites. If % = | = A the expected number
of points exceeds the number of lattice sites, while the expected number of pomnts 15 less for
41— Al

The point set given for A =0 is a random point pattern. It 15 of course recognized that
R is only one of many point sets that could be combined with 5 or 83 disturhed ponts
Description of Pattern

The disturbance models are described by the nnderlying lattice P, the density measures
% and = and the disturbance process £. The combination of these parameters produce
disturbed and interstitial points and vacant lattice sites in the uniform plane. In a formal
sense a model is completely specified by the lattice parameters and the several probability
functions, This specification of & model does not, however, describe or summarize in any
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uesful fashion the point pattemn Eenerated by & particular model But, numencal summary
of pointl patiern M is prerequisite to test of the hypothesis that an observed map patiern is
similar to an imperfection pattern.

To measure the level of correspondence between observed and theoretical patterns there
iz need for (i) measurements on ome or more properties of the ohzerved pattern and (i)
theoretical values for the same properties on the pattern defined by the model. In addition,
if parameter values for the model are setimated from the ohserved pattern, the properties
for test of similarity between observed and theoretical patterns should be independent of the
properiies nitially nsed to estimate parameters

In this report pattern Iz summarized by two classes of order distance statistics The
methods are descrobed briefly and then their utility as descriptive measures of pattern are
indicated.
Pomt to Point Order Distances

Let i represent any arbitrary point in a pomt pattern ¢ The measured map distance
from 1 to the 5 nearest point is represented by Hi;. J messurements are taken from 1 and
are srdered to satisfy the inequalities

R,]{H[g{---{iﬂ.j{u-{ﬂh.l (10

and the Ry 1= called the § order distance. For deseription of & bounded map pattern the
1 order distance i recorded only if fly; 15 less than the distance from i to Lhe nearsst mafp
boundary. The chance of bias due to the influence of boundaries s reduced by this constraint,
but there is loss of information to the paitern descoption becanse all distance relations aps
not utihzed.

The R;; mensurements reflect the arbitrary map metric. The dimensional constant which
eliminates effect of seale s d1/? where d is the density of points in ). Measurements in &
are reduced to standardized distance by the transformation

iy = I:]rl.an_ir‘-_”._ {11)

Standard distances are used in this report to describe all patterns.

Let I denote a collection of peints in . and { € /. One deseription of &} uses standard
distances from each origin point i € T lo the J neapest points.
Locus to Point Order Distances

A second description of pattern uses distance measurements from coordinale locations
te pomts, Let [ define a set of locations in @ and in general & locus £ £ L is not a point
evmbol of ¢, The measured distance in ¢ from locus € to the k nearest point = denoted
by Hg. The measurements from ¢ are ordered by distance and put in standard form: in
symbals

:"ﬂ{rfg{--'l‘-:!‘&{"-{rﬂf (12}

ron=d' PRy, (13)

The second description of @ uses standard distances from each locus £ & [ o the & nearest
pointe. The boundary constraint pertains to these distances alsa.

Sampling Methods
30
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The elements of ] may consist of all or a sample of points in t}. For this study a census
was taken, largely because of small pattern size.

The loci in L neeessarily constitute & sample, and these locations may be designated by
random, stratified or uniform sampling metheds. The most efficient mesh for plane sampling
has been studied by a number of writers, as Zubrzycki (1961) and Dalenius, Hajek, and
Zubrzycki [1961), but there are no general conclusions. This study nsed random sampling.
largely becanse the patterns of interest contain high degree of uniformity in spacing and
random sampling is probably less sensitive to this type of spatial bias. However, this topic
Tequires study,
summary Description of Pattern

A peint pattern may be summarized by (i} the lower moments of the 7 and § order
distances or (ii) the frequency distributions of these order distances. The 7 order point to
pomt distances provide a quantitative summary of the arrangement of points with respect to
other points of the pattern, but these distances do not explicitly reflect the arrangement of
points with respect to the map space. The complementary k order locus to point distances
provide a quantitative summary of the arrangement of pomts with respect to the lod in L
To the degree the sample mesh of L is a measure of Lhe map space, h order distances also
summanze the arrangement of points with respect to the map space. Because these two
classes of distances reflect two different aspects of pattern, this type of summary statemnent
capiures many of the subtle charactenstics composing a point pattern.

Comparison of Map Patterns

The descriptive measures provide a basis for evaluating the degree of similarity between
We or mote patlerns. patterns are called similar if the order distanees summarizng each of
the patterns have'the same statistical parameters. The standardized distanees allow direct
companson of any two point patterns, for the distances represented by the variable ¢ {sither
Ty of Ty are normalized to aceount for differences in seale, wnit measurement and density
of points. Using either means or frequency distributions of order distances, the hypothesis
that two or more sets of measurements belong to the same statistical population may he
lested by standard procedures.

Theoretical Order Distances

This paragraph considers the basic derivation of order distances for unperfection models.
The denivations are simplified by studying (i) lattices for which ¢ = &y, (i) nearest neaghbaor
situations only, and (iii} the stochastic vanable ¢ defined by the normal law

Two nearest neighbor latlice sites are separated by the distance ¢ {=t; =t3). Let the
random vanable X denote the distance between two disturbed points associated with any
two nearest neighbor lattice sites. It requires only elementary geometry to show that the
distence between points (g1, 81) and {p2, 82} s

z = ({picosf, — pycosfs & t:l2 + ([pysin ) — ,r_rgmnﬂg:li]l"lz. (14}

L

The simplest derivation of order distances is for the complete penodic disturbance model
(A =1 and ¥ = () on the hexagonal lattice. Let m (= 6) denote the number of nearest
neighbors to each lattice site. We consider the distances from an arhitrary point i at (al; -
by + Eap). It 18 assumed that the m nearesi points to ¢ are disturbed from nearest neighbor
lattice sites only, The =y 15 the distance from point © to the & (= 1,2, .., ) nearest point,
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If the disturbance term is identical and independent for each lattice site, the m distances
from i may be interpreted as m independent observations in & sample of size m from the
population defined by the random wariable X Because the chservations are crdered from
shortest to longest, z; & the kth order statistic. It is well kunewn that the distribution
function of the kih order statistic 15 given by

!

oW = = im =)

FElw)P w1l = Fla))™ *flw) {15

where f{w) = dF(w) and the vaniable X | after making the probability transformation for &
specified f(p) and f{#), is substituted for w. The z crude moment of the k order statistic
for the completie periodic disturbance model is

wlle) = e ) f WP~ )™ w)de.  (16)
0

k— 1)l(m — &)l

The derivation is far more complex if the fattice is not hexagonal and undoubtedly
requires more advanced concepts than provided by elementary probability metheds. More
over, even in this simplified case. numerical evaluation of {16) is not necessarily possible by
elementary procedures

In the statement of disturbance models the normal law was interpreted in polar coordi-
nates by the folded half-normal distribution; thai is. the distribution function for location
about a lattice site i

o o
F = My dl= 18 dpds T
(€)= F(p.8) fu fDJ"IZ.U,fL yap arn)

where B
Flp) = v 2exp(—p* /262 )/ (o /) p =0
f8)=(2x1"" (0<d<?2n

It geeme appropriate to accept that f{£) 1= sdentical for each lattice site so that the parameter
o is constant throughout the lattice space. Using (17) to define (14) and substituting the
resulting probability transformation inte (16) gives an expression for order statistics that,
for me, 15 totally intractable.

Some simplification is gained by mnterpreting the normal law by the bivagale or circnlar
normal distribution, In this case the distance variable X has a well known form. Tt may be
ghown that the distribution fanetion is

(=/n)? ’
Fiz) = 1/2expl —:?;2;;.2]] e gtz Pyl dz 2> 0 (18]
0}

where 5 = 2% and Ig{e) is the modified Besse] function of the first kind of zero order. This
exXpression 18 recogmuzed as the mtegral of the non-central y* with two degrees of fresdam.
In a shghtly different form it occurs as a basic distribution function in bombing or coverage
problems, Germond (1950}, By substituting {18) for F{w), (16) gives the = crude moment
of order statistics from a non-central 3 * distribution, however, tables of values have not been
published
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It 15 apparent that even the simplest imperfection model yelds equations that are dif-
ficult to evaluate. Where A # 1 and/or v # (0 the zguation systems are immensely more
complex and numerical evaluation may be considered, for any practical purpose at this time,
impossible. In order to circumvent these mathematical problems the imperfection model has
been evaluated by simulation of an equation sysiem for a given set of parameter values,
Amnalysis of the Pattern of Urban Places in Iowa

The imperfection models wers designed to produce types of patterns and distributions
studied in the social sciences, Moreover, the particular clase of patlerns motivating the
present formulation are formed by map representations of urban places. As a partial eval-

nation of the adeguacy of the imperfection model to replicate town and oty patterns. the
distribution of urban places mn lowa, 1950, 15 studied.

Many parameters of the lowa distribution are already available in Dacey [1963a), Thess
data provide empinieal esuimates of parameters {or appheavon of the impeslection madel to
the lowa patlern. Using estimated parameters, the degree of correspondence of My with the
observed pattern of urban places is analvzed. Simulation 15 used to evaluate the theoretical
imperfection modsl
Almost Periodic Disturhance Model

The almost penodic disturbance model Mg 15 specified by three sets of parameters:

1,47 and g identify the underlying lattice P,

£ specifies the disturbance term generating the point sel 52 and

A and <y are the scale densities for the point sets 54 and K, respectiively.

These three sels of paramelers are given numerical values by relating the imperfection
comcept to structural features of the lowa map patiern. In this constroction, each parameter
15 described in terms of the corresponding property of the lowa pattern. Since the thecreticsl
pattern iz synthetically fabricated, the definitions and interpreiations of parameters are
biased toward operational statements,

Lattice Paramelers

The My 15 Iabncated as a rectangular map space contaning the doman of a sguare
lattice, The domain is of dimensions 12 by 18 and contams 96 ponts. Thus, the parameters
are fy=f2=1,0=mw/2-

The ponmtive cells of the square lattice have an abstract correspondence to counties,
and in this context lattice points represent the pecgraphic center of counties. This lattice
has some resemblance to the lowa map. In gross form lowa 15 roughly a rectangle and most
counties in lowa are approximately sguare. However, the counties do not form a square
grid, larpely becavse of surveying adjustments for the earth’s eurvature. An alternative, and
possibly a closer, approsamation to the [owa structurs 18 the diamond lattice.

The lattice has 96 squares while lowa has 89 counties. There is ne formal advantage to
using & lattice of approcamately the same dimensions as Lthe study area.

Vor spectheation of other parameters the following relations are established between M4
and the lowa map:

1. square lattice cells of My are equated with lowa counties,
ti. lattice pomts of M3 are equated with geographic centers of counties,
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ili. Sy and R points are eqnated with urban places.

Using this dictionary (o) the distribution function for distance from lattice site to Sa
point is estimated from the observed distances from geographic center of counties Lo nearest
urkan place and (@) the requency distribution of points in poimative lattice cells 15 estimated
from the observed frequency distribution of urban places in counties. These two properties
are evidently independent of the order distances used o summarize observed and theoretical
patlerns

Disturbance Variables

In my eather study of Iowa 1t was shown that for intenor counties contamung an urban
place the distance from the geographic center to nearest urban place was closely approga-
mated by the folded half-normal distribution, as defined for fip) m (17), with scale param-
eter o = [.2286. Observed and caleulated frequency distributions are compared in Table
L

The angular component £ of the disturbance term is taken as a uniform random variable,
as defined in (17). No evidence is presented for this assumption, so the uniform vanable is
entered into the model on the theoretical consideration that a completely chance factor
accurs in the disturbance process. However, in examining the location of places with respect
to peographic centers I found no evidence of directional bias.

On the basis of these estimates, the vector component p and the angular component #
of the disturbance variable £ are defined for Ma by the folded, uniform bivanate distnbution
(17).

Scale Vanables

The remaining two parameters of Ay are the density measures A and 5 Because Mo
containg anly S and R points, the density of all points is p = A 4 7. For the lowa map
pattern thers are 83 places and 99 counties, so the estimated density of total points 1 5
is (93,00} = p.

The individual densities A and 5 were estimated from the frequency distobution of urban
places among lowa counties; Table 2. A two parameter probability density function that gives
a good fit 1o the observed frequencies has been stated by Dacey [1863b). By assummnng that
each distuthed point in 52 12 always located in the primitive cell of its theoretical lattice site
and thal each random peint in & has an equal probability of occurning in cach primitive
cell, the probability that a eell contains & points is

fle: A p) =y e el + (zAy 5 e /2l) {19)

whers v+ = g—A and = =0, 1, .,.. The parameter A was estimated by the melhod of moments
from the distribution of urban places among Iowa counties. Table 2 compares observed and
expecied frequencies for the parameters A = 0.74, v = 0.20 and g = (.94 = 93,049,

Comparison of /s and Towa
A synthetic pattern was constructed from the pattern My for the parameters

el R | EI'Z’.T,I'IE

o= [0.2286 A =07306 ~=I1L1970.
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These parameters were applied Lo 2 space comtaining 96 lattice sites, so that My contained
71 53 pomts and 18 F points. Tables of random digits and standard normal deviates were
used Lo generate a synthetic M. Because of the small pattern size, random digits and
normal deviates were tested for randomness.

The My and Iowa patterns were described by (1) distances from origin points to the
10 nearest meighbors and (1) distances from loc to the 10 nearest points. The boundary
constraint was appled so that the number of recorded measurements tends to decrease as
the order of neghbor increases,

Urder mean distances are bsted i Table 3 for pomnt to point messurements and in
Table 4 for locus to point measurements. The tabulated data on My give mean distances
for the 11l Jower order ueighbors and the number of recorded measurements for each order
Distances obtained from the Jowa map were standardized by multiplving each observed
mean order distance by the sguare root of the density of urban places. The tabulated date
on Iows give the standardized mean distances and approximate miles for the 10 lower order
neighbors. Also tabulated are the sbsolute and percentage differences hetwsen the nbssrved
and calculated mean order distances. Many other properties of M2 and lowa were collected
but are not included in this report.

There are many reasons for not conducting an elaboratle analysis for goodness-of-ft of the
Sz data to the lowa data, Important reasons include the small size of the fabricated Mo and
difficulty m transforming frequency distributions into the normal form, These and similar
problems could, largely, be handled in & more carelul experimental design. More control was
not exercised because I wanted a fast, crude evaluation of an imperiection model to determine
whether it possessed any empirical reference, and, hence, merited detailed consideration.
A farr test of the imperfection approach to urban systems requires a substantially more
sophisticated moedel than M,

Theugh recognizing the ‘imperfections’ in M3, it seems sufficienily provocative to justify
release of this highly preliminary report. While statistical methods were used to evaluate
hypotheses of no difference between My a2nd lowa (which were not rejeeted by the available
data}, reports on levels of significance and other statistical findings do not seem particularly
eritical at this stage of development

Evaluation

The synthetic pattern Mj reproduces with considerable fidelity the Iowa map pattern
of urban places, The correspondence between Ms and lowa 15 a statistical rather than a
carfographic similanty. This criterion of similanity determines the type of conclusions that
can be drawn from the present study.

Both patterns were summerized by sets of distance measurements. These distances
represent, however, guite different conceptualizations. The lowa pattern refers to an observed
distribution that exietz in the real world, and at a peint in time a study area has a single
pattern of urban places. In contrast, the synthetic patiern represents a probabilistic modsl
that 15 an abstract construction. This medel does not describe one map pattermn. Instead, the
madel defines a set of thearetical values, 1% is possible to 1nterpret the model and synilietically
construct a pattern thal is representative of the model; yet, the model generates only one of
an infinity of different patterns that correspond precisely 1o the statement of the model.

In more formal terms, the reduction of the distribution of urban places to order distances

35



Winter, 1994

in a one-to-one mapping but the reduction of the model to a pattern is a one-to-many map-
ping. 8o, for the lowa distribution only one pattern is formally possible (all representations
must be conformal) while the mapping of the model is multi-valued. Consequently, while
a single map describes the lowa pattern, there is no cartograpiuc summary of the pattern
contained within the theoretical modsl

While we reduce & map to a set of numbers we do nol return a corresponding set of
numbers to the map form. The cost of reducing the lowa map pattern o a svstem of equations
describing an nuperfection model is the loss of the mayp deseription of that pattern. Whether
this loss is compensated by the substantially greater analyvtical utility of a mathematical
construction is a question that cach student must resolve for himself

[n evaluating these questions the role of simulation should be correctly mterpreted. Sim-
ulation was used only after all parameters of the model were estimated. Tlhis is not general
m social science investigations of large, complex systems by means of simulation. Often, the
model is simulated many times, each run using a different sel of parameter values. The model
being simulated is then adjndged successful if some set of parameters provides a good fit 1o
the data at hand. Thie terative approach is based upon an a priont acceptance of the model
In this application the simulation is used primanly to study properties of a complex modsl,
but it does not provide any independent means of verifying the mode! itself. Simulanon was
net used for this purpose; for the imperfection concepl simulation secves as the poor man's
(mathematically poor, that is) numerical mtegration of & completely specified prababilistic
maodel which ean not be evaluated by analytic methods,
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Table 1

Frequency [istributions of Observed and Caleulated Standardized Distances, 3, from Ge-
egraphic Center of Interior Counties Containing an Urban Place to Nearest Urban Place

: : i —fclf'z
Distance Freg. Ihst.  Errer —E—J-“—

cy/e T _Ir: fo — e

0- .243 i 1172 =02 D47l
- ABE 11 1104 - .04 0.000
=720 11 G.R2 1.18 0127
- 072 & g.23 - .23 0.005
-1.215 i 651 - 51 0237
-1.458 3 485 -LEB5 0052
-1.701 & s 161

-1.944 2 228 - 2B 0.265
-28Y 2 141 a8

-2.430 2 B3 117

Ower 2.430 0 b2 - 92

Tatal 61 61 11537 (= %*)

df=4
40 > Pr(yx® = L137) > .75
Towa data, fg from Dacey (1963a). The standard deviation is o = 0.2288. The calculated
frequency, fo, is from the umt half-normal distribution,
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Tahle 2

Comparison of Observed Distribution of Urban Places per County m lowa, 1950, with Ex-
peclted Distnibution of Pomnts per Pomative cell of Mo

Number of  Frequency Dhstributions

Places Observed Expected
E glz) E(x)

i 21 21.1

1 g 64.2

2 13 12.4

3 1 s

=4 f 1

L]

Observed values are from Dacey (196G3a). Expected valuess are computed from (20) with
A=.Td mmd ~ =2,
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Table 3

Comparison of § Order Distances for M; and lowa Maps

SOLSTICE

Order

3 "
1 ik}
2 o
3 a6
4 aa
7 a3
] A6
i 44
B 41
i 37

10 36

fowa data are from Dacey [19G3a).

s

0.63
(.84
0.98
e
1.24
1.35
1.46
1.54
L.65
1.74

16
2]
25
28
al
a4
a7
40
4z
a4

Error

Fy— I:i[]]"r:RJ

=113
0
-1

A0

A
-1
=03
- [
IR
=4
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1.4
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2.1
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Table 4
Comparison of h Order Thstances for My and lowa Maps

Order M2 lowa Error

h n; T do' PRy Mi Fp— do' iy As % of Towa
i a0 042 0.4l 10 a1 4.7
i a6 072 0,72 15 i
3 32 097 093 23 104 4.2
4 31 207 1.13 28 06 4.8
i 20 121 1.26 31 -.05 4.0
fi 98 132 139 35 -07 4.8
T 28 143 145 36 02 1.8
B 27 1.5F 1.56 38 -0 (.8
G 22 162 1.65 41 -.03 |6

10 200 LIT1 1.4 4 =103 1.4

lowa data are from Dacey {1963a).
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(ctober 14, 1963 Philadelphia, Pennsvlvania

This ariginal paper by Dacey, when printed in the Papers of the Michigan Inter - Uns-
versity Community of Mathematical Geographers, was supplemented with an *Addendum’
reflecting computer programs current at the time by Professor Duane F. Marble and Mr.
Marvin Tener, and a second examination of the lowa data by Dacey (December 13, 1963,
A Glossary by Nystuen offered expanded explanations of complicated material for readers
uncomiortable with notation. The added materals are not reprnted here.
* The support of the Regional Science Research Institute and of the National Science Foun-
dation is gratefully acknowledged.
** Current address: Department of Geography Northwestern University Evanston, IL
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