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SUMMARY

The convection of heat from surfaces at
nonuniform temperatures is reviewed. Solutions
for systems previously analyzed by others are
collected and compared. A few new solutions are
proposed. A method of treating heat fluxes with
variable wall temperature by using the solutions
for constant wall temperature is described.
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SYMBOLS AND NOMENCLATURE

k/2Cpg,

(1/6) Pr £" (0)
arbitrary constant
(3/%) (1 + m)

coefficients in Graetz and Poppendiek solutions

unit heat capacity at constant pressure, BTU/1b-°F

diameter of tube, ft

Hartree velocity function (Ref. 19)
integrating kernel, °F/(BTU/hr-ft)

32,2 ft/sec? '

integrating kernel, BTU/hr-ft2-°F
thermal conductivity, BIU/hr-£t°-(°F/ft)
"eddy conductivity", BTU/hr~-ft2-(°F/ft)
exponent for "wedge" flows

exponent in Poppendiek solution
(560Qr‘Cng/R), Prandtl modulus

heat flux, BTU/hr-ft2

local Reynolds modulus,

diameter or width of channel or slot, ft
temperature, °F

free-stream temperature, °F

slot temperature, °F

wall temperature, °F

initial stream temperature, °F

velocity parallel to surface, ft/hr
velocity perpendicular to surface, ft/hr
fluid weight rate, lbs/hr

distance along surface, ft

distance from surface, ft

dummy variable, ft

exponent in Graetz solution

nR/2C, £t71

coefficient in Poppendiek solution
dummy variable, ft (unheated starting length)
dimensionless temperature field, °F
fluid density, slugs/ft)

£luid viscosity, 1b sec/ft2

wall shear stress, lb/ft2
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FORCED CONVECTION FROM NONISOTHERMAL SURFACES

INTRODUCTION

Ru.besinl’2 has outlined the problem of heat transfer from sur-

faces whose temperature varies in the direction of fluid flow. The analy-
sis of heat flow for such cases shows that the heat fluxes which would be
predicted when the surface temperature variation is not taken into account
differ markedly from the case where the varying temperature effect is in-
cluded. In some cases the actual heat flux is in the opposite direction
to the prediction based on an isothermal surface.

In this paper the method of Rubesin will be reviewed and some
new applications demonstrated. The reader who wishes to consider this pro-
blem further should also consult references 10 and 13, where numerical and
graphical methods of analysis are given.

OTHER PAPERS ON THIS SUBJECT

Heat transfer from nonisothermal surfaces has in recent years
attracted the attention of many workers. A number of exact solutiors to
the differential equations for conservation of momentum, mass, and energy
have been given, as well as several suitable approximate solutions. One
graphical method has been cited.

Table I is a tabulation of analytical solutions of the above type
known to be available at the present time.

Experimental dats to test the various analytical solutions have
been almost completely lacking. The data of Scesal? were taken for the
express purpose of testing the predictions and, as shown by Scesal? and
Rubesing, the agreement is satisfactory. Sherwood and Maisell8 give data




TABIE I

Author Boundary-Layer Flow Conditions Properties Surface-Temperature Reference
Character Prescribed of the Fluid Description
Rubesin Laminar Flat plate, zero Constant ‘Step function 1
(approximation) pressure gradient
Chapman- Laminar Flat plate, zero /P = constant Polynomial in x L
Rubesin pressure gradient Pr = 0.72
(exact)
Levy Laminar Wedge flows Constant Polynomial in x 5
(exact ul = cx® 0.7<{ Pr< 20
Lighthill Leminar Arbitrary, skin Constant Arbitrary, T
(approximétion) friction is taken solutions given in
as parameter integral form
Graetz Laminar Flow in a tube, Constant step function 6
(exact) parabolic velocity
distribution
Lipkis Laminar Flow in a tube Constant Temperature 8
(exact) parabolic velocity & linear function
distribution of x
Seban Laminar Arbitrary Constant Arbitrary 10
(approximate)
Leveque Laminar Flat plate, velocity Constant Step function 9
profile in boundary
layer taken as linear
Rubesin Turbulent Flat plate, zero Constant Arbitrary, power 2
(approximation) pressure gradient function variation
worked out -as
example
Sage, et al, Turbulent Flat duct Constant Step function 11
(electrical
analog)
Tribus Turbulent Round or flat duct Constant Arbitrary 11
(Graphical
or numerical)
Eckert Laminar Flat plate Constant Step function 15
Poppendiek Turbulent Entrance to a tube Constant Step function 2l
(liquid
metals)
Poppendiek Turbulent Flat plate Constant Step function 25
(1iquid
metals)
Yih-Cermak Laminar Round or flat Constant Arbitrary, opposite 26

duct

walls of duct not
necessarily at
same temperature
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for the case of mase transfer.

Yih and Cermak26 have presented a report which considers the
laminar flow of a fluid in a pipe or duct with nonuniform wall tempera-
ture. Unfortunately, the report has not been widely circulated and the
present author did not learn of its existence until after the completion of
this paper.

THE GENERAL METHOD

Congider, for example, the form of the energy equation in two
dimensions as used in boundary-layer calculations,

upCy ?2 + VpCp-b-g = .Z;Q (k + ke) .&E} + @& 2, (1)
x 3 - S !

y ay 27,

gubject to the following restrictions:

1. The fluid properties p, Cps k,/iare independent of tem-
perature.

2. The velocity fleld (u, v) 1s known and independent of
temperature.

3. The "eddy conductivity” is not a function of temperature.

The effect of the last term may be taken into account by adding
a particular solution of the above equation to the sclution of the following
equation.

upCp %E + vpCp %;_3 =§3—r {(ke + k)%} (1a)

The particular solution of most interest is known as the "adia-
batic wall temperature" and is the temperature assumed by the wall when
the heat flux from the wall to the fluid is everywhere zero. When a solu-
tion to Eq la is found, that is, a relation between g(x) and Tﬁ(x), there
must be added to Tw(x) the adiabatic wall temperature Tad(x)'

The important property of Eq la is its linearity with respect
to temperature.




Consider now a function G@?, X, y) which satisfies the above
equation and a set of boundary conditions as follows:

o, x, 0) = 1 x > E

68§, x, 0) = 0 x < & if the flow is a

B, x,00) = 0 "boundary-layer"

68,5,y = o 7y > O type

o6, x, 0) = 1 x > § if the flow is of the

o8, x,0) = 0 x < € "conduit" type with

oy( , x, ) 0 y = r a line of symétry
e(, ,3y) = 0 vy O for the flow and temperature

The above function may be used to construct the temperature field
when the purface temperature varies in a stepwise fashion by considering
the sum:

ror =) 6 - 160)] o€y x v (2)

n=1,2,3... TW(O‘) = T,
We may represént the @bove summation by an integral taken in the
Stieltjes sense (see Appendix A).

X

T T =f of, x, ) ar, &), f (3)

§- 0 1,(07) = T
The above integral is the formal solution to the energy equation.

It remains now to determine he form of the function 6(5, x, y) for some

particular systems of practical interest. In every case the function

9(?, X, y) is the solution to the energy equation in the presence of a

"step function" in temperature.

A number of "step-function” solutions exist. For example the
Graetz6 and Leveque9 solutions are of this type. The solutions by Rubesinl,2
are of such a nature. The analysis by Lighthill7 is in the form above.

In general, it is not the temperature field but the heat flux at
the wall which is sought. Thus we are usually interested not in e(§, X, V)

but in its derivative at y = 0, l.e.,
X
a(x) = [—k é_%ﬁl’_)_} = -kg 6y(%, x, 0) dTW(g), (L)
- ®¥ Jdy=0 E§Zo
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As Rubesin hag painted outg, -k times the normsl gradient of o
at y = 0 is the usual definition of the local unit thermal conductance for
the case where the wall temperature is a step function.

Defining
h(f, X) = "key (g s X, O),

q(x) g} i n(€, x) azy ().

Table II gives a summary of the function'h(g , X) currently known
for various systems.

we have:

(5)

FINDING THE WALL TEMPERATURE WHEN THE HEAT FIUX IS PRESCRIBED

The previous discussion has consgidered only cases where the wall
temperature is prescribed and the heat flux to be found. In many cases of
practical interest the heat flux is given and the temperature of the wall
is to be found. The kernels must be modified for use with this second type
of problem. Most of the kernels of Table II are of the form:

nE, x) = 1(x) (x7- EH ”
with

q(x) ;fz n(g, x) a1 €) - (7)

Now multiply both sides by (xda_ zdﬂ)a'l d(xg) and integrate fromx = O
tox = =zZ.

Z X
9 (- 00l = [ @b-2ferlad) [ (x -gf'admw@). (8)
f(x)

x=0 x=0 § =0

Margenau and Murphyl7 discuss the above type of double integral; since x
varies from O to 2z andg varies from O to x for every x, the result is
equivalent to varyin%f' from O to z and x framf? to z for every value of
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Therefore,

[ a@ -t - 52 dmg)f - et (€5 (=)
0 ) 0

f(x
(9)
o
Let &/ = :f:;-éfd" )
7 -
Hence
7 . ) A - )

TS CA R TCANES NP i Y P (10)
This latter integral is an Eulerian integral of the first kind and has the
value

-1
(-1 T ()t (@ - 1) (11)
S erc-1 -1
T (x) - T, ffg@(x -EJ)‘ cLéf d_é_ (12}
£ 2€)(-a)t (a - 1)

The above integral may be written in the form:

T(2) - T =f Q(g) g(g, x) dg (13)
E=s
Table IT gives values of g(E , x) for some of the systems for which h(f, x)

is known. In the cases of the Lighthill solution and the Leveque modifica~-
tion (see Table IT), when (x)¥ = cx ® , ag often occurs,

X - - -
f{ﬁ'zg dz = ¥C (;xg -f%l) (14)
1-21
4 >
and X
f LS T (15)

f Cz-n C(Il + l)

Therefore, these solutions are of the form:

T ity R i P e (16)
] (1/3)t (1 - n/2) -L/3 (Lighthill)

6
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and

1/3ppl/3 1/3 2)1/3
o, ) - 2D DGO 0 gmnyis ()
(1/3)%
(Ieveque Modification)
Most of the kernels ‘of Table IT have been published before. Two,
however, are new and their derivation is presented in later sections of

this paper. (The generalization of the Graetz solution was given in refer-
ence 26.)

USE OF THE POPPENDIEK AND GRAETZ SOLUTIONS WHEN HEAT FLUX IS GIVEN®

The integrating kernels used in the Graetz or Poppendiek solutions
are of the form:

h, x) = h(x - @) (18)
and the heat flux is given by:
a(x) = [ n(zx-§) ar§) se | 19)
x f T2t a8 (

w(z) ={ et n(t)at v(z) =( e2' 4L at = -1(o) + z[ e-2bp(t)dt.
f [ 8 [
(20)
Then it follows2l
O
u(z) v(z) :lf ezt q(t) dt (21)

0

Now if q(x) and h(x) are known, the temperature may be found by the Fourier-
Mellin integral

*yin and Cermak congider the case where the temperature outside a poorly
insulatéd pipe is specified,26




— ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

C+ ley
(x) = L S' 2% [w(z) - T(o)] dz (22)
2l c 2 j-bq 7 ‘
or ‘

C + ieo -
T (x) - T (o) = L S v(z) dz . (23)

2ni c- i Z

=

For the integrating kernels in question

h(t) =ch eont (24)

n

Therefore,

u(z) = }z:: Cn(_An + 7)1t (25)

n

and the formal solution for T(x) is
u

C+ise I} e-2tq(t)at
T(x) - T(o) = i _ezx§° } dz . (26)
eni g 2 4, 2 2 Cn
N

The difficulty in the evaluation of the above integral lies in the infini-
tude of zeroes of

ZE;:?H (A + z)71 (27)

An approximate solution may be obtained by taking only a few terms of the
series. (In the case of the Graetz solution only the first three eigen~-
values are known.) By way of example, the Graetz kernel is

n(x) "= %E [o.7u9 o™ T+3LTBX + o 350e-4k-306% 4 0,179e~106P 4 ou] ;
(28)

hence, approximately

Cp - _0.7%9 , _0.359 , _0.179 (29)
A, + 2 73178 + z  Lh.358 + 2z 106B + z
(30.918 + 2)(95.038 + z)
(7.3178 + z)(Lk,358 + 2z)(1068 + z)

b
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. {0 x40
and if g(x) is a step function, q(x) =i the temperature is:

S 4 e ¢ x70
T(x) - T(0) = __ad e (7.3178 + z)(44.358 + 2)(106B + z)4,,
2ribk T jee 4 (30.918 +2)(95058 + z) (30)

The integral is evaluated to give:
-30.918x -95.03px]
T(x) - T(0) = gd [11.78x - 3.05 + 3.27e + 2.51e (31)
4R
The above equation is in error at the origin ( as in the Graetz solution,
since only the first three terms of the infinite series are taken. However,
the error disappears quickly since the exponentials decay rapidly.

FIOW IN A ROUND PIPE WITH PARABOLIC VELOCITY DISTRIBUTION ESTABLISHED
(Graetz Solution Modification20)

The usual form for the Graetz solution is6:v

oo

-0+ BX
= i
ax) = % (to = t,) ; Cie P (32)
i=1
where the Ci and Q; are given as:
i = 1 2 3
Ci = 0,749 0.539 0.179
a; = 7.3136 ki .61 106
and B = ;1nk
2WC
Y

In the Graetz solution,f$==0; hence the generalization is simple:

l’l(g, x) .—.'r"):%{ Zcie_oziﬁ(X ’g) (33)

i




Lk

Ra—

d

% QX
Cie 1l

i

position,

since the integrals are already known.

ature variation is of the form: T(x)
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end therefore, if the pipe has nonuaiform w=ll temperature

X
(3k)
0

Note that the conductance h(E, x) is based on the inlet temper-
ature of the fluid rather than on the mixed mean temperature at each exial

Certain wall temperature variations yield solutions reacily,

For example, if the wall temper-
Axn+l,

MODIFICATION OF THE

\ : oF { o\n n ‘nfn - 1) - n
q(x) = (a+1)a E 1 (-x)n [l - y ————J
T ap aifX  ogRexe obpnxn
{(35)
f the wall temperature is of the form: T(x) = A sin wx,
q(x) = Aw % C. <§a€ COS WX + W sin wx C4 B (36)
Ay l -——.——-—-—‘-
1 agpe + w2 O%ﬁg + W

Yih and Cermak consider the case where the temperature is prescribed on
7
the outside of an insulated pipe or plane duct2®,

LEVEQUE SOLUTICN

Consider the velocity profile
sufficiently slowly with x that v §%<<

v

then by continuity

' (x)

/a

ye.

v

d/'Ju iy =

4T

dy2

Jl
ax

2x)
A

J7T

JdX

a or

10

The energy equation is written:

u = »(x )yl/o and let 7’2 g vary
u %2 3 i.e., ifu = ?;ZT Y
L 97" should be small.
"dx
ar
a d .
= = 57)
y d¥° o
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Define
A
ds = Ma dx/Hx) or S =J, adx’ 38
Va ) (38)
Then:
dT _ 1 97T
98 y ay°
A solution to the above is:
W
T-T 3 W >0
Woo- -0 3 -
T_-T e fe v = y(95)73, (39)
(=) w Q
satisfying the boundary conditions
T = T, as y = 0, x>0
T —> TbQ as Y "oy X>0 Or X=>0, J > 0,
The heat flux at the surface y = o 1is given by
(2] - xeq (1, - T )(95)7L/3 (40)
y y = 0
The constant Cl is the reciprocal of
7 D
fe'o‘ o = 0.89297,
o
which satisfies the requirement that
T— Ty 88 Y =2 oo-
The heat flux is given by:
a(s) = {Tw-Te) k  g1/3 (41)
9/ (0.89297)
or
- ) kA3l F -1/3 oy
R M -
91/3 (0.89297) g
11
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The unit thermal .conductance is thus

o€, x) = B2 dX' 1/5 Y
. 91/3 (0.89297) f )

For the case where the wall temperature varies with x, we have then

) - k/(-1/3a-1/3 x f ,%_1/3 a2(6)

91/3 (o. 89297)3? ()

The Leveque solution is useful as an approximation of the Graetz
solution very close to the descontinuity in temperature. For example, near
X = § = 0 a large number of terms should be taken to get accuracy in
either the Graetz or Poppendiek series solutions. The Poppendiek general-
ization of the Leveque solution may be used in the thermal entrance region
.of a liguid metal system.

APPLICATION TO THE PROBLEM OF DISTRIBUTED HEAT.SOURCES

The integrating kernels in the right-hand column of Table II permit
the investigation of several problems of practical interest.

For example, consider the flat plate in laminar or turbulent flow
with a heat source, q, which is uniform between points x = a and x = b,
and zero everywhere else.

Then for x > b we have:

=b
Mx) - Tew = _ [ &, x) a(§) a§ (45)
§-%
b &
-af &, x) S -q( af, x) a8 (46)
0 o

Figs. 1 and 2 show the results.of the integration for the flat
plate in laminar and turbulent flow.

12
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As an example of the application of the above data, Figs. 3 and 4
show & comparison of temperature distributions when a uniform heat source
is used and when a discontinuous heat source dissipating the same power is
used. The discontinuous source is taken as twice the average power for
na<x<(n + 1l)a when n is even and zero when n is odd (a = constant).

Another interesting case is that of the line source of heat, such
as is approximated by a fine wire. TFor this case, the interval a b in the
above integrals shrinks to zero, but the source intensity increases.to keep

@d§ = Q, constant.

Therefore:

T(x) - T = g(5 , x) Q&)
Z " " (47)

n
for £, > x, g8y, x) = O.

Figs. 3 and 4 show the temperature distributions which result when
the limiting case of the line source is approached.

COMPARISONS WITH EXPERIMENT

The integrating kernels proposed by Sebanl? and Rubesin® have
been favorably compared to the data of Scesa 12,2, In these cases step
functions of temperature were imposed on a flat plate with a turbulent
boundary layer parallel to an air stream.

Maisel and SherWoodl8 experimented with mass transfer and, as in-
dicated in Table II, obtained results which were close to the prediction of
Sebanl®. The data of Spielman and Jakob°e for evaporation of water are
also in good agreement with Seban's equation.

Flow In a Tube

.The doctoral thesis of Kroll®? yields data on heat transfer in a
pipe with laminar flow and a variable wall temperature. Fig. 5 shows typi-
cal variations in q(x) and T, (x) measured by Kroll for three runs.

Fig. 6 shows the calculated value of g(x) using the data on Ty(x)
and graphically integrating Eq 48.
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FIG. 3. EFFECT OF NON UNIFORM HEAT FLUX ON TEMPERATURE
FLAT PLATE IN LAMINAR FLOW. o

Effect of changing the distribution of a given heat flux to a length L of
laminar boundary layer. In case (a), a constant heat flux is used. 1In
case (b) the heat intensity is twice that of case (c), but the heat is ap-
plied to half the area, alternating with regilons of zero heat flux. Case
(c) considers line sources of heat such as fine wires at X/L = 0, 0.2,

L
0.6, and 0.8, 1In all cases gy L = f a(x)adx.
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a(x) = Xk Z Cye~%1Px f e?1BE dTW(E). (48)
d 1,243

The points shown in Fig. 6 are measurements by Kroll.

Fig. 7 shows the computed local Nusselt modulus compared to the
measured values. The computed values are taken from Eq 49:

hD L E 8
R o
= s Cie lﬁxf %18 @]}W(g),x (49)

v 81723 =0

The measured values are taken from:

hD  _ g(x) D
” @, -7 ’ (50)

where q(x) and (Tw - Tg) were obtained by Kroll.

The agreement in runs 46 and 22 ig satisfactory.. The deviations
in run 54 are attributable to the changed fluid properties caused by the
large wall-temperature change. The better agreement in Fig. 7 is due to
the fact that the "local" thermal conductivity was used in Eq 50 in re-
ducing the experimental points to the nondimensional Nusselt modulus, thus
in a measure compensating for the changed fluid properties.

BOUNDARY IAYERS PRODUCED BY JETS OF AIR DISCHARGED PARALLEL TQ TEE SURFACE

uWieghardt27 has presented data for the temperature distribution
downstream from a slot of hot air, as in Fig. 8.%

The results far downstream of the slot were represented by the
empiricgl relation:

*
The following comparison was suggested by E.R.G. Eckert.
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\ -0.8
T (%)~ T _ '
L (51)
Tg = T S Ugp

Except for the disturbance to the boundary later caused by the jet, the
situation studied by Wieghardt is similar to the case of heat source of
strength USQSSCP (Ts - Tow) placed at the origin of the plate.

Using the integrating kernel on line VII of Table II and setting

q(§) d§= Q=Usps" g Cps (Ts - To), §= 0 we have:

-1/3  -0.8
TW<X) - Ta: 28 Pr. / Rex ngq ?C;QS(TS _«T)

195 (32/39)! (0.0288k)" (52)

A minor rearrangement yields

0.2 -0.8
Tw(x) - To=28Pr  Prg (kg/k Res  (xUp (53)
T T oo (32/39)1 (7/39) (0.0288k) \§ Ugps
where
Re_ = UgPgS
[€s
For the range of temperatures used by Wieghardt
0.8 ~
Pr = Pr, =0.72, (A/f4s) (kg/k) = 1, (3k)
Thus
TW(X) Toe L 6o ReO,Q X &oo -0.8
Tq - Teww s 8 Ugps (55)

The data given by Wieghardt did not include the actual tempera-
ture of the air during the tests, but if the laboratory air temperature is
guessed to be 20°C, then the "slot" Reynolds modulus, Re , may be com-
puted. The tests thus appear to have been run at values 5760<;Res<1 12,630,
Egq 55 thus becones

Ty(x) - Toe to X (56)

Ty - Tew

Part of the discrepancy between Egs 56 and 51 may be ascribed to
the fact that the issuing jet has a unifrom temperature profile, whereas a
turbulent boundary layer heated from one side has a profile similar to the

15
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l/?-power law. For the same enthalpy in the boundary layer, the wall temp-
erature will be higher in the case of a heat source than for a jet.

FRICTIONAL HEATING

As mentioned in the beginning of this paper, the effects of
viscous heating may be taken into account by adding the "adiabatic wall

temperature" to the solutions obtained when viscous heating effects have
been put equal to zero.

In the case of flow in the absence of a pressure gradient the ad-
Justment is most simply accomplished by replacing the free-stream tempera-
ture by the adiabatic wall temperature.

When the adiabatic wall temperature varies, as it does over a
wedge or where there is a pressure gradient, the éffect of frictional heat-
ing mey be introduced by writing TW(X) - Ty (x) in place of T, (x) wherever
it appears in the equations. For example, a nonisothermal surface in
frictional flow has heat flux related to wall temperature by:

X

a(x) E J 1, x) & (1,8) - Taq(5)] (57)
=0

If the fluid properties vary significantly, the above result is
not valid.

16
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APPENDIX A

The Stieltjes Integral

The more commonly known Riemann integral, which for most engineers
is pictured as the area under & curve of the integrand plotted against the
variable of integration, does not yield a value if the integrand is not "well
behaved". The Stieltjes-type integral is so defined that for "well behaved”
functions the result of the integration is the same as ordinary or Riemann
integration., The Stieltjes integral does have an advantage, however, in pro-
viding (by definition) an integral in some cases where the Riemann integral
is ambiguous. It is a shorthand notation for expressing a sum plus an in-
tegral.

A discussion of Stieltjes integrals is contained in Reference 20.
In this appendix we give only the interpretation necessary to the discusslons
of this paper.

Consider, for example the integral, I,
I = ff(x) ag(x) gax
dx

So long as f(x) and dg(x)/dx are well behaved, no difficulty arises
in finding the Riemann integral, I.

Now let £f(x) = X and suppose g(x) is given by the graph below

§ x =

A discontinuity in g(x) occurs at§ . Everywhere except at x = §', dy(x)/dx =
Co. If one attempts to form the Riemann integral for this case, the immed-
iate vicinity of € does not yleld an unambiguous "area under the curve” of

£(x) (dg(x)/d;g plotted versus x.

18



The question is resolved as follows. Everywhere the integral is
evaluated as an ordinary or Riemann integral. At x § we note £(x) =
f(g) and consider

i

fj(x-) &) ¢z = £(8) fi&@l ax = £(5) | a8
ax ax
- € g-é S'?

€-»o0)

= 1(§) [g(g"-) - g(§‘>]

Thus the Stieltjes integral is seen to be the ordinary Riemann
integral plus. contributions which occur whenever g;('x) ‘has a discontinuity.

Therefore, we interpret the Stieltjes integral as:

X h(g,x) dTW(E) =f‘ héf,x) Q-T—‘é? d<5’,
-0 5 < o

(Stielt jes)
(Riemann)

+Z h(S},%) [:ir(? ) - T@ﬂ

all jumps
in T (at g 1)

i.e.;, a Riemann integral plus a sumation.

19
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