Autoimmune Diseases Co-occurring Within Individuals and Within Families *A Systematic Review*

Emily C. Somers, *† Sara L. Thomas, * Liam Smeeth, ‡ and Andrew J. Hall*

Background: Autoimmune diseases have been observed to coexist both within individuals and within families. It is unclear whether clinical reports of comorbid autoimmune diseases represent chance findings or true associations. This systematic review evaluates the current level of evidence on the coexistence of selected autoimmune diseases within individuals and families. We reviewed the associations among 4 T_H 1-associated autoimmune diseases: insulin-dependent diabetes mellitus, autoimmune (Hashimoto) thyroiditis, rheumatoid arthritis, and multiple sclerosis.

Methods: Studies quantifying the coexistence between the selected diseases, published through March 2004, were identified from Medline and Embase searches. Study eligibility was determined on the basis of preestablished criteria, and relevant data were extracted according to a fixed protocol. We determined the prevalence of comorbid autoimmune disease according to index disease and then compiled summary statistics. Heterogeneity among studies was assessed by exact likelihood ratio tests and Monte Carlo inference. Results: We found 54 studies that met the eligibility criteria. Of these, 52 studies examined the coexistence of disease within individuals and 9 studies examined within-family associations. The majority of studies were uncontrolled and did not account for confounding factors. There was substantial evidence for heterogeneity among studies. Although inconclusive, the data appear to support an increased prevalence of autoimmune thyroiditis among patients with rheumatoid arthritis and those with insulin-dependent diabetes mellitus, and an inverse association between rheumatoid arthritis and multiple sclerosis.

Conclusion: Although the available evidence does not permit firm conclusions regarding comorbidities among the selected autoimmune diseases, results are sufficiently suggestive to warrant further study.

(*Epidemiology* 2006;17: 202–217)

Submitted 27 April 2004; accepted 1 July 2005.

- From the Departments of *Infectious and Tropical Diseases and ‡Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, U.K.; and the †Division of Rheumatology, University of Michigan, Ann Arbor, MI.
- ECS is supported by a United Kingdom Overseas Research Student Award, the Herb and Carol Amster Lupus Research Fund, and an Arthritis Foundation Doctoral Dissertation Award. LS holds a Medical Research Council Clinician Scientist Fellowship.
- Correspondence: Emily C. Somers, University of Michigan Health System, Division of Rheumatology, 1150 W. Medical Center Dr., 5520 MSRB 1, Ann Arbor, MI 48109-0680. E-mail: emsomers@umich.edu.

Copyright © 2006 by Lippincott Williams & Wilkins ISSN: 1044-3983/06/1702-0202

DOI: 10.1097/01.ede.0000193605.93416.df

Autoimmune diseases include a diverse group of chronic disorders associated with substantial public health impact.¹ Anecdotal evidence suggests that autoimmune diseases tend to coexist both within individuals and within families, and the concept of an autoimmune diathesis is widely accepted. However, the patterns of association among autoimmune diseases have not been evaluated in a systematic fashion, and it is unclear whether clinical reports of comorbid autoimmune diseases represent chance findings or true associations.

Animal models demonstrate a clear association between different types of autoimmune disorders. For example, nonobese diabetic mice frequently develop thyroiditis and sialoadenitis in addition to autoimmune insulin-dependent diabetes.² These mice crossed with KRN mice (a T-cell receptor transgenic line) develop a disease, closely resembling human rheumatoid arthritis.³ SJL mice (a model of experimental autoimmune encephalomyelitis) are highly susceptible to a number of experimentally induced autoimmune diseases.⁴ Although genetic background is important, exogenous factors (such as level of microbial exposure or xenobiotics) can modulate the development of disease in autoimmune-prone animal models.^{5–7}

Common features in the immunoepidemiology of various autoimmune diseases are recognized, and reports of shared risk factors are emerging.^{8–10} However, the etiologies of most autoimmune diseases remain poorly understood. Because autoimmune diseases are conventionally treated by separate medical specialties according to type of organ involvement, there are missed opportunities to study these diseases as a group. We are interested in the premise that interaction between genetic background and early life programming due to environmental exposures may result in general susceptibility to autoimmune disease. Characterization of the extent to which particular combinations of autoimmune diseases occur in excess of that expected by chance may offer insight into shared pathophysiological mechanisms.

We undertook a systematic literature review to quantify the coexistence of selected autoimmune diseases within individuals and families. We reviewed the associations among 4 autoimmune diseases: insulin-dependent diabetes mellitus (IDDM), autoimmune (Hashimoto) thyroiditis (AIT), rheumatoid arthritis (RA), and multiple sclerosis (MS). We chose to focus on these diseases for several reasons. Evidence of associations between these diseases in animal models imparts plausibility for their coexistence in humans. Moreover, these

Epidemiology • Volume 17, Number 2, March 2006

diseases are sufficiently common, in contrast to many other autoimmune diseases, to provide a reasonable expectation of detecting them in combination.

A further consideration is that these disorders are widely considered to be T_H1-associated. Mosmann et al¹¹ described 2 functional subsets of T-helper cells in mice, $T_{\rm H}1$ and T_H2, characterized by different patterns of cytokine secretion. T_H1 and T_H2 cells are also distinguishable on the basis of chemokine receptors.¹² Immune-mediated disorders in mouse models can be classified as T_H1 - or T_H2 -associated according to the predominant cytokine profile. Although this is an oversimplified approach for the classification of disease in humans, and additional subsets of T cells have been more recently identified (Th3 and Tr1),¹³ the 4 diseases that we included in this review have nonetheless been described as having characteristics of $T_H 1$ predominance.^{14,15} One can speculate that mutual genetic or environmental factors influencing cytokine regulation or T-cell polarization are relevant to T_H1-associated disorders, and that these conditions would tend to coexist within individuals and possibly within families.

METHODS

Identification of Studies and Data Extraction

We identified studies quantifying the coexistence of selected autoimmune diseases, published through March 2004, from Medline (Ovid) and Embase electronic databases. These databases cover literature from 1966 and from 1980, respectively. Identification of articles was performed by searching the databases on a combination of thesaurus terms. No language restrictions were applied. In Medline, thesaurus terms for the 4 prespecified autoimmune diseases were exploded for "diabetes mellitus, type 1," "multiple sclerosis," "arthritis, rheumatoid," and "thyroiditis, autoimmune" or "thyroiditis, subacute" or "thyroid diseases." For all diseases, the search was restricted to the subheadings of complications, epidemiology, etiology, genetics, and physiopathology. The results from each search were crosstabulated with all the other searches to identify publications with any combination of at least 2 of the specified diseases. A similar search strategy was used in Embase (list of terms available on request). Review articles published within the last 5 years on the epidemiology of each of the autoimmune diseases were also identified. Reference lists from all relevant articles were examined for studies that were not captured by the computerized searches. A textbook on rheumatic disease epidemiology¹⁶ was also reviewed.

Studies were eligible for inclusion in the review if the coexistence of 2 or more prespecified autoimmune diseases, either within individuals or among first-degree relatives (parents, siblings, children), was reported. Uncontrolled case series were eligible if a denominator was documented. For studies of individuals, the denominator was the total number of index disease cases. For family studies, the denominator was considered to be the number of relatives rather than the number of families. Studies were excluded if: (1) they were clinical/laboratory studies that selected patients based on prespecified proportions of comorbid autoimmune conditions

(eg, a case-control study of patients with RA with IDDM versus patients with RA without IDDM); (2) they were restricted to seroprevalence of autoantibodies rather than clinical disease (because autoantibodies can occur in healthy individuals); (3) there was insufficient distinction between diagnostic categories (eg, type 1 vs type 2 diabetes, rheumatoid arthritis vs osteoarthritis, autoimmune vs nonautoimmune thyroid disease); (4) they were restricted to families having multiple members with autoimmune diseases; (5) they were restricted to women during pregnancy or the postpartum period; or (6) their results were not sufficiently clear to determine prevalence. Furthermore, articles were excluded if autoimmune disease coexistence was reported in the context of a known genetic syndrome, eg, autoimmune polyglandular syndrome.¹⁷ For studies with index disease case groups meeting eligibility criteria, but control groups failing to meet criteria (eg, cross-sectional studies that recruited "healthy controls"), only data regarding the index disease case groups were included in this review. For the purposes of this review, we did not consider patients with only "subclinical" hypothyroidism (elevated thyroid-stimulating hormone [TSH] but normal thyroid function, ie, normal circulating concentrations of free T_3 and T_4) to have autoimmune thyroiditis.¹⁸

A primary reviewer screened all titles and abstracts of publications identified by the literature search for eligibility. Articles were rejected if they clearly did not meet eligibility criteria. The full text of all articles possibly meeting inclusion criteria was obtained and screened. A secondary reviewer was consulted in cases in which eligibility of the article was unclear.

We categorized each study according to index and comorbid disease. For example, if a series of patients with RA was evaluated for the presence of another disease, we considered RA to be the index disease and any secondary condition as comorbid. Controls (when applicable) were persons who did not have the index disease but may have been positive for the comorbid disease. For the family studies, we use the term "case proband" to represent individuals with the index disease and the term "control proband" for nonindex disease controls. Similarly, "case relatives" are relatives of the control probands, and "control relatives" are relatives of the control probands. We included any results regarding the prevalence of comorbid disease.

We used a standardized data collection form to extract data, including study design and population, number of index disease cases and controls, incidence/prevalence of coexistent autoimmune diseases, diagnostic criteria used for index and comorbid diseases, potential confounding factors (eg, sex, age), and crude and adjusted relative risk estimates (odds ratios [OR] or standardized prevalence ratios, as appropriate) with 95% confidence intervals (CIs). The effect estimates refer to comorbid autoimmune diseases within index disease cases compared with controls. For family studies, data collection was modified to include the number of index disease and control probands, and the number and proportion of relatives of probands with coexistent autoimmune diseases.

© 2006 Lippincott Williams & Wilkins

Analysis

We computed comorbid autoimmune disease prevalence and corresponding exact binomial 95% CIs separately for index disease cases and controls. For studies that included raw data from control or reference groups without presentation of risk estimates relative to the index group, we calculated measures of relative risk (RR) and 95% CIs. We used ORs and exact 95% CIs for case-control studies. For studies including population-based reference data, we calculated standardized prevalence ratios (SPRs) and CIs based on the Poisson distribution for comparison of the observed number of comorbid cases with that expected based on the population reference values. We assessed heterogeneity among studies (within each combination of diseases) by exact likelihood ratio tests and Monte Carlo inference to determine whether it was appropriate to obtain pooled estimates of prevalence or relative risk. We conducted statistical analyses using Stata version 8 (Stata Corp., College Station, TX) and StatXact version 6 (Cytel Software Corp., Cambridge, MA).

RESULTS

Studies Identified

We identified 1187 publications from the Medline and Embase searches, of which we judged 86 to be potentially eligible based on initial screening. Of these, 39 met inclusion criteria. We identified a further 67 articles from reference lists for screening, of which 15 fit inclusion criteria. Thus, in total, we included 54 articles in this review. Studies are summarized in Tables 1 and 2.

Comorbidity of Autoimmune Diseases Within Individuals

Fifty-two studies examined the coexistence within individuals of at least 2 of the selected autoimmune diseases. Only 16 of these studies had control groups or presented expected values based on population data. For each of the within-individual studies, the prevalence estimates and 95% CI for comorbid autoimmune diseases within index disease cases are displayed in a forest plot (Fig. 1). For context, background prevalence estimates based on data from a systematic review of epidemiologic data from the United States by Jacobson et al¹⁹ are as follows: RA 0.86%, IDDM 0.19%, AIT 0.79% adults/0.53% children (10–19 years), and MS 0.06%. However, these estimates provide only a crude comparison for the studies summarized in this review, because the populations varied considerably in terms of demographic structures, geographic locations, and time periods.

With the exception of comorbid RA among MS index cases, there was strong evidence of heterogeneity for all disease combinations (P for heterogeneity all <0.0001). Given such heterogeneity, we did not focus on pooled estimates or perform an overall meta-analysis. Study findings are reviewed here according to each index disease category.

Rheumatoid Arthritis

Eleven intraindividual studies included RA as the index disease; one additional study included juvenile rheumatoid

arthritis (JRA) index cases. Five studies examined the coexistence of IDDM^{20–24} with IDDM prevalence among RA index cases ranging from 0.32% to 5.95%. Of the 2 studies with controls,^{21,22} ORs were undefined, because neither study found any coexistent IDDM in the control groups. Neither study adjusted for confounders such as sex or age. The only population-based study, which arguably followed the most rigorous methodology, found no association between IDDM and RA when standardized to the source population.

Eight studies^{20,22,25–30} examined the prevalence of comorbid AIT (autoimmune thyroiditis) among RA index cases, with estimates ranging from 0.5% to 9.8%. A ninth study of JRA index cases found 4.5% prevalence for comorbid AIT.³¹ Of the 4 controlled studies,^{22,25,27,28} all found increased odds ratios for AIT among the RA cases versus controls, although CIs were wide and overlapped one in 2 cases. One of the studies was from a postmortem setting, limiting its comparability to the other studies.²⁵ The only population-based study found no association based on expected values from the source population.²⁰

Insulin-Dependent Diabetes Mellitus

Twenty-seven studies^{32–58} with IDDM as the index disease were identified. All studies assessed coexistent AIT and one also examined coexistent JRA.⁴⁷ Comorbid AIT prevalence among the IDDM cases ranged from 0% to 24%. The study with the second highest prevalence⁴⁰ was a longterm follow-up assessment of adults who had been diagnosed with IDDM as children or adolescents; the other studies were conducted in pediatric to young adult populations. None of the studies was population-based, and the only controlled study⁴⁵ found no cases of AIT in the control group of "healthy" children, although it is unclear whether the latter category excluded children with prevalent clinical thyroid disease.

Multiple Sclerosis

Seven studies were included, $^{59-65}$ some of which explored more than one comorbid disease. The coexistence of RA was assessed in 5 studies, $^{59-62,64}$ with prevalence estimates ranging from 0.35% to 2.4%; a sixth study⁶⁵ that assessed comorbid JRA found 0.28% prevalence. Comorbid RA among patients with MS was the only disease combination for which there was no evidence of heterogeneity among studies (P = 0.17). The weighted mean prevalence of RA in patients with MS was 0.63% (excluding the JRA study). Two studies^{61,64} had control groups; one found no cases of comorbid RA among hospital-based controls, and the other found an OR of less than 1.0 for comorbid RA among MS cases versus spouse or friend controls, although the CIs were wide and overlapped one. A third study⁶² documented an SPR of 0.60 (95% CI = 0.2–1.41), but the reference values were derived from geographic regions outside of the MS study area.

IDDM coexistence was assessed in 6 studies,^{59,61–65} with prevalence estimates ranging from 0% to 2.6%. There was no evidence for an association between IDDM and MS in the 2 controlled studies.^{61,64} However, the study that included referent data from its source population found an increased association between IDDM and MS.⁶³

© 2006 Lippincott Williams & Wilkins

od or button Stroty Population buration of Index Disease Control or External Population Control or External Disease Control of Disease Teach Teach Disease Control Disease Martínio Tarthis Erration of Index Disease Reclester, MN IDDM ARA ³² IDDM-Palumbo ⁴⁰ MN F741 Poliage NR Population Arthresis IDDM ARA ³² IDDM-Palumbo ⁴⁰ MN Erst-service Res-control, loopital- Arthresis IDDM ARA ³² IDDM-Palumbo ⁴⁰ Buardion NR Case-control, loopital- Arthresis IDDM ARA ³² IDDM-age and maxim K Duration NR NR.33 y (21-91 y) AIT ARA ³² NR K Duration NR NR ARA ³² NR NR K Duration NR NR ARA ³² NR NR I K Duration NR NR ARA ³² NR NR I K Duration NR NR ARA ³² NR NR I <	A 4 4				Diag	Diagnostic Criteria	30 UN	Como	Comorbidity	
Indexter Indexter MN IDDM ARA ⁷⁹ IDDM-Palumbo ⁹⁰ 4 74.1% age NR Population AIT ARA^{70} IDDM-Palumbo ⁹⁰ 4 74.1% age NR Population AIT ARA^{70} IDDM-Palumbo ⁹⁰ 6 Case-control, hospital- Arthrosis IDDM ARA ⁷⁰ IDDM-NDDG ⁸¹ 8 Case-control, hospital- Arthrosis IDDM ARA ⁷⁰ IDDM-oge and 0 Case-control, clinic-based OA IDDM ARA ⁷⁰ IDDM-oge and 0 Case-control, clinic-based OA IDDM ARA ⁷⁰ IDDM-oge and 0 Case-control, clinic-based OA IDDM ARA ⁷⁰ IDDM-oge and 0 Case-control, clinic-based OA IDDM ARA ⁷⁰ NR 0 Sex NR/3ge NR - IDDM ARA ⁷⁰ NR 0 Sex NR/3ge NR - IDDM ARA ⁸¹ NR I 0 Sex NR/3ge NR - - IDDM ARA ⁸¹ AIT-histology 0 Sex NR/3ge NR - - IDDM ARA ⁸¹ AIT-histology 0 N N ARA ⁸¹ NR	Author Study Period or Publication Date Location	Study Population Sex/Age—Index Cases Duration of Index Disease	Control or External Population Sex/Age—Controls	Comorbid Disease	Index Disease	Comorbid Disease	No. of Cases/ No. of Controls	Among Cases No. (%)	Among Controls No. (%)	OR or SPR (95% CI)*
*Case-control, hospital- basedArthosis F 92.3%/56.6 ± 13 yIDDMARA ⁷² IDDM-NDDG ⁸³ 8F 92.3%/56.6 ± 13 yF 92.3%/56.6 ± 13 yIDDMARA ⁷⁹ IDDM-age and insulin0Duration NRCase-control, clinic-basedOAIDDMARA ⁷⁹ IDDM-age and insulin0.1Sex NR/52 y (21-81)NR/53 y (21-91 y)AITARA ⁷⁹ IDDM-age and insulin0.1Sex NR/52 y (21-83)NR/53 y (21-91 y)AITARA ⁷⁹ NRI0.1Sex NR/52 y (21-83)NR/53 y (21-91 y)AITAITAIT-NRI0.1Sex NR/29 x (21-83)NR/53 y (21-91 y)AITAITAIT-NRI0.1Sex NR/29 x NRSex NR/29 x (21-81 y)AITAITAITAIT-NR0.1Sex NR/29 x NRSex NR/29 x (21-91 y)ARA ⁴⁴ NRAIT-NR0.1Sex NR/29 x NRSex NR/29 x (21-91 y)AITARA ⁴⁴ NR0.1F 65%/53.7 ySex NR/29 x (21-91 y)ARA ⁴⁴ NR0.1F 65%/53.7 ySex NR/29 x (21-91 y)AITARA ⁴⁴ NR0.1Sex NR/29 x (21-91 x (21-14))Sex NR/29 x (21-91 x (21-14))AITARA ⁴⁴ AIT-NISO1.1Sex NR/29 x (21-91 x (21-14))Sex NR/29 x (21-91 x (21-14))Sex NR/29 x (21-91 x (21-14))AITAIT-NISO1.1Sex NR/29 x (21-91 x (21-14))Sex NR/29 x (21-91 x (21-14))Sex NR/29 x (21-91 x (21-14))AITAIT1.1F 65%/58 y (21-91 x (21-14))	Rheumatoid arthri Linos ²⁰ 1950–1974 Rochester, MN		Rochester, MN population	IDDM AIT	ARA^{79}	IDDM—Palumbo ⁸⁰ AIT—Furszyfer ⁸¹	521/NA	31 (6) 11 (2)		SPR 0.93 (0.6–1.3) ^{†‡} SPR1.39 (0.7–2.5) ^{†‡}
2 Case-control, clinic-based OA IDDM ARA^{79} IDDM-age and b) Sex NR/52 y (21-83) NR/53 y (21-91 y) AIT AIT -NR Insulin U.K. Duration NR AIT AIT AIT -NR AIT -NR b) Sex NR/52 y (21-83) NR/53 y (21-91 y) AIT AIT -NR AIT -NR b) Sex NR/3ge NR - IDDM ARA^{82} NR II b) Sex NR/3ge NR - IDDM ARA^{84} NR II II b) F 65%/53.7 y Clinic-based series - IDDM ARA^{84} NR II b) F 65%/53.7 y Necropsy-based Postmortem, non-RA AIT ARA^{84} NR b) F 65%/53.7 y Necropsy-based Postmortem, non-RA AIT ARA^{84} NR b) F 65%/53.7 y Ne ARA^{84} NR AIT -histology b) Sex NR/age NR Ne AIT -histology AIT -histology AIT -histology b) Sex NR/age NR Ne	Panczel ^{21§} 1980–1983 Hungary	Case-control, hospital- based F 92.3%/56.2 ± 11 y Duration NR	Arthrosis F 92.3%/56.6 \pm 13 y	MDDI	ARA ⁸²	IDDM-NDDG ⁸³	310/310	1 (<1)	0) 0	$OR = undefined^{*}$
b)Hospital series Sex NR/age NR-IDDM AR^{32} NR1b)Sex NR/age NR Duration NRIDDM AR^{34} NRb)F 65%53.7 y le-uponIDDM AR^{34} NRb)F 65%53.7 y le-uponIDDM AR^{34} NRb)F 65%53.7 y le-upon1DDM AR^{34} NRb)F 65%53.7 y le-upon1DDM AR^{34} NRcupon- cut.KNecropsy-basedPostmortem, non-RAAIT AR^{35} AIT—histology/ antony61case-controlSex/age—NRNAIT AR^{35} AIT—histology/ antony61case-controlSex/ageNAIT AR^{48} AIT—histology/ antony61case-controlSex/age-AIT AR^{48} AIT—clinical/lab/ ultrasound 50 F 86%49.2 y Gemany-AIT AR^{44} AIT—clinical/lab/ ultrasound 50 F 87%58.7 y (21-64)F 86.1%58.8 yAITARA ⁴⁴ AIT—biopsy-proven7Case-control, clinic-basedOA or fibromyalgiaAITARA ⁴⁴ AIT—biopsy-proven7Case-control, clinic-basedOA or fibromyalgiaAITARA ⁴⁴ AIT—biopsy-proven	Thomas ²² 1983 (pub) London, U.K.	Case-control, clinic-based Sex NR/52 y (21–83) Duration NR	OA NR/53 y (21–91 y)	IDDM AIT	ARA ⁷⁹		295/307	2 (1) 8 (3)	0 (0) 6 (2)	OR = undefined [‡] 1.4 (0.4–4.9) [‡]
0) F 65%/53.7 y F 65%/53.7 y J.K. - IDDM ARA ⁵⁴ NR E-upon- <2 y	Hakala ²³ 1992 (pub) Finland	Hospital series Sex NR/age NR Duration NR	l	MDDI	ARA ⁸²	NR	1460/NA	9 (1)		
Necropsy-based Postmotem, non-RA AIT ARA ⁸⁵ AIT-histology/ anatomy Sex NR/age NR Sex NR/age NR Sex NR/age NR anatomy Duration NR Sex NR/age NR NR AIT-histology/ anatomy 1 ²⁶⁸ Clinic-based series - AIT NR 1 ²⁶⁸ Clinic-based series - AIT NR 1 ²⁶⁸ Clinic-based series - AIT AIT-clinical/lab/ ultrasound 10 F 86%/49.2 y - AIT NR AIT-clinical/lab/ ultrasound 26 Clinic-based - AIT NR AIT-clinical/lab/ ultrasound 11 F 87.4%/34.4 (15-74 y) - AIT ARA ⁸⁴ AIT-NR 2a, >3 y for 45% of patients - AIT ARA ⁸⁴ AIT-NR 2a, >3 y for 45% of patients - AIT ARA ⁸⁴ AIT-NR 2a, Clinic-based OA or fibromyalgia AIT ARA ⁸⁴ AIT-biopsy-proven 20 Case-control, clinic-based OA or fibromyalgia AIT ARA ⁸⁴ AIT-biopsy-proven	Vaidya ²⁴ 2002 (pub) Newcastle-upon- Tyne, U.K.	Clinic-based series F 65%/53.7 y <2 y	I	MDDI	ARA ⁸⁴	NR	123/NA	4 (3)		
 ⁸ Clinic-based series - AIT NR AIT-clinical/lab/ F 86%/49.2 y ⁸ Ration NR ⁸ Clinic-based ⁸ Clinic-based ⁸ Clinic-based ⁸ AIT-clinical/lab/ ⁸ AIT-clinical/lab/ ⁹ AIT AR⁸⁴ ⁸ AIT-NR ⁹ S 3 y for 45% of patients ⁹ Case-control, clinic-based ¹⁰ A or fibromyalgia ¹⁰ AIT AR⁸⁴ ¹⁰ AIT-NR ¹⁰ AIT AR⁸⁴ ¹⁰ AIT-NR ¹⁰ AIT AR⁸⁴ ¹⁰ AIT-NR ¹⁰ AIT AR⁸⁴ 	Becker ²⁵ 1941–1961 MN	Necropsy-based case-control Sex NR/age NR Duration NR	Postmortem, non-RA Sex/age—NR	AIT	ARA ⁸⁵	AIT—histology/ anatomy	51/15,672	5 (10)	139 (1)	12.1 (3.7–31.1)
 Clinic-based R 87.4%/34.4 (15-74 y) > 3 y for 45% of patients Case-control, clinic-based OA or fibromyalgia AIT ARA⁸⁴ AIT—biopsy-proven F 76.5%/58.7 y (21-84) F 86.1%/58.8 y 	Herrmann ^{26§} 1990 (pub) Leinzio Germanv	Clinic-based series F 86%/49.2 y Duration NR	l	AIT	NR	AIT—clinical/lab/ ultrasound	201/NA	3 (1)	I	
Case-control, clinic-based OA or fibromyalgia AIT ARA ⁸⁴ AIT—biopsy-proven) F 76.5%/58.7 y (21–84) F 86.1%/58.8 y	Benamour ²⁹⁸ 1981–1991 Casablanca, Morocco	Clinic-based F 87.4%/34.4 (15–74 y) >3 y for 45% of patients	I	AIT	ARA ⁸⁴	AIT—NR	404/NA	2 (<1)		I
Canada Duration NR	Shiroky ²⁷ 1993 (pub) Montreal, Canada	Case-control, clinic-based F 76.5%/58.7 y (21–84) Duration NR	OA or fibromyalgia F 86.1%/58.8 y (29–86)	AIT	ARA ⁸⁴	AIT—biopsy-proven	119/108	6 (5)	1 (1)	5.7 (0.67–263.68) [‡]

© 2006 Lippincott Williams & Wilkins

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Author				Diagn	Diagnostic Criteria	Mo. of	Como	Comorbidity	
Author Study Period or Publication Date Location	Study Population Sex/Age—Index Cases Duration of Index Disease	Control or External Population Sex/Age—Controls	Comorbid Disease	Index Disease	Comorbid Disease	No. of Cases/ No. of Controls	Among Cases No. (%)	Among Controls No. (%)	OR or SPR (95% CI)*
Pongratz ^{28§} 1998–1999	Case-control, clinic-based	OA F 82 6%/70 + 12 3 v	AIT	ARA ⁸⁴	OAACR ⁸⁶⁻⁸⁸	383/409	35 (9)	15 (4)	2.6 (1.4–5.3)
Graz, Austria	F 88.3%/63 ± 14 y Duration NR								
Alpigiani ³¹ 1998–2000 Genoa, Italy	Clinic-based JRA study F 63.6%/12 (1.9–25y) 6.8 (0.3–22.5 y)	I	AIT	EULAR ⁸⁹	Lab/ultrasound	66/NA	3 (5)		
Chan ³⁰ Clinic-based 2001(pub) F 90.6%/age N Liverpool, U.K. Duration NR Insulin-dependent diabetes mellitus	Clinic-based F 90.6%/age NR Duration NR diabetes mellitus	I	AIT	ARA ⁸⁴	AlT—lab	64/NA	2 (3)		
Gilani ³² 1984 (pub) NY/FL	Cross-sectional, clinic- based F 39.7%/8.8 y Newly diagnosed	I	AIT	NR	AIT-clinical/lab	58/NA	2 (3)		
Betterle ³³ 1984 (pub) Padua, Italy	Cross-sectional F 45.6%/19 y (2–67 y) 28 wk (1 wk–12 y)	I	AIT	NR	AIT	239/NA	2 (1)		
Sanchez-Lugo ⁴⁸ 1988 Puerto Rico	Clinic-based F 55%/1-20 y 4.2 y		AIT	NR	AIT—lab	65/NA	1 (2)		
Pavia Sesma ^{34§} 1989 (pub) Barcelona, Spain	Cross-sectional, clinic- based F 46.7%/4-18 y 0-8 y	I	AIT	Physician diagnosis	AIT—Fisher ⁹⁰	225/NA	16 (7)		
McKenna ³⁵ 1990 (pub) Boston, MA	Cross-sectional, hospital- based F $57.1\%/13.9 \pm 3.7$ y 4.6 ± 4.2 y $(0-17)$	I	AIT	NR	AIT-clinical/lab	371/NA	9 (2)		
Burek ³⁶ 1990 (pub) U.S.	Cross-sectional, clinic- based F 59.7%/pediatric- adolescent	I	AIT	Age <15 and insulin	AIT-clinical/lab	159/NA	14 (9)	I	

206

© 2006 Lippincott Williams & Wilkins

Kontiainen ³⁷ 1990 (pub) Helsinki, Finland	Cross-sectional, clinic- based Sex NR/21.1 ± 4.5 y 12.4 ± 7.1 y	<	AIT N	NR	AIT—lab	141/NA	10 (7)	I	
Gruneiro De Papendieck ^{38§} 1988–1991 Buenos Aires, Argentina	Cross-sectional, clinic- based F 62%/13.5 y (4.6–20) 4.6 ± 4.4 y	<	AIT N	NR	AIT—lab	107/NA	9 (8)	I	I
Gamba ^{39§} 1991–1993 Turin, Italy	Clinic-based series F 41.9%/30 ± 9.3 y 13.5 ± 8.1 y (2–34 y)	A	AIT N	NR	AITclinical/lab	167/NA	7 (4)	I	1
McCanlies ⁴⁰ 1993 Pittsburgh, PA	Cross-sectional, hospital- based F $\sim 50\%/{\sim}42.2$ y 35 y	4	AIT A	Age <17 and insulin	AITclinical/lab	259/NA	40 (15)	I	I
Wong ^{so} 1993 (pub) Hong Kong	Clinic-based F 61.5%/7.9 (1.7–13.5 y) at IDDM onset 4.0 ± 1.6 y	АІТ		NDDG ⁸³	AIT—lab	26/NA	0) (0)	I	I
Tsai ⁴⁹ 1993 (pub) Taiwan	Clinic-based F 68%/7.2 (0.3–15 y) at IDDM onset 4.2 (0.1–14.3 y)	AIT		NDDG ⁸³	AIT—lab	65/NA	(0) 0	I	I
Prina Cerai ⁵¹ 1994 (pub) Italy	Hospital-based F 41.2%/13.5 ± 2.2 7.9 ± 2.8	AIT		NR	AIT—lab	144/NA	2 (1)		
Darendeliler ⁴¹ 1994 (pub) Marmara, Turkey	Cross-sectional, clinic- based F 53%/11 (2.3–22 y) Median 2.3 y (0.1–15.3 y)	АІТ		NR	AIT—clinical/lab/ ultrasound	83/NA	2 (2)	I	I
Radetti ⁴² 1995 (pub) Italy/Croatia/ Slovenia/Austria	Multicenter, clinic-based Sex NR /9.6 y at IDDM onset 3.7 ± 3 y	AIT		Clinical/ treatment	AIT-lab/ultrasound	1419/NA	55 (4)	 Continuee	Continued on next page

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Author Study Period or Study Period or Publication Date LocationStudy Population Study Population Study Population Duration of Index Diseas Loreation1996 (pub)F S9%/18 y at IDDM basedTaipei, TaiwanF S9%/18 y at IDDM onset1996 (pub)F S9%/18 y at IDDM onsetPavia, ItalyF S9%/1.2-21 y at IDDM diagnosis1996 (pub)F 48%/1.2-21 y at IDDM diagnosis1995 (pub)F 48%/1.2-21 y at IDDM diagnosisPavia, ItalyF 48%/1.2-21 y at IDDM diagnosis2001 Lacasa ⁵²⁸ Clinic-based diagnosis1993-1996F 59%/27.4 y diagnosisBarcelona, Spain10.4 wkParcelona, Spain10.4 wkHansen ⁴⁵ Cross-sectional, clinic- based1993-1997F 43%/27 ± 11 (all ≥ 14 y)Barcelona, Spain10.2 ± 10.7 wkHansen ⁴⁵ Case-control1997F 47.6%/13 y (2-18.3)PunnarkCase-control1997F 47.6%/13 y (2-18.3)PunnarkCase-control1997F 47.6%/15.6 (2.2-20 y)Madrid, SpainF 47.5%/15.6 (2.2-20 y)									
n Date n Date () () () () () () () () () ()				Diagn	Diagnostic Criteria	No of	Comorbidity	rbidity	
) intese) y casa ⁵² % casa ⁵² % Spain k k h tr spain	Study Population Sex/Age—Index Cases Duration of Index Disease	Control or External Population Sex/Age—Controls	Comorbid Disease	Index Disease	Comorbid Disease	Cases/ No. of Controls	Among Cases No. (%)	Among Controls No. (%)	OR or SPR (95% CI)*
b) lly a. Spain a. Spain a. Spain a. Spain b) b)	al, clinic- at IDDM		AIT	NDDG ⁸³	AIT-clinical/lab	83/NA	(0) 0		
a Lacasa ^{52§} -1996 elona, Spain undez- staner ⁵³ staner ⁵³ en ⁴⁵ en ⁴⁶ n County, nmark id, Spain id, Spain	ial, clinic- 1 y at IDDM		AIT	NR	AIT—biopsy confirmed	90/NA	9 (10)	I	I
ndez- staner ⁵³ -1997 clona, Spain en ⁴⁵ n County, nmark (pub) (pub)	~	I	AIT	NDDG ⁸³	AIT—lab	100/NA	5 (5)	I	I
en ⁴⁵ n County, nmark an ⁴⁶ (pub) id, Spain	ial, clinic- 11 wk		AIT	Insulin- dependence ⁹¹	AIT—lab	111/NA	7 (6)		I
	[8]	Healthy children Age-/sex-matched; F 47.6%/13 y (1–18)	AIT	NR	AIT—clinical/lab/ ultrasound	105/105	1 (1)	0 (0)	$OR = undefined^{\parallel}$
(c.81–0) Y 1./	ial, clinic- 5 (2.2–20 y) 5)		AIT	NR	AIT—lab	204/NA	1 (<1)		I
Menon ⁵⁵ Clinic-based $1996-1999$ F $54\%/6.4 \pm 1.5$ y atNew Delhi, IndiaIDDM onset 17.4 ± 4.8 mo	: 1.5 y at set no	1	AIT	ADA ⁹²	AIT—clinical/lab/ biopsy	35/NA	1 (3)		I
$ \begin{array}{llllllllllllllllllllllllllllllllllll$, multicenter $y \pm 4.9$	I	AIT JRA	Age <18 y	AIT—clinical/lab JRA—NR	109/NA	7 (6) 1 (1)		

208

© 2006 Lippincott Williams & Wilkins

umpierrez 1983–2001 TN	Clinic-based, longitudinal (18-y follow up) F 55%/19 ± 2 at IDDM onset Duration NR	NHANES III data 2	III	dependence and age ≤39 y	subclinical patients started thyroid replacement) [#]				
Park ⁵⁴ 2000 (pub) Seoul, Korea	Random sample from Korean Seoul Registry F 50.4%/12 (3–22 y) 4.6 ± 3 y		AIT	ADA ⁹⁴	I	115/NA	27 (23)		
Radaideh ⁵⁶ 2000–2001 Amman, Jordan	Clinic-based F 52%/19.6 ± 9 y 6 ± 6.6 y	I	AIT	Thyroid hormone treatment		79/NA	3 (4)		I
Kordonouri ⁵⁸ 2004 Berlin, Germany Multiple sclerosis	Clinic-based F 43.5%/9.2 (0.3–17.7 y) at IDDM onset 4.4 (0.2–12.4 y)	1	AIT	NR	AITlab/ultrasound	147/NA	8 (5)		I
Wynn ⁵⁹ 1905–1984 Olmsted Country, MN	Population-based F 72.3%/33 at diagnosis Duration NR		RA IDDM AIT	Poser ⁹⁵	NR	206/NA	5 (2) 3 (1) 8 (4)		I
Baker ⁶⁰ 1955–1970 Melbourne, Australia	Chart review, hospital- based Sex NR/age NR Duration NR	1	RA AIT	NR	NR	326/NA	2 (1) 2 (1)		I
De Keyser ⁶² 1979–1984 London, U.K.	Chart review, clinic-based F 64.9%/NR Duration NR	Published data from other populations ^{56–98}	RA IDDM AIT	Poser ⁹⁵	NR	828/NA	5 (1) 4 (<1) 4 (<1)		SPR = 0.60 (0.20-1.41) SPR = 0.97 (0.26-2.47) SPR = 0.60 (0.16-1.55)
Midgard ⁶¹ 1986–1987 Norway	Population-based cases F 59%/median 35–39 y Duration NR	Non-MS inpatients Age-/sex-matched; F 58%/median 35–39 y	RA IDDM	Bauer ⁹⁹	NR	155/200	3(2) 0(0)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	$OR = undefined ^{\parallel}$ $OR = undefined ^{\parallel}$
Marrosu ⁶³ 1989–2000 Sardinia, Italy	Cross-sectional, clinic- based F 68.8%/34.5 y (10–67 y) Duration NR	Oristano population	MDDI	Poser ⁹⁵	IDDM—ADA ⁹⁴	1090/NA	28 (3)	I	$SPR = 4.8 \ (3.2-6.9)^{\ddagger}$

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

© 2006 Lippincott Williams & Wilkins

Anthor				Diagr	Diagnostic Criteria	No of		Comorbidity	
Study Period or Publication Date Location	Study Population Sex/Age—Index Cases Duration of Index Disease	Control or External Population Sex/Age—Controls	Comorbid Disease	Index Disease	Comorbid Disease	Cases/ Cases/ No. of Controls	Among Cases No. (%)	Among Controls No. (%)	OR or SPR (95% CI)*
Broadley ⁶⁴ 2000 (pub) U.K.	Case-control F 75.5%/40.6 y (19-60 y) Duration NR	Spouse or friend NR/42.8 y (19–68 y)	RA IDDM AIT	Poser ⁹⁵	NR	571/375	2 (<1) [#] 4 (1) 3 (1) [#]	5 (1) [#] 1 (<1) 4 (1) [#]	$OR = 0.26 (0-1.6)^{\ddagger 1}$ $OR = 2.6 (0.3-130)^{\ddagger 1}$ $OR = 0.9 (0.2-6)^{\ddagger 1}$
Heinzler ⁶⁵ Clini 2000 (pub) F 675 Paris, France 15.4 Autoimmune thyroiditis	Clinic-based series F $67\%/45.6 \text{ y} \pm 11.3$ 15.4 y roiditts		JRA IDDM AIT	Poser ⁹⁵	NR	357/NA	$\begin{array}{c} 1 \ (<1) \\ 0 \ (0) \\ 3 \ (1) \end{array}$		l
Becker ⁶⁶ ** 1926–1960 Rochester, MN	Necropsy series F 69%/52.9 y (8–85 y) Duration NR	I	RA	Histologic (necropsy)	NR	153/NA	8 (5)	l	
Furszyfer ⁶⁷ 1935–1967 Rochester, MN	Population-based F 97.6%/∼35 y Duration NR	l	RA	Histologic in 69%; else clinical/lab	NR	246/NA	7 (3)	l	
Mulhern ⁶⁸ 1948–1963	Case-control; hospital- based	Colloid goiter or cystic breast disease	RA	Histologic	RAARA ⁷⁹	170/340	5 (3)	2 (1)	$OR = 5 (0.8-54)^{\ddagger}$
Baltimore, MD	F 100%/47 y Duration NR	Age-, sex-, race-matched	MDDI		IDDM—NR		5 (3)	17 (5)	$OR = 0.6 \ (0.16-1.7)^{\ddagger 1}$
Becker ⁶⁹ ** 1955–1960 MN	Case-control, clinic-based Sex NR/age NR Duration NR	Acute granulomatous thyroiditis Sex/age—NR	RA	Histologic in 64%; else clinical/lab	RA—ARA ⁸⁵	506/243	20 (4)	1 (<1)	9.96 (1.6-414.4) [‡]
Buchanan ⁷⁰ 1961 (pub) Glasgow, U.K.	Case-control, clinic-based F 91.2%/50 y (39–68 y) Duration NR	Clinic-based F 100%/55 y	RA	Clinical/lab or histologic	Clinical/lab or RA—Kellgren and histologic Lawrence100 (including hand x-rays)	34/179	6 (18)	2 (1)	19 (3–196)
Masi ⁷¹ 1965(pub) Baltimore, MD	Case-control, necropsy- based Sex NR/age NR Duration NR	Postmortem, non-AIT Age-, sex-, race-matched	RA IDDM	Histologic (necropsy)	Histologic/ clinical	74/74	1 (1) 11 (15)	2 (3) 8 (11)	$0.5 (0.01-9.7)^{*1}$ 1.4 $(0.5-4.4)^{*1}$
*Crude OR/SPR pre *Accounted for age, ?Calculated in Stata. SArticle translated fr "OR undefined due tu "OR unmatched (pai "Data provided by ai *Population potenti ACR indicates Amer	 *Crude OR/SPR presented unless otherwise specified; the majority of studies did not adjust for confounders. *Accounted for age, calendar period, sex. *Calculated in Stata. *Calculated from original language of publication. OR undefined due to zero cases of comorbid AID in the control group or SPR undefined due to zero expected cases. OR undefined due to zero cases of comorbid AID in the control group or SPR undefined due to zero expected cases. *Population potentially overlaps slightly with Becker.⁶⁹ ACR indicates American College of Rheumatology; ADA, American Diabetes Association; AID, autoinmune disease; ARA, American Rheumatism Association; clinical, clinicare, clinical, clinical, clinical, clinical, clinical, clinic	ied; the majority of studies did cation. in the control group or SPR u sket. ⁶⁹ . ADA, American Diabetes Ass	not adjust fo ndefined due ociation; AID	of studies did not adjust for confounders. oup or SPR undefined due to zero expected i Diabetes Association; AID, autoimmune dis	cases. ease; ARA, American Rhe	umatism Ass	ociation; clinic	al, clinical features of dis	ease observed by examinati

210

© 2006 Lippincott Williams & Wilkins

Author				Ē		Relatives of Probands*	Probands*	
Study Period or Publication Date Location	Study Population	Comorbid Disease	Diagnostic Criteria	Proband No. of Cases/ No. of Controls	No.	Comorbid No. (%)	OR or SPR [†] (95% CI)	Comments
Rheumatoid arth	Rheumatoid arthritis/juvenile rheumatoid arthritis	rthritis						
Panczel ^{21‡} 1980–83 Hungary	Sex/age NR	MOOI	RA—ARA ⁸² IDDM—NDDG ⁸³	310/310	1777 1973	15 (1) 0 (0)	OR undefined	Probands and relatives interviewed and examined
Thomas ²² 1983 (pub) London, U.K.	Sex/age NR	MOOI	RA—ARA ⁷⁹ IDDM—clinical	295/307	2081 2299	19 (1) 8 (<1)	2.6 (1.1–7.0) [§]	
Lin ⁷² 1998 (pub) U.S.	Case relatives: F 50%, $0-60+ y$ Control relatives: F 52%, $0-60+ y$	MOOI	RA—ARA ⁸⁴ IDDM—medical record	29/14	218 98	6 (3) 2 (2)	1.36 (0.24–14.0) [§]	Case-control; control probands were friends of RA probands Structured interview + physician/medical record confirmation
Prahalad ⁷³ 2002 (pub) Cincinnati, OH	Case relatives: F 52.3%, 48 y \pm 19 Control relatives: F 50.6%, 47 y \pm 19	IDDM AIT MS	JRA—ACR ¹⁰¹ Other-self-report JRA—ACR ¹⁰¹ Other-self-report	110/45	1228 496	5 (<1) 0 (0) 66 (5) 8 (2) 5 (<1)	OR undefined 3.5 (1.6-7.9) OR undefined	1° and 2° relatives included (1° comprised 36%) JRA cases were hospital/clinic-based Controls = healthy volunteers, frequency matched by age ≥10 y
Insulin-dependen	Insulin-dependent diabetes mellitus							
Hanukoglu ⁴⁷ 1997–2000 Israel	Case relatives: F 51.2%, 29.0 $y \pm 16.2$	JRA AIT	IDDM—age <18 y Other—clinical/lab	109/NA	412	4 (1) 11 (3)		Serologic screening for thyroid disease performed and medical history reviewed
Multiple sclerosis								
Marrosu ⁶³ 1989–2000 Sardinia, Italy	Sex/age NR	MCICII	MS—Poser ⁹⁵ IDDM—ADA ⁹⁴	1090/NA	5480	53 (1) 19 (3)	SPR = 1.79 (1.34–2.34) [§]	Standardized to Oristano population
Midgard ⁶¹ 1996 Norway	Sex/age NR	RA IDDM	MS—Bauer ⁹⁹ Other—NR	155/200	717 991	32 (3) 25 (4) 21 (2)	0.82 (0.43-1.5) 1.67 (0.89-3.16)	Neurologist interview
Heinzlef ⁶⁵ 2000 (pub) Paris, France	Sex/age NR	RA IDDM AIT	MS—Poser ⁹⁵ Other—NR	357/NA	1971	5 (<1) 7 (<1) 2 (<1)		Continued on next page

Co-occurrence of Autoimmune Diseases

Author						Relatives of Probands*	Probands*	
study Period or Publication Date Location	Study Population	Comorbid Disease	Diagnostic Criteria	Froband No. of Cases/ No. of Controls	No.	Comorbid No. (%)	OR or SPR [†] (95% CI)	Comments
Broadley ⁶⁴ 2000 (pub) Paris, France	Case relatives: Sex NR, 55.7 y (1–93)	RA IDDM AIT	MS-Poser ⁹⁵ Other—NR	571/375	2124	$\begin{array}{c} 14 \ (1)^{\parallel} \\ 7 \ (<1) \\ 2 \ (<1) \end{array}$	0.96 (0.39–2.5) ^{§¶}	0.96 (0.39-2.5) ⁸⁴ Self-report data verified by physician
Broadley ⁶⁴ 2000 (pub) U.K.	Case relatives: Sex NR, 55.7 y (1–93) Control relatives: sex NR, 55.7 y (1–95)	RA IDDM AIT	MS-Poser ⁹⁵ Other—NR MS-Poser ⁹⁵ Other—NR MS-Poser ⁹⁵ Other—NR	571/375	2124 1315	$\begin{array}{c} 14 \ (1)^{\parallel} \\ 9 \ (1)^{\parallel} \\ 11 \ (1)^{\parallel} \\ 5 \ (<1)^{\parallel} \\ 16 \ (1)^{\parallel} \end{array}$	0.96 (0.39–2.5) ^{8¶} 1.36 (0.4–5.0) ^{8¶} 1.92 (1.1–3.6) ^{8¶}	0.96 (0.39–2.5) ^{§¶} Self-report data verified by physician 1.36 (0.4–5.0) ^{§¶} 1.92 (1.1–3.6) ^{§¶}

Five studies examining the prevalence of coexistent AIT among MS cases documented estimates ranging from 0.48% to 3.9%. ^{59,60,62,64,65} Neither study with referents or controls found evidence of association between AIT and MS. ^{62,64}

Autoimmune Thyroiditis

Six studies included AIT as the index disease.⁶⁶⁻⁷¹ All assessed comorbid RA, with prevalence estimates ranging from 1.4% to 17.6%. There was no consistent trend for association between RA and AIT in the 4 controlled studies.⁶⁸⁻⁷¹

Comorbidity of Autoimmune Diseases Within Families

Nine studies examined coexistent disease among family members of index disease cases, only 2 of which did not report proband data.^{72,73}

Rheumatoid Arthritis

Three controlled studies assessed IDDM prevalence among family members of RA cases^{21,22,72}; a fourth study was conducted among family members of JRA cases.⁷³ The data suggest an increased prevalence of IDDM among family members of patients with RA or those with JRA versus relatives of controls. Findings from the JRA study indicate an increased odds of AIT in the case versus control relatives, but no association for MS.

Insulin-Dependent Diabetes Mellitus

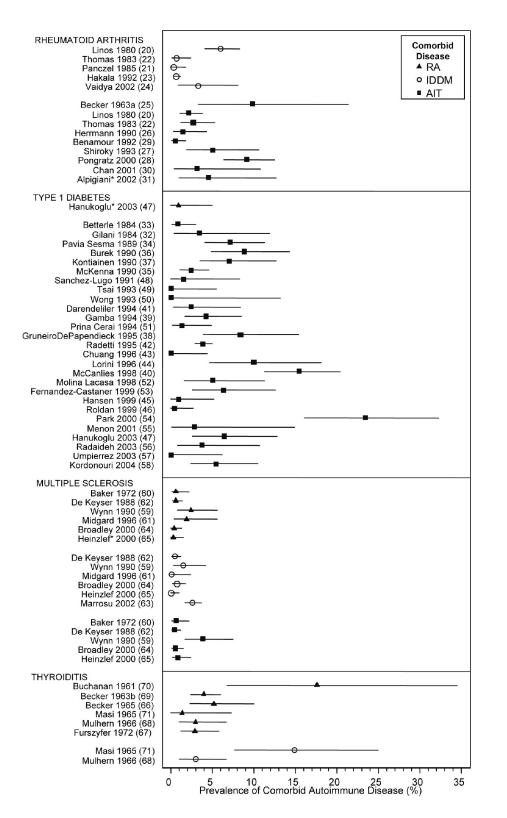
A single study⁴⁷ examined the coexistence of the selected autoimmune diseases among family members of patients with IDDM. The prevalences of comorbid JRA and AIT among first-degree family members were 0.97% and 2.7%, respectively.

Multiple Sclerosis

Four studies assessed IDDM in relatives of probands, $^{61,63-65}$ with a suggestion of increased prevalence of IDDM among relatives of MS probands, based on 2 controlled studies 61,64 and a third with referent population data. 63

Three of the studies also assessed RA; there was lack of association for RA among relatives of MS probands in the 2 controlled studies.^{61,64} Two studies assessed AIT; the only controlled study found increased odds of AIT among relatives of MS probands versus control relatives.⁶⁴

Autoimmune (Hashimoto) Thyroiditis


We found no family studies with AIT as the index disease meeting eligibility criteria for this review.

DISCUSSION

This review focuses on 4 T_H 1-associated autoimmune disorders. The concept that autoimmune diseases tend to coexist is fairly well established in the clinical community, although based largely on anecdotal evidence. Further conjecture that T_H 1-predominant conditions in particular might be expected to correlate with one another adds impetus to the need to quantify relationships among such diseases. To our knowledge, this review represents the first systematic attempt

© 2006 Lippincott Williams & Wilkins

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

FIGURE 1. Forest plot displaying prevalence estimates for comorbid autoimmune diseases within index disease populations. Due to substantial heterogeneity between studies, pooled prevalence estimates are not presented. The majority of studies were uncontrolled so measures of association are not displayed. The studies with asterisks are those that involved juvenile patients with rheumatoid arthritis.

to evaluate the evidence from observational studies linking a group of $\rm T_{\rm H}l$ -associated autoimmune diseases.

We chose to focus on studies of clinical autoimmune disease. We excluded studies in which the index or comorbid

conditions were based on autoantibody seropositivity in the absence of clinical disease. It is important to draw a distinction between "autoimmunity" and "autoimmune disease." Autoimmunity such as the presence of autoreactive T and B

© 2006 Lippincott Williams & Wilkins

lymphocytes (eg, autoantibodies) is not necessarily associated with pathology or adverse clinical manifestations. In fact, the concept of autoreactivity has evolved to include the premise that low levels are physiological and may be involved in lymphocyte selection.⁷⁴ Furthermore, transient elevations in autoantibody levels may occur as a byproduct of nonautoimmune phenomena such as infections.^{75,76} The biochemical milieu (eg, cytokine profile) and environmental factors are thought to be important determinants of whether autoimmunity progresses to clinical disease.

Our decision to restrict this review to data on clinical disease was particularly relevant to the issue of thyroid autoimmunity, because studies examining the presence of comorbid thyroid autoantibodies accounted for a large number of exclusions. Although autoantibodies are useful as diagnostic tools, they have low sensitivity and specificity when screening for or classifying autoimmune diseases. For example, the prevalence of thyroid microsomal (peroxidase) antibodies in the general population may range up to 12% and even higher among the elderly.⁷⁷ Furthermore, in a longitudinal, population-based study, Hawkins et al⁷⁷ determined that of 135 people with positive thyroid microsomal antibodies at baseline, 53 (39%) were negative at 6 years follow up. It should be noted that interpretation of autoantibody studies would need to account for factors such as assay methodology and sensitivity, and the autoantibody titers used as cutoffs to indicate positive versus negative results.

Of the 54 studies that met criteria for inclusion in this review, the majority were reports of uncontrolled series. Due to substantial heterogeneity among studies, it was inappropriate to derive pooled estimates to summarize the data, except for the prevalence of RA among patients with MS. Although far from conclusive, the literature suggests some positive associations between diseases. Data appear to support an increased prevalence of AIT in both patients with RA and those with IDDM-a finding that corresponds with common clinical opinion. The IDDM studies predominantly included children and adolescents. Although only one withinindividual IDDM study was controlled, the high prevalence estimates for comorbid AIT are remarkable given that AIT is generally found in older individuals. Conversely, one would expect RA and IDDM to be increased among patients with AIT if etiologic factors are shared between these diseases. Overall, the evidence points to an increased prevalence of RA among patients with AIT, but there are insufficient data to evaluate comorbid IDDM. An intriguing finding is the suggestion of a modest inverse association between RA and MS based on studies within patients with MS and relatives of MS probands. Likewise, the weighted mean prevalence of RA among patients with MS is lower than conventional estimates for RA in the general population, although caution should be applied for this type of comparison. It is even more difficult to draw inference for the other combinations of diseases studied. However, it is interesting to note the pattern of investigations that have been undertaken. Reports related to patients with IDDM focused almost exclusively on comorbid AIT, whereas for MS, each of the other autoimmune diseases was studied. RA and AIT investigations were limited to each

other and IDDM. None of the intraindividual studies looked at comorbid MS. Furthermore, only 9 family studies were included.

Numerous factors are likely to have contributed to the broad spectrum of results. The studies varied considerably in terms of their underlying populations and structure. Characteristics of the patient populations undoubtedly affect prevalence estimates. Sex, age, and, to a lesser extent, race are known to be strongly associated with autoimmune diseases, making it critical to account for these factors. Although most studies provided summary statistics for age and sex, the analyses did not adjust for their confounding effects. Information on race was reported in only a few instances. Duration of index disease may also be a key issue, although many of the reports did not include such data. Study designs also differed; few of the studies were population-based, and several of the hospital- or clinic-based series did not describe their selection procedures. The extent to which the data are generalizable from the tertiary care setting must be considered, because a substantial proportion of the studies was based on such populations. Conditions such as autoimmune thyroid disorders may also fail to reach hospital attention. Alternatively, the possibility of surveillance bias must be entertained in that the rate of detection of comorbid conditions may increase during the diagnosis or clinical management of chronic conditions such as those included in this review.

Interestingly, studies involving MS index cases tended to have larger sample sizes, and more often included population-based data, in comparison with studies for other diseases. Correspondingly, as depicted in Figure 1, the ranges of prevalence estimates for comorbid diseases among MS index patients were considerably narrower than for other disease combinations, and there was lack of evidence for heterogeneity between studies of RA among MS index cases.

Varying diagnostic criteria were used for the classification of cases, and, over time, the characteristics of diagnostic tests evolved (eg, autoantibody assays). Because in general, the sensitivity of tests improves over time, prevalence rates could spuriously increase. These changes are likely to have had particular influence on the diagnosis of autoimmune thyroiditis. For instance, there has been a shift in practice from histologic diagnosis to diagnosis based on clinical and laboratory evidence. Because the studies spanned approximately 75 years, however, genuine changes in prevalence and incidence rates are also plausible. For serologic studies relying on laboratory testing as the basis for AIT diagnosis, it is often unclear whether treatments affecting thyroid function (including thyroid replacement therapy) were accounted for. Also, nomenclature and classification schemes for thyroid diseases have not been standardized to the same extent as for other diseases considered in this review. In fact, not one of the studies included here referred to published guidelines for the diagnosis of thyroid disease. This seriously affects the comparability among epidemiologic studies, which use various terminology and case definitions. Moreover, it is important not to group overt and subclinical hypothyroidism, because the latter indicates a mild state of

214

© 2006 Lippincott Williams & Wilkins

thyroid hypofunction rather than a disease entity.¹⁸ In addition, some studies define the term "subclinical hypothyroidism" as elevated serum TSH, whereas others consider it to mean elevated serum TSH in conjunction with thyroid autoantibodies.⁷⁸

Given the low prevalence of many autoimmune diseases, individual studies tend to have inadequate sample sizes and power to demonstrate whether an association exists between various autoimmune diseases. Unfortunately, we could not perform meta-analyses given the variability between studies. Publication bias is another issue in that studies with positive results may be more likely to be published. For the present topic, this problem may have been mitigated by the fact that in many studies, the association between autoimmune diseases was not intended as a primary outcome but rather as supplemental information. Case ascertainment may also differ in studies designed to look at "any autoimmune diseases" versus those with a predesignated list of diseases.

These issues make it difficult to draw firm conclusions about the extent of coexistence of the selected autoimmune diseases within individuals and families. Further research in this area can be useful, because it is clear that the co-occurrence of autoimmune diseases is likely to be as much due to common environmental factors as genetic susceptibility.

ACKNOWLEDGMENTS

We thank Ekua Yankah, Susanne Groener, Csilla Kaposvari, and Mariana Kaplan for assisting with translations of published papers.

REFERENCES

- Walsh SJ, Rau LM. Autoimmune diseases: a leading cause of death among young and middle-aged women in the United States. *Am J Public Health.* 2000;90:1463–1466.
- Skarstein K, Wahren M, Zaura E, et al. Characterization of T cell receptor repertoire and anti-Ro/SSA autoantibodies in relation to sialadenitis of NOD mice. *Autoimmunity*. 1995;22:9–16.
- Kouskoff V, Korganow AS, Duchatelle V, et al. Organ-specific disease provoked by systemic autoimmunity. *Cell*. 1996;87:811–822.
- 4. Rose N, Mackay I. *The Autoimmune Diseases*, 3rd ed. San Diego: Academic Press; 1998.
- Rossini AA, Handler ES, Mordes JP, et al. Human autoimmune diabetes mellitus: lessons from BB rats and NOD mice—caveat emptor. *Clin Immunol Immunopathol*. 1995;74:2–9.
- Imai S, Tezuka H, Fujita K. A factor of inducing IgE from a filarial parasite prevents insulin-dependent diabetes mellitus in nonobese diabetic mice. *Biochem Biophys Res Commun.* 2001;286:1051–1058.
- Selgrade MK, Lawrence DA, Ullrich SE, et al. Modulation of T-helper cell populations: potential mechanisms of respiratory hypersensitivity and immune suppression. *Toxicol Appl Pharmacol*. 1997;145:218– 229.
- Becker KG, Simon RM, Bailey-Wilson JE, et al. Clustering of nonmajor histocompatibility complex susceptibility candidate loci in human autoimmune diseases. *Proc Natl Acad Sci U S A*. 1998;95:9979– 9984.
- Cooper GS, Miller FW, Pandey JP. The role of genetic factors in autoimmune disease: implications for environmental research. *Environ Health Perspect*. 1999;107(suppl 5):693–700.
- Cooper GS, Miller FW, Germolec DR. Occupational exposures and autoimmune diseases. *Int Immunopharmacol.* 2002;2:303–313.
- Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. *J Immunol*. 1986;136:2348–2357.
- 12. Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine

receptors in T-cell priming and Th1/Th2-mediated responses. *Immunol Today*. 1998;19:568-574.

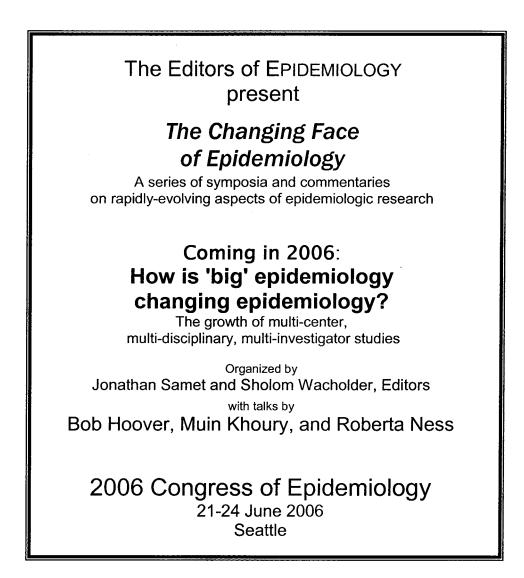
- Kuchroo V, Nicholson L. Cytokines in autoimmune disease. In: Kuchroo V, Sarvetnick N, Hafler D, et al., eds. *Cytokines and Autoimmune Diseases*. Totowa, NJ: Humana Press; 2002:389–406.
- Romagnani S. T-cell subsets (Th1, Th2) and cytokines in autoimmunity. In: Rose N, Mackay I, eds. *The Autoimmune Diseases*. New York: Academic Press; 1998:163–191.
- 15. Romagnani S. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol. 2000;85:9–18.
- Silman AJ. Rheumatoid arthritis. In: Silman AJ, Hochberg MC, eds. *Epidemiology of the Rheumatic Diseases*, 2nd ed. Oxford: Oxford University Press; 2001:31–71.
- Sloka S. Observations on recent studies showing increased co-occurrence of autoimmune diseases. J Autoimmunity. 2002;18:251–257.
- Monaco F. Classification of thyroid diseases: suggestions for a revision. J Clin Endocrinol Metab. 2003;88:1428–1432.
- Jacobson DL, Gange SJ, Rose NR, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. *Clin Immunol Immunopathol*. 1997;84:223–243.
- Linos A, Worthington JW, Palumbo PJ, et al. Occurrence of Hashimoto's thyroiditis and diabetes mellitus in patients with rheumatoid arthritis. J Chronic Dis. 1980;33:73–77.
- Panczel P, Falus A, Meretey K, et al. [Association between cumulative familial incidence of type I diabetes and rheumatoid arthritis.] *Orvosi Hetilap.* 1985;126:1281–1284, 1287–1289.
- Thomas DJ, Young A, Gorsuch AN, et al. Evidence for an association between rheumatoid arthritis and autoimmune endocrine disease. *Ann Rheum Dis.* 1983;42:297–300.
- Hakala M, Ilonen J, Reijonen H, et al. No association between rheumatoid arthritis and insulin dependent diabetes mellitus: an epidemiologic and immunogenetic study. *J Rheumatol.* 1992;19:856–858.
- Vaidya B, Pearce SH, Charlton S, et al. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. *Rheumatology*. 2002;41:180–183.
- Becker K, Titus J, Woolner LB, et al. Thyroiditis and rheumatoid arthritis. *Proc Mayo Clin.* 1963;38:125.
- Herrmann F, Hambsch K, Muller P, et al. [Incidence of goiter and thyroiditis in chronic inflammatory rheumatism]. Zeitschrift fur die Gesamte Innere Medizin und Ihre Grenzgebiete. 1990;45:52–55.
- Shiroky JB, Cohen M, Ballachey ML, et al. Thyroid dysfunction in rheumatoid arthritis: a controlled prospective survey. *Ann Rheum Dis.* 1993;52:454–456.
- Pongratz R, Buchinger W, Semlitsch G, et al. [Increased occurrence of autoimmune thyroiditis in patients with chronic rheumatoid arthritis]. *Acta Med Austriaca*. 2000;27:58–60.
- Benamour S, Zeroual B, Fares L, et al. [Rheumatoid arthritis in Morocco. Apropos of 404 observations]. *Revue du Rhumatisme et des Maladies Osteo Articulaires*. 1992;59:801–807.
- Chan AT, Al-Saffar Z, Bucknall RC. Thyroid disease in systemic lupus erythematosus and rheumatoid arthritis. *Rheumatology*. 2001;40:353–354.
- Alpigiani MG, Cerboni M, Bertini I, et al. Endocrine autoimmunity in young patients with juvenile chronic arthritis. *Clin Exp Rheumatol*. 2002;20:565–568.
- Gilani BB, MacGillivray MH, Voorhess ML, et al. Thyroid hormone abnormalities at diagnosis of insulin-dependent diabetes mellitus in children. J Pediatr. 1984;105:218–222.
- Betterle C, Zanette F, Pedini B, et al. Clinical and subclinical organspecific autoimmune manifestations in type 1 (insulin-dependent) diabetic patients and their first-degree relatives. *Diabetologia*. 1984;26:431–436.
- Pavia Sesma C, Valls Tolosa C, Eighian Baho B, et al. [Thyroid autoimmunity in type I (insulin dependent) diabetes mellitus]. *Anales Espanoles de Pediatria*. 1989;31:523–527.
- McKenna MJ, Herskowitz R, Wolfsdorf JI. Screening for thyroid disease in children with IDDM. *Diabetes Care*. 1990;13:801–803.
- Burek CL, Rose NR, Guire KE, et al. Thyroid autoantibodies in black and in white children and adolescents with type 1 diabetes mellitus and their first degree relatives. *Autoimmunity*. 1990;7:157–167.
- Kontiainen S, Schlenzka A, Koskimies S, et al. Autoantibodies and autoimmune diseases in young diabetics. *Diabetes Res.* 1990;13:151– 156.

© 2006 Lippincott Williams & Wilkins

- Gruneiro De Papendieck L, Chiesa A, Trifone L, et al. Thyroid disorders in children and adolescents with insulin-dependent diabetes mellitus. *Acta Pediatr Esp.* 1995;53:362–365.
- Gamba S, Carlini M, Blatto A, et al. Frequency of autoimmune thyroid disease in adult patients with insulin-dependent diabetes mellitus. *Giornale Italiano di Diabetologia*. 1994;14:101–105.
- McCanlies E, O'Leary LA, Foley TP, et al. Hashimoto's thyroiditis and insulin-dependent diabetes mellitus: differences among individuals with and without abnormal thyroid function. *J Clin Endocrinol Metab.* 1998;83:1548–1551.
- 41. Darendeliler FF, Kadioglu A, Bas F, et al. Thyroid ultrasound in IDDM. *J Pediatr Endocrinol*. 1994;7:33–37.
- 42. Radetti G, Paganini C, Gentili L, et al. Frequency of Hashimoto's thyroiditis in children with type 1 diabetes mellitus. *Acta Diabetol*. 1995;32:121–124.
- Chuang LM, Wu HP, Chang CC, et al. HLA DRB1/DQA1/DQB1 haplotype determines thyroid autoimmunity in patients with insulindependent diabetes mellitus. *Clin Endocrinol (Oxf)*. 1996;45:631–636.
- Lorini R, d'Annunzio G, Vitali L, et al. IDDM and autoimmune thyroid disease in the pediatric age group. *J Pediatr Endocrinol Metab.* 1996;9:89–94.
- Hansen D, Bennedbaek FN, Hansen LK, et al. Thyroid function, morphology and autoimmunity in young patients with insulin-dependent diabetes mellitus. *Eur J Endocrinol*. 1999;140:512–518.
- Roldan MB, Alonso M, Barrio R. Thyroid autoimmunity in children and adolescents with type 1 diabetes mellitus. *Diabetes Nutr Metab.* 1999;12:27–31.
- Hanukoglu A, Mizrachi A, Dalal I, et al. Extrapancreatic autoimmune manifestations in type 1 diabetes patients and their first-degree relatives: a multicenter study. *Diabetes Care*. 2003;26:1235–1240.
- Sanchez-Lugo F. Prevalence of thyroid autoimmunity in insulin dependent diabetes mellitus in the Bayamon region. *Boletin Asociacion Medica de Puerto Rico*. 1991;83:54–57.
- Tsai WY, Lee JS. Thyroid disease in Chinese children with IDDM. Diabetes Care. 1993;16:1314–1315.
- Wong GW. Absence of thyroid disease in Chinese children with IDDM. *Diabetes Care*. 1993;16:404–405.
- Prina Cerai LM, Weber G, Meschi F, et al. Prevalence of thyroid autoantibodies and thyroid autoimmune disease in diabetic children and adolescents. *Diabetes Care*. 1994;17:782–783.
- Molina Lacasa A, Fernandez Castaner M, Perez Maraver M, et al. [Autoimmune thyroid pathology in recently diagnosed diabetes mellitus type 1]. *Rev Clin Esp.* 1998;198:818–821.
- Fernandez-Castaner M, Molina A, Lopez-Jimenez L, et al. Clinical presentation and early course of type 1 diabetes in patients with and without thyroid autoimmunity. *Diabetes Care*. 1999;22:377–381.
- Park YS, Kim TW, Kim WB, et al. Increased prevalence of autoimmune thyroid disease in patients with type 1 diabetes. *Korean J Intern Med.* 2000;15:202–210.
- Menon PS, Vaidyanathan B, Kaur M. Autoimmune thyroid disease in Indian children with type 1 diabetes mellitus. *J Pediatr Endocrinol*. 2001;14:279–286.
- Radaideh A, El-Khateeb M, Batieha AM, et al. Thyroid function and thyroid autoimmunity in patients with type 1 diabetes mellitus. *Saudi Med J.* 2003;24:352–355.
- Umpierrez GE, Latif KA, Murphy MB, et al. Thyroid dysfunction in patients with type 1 diabetes: a longitudinal study. *Diabetes Care*. 2003;26:1181–1185.
- Kordonouri O, Meyer K, Egerer K, et al. Prevalence of 20S proteasome, anti-nuclear and thyroid antibodies in young patients at onset of type 1 diabetes mellitus and the risk of autoimmune thyroiditis. *J Pediatr Endocrinol Metab.* 2004;17:975–981.
- Wynn DR, Rodriguez M, O'Fallon WM, et al. A reappraisal of the epidemiology of multiple sclerosis in Olmsted County, Minnesota. *Neurology*. 1990;40:780–786.
- Baker HW, Balla JI, Burger HG, et al. Multiple sclerosis and autoimmune diseases. Aust N Z J Med. 1972;2:256–260.
- Midgard R, Gronning M, Riise T, et al. Multiple sclerosis and chronic inflammatory diseases. A case–control study. *Acta Neurol Scand*. 1996;93:322–328.
- De Keyser J. Autoimmunity in multiple sclerosis. *Neurology*. 1988;38: 371–374.

- Marrosu MG, Cocco E, Lai M, et al. Patients with multiple sclerosis and risk of type 1 diabetes mellitus in Sardinia, Italy: a cohort study. *Lancet.* 2002;359:1461–1465.
- Broadley SA, Deans J, Sawcer SJ, et al. Autoimmune disease in first-degree relatives of patients with multiple sclerosis. A UK survey. *Brain*. 2000;123:1102–1111.
- Heinzlef O, Alamowitch S, Sazdovitch V, et al. Autoimmune diseases in families of French patients with multiple sclerosis. *Acta Neurol Scand.* 2000;101:36–40.
- Becker K, Titus J, Woolner L, et al. Significance of morphologic thyroiditis. *Ann Intern Med.* 1965;62:1134–1138.
- Furszyfer J, Kurland LT, McConahey WM, et al. Epidemiologic aspects of Hashimoto's thyroiditis and Graves' disease in Rochester, Minnesota (1935–1967), with special reference to temporal trends. *Metabolism*. 1972;21:197–204.
- Mulhern LM, Masi AT, Shulman LE. Hashimoto's disease. A search for associated disorders in 170 clinically detected cases. *Lancet*. 1966; 2:508–511.
- Becker K, Ferguson R, McConahey W. The connective-tissue diseases and symptoms associated with Hashimoto's thyroiditis. *N Engl J Med.* 1963;268:277–280.
- Buchanan W, Grooks J, Alexander W, et al. Association of Hashimoto's thyroiditis and rheumatoid arthritis. *Lancet.* 1961;245.
- Masi A, WH H, Hahn B, et al. Hashimoto's disease. A clinicopathological study with matched controls. Lack of significant associations with other 'autoimmune' disorders. *Lancet*. 1965;1:123–126.
- Lin JP, Cash JM, Doyle SZ, et al. Familial clustering of rheumatoid arthritis with other autoimmune diseases. *Hum Genet*. 1998;103:475–482.
- Prahalad S, Shear ES, Thompson SD, et al. Increased prevalence of familial autoimmunity in simplex and multiplex families with juvenile rheumatoid arthritis. *Arthritis Rheum*. 2002;46:1851–1856.
- Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345:340–350.
- Niwa Y, Sakane T, Kanoh T, et al. Transient autoantibodies with elevated complement levels in common viral diseases. J Clin Lab Immunol. 1984;13:183–188.
- Hansen KE, Arnason J, Bridges AJ. Autoantibodies and common viral illnesses. Semin Arthritis Rheum. 1998;27:263–271.
- Hawkins BR, Cheah PS, Dawkins RL, et al. Diagnostic significance of thyroid microsomal antibodies in randomly selected population. *Lancet.* 1980;2:1057–1059.
- Vanderpump M, Tunbridge W. The epidemiology of autoimmune thyroid disease. In: Volpe R, ed. *Autoimmune Endocrinopathies*. Totowa, NJ: Humana Press; 1999:141–162.
- Ropes MW, Bennett GA, Cobb S, et al. Proposed diagnostic criteria for rheumatoid arthritis. Ann Rheum Dis. 1957;16:118–123.
- Palumbo PJ, Elveback LR, Chu CP, et al. Diabetes mellitus: incidence, prevalence, survivorship, and causes of death in Rochester, Minnesota, 1945–1970. *Diabetes*. 1976;25:566–573.
- Furszyfer J, Kurland LT, Woolner LB, et al. Hashimoto's thyroiditis in Olmsted County, Minnesota, 1935 through 1967. *Mayo Clin Proc.* 1970;45:586–596.
- Ropes M, Bennett G, Cobb S, et al. 1958 revision of diagnostic criteria for rheumatoid arthritis. *Bull Rheum Dis.* 1958;9:175–176.
- National Diabetes Data Group.Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. *Diabetes*. 1979; 28:1039–1057.
- Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis Rheum.* 1988;31:315–324.
- Committee of American Rheumatism Association.Primer on rheumatic diseases. Part III. JAMA. 1959;171:1680–1691.
- Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. *Arthritis Rheum*. 1986;29: 1039–1049.
- Altman R, Alarcon G, Appelrouth D, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. *Arthritis Rheum.* 1990;33:1601–1610.
- 88. Altman R, Alarcon G, Appelrouth D, et al. The American College of

© 2006 Lippincott Williams & Wilkins


Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. *Arthritis Rheum*. 1991;34:505–514.

- Wood P. Special Meeting on: nomenclature and classification of arthritis in children. In: Munthe E, ed. *The Care of Rheumatic Children*. Basel: EULAR Publisher; 1987:47–50.
- Fisher DA, Oddie TH, Johnson DE, et al. The diagnosis of Hashimoto's thyroiditis. J Clin Endocrinol Metab. 1975;40:795–801.
- 91. World Health Organization.Diabetes mellitus. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1985;727:1–113.
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. *Diabetes Care*. 1999;22:S5–19.
- Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). *J Clin Endocrinol Metab.* 2002;87:489–499.
- Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. *Diabetes Care*.1997;20:1183–1197.
- 95. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for

multiple sclerosis: guidelines for research protocols. *Ann Neurol.* 1983; 13:227–231.

- Wood PHN. Epidemiology of rheumatic disorders. In: Scott JT, ed. Copeman's Textbook of the Rheumatic Diseases. Edinburgh: Churchill Livingstone; 1978:25–60.
- Christy M, Deckert T, Nerup J. Immunity and autoimmunity in diabetes mellitus. *Clin Endocrinol Metab.* 1977;6:305–332.
- Tunbridge WM, Evered DC, Hall R, et al. The spectrum of thyroid disease in a community: the Whickham survey. *Clin Endocrinol (Oxf)*. 1977;7:481–493.
- Bauer H. IMAB enquete concerning the diagnostic criteria for MS. In: Bauer H, Poser S, Ritter G, eds. *Progress in Multiple Sclerosis Research*. Heidelberg: Springer; 1980:555–563.
- 100. Kellgren J, Lawrence J. Rheumatoid arthritis in a population sample. *Ann Rheum Dis.* 1956;15:1–11.
- Cassidy JT, Levinson JE, Bass JC, et al. A study of classification criteria for a diagnosis of juvenile rheumatoid arthritis. *Arthritis Rheum.* 1986;29:274–281.

