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Abstract

In a market-based scheduling mechanism, the allocation of
time-specific resources to tasks is governed by a competitive
bidding process. Agents bidding for multiple, separately al-
located time slots face the risk that they will succeed in ob-
taining only part of their requirement, incurring expenses for
potentially worthless slots. We investigate the use ofprice
prediction strategies to manage such risk. Given an uncer-
tain price forecast, agents follow simple rules for choosing
whether and on which time slots to bid. We find that employ-
ing price predictions can indeed improve performance over a
straightforward baseline in some settings. Using an empirical
game-theoretic methodology, we establish Nash equilibrium
profiles for restricted strategy sets. This allows us to con-
firm the stability of price-predicting strategies, and measure
overall efficiency. We further experiment with variant strate-
gies to analyze the source of prediction’s power, demonstrate
the existence of self-confirming predictions, and compare the
performance of alternative prediction methods.

Introduction
We address the design and evaluation of bidding strategies
for participating in a market-based scheduling mechanism.
Many resource-constrained scheduling problems are neces-
sarilydecentralized, due to the distribution of resources and
information across autonomous and non-cooperative agents.
One promising (and ubiquitous) approach is to allocate time-
dependent resources through agent trading in market-based
mechanisms. The success of an agent participating in a
market-based scheduling mechanism hinges on implement-
ing an effective trading strategy. Strategy choices also de-
termine the success of the resulting schedules, and thus a
strategic understanding of the problem informs the design
and selection among alternative mechanisms.

In a decentralized problem, tasks and/or processors
are associated with autonomous, independent entities
(agents) who are self-interested (non-cooperative) and
whose scheduling requirements or willingness to provide re-
sources generate contention. The problem configuration is
defined by the agents (each with resource endowments and
preferences over possible allocations), and a resource alloca-
tion mechanism. The mechanism dictates the rules by which
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agents interact (i.e., the set of messages that agents can ex-
change, typically via amediator), and an allocation rule that
maps the message space into allocations. An agent chooses a
strategythat determines its messages in light of its objective
function, and beliefs or knowledge about the endowments,
preferences, and strategies of the other agents, as well as
knowledge of the mechanism rules.

Most of the literature on market-based mechanisms for
allocation problems addresses a particular problem: given
the specification of the environment (agents with their en-
dowments, preferences, information and beliefs, and the re-
sources to be allocated, including any constraints), what is
the mechanism that optimizes a social criterion subject to
certain social constraints? To solve this problem, one typ-
ically assumes that agents will play their optimal (rational)
strategy when participating in the mechanism.1

Complex problems such as decentralized scheduling of-
ten call for multiple, dynamically interacting markets, rather
than a single direct mechanism. For such complex mecha-
nisms, except for the simplest of scheduling scenarios, it is
generally not possible to solve analytically for optimal agent
strategies. We therefore adopt a search-based approach,
postulating strategy classes with well-motivated features or
structures, and performing a computational game-theoretic
analysis within the restricted classes identified.

The particular strategic feature we investigate in this paper
is the use of economic price predictions to improve bidding
strategies. The basic idea is that agents will typically have
some knowledge about the demand and supply conditions
for scheduled resources, from which they can derive esti-
mates of the ultimate prices for these resources across time.
The agents then use those predictions to guide their bidding
behavior.

Our main research question is whether basing strategies
on price predictions can improve bidder performance. When
we find that it can, we further analyze the source of the im-
provement. We then explore several different price predic-
tors to see whether our results are sensitive to the choice
of prediction. Throughout we report the extent to which
the new strategies lead to an increase or decrease in over-

1This is the basic setup of the theory of optimal auctions (My-
erson, 1981). Conitzer and Sandholm (2002) propose that one ex-
plicitly formulate and solve this optimization problem for particu-
lar allocation scenario instances.



all schedule efficiency. Our main finding is that a number
of simple prediction methods, and simple strategy modifi-
cations to take advantage of the predictions, lead to a large
increase in bidder performance at only a small cost in overall
resource allocation efficiency.

Market-Based Scheduling Problem
In the simple scheduling problem we consider (Wellman
et al., 2001), there areM units (calledtime slots) of a single
schedulable resource, indexed 1, . . . ,M. Each ofN agents
has a single job that can be accomplished using the resource.
Agent j ’s job requiresλ j time slots to complete, and by ac-
complishing this job it obtains some value depending on the
time it completes. Specifically, ifj acquiresλ j time slots
by deadlinet, it accrues valuevj(t). Deadline values are
nonincreasing:t < t ′ impliesvj(t) ≥ vj(t ′).

In the simultaneous ascending auctionfor scheduling, a
separate auction runs for each slot. Each auction can have
multiple rounds of bidding. At any given time, thebid price
on slotm is βm, defined to be the highest bidbm

j received thus
far, or zero if there have been no bids. To be admissible, a
bid must meet the bid price plus a bid increment (which we
take to be one w.l.o.g.),bm

j ≥ βm+1. If an auction receives
multiple admissible bids in a given round, it admits the high-
est (breaking ties arbitrarily). An auction isquiescentwhen
a round passes with no new admissible bids. Each agent’s
payoff is then its deadline contingent valuation minus the
total cost of all slots won.

The auctions proceed concurrently. When all are simul-
taneously quiescent, the auctions close and allocate their re-
spective slots per the last admitted bids. Because no slot is
committed until all are, an agent’s bidding strategy on one
slot cannot be contingent on the outcome for another slot.
Thus, an agentj with λ j > 1 inherently runs the risk—if it
bids at all—that it will purchase some slots yet not acquire
a sufficient set to accomplish its job. This is the well-known
exposure problem, and arises whenever agents have posi-
tive interdependencies (complementarities) among goods al-
located through separate markets. The exposure problem
is perhaps the pivotal strategic issue in our market-based
scheduling scenario, and motivates the approach we inves-
tigate here.

Price Prediction
The exposure problem presents a direct tradeoff. Bidding on
a needed slot increases the prospects for completing a job,
but also increases the loss in case the full set of required
slots cannot be acquired. A rational bidding policy, there-
fore, would account for these expected costs and benefits,
choosing to bid when the benefits prevail, and cutting losses
in the alternative. Unfortunately, formulating and solving
a complete model of the bidding decision does not appear
to be tractable, due to the dynamic nature of the problem,
and sensitivity to highly uncertain values and behaviors of
other agents.2 We therefore seek approximate strategies that

2In prior work (Reeves et al., to appear), we illustrate the subtle
complexity of the problem, even when the other agents are known

capture some essential ingredients of the tradeoff, without
incurring the computational burden of a full-fidelity analy-
sis.

Consider the problem of agent 1, bidding against agent 2
in the situation described by Table 1. (Ignore agent 3 for
the nonce.) Agent 2 needs only a single slot, and prefers
earlier slots to later ones. It achieves a value of 8 if it com-
pletes its job with the first slot, 6 if the second, and 4 if the
third. Agent 1 needs all three slots to complete its job, and
achieves a value of 15 if successful. We assume the agents
bid for these slots through a simultaneous ascending auction
mechanism, with a bidding increment of 1.

Name Job Length (λ) v(1) v(2) v(3)
Agent 1 3 — — 15
Agent 2 1 8 6 4
Agent 3 1 10 8 6

Table 1: A simple example illustrating the potential use of
price prediction to address the exposure problem.

If the agents apply straightforward bidding strategies (de-
fined below), one possible outcome (depending on random
tie-breaking sequences) is that agent 2 wins the first slot at a
price of 7, and agent 1 wins the second and third at prices of
5 and 3, respectively. This yields a surplus of 1 for agent 2,
and−8 for agent 1. Agent 1 stops at this point under the
straightforward bidding strategy, because there is no way
it could complete its job profitably given the current state.
However, it is clear from this example that dropping out is
a mistake, as it could obtain slot 1 at a price of 8, for a net
surplus of−1, still a loss but a great improvement over the
−8 it obtained under straightforward bidding.

It was precisely this sort of situation that led us in our
earlier work (Reeves et al., to appear) to consider variations
on straightforward bidding that tooksunk costsinto account.
Intuitively, agent 1 should treat its commitment to buy slots
2 and 3 as a sunk cost, and continue to bid on slot 1 as long as
that slot costs less than the value of its job. In this example,
agent 1 will need to raise the bid just one more time, thus
reducing its loss as described above. Moreover, the total
value of jobs completed in this outcome is 15, compared to
only 8 in the original solution.

However, treating the winning bids as sunk costs (even to
a partial degree, as investigated in the previous paper) can
be too indiscriminate. Consider the situation where agent 3
joins the bidding. With all three agents from Table 1 bid-
ding straightforwardly, a possible outcome is that agent 3
wins the first slot at 7, agent 2 wins the second at 5, and
agent 1 wins the third at 3. Again, agent 1 is caught by the
exposure problem, stuck with a useless slot and a surplus of
−3. In this case, however, treating the cost as sunk is coun-
terproductive. By continuing to bid on the first two slots it
only increases its exposure, causing agent 3 to compete with
it on the third slot as well. One possible outcome of this is
that agent 1 ultimately wins all three slots, but at a total price
of 23 (e.g., 10, 8, and 5—just sufficient to induce agent 3 to

to bid according to a straightforward policy.



drop out). This represents a surplus of−8, worse than its
baseline “sunk-unaware” outcome of−3. The total value of
jobs completed also decreases slightly, from 16 to 15.

Indeed, it may be too much to expect any bidding pol-
icy defined purely as a function from price quotes to bids
to behave robustly as the mix of other agents changes. The
effectiveness of a particular policy will in general be highly
dependent on the characteristics of other agents in the en-
vironment. Unfortunately, a trading agent typically has at
best gross distributional knowledge about the job lengths
and deadline values of others. Even with such information,
reasoning directly in terms of enumerations of bidding tra-
jectories seems computationally infeasible. Thus, we seek
summary constructs that can be applied directly to condition
or guide relatively straightforward bidding behavior.

In particular, we consider information in the form ofprice
predictions. In the scenario above, suppose agent 1 could
predict before the auctions start that the prices would total
23 (for example, based on historical experience with similar
situations). Then it could conclude that bidding is futile, not
participate, and avoid the exposure problem altogether. Of
course, we cannot expect in general to have perfect predic-
tions. The hypothesis we investigate in this paper is that even
relatively diffuse distributions can support predictions that
significantly improve performance, even when employed in
a straightforward manner.

Prior Work
Our scheduling model (single resource type, no job depen-
dencies, no earliest-start constraints) is quite simple and
well-understood, considered as a subclass of centralized
scheduling problems (Tzafestas and Triantafyllakis, 1993;
White, 1990). However, when the problem is augmented
with decentralization constraints it is quite open (Wellman
et al., 2001). To be sure, there is a substantial body of
work on distributed scheduling—much of which considers
far more elaborate scheduling models than that investigated
here, including representative efforts from artificial intelli-
gence (Sen and Durfee, 1998), distributed computing (Casa-
vant and Kuhl, 1988), and operations management (Tharu-
marajah and Bemelman, 1997). Much of this research as-
sumes (often quite reasonably given the setting of inter-
est) a central algorithm designer, or that the agents share
a common goal. Other work explores explicitly market-
based mechanisms and the effects of particular bidding poli-
cies, but without scrutinizing the strategic problem from the
agents’ perspective (Bertsekas, 1988; Walsh and Wellman,
2003).

We build on the economic literature about price-based
allocation of combinatorial resources (Bikhchandani and
Mamer, 1997; Bikhchandani and Ostroy, 2002; Gul and
Stacchetti, 1999), and look to studies of simultaneous auc-
tion mechanisms (Milgrom, 2000; Peters and Severinov,
2001), for further insights about optimal (or equilibrium)
trading strategies. However, our simple scheduling problem
exhibits complementarities, in that forλ > 1, the value of
individual slots is contingent on obtaining the others. This
of course is the source of the exposure problem, discussed
above, and the reason that straightforward bidding policies

do not suffice. Interestingly, auction theory (Krishna, 2002)
to date has relatively little to say about how oneshouldbid
in simultaneous markets with complementarities, either in
general or in the special case of problems with scheduling
structure. This has led many researchers in recent years to
explorecombinatorial auctions(de Vries and Vohra, 2003),
which allow bidders to express offers for bundles or combi-
nations of goods explicitly, thus avoiding the exposure prob-
lem altogether.

Although we appreciate the virtues of combinatorial
mechanisms, we are also aware of their limitations, most
significantly their requirement for some competent authority
to coordinate the allocation of interdependent resources, and
the costs and delays associated with such coordination. It is
a simple fact that today we see many markets operating sep-
arately, despite apparent strong complementarities for their
respective goods. Whereas automation will very likely in-
crease the prevalence of combinatorial markets, we expect
that the issue of trading in separate yet dependent markets
will remain.

Our methodology for exploring bidding strategies is based
on our prior work (Reeves et al., to appear). Faced with
an intractably large strategy space for a particular market
game, we define a family of strategies parametrized by key
strategic variables we can identify. We then employ sam-
pling and simulation to construct an empirical normal-form
game corresponding to expected payoffs for representative
members of the restricted strategy class. Finally, we identify
restricted equilibria by solving the generated game descrip-
tions, exploiting symmetry or any other structure that may
be available.

As noted above, our first study employing this method-
ology investigated the tradeoffs in treating current winnings
as sunk costs. In the current work, we introduce the use of
price prediction to guide bidding behavior. Price prediction
played an important role in a recent market game involving
complementary goods (Wellman et al., 2004), and of course
price forecasting is generally known to be an important func-
tion in economic decision making.

Bidding Strategies
Straightforward Bidding
Our baseline for evaluating strategies is thestraightforward
bidding (SB) policy (Milgrom, 2000). A straightforward
bidder bids myopically based on a best response to current
price quotes. More precisely, the SB agent takes a vector of
perceived prices(defined below) for the slots as given, and
bids those prices for the bundle of slots that would maximize
its surplus if it were to win all of its bids at those prices.

If agent j is assigned a set of slotsX, it accrues value
vj(X) based on the best deadline it can achieve:vj(X) =
vj(X(λ j)), whereX(t) is thetth time slot inX. Given that
it obtainsX at pricesp, the agent’ssurplusis its value less
the amount paid,σ(X, p) ≡ vj(X)−∑m∈X pm. When agent
j is winning the set of slotsX−1 in the previous bidding
round, we define the currentperceived pricesto be p̂m = βm
for m ∈ X−1, and p̂m = βm + 1 otherwise. Then, under
SB, agentj bids bm

j = βm + 1 for m∈ X∗ \X−1 such that



X∗ = argmaxX σ(X, p̂).
Straightforward bidders make no attempt to anticipate

other agents’ strategies. For instances withλ j = 1, such
anticipation is unnecessary, as agentj would not wish to
change its bid even after observing what the other agents did
(Bikhchandani and Mamer, 1997). Ifλ j = 1 for all j, then
SB leads to efficient allocations, up to an error proportional
to the bid increment. Unfortunately, as illustrated above, the
exposure problem destroys these positive results for cases
with λ j > 1 for somej.

Bidding with Price Prediction

As we have seen, straightforward bidding leads to neither
optimal individual outcomes nor socially efficient alloca-
tions except in highly restricted problems. Our prior work
(Reeves et al., to appear) explored one parametric general-
ization of SB, in which agents exhibit varying tendencies
to treat provisional winning bids as sunk costs. In some
settings, we indeed found that the “sunk-aware” modifica-
tions of SB produced some advantage. However, our simple
example from Section “Price Prediction” demonstrates that
sunk cost awareness is not a sufficient guide to optimal bid-
ding.

One advantage of SB and the variants previously consid-
ered, is that they do not require any knowledge about the
environment except for the current quotes. However, en-
vironmental factors are relevant, as indicated by the fact
that different scheduling-problem configurations (numbers
of agents and slots, job length and deadline-value distribu-
tions) often lead to qualitatively distinct equilibrium strategy
profiles. Moreover, environmental information is often plau-
sibly available, from knowledge of the structure of the mar-
ket, or empirical observation of previous market outcomes
(e.g., historical prices). In either case, the agent could (im-
perfectly) predict the final prices before the auctions start.
We present examples of both analytic predictions from struc-
tural knowledge, and empirical predictions from observa-
tional data. However, our main emphasis is on how predic-
tions might be used and evaluated, rather than how to derive
them in the first place.

As noted above, when an agent’s job length is one there is
no exposure problem and straightforward bidding is a domi-
nant strategy. Therefore the price prediction strategy reverts
to straightforward bidding whenλ = 1.

We assume that agents form their predictions before the
auctions start and construct their bids based on thesepre-
dicted prices, taking into consideration new information
only if actual price quotes surpass the initial predictions. For
example, if an agent’s initial prediction on slotj ’s final price
was 8, but the current ask price for that slot in the auction has
reached 9, the predicted price is effectively raised to 9.

We now formalize the price-predicting strategy family.
Let π = π1, . . . ,πM be the vector of predicted prices. Define
the perceived price vector, ˆp, as above for the SB strategy.
We then define theadjusted price predictionfor slot m, π̂m,
as the maximum of predicted and perceived prices

π̂m≡ max(πm, p̂m).

If λ > 1, the agent then chooses the set of slots on which to
bid based on these adjusted predictions,

X∗ = argmax
X

σ(X, π̂),

and issues bids for slots inX∗ as in straightforward bidding.
The price-predicting strategy is thus parametrized by its

predicted price vector,π. We label different predicted price
vectors with a superscript, and then denote a specific price
prediction strategy by PP(πx), wherex labels particular pre-
dicted price vectors. Straightforward bidding is a special
case of price prediction, with the predictions all equal to
zero: SB = PP(0). If the agent underestimates the final
prices, it will behave identically to SB after the prices exceed
the prediction. If the agent overestimates the final prices, it
will stop bidding prematurely.

A Price Prediction Strategy Can Improve
Performance

We first address our central question: Can agents using a
price prediction strategy do better than agents using a bench-
mark strategy without price prediction? We find that minor
strategy modifications based on unsophisticated price pre-
diction information can improve performance substantially.
We then measure the contribution of two separate aspects of
the price prediction strategy to improved performance.

We conduct all of our analyses for a specific schedul-
ing problem, employing a computational game-theoretic
methodology developed in our prior work (Reeves et al.,
to appear).3 We assume there are five time slots available
(M = 5), and that five agents are potentially interested in
them (N = 5). Required job lengths are integers distributed
uniformly on [1,5], and agent valuations for deadlines are
integers distributed uniformly on[0,50]. We adjust realized
preference values to impose the constraint that later comple-
tion is not more valuable than earlier.

A Baseline Price-Prediction Strategy
We start by imagining that agents observe prices from prior
auctions in which all players used the SB strategy, and use
these average observed prices as their predictions. LetπBL

denote this baseline prediction.
To analyze the bidding policy based on this prediction, we

consider a game restricted to the strategies SB and PP(πBL).
Through simulation, we generate the expected payoff ma-
trix for this game; see Figure 1. In each column we record
the average payoffs for each strategy in a particular profile.
A profile is a list of strategies chosen by each of the five
agents. The paired columns are given in lexicographic order
from left to right, starting with all straightforward bidders
(the benchmark profile):{SB,SB,SB,SB,SB}. The second
column is{SB,SB,SB,SB,PP(πBL)}, and so forth. In the
first profile, each SB agent receives an expected payoff of
about 1.4. In the second profile, each SB agent receives an
expected payoff of about 1.5, while the sole PP(πBL) agent
receives an expected payoff of about 2.3.

3The previous report includes many details of the methods, tan-
gential for current purposes, that are omitted or glossed here.
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Figure 1: Payoff matrix when agents choose between two
strategies: SB and PP(πBL). The gray bars show the payoffs
to SB agents and the solid bars show payoffs to predicting
agents. The profiles are denoted by the number of predictors
in the profile, from zero to five. Average payoffs were deter-
mined empirically from 200 thousand simulated games for
each of six profiles.

We see from inspection of this payoff matrix that PP(πBL)
is a dominant strategy (since in every profile, the agents
playing SB would do better switching to PP(πBL)) and thus
also the unique symmetric equilibrium. The expected final
prices are the average final prices in this equilibrium pro-
file:4 〈11.2,6.8,3.8,2.0,0.8〉. We summarize the results for
this game (and those in subsequent sections) in Table 3. The
efficiency relative to the optimal allocation is 86% (similarly
computed, in general, from the efficiencies of each realized
profile), which is 98% of the efficiency of the all-SB market.
The average payoff in the equilibrium profile (again com-
puted in general by appropriate mixing of the pure-strategy
payoffs) is 4.2, which is 308% of the payoff to agents in the
all-SB market. Thus, at a loss of only 2% in social efficiency,
agents can improve their average performance by a factor of
three if they use a simple price prediction based on average
prices in an all-SB market.

Since all agents individually are better off in this equi-
librium with price-predicting strategies, why is efficiency
lower? The main gain to agents from using the PP(πBL)
price-predicting strategy is that they reduce the number of
instances in which they are left paying for slots they cannot
use (because they do not obtain a complete schedule). Al-
though the exposure problem, as we showed above, can be
very costly forindividual agents, the allocation of these un-
used slots has no impact on social efficiency: if they are un-

4In general we compute this by weighting the final prices for
each realized (pure strategy) profile by the probability of obtain-
ing that profile given the equilibrium mixed-strategy probabilities.
Given anN-player game with strategiesSand all agents playing the
mixed strategy{α1, . . . ,α|S|}, the probability of a particular profile
(n1, ...n|S|), wherens is the number of players playing strategys, is

N!
n1! · ... ·n|S|!

·αn1
1 · · ·αn|S|

|S| .

When there is a pure strategy equilibrium, we have the special case
that all but one profile has zero weight.

used, it does not matter who “owns” the slot. The payment
by the agent is just a transfer to the resource seller, and our
calculation of efficiency is indifferent between whether the
buyer or the seller has the slot or the money.5 Efficiency falls
because to avoid the exposure problem, sometimes fewer
schedules are completed, and so the allocation makes less
valuable use of the available resources. In other words, price
prediction prevents spurious purchases, improving buyers’
payoffs at substantial cost to the seller, netting a slight loss
in social efficiency.

How Does Price Prediction Help?
We have shown that introducing price prediction can sub-
stantially improve expected payoffs for bidding agents. We
now explore the reason for the improvement: under what
conditions does our price-predicting agent bid differently
than the benchmark agent, and how do these specific be-
havioral changes contribute to the improvement in expected
payoffs?

Compared to benchmark bidding, our price-predicting
agents use the prediction vector to modify two behaviors:
choosing the best bundle of slots on which to bid, and de-
ciding whether to participate in the bidding at all.6 We now
decompose the effects reported in the previous subsection
into those due to changes in participation and those due to
changes in the choice of the bundle on which to bid.

To do this we construct a new bidding strategy. Agents
first calculate the best bundle on which to bid using the same
perceived prices as in the SB (no predictions) strategy. Then
they choose to participate in the current round of bidding
only if surplus from that bundle, valued at theadjusted pre-
dicted prices, is positive. Thus, the predicted prices are used
only for the participation decision, and not for selecting the
best bundle on which to bid.

In Figure 2 we present the payoff matrix for agents who
choose eitherparticipation-onlyprediction, or straightfor-
ward bidding. The qualitative results for each possible strat-
egy profile are similar to those in Figure 1. Again, the
dominant (and therefore equilibrium) strategy is when all
agents play PP(πBL) with probability one. Expected payoff
is 4.1, which is 2% lower than in the equilibrium with full-
prediction agents as described above. Relative efficiency is
slightly lower (half a percentage point).

To compare participation-only prediction to full predic-
tion more thoroughly, we compute the ratio of payoff for
participation-only prediction to payoff for full prediction for
every possible environment of agents mixing between pre-
diction and SB. We graph the results in Figure 3. The payoff
to participation-only is less than to full-prediction as long as
the probability of playing SB is less than 0.32. At best, if all

5In economics terminology, we are calculating aMarshallian
money-metric welfare measure in which we equally weight the net
surplus of all participants including buyers and sellers.

6We could say both behaviors manifest a single decision: on
which bundle to bid, with “don’t participate” equivalent to bidding
on the null bundle. We break the decision problem into participa-
tion and bundle selection because these two decisions are qualita-
tively different, and more closely match conventional understand-
ing of auction behavior.
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Figure 2: Payoff matrix when agents choose between SB
and PP(πBL) with participation-only prediction.
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Figure 3: If agents play SB with probability less than 0.32,
then full prediction does slightly better than participation-
only prediction.

agents predict, participation-only prediction achieves 98.1%
of the surplus of full prediction. At worst, in an environment
of all SB agents, full prediction does slightly worse than
participation-only prediction. Of course, we have found that
in equilibrium agents will always use the prediction strategy.

Thus, we conclude that nearly all of the performance gain
comes from the participation decision (that is, from some-
times dropping out earlier, which has the effect of reduc-
ing the risk of the exposure problem). In fact, far enough
away from equilibrium the participation-only strategy se-
cures more than 100% of the gains from price prediction.

Searching for Better Price Predictions
Any monotonically decreasing, nonnegative price vector is
a candidatepredictionvector. Agents can apply any reason-
able functions to common information and obtain different
predictions, or they might have access to different informa-
tion. We have shown that one plausible but ad hoc price
prediction vector can improve bidding performance substan-
tially. We now address the further question: how well do
strategies based ondifferentprediction vectors perform?7

7We are interested in price predictions that are better only in-
sofar as they lead to better performance for an agent bidding in a
scheduling market. The quality of the prediction itself is not of any
independent interest.
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Figure 4: Convergence to self-confirming price-prediction
vector, starting with initial prediction that all prices would
be equal to zero. The prices at each iteration are determined
by 500 thousand simulated games.

Self-Confirming Price Predictions
We first consider price predictions that are equal to the mean
of the equilibrium prices if all agents use a price-predicting
strategy. That is, if all agents use predictions, then theself-
confirmingpredictions are those that on averageare correct.

To solve for the self-confirming predictions we initialize
the predicting agents with some prediction vector and sim-
ulate many games with the all-predict profile. When aver-
age prices obtained by these agents are determined, we re-
place the prediction vector with the average prices and re-
peat. When this process reaches a fixed point, we have the
pricesπ such that when all agents play PP(π) the expected
prices areπ. We denote this prediction vector byπSC. In
Figure 4 we show the convergence to the five prices inπSC.
Within 30 iterations the prices have essentially converged,
although there is some persistent oscillation. However, we
found that by reseeding the prediction vector with the aver-
ages that the prices are oscillating around in Figure 4, this
comprised a fixed point, which we used asπSC.

We show the payoff matrix for the game with agents
choosing between SB and PP(πSC) in Figure 5. By inspec-
tion we see that PP(πSC) is dominant: whatever strategies the
first four agents play, the fifth agent always prefers PP(πSC)
to SB, and likewise for the other agents by symmetry.

The average final prices for the all-predict equilibrium are
〈13.1,8.7,5.4,3.0,1.2〉. The efficiency relative to the opti-
mal allocation is 88%, which is negligibly higher than the
efficiency of the all-SB market. The average payoff in the
mixed-strategy equilibrium to an agent is 3.0, which is 226%
of the payoff to agents in the all-SB market. Thus, at no
loss in social efficiency, agents can more than double their
average performance if they have accurate price predictions
available.

Comparing Several Price Predictors
We consider two additional price prediction vectors. The
baseline and self-confirming predictions were constructed
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Figure 5: Payoff matrix for two strategies: straightforward
bidding and price predicting with self-confirming predic-
tions. Payoff matrix is constructed from 180 thousand games
for each of the six profiles.

statistically, using observational data that might be available
to agents. We now use another approach that we mentioned
above: construct a model of the economic conditions and
then solve analytically for equilibrium prices.

For our model, we suppose that the final prices form a
competitive (orWalrasian) equilibrium in the scheduling
market. This is guaranteed, for example, when straightfor-
ward bidders all demand only single slots, but is not true
in general. However, in our experience, the final prices are
generally not too far from competitive equilibrium prices.
Therefore, we calculate the Walrasian equilibrium for our
problem environment and use the resulting prices as predic-
tions.

There is one problem we must overcome before calcu-
lating the Walrasian equilibrium: agents need to predict
expected prices, which may deviate substantially from the
Walrasian prices for any particular realization of prefer-
ences. We have been calculating expected payoffs by sim-
ulating a large number of market instances and averaging.
We do likewise for expected prices. We calculate theex-
pected competitive equilibriumprices,πECE by randomly
generating a large number of game instances, analytically
solving for the competitive equilibrium in each, and averag-
ing across the resulting prices. We calculate theexpected de-
mand competitive equilibriumprices,πEDCE, by calculating
the expected demand function for each of many instances,
and then solving for the competitive equilibrium based on
the average demands. We label the corresponding bid strate-
gies as PP(πECE) and PP(πEDCE).

We now have five candidate price prediction strategies:
SB (=PP(0)); PP(πBL), PP(πSC), PP(πECE), and PP(πEDCE).
The fiveπx prediction vectors are given in Table 2. We con-
sider a game in which each of the five agents can choose
which of these five strategies to play. We present the result-
ing payoff matrix in Figure 6.

There are 126 possible combinations of five strategies
among five players (each shown as a column in the payoff
matrix). With this large problem, we did not find a domi-
nant or asymmetric pure strategy Nash equilibrium through
inspection. Instead, we used our method to solve for a
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Figure 6: Payoff matrix for the game with four predicting
strategies and SB. Each of the 126 columns (which are not
meant to be distinguishable in this depiction) corresponds
to a strategy profile:all SB ({SB,SB,SB,SB,SB}) through
all PP(πBL) in lexicographic order (given the ordering〈SB,
PP(πEDCE), PP(πECE), PP(πSC), PP(πBL)〉). Payoffs were es-
timated by simulating 17 million games per profile.

Prediction Methods Predicted Final Price Vectors
SB (=PP(0)) 0 0 0 0 0
PP(πBL) 14.8 10.7 7.6 4.6 1.9
PP(πSC) 13.0 8.7 5.4 3.0 1.2
PP(πECE) 26.0 14.2 6.9 2.5 0.3
PP(πEDCE) 20.0 12.0 8.0 2.0 0.0

Table 2: Price predictions for all prediction methods. Com-
pare to realized average prices in Table 3.

symmetric mixed strategy equilibrium. In the equilibrium
we found, agents play PP(πSC) with probability 0.45, and
PP(πEDCE) with probability 0.55.

The average equilibrium prices are
〈10.6,6.5,3.9,2.2,0.91〉. The expected payoff for an
agent in the symmetric mixed strategy equilibrium is 4.3,
which is 316% of the payoff in the all-SB market. The
average efficiency of the allocation is 85%, which is 98%
as efficient as the all-SB market. Thus, at a cost of only a
2% loss in social efficiency, agents can triple their average
performance if they use a mixture of self-confirming and
Walrasian predictions.

It may be surprising that all playing PP(πSC)—and so pre-
dicting perfectly—is not an equilibrium. A price predictor
with a perfect prediction has an incentive to make its pre-
diction worse. The explanation is that the predictor’s per-
formance is a function of how it uses the price prediction,
as well as a function of its quality. The mixed equilibrium
we found suggests that the accuracy of the self-confirming
prediction is not sufficient for the strategy to prevail. How
a prediction is incorporated into the strategy is as important,
and exploring how one can make better use of a price pre-
diction is an interesting topic for future research.



Games (i.e., strategy sets) Equilibrium Profiles % Eff. Payoff Average Final Price Vectors
{SB, PP(πBL)} all PP(πBL) 86 4.15 11.2 6.8 3.8 2.0 0.77
{SB, PP(πBL) w/ P.O.} all PP(πBL) w/ P.O. 85 4.07 11.8 6.9 3.7 1.7 0.58
{SB, PP(πSC)} all PP(πSC) 88 3.05 13.0 8.7 5.4 3.0 1.17
{SB, PP(πBL), PP(πSC), PP(πECE), PP(πEDCE)} 0.45 SC, 0.55 EDCE 86 4.25 10.6 6.5 4.0 2.2 0.91

Additional Profiles
all SB 87 1.35 14.8 10.7 7.6 4.6 1.90
all PP(πECE) 74 5.80 4.7 2.1 1.7 1.2 0.55
all PP(πEDCE) 83 5.24 8.1 4.5 2.7 1.6 0.70

Table 3: Average final price vectors, percent allocation efficiency relative to the global optimum, and average payoff for the
(symmetric) equilibria of several games as well as for other, non-equilibrium profiles. PP(πBL) w/ P.O. refers to participation-
only prediction (see Section “How Does Price Prediction Help?”) using the baseline prediction vector.

Conclusion
We found that a simple modification of straightforward bid-
ding, employing a prediction about final prices, can sig-
nificantly improve bidder performance in a market-based
scheduling environment. Predicted prices provide a guide to
the agent about the exposure risk it incurs by bidding on the
several slots it needs to complete a multi-period job. When it
expects the relevant prices to exceed its job value, the agent
refrains from bidding. At least for the environment we in-
vestigated, the binary choice of participation or not had a
greater contribution to improvement than the use of predic-
tions to guide choice of which slots to pursue.

The performance of a price prediction strategy depends,
of course, on the quality of the prediction. We constructed
five different predictions, and then solved a restricted game
in which agents choose the prediction to use. One important
prediction was self-confirming, in that when agents bid ex-
pecting these prices, they in fact result. Another important
prediction was the Walrasian competitive equilibrium based
on expected demand. In the mixed-strategy equilibrium of
this game, agents combine with roughly equal probability
the self-confirming prediction and the Walrasian prediction.

The performance of a price predictor also depends on how
the predictions are used. The price-predicting strategies con-
sidered here are suboptimal. We consider the fact that even
these simple PP(πx) strategies offer such clearly superior
performance over SB to be a strong confirmation of our main
hypothesis. We expect that agents who predict distributions
over prices, or otherwise more explicitly formulate the ex-
posure tradeoff problem, can perform much better, and ex-
ploring this possibility is a subject for future work.

Although the results presented here are all specific to the
particular scheduling problem and distribution of deadline-
value preferences defined, we believe the general methods
are broadly applicable. Both the SB and PP strategy families
are well-defined for any simultaneous-auction environment.
Whereas the exact price vectors derive from our particu-
lar problem, the price-prediction methods (BL, SC, ECE,
EDCE) can likewise be applied to any given environment.

Finally, in presenting comparative strategy results, we do
recognize that SB is to some extent a straw man, with no
advocates and well-known flaws. Unfortunately, advocates
of any particular strategy for simultaneous interdependent

auction problems are hard to find, as no bidding policy is
known to perform generally well. Continued exploration of
promising areas of the strategy space may help to remedy
this situation.
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