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Abstract

Dispersion statistics (the second moment of a distribution) from mathematical
Physics are adapted to Geography for the description and analysis of distributions in a
two-dimensional non-Euclidean space (the curved surface of the Earth). The University
of Wisconsin System is used as an example.  Also, it is again pointed out that the
"ellipse of dispersion" is a misleading representation of dispersion statistics and its use
should be discontinued.

I.  Introduction

 I have long been impressed with the power of the simplest statistical measures
(population size, average and standard deviation) to effectively characterize the
distribution of some property of a collection of things. These simple statistics  for
describing distributions are widely recognized, widely understood and, when properly
used, possess significant descriptive and analytical  power.  These simple statistics
have proven to be very useful in description and analysis in other disciplines.  For
example, the results of polls reported in the popular press often give the sample size,
the average result and some measure of the reproducibility based on the standard
deviation or its estimated value.  In the study of dynamics of rigid bodies, these three
measures of the spatial distribution of mass are equivalent to the total mass, the center
of mass and the moment of inertia [see note 1].  No other spatial characteristics of the
mass distribution are needed for the rigid body equations of motion.  When describing
the spatial distribution of electrical charge, the equivalent three simplest measures of
the distribution -- the total charge, the dipole moment  and the quadrupole moment --
are often capable of characterizing all the important features of the distribution's
interaction with other collections of charge.  And there are many other examples.
 "The distinctively geographical question is 'why are spatial distributions structured
the way they are?' "  (Abler, et al., 1971).  Clearly, such a question can not be answered
until the distributions of interest can be described.  Geographical spatial description and
analysis have become quite sophisticated and quite complex.  In spite of this it is still
often desirable to describe and make comparisons between spatial distributions in the
simplest possible terms -- size, average location and dispersion.  Why not use the
simple, widely used and widely understood statistical moments of a distribution for
describing spatial distributions?



The following discussion will:   a) demonstrate the adaptation of the idea of
location average and location dispersion to distributions in two (and higher) dimensional
spaces;  b) point out that the misconceived "ellipse of dispersion" is an inappropriate
description of dispersion;  c) describe the adaptation of appropriate measures of
location and dispersion to non-Euclidean spaces (the curved surface of the earth) and
d) as an example, use these measures to describe and comment on some features of
the University of Wisconsin System.

II.  Definitions

For describing spatial distributions of a collection of things scattered in one
dimension, an appropriate minimal set of statistics would be the following: i) the size of
the population of the things; ii) their average location; and iii) the standard deviation of
their location. The location is usually given as some distance from an arbitrarily chosen
marker.  For distributions in two or three dimensions these concepts must be
appropriately extended.  In the case of the size of the population of things, there is no
difficulty. The concept of average location is easily extended into two or three
dimensions by simply taking the location of each member of the population as a location
vector.  These location vectors are vectors whose magnitudes and directions are taken
as the distances and directions from an arbitrary marker of the various members of the
population.  Then the power and convenience of vector algebra can be used to
calculate the average location or center.  The result is a location that corresponds to the
"center of gravity" or balance point of the distribution (Barmore, 1991).  The extension of
the concept of standard deviation into two or three dimensions is more complex and
merits more discussion.

The standard deviation in one dimension is S, where

S2    =     Σ   [d2(i)]  /  n. Eq. (1)

The d(i)s are the distances from the average location  of the various members of the
distribution and n is the number of things in the distribution.  If this definition is to be
extended to two or three dimensions by replacing the distances, d(i), with location
vectors, as is done in determining the average location, then it must be decided how the
"square" of the location vector will be calculated.  In order to square a vector, it must be
"multiplied" by itself.  There are three forms of vector multiplication:  i) the scalar product
(or "dot" product or inner product);  ii) the vector product (or "cross" product or outer
product); and  iii) the tensor product (or matrix or dyadic product ).  [See note 2].

If the scalar product is chosen, the result is a scalar -- a single number.  This
single number corresponds to the unnamed index of dispersion described by Furfey
(1927).  It is equal to the dynamical radius  defined by Stewart and Warntz (1958,
p.182). It is equal to the standard distance deviation  defined by Neft (1981, p.55). It is
also the same as the standard distance  and is equal to 0.707 (the square root of 1/2)
times DS, the root-mean-square of the d(ij)s, where the d(ij)s are the distances



between the various pairs of  members of the distribution --  both of which are discussed
by Kellerman (1981, p.15, 16).  But, Furfey (1927, p.97-98), who introduced the idea,
was of the opinion that there were better ways of representing areal distributions.  Also,
there is another single number that represents dispersion --  average population
density.  But it has also been found wanting (Day and Day, 1973).   A single number is
too simple a statistic for dispersion.  A statistic is needed that is capable of carrying a
richer array of information.  The extension of S into two or three dimensions using the
scalar product would, at best, be incomplete.

If the vector product is chosen for the product of the d(i)s with themselves the
result is always zero.  This is not useful.

If the tensor product is chosen for the product of the d(i)s the summed result is a
multiple component statistic .  These components can be displayed in a variety of ways
[again, refer to note 2].  I choose to simply arrange the components in a square array.
Then,

             s2xx   s2xy   s2xz

S2   = s2yx   s2yy   s2yz       , Eq. (2)

s2zx   s2zy   s2zz

for the case of extension of S into three dimensions.  If the extension were into only two
dimensions it would be a 2x2 array.  The various components are given, for example, by

s2xy    =     Σ    [ dx(i) dy(i) ] / n. Eq. (3)

The diagonal terms of  S2 are the squares of the standard deviations in the directions of
the three coordinate axes. The off-diagonal or cross-terms are invariant under an
interchange of the subscripts so that, for example,  s2yx = s2xy .  The square of the
standard distance (defined and used by others as noted above) is equal to the sum of
the diagonal elements of the array. This sum is invariant under rotation of the coordinate
system used in the computations.  Hence, the standard distance does not depend on
the orientation of the coordinate system chosen.  Formal procedures exist for
determining the square of the standard deviation in any chosen direction.  More useful
for our purposes here, is the possibility of finding a coordinate system, rotated relative to
the initial one, for which the array appears in "reduced form."

In this reduced form all the off-diagonal terms are zero and the diagonal terms
are:   i) the value of the standard deviation squared in the direction for which it has its
maximum possible value;  ii) the value of the standard deviation squared in an
orthogonal direction for which it has its minimum possible value and  iii) the value of the
standard deviation squared in a direction orthogonal to the previous two and which has
a value between the maximum and minimum value. In the two-dimensional case there
are two diagonal terms: i) and ii) above.  Then one has:



               s2x'x'     0        0

S2   =      0     s2y'y'     0                                           Eq. (4)

     0        0       s2z'z'

where the diagonal terms are the result of the calculations in directions parallel to the
coordinate axes in the new (or rotated) coordinate system, indicated by the primes (').
The computation of these values and directions is an eigenvalue problem.  The diagonal
elements of S2 are the eigenvalues and are found by solving a single cubic equation (or
quadratic equation for the two dimensional case).  The orientation of the new or primed
coordinate system is given by the eigenvectors which are found by solving a triplet of
coupled linear equations (or a pair of coupled linear equations in the two dimensional
case).  The equations are simple and the procedure for solving them is straightforward
(Band, 1959, Eqs. 5.18, 5.19).

In addition, as mentioned in note 2, the 3x3 array of Eqs. 2 and 4 can be
represented geometrically by a closed surface in three dimensions.  If the array is 2x2
then it can be represented by a closed figure in two dimensions.  In either case the
distance from the center of the figure to the boundary in any particular direction would
equal the standard deviation in the same direction.  But, this surface in three
dimensions is not an ellipsoid  and the two-dimensional figure  is not an ellipse.  This
was pointed out by Furfey (1927, p.95) in response to Lefever's proposal of a "standard
deviational ellipse" for measuring geographical  concentration (Lefever, 1926).  Later
writers seem to have overlooked or misunderstood this portion of Furfey's paper. For
example, Kellerman (1981, p.22) seems to believe that the two dimensional figure will
fail to be an ellipse only in some special cases.  This is not so and many of the
statements by Kellerman about this nonexistent ellipse are incorrect!   The only time
when the surface or figure will be a simple one is the exceedingly unlikely case when
the dispersion shows no directional variation whatsoever. Then the result is a sphere or
a circle.   An ellipsoid or ellipse does not represent the dispersion in any simple way and
is, at best, misleading [see Note 3].  The use of the  "ellipse or ellipsoid of dispersion" as
usually defined should not continue.

More suitable and proper is a two or three dimensional cross of dispersion. The
half-lengths of the arms of the cross are equal to the square root of the elements of the
array in its reduced form (e.g.,  s x'x').  The arms of the cross extend plus or minus one
standard deviation from the center and the center has been taken as the average
location.  The cross is oriented so that its arms are in the directions for which the
standard deviations are maximum and minimum.  The standard distance is simply
related to the cross, being the square root of the sum of the squares of the half-lengths
of the arms.

The two-dimensional  cross of dispersion is especially suitable for describing two-
dimensional spatial distributions in Geography. It is rich in information, carrying with it all



the relevant information about the first and second moments of the distribution.  It can
be computed in a straightforward way using simple, elementary and non-iterative
procedures.  The computation is free of mathematical difficulties, provided only that the
distributions are finite and dispersed in a finite space.  It can be computed for
continuous as well as discrete distributions.  It can be displayed on a map at the same
scale as the map. It is a visually effective and widely recognized symbol.  Readers are
accustomed to seeing statistical data represented as a point indicating the average and
the "error bars" representing the standard deviation.  The cross of dispersion is a
natural extension of this symbol into two or three dimensions.

III.  Statistics for Distributions in Non-Euclidean Spaces

Two limitations of the cross of dispersion must be considered.  First, it carries
information only about the first and second moments.  If the skewness or higher
moments of the distribution are important, then additional statistics must be calculated
and methods of displaying the results devised.  At least one effort has been made by
Monmonier (1992).  Second, the preceding discussion has assumed that  space is
Euclidean or "flat".  But the surface of the Earth is not Euclidean or flat and as a result
there are computational difficulties that must be dealt with if statistical concepts are to
be extended to two-dimensional distributions on the Earth's surface.

Traditionally there have been two different ways of working on problems in non-
Euclidean spaces.  One way is to find a higher dimensional Euclidean space in which to
embed the non-Euclidean space.  Then the geometry is familiar and computations can
proceed using familiar methods.  Thus, one could embed the curved two-dimensional
surface of the Earth in a Euclidean three-dimensional space (as indeed it is) and
proceed.

The second possibility is to adapt and restrict the computation of statistics of
distributions on the non-Euclidean surface of the Earth to the surface.  We are largely
confined to the Earth's surface and it is appropriate to adopt this provincial point of view
when calculating statistics of surficial distributions. The key to the statistical computation
on the Earth's non-Euclidean surface is the use of location vectors for specifying
position.  Two quantities  remain well defined in non-Euclidean spaces:  lengths of
geodesics and the direction of geodesics at a given point.  Therefore, a location vector
of any particular location is a vector whose magnitude and direction are the length and
direction of a geodesic (the arc length and direction of a great circle on a sphere)
connecting the particular location and a reference location.  The geodesics are curved
but the location vectors are "straight".  Thus, from the provincial or local point of view of
someone at the reference point, the problem appears to be Euclidean -- one can
proceed with the second moment computation as outlined in the preceding section.
There is a long and honorable tradition in Geography of displaying the curved non-
Euclidean surface of the Earth (and distributions on it) on a flat and, of necessity,
distorted map. The use of location vectors for position is equivalent to working on an
azimuthal-equidistant map centered at the reference location.  The chosen reference
point is the center (average location) of the distribution.   While some distortion remains,



distances and directions from the center are "true". This is all that is needed. Standard
deviations are dispersions measured from the center.

Thus, the necessary techniques for calculating the simplest three moments of
distributions in non-Euclidean spaces are in place.  The zeroth moment is simply the
population size. The population count is not changed or complicated by the non-
Euclidean nature of the surface over which the population is distributed.  The first
moment is the center (average location) of the population. The computation of the
center for distributions on the Earth's surface has been discussed previously (Barmore,
1991, 1992).   The second moment (about the mean) is the standard deviation, suitably
extended into a two-dimensional non-Euclidean space -- the surface of the Earth. The
computation has been outlined above.

IV.  The Wisconsin Idea and The University of Wisconsin System

The mission of the University of Wisconsin is often simply stated as serving the
people of the state through its teaching, research and service.  The University was
unusual in its early history by working to serve all citizens of the state in the three areas
mentioned.  The University has done this by providing a wide range of instruction on
and off the campus to a wide variety of citizens, doing research in areas with direct
application to problems of the State and providing expert advice to citizens and
agencies of the State.  Universities were not always so conceived and the particular
blend of ideas that drove and described these efforts has come to be called "The
Wisconsin Idea."  The meaning and the origin of the phrase, The Wisconsin Idea, and
an associated phrase, "The Boundaries of the Campus are the boundaries of the State,"
are not precisely known (Stark, 1995 and note 4).  In addition to the export and
dispersion of the University activities from the campus to the population of the State, the
University (the UW System) now consists of a variety of institutions whose campuses
are dispersed about the State.  Surely this dispersal is an important part of serving the
people of the State and is an important part of The Wisconsin Idea.  In what follows, this
dispersal of the UW System will be used as an example.  The dispersion statistics
developed above will be used to describe and illustrate how well the UW System has
developed this aspect of the Wisconsin Idea.

If the UW System and the State are to be compared, then each must be defined.  I
have arbitrarily taken the student population as the significant characteristic of the
various components of the UW System. More specifically, the "fall head counts" of the
student populations (UW System, 1994) was used to characterize each campus [see
note 5].  The locations of the 13  two-year Center campuses, the 11 four-year
Comprehensive University campuses and the two Doctoral University campuses were
taken as the location of an arbitrarily chosen "central place" on each campus as shown
on the 7.5 min. series, 1:24,000 scale topographical maps published by the U.S.
Geological Survey.  With equal arbitrariness, I have chosen to characterize the State
two different ways -- by its population and by its area within its boundaries. The location
of the various campuses of the UW System and the boundaries of the State are



displayed on the map that is Figure 1.  The display of the third distribution, the
population of the State, is more difficult.

Figure 1.  A map showing:  a) The boundaries of Wisconsin ( as distinct from the more
familiar  mix of some boundaries and some shore line).  b) The 13  two-year Center
campuses (small open circles), the 11 four-year Comprehensive University campuses
(small solid circles)  and the two Doctoral University campuses (larger open circles).



When Furfey (1927) introduced what is now called "the standard distance" he was
of the opinion that it was not suitable for graphical representation and that it would be
"...better to use contour lines."  in order to show how a distribution is dispersed.  If the
State's area and the State's population are to be compared to (with) the UW System
dispersion then all three should be represented the same way. The choice of  contour
maps for all three representations results in  peculiar maps.  A contour map of the areal
density of the areas of the State consists of a single contour -- the boundary of the
State.  A contour map of the areal density of students attending the various campuses
would consist of a collection of a large number of nearly coincident  contour lines tightly
surrounding each campus location.  If these two maps were combined it would appear
much like Figure 1.  A contour map of the general population density of the State would
have a more familiar appearance but would be so different from the appearance of the
other two maps that simple visual comparison would be difficult.  Another possibility for
displaying population density would be a "dot" map (where the number and size of the
dots represent the population of places) such as those shown in An Atlas of Wisconsin
(Collins, 1972). But, while these maps show the population distribution very effectively,
it is still not possible to use it for simple visual comparison with the UW System
distribution.

In contrast, the average location (center) and standard deviation (two-dimensional
cross of dispersion) provide a uniform and consistent way of presenting distributions on
a map no matter what the peculiarities of the distributions.  I have calculated these
statistics for the area of the State, the population of the State and the UW System.
They are tabulated in Table 1 and displayed in Figure 2. The centers and crosses of
dispersion were calculated as outlined in the previous sections.  The computations were
done assuming that all three distributions lay on the surface of a sphere whose area
equals that of Clarke's (1866) ellipsoid. The data for computations involving the area of
the State are the same as used previously in determining the geographic center of the
State (Barmore, 1993). The data for computations involving the general population of
the State are the locations and populations of the ca. 2000 sub-county and county units
available from the U.S. Census Bureau (1994, 1995). The data sources for the UW
System were previously given. The various population counts are for the year 1990.

As Figure 2 shows, the UW System, as I have defined it, is located and dispersed
very much like the population of the State.  Also, note that, although all three
distributions show a strong northwest-southeast dispersion, both populations are well
displaced from the location and dispersion of the area of the State. Finally, if the
historical trends in these statistics [see the appendix] are reviewed, it is found that the
location and dispersion of the UW System are approaching those of the population of
the State.  From these comparisons it seems that the UW System has been reasonably
successful in serving the State by dispersing its facilities throughout the State.  The
dispersal of the UW System is well matched with the dispersal of the population it
desires to serve.



............................................................................................................................................
...............
Table 1.

Distribution Moments for 1990 for Wisconsin's Area and Population
and

The UW System Student Population.
............................................................................................................................................

...............
0th Moment 1st Moment 2nd Moment

 .....................     ...........................     ...................................
.................................................

Distribution Distribution   Center Location Cross of Dispersion
Size Lat. Long.    S(max) S(min) Azimuth

deg. deg.    km km deg.
 .....................     ...........................     ...............    ................         ..............     ..........
...............

Area of State 169 609.8 44.6344 -89.7098 147.37 96.66 -39.31
      (sq. km.)

Population            4 891 769 43.7280 -88.9829 128.60 69.49 -44.22

UW Students           159 979 43.6468 -89.4000 125.53 63.21 -48.34
............................................................................................................................................

...............

Note:  Azimuth is the direction of S(max).  It is measured from the North and is taken as

positive toward the East .



Figure 2.  A map showing the location of the center (average location) and the cross of
dispersion (two-dimensional standard deviation) of:  a) the area of Wisconsin (labeled
A);   b) The 1990 population of Wisconsin (labeled P);   c) The 1990 student population
of the UW-System (labeled S).



V.  Summary and Recommendations

The lowest three moments of a distribution (distribution size, average location and
standard deviation of the location) are effective statistics for describing and comparing
distributions.  These three moments can be extended into two- and three-dimensional
spaces. Their computation can be adapted to non-Euclidean spaces -- specifically the
curved two-dimensional surface of the Earth.  When extended into two-dimensional
spaces this particular set of statistics is well suited to being displayed on a map.  I have
used these statistics to demonstrate that the UW System has fulfilled The Wisconsin
Idea in one particular way. Finally, I have called attention to the misbegotten "dispersion
ellipse," as usually defined, and recommend that its use not continue. 

VI. Appendix.

Historical data are available that allow the statistics discussed in this work to be
computed for somewhat more than a century into the past.  The statistics are tabulated
in Tables 2 and 3.  While the quality of the data for 1990, 1980 and 1970 is quite good,
the data used for earlier times are less reliable. I have not attempted to reconcile
disparities in the data and I have made arbitrary, though reasonable, decisions in the
face of historically shifting definitions of the various populations included. For example, I
have arbitrarily included UW-Stout  in the compilation in 1920, 1930 and 1950 even
though it was not part of the system during these years.   Because of the various
limitations of the data, the statistics for the years prior to 1990 should be viewed as
illustrative only.



VII.  Notes.

Note 1.  As it happens, the moment of inertia tensor is defined as the difference of two
quantities [see Goldstein, Cha. 5], one of which is similar to the S2 tensor developed in
this work.  This is because the moment of inertia tensor is most useful if the distances
are measured perpendicular to a specific direction.  In contrast, in this work the
measure wanted is to be based on distances measured parallel to a specific direction.

Note 2.  Vectors and tensors can be represented in a variety of ways.  The components
can be simply listed or arranged and displayed in some other suitable way.  A vector
can represented as a combination of its components with unit vectors (or pairs of unit
vectors in a dyadic notation in the case of tensors).  For vectors, the components can
be formed into row or column matrices (and for tensor, the components  can be
represented by a two dimensional matrix of rows and columns). Vectors and tensors
can even be represented as geometrical figures or surfaces in some suitable space as
is mentioned in the main text of this work. The various representations of vectors and
tensors and the algebra needed for working with them in various representations is
available in an enormous number of texts.  I have found the short summary in Band
(1959, Chapter 1) particularly clear and concise.

Note 3. While the figure defined by the various components of the S2 tensor is not
elliptical, it is possible to construct an ellipsoid or ellipse that is related to  S2.  Imagine a
vector, v, whose magnitude can have various values when pointed in various directions.
If this magnitude is chosen to vary so that

v.S2.v  =  1 Eq. (5)

no matter what direction the vector, v, points, then the tip of the vector sweeps out an
ellipsoid or ellipse as it is allowed to point in various directions. Thus, the ellipsoid or
ellipse, "v", is defined in a way that makes it the reciprocal figure of the S2 tensor in the
sense that when v2 and S2 are "multiplied" in the appropriate way the result is unity.
(The inertial ellipsoid,  which is related to the moment of inertia tensor, is constructed in
an  analogous manner. [See Goldstein, sec. 5-4].)  However, the elliptical figure "v"
must be visualized in a space where the coordinates are measured in units of the
reciprocal of length.  How is  such a figure to be displayed on a map?  On a map of a
physical space, it would be desirable to display statistics whose magnitudes are in units
of length. Also, such a figure as "v" is counter-intuitive -- in directions for which it is
small, "S" is large  and vice versa.  The characteristics of the elliptical "v" are the inverse
of what is desired and "v" is only related (in a non-intuitive way) to S2. This is not
suitable for a quantity that is to be displayed to scale on a map.

Note 4.  I am unable to find any use of the phrase, "the Wisconsin Idea", prior to the
publication of McCarthy's book of that title (McCarthy, 1912). Also, Jack Stark, author of
"The Wisconsin Idea: The University's Service to the State" (Stark, 1995) has informed



me (Stark, 1996) that neither he nor other scholars actively interested in the history of
The Wisconsin Idea with whom he is in contact are aware of any use of the phrase prior
to McCarthy's 1912 book.

Note 5.  The UW System is characterized in this work as the "fall head count"  for the
various campuses for the years shown.  The data used do not include the enormous
enrollment in the UW-Extension of the UW System. It is somewhat ironic that the
component of the system that has contributed so much to The Wisconsin Idea should
be excluded.  However, location data for the persons enrolled in the various Extension
activities was not readily available.



............................................................................................................................................

...............
Table 2.

Historical Distribution Moments for the UW System Student Population
............................................................................................................................................

...............
0th Moment 1st Moment 2nd Moment

 .......           .........................        .......................................
....................................................

Year Distribution   Center Location Cross of Dispersion
Population Lat. Long.    S(max) S(min) Azimuth

deg. deg.    km km deg.
 ........           ........................        .................     .................          ..............     ...........
................

1990 159 979 43.6468 -89.4000 125.53 63.21 -48.34
1980 155 499 43.6455 -89.4168 126.64 61.70 -48.84
1970 132 088 43.6537 -89.4017 126.75 63.05 -46.33
1960                44 587 43.524 -89.402 122.4 58.4 -43.3
1950                27 498 43.45 -89.49 116.4 51.9 -40.1

1930                16 455 43.52 -89.58 126.8 49.9 -37.1
1920                11 531 43.48 -89.57 115.8 46.6 -37.1
1910                  7 167 43.54 -89.52 121.3 53.2 -31.1
1900                  4 451 43.67 -89.45 131.3 55.1 -28.7
1890                  2 043 43.37 -89.37 75.3 62.0 -14.5

1880                  1 391 43.37 -89.35 74.9 61.1 +1.5
1870 846 42.95 -89.48 47.4 14.7 +82.0
1860 est.  237 43.07 -89.40 -.- -.- -.-
1850 est. 25 43.07 -89.40 -.- -.- -.-
............................................................................................................................................
...............



............................................................................................................................................
...............
Table 3.

Historical Distribution Moments for Wisconsin's Population
............................................................................................................................................

...............
0th Moment 1st Moment 2nd Moment

 .......           .........................        .......................................
....................................................

Year Distribution   Center Location Cross of Dispersion
Population Lat. Long.    S(max) S(min) Azimuth

deg. deg.    km km deg.
 ........           ........................        .................     .................          ..............     ...........
................

1990 4 891 769 43.7280 -88.9829 128.60 69.49 -44.22
1980 4 705 767 43.7263 -88.9753 129.28 69.41 -43.78
1970             4 417 731 43.6899 -88.9177 127.89 68.22 -43.78
1960             3 947 759 43.70 -89.92 130.9 68.7 -43.7
1950             3 434 620 43.79 -89.03 135.9 71.3 -43.8

1930             2 941 006 43.85 -89.11 140.2 72.8 -43.9
1920             2 632 067 43.93 -89.22 143.4 75.6 -43.5
1910             2 333 855 43.92 -89.26 141.3 77.8 -44.2
1900             2 068 994 43.94 -89.32 137.5 79.7 -46.1
1890             1 686 871 43.86 -89.31 129.6 79.7 -49.8

1880             1 315 497 43.71 -89.28 116.9 74.4 -61.1
1870             1 054 770 43.56 -89.19 104.2 72.2 -66.3
1860                775 881 43.43 -89.06 91.0 69.0 -70.8
1850                305 595 43.17 -88.82 70.3 56.7 +77.8
............................................................................................................................................

...............
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