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FOREWORD

This Interim Report describes research performed by The University
of Michigan Radiation Laboratory, 2455 Hayward Street, Ann Arbor, Michigan
48105 under USAF Contract F33615-73-C-1174, Project 7633, ""Non-Specular
Radar Cross Section Study.'” The research was sponsored by the Electromag-
netic Division, Air Force Avionics Laboratory, and the Technical Monitor was
Dr. Charles H, Kreuger, AFAL/WRP.

This report covers the time period 15 March through 16 October 1973
and was prepared by E. F. Knott and T. B.A. Senior, Principal Investigators.
The authors take pleasure in acknowledging the assistance of Dr, C.H. Kreuger,
who supplied some of the experimental data discussed in Chapter V; Professor
S.R. Laxpati of the University of Ilinois (Chicago Circle), who worked with
them during the summer of 1973 and initiated the studies presented in Chapters
II and IV as well as directing the computations of the edge diffraction coefficient;
and Dr. V.V, Liepa, who has been associated with all major computer programs
in the research,

This report has been assigned Radiation Laboratory Report Number
011764-1-T for internal control purposes, and was submitted for sponsor

approval on 2 November 1973.

This Technical Report has been reviewed and is approved for publicationm.
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ABSTRACT

The broad objective of this research is to develop techniques to reduce
non-specular scattering from objects of interest to the Air Force. The major
tools used thus far in the investigations have been two-dimensional computer
programs which solve the integral equations for a surface impedance boundary
condition and for a thin resistive sheet placed near a conducting obstacle. The
existing programs have proven valuable, but the research requirements have
now outstripped their capabilities and more inclusive programs are required.
The main thrust of this Interim Report is upon the development of the integral
equations necessary for the construction of more comprehensive programs, but
for the sake of completeness, the equations for the existing programs are also
derived as a matter of course. Of considerable importance is the treatment of
"magnetic'' resistive sheets in addition to conventional electric resistive sheets
so that, with but a slight expansion of the concept of resistivity, magneto-dielec-
tric layers of physical materials may be modeled. In addition to the theoretical
work, experimental results obtained by both The University of Michigan Radiation
Laboratory and the Air Force Avionics Laboratory are compared with computed

predictions.
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INTRODUCTION

The objective of the research described in this Interim Report is to develop
techniques to reduce non-specular scattering from typical aerospace vehicles of
interest to the Air Force. Such scattering arises from both smooth and edged
structures when viewed in non-specular directions and during this reporting
period an ogival cylinder has been used as the basic shape with which to explore
promising techniques. The basic tools in the research were a pair of computer
programs that solve the appropriate integral equations for the surface fields in
two dimensions.

The programs are modified versions of programs furnished by AFAL, the
modifications being necessary because the originals lacked the flexibility to con-
veniently accommodate the shapes of interest in the present study. One of the
programs (RAMD) is itself an outgrowth of an earlier modification which has
now been abandoned (RAM1B) and is based upon the integral equations in which
a surface impedance boundary condition is imposed. RAMD solves the equations
for either E- or H-polarization (incident electric or magnetic vector parallel to
the cylinder axis, respectively) and a brief description of it, along with a source
listing, is given in Appendix B. The other program (REST) solves the integral
equations for a metallic cylinder which may have resistive sheets placed on or
near the surface, but is applicable only for E-polarization. A source listing of
REST may be found in Appendix B of Knott, Liepa and Seniof (1973).

The impetus to discard the now defunct RAM1B developed late in the
predecessor Contract (F33615-72-C~1439) when it became apparent that the
program would never satisfactorily produce the correct solution for edged
bodies for E~polarization. At the time the Final Repoxrt for that Contract was
being prepared, we were still trying to obtain acceptable values by sampling
the surface denseiy in the vicinity of the edges. Although the resultsg» tended to

converge on what was believed (and has been since demonstrated) to be the correct



behavior, the sampling rate over the remainder of the profile had to be reduced.
A summary of these efforts and the consequences of coarse sampling is given in
Chapter V; not unexpectedly, accuracy is reduced and ultimately the gain in
accuracy by dense packing at the edges will be offset by the loss due to sparse
sampling over the rest of the body.

The shortcomings of RAM1B were serious enough to demand a thorough
examination of the integral equations for the impedance boundary condition, and
in Chapter II the equations are derived using both the scalar and vector approaches.
Because the impedance boundary condition rigidly links the electric surface currents
to the magnetic ones, a pair of integral equations is produced for each polarization
and, from a mathematical viewpoint, one is as good as the other. From a
numerical standpoint, however, one of the pair is markedly superior and al-
though RAM1B used the "good'' equation for one polarization, it used the 'bad"
one for the other. This discovery led to the construction of program RAMD,
which is sufficiently different from its predecessor to be regarded as a new
program, and not merely a modification.

Program REST has been the basic tool in a study still in progress exploring
the use of resistive sheets for non-specular scattering reduction, the results of
which will be documented elsewhere. The program is designed only for E-polari-
zation, which turns out to be the case when a simple integral equation is sufficient.
The H~polarization integral equation, on the other hand, contains a second derivative
singularity (and is thus a "bad" equation) that poses annoying, but surmountable,
numerical problems, and it was probably for this reason that the original version
(RAMC) was restricted to E-polarization. Since both polarizations must be
treatable in order to carry out the Contract objectives, we undertook the theo-
retical study of Chapter IV to secure the necessary equations. Unlike the
impedance boundary condition case, there is no choice; only one equation is
produced for each polarization be it simple or not, and it must be used to obtain

the solution. We should mention in passing that the study in Chapter III, which



considers impedance boundary condition sheets, has provided a key result for
the analysis and interpretation of the data generated by program REST.

As pointed out in Chapter IV, the principle of duality permits us to
immediately write down the equations for a "magnetic'" resistance sheet from
the electric sheet equations. Since the magnetic and electric currents are
independent for each kind of sheet, the sheets may be mathematically super-
posed to simulate a thin layer of magneto-dielectric material, and we now have
the foundation for a computer program capable of modeling physically realizable
materials in contrast to the more nebulous specification of surface impedances.
The numerical evaluation of second order singularities is an inevitable require-
ment in a generalized program, of course, but the procedures discussed in
Appendix A show that the task can be accomplished with a tolerably small error.
And although the thickness of actual or desirable coatings may well prove to be
beyond the bounds of a thin layer approximation, a thick coating can be mathe-
matically modeled by a stack of thin layers.

The need for such a generalized program may become apparent from the
comparisons between measured and computed results given in Chapter V. The
computations were performed by program RAMD and although they agree well
with experiment for metallic, and in some cases coated, bodies, the agreement
for other coatings is not as good. The disparity in these cases is not necessarily
the fault of the program, nor indeed of the experiments, but a consequence of the
difficulty of correctly relating the impedance near an edge to the bulk properties
of a material coating and the local edge geometry. This specification in itself
requires the solution of a boundary value problem, a task we hope to accomplish
via a generalized computer program based upon the integral equations developed

in this report.



II
INTEGRAL EQUATIONS FOR IMPEDANCE SURFACES

It is desirable to examine the form of integral equations appropriate in
a two-dimensional problem involving a.scatterer with an impedance boundary
condition imposed at its surface. The objectives of this study are not only to
show how the equations are affected by the geometry and the boundary conditions,

but also to resolve some of the difficulties which have previously been experienced.

2.1 The Impedance Boundary Condition

Consider a closed cylindrical surface whose generators are parallel to
the z axis of a cylindrical coordinate system and whose profile in a plane perpen-
dicular to the z axis is the closed curve C. Let ©i be a unit vector normal drawn
outwards to C and let S be a unit vector in the tangential direction, such that
A

§,n, 2 forma right-handed system.

At the surface the impedance boundary condition

A A A
E-@-E)n=nZ 0, H (2.1)

is imposed, where n is the (normalized) surface impedance and may be a function
of the distance s along C. For a perfectly conducting surface, n =0, By trivial
manipulation, eq. (2. 1) can be expressed alternatively as

Y

H-G-m)h=--23 E @2.2)

(Senior, 1962), which is the "dual" of (2. 1) under the transformation E —>H,

H—-E, Z,<>Y,, n<> 1/n. Of course, this duality is lost if at any point of

the surface (1)7 is either zero or infinite.

The body is illuminated by a plane wave whose direction of propagation is
in a plane perpendicular to the z axis, and it is now sufficient to consider separ-
ately the two principal polarizations, that in which Ei = %H; (H-polarization),

and El = 'z\ElZ (E-polarization). From symmetry it follows that the total fields



are similarly oriented and this enables us to treat each problem as a scalar one
for the z component of the total magnetic or electric field. Such a simplification
is not possible if the plane wave is at skew incidence.

2.2 Scalar Formulation

Let us consider first the case of H-polarization. Then ﬂ_l =3 le

implying H = z Hz, and consonant with the usual definition of the surface electric

current K, viz.
K=10,H, (2. 3)
we have

K = SK with K =H . (2.4)
- S S Z

On the surface the boundary condition (2. 1) requires

E =nZ =
s~ MoH, = mZoKy
and since, from Maxwell's equations,
oH
== = ~kY F
on 07s’
we have
BHZ
T -1ans on C. (2.5)

Application of the scalar Green's theorem to a function y¥(p) satisfying the

scalar wave equation outside and on the surface gives

C 5
Vo) =y () +Zl {w(g') Pl H(()l)(kr) -H(()l)(kr) S'?F w(,g')} ds* (2.6)

C

where the normal derivatives are with respect to the primed coordinates of the

integration point, p is the two-dimensional position vector of the observation point



and r = p=-p', implying r = ] g-p' | For simplicity we shall henceforth specify
the integration point by its circumferential distance s' along C.

If we identify ¢ with Hz’ eq. (2.6) beéomes

(1)
1

(1)

(kr) +in(s?) H0

H (p) = Hiz<g)+ f; {(ﬁ'-?)H (kr)} K (s"d(ks") (2.7)

on making use of (2. 5), and if we now allow p to approach a point s on C, the

following integral equation results:

H.(6) =K (s)+ Bl_i;n s {;7(8')H(()1)(kr) _idr -?)H(ll)(kr)} K (s)dks). (2.8)
C

The second term in the integrand has a non-integrable singularity when p is on

C, but if this is treated analytically in the usual manner, the limit can be applied

to the integrand to yield

Hzi(s) = %KS(S)'F i n(s')KS(s?)Hél)(kr)d(ks')
C

D er)dlksy) (@.9)

K (s"(@' 'f)H(
s 1
C

1
4

where the slash across the integral sign indicates a Cauchy principal value. This
is identical to the equation obtained by Andreasen (1965) for the special case of
incidence in a plane perpendicular to the z axis and was quoted* (eq. 3.1) in

the first interim report of the previous contract (Knott and Senior, 1973) . It

is, in fact, the integral equation used for H?polarization in the original computer

o,
-

Since the primes now refer to the point of integration, and in view of the present
definition of r, the last terms on the right hand sides of egs. (3. 1) and (3. 2)
have the wrong signs.



program RAMIA, and since the kernel has at most a first derivative singularity,

the equation is well suited to numerical solution.

However, (2.9) is not the only integral equation that can be obtained. If,
for example, the normal derivative of the field Hz (p) of eq. (2.7) is taken prior

to the observation point reaching C, we find

iy _ lim i 0 (1)
YOES(S) = n(S)KS(S)+£ 50 Ik m {n(S')HO (kr)
C

(1)

-i(n'-PH X

(kr)} KS (shd(ks®) . (2. 10):

For the first term in the integrand, the differentiation and integration processes
can be interchanged and the non-integrable singularity that results when p is on

C can be treated analytically as before. This is not true of the second term, how-

ever, Hence

(1)

YoEis<s) = %MS)KS(S)‘B% (s K, () @ DH | kr)dlks')
c
o | K@D wate) @10

C

which is not so convenient for numerical solution because of the "second
derivative singularity' which it contains.

We now turn to the case of E-polarization. A particular advantage of the
impedance boundary condition is that it preserves'the duality inherent in Maxwell's
equations a.ﬁd, in the present instance, this enables us to deduce the integral

equations for E-polarization from those we have already given.



As part of the duality transformation, the surface electric current

K=h A H is replaced by the surface magnetic current

ot
sk

K =-E ,
From the boundary condition (2. 1), however,

¢

= "T)ZOHA_I_{_

and similarly, from (2. 2),

A b3
Y n/\_Ig.

K=2Y,

o J TS

Hence, as regards the component Ks’

K QS
SAKS n OKZ

(2.12)

(2.13)

(2.14)

(2. 15)

where, from (2. 3), Kz = —HS is simply the axial component of the surface elec-

tric current., On applying the transformation

i i i i
HZ—Q—EZ s ES—->Hs s KS——> --r)ZOKz s YO—>ZO,
to egs. (2.9) and (2. 11), we immediately obtain
i, _ 1 1 (1)
YOEZ(S) =3 n(s)KZ(s)+4 Kz(s')HO (kr)d(ks")
C
i ! A Sy
-1 n(s )Kz(s )(n'-r)H (kr)d(ks') ,
C
i 1 (1)
Hs(s) = _EK (s)+— K (s)(n )H (kr)d(ks?)
C
lim _1_ _é_ 0 A, A (1)
Q—éC ik oo n(s )Kz(s')(n'-r)H1 (kr) d(ks") .

C

n—> 1/n

(2. 16)

(2.17)



Like (2. 9) and (2. 11), these are alternative equations appropriate, in
this case, to E-polarization, The first is identical to that derived by Andreasen
(1965) for incidence perpendicular to the z axis, and was quoted by Knott and
Senior (1973a; eq. 3.2). Since the highest singularity of the kernel is a first
derivative one, the equation is well suited to numerical solution and is the obvious
one to choose for E-polarization. In contrast, Eq. (2., 17) has (in effect) a second
derivative singularity in the kernel and is much less convenient to use, but in
spite of this it is apparently the equation employed in RAM1A, This is not en-
tirely unnatural since the computer program was originally developed for skew
incidence, but even in this more general case it is still possible to obtain two
coupled integral equations having only first derivative singularities at the expense
of introducing derivatives of the unknown currents. As Andreasen (1965) shows,
these latter derivatives can be eliminated by partial integration, and the resulting
equations then degenerate to (2. 9) and (2, 16) for incidence perpendicular to the
z axis.

The fact that the computer program RAMIA is based on eqs. (2.9) and
(2. 17) explains our differing experiences in running it for H- and E-polarizations.
It is now obvious how we can overcome the difficulties which formerly bedevilled

us for E-polarization and this matter is taken up in Chapter V.

2.3 Vector Formulation

As we have seen, the problem of a plane wave incident on the cylindrical
structure in a plane perpendicular to its axis can be treated as a scalar one, but
since Hertz vectors are a convenient tool for any scattering problem, it is of
interest to examine the integral equations resulting from this type of vector
formulation.

In terms of the electric and magnetic Hertz vectors TT and lT_*, the

scattered field can be written as

E° = V)\UNT +ikZ VpTT,

(2.18)
1S = V9,11 -ikY.V.IT
H = VAVl -1 YO A



The differentiations are with respect to the coordinates of the observation point,

and for a two-dimensional problem

y/

) =- -2 | K(OH ks’ (2. 19)
C

T () = - Zo K e (er)ast 2,2

D= K (shH, "(kr)ds® , (2.20)
C

o,

where K and Erﬁ are, respectively, the surface electric and magnetic currents

defined in eqgs. (2.3) and (2. 12). Using (2. 13) and (2. 14) we can express both

TTand I_‘;:< (and, hence, the scattered field) in terms of either K or g* alone.
In view of the duality relations, it is sufficient to restrict attention to

the case of H-polarization. As before, we then have K = §KS with KS = Hz’

implying
Z
= o _9 Y] 1 (1) 1
TT(p) x|\ S Ks(s )HO (kr)ds' . (2.21)
C
5 E b
Also, K =zK with K =nZ K , so that
- A z 0 s
* A 1 (1)
T =7 — 1 ] ?
T (p) = -2 ™ n(s )Ks(s )HO (kr)ds® , (2.22)
C

and it is now a trivial matter to determine the scattered field. In particular,

(1)
1

B = -1 | nleOK (0H adabes + L | K (00 Pn

C C

(kr)d(ks") ;

(2.23)

10



on allowing p to approach the surface and using
H3(0) =K (s)-H" (s) n C
2 2 s Z ’ Lo ?

the integral equation (2. 9) is at once obtained. Similarly for the scattered
electric field: if the component Ez is evaluated at a point on the surface, the

fact that
S, \ _ i
Es(g) = n(8)Z K (s)-E_(s) , ponC,

leads immediately to the integral equation (2. 11).

Thus, the vector formulation leads to precisely the same integral equations
as the scalar one. For H-polarization, the equation with the first derivative
singularity stems from a consideration of the magnetic field, whilst the electric
field gives rise to the equation having the second derivative singularity. Either
is sufficient to determine the single non-zero component KS of the surface elec-
tric current. If, instead, we had considered E-polarization, the electric field
would have generated eq. (2. 16) and the magnetic field (2. 17). This is obvious
from duality and here again either equation is sufficient.

2.4 Thin Sheets

The integral equations derived in the previous sections are valid for a
two-dimensional surface at which an impedance boundary condition is imposed,
and provided its boundary profile C encloses a region of non-zero area, either
of the two equations (2, 9) and (2. 11) obtained for H-polarization is sufficient to
Specify the surface electric current K. This is also true of the E-polarized
integral equations (2. 16) and (2. 17), and for each polarization, the equation with the
first derivative singularity is the more attractive one for numerical solution.
However, as the thickness of the body decreases in comparison with its length,
so does the rate of convergence of a numerical solution, and as the two sides of the
body approach one another, these difficulties become severe, In fact, in the limit

of an infinitesimally thin body, neither type of integral equation is capable of

11



solution as it stands. This limit is the case of a thin sheet (not necessarily
planar), and as we shall show, both integral equations are now needed to determine

the surface current.

It is again sufficient to restrict our attention to H-polarization. If the
cylinder is infinitely thin, the closed contour C can be broken up into two open
contours C + and C_ lying on the upper (positive) and lower (negative) sides, and
the integrals expressed as integrals over C+ (say) alone. Thus, for a thin sheet

whose surface impedances are the same on both sides, eq. (2.7) can be written as

H () =H @)+ {Jz(s'nﬁ;r-£>H‘1”<kr)+m(sv)J1<s')Hél’<kr>} d(ks')

C+ (2.24)

where

Jl(s) = K+S(s) +K_S(s) (2. 25)

is the sum of the surface currents on the two sides and

Jz(s) = K+S(S)-K_S(S) (2. 26)

is the difference. J 1(s) and J 2(s) are proportional to the local strengths of the
equivalent magnetic and electric current sheets, respectively. We now take the
limits of eq. (2,24) as p approaches the surface successively from above and

beiow. Addition of the two limits gives

(1)

0 (kr)d(ks") (2.27)

JI(S)+i n(sY)Jl(S‘)H

Cy

iy o L
-Hz(s)_Z

which is a simple integral equation for J 1(s). Subtraction, on the other hand,

yields

_ _l lim lim Ay LA (1) '
Jz(s) =3 <P_‘*C+_B'> C_> (n+ 1')J2(s')H1 (kr)d(ks") (2.28)
C

+

12



and by analytical examination of these limits it can be shown that (2. 28) is merely
the identity J 2(s) =J 2(s). Unless J 2(s) = 0 (and this is not in general true even
for a uniform planar sheet), the integral equation (2, 9) has now served to deter-
mine only the sum of the surface currents.

To find J 2(s) and, hence, the currents themselves, it is necessary to use
the integral equation (2. 11) in addition to (2. 9). Paralleling the analysis leading
up to (2. 11), the normal derivative of (2.24) is taken as the observation point
approaches the sheet from above and below. Subtraction of the two limits again
yields'an identity, this time for J l(s)’ but addition produces the following integral

equation for Jz(s): :

(1)
1

lim 1 0

4k on (kr)d(ks®) . (2.29)
p—=>C 4k 8n+

Y EL () = 2 (s, (6) + PRETEREI

Cy

This is analogous to (2. 11) in having a second derivative singularity.

For a thin sheet it is therefore necessary to employ both types of integral
equation developed in Sections 2.2 and 2.3 and for H-polarization the appro-
priate equations are most conveniently expressed in the forms (2.27) and (2. 29).
The equations for E-polarization are similar and can be obtained using duality.

Thus, from (2.27) we have

ELe) = 236+ ;é—,) 3608 ter)atas) (2. 30)
c, '
where
3 () = - (B, +E) = n(e)Z (0, -H_) .
On writing

JI(S) = -n(S)ZOJS(s) , (2.31)

13



eq. (2.30) becomes

(1)

0 (kr)d(ks") (2, 32)

i 1 1
YOE;(S) =56+ 5 | I

Cy

which is an integral equation for the strength of the equivalent electric current

sheet. Similarly, from eq. (2.29),

i _1 lim 1 1 nAr Ay (D) .
ZOH+s( ) = o )J4(s) —>c, Ik 8n+ J4(s )(n+- r)H1 (kr)d(ks")
C+ (2. 33)
where
+ - £
J 4(s) = (E Z-EZ) = -Jz(s) (2. 34)

is the strength of the equivalent magnetic current sheet. Equations (2. 32) and
(2. 34) are the required integral equations for E-polarization,
A special instance of a thin sheet is a planar strip (or ribbon), and for
this geometry it is of interest to pursue our study of E-polarization a little further.
If the strip occupies the portion 0 <x <L of the plane y =0, where Xx,y,z are

Cartesian coordinates, and is illuminated by a plane wave having

15:_i - ge-ik(x cos a+y sina) , (2. 35)
eq. (2.32) becomes
‘ L
Y, o lhxcosa %n(x)J3(x)+ i J3(x')H(()1)(k Ix -x'|)d(kx')‘ (2. 36)
J0

while (2. 33) reduces to

14



—sina -tkxcosa _ _ _1 7 &) - lim _1 9
inae 2n@) T4 T y—>0 2 oy 4

el (e o ey ) e

(2.37)

For a plane wave at grazing incidence, sina =0, and eq. (2, 37) gives J 4(x) =0,
We are now left with the single equation (2. 36) to solve, and since E; = EZ, its
solution specifies the surface fields on the strip. In this case the impedance strip
is equivalent to a resistive one (see Chapter IV).

If L = o and n = constant, the strip is a uniform ""metallic' half plane.
The integral equations (2. 36) and (2. 37) are then identical to eqs. (11) and (12)
of Senior (1952) and can be solved analytically using the Wiener-Hopf technique.
From the resulting expression for the scattered field, the edge diffraction co-

efficient can be determined. This is shown in the next Chapter.

15



I
EDGE DIFFRACTION BY AN IMPEDANCE HALF PLANE

The diffraction of a plane wave by a half plane at which an impedance
boundary condition is imposed has been solved for both normal and oblique (skew)
incidence (Senior, 1952, 1960), and even for the general problem of an impedance
wedge of arbitrary included arigle, solutions are available (Senior, 1959;
Maliuzhinets, 1960; Lebedev and Skal'skaya, 1963) for normal incidence. Never-
theless, computed data showing thé effect of fhe impedance on the scattering are
very scarce. Senior (1952) presented some patterns for a specific complex value
of n and Maliuzhinets (1960) has reported that one of the key functions involved
in the solutions has been tabulated, but no reference is given.

The analytical solutions can be used to find the diffraction coefficients
associated with the edge. Maliuzhinets' expressions are particularly convenient
for this purpose, and from the resulting coefficients for an impedance half plane,
Bowman (1967) obtained a high frequency approximation to the backscattered field
of an absorbing strip at normal incidence. The predicted values are in good
agreement with measured data.

If the half plane is illuminated by an E- or H-polarized plane wave of unit
amplitude ihcident at an angle « in a plane perpendicular to the edge, the cor-
responding diffracted field at large distances from the edge and viewed in a direc-

tion 6 away from either of the optical boundaries is

5 i(kp"%)
\/—- e P(e, 6)
mkp
where (Maliuzhinets, 1960)
sin 2
. _0 -
4 Ylm=a) )} 6 o« 8 o«
in 5 +cos 5 sin 5 = cos 5

16



with

v(B) =wﬂ(B+7r+x)wﬁ(B+ﬂ-x)ww(B-7r+x>¢7r(3-7r-x) , (3.2)
B V2 rsin & |
1 nsinv=-2\{2 rsin 5 + 2v
wW(B) = exp<9-g- Py - dv L (3.3)

The angle ¥ is such that

1/n for E-polarization
cosSY = . (3.4)

n for H-polarization
Many properties and alternative definitions of the function (p”(B) are listed by
Bowman (1967) in the Appendix to his paper.

The edge diffraction coefficient P(e, 6) is a function of the angle of

incidence «, and the case of edge-on incidence (o = ) is of particular interest
to us. We first consider backscattering, 6 =a=m, and then examine the

more general case of bistatic scattering.

3.1 Backscattering for Edge~on Incidence

From eq. (3.1) with 6 =a =7, we have

P(x,7) = -;%ﬁ—g% (3.5)

since ¥(B) is an even function. As shown by Bowman (1967),

wﬂ(21r+x) wﬂm =

1{‘%(”/2)}4 (c T x)

EW OSZ-SIHZ

so that
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{v w2)°
{u o @0}

Ylr) = %cosx

and since
2
¥(0) = {wﬂ(ﬂﬂ“x)ww(w-x)}
it follows that

{2y
(v, rou, @0}

P(r,m) = - -llb,—oosx

But
2)
1 { W/ } < yif X.)
WW(W'*'X)(//W(?T-X) =3 cos o + cos 5
‘ { (x)}
and hence
8
v x)
P(r,7) = -i dcosx - . (3.6)
2 cos > 4 (ﬂ/ )
Bowman has derived two alternative forms for g[/ﬂ(B), From the first of
these,
ioo
v_(x) 1/2
T - -1/8 X 1 vdv
IR (8cos¥) <1+\/—2—cos 2> exps = osv [
T - JX (3.7)
giving

18



ioo

_ i 2 vdv
Plr,m) = -5 exp T cos v ’
X
whereas from the second
/2
1/2
w'rr(x) _ 2—1/2 <l+ﬁcos X>/ ox 1 Tsinv-2v dv
wn(ﬂ/ 2) 2 P™ & cosv
X
giving
T2 -x
_ i 1 wcosu - (7= 2u)
P(r,m) = - 4 COSXexp g~ pro du

0

(3.8)

(3.9)

(3.10)

Equations (3. 8) and (3. 10) can be used to obtain analytical approximations

to P(r,x) for small and large |n| For this purpose, consider E-polarization for

which cosx = 1/n. If |n|<<1,

1.1 -ix
n  2°
implying
~ _ilog 2 |
X 1log 2
Likewise
= 2ve1V
coS Vv

and therefore
ioo

vdv . Ly X n
—_— = -2(1- = - -
o5 v (1-ix)e n(1-log 5 )

X

from which we obtain

19
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P(r,7) = -Ei exp {— %TH (1- log g)} : (3.12)

When n =0, eq. (3.12) gives

P(m,m) = -Ei (3.13)

in agreement with the known result for a perfectly conducting half plane. If, on the

other hand, ITI |>> 1, we have

T 1
=o-- 3.14)
X< 9% (
and
72 -x
mcosu - (7 -2u) ~ 2
- du=— ,
sinu n
0
so that
P(r,m) = - exp(— 2 . (3.15)
’ 4n m™m

To see how successful the approximations (3.12) and (3. 15) are in covering
the entire range 0 < [‘n | <o, P(r,m} has been computed for real n by direct

numerical evaluation of one of its integral expressions. Since

ioo

where k =0,9159656... is Catalan's constant (Bowman, 1967), eq. (3.8) can be

written as

X
P(m, m) =--lexp -%( —Vd—V—-ZK . (3.16)



This integral was evaluated using a 32 point Gauss quadrature formula and

Fig. 3-1 shows a plot of the normalized diffraction coefficient

~ P(r, )
= A
P(r, 7 B0r.7) (3.17)
n=0
for real n, where P(7,7) is given in eq. (3.13). Results computed using

n=0
the approximate formulae are included for comparison and it will be observed that

(3.12) and (3. 15) cover the entire range of In l with surprising accuracy: even for
|n| =1 the large and small impedance approximations differ by only 20 percent and
are individually in error by no more than about 10 percent. Equations (3.12) and
(3.15) are therefore adequate for all practical purposes and these are, of course,
not restricted to real values of n.

The corresponding results for H-polarization follow on replacing n by 1/n.

3.2 Bistatic Scattering for Edge-on Incidence

The analysis in this more general case is not dissimilar to the one we have
already carried out, although the expressions obtained are more complicated.

From eq. (3.1) with o = 7, the bistatic diffraction coefficient is

; cosec-‘zZ
Pr.0) = -y TG {ykorryer-0)} (3. 18)
which can be written as
_ i 6 __cosxy y(O
P(r,0) = - 2 cosec 3, Gosx +51n8 ¥0) (3.19)

on using the relations (A. 14) and (A. 15) of Bowman (1967). Using relation (A. 13)

of the same reference, it can be shown that

o) _ s & +cos<4 2> (9-7r+x)<//ﬂ(6—7r-x)
w() cos X X% cos (Z ) 5) v _m+x)y_(r-x)
4 cos§+cos —+- Y (O-7+X) (9-1r—x)12
= o Q:os +cos s 00 7(T_ ) P(w, m)
X cos§+cos 1 2) XV X J
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and hence

: X z X toos T v &) (v g) ) 2
P(r,m=5) _ secé cos 5 +cos cos 5 + cos 7 ¢7r(x 6)dﬂ( X = 6)
/1 /A
Plr, 2 cos 22£ + cos(% - %> cos )?f + cos G;— +g—> "W(X)‘[W( X)
(3.20)

where, for brevity, we have written 6 = 7-6. As evident from this expression, the
bistatic diffraction coefficient is an even function of 6.

From the integral form (3. 9),

- u + i 1/2 X-‘S
wﬂ(x ) oS 2 cos 4 1 7sinv=-2v
v X T XP 3 o CosV dv
T cos o +cos —
2 4 X
and since
X-6 A~Yx+o o
v N . _ . R
+ 7sinv-2v dv = 2 7 sin2u-4(y siny sinu+ucosy cos u) du .
CcosV cos 2y tcos 2u
X X 0
substitution into eq. (3.20) gives
6
P(r, 7-6) ) 1 7sin 2u - 4(y siny sinu+ucos ¥ cos u)
NI = -~ d
P(m,m) Secy XP 3o cos 2x +cos 2u 4
0
(3.21)

The exponent is a finite range, real-variable integral which converges for all x and
6, and can be evaluated numerically. The right hand side of eq. (3.21) is unity for

6 =0, as required, but tends to infinity as 6 =—> 7 regardless of x. This is the
forward scatter case in which the direction of observation coincides with the reflected

wave and shadow boundaries, and the infinity is attributable to this fact.
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Equation (3.21) can be used to obtain analytical approximations to

P(r,m-6) for small and large [n , If In |<< 1, x is given approximately by (3.11)

and
6
P(r, 7= 8) 5 1 iy
——e L s L _
Pr,m) o2 Py (~ixe " cosu)du
0

= cpe 2 0 1
seczexp{ 7r(l cos 6) logz}

Hence, from (3.12),

P(r,7~6) = - Eiseo -g-exp {-2 [2- (1+cos 6) log g]} . (3.22)

Not surprisingly, this is consistent with eq. (3.12) when 6 =0, and it also reduces
to the known bistatic diffraction coefficient for a perfectly conducting half plane
when n =0, For real n, P(r,7-6) increases monotonically as é increases from
0 to 7.

If |n|> 1, x can be approximated by the value given in eq. (3.14), but

in order to arrive at an expression for the diffraction coefficient it is necessary

that
5
|n | cos 3 > 1, (3.23)

With this restriction,

6 .

P(r,7-8) sec 2 exp 1 [ta.n-ll+£ ucosu-sinul| .
P(m, m) 2 2 2 .2
0 sin"u

]
/7]
)
o
oo |
o©
>
o
r:’g\
3~
/=N
1
wn
£ |o
O
N S
-

and on inserting the expression for P(m,n) given in eq. (3.15), we have
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1 6
P(r,7=6) = - — sec = exp {~- L 1+ ,6 . (3.24)
4n 2 ™ siné

This is in agreement with eq, (3.15) when & =0 and, consistent with (3.23),
remains small as ¢ incfeases.

The small and large impedance approximations (3.22) and (3. 24) both
indicate that P(w, 7 - 6) changes rather slowly as 6 increases from zero, and this
has been confirmed by a ndmerical determination of P(m, 7 - 8) using an exact

integral expression analogous to that in eq. (3.21).
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IV
INTEGRAL EQUATIONS FOR THIN SHEETS

One of the main advantages of the impedance boundary condition is its
ability to simulate a variety of surface materials and/or imperfections and to do
so in terms of a single parameter only. Unfortunately this generality is also a
weakness, and having used the integral equations or some other theoretical
approach to arrive at a desirable specification of the surface impedance, it is
by no means evident how (or even if) this impedanceb can be realized in practice.

To avoid the difficulty, it is natural to seek a formulation in which the
properties of any surface or coating are included explicitly, both geometrically and
electrically. Such a formulation has been considered by Oshiro et al. (1971), who
developed the integral equations for the problem of an E-polarized plane wave in-
cident on a metallic cylinder fully or partially clad with a dielectric layer. The
geometry and permittivity of the layer are arbitrary, but its permeability is
assumed to be that of free space. Since the field scattered by the layer is
expressed as a surface integral of the polarization currents, the resulting
integral equations are difficult to solve in general, but are amenable to solution
in the limiting case of an infinitesimally thin layer. The computer program based
on this formulation is designated REST and has proved very helpful in our studies.

Although the problem of a plane wave incident on a resistive sheet in
isolation, i.e., without the scatterer present, is of little practical interest in
itself, it is instructive to compare it with the problem analyzed in Section 2. 4.
For this purpose, attention is confined to E-polarization, for which program REST

is applicable.

4,1 Electrically Resistive Sheets

Consider a thin sheet of highly conducting material whose permeability
u is that of free space. If ¢ is the conductivity and A is the thickness, we can

define a surface resistivity R as
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R= — =—1°

A W (ohms) (4. 1)

0 is the permittivity of free space,

and as A——>0 we can imagine ¢ to be increased in such a manner that R is

where Xe is the electric susceptibility and €

finite and non-zero in the limit. The result is an idealized (infinitesimally thin)
electric resistive sheet whose electromagnetic properties are specified by the
single measurable quantity R.

Mathematically at least, the sheet is simply an electric current sheet
whose strength is related to the tangential electric field via the resistivity. Since

Mu= “0’ there is no magnetic current present and

A€ -E) =0 (4.2)

where the affices T refer to the upper (positive) and lower (negative) sides of the
sheet and fi = 4 18 the outward normal to the upper surface. If J is the total
electric current flowing in the sheet, i.e., its strength,

?II\(E+-E') =J (4.3)

and from the definition of the surface resistivity,

+
n, @AE") = -RJ . (4.4)

With R specified (it may be a function of position on the sheet), eqs. (4.2) through
(4.4) constitute the boundary conditions at the surface.

The field occurring in each of the above equations is the total (incident plus
i_ .
scattered) field, and since H = El when J =0, eq. (4.3) implies for a planar sheet

at least, +
A -
nAH = i_

Al
Jro o

I’.\Dl}-—n

Hence, from (4.4), the surface current density on the upper surface is

5+=3A{ﬂi‘ﬁ/\<'z'lﬁ -—>} (4.9



and if a surface impedance 7 is attributable to the sheet, eq. (4.5) suggests that

n= 2Y0R . (4.6)

Nevertheless, the problems of a resistive sheet and a sheet at which an
impedance boundary condition is enforced are different from one another and, in
general, not equivalent. Although there is some similarity between the conditions
imposed, an impedance boundary condition specifies a connection between the
tangential components of E and H on each side of the sheet and forces a mag-
netic current to occur in addition to an electric one. The sheet is therefore a
combined electric and magnetic current sheet with the two strehgths related via
the impedance. In contrast, a resistive sheet supports no magnetic current by
virtue of eq. (4.2). Because of this the two problems are basically distinct,
and unless the geometry is such that no magnetic current is excited on the
impedance boundary condition sheet, it is not possible to relate R and 7.

To obtain the integral equations appropriate to a resistive sheet, we
consider first the case of E-polarization. If _Iii = iEiZ, then J = 'z\JZ and the

boundary condition (4.4) becomes

E- =RJ (4.7)
Z Z

where R is the surface resistivity, assumed known. It is a trivial matter to
derive an integral equation for the strength J . of the equivalent electric current
sheet, and the vector formulation is (perhaps) even more straightforward than the
scalar one. From the definitions (2. 19) and (2. 20) of the electric and magnetic

Hertz vectors describing the scattered field, we have

T (p) = 0 (. 8)
on using (4.2) . Also
%9 (1)
T = - 3¢ z J_(s"H, " (kr)ds' (4.9)
C
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where the integration is along the sheet (or on one side only), and hence, from
(2.18),
. y4
E(=E(@-— | J(s"H
zZ z 4 zZ
C

(1)
0

(kr)d(ks'). (4. 10)
If p is now chosen to lie on the sheet, application of the boundary condition (4.7)

gives

(1)

0 (kr)d(ks') , (4.11)

oy o 1 '
YO Ez(s) = YOR(S)JZ(S)+ 2 Jz(s JH
C
which is a rather simple integration equation for the total current JZ (s). Note

that consideration of the magnetic field would have produced only an identity for

J Z(s). Alternatively, the scalar formulation can be used starting with eq. (2. 6)
and taking ¢ to be the z component of the scattered electric field. The resulting
integral equation is identical to (4. 11).

From eq. (2.31),

J@)=-~H -H )=J_1s) (4.12)
Z +s -S

3

where J 3(s) is the total current satisfying the integral equation (2.32). Com-
parison of (4. 11) and (2. 32) shows them to be identical if R and n are related
through eq. (4.6) . With this identificé.tion, the electric currents are the same
for resistive and impedance boundary condition sheets, but since the latter sheet
can also support a magnetic current, the scattered fields will differ in the two
cases unless the magnetic current is not excited. A situation where this occurs
was noted in Section 2.4 and hence, for a planar sheet at edge-on incidence,

a resistive sheet is entirely equivalent to an impedance boundai'y condition sheet

whose surface impedance is given by eq. (4.6) .
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This conclusion is important in enabling us to use the analytical information
available about the impedance boundary condition sheet in studying the properties
of resistive sheets. From the exact analytical solution for a constant impedance
half plane, the edge diffraction coefficent can be obtained as shown in the previous
chapter. For the particular case of edge-on incidence, this coefficient is also
applicable to a resistive sheet for all angles of diffraction provided n = 2YOR
where R is the surface resistivity in a neighborhood of the edge.

Turning now to H-polarization for which gl = QH;, the strength of the

resulting current sheet is J = §J s and the boundary condition (4. 4) yields

T

E =RJ . (4.13)
S S

For the field scattered by the sheet the magnetic Hertz vector T_T’F(g) is again zero,

and since

ZO A
M) =- 7 | s'I (sHH
C

(1)

0 (kr)ds' (4. 14)

it is a trivial matter to find EZ(‘Q)' When p is on the sheet, however, eq. (4.13)
implies
E° =-E +RJ
s s s

and hence

(1)
1

lim _1

p—>C Ik gna- (kr)d(ks") . (4. 15)

Y Eis(s) = Y R(S) () +

0 Js(s‘)(ﬁ' )i

C

This is an integral equation from which to determine J S(s). Unfortunately, it is

characterized by the same type of second derivative singularity that we have met
before and which is difficult to handle numerically, but in spite of this, eq. (4. 15)
is the one that must be solved, Indeed, the consideration of the magnetic field

scattered by the sheet produces only an identity for J S(s).
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Even for a resistive sheet we are now faced with two integral equations
analogoué to the ones obtained for an impedance boundary condition sheet, but
whereas the latter requires both equations to find the two currents that either an
E- or H-polarized wave excites, the resistive sheet needs only a single equation
for each polarization. Though one is convenient for numerical solution, the other
(for H-polarization) is not. Were we to compare eq. (4. 15) with the analogoué
equation for an impedance boundary condition sheet, we would again find them to

be identical if n = 2YOR.

4,2 Generalized Resistive Sheets

Our attention thus far has been concerned with the concept of an electric
resistive sheet whose electromagnetic properties are specified entirely by the
surface (electric) resistivity R, but we can also conceive of the electromagnetic
dual of such a sheet. This could be simulated using a material having € = €
and high magnetic loss, and we could then define a surface "magnetic resistivity"

i

=23 h (4. 16)
R A (mhos)

analogously to eq. (4.1) , where X is the magnetic susceptibility, Hy is the
permeability of free space and A is the thickness of the layer. If xméoo (or,
more realistically, mem) as A—>»0 in such a way that the product remains
finite, we are then left with an idealized (infinitesimally thin) magnetic resistive
sheet whose properties are completely specified by the single measurable quantity
R .

For a magnetic resistive sheet, the boundary conditions are simply the

dual of those in the previous section and are

A + -

fAH -H)=0 (4. 17)
AET-ED) =3 (4.18)
A i e 3k

A,H) =-RJ (4.19)

31



where the affices 1 again refer to the upper (positive) and lower (negative) sides
of the sheet and, say, n=n + The sheet supports only a magnetic current Jd *
and, as a result, the tangential components of the magnetic field are continuous
across it.

Integral equations from which to compute J i are immediately
obtainable from those in Section 4.1 by invoking duality. Thus, for H~polari-

R l A 1 % x
zation, H = zHZ and J = QJZ. Hence, from eq. (4.11),

i _ % % 1 sk (1)
ZOHZ(s> Z R (s)JZ(s)+ , Jz(s')HO (kr)d(ks') . (4. 20)
C
Similarly, for E-polarization, El =2E; Q* = ’s\JS and, from (4. 15),
i * X lim 1 0 Ko ae Ave (1)
= + —_— = YL t
ZOHS(S) ZOR (s)JS(s) p—> C 3K on Js(s)(n r)H1 (kr)d(ks?).
C (4.21)

These are analogous to the equations for the magnetic current supported by an

impedance boundary condition sheet having surface impedance
n=Y/@R), (4. 22)

though we remark that the problems of impedance boundary condition and mag-
netic resistive sheets are completely equivalent only in those cases where an
impedance boundary condition sheet supports a single~component current alone,
One such situation is a planar sheet at edge-on incidence.

It is now logical to consider a generalized resistive sheet consisting of
a superposition of an electric and a magnetic resistive one. With such a sheet,
the electric and magnetic currents are produced by the electric and magnetic
susceptibilities of the material respectively, and are specified by R and R™
independently of one another. From egs. (4.2) through (4.4) and (4. 17)
through (4. 19), the electromagnetic boundary counditions at a generalized resis-

tive sheet are
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A -H) =4 (4.23)
RAE -ED) =L (4.24)
A fAAET+ED)} = -2Rg (4. 25)
AafhaE +E0} =R (4. 26)

where the last two have been deduced from (4.4) and (4. 19) by writing these as
conditions on the sum fields. This avoids the cross-coupling occurring at each
side of the sheet.

The Hertz vectors describing the scattered fields are

y/
() = - Z% g_(s')H(()l)(kr)ds' (4.27)
C
sk Y b3
T () = - Z}% J (S')H(()l) (kr)ds® (4.298)
C

from which _E_:S(g) and ES(Q) can be computed using the egs. (2.18). By taking
the observation point to lie on the sheet and imposing the boundary conditions
(4. 15) and (4. 16), we then obtain integral equations from which J and J* can
be computed. Though it is natural to expect that the equations will be coupled,
this is not in fact the case.

We shall again confine attention to the principal polarizations and it is
actually sufficient to consider E-polarization only. If E_i =2 Eiz, then J =2J ’
and J° =84 ; From the egs. (2. 18), the fields scattered by the sheet are

Y (1)

) (kr)d(ks*)

J:(s')(ﬁ' $)H
C

2
on

T
)
It
)
=l

JZ(S')(ﬁ-f')H(ll)(kr)d(ks') , (4. 29)
C

4

33



(1)

0 (kr)d(ks")

ZO
E@)=-— | J (shH
C

-1\ Fenar. lﬁ)H‘l”a{r)dms') . (4. 30)
C

If the observation point p is now chosen to lie successively on the upper and
lower surfaces of the sheet, the resulting fields can be inserted into the boundary

conditions

+ - Mook
H+H =2RJ ,
S S S
(4.31)
+ -
E +E =2RJ
Z VA Z

Since the contributions of the second integrals in (4. 29) and (4. 30) cancel, we

are left with

i 3 sk 1' 1 o sk A A
2ty @) = 2R @@+ M7 2 e Dt
C
(4.32)
0
i - _1- 1 (1) 4
YOEZ(S) = YOR(S)JZ(S)+ 1 Jz(s )HO (kr)d(ks) , (4.33)
0

which are two uncoupled integral equat ions for J s and J . They are identical

to the equations (4.21) and (4. 11) for individual magnetic and electric resistive
sheets, and the scattered fields (4.29) and (4. 30) are simply the sums of the fields
scattered by the separate sheets. Though a generalized resistive sheet does bear
some resemblance to an impedance boundary condition sheet, it should be noted
that in the present case J and j are specified independently by R and R>:<
respectively: the constraint (2, 13) or (2. 14) which characterizes an impedance

boundary condition surface would only exist if R = 1/(4R 'P) .
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An important practical consequence of the above results is that for a
generalized resistive sheet it is sufficient to solve only the two integral equations
(4. 11) and (4. 15) for an electric resistive sheet with E- and H-polarizations,
respectively. The analogous equations, (4.21) and (4. 22), for a magnetic
resistive sheet follow by invoking duality; and for a generalized resistive sheet,
the integral equations are the same as for a superposition of the two sheets, as
are the scattered fields. Of course, we are still faced with the numerical diffi-
culty posed by the second derivative singularity in eq. (4. 15), but before turning
to this, it is of interest to consider the problem of a generalized resistive sheet

in the presence of a body.

4,3 Sheets and Bodies

A resistive sheet is of concern to us because of its potential for reducing

the scattering from a body in its vicinity. Until now our studies have been

confined to an isolated sheet, and though these have served to pinpoint the types
of integral equation which are appropriate, the practically important problem
is that of a sheet in the presence of a body. This is the problem that we now
address and, as we shall see, the analysis is a rather trivial extension of that
which has been done before.

Consider a body whose profile is the (closed) contour C2 and which has
the impedance boundary condition (2. 1) or (2. 2) imposed at its surface. Some-
where in the vicinity of the body there is a generalized resistive sheet whose

profile is the open contour C_ and which is subject to the boundary conditions

1
(4.23) through (4.26). A plane electromagnetic wave is incident and it is suffi-
cient to assume this to be E-polarized, i.e., _I_E_l = flelZ Hence, E = QEZ and

H= §HX +§7Hy, and from the eqs. (4.23) through (4. 26),

J=23 , J'=83 (4.34)
- VA - S

where J and J * are the electric and magnetic currents, respectively, of the
equivalent current sheet. The Hertz vectors describing the field scattered by

the sheet are therefore
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7
() (o) = 22 Jz(s')H(l)(krOI)ds' , (4. 35)

- 4k 0
Cl
Y
(1)* 0 A (1)
T = — Y :
[ (o) P S JS(S )HO (kro 1)ds' , (4. 36)
Cl

: = n=p! Po=
where Lg; TL-p s 1 lor 2.
The body supports surface currents K and E* where (see eqs. 2.3 and

2,12)
K=2K , K =8K . (4.37)
- Z = S
Since K; = -nZOKZ by virtue of the boundary condition, the Hertz vectors
describing the field scattered by the body are
(2) ~ %o (1)
1T = Wz — ! ! 4,38
T () = -z m Kz(s )HO (kroz)ds , (4. 38)
C2
(2)* 1 A (1)
T = — 1 1 t 1
1 (p) m S'n(s )Kz(s )HO (kr02)ds . (4.39)
CZ

The complete scattered field is given by the egs. (2. 18) with
ES b sk
e L L

and at an arbitrary point p in space
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RN DI (1)
YOEZ(B) YOEZ(B)_4 JZ<SI)HO

C

kr 0 1)d(ks g

iY0 ® A

-—— YA

2 JS(S)(n r01)H
C1

(1)

) (krO 1)d(ks "

[um—ry

1 D
T4 Kz(S )HO

Co

(kr 0 2)d(ks')

+d) e @@ f«ozm‘ll)

Cq

(kroz)d(ks N,

i A 0 A O i
H(p) = H.l<e)+<x ay Y “&>[¥1§ JZ(S')H((,D (k) )dlks")

!

Y

9 (1)
4k

1

- J:(s')<ﬁ' 2 er Nates)

!

+k Kz(s')Hél)(krOZ)d(ks')

C

+fk n(s')KZ(s')(n' 'roz)H(ll)(kroz)d(ksY)} .

Cy

to determine them.

Let p approach a point s

below. From the second of the egs. (4. 31) and the fact that
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 on the sheet successively from above and

(4. 40)

(4.41)

We observe that there are three unknown components of the currents, two for the

sheet and one on the body, and three integral equations are therefore necessary



lim lim o me A (1)
+ . =
(e-')01+ 2—>Cl_> I (0@ 1o JH, Tlkry Jdlks?) =0, (4.42)

C

we have

YOE;(S 1) = YOR(sl)JZ (s1)+ i— Jz(s')H(l)(krll)d(ks 1

0
¢
1
3 KZ(S')Hél)(krlz)d(ks')
Cy
...—i t '\' A (1) .
4 (VK (N’ -1, JH, " (kr ,)d(ks?) (4.43)
c
2

where rij = p_i- Q}, i,j = lor 2. Similarly, by considering the magnetic field

component S_-H and using the first of the egs. (4.31),

1
i e lim Y0 o (1)
=R ™ + —_ (s (AT, P 1
H(s) =R (s ) (s) p—>p, % on I (8N T JH " lker g Jdlks")
. _
1
l YA A (]-) ¢
+4 KZ(s )(n1 1"12)H1 (krlz)d(ks )
Cq

- leg n(sHK (") 5’% {(ﬁ' . ?lz)H(ll)(krlz)}d(ks').

C (4.44)
Equations (4. 43) and (4.44) are necessary for the determination of Jz and J ; .
The first integral on the right hand side of (4.44) has a second derivative singu-
larity of the type referred to earlier. The last integral is similar in form, but
the integrand is actually free of singularities if C1 and C2 have no point in

common, and the differentiation can be carried out explicitly.
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The third (and last) of the integral equations required is obtained by
allowing p to approach a point 52 on the body. However, there are two forms

that this equation can take, If we consider Ez and use the fact that EZ =nZ OKz

on C2’ we find

(1)

YOEiZ(s ——n(s K <s)+— K_(s9H, " (kr,)d(ks?)

CZ
ASOK (s R ) e, )dks")

Cs

YN N

—

41 JZ(S‘)H(()l)(erI)d(ks')

C

iy
+_4_O_ J ( ,)(I\‘ A )H(l)

C

(kr21)d(ks') . (4. 45)

Alternatively, from the magnetic field component §2 -‘H,

Hle) = - 2K ()41 X K (04, 22)H(1)(kr d(ks")

Cy
lim 1 98 1 1 "r." (1)
.e->324 o, n(s )Kz(s)(n ToolH; (kr )d(kS')
C
2
t5 | I 06, 21)H(1)(kr (ks
C

Y "
+ -9 J;(s”)gi'; {;ﬁ'-?m)H(l)(kr )}d(ks‘) . (4.46)
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This last equation is similar to (4.44) and the same comments apply. If
Jz(s') =0 = Ji(s"), i.e., if there is no resistive sheet present, eqs. (4.45) and
(4. 46) reduce to (2. 16) and (2. 17), as required.

For the complete problem of a generalized resistive sheet in the presence
of a body, the integral equations needed are (4. 43), (4.44) and one of (4.45), (4.46).
Because of its greater simplicity, (4.45) is the natural one to choose. If the sheet
has only an electrical resistivity, so that R% is infinite, implying J s = 0, and if,

in addition, the body is perfectly conducting (n = 0), egs. (4.43) and (4. 45) become

i = 1 (1)
YOEZ(S].) —-YOR(sl)JZ(sl)+ 1 JZ(S')HO (krll)d(ksf)
)
+:}1' Kz(s“)Hél)(krlz)d(ks') , (4.47)
Cq
i _1 (1) 1 (1)
YOEZ(sz) =17 JZ(S‘)HO (l<r21)d(ks')+ 1 KZ(s,Y)H0 (krlz)d(ks‘),
C C
L 2 (4. 48)

and these are the ones used in program REST. However, one of the great
advantages of the impedance boundary condition is its preservation of duality,
which allows us to deduce the results for H-polarization by applying the follow-

ing transformation to the E-polarized equations:

EeSH , H—-E, J —J , J —>-J
Z Z S S Z Z S S

>:<= e 1 ’ Y Z .
KZ-—-)KZ nZOKS, R<>R , n<—> 1/n O<—> 0

It is therefore sufficient to consider only the three integral equations (4. 43),
(4.44) and (4.45). Apart from some slight simplifications, these are identical to

the equations obtained by Laxpati (1973) using a scalar formulation, and are now
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being programmed for numerical solution. Of the three equations, (4.43) and

(4. 46) are similar in form and rather easy to treat. Indeed, they are not sig-
nificantly different from those which are employed in programs REST and RAM1D
(see Chapter V). Unfortunately, eq. (4.44) is rather difficult to handle because
of the ""second derivative singularity' which it contains, and an examination of

this type of singularity is given in Appendix A.
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Vv

COMPUTED AND EXPERIMENTAL RESULTS

In the process of assembling material for this Interim Report, we found
that a great deal of information had been collected since the publication of the
previous report (Knott, Liepa and Senior, 1973). The theoretical aspects of a
detailed examination of the integral equation formulation have already been
presented in Chapters II through IV, but some of the information we had acquired
seemed to fit in neither category. We therefore set aside Chapter V as a reposi-
tory for otherwise unclassifiable topics.

Before presenting the details of these assorted smaller studies, we
first review the salient events of the predecessor Contract, and of the present
Contract until now, in Section 5.1. The intention is to provide a commentary
that bridges the transition between the two and to show why some of the computer
programs had to be modified. The review will refresh the memory of the reader
who has seen the last report, but will also acquaint the new reader with previous
accomplishments. The capability of the impedance boundary condition computer
program is assessed in Section 5.2 via comparisons with measured results, and
the effect of treating both the leading and trailing edges of an ogival cylinder are
discussed in Section 5.3. The effect of sampling rate is taken up in Section 5. 4,
along with the demonstration that, at least for edge-on incidence, it is the lead-

ing edge of the obstacle that dominates .the scattering for E-polarized incidence.

5.1 Summary of Previous Efforts

Early in the predecessor Contract we were furnished a computer program
(RAM1A) by AFAL, based upon the linearized solutions of integral equations (2. 9)
and (2. 17) derived in Chapter II. RAMI1A offered but two options: the solution for
a circular cylinder satisfying a (constant) surface impedance boundary condition

or the solution for a cylinder of arbitrary shape, but whose profile had to be
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specified point-by-point as input data. Since the investigation was to be directed
toward non-specular scattering, circular cylinders were of little interest and

the feeding of more general profiles into the machine point-by-point was clearly

an undesirable task. Moreover, previous experience had shown that the impedance
must be variable along the surface in order to permit some measure of control
over the far field scattering.

Since our task required more flexibility than was offered by RAM1A, we
modified it so as to more fully satisfy the existing needs. The profile-generating
subroutine was expanded and it now constructs the body perimeter from a collection
of abutting straight line or circular arc segments and assigns variable surface
impedances along the profile according to two general mathematical descriptions.
A subroutine was also added to the program that prints out "quick-look' plots of
the induced surface currents. To distinguish the program from the original it
was called RAM1B.

RAMI1B was immediately tested for both E~ and H-polarizations using a
conducting circular cylinder as a test obstacle. The results of these initial
test runs duplicated those of the original program, and they also agreed quite
well with the exact solution obtained by the method of separation of variables
in circular cylindrical coordinates. Satisfied with the capability of RAM1B,
we subsequently used it intensively to study methods of reducing traveling wave
returns from the trailing edge of an ogival cylinder and the creeping wave con-
tributions from a wedge-cylinder for H-polarization. The results of the study
showed that such sources of non-specular scattering can indeed be reduced,
but only at the expense of treating a portion of the surface which is a significant
fraction of the wavelength (Knott and Senior, 1973; Knott, Liepa and Senior,
1973). Having established favorable surface treatments for this polarization,
we turned to E-pc.)larization, for which the leading edges of the bodies become
the dominant source.

Preliminary runs of RAM1B were for the bare ogival cylinder so as to
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establish reference levels against which to gauge the success of candidate
surface treatments. The first test run for the bare body for E-polarization
was unacceptable; the surface fields rose to abnormally high levels at the
trailing edge and the scattered fields were some 10 dB greater than those
observed in experimental work. That the program failed was corroborated

by the application of GTD as well, which, at least within 60 degrees of edge-on
aspects, agreed with the experimental patterns to within 2 dB. Clearly, some-
thing was wrong with RAM1B for E-polarization.

The difficulty had not been resolved by the time the Final Report of the
predecessor Contract had been prepared, but a series of tests had been under-
taken in an effort to determine if the problem could be circumvented. Reasoning
that since the program had worked quite well for the circular cylindér, it must
be the sharp edges of the ogival cylinder that gave rise to the problem, so we tried
replacing the edges with rounded caps of small radii. Although this ploy tended
to destroy the very feature that gives rise to non-specular scattering, it was at
once promising: the disagreement between measured and computed results
dropped from 10 dB to only 4 dB. Then, reasoning that since the small radii
of the caps actually resulted in dense surface sampling near the ends of the
cylinder, we reverted back to sharp edges but we clustered the sampling points
quite heavily there. Subsequent tests showed that progressively better results
were obtainable with progressively heavier sampling but this can be carried only
so far; the dense sampling at the edges greatly reduces the number of points
available for distribution over the remainder of the body. Although we were
able to reduce the disagreement between measured and computed patterns to
2 dB, we were disappointed by the devious means required to do so.

In the meantime we had received another program (RAMC) from AFAL
which solved the integral equations (4.47) and (4. 48) for a metallic body in the
presence of purely resistive sheets for E-polarization. Like RAM1A, RAMC

treated a specific geometry, namely a metallic circular cylinder surrounded
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by a concentric resistive sheet of constant resistivity, and it was too rigid to be
used in this form. The program was modified so as to more fully suit our needs
and the fnodification was named REST. Unlike RAMC, REST permits the user
to place resistive sheets anywhere (even within the metallic core!) and our first
test of REST was for a mefallic ogival cylinder with no resistive sheets at all.
When compared with experimental patterns, the computed data agreed quite
well, but it raised a question: why did REST perform so well while RAM1B

did not? The answer is, of course, that REST is based on equations (4. 47)

and (4. 48) for E-polarization while RAM1B is based on equation (2. 17‘), which
has the second order singularity in one term.

For the special case of incidence normal to the cylinder axis, equations
(2.16) or (2. 17) may be used for E-polarization, of course, but for numerical
convenience (2. 16) obviously has an advantage. In addition, the computer
program RAMIB could be greatly simplified since the generation of the matrix
elements for both E- and H-polarizations involve identical terms. Thus we
put aside program RAMI1B and constructed a far more efficient and accurate
version. It is called RAMD and a listing of it is Vgiven in Appendix B. As will
be shown in a moment, RAMD produces satisfactory results for both polarizations,
at least within the constraints of the impedance boundary condition.

In summary, we started the predecessor Contract with an impedance
boundary condition computer program which was then modified for specific
use in non-specular camouflage studies for H~polarization. The present Contract
was started with this program on hand, plus another which solved the E-polarized
resistive sheet geometry. This second program was also modified for specific
use in E-polarization studies. Finally, a streamlined and compressed version
of the first program was constructed. We now have available programs REST,
for the resistive sheet problem, and RAMD for the impedance boundary condition.
As will be pointed out presently, we are in the process of constructing yet a third

program that combines the desirable features of both programs, valid for either
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polarization. This program will become, we believe, a vital tool in the

remainder of our investigation of non~specular camouflage treatments.

5.2 Comparisons of Computed and Measured Results

Programs REST and RAMD solve a two-dimensional problem, of course,
whereas laboratory measurements can only be made of finite, three~dimensional
obstacles. Thus, in order to compare measured and predicted patterns, one or
the other must be scaled by the factor derived in a previous report (Knott, Liepa

and Senior, 1973). The relation between two- and three~dimension cross

% _ 2(&)2 %
7(2 by Y

sections is

where L is the length of the finite cylinder. Measurements were made both
by AFAL and the Radiation Laboratory and, since different frequencies and
calibration units were used at the two installations, it is convenient to scale
the measured patterns down to the two-dimensional system insteé.d of scaling
the computed pattei-ns up to the measurements.

The AFAL measurements were made at 7.5 GHz for 18~inch long cylinders;
since AFAL routinely presents its data in dB relative to a square meter, 3.79
dB must be added to the patterns in order to obtain the effective two~dimensional
results. The Radiation Laboratory measurements were made at 3.0 GHz for a
cylinder 35 inches long; since our data are routinely presented in dB relative
to a square wavelength, 22. 00 dB must be subtracted in order to carry out the
comparison with computed results. The Radiation Laboratory patterns were
presented in the previous report, but only one comparison was made there with
predicted patterns. The AFAL patterns have not yet been published.

Figures 5-1 and 5-2 are comparisons of measured Radiation Laboratory
backscattering patterns of a metallic ogival cylinder 3 wavelengths wide for E-

and H-polarizations, respectively. Only 90-degree segments of the patterns
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are presented, and the angular scale runs from edge-on at the left (zero degrees)
to broadside incidence at the right (90 degrees). Except for a 1 dB error in the
edge-on region and a 2 dB error at broadside, the agreement between measured
and predicted patterns for E-polarization (Fig. 5-1) is quite good. And, except
for the 4 to 5 dB discrepancy in predicting the null near 35 degrees for H-polariza-
tion (Fig. 5-2)_, the same kind of agreement prevails. It should be noted, however,
that the computed H-polarized pattern seems to be shifted 2 degrees toward edge-
on incidence. For both polarizations the measured broadside return is less than
the computed value, possibly because the target was measured at a range only

half of the customary 2L2/k.

When the ogival cylinder is covered with a layer of Emerson and Cumming
SFT=2.5 absorbing material the agreement is not as good, as may be seen in
Figures 5~-3 and 5-4. Based upon the measured electromagnetic properties of
several samples of this material by AFAL, a constant normalized surface
impedance ZS= 0.840+i0. 187 was specified in the computer program input
data. This impedance level corresponds.to a normal incidence power reflection
coefficient of ~17.5 dB, and if the computed broadside cross sections in Figures
5-1 and 5-3 are compared, it will be seen that a reduction of 18.7 dB was pre-
dicted, reasonably close to that obtained from the measured properties of the
material. However, a comparison of the measured and computed patterns of
the coated ogival cylinder for E-polarization show no such agreement. In the
edge=-on region the computed cross sections are of the order of 6 dB greater
than the measured values, and at broadside are some 5.5 dB lower. Moreover,
such battern characteristics as lobe structure and null positions are not well
produced. The disagreement is not quite so bad for H-polarization (Fig. 5-4),
but the measured pattern does not exhibit the deep nulls predicted by the computer
program in the broadside aspect angle region. Interestingly enough, the computed
broadside cross section reduction is only 16.3 dB (via comparison of Figs. 5-2

and 5-4), and falls short of the normal incidence value by precisely the amount
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that the computed E-polarized reduction exceeds it. Nonetheless, we must
conclude that even in the presence of possible experimental errors, the back-
scattering from the absorber covered ogival cylinder is not well modeled by a
constant surface iinpedance determined by the normal incidence properties of
the coating.

Figures 5-5 and 5-6, like Figs. 5-1 and 5-2, are for a metallic ogival
cylinder, but in this case the measured patterns were provided by AFAL. The
reader will note a change in the amplitude scale on these and the remaining
figures, since AFAL uses a 60 dB dynamic range while the Radiation Laboratory
uses 40 dB. In both cases the cylinder was 3A wide and, although the AFAL
cylinder was shorter than that measured by the Radiation Laboratory, the
difference in length is automatically accounted for by the scaling factor men-
tioned earlier. The measured pattern for E-polarization (Fig. 5-5) lies below
the computed pattern by about 1 dB and were it not for this constant '"bias', the
fit between the two would be remarkable. The disagreement noted in the
Radiation Laboratory data for H-polarization (Fig. 5-2) carries over to the
case of the AFAL data in Fig. 5~6, where again it can be seen that the computed
pattern seems to be shifted slightly toward the edge—-on aspect angle.

Figures 5~7 and 5-8 are for the coated ogival cylinder, but this time the
coating was Emerson and Cumming SFT-11. 0 material. Based on measurements
of the electromagnétic properties of the layer, the normal incidence surface im-
pedance is computed to be ZS = (0,471-i0. 400, and this was the impedance used
as input data for program RAMD. Theoretically, at least for normal incidence,
the radar cross section should be reduced by 6. 97 dB using this impedance, and
for E-polarization the computed reduction was in fact 6. 9 dB, as judged from a
comparison of Figs. 5-5 and 5-7, and for H-polarization 7.4 dB, from Figs.
5~6 and 5-8. The measured E-polarized pattern (Fig. 5-7) is about 1.5 dB
greater than the computed one at broadside, and from 1.5 to 2.0 dB lower in the

edge-on region, but the agreement is otherwise quite good. For H-polarization
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FIG. 5-5: BARE OGIVAL CYLINDER, E-POLARIZATION.
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(Fig. 5-8), the measured and computed patterns nearly coincide at broadside
incidence, but there is some disagreement in the details of the lobe structure
at edge-on and in the intermediate aspect angle region.

Figures 5-9 and 5-10 are patterns of a metallic wedge cylinder formed
by mating a 25~degree (total) angle wedge with a circular cylinder of electrical
radius ka =3.0. The measured pattern for E-polarization (Fig. 5-9), like that
of the metallic ogival cylinder, lies about 1.5 dB below the computed one and
were it not for this fairly constant difference, the two patterns would be in
almost perfect agreement. The agreement for H-polarization (Fig. 5-10) is
not quite as good, with some of the computed nulls shifted toward the edge-on
incidence side of the pattern and, in particular, with a 6 dB disagreement in
amplitude at the edge-on aspect. Note that since the wedge angles of both the
wedge-cylinder and the ogival cylinder are the same, the edge-on E-polarized
returns of both bodies are the same. Figures 5-1, 5-2, 5-5, 5-6, 5-9 and 5-10
all suggest that the computer program performs quite well for metallic bodies
for E-polarization and that, while less accurate, it may still produce acceptable
patterns for H-polarization. Some of the differences noted may be due to align-
ment difficulties and near field effects, and not least, to the neglect of end
effects in scaling the three~-dimensional patterns down to the two-dimensional
computed results.

Figures 5-11 and 5-12 display the wedge-cylinder patterns when the
body is coated with the SF-11.0 material mentioned earlier. The agreement
for E-polarization (Fig. 5-11) ranges from 1.5dB at the specular angle to 3 dB
or so in the regions of the nulls, and is as good as was noted for the ogival
cylinder. The discrepancy for H-polarization (Fig. 5-12) is somewhat greater,
about 3dB, at the specular angle, but rises to as much as 10dB in the edge-on
region. Comparisons' of the specular cross sections in these figures show

that the computed reduction is 6. 1dB for E-polarization, which is 0.9 dB
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short of what might be expected for normal incidence as judged from the

material properties, and is 7.5 dB for H-polarization, which is 0.5 dB
better. The measured cross section reductions considerably exceed the com-
puted ones, however.

The agreement between measured and computed patterns is quite good
for metallic bodies, nearly as good for coated bodies for E-polarization, and
perhaps disappointing for coated bodies for H-polarization. We believe the
errors are traceable, in part, to the shortcomings of the surface impedance
boundary condition, which, while conceivably justifiable over smooth surfaces
of large radii of curvature for sufficiently lossy materials, is not necessarily
valid near edges. From a study of the integral equations presented in Chapter
II, one would conclude from that a surface impedance boundary condition tends
to interchange the roles of E- and H-polarized scattering source%. Hence the
surface impedance would, for example, increase the trailing edge return for
E-polarization. If this were truly the case, the design might have to aim for
a surface impedance of about unity, since this would be optimum for arbitrary
polarizations.

However, the experimental data in Figs. 5-1 through 5-12 show no such

inclination. In every case the radar cross section in the edge-on region was

reduced; no enhancement took place, as might have been predicted from the
duality of the impedance boundary condition integral equations. Therefore the
»effective surface impedance near the edges was different for the two polarizations,
even though the edges were treated with the same physical materials. This is
indeed fortunate, for it gives us the kind of control we require: the optimum
surface impedance for one polarization is manifestly not optimum for the other.
Thus, instead of being disappointed in the lack of agreement between the
measured and predicted patterns of these coated objects, we take heart: the

disagreement shows that selective control is still available.
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5.3 Single and Double Edge Treatment of the Ogival Cylinder

Although it is doubtful that an impedance can be defined near the edges
of a coated body on the basis of the normal incidence properties of the coating
alone, there is no question that some impedance can be assigned. What is not
clear is how we might deduce this impedance from a knowledge of the material
properties and the local edge geometry, and indeed, it is via the expansion of
program TWOD that we hope to answer the question in the coming months.

The impedance boundary condition integral equations do not in themselves
provide the answer. They merely offer the promise of providing a solution to a
given scattering problem for whatever particular impedance is selected to
represent the relation between the tangential surface fields. th knowing at
present how the H-polarized impedance near én e'dge is related to the E-
polarized impedance there, we shall assume for the time being that they
are equal. We now pose the question, how would an optimum treatment for
one polarization affect the performance for the other, assuming that the
impedance for the two polarizations is the same?

To obtain some idea of the possible degradation in performance, an
ogival cylinder was chosen as a test obstacle because the offending source of
non-specular scattering shifts from the leading edge to the trailing edge as
the polarization is rolled from E to H. We assume that a parabolic (square
law) impedance distribution, rising to a terminal value of ZS= 2,0+1i0 at the
edge, is optimum for H-polarization when 1A of the trailing edge surface is
treated, the constraints of the optimization being due to, say, external con-
siderations such as weight, layer thickness, and the like. Normally, only
the trailing edge should be treated, but if the cylinder must also be viewed
from the rear, then the leading edge should be included.

Figure 5-13 summarizes the results. As seen on the left side of the
diagram, a trailing edge treatment alone (the alternating solid~dashed line)

reduces the return by 2 dB at precisely edge-on incidence, but out to about
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40 degrees an average of 10 dB or so is available. The treated edge becomes
a "leading'" edge if we shift from the left to the right side of the diagram, and
there it can be seen that the cross section is actually enhanced by 5 dB over
the bare body level, that a deep null is created at 165 degrees (corresponding
to 15 degrees from edge-on), and that the averaged cross section values in the
140 to 180 degree range have not been materially affected. In fact, an envelope
sketched through the peaks of the lobes would seem to describe the peak ampli-
tude of the bare body echo as well as that of the body with a single treated édge
(when that edge is presented toward the observer). Thus a favorable trailing
edge treatment is completely sacrificed if the edge is viewed from the rear.

This being so, it might be expected that treating both edges of the body
would be useless, for then a coated edge would be presented to the observer
regardless of whether he viewed the cylinder from the front or the rear. Such
is not the case, however, as can be seen from the level of the dashed line in
Fig. 5-13, representing the effect of a double edged treatment. In the inter-
mediate aspect angle range from 45 to 135 degrees, the double edged treatment
smoothes out the peaks and nulls of the bare body pattern, and the averaged
cross section levels are scarcely different from those of the metallic objects.
But in the edge-on regions, a 7 dB reduction is still available, although there
is a substantial enhancement of about 6 dB at precisely edge-on. We conclude
that, although a trailing edge treatment offers little benefit if viewed from the
wrong direction, a double edged treatment helps to recover the loss in perfor-
mance. The recovery is not complete, however, and some performance is
sacrificed.

This does not seem to carry over to the case of E-polarization, primarily
because the trailing edge does not appear to be a source of scattering. As
shown in Fig. 5-14, for example, nothing is lost by treatihg both edges of
the cylinder. Aside from a shift in the positions of the peaks and nulls of the

pattern, the averaged amplitudes of the scattering from both the single and
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double edged treatments are about the same, but the double edged version does
have the virtue of reducing the return in both the forward and backward directions.
The cross section reduction available for E-polarization is substantial, amounting
to nearly 20 dB within a 40-degree range of edge-on incidence. Thus, at least
under the ''optimized" conditions specified for this particular case, H-polarization
is likely to suffer most from the double edged treatment, with the E-polarized
cross section being scarcely of concern.

The above results were obtained using program RAMD and it was of
interest to perform the same kind of test using program REST, in which
resistive sheets are employed. We chose a sheet 1A wide having a parabolic
resistance variation, with the terminal (outer edge) resistance equal to twice
the impedance of free space. Thus the sheet width and the resistance variation
Were analogous to the surface impedance treatment used in conjunction with
RAMD. The results are displayed in Fig. 5-15 and, like those in 5-14, the
double edged treatment entails little or no loss in performance compared with
that obtained by treating a single edge.

There are two minor differences between the results of the resistive
sheet and surface loading methods, however. The first is that the resistive
sheet, since it projects outward from the bare body, increases the effective
length of the scatterer. Consequently the lobe structure tends to be more
detailed and the broadside cross section is slightly greater. For the 1A sheet
width used in the test of Fig. 5-15, this enhancement amounts to about 1.5 dB.
The second difference is that the impedance loading method, when extended
over a surface distance equal to the sheet width in the above test, offers a
slightly better cross section reduction. The improvement amounts to 2 to 4
dB in the end-on region and it persists into the broadside region where the resis-
tive sheet actually produces an enhancement.

As was done under the predecessor Contract for the trailing edge with

H-polarization, we also studied the effect of the impedance distribution near the

67



‘SLHIHS JALLSISHY ONIS
NOILVZIMVIOd-d HOJ SINAWILVIAUL IDAT A TdN0d ANV ITONIS A0 NOSTYVAIWOD :61-G "DId

)
081 0C1 0c1 06 . 09 0¢ . 0
| | | _ _ _
i sj09Ug PANISISOY — —] 0%~
NS —— '
0o J/ M
— "\ I ____:___\// ]
~=7 N U 1YY A=
\J ,:: a_; ] /\ lﬂ\
\ \[\ 7 -
v \ \., s_ \ /\\ v pojeoa | 02
/(\ / | x(\ o8pd Suipvey
\ pojeaL], i\/ \ S
) | :
I 4 2
>
%ﬁ“ﬂ/@.ﬁmm -—10
— 02

68



leading edge for E-polarization in the present Contract. The study was not
exhaustive, but the results, some of which are shown in Fig. 5-16, suggest
that the leading edge treatment is not nearly as difficult to perform for E-
polarization as was the trailing edge loading for H-polarization. The angle

of incidence was held fixed at 25 degrees from edge-on (as in the H-polarized
studies previously mentioned) and two types of distributions were imposed.

The length of the treated surface ranged from 0.5 to 1.52, the latter covering
half the body.

The four curves plotted in Fig. 5-16 are typical of all the data collected
for this case. As the figure shows, slightly less performance is obtained for
shorter surface loadings, and it seems to matter little whether a linear or a
parabolic distribution is employed. The maximum impedance used in the
study was ZS= 2.0+i0 (at the leading edge) but the curves seem to be continuing
downward monotonically. They suggest that the scattering does indeed arise
from the edge itself and that the loading might be compressible into a narrow
strip of surface near the edge if the impedance can be taken to a high enough
level. A cross section reduction of 13 dB is apparently attainable if the leading
edge impedance is as low as 1.3 times that of free space. The form of the
curves is much like that provided by resistive sheets placed in front of the

cylinder.

5.4 Reducing the Number of Sampling Points

The expansion of program TWOD to include magnetic was well as dielectric
properties of physical materials, for H~polarization as well as E, will produce
a useful tool for our task. The program will be based upon the integral equations
for thin layers, but it is not inconceivable that xjelatively thick coatings may
have to be studied, or even coatings whose thicknesses are variable. Hence
it may be necessary to synthesize such coatings by stacking up several thin
layers. This amounts to sampling in volume instead of area and, unless the

total number of sampling points is increased, it will require that the points be
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redistributed. Some parts of the body will therefore be sampled less densely
than others, and we ran a sequence of tests to establish how the computed far
fields might be affected by sparse sampling.

Again the ogival cylinder was chosen as a test obstacle and program
REST was used to compute the backscattering. No resistive sheets were
deployed, hence the patterns produced were of the bare body. The total number
of sampling points on the profile was increased in steps of six from a minimum
of 24 to a maximum of 100, producing nominal surface sampling rates from 4
to 162/3 per wavelength. Assuming that the highest sampling rate produces
"perfect' results, the errors produced by less frequent sampling can be estimated
by comparing the computed backscattering patterns. This comparison is shown
in Fig. 5-17 for a selection of 5 sampling rates.

The errors are greatest in the intermediate aspect angle range and are
smaller at both thé edge-on and broadside aspects. Expectedly, the error
increases with decreasing sampling rates. From the data displayed, one finds
thaf 10 samples per wavelength yield 0.5 dB accuracy for the entire aspect
angle range, but if only edge-on incidence is of interest, as few as 6 samples
per wavelength will suffice. Figure 5-18 is a plot of the errors incurred at
three discrete aspect angles, one of the angles (6 =58 degrees) being that at
which the error is greatest. It should be emphasized that these plots are for
é bare ogival cylinder and that the behavior depicted may not necessarily apply
to other bodies or, indeed, to the same body when coated.

If it is only the leading edge that dominates the far field scattering, as is
true for E-polarization, it may be possible to use a small wedge-cylinder, as
suggested in Fig. 5-19. In this case, the sampling rate was held fixed at about
16 samples per wavelength, and the electrical size of the body was varied from
ka =0.625 to ka =3.0. The number of sampling points ranged from 20 to 96,
yet the edge-on return varied by less than 0.3 dB throughout the range. These

data suggest that a great number of samplying points may be released for other
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parts of the body (e. g., for the coating), provided the original scattering
source is preserved. Since the dominant source then is the leading edge,

the size of the cylinder is relatively unimportant, but in other cases, such

as H-polarization for the same body, this is no longer true. Thus, in the
event that it becomes necessary to re-distribute sampling points, there are
certain instances for which it can be accomplished with but a small sacrifice
in accuracy. The re-allocation is not possible in all cases, of course, and we

may have to search for other techniques should the need arise.
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VI

CONCLUSIONS

In this report we have described most of the work carried out since the
publication of the Final Report (Knott et al., 1973) under the predecessor Con-
tract. One of the key features of this study is the detailed examination of the
integral equations in two-dimensional scattering presented in Chapters II and
IV. For an impedance boundary condition imposed at the surface, the analysis
has revealed that there is a choice of integral equations appropriate to a solid
body, and by using this fact we were able to circumvent the difficulties previously
encountered using program RAMIA (B) for E-polarization. The result, now
designated RAMD, was a far more efficient and effective program and is listed
in Appendix B. RAMD has been used to examine the effect of tapered impedances
on the scattering from ogival and wedge-cylinders for E-polarization. Some of
the data obtained are presented in Chapter V, and are compared with experi-
mental data.

One of the shortcomings of an impedance boundary condition is the difficulty
of relating the surface impedance to the electromagnetic properties of a material
necessary to simulate it. To provide a more explicit connection to material
properties, we have given considerable attention to the concept of resistive sheets
used either individually, or in combination to simulate a layer of finite thickness.
For the problem of (electrically) resistive sheets with E-polarization, a computer
program is available and is designated REST. We have employed it extensively
and successfully to assess the sheet performance, but the results obtained are
reserved for a future report. However, it is important to examine the behavior
of these same sheets for H-polarization, and since we can also conceive of
'magnetically resistive' sheets, to include these in our study as well.

The derivation of the integral equations for both types of resistive sheets,
either in isolation or in the presence of a body having an impedance boundary

condition imposed at its surface, is presented in Chapter IV. In essence, this
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serves to set the stage for the work we are now doing, and the construction of
a computer program for generalized resistive sheets is now almost complete.
Although at least one of the integral equations is characterized by a 'second
derivative singularity' which is difficult to handle, the analysis and testing
described in Appendix A shows how it can be treated numerically. The

fruits of this work will be the subject of the next report.
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APPENDIX A
SOME COMPUTATIONAL CONSIDERATIONS

Many of the integral equations derived in Chapters II and IV resulted from

a limiting operation of the form

lim 0

p->C n f(s')Hél)(kr)ds' ) (A.1)

C

If p is not on C, the differentiation and integration can be interchanged to give

lim ' o
p=>C f(s")K(s, s"ds (A.2)
C
where
K(s,s) = k@D G) = k@B o) | (4.3)

but in the limit as the observation point approaches C, the kernel is characterized
by a "first derivative (non-integrable) singularity" and is infinite at s' = s, How-
ever, (A.2) and, hence, (A.1) can be evaluated by treating analytically a neigh-

borhood of the point s' = s, and when this is done we find

lim
p—>C

(1)

()0 D Gerdates?) = F2ie(e) + A 160G DH Gerdalies?)

c C (A.4)

with the upper or lower sign according as p approaches C in the direction T ﬁ,
respectively. The slash across the integral sign denotes the Cauchy principal
value, and since the first term is simply the self cell contribution, the right hand

side of (A.4) is quite convenient for computation.
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Unfortunately, several of the key integral equations involve a second

derivative kernel in addition or instead, for example

lim

0
1 —— ? )
p=>C f(s?) o K(s, s)ds (A.5)

C

where Kf(s,s") is given in (A. 3), and this is not quite so easy to handle. Even
the existence of the limit is mathematically in question, but the form that preceded

(A.5), viz.

8“_*;‘ o —8—% £(s")K(s, s?)ds" (A.6)

C

is capable of justification and physically represents the field of a current sheet
evaluated at its surface.

To see how we can treat it, consider

2
o,y = £ 2\ seonl (f-xn” 45 ax (a.7)
dy
C

appropriate to a planar sheet. If x ison C and A is a small interval of width

26 centered on x' = x, Ix,y) can be written as

I(X:Y) = II(X,Y)'*‘Iz(X: y)

where
Loy = ¢ | Ik ') “’(k Joe-x 4y Jaxt (A.8)
C-A
2
L,y) = & ;";-2— 369 (kforxZoy? Jac 4.9
A

79



Taking I, first and using the differential equation for the Hankel function, we

have

2 2
x -x") 1 (1)' 2 2
I&x,y)= J(x?) <k\/(x-x') +y
1 /(X X') ty H, >

2(1)<m>

(x - x') +y
and since the integral is convergent for all y including y = 0,
lim Hgl)(k[x-x'])
? !
=0 I,y = Jx') =3 dx' . (A.10)
C-A

2, 2
Turning now to L, we remark that if k\6§ +y << 1 and J&") is slowly varying

in the vicinity of x' =x,
6

J(x')H(()l)Q(\/(x-x')2+y2>dx' ~ %}'J(X) 10g<';—k J(x-x') +y )dx'
0

2 . rk.[.2 2 -id
;J(X)[ZICS {log <7\/6 +y )-1} -ylogﬁg]

On carrying out the dif-

A

0.5772... (Euler's constant).

H

where T=¢” with v

ferentiation with respect to y,

~o_ 46
L,(x,y) S )

k(6™ +y")

from which we obtain.

m ey > - fl-ux) , (A.11)

and hence
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lim o~ _41_ ) ———— 1
y__)OI(x,y)—-nka J () - Jx') =] dx (A.12)

It can be verified that this result is unaffected if one or both of the differentiations
are carried out prior to integration.

The right hand side of (A. 12) is not inconvenient for numerical evaluation,
but in contrast to (A.4), there is no guarantee of increased accuracy as the cell
size 26 is reduced. The first term is the self cell contribution and is inversely
proportional to the cell size. The factor multiplying J(x') in the integrand
increases as (x -x')_2 as x' approaches x, but since the self cell is excluded, the
integrand is finite for all x'. However, over the immediately adjacent cells the
integrand can vary by as much as an order of magnitude, and it will almost cer-
tainly be necessary to take account of this variation through subdivision of these
cells or by integration over them.

This approach can be tested using the simple example of a plane,
electrically resistive sheet illuminated by an H-polarized plane wave at non-
glancing incidence. If the sheet occupies the portion 0 <x <L of the plane y =0
and

. -. + 3
o =%, ik(x cos & ysmaf), (A.13)

eq. (A.12) can be written as
9 L
. -ikxcosa _ lim 1 9 . (1)( N2 2'—2> '
sinae —YOR(X)J(X)-y—;O " ayz J&H, k\/(x—x) +y" Jdx

and hence, from (A. 12),

. -ikx cosa _ - 1 '
sinaoe = {YOR(X) +wk6} Jx)+ 2 J(x")
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Equation (A. 14) has been programmed for solution and the current J(x)
computed in the particular case of a highly conducting (R = 0.01 ohm) strip 3
long for plane wave incidence at the angle o = 155 degrees, corresponding to the
peak of the traveling wave lobe in the backscattering pattern. From an examina-
tion of the data, it is believed that 48 sampling points (so that 26 = /16,
implying ké = 0. 196), with the cells immediately adjacent to the self cell sub-
divided into 25, and the next 5 cells on either side each subdivided into 10, are
sufficient to give data which are effectively "exact". The resulting curve for
|7 (x)l is shown in Fig, A~1 and has the character expected in a traveling wave
situation. The effect of reducing the number of subdivisions is illustrated in
Table A-1, from which it appears that if we are to keep the errors less than 1 per-
cent, it is necessary to subdivide two cells on either side of the self cell, with the
nearer being more finely subdivided. Many of these same tests have also been

performed with 24 and 32 sampling points (or cells). It is found that the errors

TABLE 2-1: ERRORS IN |J |

subdivision aver. (0/o)| max. (0/o)
1x25, 5x10 assumed 0
1x25, 4x10 0.06 0.09
1x25, 3x10 0.11 0.18
1x25 2x10 0.09 0.21
1x25 1x10 0.32 0.61
1x10, 1x10 1.53 2,23
1x25 3.39 4,85
1x 10 4,53 6.38

are significantly increased, As an example, with N = 24 and six cells on each
side subdivided as in the first line of Table A-1, the average and maximum errors
are 7,31 and 16,03 percent respectively.

In any subdivision process the integrand must be computed a corresponding
number of times, and any massive subdivision is therefore an inefficient and time

consuming procedure. If the strip is divided into 48 cells, subdivision of the
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cells adjacent and next-to-adjacent to the self cell by 25 and 10 respectively
requires almost 1500 additional computations of the Hankel function even when
the symmetry of the matrix is taken into account, and this increases consider-
ably the time involved in generating the matrix elements. However, subdivision
is just a simple method of numerical integration, and since the unknown current
J(x) is still given its value at the midpoint of the cell, the function being integrated
is entirely known. This suggests the possibility of an analytical evaluation. The
contribution of the kernel from the nth cell on either side of the self cell in eq.
(A. 14) is

(2n+1)6 H(11) (kt)

In = — dt (A. 15)

(2n-1)6

and from the recurrence relations for the Hankel functions (or, alternatively,

(1)(kt) ), we have

from the differential equation for H0

ko
1 =8 ([en-Jxe) -V ([on+1]xe) + HDenkstdr . (416
ko

The integrand that now remains is much more slowly varying than the one in

(A. 15) , and it is not unreasonable to approximate (A.16) by
~ (1)< : > (1)< ) (1)
1 =H [zn-ﬂka -H, [2n+1:lk6 +2k6H (20ko)

Somewhat surprisingly, when this formula is used for n = 1,2, i.e., for
two cells on either side of the self cell, with ké = 0, 196, the current is in error
by more than 10 percent. Most of this error is attributable to the evaluation of
the integral in (A, 16), and is not substantially reduced when the Hankel function

(1)

1
H) (x) is replaced by its logarithmic approximation for small arguments and
the integration carried out analytically. On the other hand, when the cells cor-
responding to n = 1,2 are subdivided into 5 and 3 parts respectively, the

average and maximum errors drop to 0,19 and 0, 42 percent respectively, and
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even with the coarser subdivision 3 and 2, the errors are still only 0. 37 and
0,68 percent. Such a performance is comparable to that achieved on dividing
the same cells in (A. 15) into 25 and 10 parts (see line 5 of Table A-1), and
requires only about 300 additional computations of the Hankel functions in place
of 1500, As an alternative to subdivision, integration using the three-point
Simpson formula has been tried. When applied to the cells corresponding to n = 1
and 2 in eq. (A, 16), it turns out to be just slightly more efficient than subdivision
of the same cells into 3 and 2 parts respectively, but produces much better
accuracy, the average and maximum errors in IJ l being 0, 12 and 0. 40 percent.
In contrast, when the same integration formula was applied to the original expres-
sion (A. 15) for the cell contributions, the errors were larger by two orders of
magnitude.

All of the above constithtes the direct approach to an integral of the form
shown in eq. (A.7), and though it has turned out to be relatively straightforward,
it is not the only way in which the second derivative singularity can be handled.

If, for example, we go back to (A,7) and use the fact that

L) O D) =0
ox oy 0

the normal derivatives can be replaced by tangential derivatives and one (or both)
of them eliminated by partial integration. This method has been explored in some
detail. Integrating only once by parts, we obtain an integral expression for

I(x,y) involving the current and its first derivative, plus contributions from the
end points of the range of integration. The more singular integral is that con-
taining %iT , but in the limit as y—>0 the self cell contribution can be evaluated

analytically and turns out to be zero. Hence, for 0 <x <L,
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L

lim = 9 yx=x' (1) ' '
=0 Ix,y) = por J(x") [X-X'IHI (k|x -x 1)dx
0
L
“ | 60 e fx-x0axt
0

(1)

) (kx) (A, 17)

+3E "k fL-x)) +30)H

and though we are now left with twice as many unknowns as we had before, the
assumption of a locally linear variation of J(x') enables us to express g‘—g; in
terms of the currents over the neighboring cells.

Unfortunately, the end-point contributions pose a problem., Each is
infinite when the observation point is at the end in question, and while it can be
argued that in the moment method the observation never does lie actually at an
end, the contribution will still increase indefinitely with decreasing cell size. In
effect, we now have a self cell contribution analogous to (A. 11), but appropriate
only when the self cell is at an end. If, on the other hand, the self cell contribu~
tion is separated out prior to partial integration, the result obtained is no dif-
ferent from integrating by parts the integral in (A. 12). Any assumption which
then expresses 38;7 in terms of J is merely equivalent to an interpolation
formula for evaluating this integral.

For these reasons we have found it convenient to use the direct approach

and the only task which now remains is to extend it to a non-planar surface or

sheet. In place of (A.7) the integral of concern to us is

(1)

) (kr)d(ks") (A.18)

0 A A
I= o J(s")(n' - r)H
n

C

Il L)

and a typical integral equation is
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lim

—)C (A.19)

i —
YOES(S) Y R(S)J(s) +

(see eq. 4.15).

If p is not on C, we can interchange the derivative and integral operations

in (A. 18) to obtain

—t
il

J(s'){ m(kr)-— @D+ @ -H = m(kr)} d(ks")

k
C
H(ll)(kr) "
= JsM <@ -HE-D T + @)@ )H (kr)} dks?)
C
which becomes
1=\ 3606 HE-HE ook

C

36 {@DE-H- @ He )} H‘ll"ckrwks')
C

(A.20)
on using the differential equation for H( )(kr)
To find the limit as the observatlon point p approaches C, it is necessary
to treat analytically the contribution of the self cell A to the second integral in

eq. (A.20). Since

S\ s {ED6e-@ e D) B k) =+ 2L e

A

where 26 is the width of the self cell centered on s' = s, we have
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B‘f‘; JI=+ }% 3(s)+ 8 J(sN (M .?mé“(kr)d(ksr)
C

+ 8 360 {@-E -0 - @ D@D} 1 ()ats.
C-A

(a.21)
But
(1)
. H. ' (kr)
L2 {@ o) -- @-de- Ve -6 He-H—
= {@9a-D-@-n6-0) Y w - @ D6 O )
and
m' D@ -7+ -1)(E-F) =hnr-n .
Hence

lim _ _4;1_ Ay A (1) '
p—>C I= +7rk6 J(s)+ S J(s)(n -n)H0 (kr)d(ks")
C

+ g J(s')-gz; {(s.f)ﬂ(ll)(kr)} ds'
c-a

and when this is substituted into eq. (A.19), the integral equation for a non-planar
sheet becomes

YOE«is - {YOR(S) + 51{5 J(s) +é§ J(s") (@ «’r\l)H(()l)(kr)d(ks')
C

+i g (") % {(g-f)H(ll’(kr)} ds'
c-a
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Equation (A. 22) is the analogue of (A. 14) and (A, 16) combined, and is
the desired result. Though the integrand of the second integral is a rapidly vary-
ing function of s' for small s'-s, the particular advantage of this form is that
if J(s') is constant over a cell (as is assumed in the moment method), the contri-

bution of that cell is given precisely by the difference in the end values of

(s - ﬁ)H(ll)

as the cell size tends to zero. The analogy with the results for a planar sheet is

(kr). For the first integral in (A.22), the self cell contribution vanishes

now complete.
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APPENDIX B
PROGRAM RAMD

Program RAMD solves the integral equations 2.9 and 2. 16 for a cylindrical
body satisfying a surface impedance boundary condition. Although its predecessor
program, RAMI1B, accomplishes this same task, RAMD is a significantly more
compact and more efficient program. This compression was achieved by a
reduction in the number of arrays created by the program, by the exploitation of
the duality between the E~ and H-polarization integral equations, and by the
elimination of options that were seldom exercised in the former program. As a
result, RAMD occupies less than 1/ 3 the core required by RAM1B, implying that
the number of surface sampling points could probably be increased by 50 percent
or more. The program is manifestly shorter because it solves the simpler of the
two avé.ilable equations and, not least, it produces the correct solution for E-
polarization for edged structures whereas its predecessor did not.

In addition to the MAIN program, RAMD has five subroutines: GEOM,
HANK, ADAM, FLIP and ZFUN. The MAIN program reads control information
from the input data stream, creates the matrix elements for the geometry at hand,
sums the surface currents to obtain the far scattered fields, and indexes through
the desired angles of incidence and scattering. MAIN calls subroutine GEOM to
create the coordinates of sampling points on the body profile if the profile is
describable in terms of straight or circular arc segments but, if necessary, the
sampling points may be fed in one at a time by by-passing GEOM. GEOM assigns
a specific impedance to each surface sampling point according to two options and,
should neither be suitable to the user's needs, a third option invokes a call to sub-
routine ZFUN, In the program listing below, ZFUN is merely a dummy Subroutine
necessary for the successful compilation of RAMD and should be replaced by the
appropriate version required by the user,

Subroutine HANK generates Hankel functions of order 0 and 1 as required
by the integral equations. This particular subroutine differs from previous ver-

sions (in REST and RAM1B) in that polynomial approximations of the Hankel
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functions are employed, a distinct advantage for large arguments; subroutine

ADAM assists HANK by summing the terms in the polynomial. Once the matrix
elements have been filled in by the MAIN program, subroutine FLIP is called to
invert the matrix. FLIP, like its cousin ZVO8 in previous programs, is essentially
a copy of subroutine MINV from IBM's Scientific Subroutine Package. FLIP also
computes the surface currents on the profile using the inverted matrix, MAIN

then sums the currents and, depending on the particular options exercised on input,
produces either a bistatic or backscattering pattern of the obstacle, for either E-

or H-polarization.
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mcﬁr\mcﬂrjﬁ(jr3r)ﬁcwrﬁncﬁr)ﬂ(ﬁf\ﬁCﬂrsﬁcﬁrintﬁr)ﬁcﬁf3rxﬁ

%k s 3 ok sie o 3k 3 sk e e e e ke sl o 3k sje kol sl ele ofe sie sk st sk oje gl sl sie sl sl sk sy oje 3ol e e 3l Sl 3k sie e e ik e ofe e e e e ok e e BeRoRSR R R
INPUT FORMAT FOR PROGRAM RAMD---REVISION OF MAY, 1973 c
st e e e s e ke e o o e ol e o ok i o e e e o o ok sl i e ol S ol kR sl 3 o st skl ok ool sk ke i o o e ek o i o e ok ek R R
CARD 1 FDRMAT (18A4) TITLE CARD; USE UP TO 72 COLUMNS
3k sl 3 st e S e kool se vl e sl e ek ook Sl Xl i vl oie ol s sk sl 3K sle it ol 3ie ol el o 3ie ol sig e e e sie ol e ol ol sk e e ol sl ofe sk e sk e ok R Xk ofe sk ek sk g
CARD 2 FORMAT (12,13,F10.5)  MORE,KODE,ZFAC
MORF =0 THIS WILL BE THE LAST RUN FOR THIS DATA SET
MORF=1 THERE ARE MORE DATA TN BE READ AFTFR THIS SET
KODE=0 COMPUTES BISTATIC SCATTERING PATTERN
KNNF=1 COMPUTES BACKSCATTERING PATTERN
ZFAC A FACTOR MULTIPLYING ALL FLEMENT IMPEDANCES
32 3 3¢ e 3l e e sk e e sfe sl sk e e sie e ek dkofe sl Re e s B s R Sk sk e deoslk e sk sie ke s e sl e sl e e 3ol e sle sk sk sl sl sl i o s sk sk e sk sie S sl kol ke
CARD 3 FORMAT (12,13,F10.5) LLsMyWAVE
LL TOTAL NUMBER OF SEGMENTS ON THE PROFILE
M TOTAL NUMBER OF POINTS NN THE PROFILE
WAVE WAVELENGTH

C
C

C

c

C

C

C

c

C

C

C

c

C

" 3 s o sk e sk e o Aok de sl sk e sl e sge e Sl ol sie e st s sl sl sie e iR sk 3 33k ol ol e sl sk sl e e sl s e sl sie s sl sie sk sk ok koo siokok ke 3k
CARD 4 FORMAT (12413,23F10.5) IPP,INPT,FIRST,LAST,INK C
1PP=1 F-POLARIZATION C

1PP=? H=PNLARTZATION C

I0PT=0 BODY GENMETRY READ IN POINT BY PNINT C

INPT=1 BODY GENMETRY GENFRATED INTERNALLY C

FIRST INITIAL SCATTERING AND INCIDENCE ANGLE C

LAST ' FINAL ANGLE c

INK ANGULAR TNCREMENT C

3 42 3 e e e e ole o 3o sk i sk e ste Sk sie e sk sl sk B sl 3R sl sl sk e sk 3 sie e sie ale e sl sl sl e e s 3R ik sealoskofe e e ek Sk kR Rk Rk ok
CARD 5 FORMAT (12,13,5F10.5) NyIMP,XA,YA,XB,YB,ANG C

N NUMBER NF SAMPLING POINTS NN THIS SEGMENT C

IMP=~1 IMPEDANCF GIVEN BY USFR-SUPPLIED SURROUTINE C

IMP=0 2S(1)=7A+7B%S(1)%*7EFX C

IMP=1 ZS(T)=ZA+ZB*EXP (=ZEX*S (1)) c
XAyYAyXBy YB  SEGMENT ENDPOINTS C

ANG ANGLE SUBTENDED BY THE SEGMENT C

(C %e s e she s e sie e sfe e ade sk e sfe e ek el sle st ik sie sie e sl e e skl e sl sl s sl e e sfe e sieoole sl s s sk s sl AR sk ko sk kR R ekl
C CARD 6 FORMAT (5X,5F10.5) ZAyZB 4 ZEX c
C ZA,18 COMPLEX IMPEDANCE CONSTANTS C
c ZEX REAL IMPEDANCE CONSTANT C
(>t 3 e sk sk e o ik e ok s e ol st e e sfe sieie e sie dlesle e e sie sl sie B8 ok sle e N e sie i sie afe e e sl ol e e sl sl e Sie sl s st sl e oo R sk SRR Rk ok
C CARD 7 FORMAT (12) INTEGFR ZERD IN COLUMN 23  SHUTS C
C OFF READING OF SEGMENT PARAMETERS C
ekl sie e o s ok ol e sk stk sie ol sie sitsle sieosdk sl sl sie ol sl sk ol sl 3k s sl sl sl i i e e sl 3 o e ol e i i e e i i e s s sk i MR X R sk e kR
C CARD 8 FORMAT (12,13,F10.5)  MORE,KODE,ZFAC C
C THIS CARD IS USED ONLY IF, ON CARD 2, MORE=1  C
(% e s o e e s e e s 3 e e i st s o e e e St stk i st el S e el s o ok ke e e s o e st sk sl slesie e e ol st e etk ok ok okl €
C CARD 9 FORMAT (12,13,4F10.5) LUMP(I41)9LUMP(T+2)oX(1)oY(1)+2S(1) C
C LUMP(141) CELL IN MUMBER C
C LUMP (142) SEGMENT ID NUMBER C
C X(I)sY(I) CFLL CONRDINATES C
C 25(1) COMPLEX IMPEDANCE DF THE CELL C
(3% 3 3 e e e e 3 o e s S 3ie ol e sy e e 3 e sl SRR e e sl e dle sk e sle skl e sie 3ie e e sle sl ade e sl sie e sl Skesie sie e sje s dle e sk sk e e e ke ek e e sk ek
C NOTE: CARD 9 IS USED NNLY IF INPT=0 AND THERE MUST BE ONE SUCH CARD C
C FOR EVERY CELL ON THF BNDY. SIMILARLY, CARDS 5,6 AND 7 ARE USED C
C ONLY IF IDPT=1 AND THFRE MUST BE ONE EACH DF CARDS 5 AND 6 FOR EACH C
C SEGMENT SPECIFIED DN INPUT. C
(C i 3 i 3 e sl sfe e sie e ole sie ok e sl e e vie sl sie o s sl sie sk Sk sl e sk 3 sl e sl 3le st sl e sl 3 sl i e i o i ik Sieodie 3 sk diele sie kool sle e e sl sl ek AR SRR KOk C
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COMPLEX A(100,101),PHI(100),PINK(100),SUM,DEL,B1,R2,75(100)
REAL LAST,INK
DIMENSION X(100),Y(100),XN(100)+YNC100),S(100),DSQ(100)
DIMFNSTION ID(1R),LUMP(100,2),1P0OL(2)
DATA RFEDyDIG,IPNAL/0.01745329,57,295784yYFFFEY, YHHHH?/
CeoeesRFAD INPUT DATA AND GENFRATFE BODY PROFILFE
5 READ (5,100) ID

READ (5,200) MORE,KODEsZFAC
READ (54200) LLWM,WAVF
READ (5,200) IPP,IOPT,FIRSTyLAST,INK
XK=6,283185/WAVE
WRITE (64150) ID
IF (I0PT.FQ.0) GO TO 10
WRITE (64300)
CALL GFOM{LUMP Xy YoXNyYNySyDSQ,ZSyMeLL)
GO 10 20

10 RFAD (5,200) LUMP(141)4LIMP(142)9yX(1)sY(1)eZS(1)
S{1)=0.0
PN 15 [=2,M
READ (54200) (LUMP(I9J)sd=192)eX{I)sY(I)yZS(I)
TX=X(1)-X{1-1)
TY=Y(I)=-Y(I~-1)
DSQOUETI)=SORT(TXXTX+TY*TY)
S(I)=S(I-1)+DSQ(I)
XN(I)==TY/DSO(T)

15 YN(I)=TX/DSO(T)

20 IF (KODF,NE,O) GO T0O 25
NINC=1
NBIT=1+IFIX((LAST-FIRST)/INK)
GO TO 30

25 NBIT=0
NINC=1+IFIX((LAST-FIRST)/INK)

30 WRITE (64400) TPOL(IPP)oLLyMyNINC,NBIT,WAVE
DO 35 I=14M

35 NDSO(T)=DSO(T)/WAVF

Ceoeeoe CONSTRUCT MATRIX ELEMENTS

38 DN 655 I=1,M
nn 55 J=1,M
IF (1.EQ.d) GN TN 40
TX=X(1)=X{J)
TY=Y(I)=Y(J)
P=SOQRT(TX*TX+TY*TY)
RPQ=P=xXK
CNR==(TX*XN(J)+TY*YN{J))/P
CALL HANK{RPQ,1,+BJsBY)
Rl=1570796*DSO(J)*CNR*CMPLX(-BYsBJ)
CALL HANK(RPO,0,BJ,BY)
B2=1.570796%NSO(J)*CMPLX(BJyBY)
GO T0O 45
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40 Bl1=CMPLX(0.5,0.0)
B2=DNSQ(J)*CMPLX{1.5707964,0.,0287985+ALNG(NSO(J)))
45 IF (IPP.FD.1) GO TO 50
A(T4J)=B1+R2%72S(J)*7FAC
GO TO 55
50 A(I,J)=B2+B1*7S(J)*72FAC
55 CONTINUF
Coeeee COMPUTE INCIDENT FIFLD AND INVERT MATRIX
TETA=RFD*FIRST
CT=COS(TETA)
ST=SIN(TETA)
DO 60 I=1,M
HOLD==XKX (CTHX(T)+ST*Y(1))
60 PINK(I)=CMPLX(CNS(HOLD)SIN{HOLD))
CALL FLIP(AWM,PINK,PHI, 1)
CeeeesePRINT DUT CURRENTS AND FLEMENT PROPERTIFS FOR FIRST ANGLEF
WRITE (64150) ID
WRITE (64500)
DO 65 I=1,M
AMP=CABS(PHI(1))
PHASE=DIG*ATAN2 (AIMAG(PHI(I))REAL(PHI(I)))
NDEL=ZFAC#*Z2S(1)
65 WRITFE (64250) (LUMP(I4J)eJ=142)eX(I)eY(I)yS(I)yDSQ(I),AMP,PHASF,
&NFL
CooeeeDDPEF NUT THE APPROPRIATFE FIELD FACTORS
THE=FIRST-INK
IF (KODE.EQ.1) GO TO 70
WRITE (64800) FIRST
GO TO 75
70 WRITF (64600)
7% THF=THF+INK
IF (THF<GTLLAST) GO T0 105
IF (THF.FQL.FIRST) GN TO 85
TETA=RED*THE
CT=COS(TETA)
ST=SIN(TFTA)
CeeeeoIN THE FOLLOWING LNOP, PINK IS NOT NECESSARILY THE INCIDENT FIELD
NO 80 J=19M
HOLD==XK& (CTHX(J)+STRY (J))
80 PINK(J)=CMPLX{COS{HOLD)ySIN(HOLD))
IF (KODE.FQ.0) GD TO 8BS
CALL FLIP(AMyPINK,PHI,2)
85 SUM=CMPLX(0.0,0.0)
Coeeees ADD UP THF CURRFNTS
DO 95 J=1,M
DEL=DSQ(J)*PHI{J)*PINKI(J)
IF (IPP.FO.1) GN TN 90
SUM=SUM+DFLX (ZFAC*7S{J)=CTEXN(J)=ST*YN(J))
GO TO 95
90  SUM=SUM+DEL* (14 0=7ZFAC*ZS(J)*(CT*XN(J)+ST*YN(J)))
95 CONTINUF
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SCAT=20.0%ALOGI0(CABRS(SUM))+1.9612
WRITF (64900) THFsSCAT
GO TN 75 '
105 IF (MORF.FEQ.0) GO TO 5
RFAD (5,200) MNREKONF,ZFAC
GO TN 38

100  FORMAT (18A4)

150 FORMAT (1H1,18A4%)

200  FORMAT (12,13,5F10.5)

250  FORMAT (21545F10454F10.342F10.5)

300  FORMAT (10HOSEG NUMy 11X,y 24HENDPDINTS OF THE SEGMENT, 11X,
E1BHSEGMENT PARAMETFRS/11H NUM  CELLSy6Xy2HXA38X42HYAy8Xy 2HXBy 88X,
E2HYR,6X 4 21HANGLF  RADIUS LENGTH/)

400 FORMAT (//31Xy14HKEY PARAMETERS//

E16Xs21HINCIDENT POLARIZATION,22X41A1//

616X, 23HNUMBER OF SEGMENTS USED,121//
£16X,34HTOTAL NUMBER DF POINTS ON THE BODY,110//
£16Xy 35HNUMBFR 0OF INCIDENT FIELD DIRECTIONS,19//
616Xy 29HNUMBFR OF BISTATIC DIRECTIONS,I115//
616Xy 1OHWAVELENGTHy F34,5)

500 FORMAT (11HO I SEGe4Xy4HX (T ) 96Xe4HY(T1)yb6X94HS(T)45X,6HDSQ(T),
E4X 4 6HMOND(J ) 94Xy 6HARGIJ) 94Xy 5HRS(T1) 95X 5HXS(T)/)

600  FORMAT (1H1,22X,28HBACKSCATTERING CROSS SECTINON//24X,
&28HTHETA 10%LNGISTGMA/LAMBNA) /) _

ROO  FORMAT (1H1,19X,33HBISTATIC SCATTERING CROSS SECTION/18X,
629HFNOR INCIDENT FIFLD DIRFCTION=3F742//24X,

E28HTHETA 10%LOG(STGMA/LAMBDA) /)

900 FORMAT (16XsF13e24F1542)

END



SUBROUTINE GEOM{LUMP 4 Xy Y9 XNy YNy SsDSQy7ZSyMyLL)
COMPLEX 7S(100),ZA,ZB
DIMENSION X(100)+Y{100),XN(100),YN(100),DSO(100),S(100)
DIMENSION LUMP(100,2)
DATA RED/0.01745329/
I=0
L=0
CeeeeoREAD INPUT PARAMETERS AND PREPARF TN GENERATE SAMPLING POINTS

10 READ (54200) NyIMPyXAyYA4XB,yYByANG
IF (N.FO.0) GO TD 120
LIM=2%N-1
READ (5,250) 7A,ZB,ZEX
TX=XB=XA
TY=YB=-YA
D=SQRT(TX:TX+TY*TY)
IF (ANG.EQ.0.0) GO TN 20
T=0e5%RED*ANG
TRX=TX+TY*COTANI(T)
TRY=TY=TX*COTAN(T)
RAD=0,5%D/SIN(T)
ARC=2,0%RAD*T
ALF=T/N
DID=2,0%RAD*ALF
GO TN 30

20 RAD=999,999
ARC=D
DID=D/N

CoeoeeeSTART GENERATING
30 DO 110 JIM=1,2

L=L+1

DO 100 J=1+LIMy2
I=1+1 :
LUMP(I,1)=1

LUMP(142)=L
IF (1.F0.100) WRITF (6,400)
IF (JIM.F0.2) GO TN 90
IF {ANG.EQ.0.0) GO TO 40
SINO=STIN{ J*ALF)
CNSA=CNS(J*ALF)
X(T)=XA+0 5% (TRX* (1,0-COSO)=TRYRSINQ)
Y{I)=YA+0. 5% { TRX*SINO+TRY*(1,0-C0SO) )
XN{T1)==0,5% (TRX*CNSO+TRY*STINQ) /RAD
YN(T)= 045%(TRX*SINO=TRY*CNSQ) /RAD
G0 T0 50

40 X(I)=XA+0.5% J&TX/N
Y(I)=YA+0 5% %TY/N
XN(1)==TY/D
YN(I)= TX/D

50  S(I1)=045%J%NID
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Ceoess COMPUTE THE IMPFDANCES
IF (IMP) 60,70,80
60 CALL ZFUN(ZAyZRyZFEX4eS(T1),2S(1))
GO TO 100
70 72S(I)=2A+ZBxS(I)%%x7FX
GO TN 100
80 ZS(I1)=ZA+ZB*EXP(=2EX*S{1))
GO TO 100
Ceoees FROM HERF TO 100 WEF CREATF THE SEGMENT IMAGE
90 K=I-N
X{I)=X(K)
Y{I)==Y(K)
XN(T)=XN(K)
YN({I)==YN(K)
S(I)=S(K)
7S(1)=7S(K)
100 DSQ(I)N=DID
IF (JIML,EQ.,1) GO TO 110
YA=-YA
YR=-YR
110 WRITE (64300) LeNyXAsYA,XRyYByANG4RAD,ARC
GO TOD 10
120 M=1
LL=L
200 FORMAT (12,13,5F10.5)
250 FORMAT (5X,5F10,5)
300 FORMAT (13y1693X94F10e59FB8e29F8e3,F8e4)
400 FORMAT (36HOWARNING: WF'VE GFNERATED 100 POINTS/)
RETURN
FND
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SUBROUTINE HANK(R,N,BJ,BY)

Ceeeee SUBROUTINE REQUIRES R>0 ANND N EITHER O DR 1

DIMENSION A(T)oBUT)oCUT)yDITIGE(T)FIT)4G(T)yH(T)

DATA AyBRyCoDsFsFeGeH/1e09-242499997,1.2656208,-0.3163866, v
£0.0444479,~0,0039444,0,00021,0.36746691,0.,60559366,-0.74350384,
£0.253001174-040426121440,004279164-0,0002484690454-0456249985,
60.21093573,-0.03954289,0.,00443319,~-0,00031761,~-0.,00001109,
£=0e66366198406221209142.16827094y~143164827+043123951+-0.0400976,
£0.,0027873,0,79788456,-0.00000077,4~-0.0055274,-0,00009512,
£0.001372374-0.00072805,04000144764~0,78539816,4-0,04166397,
£§-0.00003954,0.00262573,~0.00054125,-0.00029333,0,00013558,
£0.797884564,0,0000015640.01659667,0.000171054-0.00249511
£0.,00113653,-0.00020033,-2,35619449,0,12499612,0.0000565,
§&-0.00637879,0,00074348,0,00079824,-0,00029166/

IF (ReLELOL0) GO TO 50

IF (ReGTe340) GO TO 20

X=R*R/9.0

IF (N.NE.,O) GN TO 10

CALL ADAM(A.X4BJ)

CALL ADAM(ByXsY)

BY=0,6366198%AL0OG(05%R)*BJ+Y

RETURN

10 IF (N.NE.1) GD T0 50

CALL ADAM(CyX,Y)

BJ=R*Y

CALL ADAM{D4yX,sY)

BY=0.6366198%ALOG(0.5%R)}*BJ+Y /R

RETHRN

20 X=3.,0/R

IF (N.NE.O) GO TO 30

CALL ADAM(E,X,Y)

FOOL=Y/SORT(R)

CALL ADAM(F4X,Y)

GO TO 40

30 IF (N.NE.1) GO TO 50

CALL ADAM(GyXsY)

FOOL=Y/SQRT(R)

CALL ADAM(HsXyY)

40 T=R+Y

BJ=FOOL*COS(T)

BY=FNOL*SIN(T)

RETURN

50 N=100

RETURN

END
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SUBROUTINE FLIP(AGNGX,Y,IAT)
COMPLFEX A(1004101)4X(100),Y(100)4DyBIGA,HOLD
DIMENSION L(100),M{100)
IF (IAT.GT.1) GD TD 150
D=CMPLX(1.,040,0)
DO 80 K=14N
L(K)=K
M(K)=K
BIGA=A(K,K)
NO 20 J=KoN
DO 20 I=K,N
10 IF (CABS(BIGA)«GF.CABS(A(I,J))) GO TD 20
BIGA=A(T,J)
L(K)=I
M(K)=J
20 CONTINUE:
J=L(K)
IF (JoLE.K) GN TN 35
PN 30 I=1,N
HOLD==A(K,y 1)
AKyI)=A(J, 1)
30 AlJyI)=HOLD
36  ]=M(K)
IF (I.LE.K) GND TN 45
PO 40 J=14N
HNLD==A(J,K)
AlJyK)=A(J, 1)
40 A(J,1)=HOLD
4% JF (CABRS(BIGA).NE.O.0) GD TN 50
N=CMPLX{0.0,0.0)
RETURN '
50 DO 55 I=1,N
IF (1.FQ.K) GN TN 55
A(T4K)==A({I,K)/RIGA
55 CONTINUF
DO 65 I=1,4N
DO 65 J=10N
IF (1eFQeKeNReJFQLK) GO TN 65
AlT20)=ALT KI®A(KJ)+A({T,4J)
65 CONTINUF
DO 75 J=1,N
IF (J.EQ.K) GN TN 75
AlKyJ)=A(KyJ)/BIGA
75 CONTINUF
N=N%*RIGA
RO A(KyK)=1.0/BIGA
K=N
100 K=K-1
IF (KJLF.0) GN TN 150
I=L(K)
IF (I.LF.K) GN TN 120
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110
120

130

150

200

PO 110 J=1,N
HOLD=A(J,K)
AlJyK)==A(J,y1)
A(JyI)=HOLD

J=M(K)

IF (JoLEK) GO TN 100
DO 130 I=1,N
HOLD=A(K,1)
AlKeI)==A(J,I)

A(J, 1)=HOLD

GO TO 100

NO 200 I=14N
Y(I)=CMPLX{(0,0,0,0)
DO 200 J=1,N
YOD)=A(T,J)=X(J)+Y(T)
RETURN

END
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SUBROUTINE ANDAMI{C ¢+X,Y)
DIMENSION C(7)
Y=X*C(T7)

NN 10 I=1.5
Y=X*%(C(T7T-T1)+Y)
Y=Y+C(1)

RETURN

FND

SUBRNUTINE ZFUN(ZA+ZByZEXsSyZS)

1S=7A+7IB+ZEX
RETURN
END
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