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Abstract

We consider the problem of two-dimensional supersonic flow onto a solid wedge,

or equivalently in a concave corner formed by two solid walls. For mild corners,

there are two possible steady state solutions, one with a strong and one with

a weak shock emanating from the corner. The weak shock is observed in su-

personic flights. A longstanding natural conjecture is that the strong shock is

unstable in some sense.

We resolve this issue by showing that a sharp wedge will eventually produce

weak shocks at the tip when accelerated to a supersonic speed. More precisely,

we prove that for upstream state as initial data in the entire domain, the time-

dependent solution is self-similar, with a weak shock at the tip of the wedge. We

construct analytic solutions for self-similar potential flow, both isothermal and

isentropic with arbitrary � � 1.

In the process of constructing the self-similar solution, we develop a large

number of theoretical tools for these elliptic regions. These tools allow us to es-

tablish large-data results rather than a small perturbation. We show that the wave

pattern persists as long as the weak shock is supersonic-supersonic; when this

is no longer true, numerics show a physical change of behavior. In addition, we

obtain rather detailed information about the elliptic region, including analyticity

as well as bounds for velocity components and shock tangents.
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FIGURE 1.1. Reflect either part of Figure 1.2 across the upstream wall.

There are four combinations; each is a steady solutions to supersonic

flow onto a solid wedge. The one with two weak shocks is the one ob-

served in nature and numerics.
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FIGURE 1.2. Two steady solutions of supersonic flow along an infinite

wall with a corner.

1 Introduction

1.1 Background
Gas flow onto a solid wedge, like forward edges of airplane wings or engine

inlets, is a fundamental problem for aerodynamics (see Figure 1.1). An equivalent

problem is flow in a convex corner of an otherwise straight wall (see Figure 1.2).

For supersonic flow and sufficiently small � , it is well-known that this problem has

steady solutions with a straight shock emanating from the corner, separating two

constant-state regions (“upstream” and “downstream”). The shock is the conse-

quence of compression of the gas by the downstream wall.

A longstanding open and puzzling problem is that, for � close to 0 (correspond-

ing to a sharp wedge or mild corner), there are two possible steady solutions of

the corner flow, one with a strong and one with a (comparatively) weak shock (see

Figure 1.2). Both shocks satisfy the entropy condition.1 However, only the weak
shocks are observed in nature. To quote [8]: “The question arises which of the

two actually occurs. It has frequently been stated that the strong one is unstable

and that, therefore, only the weak one could occur. A convincing proof of this

instability has apparently never been given.”

The goal of the present paper is to understand this.

1 There is a third shock that violates the entropy condition.
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FIGURE 1.3. Curve: downstream velocities for all possible shock nor-

mals. The left branch corresponds to compression shocks, the right

branch to unphysical expansion shocks. The C is exactly sonic, points

left of it are subsonic, right of it supersonic. Solid line: there are three

solutions; strong shock K, weak shock L, unphysical. Dotted line: still

three solutions, but the weak shock is supersonic-subsonic now. Dashed

line: critical angle; weak and strong shock coincide. Dashed-dotted line:

� above critical, no physical solution.

For many purposes, in particular for many questions concerning flow around

airplane wings, viscosity, heat conduction, and kinetic effects can be neglected. It

is natural to consider inviscid models, such as the full or isentropic compressible

Euler equations or compressible potential flow. The appropriate boundary condi-

tion at solid surfaces is the slip condition: the gas velocity is tangential.

In each model the shock and its upstream and downstream states satisfy the

Rankine-Hugoniot relations, a system of nonlinear algebraic equations. These re-

lations determine the shock polar: the curve of downstream velocities that result

when varying the shock normal while holding the shock steady and the upstream

velocity and density fixed (see Figure 1.3).

In Figure 1.3 the upstream velocity is .1; 0/, labeled I . Possible downstream

velocities are intersections of the shock polar with the ray at a counterclockwise

angle � from the positive horizontal axis. Obviously for small � there are three

intersection points. The leftmost intersection, called K, corresponds to the strong

shock. The rightmost is an unphysical expansion shock that need not be considered.

The middle point, called L, is the weak shock. (The shock normals are parallel
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to the difference between downstream velocity (intersection point) and upstream

velocity .1; 0/.)

For � # 0, the strong shock approaches a normal shock, whereas the weak

shock vanishes (L approaches I ).

There is a critical angle � D �� where L andK coincide; for larger � no steady

entropy-satisfying shock can be attached to the wedge tip or corner.

The C on the shock polar indicates a downstream state that is exactly sonic
(Mach number M D 1). Polar points to the left of it are subsonic (M < 1); polar

points to the right of it are supersonic. In numerical experiments, the weak shock

detaches from the corner/wedge tip when its downstream changes from supersonic

to subsonic (e.g., by increasing � ).

In [13, 14] we have reported on numerical experiments: to our surprise and

somewhat contrary to the aforementioned conjecture, both the strong and weak

shocks are time-asymptotically stable under large, compactly supported perturba-

tions. Instead, the strong shock is unstable under (generic) perturbations of the

downstream state at infinity; depending on the perturbation, either the weak shock

appears or the shock detaches from the wedge tip/corner entirely. It may be possi-

ble to obtain a strong shock in very special cases, for example by placing a perfectly

feedback-controlled nozzle somewhere downstream.

The weak shock is stable under both kinds of perturbation.

While various conjectures and empirical observations have been made regard-

ing weak vs. strong shock, previously no mathematical arguments for either were

known. To obtain one, we devise an “unbiased” test: at time t D 0, fill the entire

domain with upstream data; check which shock appears for t > 0.

In numerics, the weak shock appears spontaneously (see Figure 1.4). Motivated

by this, we construct an analytical solution.

An equivalent experiment is to accelerate a solid wedge in motionless air in-

stantaneously to supersonic speed. More generally, if a finite wedge is accelerated

from rest at time 0 to a fixed supersonic speed at time � � L=c (L wedge length),

we may expect the solution to be a good approximation for times t in the scale

� � t � L=c.

1.2 Numerical Results
Figure 1.4 shows the flow pattern (density) solving our test problem, for some

positive time. Here � D 7
5

, MI D 2:94, and � D 10ı. EvI is horizontal from left

to right. Darker shades represent higher density �; the black curves are constant-�

level sets.

A straight shock emanates from the wedge tip/wall corner. Calculation shows

that it is the weak shock. There is another straight shock on the right, parallel to the

downstream wall. Below each straight shock lies a constant region. Both shocks

are connected by a curved shock, with a nontrivial (elliptic) region below.



SUPERSONIC FLOW ONTO A SOLID WEDGE 1351

cR

cR

EvR

EvL

cL

cL
L

R
EvI

�

I

EvI

shock

shock

elliptic
region

�

weak

FIGURE 1.4. Left: numerical solution of the wedge flow problem.

Right: Structure. Three trivial hyperbolic regions I , L, and R are

separated by straight shocks. They enclose a nontrivial elliptic region

bounded by a curved shock and two parabolic circle arcs centered in EvL
and EvR with radius cL and cR, respectively. Density and velocity are

functions of � D x=t and � D y=t only.

The flow pattern is self-similar: density and velocity are constant along rays

x D �t; y D �t for fixed �; �. This can be visualized as t being a “zoom” param-

eter, with t D 0 corresponding to “infinitely far away” and t " 1 to “infinitely

close to the origin” (wedge tip/wall corner). In particular, the flow structure is the

same for all times.

Figure 1.5 shows the elliptic region in more detail. In the top picture density

is shown (again darker shades are higher density); its minimum in the elliptic re-

gion is attained at the shock (Proposition 3.13 will show that the minimum is a

“pseudonormal” point). In the middle picture the velocity tangential to the down-

stream wall is shown (darker shades are smaller, more negative velocity; the right

shock is not visible because that velocity component is continuous across it). The

bottom picture shows velocity normal to the downstream wall. Again an extremum

can be observed at the curved portion of the shock.

The diamond in the center of the bottom domain boundaries indicates the origin

in self-similar coordinates, where we use standard coordinates (Figure 4.1). The

velocities in Figure 1.5 are relative to it.

It should be emphasized that numerical computations only suggest the structure

of the solution. For instance, it is not clear that the constant states L and R extend

to the pseudosonic circles PL and PR. Although, in one dimension with viscosity,

some techniques can convert a numerical solution with sufficiently small residual

into an existence proof for an exact solution (see, e.g., [18]), only partial results are

available in multiple dimensions without viscosity (see [11, 19, 20]); it is not clear

whether a general result is even true (see [10]).
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FIGURE 1.5. Elliptic region. From top to bottom: �, Ev tangential, and

Ev normal to the wedge surface. Corner/wedge tip is the intersection of

the left shock and bottom domain boundary (left outside diagrams). The

diamond indicates the origin in Figure 4.1 coordinates; velocities are

relative to it.
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1.3 Main Result
To obtain a mathematical argument, we construct the self-similar solution ex-

actly rather than numerically. We use compressible potential flow as a model:

THEOREM 1.1 Let � 2 .0; �
2
/, MI ; �I ; cI 2 .0;1/, and � 2 Œ1;1/; set EvI WD

.MI cI ; 0/. Define the wedge

W WD f.x; y/ 2 R2 W y < x tan �g and � WD .0;1/ � {W:

Assume the following conditions are satisfied:

(1) Unsteady potential flow with �-law pressure admits a steady straight shock
with upstream data �I and EvI and downstream velocity EvL and sound
speed cL so that2

].EvI ; EvL/ D �:
(2) The shock is supersonic-supersonic:

ML WD jEvLj
cL

> 1:

(3) Of the two intersection points of the shock with the circle @BcL
.EvL/, let E��

L
be the one closer to the corner (origin). Let the R shock be the unique
shock parallel to EvL, with upstream data �I and EvI , downstream sound
speed cR, and downstream velocity EvR parallel to EvL as well. Of the two
intersection points with @BcR

.EvR/, let E��
R be the one farther from the cor-

ner (see Figure 1.6). We require that

(1.1) fLine segment from E��
L to E��

Rg \ BcI
.EvI / D ¿:

Then there is a weak solution (see Remark 1.2) � 2 C 0;1.�/ of

unsteady potential flow in �,(1.2)

r� � En D 0 on @W ,(1.3)

� D �I ; r� D EvI for t D 0:(1.4)

In addition to existence, detailed results about the structure of the weak solution

can be obtained (see Remark 4.32). At this point we emphasize only that each

solution consists, in some neighborhood of the origin, of the weak shock separating

two constant-state regions.

Remark 1.2. See Section 2.1 for an introduction to and a precise definition of po-

tential flow. By “weak solution” we mean that

(1.5) r�.0; Ex/ D EvI for a.e. Ex 2 {W

2 ] is the counterclockwise angle from first to second vector, ranging from 0 to 2	 .
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FIGURE 1.6. Solutions are constructed for all cases that satisfy the con-

dition (1.1): the dashed circle and line must be separated. A shock has

positive strength if and only if it does not touch the circle.

and Z
�

�#t C �r� � r# d Ex dt C
Z

{W

#.0; x; y/�I d Ex D 0

for all test functions # 2 C1
c .�/. (For � 2 C 0;1.�/, the velocity r� is a.e.

well-defined on f0g � {W , but �t and hence � may not be well-defined.)

Remark 1.3. As Remark 4.31 shows, there is a large set of tip shocks and parame-

ters that satisfy the conditions of Theorem 1.1.

The first and second condition are physically necessary, not technical limita-

tions. If the first is violated (for MI < 1 or large � ), there is no straight steady

physical shock attached to the corner at all. If either of them is violated, numerical

experiments show a flow pattern with a shock detached from the corner, moving

upstream (left).

The third condition is technical. It is needed in some cases to prove that the

shock does not vanish (which is never observed in numerics); none of the other

estimates requires this condition. We expect that the condition will be removed

with some additional analysis.

It should be emphasized that the theorem and its proof are global in nature:

large parameter changes are possible.

Remark 1.4. Incidentally, we also solve the problem for asymmetric wedges, as

long as both sides allow a supersonic-supersonic weak shock and as long as (1.1)

is satisfied on both sides.

1.4 Related Work
Courant and Friedrichs [8, secs. 117, 122, 123] explain in detail shock polars

and the corner flow problem. Despite its age, its discussion of weak vs. strong

shock is still a good reflection of the state of prior research. Another useful refer-

ence is [16].

Čanić, Keyfitz, and Kim [1] consider the classical problem of regular reflection

of a shock off a symmetric wedge; this problem, like ours, has a self-similar solu-

tion. They consider the unsteady transonic small disturbance equation as a model.
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Zheng [32] studies the same problem for the pressure gradient system. The mono-

graphs [21, 31] compute various self-similar flows numerically and present some

analysis and simplified models.

Chen and Feldman [4] prove existence of small perturbations of a plane shock

in steady potential flow.

Chen [6] constructs steady solutions for three-dimensional cones rather than

two-dimensional wedges. Lien and Liu [25] discuss stability of three-dimensional

flow past a perturbed cone; Chen and Li [7] show existence and linear stability

in the case of the isentropic Euler equations. Chen, Zhang, and Zhu [5] study

existence and stability of supersonic flows onto perturbed wedges with attached

shocks; the introduction gives a detailed discussion of previous work.

So far the only other paper that proves global existence of some nontrivial time-

dependent solution of potential flow is by Chen and Feldman [2]: they construct

exact solutions for regular reflection, assuming sufficiently blunt wedges.

1.5 Overview
In Section 2 we give an introduction to unsteady potential flow. We derive self-

similar potential flow, discuss its shock conditions, and analyze the properties of

shocks in detail.

In Section 3 we discuss a collection of maximum principles for elliptic regions

of self-similar potential flow. Some of these identify circumstances in which cer-

tain quantities, such as density, can or cannot have maxima or minima in the inte-

rior. Other results discuss local extrema at solid (slip condition) walls and finally

shocks with a constant-state hyperbolic region on the other side.

Since the hyperbolic regions are trivial (see Figure 1.4), the heart of the problem

is the construction of the elliptic region. This is accomplished in Section 4. Readers

interested in more overview should go to Section 4.2, where all proof steps are

surveyed.

Crucial ingredients are the maximum principles from Section 3, combined with

ODE-type arguments at the parabolic arcs in Sections 4.6 to 4.10, and techniques

to control shock location and normals (Sections 4.11 and 4.12). Section 4.16 com-

bines the elliptic region with its hyperbolic counterparts to construct the full-flow

pattern. The remaining sections are standard but delicate applications of nonlinear

elliptic theory. Some literature results, such as regularity in corners and at free

boundaries, need to be adapted, which is done in the appendix.

1.6 Notation
For the most part we use standard notation. Subscripts and superscripts may

denote tensor indices, partial derivatives, or powers, depending on the context.

].Ex; Ey/ is the counterclockwise angle from Ex to Ey. For Ex D .x1; x2/ and

Ey D .y1; y2/,
Ex? WD .�x2; x1/
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(counterclockwise rotation by 90ı),

Ex � Ey WD x1y2 � x2y1:
Ex2 is the rank-one matrix Ex ExT whereas jExj2 is the norm. Correspondingly, r2 D
rrT is the Hessian (not the Laplacian).

Normals En are outer normals to a domain, except on the shock S (defined later)

where they are downstream, so usually inner. Tangents Et are always defined as
Et WD En?.

2 Potential Flow

2.1 Unsteady Potential Flow
We consider the isentropic Euler equations of compressible gas dynamics in

d space dimensions:

�t Cr � .�Ev/ D 0;(2.1)

.�Ev/t C
dX
iD1

.�vi Ev/xi Cr.p.�// D 0:(2.2)

Hereafter, r denotes the gradient with respect to either the space coordinates Ex D
.x1; x2; : : : ; xd / or the similarity coordinates t�1 Ex. Vector Ev D .v1; v2; : : : ; vd /

is the velocity of the gas, � the density, and p.�/ pressure. In this article we

consider only polytropic pressure laws (� -laws) with � � 1:

(2.3) p.�/ D c20�0

�

�
�

�0

��
(here c0 is the sound speed at density �0). Many subsequent results extend with

little or no change to � < 1 or to general pressure laws, but in special cases some

steps require more work or break down entirely. To keep the presentation simple,

we don’t strive for generality with respect to pressure laws.

For smooth solutions, substituting (2.1) into (2.2) yields the simpler form

(2.4) Evt C Ev � rTEv Cr.	.�// D 0:
Here 	 is defined as

	.�/ D c20 �
(
.�=�0/

��1�1
��1 ; � > 1;

log.�=�0/; � D 1:
This 	 is C1 in � 2 .0;1/ and � 2 Œ1;1/ and has the property

	� D p�

�
:

If we assume irrotationality
vij D vji
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(where i; j D 1; 2; : : : ; d ), then the Euler equations are reduced to potential flow:

Ev D rEx�

for some scalar potential function �.3 For smooth flows, substituting this into (2.4)

yields, for i D 1; 2; : : : ; d ,

0 D �it Cr�i � r� C 	.�/i D
�
�t C jr�j

2

2
C 	.�/

�
i

:

Thus, for some constant A,

(2.5) � D 	�1
�
A � �t � jr�j

2

2

�
:

Substituting this into (2.1) yields a single second-order quasi-linear hyperbolic

equation, the potential flow equation, for a scalar field �:

(2.6) .�.�t ; jr�j//t Cr � .�.�t ; jr�j/r�/ D 0:
Henceforth we omit the arguments of �. Moreover, we eliminate A with the sub-

stitution

A 0; �.t; Ex/ �.t; Ex/ � tA
(so that �t  �t � A). Hence we use

(2.7) � D 	�1
�
��t � 1

2
jr�j2

�
from now on.

Using c2 D p� and

(2.8) .	�1/0 D .	�/�1 D
�
p�

�

��1
D �

c2
;

the equation can also be written in nondivergence form:

(2.9) �t t C 2r�t � r� C
dX

i;jD1
�i�j�ij � c2
� D 0:

Equation (2.9) is hyperbolic (as long as c > 0). For polytropic pressure law, the

local sound speed c is given by

(2.10) c2 D c20 C .� � 1/
�
��t � 1

2
jr�j2

�
:

3 We consider simply connected domains; otherwise � could be multivalued.
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2.2 Self-Similar Potential Flow
Our initial data is self-similar: it is constant along rays emanating from Ex D

.0; 0/. Our domain {W is self-similar, too: it is a union of rays emanating from

.t; x; y/ D .0; 0; 0/. In any such situation it is expected—and confirmed by numer-

ical results—that the solution is self-similar as well, i.e., that � and Ev are constant

along rays Ex D t E� emanating from the origin. Self-similarity corresponds to the

ansatz

(2.11) �.t; Ex/ WD t .E�/; E� WD t�1 Ex:
Clearly, � 2 C 0;1.�/ if and only if  2 C 0;1.{W /. This choice yields

Ev.t; Ex/ D r�.t; Ex/ D r .t�1 Ex/;
�.t; Ex/ D 	�1

�
��t � 1

2
jr�j2

�
D 	�1

�
� C E� � r � 1

2
jr j2

�
:

The expression for � can be made more pleasant (and independent of E�) by using

�.E�/ WD  .E�/ � 1
2
jE�j2I

this yields

(2.12) � D 	�1
�
�� � 1

2
jr�j2

�
:

We call r� D r � E� the pseudovelocity.

Equation (2.6) then reduces to

(2.13) r � .�r�/C 2� D 0
(orCd� in d dimensions), which holds in a distributional sense. For smooth solu-

tions we obtain the nondivergence form

(2.14)
.c2I � r�r�T/ W r2� D .c2 � �2� /��� � 2������� C .c2 � �2�/���

D jr�j2 � 2c2:
Another convenient form is

.c2I � r�r�T/ W r2 D .c2 � �2� / �� � 2���� �� C .c2 � �2�/ ��
D 0:(2.15)

Here, (2.10) for polytropic pressure law yields

(2.16) c2 D c20 C .� � 1/
�
�� � 1

2
jr�j2

�
:

Remark 2.1. Equation (2.13) inherits a number of symmetries from (2.1)–(2.2):

(1) It is invariant under rotation.

(2) It is invariant under reflection.
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(3) It is invariant under translation in E�, which is not as trivial as transla-

tion in Ex: it corresponds to the Galilean transformation Ev  Ev C Ev0 and

Ex  Ex � Ev0t (with constant Ev0 2 Rd ) in .t; Ex/ coordinates. This is some-

times called change of inertial frame.

Equation (2.14) is a PDE of mixed type. The type is determined by the (local)
pseudo-Mach number

(2.17) L WD jr�j
c
;

with 0 � L < 1 for elliptic (pseudosubsonic), L D 1 for parabolic (pseudosonic),

and L > 1 for hyperbolic (pseudosupersonic) regions.

The pseudo-Mach numberL can be interpreted in a way analogous to the Mach

number M : consider a steady solution of the unsteady potential flow equation.

Loosely speaking, in an M < 1 (subsonic) region, a small localized disturbance

will be propagated in all directions, whereas in an M > 1 region it is propagated

only in the Mach cone. L < 1 and L > 1 are analogous, except that we study

the propagation of disturbances in the unsteady potential flow equation written in

.t; Ex=t/–coordinates, rather than .t; Ex/.
There is no strong relation between M < 1 and L < 1: consider two constant-

state (hence steady and self-similar) flows, one with zero velocity (M D 0 con-

stant), the other with supersonic velocity Ev (M > 1 constant). Each flow hasL D 0
in the point E� D 0 and E� D Ev, respectively, and L " 1 as E� " 1, so there are

examples for each of the four cases M;L < 1, M < 1 < L, L < 1 < M , and

1 < L;M .

While velocity Ev is motion relative to space coordinates Ex, pseudovelocity

É WD r�
is motion relative to similarity coordinates E� at time t D 1.

The simplest class of solutions of (2.14) are the constant-state solutions:

 affine in E�; hence Ev, �, and c are constant. They are elliptic in a circle centered

in E� D Ev with radius c, parabolic on the boundary of that circle and hyperbolic

outside.

CONVENTION 2.2 If we study a function called (e.g.) Q�, then Q , Q�, QL, etc., will

refer to the quantities computed from it as  , �, and L are computed from � (e.g.,
Q D Q�C 1

2
jE�j2). We will tacitly use this notation from now on.

2.3 Shock Conditions
Consider a ball U and a simple smooth curve S so that U D U u [ S [ U d

where U u and U d are open and connected, and S , U u, and U d disjoint. Consider

� W U ! R so that � D �u;d in U u;d where �u;d 2 C2.U u;d /.
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� is a weak solution of (2.13) if and only if it is a strong solution in each point

of U� and UC and if it satisfies the following conditions in each point of S :

�u D �d ;(2.18)

En � .�ur�u � �dr�d / D 0:(2.19)

Here En is a normal to S .

Equations (2.18) and (2.19) are the Rankine-Hugoniot conditions for self-simi-

lar potential flow shocks. They do not depend on E� or on the shock speed explicitly;

these quantities are hidden by the use of � rather than  . The Rankine-Hugoniot

conditions are derived in the same way as those for the full Euler equations (see

[15, sec. 3.4.1]).

Note that (2.18) is equivalent to

(2.20)  u D  d :
Taking the tangential derivative of (2.18) and (2.20), respectively, yields

@�u

@t
D @�d

@t
;(2.21)

@ u

@t
D @ d

@t
:(2.22)

The shock relations imply that the tangential velocity is continuous across shocks.

Define .´xu; ´
y
u/ WD Éu WD r�u and .vxu ; v

y
u/ WD Evu WD r u. Abbreviate

´tu WD Éu � Et and ´nu WD Éu � En, and do the same for v instead of ´. The same

notation is used with subscript d instead of u. We can restate the shock relations as

�u´
n
u D �d´nd ;(2.23)

´tu D ´td :(2.24)

Using the last relation, we often write ´t without distinction.

The shock speed is � D E� � En, where E� is any point on the shock. A shock is

steady in a point if its tangent passes through the origin. We can restate (2.23) as

�uv
n
u � �dvnd D �.�u � �d /;

which is a more familiar form.

We focus on �u; �d > 0 from now on, which will be the case in all circum-

stances. If �u D �d in a point, we say the shock vanishes; in this case ´n
d
D ´nu

in that point, by (2.24). In all other cases ´n
d

and ´nu must have the same sign by

(2.24); we fix En so that ´n
d
; ´nu > 0. This means the normal points downstream.

The shock is admissible if and only if �u � �d , which is equivalent to ´nu � ´nd .

A shock is called pseudonormal in a point E� if ´t D 0 there. For E� D 0, this

means that the shock is normal (vt D 0), but for E� ¤ 0 normal and pseudonormal

are not always equivalent.
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It is good to keep in mind that for a straight shock, �d and Evd are constant if

�u and Evu are. Obviously Éd may vary in this case.

Remark 2.3. The Rankine-Hugoniot conditions for the original isentropic Euler

equations cannot be used for potential flow: even if the flow on one side of a shock

is irrotational, the flow on the other side has nonzero vorticity for curved shocks.

2.4 Pseudonormal Shocks
Here we study the consequences and the solutions of the shock relations in a

pseudonormal point. We state all results for pseudovelocities É and for pseudo-

Mach numbers L because moving shocks are ubiquitous in this article. For better

intuition the reader may bear in mind that É D Ev and L DM if the shock is steady,

i.e., passes through the origin. In fact, by Remark 2.1, weak and entropy solutions

of self-similar potential flow are invariant under translation and rotation, so we

may always consider translating the shock so that it becomes steady, which does

not change É, �, and L, whereas Ev is changed only by a constant vector. Hence the

behavior of arbitrary shocks is entirely determined by those of steady shocks.

Ln WD ´n=c and Lt WD ´t=c will be referred to as the normal and tangential

pseudo-Mach numbers, respectively. Equations (2.18) and (2.12) imply

(2.25) �d D 	�1
�
	.�u/C j´uj

2

2
� j´d j

2

2

�
:

It is apparent that (2.25) reduces to

(2.26) �d D 	�1
�
	.�u/C .´nu/

2

2
� .´

n
d
/2

2

�
:

Combined with (2.24) there is a direct relation between normal velocities, inde-

pendent of the tangential velocities.

For polytropic pressure laws we may use a rather convenient simplification:

there is an explicit relation connecting Lnu and Ln
d

, independent of �u and Éu.

LEMMA 2.4 For Lnu; L
n
d
> 0, (2.26) and (2.23) are equivalent to

g.Lnu/ D g.Lnd /;(2.27)

g.x/ D
(�
x2 C 2

��1
�
x

2.1��/
�C1 ; � > 1;

x2 � 2 log x; � D 1:
(2.28)

Note that

@g

@x
D 4

� C 1.x � x
�1/x�2 ��1

�C1 ;(2.29)

@2g

@x2
D 4

.� C 1/2 ..3 � �/C .3� � 1/x
�2/x�2 ��1

�C1 :(2.30)
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g.x/ �
(
x�2 ��1

�C1 ; � > 1;

� log x; � D 1; as x # 0,(2.31)

g.x/ � x 4
�C1 as x " 1,(2.32)

Moreover,

(2.33)
cu

cd
D
�
Ln
d

Lnu

� ��1
�C1

as well as

(2.34)
�u

�d
D
�
Ln
d

Lnu

� 2
�C1

:

PROOF: Equation (2.23) can be written

�uL
n
ucu D �dLndcd

) .�u/
.�C1/=2Lnu D �.�C1/=2

d
Lnd I(2.35)

this yields (2.34), which yields (2.33).

Consider � > 1, so that c2 D c20 C .� � 1/	.�/. Equation (2.26) can be

transformed to

.´nu/
2

2
C c2u
� � 1 D

.´n
d
/2

2
C c2

d

� � 1
,

�
.Lnu/

2 C 2

� � 1
�
c2u D

�
.Lnd /

2 C 2

� � 1
�
c2d :

Substitute (2.33) to obtain (2.27).

For � D 1, (2.26) is

c20 log
�d

�0
C .´n

d
/2

2
D c20 log

�u

�0
C .´nu/

2

2

) �d

�u
D exp

.Lnu/
2 � .Ln

d
/2

2
I

using (2.34) we obtain (2.27). �
PROPOSITION 2.5 There exists an analytic, strictly decreasing function Ln

d
D

Ln
d
.Lnu/, which is its own inverse, so that the shock relation (2.27) is solved for

all Lnu 2 .0;1/. For Lnu ¤ 1, the only other solution of (2.27) is the trivial one:

Ln
d
D Lnu. For Lnu D 1, both coincide.

(2.36) Lnd

8̂̂̂
<̂
ˆ̂̂̂:

" 1; Lnu # 0;
D 1; Lnu D 1;
� .Lnu/

�2
��1 ; Lnu " 1; � > 1;

� exp.� .Ln
u/

2

2
/; Lnu " 1; � D 1:
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The resulting shock is admissible if and only if Lnu � 1.

@Ln
d

@Lnu
D Lnu � 1=Lnu
Ln
d
� 1=Ln

d

�
Lnu
Ln
d

��2 ��1
�C1

< 0;(2.37)

@Ln
d

@Lnu jLn
uDLn

d
.D1/
D �1;(2.38)

For Lnu > 1 > Ln
d

, we have �d > �u and ´n
d
< ´nu. �d and cd are strictly

increasing in Lnu for �u fixed. For � > 1, cd > cu as well, and cd is strictly
increasing in Lnu for �u fixed.

PROOF: Assume Lnu > 1. From (2.29) it is obvious that @g
@x
.x/ > 0 for x > 1.

Hence g.Lnu/ > g.1/; moreover, (2.27) cannot have more than one solution Ln
d

in Œ1;1
 for fixed Lnu � 1; in fact, Ln
d
D Lnu is the unique solution. For x < 1,

@g
@x
.x/ < 0, so (2.27) cannot have more than one solutionLn

d
in .0; 1/. It must have

one, though, because g.0C/ D C1 > g.Lnu/ > g.1/.

For Lnu < 1, the existence of a nontrivial solution Ln
d
2 .1;1/ is obtained

from the previous case by analogous arguments. For Lnu D 1, the sign of @g=@x

rules out any other solutions. Since (2.27) is symmetric inLnu andLn
d

, it is obvious

that Lnu 7! Ln
d

is its own inverse.

The trivial solution branch Ln
d
D Lnu is obviously smooth; by the implicit

function theorem the the nontrivial branch is analytic away from Lnu D 1. In

Lnu D 1 there is a degeneracy that has to be analyzed by inspecting the Hessian of

h.Lnu; L
n
d
/ WD g.Lnu/ � g.Lnd / D 0:

A WD
2
4 @2h
.@Ln

u/2
@2h

@Ln
u @L

n
d

@2h
@Ln

u @L
n
d

@2h
.@Ln

d
/2

3
5 D

"
@2g

@x2 .L
n
u/ 0

0 �@2g

@x2 .L
n
d
/

#
jLn

uDLn
d

D1
(2.30)D

"
8
�C1 0

0 �8
�C1

#
:

A is an invertible indefinite matrix; the solutions of EwTA Ew D 0 are Ew D .1; 1/

and Ew D .1;�1/. The classical Morse lemma (see e.g., [29, lemma 12.19]) shows

that in a small neighborhood of .Lnu; L
n
d
/ D .1; 1/, the solution of (2.27) form

two analytic curves that intersect in .1; 1/ with tangents .1; 1/ (trivial branch) and

.1;�1/ (nontrivial branch). The latter yields (2.38).

The remainder of (2.36) follows from the asymptotics of g (see (2.31) and

(2.32)).

From (2.34) and (2.37) we see that �d > �u for Ln
d
< 1 < Lnu and that �d is

an increasing function of Lnu for �u held fixed. Clearly the same applies to cd if

� > 1, and (because of (2.23)) ´n
d
< ´nu. This means the shock is admissible for

Lnu > 1. �
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Remark 2.6. In the remaining arguments we always assume that the shock is ad-

missible (or vanishing) and ignore the branch Ln
d
D Lnu.

PROPOSITION 2.7 If we hold cu and �u fixed,

(2.39)
´nu
´n
d

� @´
n
d

@´nu
<
� � 1
� C 1 < 1:

In particular,

(2.40)
@´n
d

@´nu
<
� � 1
� C 1:

Therefore

(2.41)
´n
d

cu
� 1 < � � 1

� C 1
�
´nu
cu
� 1
�
:

Remark 2.8. Inequality (2.40) is not very tight (we can show < 0 for � < 3), but

sufficient for our purposes.

PROOF: We use (2.33):

@cd

@Lnu
D cu @

@Lnu

�
Lnu
Ln
d

� ��1
�C1 D cu

Ln
d

�
Lnu
Ln
d

� �2
�C1 � � 1

� C 1
�
1 � L

n
u

Ln
d

@Ln
d

@Lnu

�
so

@´n
d

@´nu
D c�1

u

@´n
d

@Lnu
D Ln

d

cu

@cd

@Lnu
C cd

cu

@Ln
d

@Lnu

(2.33)D
�
Lnu
Ln
d

� �2
�C1

�
2

� C 1 �
Lnu
Ln
d

� @L
n
d

@Lnu
C � � 1
� C 1

�
:

Then

´nu
´n
d

@´n
d

@´nu
D �d

�u

�
Lnu
Ln
d

� �2
�C1

�
2

� C 1 �
Lnu
Ln
d

� @L
n
d

@Lnu
C � � 1
� C 1

�
(2.34)D 2

� C 1„ƒ‚…
>0

� L
n
u

Ln
d„ƒ‚…
>0

� @L
n
d

@Lnu„ƒ‚…
<0

C � � 1
� C 1 <

� � 1
� C 1:

Integrating (2.40) from ´n
d
D ´nu D cu for a vanishing shock, we obtain (2.41). �

PROPOSITION 2.9 Consider a shock with velocity � WD E� � En. Our convention
´nu > 0 requires � < vnu. Vary � while holding En and Evu fixed. Then:

@vn
d

@�
� 1 � @´

n
d

@´nu
> 0;(2.42)

@�d

@�
< 0:(2.43)
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PROOF: For moving shocks, vn
d
D ´n

d
C � and ´nu D vnu � � , so

@vn
d

@�
D 1C @´n

d

@�
D 1 � @´

n
d

@´nu

(2.40)
> 1 � � � 1

� C 1 D
2

� C 1 > 0
and

@�d

@�
D �@�d

@´nu
D � @�d

@Lnu
c�1
u

(2.34)
<

(2.37)
0:

�

2.5 Shock Polar
Here we prove only the results needed for our purposes.

PROPOSITION 2.10 Consider a fixed point on a shock with upstream density �u
and pseudovelocity Éu held fixed while we vary the normal. Define ˇ WD ].Éu; En/.
�d is strictly decreasing in jˇj, whereas Ld and jÉd j are strictly increasing. cd is
strictly decreasing for � > 1, and constant otherwise. Moreover,

.@ˇ Evd / � En D .@ˇ Éd / � En D ´t
�
@´n
d

@´nu
� 1

�
;(2.44)

.@ˇ Evd / � Et D .@ˇ Éd / � Et D ´nd � ´nu:(2.45)

If Éu D .´xu; 0/ with ´xu > 0, then ´x
d

is increasing in jˇj.
PROOF:

@ˇ Éd D @ˇ .´nd EnC ´t Et / D
@´n
d

@´nu
@ˇ´

n
uEnC ´nd Et � ´t EnC @ˇ´t Et

D ´t
�
@´n
d

@´nu
� 1

�
EnC .´nd � ´nu/Et :(2.46)

This is (2.44) and (2.45), by using that E� is fixed. For ˇ > 0, ´t D �jÉuj sinˇ is

strictly decreasing (and negative).

1

2
@ˇ .jÉd j2/ D 1

2
@ˇ ..´

n
d /
2 C .´t /2/ D ´nd

@´n
d

@´nu
@ˇ´

n
u C ´t@ˇ´t

D ´t
�
´nd
@´n
d

@´nu
� ´nu„ƒ‚…

�´n
d

�
� ´t„ƒ‚…

<0

´nd„ƒ‚…
>0

�
@´n
d

@´nu„ƒ‚…
� ��1

�C1

�1
�
> 0

by (2.40), so jÉd j is strictly increasing. Then by (2.25)

�d D 	�1
�
	.�u/C 1

2
.jÉuj2 � jÉd j2/

�
is strictly decreasing, as is cd (except constant for � D 1), so Ld D jÉd j=cd is

increasing.
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shock

upstream

downstream

Evd

 -normal

cd .1� �/1=2
Ld D .1� �/1=2

FIGURE 2.1. L-values downstream of a shock.

For ˇ > 0, (2.46) yields

@ˇ .´
x
d / D ´t„ƒ‚…

<0

�
@´n
d

@´nu
� 1

�
„ ƒ‚ …

<0

cosˇ„ƒ‚…
>0

� .´nd � ´nu/„ ƒ‚ …
<0

sinˇ„ƒ‚…
>0

> 0

by (2.40).

ˇ < 0 is analogous by symmetry. �

2.6 Shock-Parabolic Corners with Fixed Vertical Downstream Velocity
The corners of our elliptic region (see Figure 4.1) are points on shocks where

Ld D 1 (or Ld D
p
1 � � if regularized); on the other hand, v

y

d
D 0 (if the

x-direction is tangential to the wall). We study such shocks in detail.

PROPOSITION 2.11 Consider a straight shock (see Figure 2.1) passing through a

point E� . The shock is pseudonormal in the point E�M D E�CEt �.Evd �E�/Et and pseudo-

oblique in every other point. Vector E�M is the closest point on the shock both to Evu
and to Evd . The circle with center Evu and radius cu does not intersect the shock.

The downstream flow has L <
p
1 � � inside the circle with radius cd

p
1 � � and

center Evd , L D p1 � � on the circle and L >
p
1 � � outside. If Ln

d
<
p
1 � �,

then the circle intersects the shock in the two points, E�M ˙ cd
q
1 � � � .Ln

d
/2 � Et .

PROOF: This is straightforward to check. E�M �Et D Evd �Et D Evu �t , so jEvu�E�M j D
j.Evu � E�M / � Enj D j´nuj > cu. �

PROPOSITION 2.12 Consider a straight shock with vxu D 0, vyu < 0, and down-
stream normal En D .sinˇ;� cosˇ/ through E� D .0; �/ (see Figure 2.2). For every
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�

E��
L

ˇ

En

.0; ��
0 /Evu

E��
R

solid

Evd

�

FIGURE 2.2. Changing shock normals while keeping Evd horizontal.

Vector E��
L is the left L2

d
D 1 � � point for each shock.

ˇ 2 .��
2
; �
2
/ there is a unique � D ��

0 2 R so that vy
d
D 0. ��

0 and the cor-
responding downstream data are analytic functions of ˇI ��

0 is strictly increasing
in jˇj.

For the shock passing through .0; ��
0/, let E��

L and E��
R be the two points with

Ld D
p
1 � �, as given by Proposition 2.11. These points are analytic functions

of ˇ. Lnu, �d , and ´nu are increasing functions of ˇI4 vx
d

and Ln
d

are decreasing
functions of ˇ. For ˇ 2 Œ0; �

2
/, ��

L is a strictly decreasing function of ˇ with range
.��
L
; ��
0
, where ��

0 is the ��
0 for ˇ D 0, and ��

L
is some negative constant.

PROOF: First, regard everything as a function of ˇ and �, with Evu and �u held

fixed and the shock held as passing through .0; �/. In .0; �/:

´nu D ´xunx C ´yuny D . vxu„ƒ‚…
D0
� �„ƒ‚…

D0
/ sinˇ � .vyu � �/ cosˇ(2.47)

D .� � vyu/ cosˇ;

@�´
n
u D cosˇ;

v
y

d
D vyu C .vyd � vyu/ D vyu C .vnd � vnu/ny(2.48)

D vyu C .´nd � ´nu/ny
D vyu C .´nu � ´nd / cosˇ;

4 All of these are independent of the location along the (straight) shock.
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@�v
y

d
D
�
1 � @´

n
d

@´nu

�
@�´

n
u cosˇ

D
�
1 � @´

n
d

@´nu

�
cos2 ˇ

(2.40)
>

2

� C 1 cos2 ˇ > 0.:

v
y

d
is an increasing function of �, so for fixed ˇ there can be at most one � with

v
y

d
D 0. For � D v

y
u C cu= cosˇ we have Lnu D 1 in the point .0; �/, so v

y

d
D

v
y
u < 0 there; on the other hand (2.48) has uniformly lower-bounded right-hand

side (for every fixed ˇ 2 .��
2
; �
2

), so v
y

d
" C1 if we take � " C1. Therefore

there is exactly one solution � D ��
0 for each ˇ.

Now consider ˇ 2 .0; �
2
/ first (so ´t D .v

y
u � �/ sinˇ < 0); the case ˇ < 0 is

symmetric.

@ˇv
y

d
D
�
1 � @´

n
d

@´nu

�
@ˇ´

n
u cosˇ � .´nu � ´nd / sinˇ

D
�
1 � @´

n
d

@´nu

�
´t cosˇ � .´nu � ´nd / sinˇ

@ˇ�
�
0 D �

@ˇv
y

d

@�v
y

d

D 1

cosˇ„ƒ‚…
>0

�
�´t„ƒ‚…
>0

C ´nu � ´nd
1 � @´n

d
=@´nu„ ƒ‚ …

>0

tanˇ„ƒ‚…
>0

�
> 0:

For the remainder of the proof, fix � D ��
0 and consider everything a function

of ˇ. Consider ˇ 2 .0; �
2
/ increasing (the other case is symmetric). Then

´nu D .Evu � E�/ � En;

@ˇ´
n
u D .Evu � E�/ � Et„ ƒ‚ …

D´t

�@ˇ��
0 ny„ƒ‚…

D� cosˇ

D ´nu � ´nd
1 � @´n

d
=@´nu

tanˇ > 0:

ThereforeLnu and �d are also strictly increasing, whereasLn
d

is strictly decreasing.

vxd D vxu„ƒ‚…
D0
Cvxd � vxu

vt
d

Dvt
uD .vnd � vnu/nx

vt
d

Dvt
uD . v

y

d„ƒ‚…
D0
�vyu/nx=ny

D vyu„ƒ‚…
<0

tanˇ < 0;

@ˇv
x
d D

v
y
u

cos2 ˇ
< 0:
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Obviously vx
d

is strictly decreasing.

�M D vyu � ´nuny D vyu C ´nu cosˇ;

@ˇ�M D �´nu sinˇ C @ˇ´nu cosˇ D
�
�´nu C

´nu � ´nd
1 � @´n

d
=@´nu

�
sinˇ

D ´nu@´
n
d
=@´nu � ´nd

1 � @´n
d
=@´nu

sinˇ
(2.39)
<

(2.40)
0:(2.49)

So �M is strictly decreasing.

��
L D �M � cd sinˇ

q
1 � � � .Ln

d
/2 I

cd is increasing and Ln
d

strictly decreasing, so ��
L is strictly decreasing. Moreover,

��
L D v

y

d„ƒ‚…
D0
C´nd cosˇ � cd sinˇ

q
1 � � � .Ln

d
/2

D �Lnd cosˇ � sinˇ
q
1 � � � .Ln

d
/2
�
cd :

Ln
d

is< 1�� for ˇ D 0 and decreasing in ˇ > 0, so it is uniformly bounded above

away from 1� � as ˇ " �
2

. For ˇ large enough the ��
L expression is negative. Thus

��
L covers an interval .��

L
; ��
0
 for some ��

L
< 0. �

3 Maximum Principles

In this section we derive many a priori estimates for smooth elliptic regions and

for smooth shocks separating elliptic and constant-state hyperbolic regions.

3.1 Common Techniques for Extremum Principles
LEMMA 3.1 Let m � 1. If a0; : : : ; am define a positive semidefinite tensor, i.e.,

mX
jD0

 
m

j

!
aj �

j�m�j � 0 8�; � 2 R;

and if

(3.1) Aak C BakC1 C CakC2 D 0 8k 2 f0; : : : ; m � 2g
with constants A;B;C 2 R so that 4AC > B2, then a0 D � � � D am D 0.

PROOF: 4AC > B2 means thatACB´CC´2 D 0 has two roots ´; ´ 2 C�R.

Then

ak D <.a´k/ .k D 0; : : : ; m/
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where a 2 C is some linear combination of a0 and a1, so

0 �
mX
kD0

 
m

k

!
<.a´k/�k�m�k D <

�
a

mX
kD0

 
m

k

!
´k�k�m�k

�
D <.a.´� C �/m/

for all E� 2 R2. Since =´ ¤ 0, .�; �/ 7! .´�C�/m is onto C. The inequality cannot

be true unless a D 0, so a0 D � � � D am D 0. �

LEMMA 3.2 Letm � 3, Eb D .b1; b2/ 2 R2�f0g, and En 2 R2�f0g. If a0; : : : ; am 2
R satisfy

(3.2)

m�1X
kD0

 
m � 1
k

!
.b1ak C b2akC1/�k�m�1�k � 0 8E� 2 R2; E� � En > 0;

as well as (3.1) with constants A;B;C 2 R so that 4AC > B2, then

ak D 0 8k 2 f0; : : : ; mg:
PROOF: 4AC > B2 means thatACB´CC´2 D 0 has two roots ´; ´ 2 C�R.

The general solution of (3.1) is

ak D <.a´k/ .k D 0; : : : ; m/;
where a 2 C is some linear combination of a0 and a1. Substitute this into (3.2):

0 �
m�1X
kD0

 
m � 1
k

!�
b1<.a´k/C b2<.a´kC1/

�
�k�m�1�k

D <
 
a.b1 C b2´/

m�1X
kD0

 
m � 1
k

!
´k�k�m�1�k

!

D <.a.b1 C b2´/.´� C �/m�1/ 8E� 2 R2; E� � En � 0:(3.3)

We may use E� � En � 0 by continuity, which defines a closed half-plane of R2.

´ 2 C�R, so the range of .�; �/ 7! � C ´� is a closed half-plane of C. The range

of .�; �/ 7! .� C ´�/m�1 is all of C because m� 1 � 2. Moreover, b1 C b2´ ¤ 0
because either b2 D 0, and then b1 C b2´ D b1 ¤ 0, or b2 ¤ 0, and then

=.b1Cb2´/ D b2=.´/ ¤ 0. Thus the range of .�; �/ 7! a.b1C b2´/.´�C�/m�1
is all of C, contradicting (3.3), unless a D 0, which means ak D 0 for all k D
0; : : : ; m. �

LEMMA 3.3 Consider an open set U and a point E�0 2 U . Assume that there is a
En ¤ 0 (quasi an inner normal) so that for every E� with En � E� > 0, there is a ı > 0

with
fE�0 C t E� W t 2 .0; ı/g 	 U:
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Let  be an analytic solution of (2.15) in U , so that L < 1, � > 0, and D2 D 0
in E�0. Then

f D f
�
 ;r ;�C 1

2
jr�j2„ ƒ‚ …
a

�

(with f a C1 function of its arguments) cannot have an extremum in E�0 unless  
is linear or

(3.4)
@f

@.r / C
@f

@a
r� D 0 in E�0.

PROOF: We use dot notation (such as
�D) to indicate relations holding only

in E�0. We show by complete induction over k D 3; 4; : : : that Dk 
�D 0.

Induction step (3; : : : ; k � 1 ! k � 3): for j D 0; : : : ; k � 2 take @
j
1@
k�2�j
2

of the equation. This yields

(3.5) .c2I � r�2/ W r2@j1@k�2�j
2  

�D 0
because all other terms contain at least one component of D2 ; : : : ;Dk�1 as a

factor, and hence vanish.

We may exploit that Dj� D Dj for j � 3.

r2
�
�C 1

2
jr�j2

�
D r2�r2 C

2X
iD1

@i�r2@i� �D
2X
iD1

@i�r2@i ;

and for multiindices ˛ with 3 � j˛j < k,

@˛
�
�C 1

2
jr�j2

�
�D

2X
iD1

@i�@i@
˛ ;

so for all 2 � j˛j < k,

@˛
�
�C 1

2
jr�j2

�
�D r� � r@˛ :

Thus for j D 0; : : : ; k � 1,

@
j
1@
k�1�j
2 .f / D @f

@.r / � r@
j
1@
k�1�j
2  C @f

@a
r� � r@j1@k�1�j

2  

C terms with D2 ; : : : ;Dk�1 components as factor

D
�

@f

@.r / C
@f

@a
r�
�
� r@j1@k�1�j

2  

because D2 ; : : : ;Dk�1 �D 0.
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In a similar way we obtain D`.f /
�D 0 for ` D 2; : : : ; k � 2, and D.f / D 0

already by assumption. Therefore the .k � 1/th-order minimum conditions for f

apply: for all E� D .�; �/ 2 R2 with E� � En > 0,

0 �
k�1X
jD0

 
k � 1
j

!
@
j
1@
k�1�j
2 .f /�j�k�1�j

D
k�1X
jD0

 
k � 1
j

!�
@f

@.r / C
@f

@a
r�
�

„ ƒ‚ …
DWEb

�r@j1@k�1�j
2  � �j�k�1�j :(3.6)

Applying Lemma 3.2 to (3.5) and (3.6), with aj D @j @k�1�j , and using L < 1

yieldsDk 
�D 0. Note that Eb ¤ 0 if and only if (3.4) is not satisfied. The induction

step is complete.

We have shown that Dk 
�D 0 for all k � 2. Since  is analytic, it must be

linear, which represents constant density and velocity. �

Remark 3.4. Lemma 3.3 applies trivially to the interior case E�0 2 U : any En ¤ 0

will do.

3.2 Density in the Interior
PROPOSITION 3.5 Let � be an analytic solution of (2.14) in an open connected
domain �. Assume that L < 1 in � and that � is positive and not constant. Then
� does not have maxima in points where r� ¤ 0, and it does not have minima
anywhere.

Remark 3.6. Proposition 3.5 trivially implies corresponding results for variables

like p and c that are strictly monotone functions � (except for c in the isothermal

case, where it is constant).

PROOF OF PROPOSITION 3.5: The first-order condition for a critical point is

0
�D r.�/ D r

�
	�1

�
�� � 1

2
jr�j2

��
D � �

c2
r2 r�:

If r�
�
¤ 0, then combined with the PDE (2.15) we obtain D2 

�D 0. Now

we can apply Lemma 3.3 to show that  is actually a constant-state solution. In

applying the lemma we choose f D f . ;r ; a/ D f .a/ only, using fa ¤ 0 and

r� ¤ 0 so that (3.4) is false.
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If r� �D 0, then r.�/ �D 0 is trivially satisfied. We need to study the second-

order condition for a minimum, which implies in particular

0
�� 
.�/ D .	�1/0.�
� � jr2�j2 � r�„ƒ‚…

�D0

�r
�/

C .	�1/00j r�„ƒ‚…
�D0

Cr2� r�„ƒ‚…
�D0

j2

�D �c�2.
 � jr2 j2/:

Equation (2.15) reduces to 
 
�D 0, so

(3.7) 0
�� ��c�2jr2 j2:

Since �; c > 0 this implies r2 �D 0. Then r2.�/ �D 0 as well.

We show for k D 3; 4; : : : by induction thatDk.�/
�D 0 andDk 

�D 0 as well.

Induction step (2; : : : ; k � 1! k � 3): a minimum of � D 	�1.��� 1
2
jr�j2/ is

the same as a maximum of �C 1
2
jr�j2. For j D 0; : : : ; k:

@
j
1@
k�j
2

�
�C 1

2
jr�j2

�

D @j1@k�j
2 �C r�„ƒ‚…

�D0

�r@j1@k�j
2 �C j @1r� � @j�1

1 @
k�j
2 r�

C .k � j /@2r� � @j1@k�j�1
2 r�

C terms with components of D3 ; : : : ;Dk�1 as factor

�D @j1@k�j
2 � � j @j�1

1 @
k�j
2 @1� � .k � j /@j1@k�1�j

2 @2�

D .1 � k/@j1@k�j
2  :

Here we used that @1r� �D .�1; 0/ and @2r� �D .0;�1/ because r2 �D 0. The

induction assumption, Dj 
�D 0 for j D 2; : : : ; k � 1, eliminates the other terms.
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Since Dj .� C 1
2
jr�j2/ �D 0 for j D 1; : : : ; k � 1, a maximum requires that

Dk.� C 1
2
jr�j2/ �� 0 (i.e., is a negative semidefinite tensor), so 0

�� Dk.� C
1
2
jr�j2/ �D .1 � k/Dk , so Dk 

�� 0. Taking k � 2 derivatives of the equation

yields (for r� �D 0)

@
j
1@
k�2�j
2 
 D 0 .j D 0; : : : ; k � 2/:

Lemma 3.1 implies that Dk 
�D 0. The induction step is complete.

Again we have shown that Dk 
�D 0 for all k � 2. Therefore  , which is

analytic, must be linear. �
Remark 3.7. Note that the proof fails for maxima in r�: in that case � in (3.7)

turns into �, which does not yield sufficient information. Indeed, there are coun-

terexamples.

3.3 Velocity Components in the Interior
PROPOSITION 3.8 Let � be an analytic solution of (2.14) in an open connected
domain �, with � > 0 and L < 1 in �. For any Ew 2 R2 � f0g, the velocity
component Ew � r does not have a maximum or a minimum in � unless � is a
constant-state solution in �.

PROOF: Assume that  1 has a minimum in some point. Then r 1 �D 0; using

equation (2.15) yields D2 
�D 0 because L < 1 implies c2 � �22 > 0. Now we

apply Lemma 3.3 to obtain that  must be a constant-state solution.

Any other Ew can be treated by rotating around the origin so that Ew �r becomes

 1 (see Remark 2.1). �

3.4 Velocity Components on the Wall
PROPOSITION 3.9 Consider a point E�0 on a straight line I , let r > 0, U WD
Br.E�0/, � WD I \ U , and UC one of the two connected components of U �
I . Consider a solution  of (2.14) that is analytic in UC and satisfies the slip
condition �n D 0 on � . Assume that L < 1 in E�0.

For any Ew,
r .E�0/ � Ew D inf

U
C
r � Ew

is not possible unless  is a constant-state solution or Ew is normal to � .

PROOF: Assume there is an extremum point on � . We may assume (by rotation

and translation) that � is a piece of the horizontal axis, that the extremum point is

the origin, and that UC is contained in the upper half-plane; then Ew D .w1; w2/

with w1 ¤ 0 (not normal). A tangential derivative of the boundary condition

 2 D 0 implies  12 D 0 on � . A minimum requires

0
�D . Ewr /1 D w1 11 C w2 12 D w1 11 )  11

�D 0:
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Equation (2.15) yields that D2 
�D 0. Now the result is delivered by Lemma 3.3.

�

3.5 Velocity Components at Shocks

PROPOSITION 3.10 Consider disjoint open connected domains � and �h and a
simple analytic curve S 	 �\�h (excluding the endpoints). Consider a constant-
state (linear) potential  h of (2.18) in �h. Let � be an analytic solution of (2.14)

in � [ S . Let the shock relations (2.18) and (2.19) be satisfied on S and assume
the shock is admissible. Assume that � satisfies � > 0 and L < 1 in � [ S .

Let Ew ¤ 0. Assume that Ew � r has a local maximum (with respect to � [ S)

in E� 2 S . Then either S is straight and  is constant-state in �, or

(3.8) Ew �
�
.1 � c�2�2n/Et C �t

�
1

�hn
C c�2�n

�
En
�
D 0

and

(3.9) sgn � D sgnwn ¤ 0
where � is the curvature of S in E� (� > 0 for � locally convex).

PROOF: We use a dot to indicate relations that hold only in the hypothetical

extremum point. By L < 1, � must be downstream and �h is upstream. Without

loss of generality, rotate around E�0 until En �D .0;�1/. In this setting @1
�D @t

and �@2 �D @n, and �1
�D �t D �ht

�D �h1 by (2.21). Use horizontal translation

(Remark 2.1) so that  h1
�D 0 and therefore  1

�D 0; this adds a constant vector to

velocities, while leaving � and L unchanged, so no generality is lost. Let the shock

be parametrized by � 7! .�; s.�// locally; then s1
�D 0.

Take @t t of (2.20):

(3.10)  11 C . 2 �  h2 /s11 �D 0:
Take @t of (2.19):

0 D @t
�
.	�1

�
�� � 1

2
jr�j2

�
r� � �hr�h/ � En

�

D En � @t
�
	�1

�
�� � 1

2
jr�j2

�
r� � �hr�h�

C
�
	�1

�
�� � 1

2
jr�j2

�
r� � �hr�h

�
� .En/t

�D
�
0

�1
�
� @1

�
	�1

�
�� � 1

2
jr�j2

�
r� � �hr�h

�

C
�
	�1

�
�� � 1

2
jr�j2

�
r� � �hr�h

�
�
�
s11
0

�
�D
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�D �c�2.�1 C �1�11 C �2�12/�2 � ��12 C �h�h12 C .��1 � �h�h1/s11
�D �

�
�.1 � c�2�22/ 12 C c�2�1�2 11 C �1

�
1 � �2

�h2

�
s11

�
:(3.11)

Combining these results with the equation and . Ew � r /t D 0, we get the system

(3.12)

2
6666664

w1 w2 0 0

1 0 0 �2 � �h2
c2 � �21 �2�1�2 c2 � �22 0

�c�2�1�2 1 � c�2�22 0
�
	2

	h
2

� 1
�
�1

3
7777775

2
666664
 11

 12

 22

s11

3
777775 D 0:

The determinant of the system matrix is

det D �.c2 � �22/
�
w2
�1

�h2
.�2 � �h2/

C .�2 � �h2/
�
w1.1 � c�2�22/C w2c�2�1�2

��

D � .c2 � �22/„ ƒ‚ …
>0

.�2 � �h2/„ ƒ‚ …
>0

Ew �
"

1 � c�2�22
�1

�
1

	h
2

C c�2�2
�#

(3.13)

The determinant is 0 if and only if the final scalar product is 0. The latter condition

can be written (3.8) if we return to original coordinates.

If the determinant is nonzero, then D2 
�D 0 and s11

�D 0 is the only solution.

If the determinant is 0, but s11
�D 0, still D2 

�D 0. In either case we can invoke

Lemma 3.3 to get that  is a constant-state solution; then (2.20) shows that the

shock is straight.

Now assume the determinant is 0 and s11
�
¤ 0. By row 2 of the system, this

implies  11
�
¤ 0. Then by row 1 and Ew ¤ 0, necessarily w2

�
¤ 0.

By solving rows 1, 2, and 3 of the system for r2 as a function of s11 and then

substituting the result into . Ew � r /2, we obtain

. Ew � r /2 D
.�2 � �h2/

�
.c2 � �22/w21 C 2�1�2w1w2 C .c2 � �21/w22

�
w2.c2 � �22/

s11

D .�2 � �h2/. Ew?/T.c2I � r�2/ Ew?

c2 � �22
� s11
w2
:

All factors in the coefficient of s11=w2 are positive; s11 and w2 ¤ 0 are already

known, so . Ew � r /2
�
¤ 0. A maximum requires . Ew � r /2 �

> 0, so sgn � D
� sgn s11 D � sgnw2 D sgnwn ¤ 0. �
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3.6 Pseudo-Mach Number at Shocks
PROPOSITION 3.11 Consider the setting in the first paragraph of the statement of
Proposition 3.10. (We do not need analyticity here.)

Let ıL� > 0 be such that

(3.14)
�

�h
2 ŒıL�; 1 � ıL�
 on S:

Let b 2 C1.� [ S/. There is a ıLS > 0 (depending continuously and only on
ıL�; �; c

h; �h) with the following property: L2 C b cannot attain a local (with re-
spect to � [ S) maximum in a point on S where L2 2 Œ1 � ıLS ; 1/ and
jrbj � ıLS .

PROOF: We use the same notation and simplifications as explained at the start

of the proof of Proposition 3.10.

From �=�h � 1 � ıL� < 1 we obtain

(3.15)
�22
c2
;
�2

�h2
� 1 � Cs

for some constant Cs D Cs.ıL�; �/ > 0.

(3.16)

@1.L
2 C b/

D @1
� jr�j2

c2

�
C b1

D @1
� jr�j2
c20 C .1 � �/.�C 1

2
jr�j2/

�
C b1

D c�2 �.2C .� � 1/L2/.�1�11 C �2�12/C .� � 1/L2�1�C b1
D c�2 �.2C .� � 1/L2/.�1 11 C �2 12/ � 2�1�C b1

and analogously

(3.17) @2.L
2 C b/ D c�2 �.2C .� � 1/L2/.�1 12 C �2 22/ � 2�2�C b2:

Combining @1.L
2/

�D 0 with (2.15), (3.10), and (3.11), we have a linear system2
6664

�1 �2 0 0

1 0 0 �2 � �h2
c2 � �21 �2�1�2 c2 � �22 0

�	1	2

c2 1 � 	2
2

c2 0 .	2

	h
2

� 1/�1

3
7775
2
664
 11
 12
 22
s11

3
775 �D

2
664
2	1�c2b1

2C.��1/L2

0

0

0

3
775 :

First consider rb D 0 and L D 1, i.e.,

�1 D sgn�1 �
q
c2 � �22:
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Then the inverse of the system matrix has entries polynomial in c, �2, �h2 , and

sgn�1 divided by a common denominator

c2.c2 � �22/3=2
�
.�h2/

2 � �22
�
:

This denominator is bounded below away from 0 by c7ıD where ıD depends con-

tinuously and only on ıL� and � . The rest of the inverse matrix is bounded by some

constant depending only on �h, ch, � , and ıL�.

Solving for D2 and substituting the result yields

@2.L
2 C b/ D 2

�h2 C �2
< 0;

so clearly a maximum of L2 C b is not possible.

For rb ¤ 0 and L < 1 we use that the inverse has been bounded away from 0,

so that small perturbations are possible. Thus, there is a ıLS , depending only on

ıL�, � , �h, and ch, so that no maximum is possible if jrbj � ıLS and L2 �
1 � ıLS . �

Remark 3.12. We could assume L � L < 1, which by itself would imply �=�h �
C.L/ < 1. However, this is not sufficient as ıLS would depend on L, so Proposi-

tion 3.11 would be void. It is necessary to obtain uniform shock strength bounds

separately; only then can L be controlled.

3.7 Density at Shocks
PROPOSITION 3.13 Consider the setting in the first paragraph of Proposition 3.10.
If � has a local extremum with respect to � [ S in E�0, then one of the following
alternatives must hold:

(1) � is a constant-state solution in � [ S , and S is straight.
(2) The shock is pseudonormal in E�0. In a local minimum, S has curvature

� > 0 (as before, � > 0 for � locally strictly convex in that point).

In the latter case, make the stronger assumption that � has a global minimum

with respect to � in E�0. Assume for technical convenience that the shock tangents
differ by no more than an angle < �

2
from the one in E�0. Let S� be the tangent to

S in .�0; s.�0//. Then S� does not meet S anywhere else.

PROOF: We use the same notation and simplifications as explained at the start

of the proof of Proposition 3.10.

A � extremum requires

0
�D @t .�/ �D @1

�
	�1

�
�� � 1

2
jr�j2

��
D � �

c2
.�1 C �1�11 C �2�12/

) �1 11 C �2 12 �D 0:
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We combine this with the now-familiar equations (2.15), (3.10), and (3.11). The

resulting linear system is2
6666664

�1 �2 0 0

1 0 0 �2 � �h2
c2 � �21 �2�1�2 c2 � �22 0

�c�2�1�2 1 � c�2�22 0 .	2

	h
2

� 1/�1

3
7777775

2
666664
 11

 12

 22

s11

3
777775 D 0:

The determinant is

D �.c2 � �22/.�2 � �h2/r� �
2
4 1 � c�2�22
	1

	h
2

C c�2�1�2

3
5

D � .c2 � �22/„ ƒ‚ …
>0

.�2 � �h2/„ ƒ‚ …
>0

�
1C �2

�h2

�
„ ƒ‚ …

>0

��1:

It is nonzero if and only if �1
�
¤ 0. In that case, r2 �D 0 and s11

�D 0. Now

Lemma 3.3 yields that the shock is straight and the solution constant-state. (The

lemma applies because � is a strictly decreasing function of �C 1
2
jr�j2 alone, and

(3.4) is satisfied because �n ¤ 0, hence r� ¤ 0 at any shock).

If �1
�D 0 but s11

�D 0, then the equations imply that r2 �D 0, so the lemma

still applies. This concludes the proof of the first part.

For part two we may assume that all of S is parametrized by s, because the

shock tangents cannot become vertical by assumption. Consider the remaining

case �1
�D 0 and s11

�
¤ 0. �1

�D 0 and s1
�D 0 imply �

�D 0. Here it is sufficient to

argue without the interior. So we may exploit that at the shock downstream, �d is

an increasing function of ´nu (by (2.34) and (2.37) for �u held fixed). Geometrically,

´nu in a point E� on the shock is the distance of Evu to the shock tangent through E�.

A pseudonormal point is actually the closest point on the tangent to Evu (see Figure

3.3). Obviously the tangents through nearby points are closer to Evu if s11
�
> 0

(see Figure 3.1), which contradicts the assumption that � is a local (in fact, global)

minimum. Therefore s11
�� 0; s11

�D 0 has already been excluded, so s11
�
< 0.

Let � 7! s�.�/ parametrize S . Assume that S� meets S somewhere else, e.g.,

that s.�1/ D s�.�1/ for some �1 < �0 (see Figure 3.2). By the mean value theorem

there must be a �2 2 .�1; �0/ so that s1.�2/ D .s.�1/� s.�0//=.�1 � �0/ D s1.�0/.
Clearly we may choose �2 maximal with this property, so that s1.�/ ¤ s1.�0/ for

� 2 .�2; �0/. But s11
�
< 0, so s1.�/ > s1.�0/ for � 2 .�2; �0/. This implies
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Evd

Shock

s11
�
> 0

FIGURE 3.1. Tangent distance argument.

�1 �2 �0

Shock
(graph s)

Conclusion: impossible
Left corner must be below min point tangent

Global �d minimum
) s11 < 0

parallel tangent
) higher �d

Contradiction!

Shock lower,

Evu

FIGURE 3.2. Shock below global density minimum tangent.

 -normal point
= closest point to Evu Shock

Center Evu

Radius cudownstream

upstream

distance � shock strength

FIGURE 3.3. Shock strength: distance of tangent from upstream velocity.

s.�2/ < s�.�0/: the shock tangent through .�2; s.�2// is parallel to the one in E�0,

but lower. That means the shock strength is smaller, so the downstream density is
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EvR D 0

R

EvI

�

I

PL

PR

�

EvI

EvL

E��
L

L

E��
R

S

I

L

PR
R

EvI

S
PL

EvR

�

�

EvI

EvL D 0

FIGURE 4.1. Left: standard coordinates; right: L picture.

lower (by (2.43)). This is a contradiction, because we assumed that � has a global

minimum in E�0.

Therefore s.�/ > s.�0/ for all � < �0 (on S). For � > �0 the arguments are

symmetric. �

4 Construction of the Flow

4.1 Problems
Our solution, as observed in numerics (see Figure 1.4), has the structure in Fig-

ure 4.1. The upstream region, labeled I , is a constant-state hyperbolic region. The

shock has three parts: a straight shock emanating from the tip, with a constant-state

hyperbolic region labeled L below; a curved shock S with a nontrivial elliptic re-

gion below; and a straight shock parallel to the wall, with another constant-state

hyperbolic region (R) below. The L and R regions are separated from the elliptic

region by parabolic arcs PL and PR, respectively, with radius cL and cR, respec-

tively, centered in EvL and EvR, respectively.

Several difficulties complicate the problem: the equation is nonlinear (quasi-

linear, divergence form), with coefficients depending on � and r�. The boundary
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conditions (except on the wall) are fully nonlinear; i.e., they are nonlinear in r� as

well, which makes compactness hard to obtain. Moreover, the boundary conditions

linearize to oblique derivative conditions where the � and �n coefficients have

opposite signs—the most complicated case. The equation and boundary conditions

have singularities: for example, we have to avoid the vacuum (� D 0). The shock

is a free boundary, forming two corners with the arcs.5

Most significantly, the equation is of mixed type: if � andr� are not sufficiently

controlled, points in a supposedly elliptic region could be parabolic or hyperbolic.

While the elliptic region is uniformly elliptic at the shock, it is degenerate elliptic

at the parabolic arcs PL and PR. Moreover, it appears from numerics that r�
is normal on the parabolic arcs, meaning they are characteristic (in the Cauchy-

Kovalevskaya sense), so loss of regularity has to be expected. The linearization

of the degenerate problem is useless in this case; e.g., although we expect finite

gradients (= velocities) in the nonlinear problem (and observe them in numerics),

it can be checked for simple examples that the linear equation has solutions with

gradient that is infinite at parabolic arcs.

For many of these obstacles there are theoretical tools in the literature; many

have been addressed in other contexts. However, the nonlinear characteristic de-

generacy seems unprecedented. There is little theory on degenerate elliptic equa-

tions; most of it can be found in [27]. A large part of the theory was motivated

by the linear Tricomi equation, which arises from steady potential flow via the

hodograph transform (see [15, sec. 4.4.3.a]). The hodograph transform applies

to quasi-linear equations whose nondivergence form coefficients depend only on

the gradient of the solution; the original equation is converted into a linear equa-

tion. Unfortunately, the coefficients of self-similar potential flow also depend on

the solution itself. It is not clear whether a modified hodograph transform can be

developed for self-similar potential flow.

Nonlinear degenerate elliptic equations, other than steady potential flow, have

not been explored much, apart from steady potential flow, which can often be re-

duced to a linear equation. The combination of nonlinearity and degeneracy is par-

ticularly difficult: the solution can be characteristic degenerate, noncharacteristic

degenerate, elliptic, or hyperbolic in each point of the arcs; each case is qualita-

tively very different. Precise bounds on the solution have to be established before

we even know which case occurs in which point.

4.2 Approach
In this paper we construct a weak solution, so only �-continuity and conserva-

tion are shown across the parabolic arcs. Most of the effort is concerned with the

elliptic region.

5 The wall-arc corners can be removed by reflection across the wall.
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Symmetries
Due to Remark 2.1, we can change our coordinate system in several ways.

Starting in original coordinates (see Figure 1.4), we translate E�  E� � EvR and

Ev  Ev� EvR, then rotate so that the right shock is horizontal (and in the upper half-

plane); see Figure 4.1. Now EvR D 0, EvL D .vxL; 0/ with vxL � 0, and EvI D .0; vyI /
with v

y
I < 0. Moreover,  is constant in the R region, and PR is centered in the

origin, which will be rather convenient. We use this as the standard picture, as it is

the most convenient for discussing the elliptic region, which consumes most of our

efforts.

For another choice, which we will call the “L picture”, we start in original

coordinates, translate E�  E��EvL and Ev  Ev�EvL, then rotate so that the left shock

is horizontal (and in the upper half-plane), then reflect everything across the vertical

coordinate axis; see Figure 4.1. In this picture EvL D 0 whereas EvR D .vxR; 0/ with

vxR � 0, and EvI D .0; v
y
I / with v

y
I < 0 (which need not have the same value as

before). Now  is constant in the L region, and PL is centered in the origin.

Extremum Principles
As for most nonlinear elliptic problems, maximum principles are the key tech-

nique. In Section 3 we have developed many that apply to self-similar potential

flow in general. Their interior versions are comparable to the classical strong max-

imum principle [17, theorem 3.5] or to maximum principles for gradients of special

quasi-linear equations [17, sec. 15.1]. In addition, we have several extremum prin-

ciples at the shock (Propositions 3.10, 3.11, and 3.13) ruling out local (with respect

to the domain) extrema of certain variables at the shock.

The general proof technique for extremum principles is to combine the equation

with the first- and second-order conditions for an extremum to obtain a contradic-

tion. At the shock we also include the boundary conditions. In many cases it is nec-

essary to include first and higher derivatives of equation and boundary conditions

as well as higher-order extremum conditions. In some borderline cases (notably

density and velocity) it is necessary to consider all derivatives and to assume that

the solution is analytic (see the proofs of Propositions 3.5, 3.8, 3.10, and 3.13).

Regularization and Ellipticity
As we have mentioned, our elliptic region is nonlinear and characteristic de-

generate; there are very few results for such problems. The type of our PDE is

governed by the pseudo-Mach number L. We avoid the degeneracy by regular-
ization: we consider slightly different elliptic regions, with L D p1 � � on the

parabolic arcs rather than L D 1 (see Figure 4.2). We need L uniformly bounded

above away from 1 so that our regularized problems are uniformly elliptic and

standard theory can be applied.

A basic problem of our constructive approach is that it is infeasible if the flow

pattern has a complicated structure. For example, if the elliptic region could, upon
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FIGURE 4.2. The solution in the elliptic region and its delimiting shock

S are unknown. The parabolic arcs (solid) are modified to quasi-

parabolic arcs (dashed) with boundary condition L D p1 � �, which

is slightly elliptic.

perturbation, develop a (potentially infinite) number of parabolic and hyperbolic

bubbles in its interior, only abstract functional-analytic methods have a chance to

succeed. Fortunately, we have shown in [12] that the pseudo-Mach number L

cannot have maxima in the interior of an elliptic region or at a straight wall. On

the arcs we have imposed the value of L. It remains to control L at the shock. This

result (Proposition 3.11) is less general: we can rule outLmaxima close to 1 at the

shock if the shock has uniform strength. This condition needs to be verified with

separate methods (see below).

All combined, we can be sure that our elliptic region stays uniformly elliptic

under perturbation. We obtain, after many additional steps described below, one

solution �.�/ for each sufficiently small � > 0. To obtain a solution of the original

degenerate problem, it is necessary to obtain estimates that are uniform in � # 0.

As discussed in [12], the maximum principle for L can be strengthened to a

maximum principle for L C b where b is a small, smooth positive function that

is 0 on the arcs. As a consequence, L is uniformly in � # 0 bounded above away

from 1, in subsets of the elliptic region that have positive distance from the arcs.

We obtain uniform regularity in all C k;˛ norms (in fact, analyticity) in each such

subset. Hence we have compactness in each subset, so we can find a converging

subsequence. By a diagonalization argument we have a subsequence that converges

everywhere away from the arcs, in any norm (see Section 4.16).

Another of the many benefits of the ellipticity principle: L � 1� � � 1 implies

a uniform bound on the gradient jr�j (see (4.46) and the following paragraph),

which is a basic ingredient of all higher regularity estimates for nonlinear elliptic

equations (see the discussion in [17, sec. 11.3]). Moreover, it shows that �.�/ is
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uniformly Lipschitz, so �.0/ is Lipschitz as well, including the arcs. This is not

quite sufficient for the boundary condition L D 1 to be well-defined, but we only

seek a weak solution.

Iteration

For any nonlinear elliptic problem, there are several ways of turning a priori

estimates into an existence proof (cf. [17, chap. 11, sec. 17.2]). The method of
continuity is straightforward: verify that the linearizations of the problem are iso-

morphisms between suitable spaces, apply the inverse function theorem to obtain

small perturbations, then use the a priori estimates to show that we can repeat small

perturbations indefinitely.

A major drawback is that the linearizations are entirely determined by the non-

linear problem. In comparison, fixed-point iteration methods are more flexible:

there is a large variety of maps whose fixed points solve the nonlinear problem.

In our case this flexibility is vital: the Fréchet derivative of L2 D 1 � � is an

oblique derivative condition where ı� and ı�n (ı� being the variation of �) have

opposite sign. In this case, maximum principles fail, but they are needed to verify

uniqueness (the other option, energy methods, seems impractical for our compli-

cated problem).

Another (nonfatal) drawback is that linearizations of a free-boundary problem

involve a complicated coordinate transform. Iteration methods can alternate solv-

ing a fixed-boundary problem with adjusting the free boundary (see, e.g., [3, 4]),

which is easier.

Fixed-point methods can be subdivided into applications of the Schauder fixed-

point theorem (or its generalizations), and of Leray-Schauder degree theory (see

[9, 29, 30]). The Schauder fixed-point theorem requires showing that the iteration

maps a closed ball (or homeomorphic image thereof) into itself. This corresponds

to certain estimates for all elements of the ball, most of which are not fixed points

(only approximately perhaps). These new estimates are particular to the chosen

iteration, which is unattractive and perhaps difficult.6 Moreover, every time de-

tails of the iteration are changed, all the a priori estimates have to be checked and

changed; this takes an excessive amount of time for complicated problems like the

present one.

In addition, while many function sets in nonlinear elliptic problems are defined

by a single constraint kukC2;˛ � M < 1, so that the set is obviously a closed

ball, our function set F is defined by more than 20 different constraints (see Defini-

tion 4.4). For many choices F has nontrivial topology; it is rather difficult to check

whether an intersection of many sets is homeomorphic to a ball (unless convexity

can be used).

6 However, in [4] the authors have successfully applied the Schauder fixed-point theorem to solve

a steady potential flow problem.
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Ultimately, the Schauder fixed-point theorem is a means of showing that a par-

ticular iteration has nonzero Leray-Schauder degree. However, there are other ways

of computing a degree that turn out to be simpler in our case (see Section 4.14).

The iteration has two steps. The first step solves a fixed-boundary elliptic prob-

lem for a function O�; in this step we use a modification of the second shock condi-

tion (2.19); the data of this problem depends on � (argument of the iteration map).

In the second step the shock is adjusted (and O� mapped to a new domain) to satisfy

the first shock condition (2.18).

As mentioned, we have some flexibility in choosing the first-step elliptic prob-

lem. An obvious constraint is that fixed points of the iteration, � D O�, must solve

the original problem. This is satisfied by replacing every occurrence of � in the

original equation and boundary conditions either by � (old iterate) or by O� (new

iterate after step 1).

For the arc boundary condition (4.48), we choose

1

2
jr O�j2 C .1 � �/�.� � 1/� � c20�

2C .� � 1/.1 � �/ D 0

for the iteration, where � is the old and O� the new solution. Linearization with

respect to O� no longer has a zeroth-order term! Hence the opposite-sign problem

does not apply, and we can apply the Hopf lemma to show that the linearizations

of the nonlinear elliptic problems arising in the iteration are isomorphisms. We

use the same technique for the interior equation, but keep O� in the � function in

the shock condition (2.19): we need at least one occurrence of O� to be able to

use maximum principles to achieve uniqueness in various contexts. Obviously if

O� does not appear anywhere in the elliptic problem defining the iteration, then the

next iterate is not uniquely determined: any constant can be added.

To apply Leray-Schauder degree theory, we argue that we are solving a con-

tinuum of problems, the simplest one being the “unperturbed” problem (see Fig-

ure 4.9) with � D 1. This problem is simple enough to verify that its Leray-

Schauder degree is ˙1, in particular nonzero (see Section 4.14). All other prob-

lems have the same degree due to the combined a priori estimates (no fixed points

on the boundary of the iteration domain) and continuity.

The opposite-sign difficulty resurfaces in two aspects: first, to prove degree¤ 0
we have to show uniqueness of the unperturbed problem (see Proposition 4.27).

For � > 1 this seems difficult, but for � D 1 the � coefficient is 0 (see above).

Moreover, it is necessary to show that the linearization of the iteration does not

have eigenvalue 1. Again � > 1 has unpleasant boundary conditions, but � D 1 is

amenable. Thus solving the isothermal and isentropic problems in a single paper

is a necessity rather than a choice.

Unfortunately, it is necessary to show that the iteration is compact, which re-

quires somewhat stronger regularity estimates than the method of continuity. In

fact, Gilbarg and Trudinger state [17, p. 482]: “Even for the quasilinear [equation]
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case [with fully nonlinear boundary conditions], the fixed point methods . . . are not

appropriate, since it is not in general possible to construct a compact operator.”

Recent results, many of which are due to Gary Lieberman, have alleviated this

problem, at least for our case. Some unpleasant choices are necessary, however:

by replacing the occurrences of r� by a clever balance of r� and r O�, we could

obtain a linear elliptic problem as part the iteration. But if r� occurs in any of the

boundary conditions, then the new solution O� cannot be expected to be smoother

than � at the boundary. While we may use � and r� in the interior coefficients,

we must use r O� for the boundary conditions, which stay nonlinear.

Now our general approach has a hierarchy of three elliptic problems: the origi-

nal nonlinear problem, a modified nonlinear problem as part of the iteration, and its

linearization. It appears that we have to start all over showing a priori estimates for

the modified nonlinear problem. A trick avoids this:7 if the linearizations evaluated

at � D O� are isomorphisms, then the nonlinear problems are local isomorphisms.

Thus we restrict the set of � so that the next iterate O� D K.�/ is close to �. Exis-

tence and uniqueness of O� as well as its continuous dependence on � then follow

by linearization around �; large perturbations are not necessary.

Boundary of the Function Set
Both method of continuity and degree theory have a common feature: the bulk

of the effort goes in showing that the problem does not have solutions on the bound-

ary of the function set. For function sets defined by inequality constraints, we have

to show that for a solution of the original problem (a fixed point of the iteration),

each inequality is in fact a strict (< or >) inequality. In this step we are allowed to

use the nonstrict (� or �) forms: we are moving from one well-behaved (smooth,

elliptic, no vacuum, . . . ) solution to another without having to show any results for

arbitrary weak solutions with no prior information. In particular, we do not have to

verify the strict inequalities in any particular order.

Parabolic Arcs and Corners
The core of the solution—and its most difficult part—is the treatment of the

parabolic arcs: to obtain a weak solution in the limit, we have to verify the shock

conditions are satisfied across the arcs. To this end we show that �.�/ and r�.�/
are almost (up to O.�1=2/ jumps) continuous across the arcs; in the � # 0 limit

continuity and mass conservation for �.0/ are implied.

� and r� continuity corresponds to two boundary conditions,

lim
hyperbolic

� D lim
elliptic

�; lim
hyperbolic

�n D lim
elliptic

�n

7 Another, less elegant trick is to use the a priori estimates of the original problem to cut off the

coefficients of the second problem so that they grow linearly and avoid all singularities like vacuum

or parabolicity. The cutoff terms and their derivatives would make the linearization unnecessarily

complicated.



1388 V. ELLING AND T.-P. LIU

(continuity for �t is implied by continuity for �). However, with two boundary

conditions the problem is overdetermined, at least in the regularized case. Hence

we can impose only one boundary condition. A trick is needed to verify the second

condition—approximately for the regularized solutions and exactly (albeit weakly)

in the degenerate limit.

In each point on the arcs, there are three components of r2�, but only two

relations constraining them—equation (2.14) and the tangential derivative of the

boundary condition,L2 D 1�� (see (4.49)). Our key observation is thatL2 < 1��
inside the elliptic region (as we have already shown previously), whereasL2 D 1�
� on the arcs: L has a global maximum in each arc point. Therefore .L2/n � 0 on

the arcs, which provides an additional inequality. Thus we obtain “21
2

” relations;

solving them yields one explicit inequality for each second derivative, with the

right-hand side depending only on � and r�. Only the twice tangential derivative

matters (see (4.53)).

In the shock-arc corners � is C1 (Proposition 4.13, using Appendix A), so we

may combine the boundary conditions (one on P , two on the shock, but with un-

known shock tangent) to represent � and r� as functions of the corner location. If

we assume that the corners have precisely the “expected” location, then we know

the corner values of � and r�; in particular �t D 0, where @t is the counterclock-

wise tangential derivative along P , c D cL in the upper left corner, and c D cR
in the upper right corner. However, our analysis is greatly complicated by having

free corners. In the other endpoint of each arc the wall boundary condition �� D 0
fixes �t D 0. Then the ordinary differential inequalities mentioned above yield

tight bounds for � and r� on the arcs: they have the desired values, up to O.�/.

This fortunate circumstance is the key to our solution.8

We first discuss isothermal flow, which is comparatively simple. In this case

the inequality for �t on PR has the form

(4.1) �t t � f .�t / D �� CO.�2t /
(see (4.66)), with the O-term constant independently of �. In the wall-arc corner

�t D 0, so integration to the arc-shock corner yields

(4.2) �t � �O.�/
along the entire arc.

In Section 4.9 we compute the values of �, r�, and dependent quantities in the

right shock-arc corner as the corner location varies along the arc. Formula (4.78)

shows that �t decreases uniformly as the corner moves down from its expected

location. This contradicts �t � �O.�/; the second-derivative inequalities already

imply a lower bound for each corner (see Proposition 4.17) to within O.�1=2/ of

their expected location.

8 It is worth noting that if, for whatever reason, we had .L2/n � a for some bounded (smooth)

function a, the trick would still work. The tightness does not stem from a D 0 (in fact, 0 is far from

optimal), but rather from the characteristic degeneracy.
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However, an entirely different argument (see Proposition 4.22) is needed to

bound the right shock-arc corner above:  must attain a global minimum in the

domain. It can never attain a local minimum in the interior, on the wall, or on the

left arc. For isothermal flow we have  n � 0 on the right arc, so the Hopf lemma

excludes a minimum there as well. Hence there has to be a global minimum on

the shock or in the right shock-arc corner. Essential observation: if that corner is

above its expected location, then  2 > 0 in it, as well as in any hypothetical global

minimum on the shock, so we obtain a contradiction.

Having obtained upper and lower bounds on the corner, we know that �t D
O.�1=2/ in it. Integrating (4.1) again, but in the opposite direction, we obtain

(4.3) �t � �O.�1=2/:
Combined with (4.2) we have �t D O.�1=2/ on the arcs. By integration we also

control �; the boundary condition jr�j2 D c2 yields control over �n.

The arguments for the left arc are analogous, with a few modifications.

For isentropic flow the arguments are similar, but much more complicated, be-

cause the sound speed c can vary. Instead of considering a single-variable ordinary

differential inequality, we have to combine it with an ODE for c (see (4.53)). To

make the system more tractable, it is linearized ((4.56) and (4.57)) and restated in

polar variables ((4.58) and (4.59)). A delicate analysis (see the proofs of Proposi-

tions 4.16 and 4.17) again establishes a lower bound for the right shock-arc corner,

as well as a lower bound for �t . For an upper bound on the corner we adapt the

isothermal argument, considering minima of  C a� instead of  for some small

a > 0. This is necessary because for isentropic flow  n � �O.�1=2/ rather than

� 0 on the right arc. More delicate analysis (see the proof of Proposition 4.22 and

its references) shows that a can be chosen so large that . C a�/n � 0, but so

small that still . Ca�/� > 0 in the right shock-arc corner and in any hypothetical

minimum point on the shock. Having bounded the corner above, an upper bound

for �t on the arc is obtained as well.

An entirely different approach to parabolic arcs can be found in [2].

Shock Control
It is clear that we have to expect degeneracy at the parabolic arcs. However,

there can be degeneracy on the elliptic side of a hyperbolic-elliptic shock, too,

which we have to rule out. Moreover, we need some control over the shock location

and shape.

To prove that the shock has uniform strength, we show that the density on the

elliptic side is uniformly bounded below away from �I . Proposition 3.5 rules out

density minima in the interior of the elliptic region or at the wall (Remark 2.1).

The analysis described above controls the density on the arc up to O.�1=2/ (see

(4.60)). Finally, Proposition 3.13 shows that density cannot have local minima at

the shock except in a pseudonormal point. The shock curvature must be positive

(elliptic region locally convex) in such a point. Moreover, if we have a global
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minimum in this point, then the rest of the shock, including the shock-arc corners,

must be below the shock tangent in that point; otherwise there would be another

shock tangent parallel to this one, but lower, meaning lower density, which is a

contradiction (see Proposition 4.23 and Figure 4.8 for a detailed argument).

Hence we can have density minima at the shock, but only in pseudonormal

points and above the line connecting the shock-arc corners. In such a point, the

density is > �I if and only if the connecting line does not meet the circle with

center EvI and radius cI . (Otherwise the shock vanishes or violates entropy.) This

is precisely (1.1). Unfortunately, the cases where (1.1) is violated are not covered

in the present paper.

Having established uniform shock strength, Proposition 3.11 shows that L can-

not have local maxima (with respect to the domain) close to 1 at the shock. This

is a necessary ingredient for L control in the elliptic region; the ellipticity must be

uniform at the shock (away from the corners). Hence the shock is analytic except

perhaps in the corners.

To control the shock tangents, � and L arguments are not sufficient. It is neces-

sary to control some components of the velocity vector. More precisely, we control

the horizontal (in standard coordinates) velocity vx , as well as horizontal veloc-

ity in the L picture, which is vx C ˛vy in the standard picture, for some ˛ > 0.

We show that vx cannot have maxima in the interior (Proposition 3.8), at the wall

(Proposition 3.9), or at the shock (Proposition 3.10). In the latter case, as for den-

sity, there are exceptional cases (see (3.8)) where the shock curvature (see (3.9)) is

needed to rule out maxima. On the arcs we control velocity (like everything else)

up to O.�1=2/ (see (4.61)).

All combined, we have that vx must be between vxL < 0 and vxR D 0, up to

O.�1=2/, and an analogous result in L-coordinates (see (4.33) and (4.34)). This

yields a slew of additional information (Proposition 4.24): bounds on the shock

normals (4.35), the distance of shock to wall (4.12), the shock-arc corner angles

(4.14), and the vertical velocity (4.18).

Note that the vertical velocity can have minima at the shock, as can be observed

in numerics (bottom of Figure 1.5). Other velocity directions can have extrema as

well; we would be able to cover all cases of the theorem, even those violating (1.1),

if we had perfect velocity control.

As a convenient side effect we have ruled out vacuum or negative densities,

which is another type of singularity affecting self-similar potential flow.

4.3 Parameter Set
We consider � 2 Œ1;1/, �I 2 .0;1/, and cI 2 .0;1/. In addition, we use

M
y
I 2 .�1; 0/, which defines EvI D .0;M

y
I cI / (in standard coordinates; see

Figure 4.1). M
y
I is the upstream Mach number normal to the downstream wall. �I
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and EvI define a potential  I for the I region:

 I .E�/ D �	.�I / � jEvI j
2

2
C EvI � E�:

Given upstream data Evu D EvI and �u D �I , Proposition 2.12 defines a hori-

zontal shock (R shock) with EvR WD Evd D 0. Let ��
R be its height; we choose ��

R

as a parameter that determines EvI rather than vice versa, so that we may regard ��
R

defined as independent of � (of course, EvI and M
y
I now depend on � ).

Let � 2 .0; �
 (for some suitable small � > 0, which will be fixed later). Of the

two Ld D
p
1 � � points for this shock, as defined by Proposition 2.11, let E��

R be

the one farther from the origin (see Figure 4.1). Set EnR D .0;�1/.
Starting in theR shock, Proposition 2.12 yields a family of shocks with v

y

d
D 0.

Each has two Ld D
p
1 � � points; let E��

L be the one closer to the origin. We

focus on choices ��
L 2 .0; ��

R
. We call this shock the L shock. Let EnL be the

corresponding downstream normal. E��
L and E��

R will be called the expected corner

locations (although they are most likely not the true locations except for � D 0).

Let cC , �C , and EvC be the downstream data of the C shock (C 2 fL;Rg). Note

that v
y
L D 0, but vxL < 0 for ��

L < �
�
R.

Define E�BR WD .cR; 0/ and E�BL D .vxL � cL; 0/. Let A D .�BL; �BR/ � f0g;
we will call A the wall (it is only the elliptic portion of the wall). Let P �

R be a

circular arc centered in EvR passing counterclockwise from E�BR to E��
R; let P �

L be

the arc centered in EvL passing counterclockwise from E��
L to E�BL, both excluding

the endpoints. PC has radius
p
1 � � � cC (for C D L;R).

There is a ınt > 0 so that, for any unit vector EtS from En?
R to En?

L (counterclock-

wise) and any unit tangent EtP of P �
L or P �

R,

(4.4) jEtS � EtP j � ınt > 0:
We choose extended arcs OPL;R that overshoot E��

L;R by an angle ı OP > 0, which we

choose continuous in � and ��
L so that

(4.5) jEtS � EtP j � ınt

2

for the same EtS , but unit tangents EtP of the extended arcs OPL;R; i.e., the possi-

ble shock tangents (restricted in (4.35) below) and arc tangents are uniformly not

collinear.

P �
L;R, OPL;R, and later PL;R are called quasi-parabolic arcs (or parabolic arcs,

by abuse of terminology, or short arcs). (Of course, these arcs are circular; “par-

abolic” refers to the expected type of the PDE at these arcs.) We use P
�.�/
L;R and

OP .�/L;R to identify the arcs for a particular choice of �.
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��
L

��

L

�x
L

��
L .�; ��

L/ D .1; ��
R/: unperturbed

��
R

1 �

0

FIGURE 4.3. ��
L below �xL violate (1.1). For � > 1 some distance from

��
R is needed for technical reasons. The Leray-Schauder degree argu-

ment uses parameters in the dark shaded set ƒ, which is path-connected

for small � > 0.

Definitions 4.1, 4.5, and 4.4 use many constants and other objects that will be

fixed later on. In all of these cases, an upper (or lower) bound for each constant is

found. Whenever we say “for sufficiently small constants,” for example, we mean

that bounds for them are adjusted. To rule out circularity, it is necessary to specify

which bounds may depend on the values of which other bounds. In the following

list, bounds on a constant may only depend on bounds of other constants before
them.

(4.6)
ı OP ; CL; C�; ıSA; ıCc ; ıP
 ; ıPn; ıd ; ı�; ıLb; CP t ; Cvx; CvL; CSn; ıvy ;
ıo; Cd ; �; CC ; rI ; ˛; ˇ:

The constants CC , rI , ˛, and ˇ may depend on � itself, not just on an upper bound;

rI may also depend on  . The reader may convince himself that the following

discussion respects this order.

The parameters � and ��
L used in Leray-Schauder degree arguments will be re-

stricted to compact sets below so that any constant that can be chosen continuous in

them might as well be taken independent of them. Dependence on other parameters

like �I will not be pointed out explicitly.

Constants ı‹ as well as ˛, ˇ � 1, rI , and � are meant to be small and positive;

constants C‹ are meant to be large and finite.

DEFINITION 4.1 For the purposes of degree theory we define a restricted parameter

set (see Figure 4.3)

ƒ WD f� D .�; ��
L/ W � 2 Œ1; �
; ��

L 2 Œ��
L
.�/; ��

L.�/
g
with

� 2 Œ1;1/; 0 < ��
L
.�/ < ��

L.�/ � ��
R;

where

(4.7) ��
L.�/ D

(
��
R; � D 1;
��
R � C��1=2; � > 1;
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where C� (to be determined in Proposition 4.22) may depend on � but not on �.

Moreover, we restrict ��
L
.�/ so that (1.1) is satisfied.

LEMMA 4.2 For sufficiently small �, with bound depending on C�, there is an
�xL.�/ 2 Œ0; ��

L.�//, continuous in � , so that (1.1) is satisfied for all ��
L 2 .�xL.�/;

��
R
, but never for ��

L 2 .0; �xL.�/
.
PROOF: Equation (1.1) is satisfied for ��

L D ��
R (see Figure 1.6), by Propo-

sition 2.11: in this case L shock and R shock coincide, and the R shock never

intersects the circle with center Evu D EvI and radius cu D cI .

Clearly the distance to that circle is strictly decreasing as ��
L decreases. By

continuity there must be an �xL, depending continuously on � , so that for ��
L D �xL

the L shock touches the circle. For all smaller ��
L > 0 the circle is intersected,

because ��
L; �

�
R > 0 does not allow the L shock to pass below the circle.

Since the L shock tangent and location depends continuously on � , �xL must

also be continuous in it. �

LEMMA 4.3 For sufficiently small �, with bound depending on C�, for all ��
L
.�/

(continuous in �) that satisfy

(4.8) �xL.�/ < �
�
L
.�/ < ��

L.�/;

ƒ is path-connected and contains the point .�; ��
L/ D .1; ��

R/.

PROOF: The curve � 7! ��
R � C��1=2 is continuous and contained in ƒ. It

intersects every line f�g� Œ��
L
; ��
L
, including the one for � D 1, which is .��

L
; ��
R
.

ƒ is the union of all these lines, so the proof is complete. �

4.4 Function Set and Iteration
DEFINITION 4.4 LetU 	 Rn be open, nonempty, and bounded with @U uniformly

Lipschitz. Let F 	 @U . For k 2 N0, ˛ 2 Œ0; 1
, and ˇ 2 .�1; k C ˛
, we define

the weighted Hölder space Ck;˛
ˇ
.U; F / as the set of u 2 Ck;˛.U � F / so that

kukCk;˛
ˇ
.U;F /

WD sup
r>0

rkC˛�ˇkukCk;˛.U�Br .F //

is finite.

DEFINITION 4.5 For sufficiently small ı OP > 0, there is a function b 2 C2.R2/
with b; jrbj � 1 so that b D 0 on OP .0/L and OP .0/R , b > 0 elsewhere, b even in �.

From now on we fix a particular b.

PROOF: The construction is straightforward. ı OP is taken so small that OP .0/L and

OP .0/R are well separated. That is possible because �
�.0/
L < �

�.0/
R . �
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 level sets

OPL

�

E�R

OPR

R

�

L

E�L

FIGURE 4.4. Onion coordinates. .�; �/ plane shown; solid curves are �

level sets.

Onion Coordinates
To define a function subset in a fixed Banach space, we need to map the domain

with its free shock boundary to a fixed square. Define a C1 change to coordinates

.�; �/ 2 R2 (see Figure 4.4) so that:


 � is preserved and � D �.�; �/, a C1 function with a C1 function � D
�.�; �/ inverting it.


 OP .�/L maps to a subset of f� D 0g.

 OP .�/R maps to a subset of f� D 1g.

 E�.�/BL maps to .0; 0/.


 E�.�/BR maps to .1; 0/.


 A.�/ maps to f� 2 .0; 1/; � D 0g precisely.


 Let T 	 S1 be the set of unit tangents of OP .�/L and OP .�/R . For some constant

ıP
 > 0 depending only and continuously on � 2 ƒ, require that for every

unit tangent Et of a � level set,

(4.9) d.Et ; T / � ıP
 :
We require that the change of coordinates depends continuously (in C1) on � 2 ƒ.

The construction is straightforward.

Here and in what follows, we will use the weighted Hölder spaces C2;˛
ˇ
.U /, as

in Definition 4.4. The domainU is either Œ0; 1
2 withF D f.0; 1/; .1; 1/g or�with

F D fE�L; E�Rg (to be defined). For the shock we use U D Œ0; 1
 with F D f0; 1g,
or U D Œ�L; �R
 with F D f�L; �Rg; for the arcs only the upper endpoints are

in F and for the wall A we have F D ¿. We omit F , as it will be clear from
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the context. C
2;˛
ˇ

are Banach spaces so that standard functional analysis applies.

Moreover, C
2;˛
ˇ
.�/ is continuously embedded inC 1.�/, so we haveC 1 regularity

in the corners as well, which is crucial. The values for ˇ 2 .1; 2/ and ˛ 2 .0; ˇ�1

will be determined later.

Free Boundary Fit

Let us define F be the set of functions  2 C2;˛
ˇ
.Œ0; 1
2/ that satisfy all of the

many conditions explained below. Require

(4.10) k kC2;˛
ˇ
.Œ0;1�2/

� CC.�/:

For all � 2 Œ0; 1
 define

(4.11) s.�/ WD  .�; 1/ �  I .0; 0/
v
y
I

I

it satisfies  .�; 1/ D  I .�.�; �/; �/ with � D s.�/. We define another coordinate

transform by first mapping .�; �/ 2 Œ0; 1
 to .�; �/ with � D �s.�/, and then

mapping to E� with the previous coordinate transform.

Let E�L and E�R be the E�-coordinates for the .�; �/–plane points .0; 1/ and .1; 1/.

Let S be the E�-plane curve for .0; 1/ � f1g. Define PL and PR to be the images of

f0g�.0; 1/ and f1g�.0; 1/, respectively. Finally, let� be the image of .0; 1/�.0; 1/.
We require shock-wall separation:

(4.12) max

2Œ0;1�

s.�/ � ıSA > 0

and that

(4.13) � D �.�; �/ is strictly increasing in � for � D 1.

For corners close to the target, we require

(4.14) j�L � ��
Lj; j�R � ��

Rj � �1=2;
and we require � to be so small that E�C 2 OPC (C D L;R); i.e., E�C may not be

higher than the upper endpoint of OPC . For later use we define �L̇;R WD ��
L;R˙�1=2

and let �L̇;R be so that E�L̇;R 2 OPL;R.

For corner cones, we require

(4.15) sup
E�;E�02�

].E� � E�C ; E� 0 � E�C / � 	 � ıCc .C 2 fL;Rg/:

(As discussed in the introduction, ].Ex; Ey/ is the counterclockwise angle from Ex
to Ey.)
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Inequality (4.12) ensures that the map from .�; �/ to E� is a well-defined change

of coordinates, uniformly nondegenerate (depending on ıSA and CC), with regu-

larity that is either C2;˛
ˇ
.Œ0; 1
2/ or C2;˛

ˇ
.�/. Since the step from .�; �/ to .�; �/

uses  , the entire coordinate change is as smooth as  . If we prove higher regu-

larity for  either in .�; �/– or .�; �/–coordinates, we immediately obtain the same

higher regularity for the coordinate transform and in the respective other coordi-

nates.

It is clear now that @� is the union of the disjoint sets S , PL, PR, A, fE�Rg,
fE�Lg, fE�BLg, and fE�BRg. By (4.12), � is a simply connected set.

Equality (4.13) ensures that s can be defined as a function of �, which is the

way we use it from now on.

Iteration
For shock strength/density, we require that

(4.16) �� � 1
2
jr�j2 > 0;

so that � is well-defined, and that

(4.17) min
�

� � �I C ı�:

The vertical velocity is

(4.18)  � � vyI C ıvy in �.

For the pseudo-Mach number bound, we require

(4.19) L2 � 1 � ıLb � b in �.

(Note that L is well-defined because by (4.17) � > 0, so c > 0.) b D 0 on OP .0/L

and OP .0/R , which have distance � �
3

(for sufficiently small �) from �, so (4.19)

implies

(4.20) L2 � 1 � 1
3
jrbjL1ıLb � � � 1 � 1

3
ıLb� in �.

We also require that there be a function O 2 C2;˛
ˇ
.�/ with the following prop-

erties:

(1)  close to O :

(4.21) k � O kC2;˛
ˇ
.Œ0;1�2/

� rI . /

where rI 2 C.F I .0;1// is a continuous function to be determined later. Here and

later we regard O as defined on Œ0; 1
2 instead of � via the coordinate transform

from E� to .�; �/ defined by  (see above).
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(2) We require rI to be so small that

� O� � 1
2
jr O�j2 > 0;(4.22)

r O ¤ EvI ;(4.23)

so that in particular O� is well-defined and positive.

(3) Moreover, we require rI to be so small that

(4.24)

�
c20 C .1 � �/

�
�C 1

2
jr O�j2

��
I � r O�2 > 0I

i.e., the left-hand side is a (symmetric) positive definite matrix.

(4) Let L D L. ; O / be defined as���
c20 C .1 � �/

�
�C 1

2
jr O�j2

��
I � r O�2

�
W r2 O ;(4.25)

jr O�j2
2
C .1 � �/�.� � 1/�C c20�

2C .1 � �/.� � 1/ ;(4.26)

� O�r O� � �Ir�I � � EvI � r O jEvI � r O j
;(4.27)

O �
�
:(4.28)

(4.27) is well-defined by (4.22) and (4.23). The other components have no singu-

larities.

r 2 C1;˛
ˇ�1, so jr�j2 2 C1;˛

ˇ�1, so��
c20 C .1 � �/

�
�C 1

2
jr O�j2

��
I � r O�2

�
2 C1;˛

ˇ�1 ,! C0;ˇ�1 ,! C0;˛

(note ˛ � ˇ � 1 as required above), and r2 2 C0;˛
ˇ�2, so (4.25) is 2 C0;˛

ˇ�2. In the

same way we check that (4.26), (4.27), and (4.28) are C1;˛
ˇ�1.

Hence we may take the codomain of L to be the Banach space

Y WD C0;˛
ˇ�2.�/ � C1;˛

ˇ�1.S/ � C1;˛
ˇ�1.PL/ � C1;˛

ˇ�1.PR/ � C1;˛
ˇ�1.A/:

Alternatively, if we consider the pullback to .�; �/–coordinates, as defined by  

above, we may consider

C0;˛
ˇ�2.Œ0; 1


2/ � C1;˛
ˇ�1Œ0; 1
 � C1;˛

ˇ�1Œ0; 1
 � C1;˛
ˇ�1Œ0; 1
 � C1;˛

ˇ�1Œ0; 1
:

In the same way we can discuss O either in C2;˛
ˇ
.�/ or in C2;˛

ˇ
.Œ0; 1
2/.

With these topologies, clearly L is a smooth function of  and O .

Most importantly, we require

(4.29) L. ; O / D 0:
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Other Bounds
We require

(4.30) k kC0;1.�/ � CL
where CL may not depend on �.

�t and �n on the parabolic arcs satisfy

max
PL[PR

c�1
ˇ̌̌
ˇ@�@t

ˇ̌̌
ˇ � CP t�1=2;(4.31)

max
PL[PR

c�1 @�
@n
� �ıPn:(4.32)

Here ıP t and ıPn may depend only on �, but not on � (or  ).

The horizontal velocity satisfies

(4.33) max
�

 � � Cvx�1=2:

Moreover,

(4.34) max
�

r � EnL � EvL � EnL C CvL�1=2:

For the shock normal, let N 	 S1 (unit circle) be the set from EnR to EnL (counter-

clockwise). We require

(4.35) sup
S

d.En;N / � CSn�1=2:

Set †1 WD PL, †2 WD S , †3 WD PR, and †4 WD A. Write the components

(4.26), (4.27), and (4.28) of L as

gi .E�; O�.E�/;r O�.E�/„ƒ‚…
DW Ep

/ .i D 1; : : : ; 4/;

where the E�-dependence includes the dependence on �.E�/ and r�.E�/.
g2 has some singularities, but not on the set of E�, �, and r� so that (4.18) and

(4.17) (as well as (4.22) and (4.23)) are satisfied. That set is simply connected, so

we can modify g2 on its complement and extend it smoothly to � � R � R2. The

modification is chosen to depend smoothly on �.

We also require uniform obliqueness:9

(4.36) jgiEp � Enj � ıojgiEpj 8E� 2 †i :

9 In various articles Lieberman uses the term “uniformly oblique,” probably with “oblique” in the

sense of “not tangential.” We adopt this terminology instead of the more common but less useful

sense “not normal” (see, e.g., [17] or [28]).
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Regarding functional independence in upper corners, for i; j D 1; 2 and for

i; j D 2; 3, set

G WD
"
gi
p1 g

j

p1

gi
p2 g

j

p2

#
;

regard it as a function of E� (including the dependence on r O�.�/) and require

(4.37) kGk; kG�1k � Cd in Bıd
.E�C / \�, C D L;R.

Let F be the set of admissible functions so that all of these conditions are

satisfied.10 Define F to be the set of admissible functions such that all of these

conditions are satisfied with strict inequalities, i.e., replace � and � by < and >,

“increasing” by “strictly increasing,” etc.

Remark 4.6. If O D  , then (4.25), (4.27), (4.26), and (4.28) and the definition of

S yield

.c2I � r�2/ W r2 D 0 in �,

�� D 0 on A,

�I D �;
.�r� � �Ir�I / � En D 0 on S ,

L D p1 � � on PL [ PR
(we may take closures by regularity (4.10)).

Remark 4.7. In any point on A, we can use even reflection (see Remark 2.1) of  

across A to obtain a point in the interior or (in the bottom corners) a point at a

quasi-parabolic arc with the interior equation applying inside.  � D 0 on A, for

even reflection of  , implies that the solution is C 1 across A; then necessarily it is

also C 2;˛ (away from the shock-arc corners).

For  standard regularity theory immediately yields that the solution is analytic

in the bigger domain near A. The same technique applied to O and to solutions K 
of linearized equations (here  , O , and K are reflected) yields C 2;˛ regularity

(away from the shock-arc corners).

PROPOSITION 4.8 For sufficiently small � (with bound depending only on CP t )
and rI (depending continuously and only on  ; ıvy), for all  2 F , L. ; O 0/ is
well-defined for O 0 near  , and the Fréchet derivative @L=@ O 0. ; / (of L with
respect to its second argument O 0, evaluated at O 0 D  ) is a linear isomorphism
of C2;˛

ˇ
onto Y .

10 The notation F does not necessarily imply that F is the closure of F .
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PROOF: (4.27) is the only part of L with a singularity. (4.17) and (4.23) guar-

antee that it is well-defined and smooth for O D  . For O in a sufficiently small

neighborhood of  (i.e., take rI small), it stays well-defined.

Let K 2 C2;˛
ˇ
.�/; it is meant to be the first variation of O (and, at the same

time, O�). @L=@ O . ; / K is a tuple of functions in Y . Its first component (see

(4.25)) is of type

(4.38) .c2I � r�2/ W r2 K C Eb � r K 
where Eb is some vector field.

We linearize (4.27): here we can use that we linearize at O D  , so

jEvI � r j�1.EvI � r / D En
because  D  I defines the shock (see (4.11) in Definition 4.4). The result is

(4.39) �.1 � c�2�2n/ K n � �c�2�n�t K t � �c�2 K 

� .�r� � �Ir�I /jEvI � r j�1
�
1 �

� EvI � r 
jEvI � r j„ ƒ‚ …

DEn

�2�

„ ƒ‚ …
DEt Et T

r K :

The coefficient �.1� c�2�2n/ of K n, which is positive by (4.17) and (4.20), has the

opposite sign to the nonzero coefficient ��c�2 of K , which is negative by (4.17).

The other components linearize to

r� � r K ; (parabolic)(4.40)

K�n: (wall)(4.41)

Note that the coefficient vectors giEp of r K are the same as in (4.36) and (4.37).

To prove the proposition, we apply a theorem of Lieberman [24, theorem 1.4].

Our Ck;˛
ˇ
.�IF / spaces correspond to his spaces H

.�ˇ/
kC˛ if ˛ > 0 and F 	 @� is

finite and contains all points where @� is not C 2—as is the case here. We check

the preconditions:

(1) †i are C 2 curves (except perhaps for the endpoints), meeting in single

points (corners). In each corner the two curves meet at an angle 0 < �ij �
�0, with �0 < 	 . (0 < �ij is trivial from (4.35)). The lower bound is

obvious; the upper bound is obvious for corners with A and supplied by

(4.15) for corners with S .

(2) The equation is uniformly elliptic, by (4.20).

(3) All boundary operators are uniformly oblique, by (4.36).

(4) Condition (1.17) in [24] with ˇi ¤ ǰ is equivalent to (4.37).
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(5) Finally, the only appearance of K is in (4.39), where its coefficient is

nonzero and has the opposite sign to the coefficient of K n (note that En
is the inward normal here). (This observation allows us to apply maximum

principles to obtain uniqueness.) This means (1.19) in [24] is satisfied.

(6) The bottom corners are not a concern: by Remark 4.7 we can use even

reflection across A.

(7) The other preconditions are technical and easy to verify.

Theorem 1.4 in [24] yields that @L=@ O� is an isomorphism on C2;˛
ˇ

onto Y if we

choose ˛ 2 .0; 1/ and ˇ 2 .1; 2/ sufficiently small, depending on the constants ıo,

Cd , ıLb , ıd , and ıCc . �

PROPOSITION 4.9 rI can be chosen so that O is unique and depends continuously
on � and on  2 F (both  and O in the C2;˛

ˇ
.Œ0; 1
2/ topology).

PROOF: We use the subscript � for L and F here to indicate their dependence

on it.

Take rI WD 1 first. L�. ; O 0/ is well-defined for all  2 F� and O 0 D  ,

as well as sufficiently small perturbations of O 0, by (4.16) and (4.20). It is easy

to check that there is an r2 > 0, depending continuously on  and �, so that
O 0 2 Br2

. / 7! L�. ; O 0/ is well-defined and C 1. Take rI  minfrI ; r2g. This

may shrink F�, but the properties of L are not changed.

Consider a particular � 2 ƒ and a corresponding  2 F�. By Proposition 4.8

and the inverse/implicit function theorem for Banach spaces, there is an r 2 .0; rI 

so that O 0 2 Br. / 7! L�0. 0; O 0/ is a diffeomorphism for every  0 2 Br. /
and �0 2 ƒ \ Br.�/.

Let r3 be the supremum of all r with this property. . ; �/ 7! r3. ; �/ is

continuous: for any  00 2 Br. / and �00 2 Br.�/, set r 00 WD r � maxfj �  00j;
j� � �00jg. Then Br 00. 00/ 	 Br. / and Br 00.�00/ 	 Br.�/, so O 0 2 Br 00. 00/ 7!
L�0. 0; O 0/ is a diffeomorphism for all  0 2 Br 00. 00/ and �0 2 ƒ \ Br 00.�00/.
Therefore

r3. 
00; �00/ � r3. ; �/ �maxfj �  00j; j� � �00jg:

On the other hand, if maxfj � 00j; j���00jg < 1
2
r3. ; �/, then r3. 

00; �00/ �
r3. ; �/=2, so  2 Br3. 00;�00/. 

00/ and � 2 Br3. 00;�00/.�
00/, so we may apply the

same argument with roles reversed to obtain

r3. ; �/ � r3. 00; �00/ �maxfj �  00j; j� � �00jg:
Clearly r3 is continuous.

For r D r3, the property need not hold, but we take rI  minfrI ; 12r3g. This

may shrink F more, but again the properties of L and r2 above are not changed.

With this choice, O from Definition 4.4 must be unique (determined by (4.21) and

(4.29)). It is also clear from the properties above that . ; �/ 7! O is a continuous

(in fact, C 1) map. �
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PROPOSITION 4.10 For ıT t , �, and rI sufficiently small, for all continuous paths
t 2 Œ0; 1
 7! �.t/ in ƒ,

S
t2.0;1/.ftg �F�.t// is open and

S
t2Œ0;1�.ftg �F�.t// is

closed in Œ0; 1
 � C 2;˛
ˇ
.Œ0; 1
2/.11

PROOF: All conditions on  in Definition 4.4 are inequalities that can be made

scalar by taking a suitable supremum or infimum. Then their sides are continuous

under C2;˛
ˇ
.Œ0; 1
2/ changes to  , and therefore O . (Most inequalities need only

C1.Œ0; 1
2/.)
(1) To show closedness, consider sequences .tn;  n/ in

S
t2Œ0;1�.ftg �F�.t//

that converge to a limit .t;  /. Let O n be associated to  n as in Definition 4.4. By

continuity (Proposition 4.9), . O n/ converges to a limit O as well. By continuity of

L in  , O , and �, we have L�.t/. ; O / D 0 as well.

By (4.11) for sn and  n instead of s and  , .sn/ converges in C2;˛
ˇ
Œ0; 1
 as well

to a limit s that satisfies (4.11) itself.

Most conditions on  are nonstrict and continuous inequalities, so they are still

satisfied by  . We check the strict inequalities explicitly and in order:


 (4.13) is implied by (4.35) and the nondegeneracy of the .�; �/ 7! .�; �/ coor-

dinate change.


 (4.16) is implied by (4.17).


 By choosing rI sufficiently small, (4.22) is implied by (4.21), (4.23) by (4.18),

and (4.24) by (4.20).

All inequalities are satisfied, so  2 F .

(2) For openness, the proof is the same by using that all inequalities are strict

now, by definition of F , hence preserved by sufficiently small perturbations. �

DEFINITION 4.11 Define K W F ! C2;˛
ˇ
.Œ0; 1
2/ to map  into O as given in

Definition 4.4, but pulled back to .�; �/–coordinates and the Œ0; 1
2 domain (see

Definition 4.4) with the coordinate transform defined by  .

4.5 Regularity and Compactness
To obtain regularity at the free boundary, we need a kludge: a transformation to

a fixed boundary problem. With some further advances in elliptic theory this step

should become obsolete.

Remark 4.12. Using the .�; �/–coordinates from Definition 4.4, define the coordi-

nate transformation from E� to x D .�; �/ and then to y D .�; �/ where

� WD  .�; �/ �  I .�; �/ D  .�; �/ �  I .0; 0/ � vyI �:
 D  I on the shock, so � D 0 there; � > 0 in � (by (4.18)).

11 We make no statement about F being the closure of F . It certainly contains the closure, but

it could be bigger, for example, if one of the inequalities in Definition 4.4 becomes nonstrict in the

interior without being violated.
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We check that this transformation satisfies all conditions of Proposition B.1

and Remark B.2, where we take u D  . The E�-to-x part is trivial, since it is

independent of  . We study the second part:

yx D @.�; �/

@.�; �/
D
�
1 0

0 �vyI

�
; yu D @.�; �/

@ 
D
�
0

1

�
; ux D

	
 
  �



:

Obviously yx is uniformly invertible, and

yx C yuux D
�
1 0

 
  � � vyI

�
is uniformly invertible by (4.18). The norms are bounded by constants depending

only on ıvy (to bound  � � vyI below away from 0) and CL (to bound  and r ).

All conditions of Proposition B.1 and Remark B.2 are satisfied, so we obtain

the analogues of (4.20), (4.36), and (4.37): the coordinate transformation yields

a uniformly elliptic equation with uniformly oblique boundary conditions that are

uniformly functionally independent (as functions of r ) near the corner. The

constant for each property grows at most by a factor depending continuously and

only on ıvy and CL.

PROPOSITION 4.13 For sufficiently small ˇ 2 .1; 2/ and ˛ 2 .0; ˇ�1/, depending
only on Cd , ıLb � �, ıo; CL, and ıvy :

(1)

(4.42) kskC0;1Œ�L;�R�
� CsL

and

(4.43) ksk
C

2;˛
ˇ

Œ�L;�R�
� Cs

for CsL D CsL.CL; ıvy/ and Cs D Cs.CC ; ıvy/.
(2) For a fixed point  of K:

(a) (4.30) is strict for sufficiently large CL.
(b) (4.10) is strict for sufficiently large CC D CC.Cd ; ıLb � �; CL; ıo;

ıvy ; ıd /.
(c) For K b � � fE�L; E�Rg and all k � 0, ˛0 2 .0; 1/,

(4.44) k kCk;˛0
.K/ � CCK

whereCCK D CCK.d; CL; ıo; ıvy/ is decreasing in d WD d.K; OP .0/L [
OP .0/R / and not dependent on �.

(d)  is analytic in � � fE�L; E�Rg.
(3) For sufficiently small rI > 0, depending continuously and only on  , there

are ı˛; ıˇ > 0 so that for all  2 F ,

(4.45) k O kC2;˛Cı˛
ˇCıˇ

.�/
� CK:

Here CK, ı˛, and ıˇ depend only on Cd , ıLb � �, ıo, CL, and ıvy .
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PROOF:

(1) The shock is implicitly defined by

 .�; s.�// �  I .�; s.�// D 0 .� 2 Œ�L; �R
/
(compare Definition 4.4 and (4.11)). The derivative with respect to s of the

left-hand side is  � � vyI . (4.18) bounds this away from 0. The implicit

function theorem yields the derivative part of (4.42); bounds on s itself

are supplied by integration and the E��
R part of (4.14) (for example). The

implicit function theorem also yields (4.43) from (4.10). Henceforth we

use without further mention that estimates on � automatically yield corre-

sponding estimates on s.

(2) Now consider a fixed point  D K. /.
(a) (4.20) implies L � 1, which can be rewritten

(4.46) jr�j2 � 2.c20 C .1 � �/�/
� C 1 :

To control �, we use that �.E�R/ D �I .E�R/, which is bounded by

(4.14). Using the differential inequality (4.46) vertically downwards

from E�R to A, then along A, and finally along any vertical line upward

to S , we achieve uniform bounds on � and jr�j in all of �. This is

(4.30), which is strict if we take CL large enough.

(b) By (4.20) the equation

.c2I � r�2/ W r2 D 0
is uniformly elliptic. Standard De Giorgi–Nash–Moser and Schauder

theory [17] converts (4.30) into interior Ck;˛ estimates for any k � 2
and ˛ 2 .0; 1/.
At the shock and near the shock-parabolic corners we first apply the

coordinate transform from Remark 4.12. This is necessary because

we have only a C 0;1 bound of S at this point; using C1;ˇ regularity

would cause circularity. The transform yields a new problem with

fixed boundary (both arc and shock are mapped into straight line seg-

ments). The uniform ellipticity (4.20), the uniform obliqueness of

the boundary conditions (4.36), and their uniform functional indepen-

dence in the corner (4.37) are preserved by the transform.

It is also crucial that the boundary conditions themselves be smooth.

For this purpose we have combined the two shock conditions (2.18)

and (2.19) so that the boundary operator in (4.27) is smooth in E� , O�.�/,
and r O�.�/.12 This also requires a bound of � below away from 0, by

(4.17), as well as a bound of r away from EvI , by (4.18).

12 If we had used (2.19) by itself, it would contain En for which we have only an L1 bound at this

point.
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At the boundaries away from the corners, we use [22], which yields

C 2;˛ regularity for any ˛ 2 .0; 1/. Near the corners we apply Propo-

sition A.1. It yields C
2;˛
ˇ

regularity for some range of ˛ 2 .0; 1/ and

ˇ 2 .1; 2/; we fix ˛ and ˇ below.

We obtain (4.10), with CC D CC.Cd ; ıLb � �; CL; ıo; ıvy ; ıd /. ıvy is

due to the transform from Remark 4.12. Moreover,Cs D Cs.CC; ıvy/,
as discussed above.

(c) In every K b � with positive distance to PL and PR, we use that

(4.19) provides

sup
K

L2 � 1 � ıLb sup
K

b

where the right-hand side is < 1 and independent of � (by Defini-

tion 4.5). Thus the equation is uniformly elliptic inK, with ellipticity

constant depending on d.K;P
.0/

L [P .0/R /, but independent of �. Since

the obliqueness constant ıo in (4.36) was already independent of �, the

same arguments as before yield uniform-in-� regularity in each K for

any Hölder norm. This is (4.44).

(d) For elliptic problems with analytic cofficients, analyticity of the solu-

tion is classical (e.g., [26, theorem 6.7.60]) in the case of fixed bound-

aries. To deal with a free boundary, we use the transform from Re-

mark 4.12 again. The theorem just cited yields analyticity for the new

problem. The inverse coordinate transformation is defined in terms

of the new coordinates and the solution of the new problem, so it is

analytic as well. Then  itself is analytic in � � fE�L; E�Rg.
(3) For a general  2 F , not necessarily a fixed point of K,  and O in L are

different. The boundary conditions are oblique derivative conditions:13

gk.E�; O .E�/;r O .E�// D 0:
Each gk is C2;˛

ˇ
in E� (from � in (4.26)),14 in particular C1;ˇ�1.

Moreover, each gk is C1 in O .E�/ and r O .E�/. For (4.27) this re-

quires that O� be uniformly bounded below away from 0, and r O uniformly

bounded away from EvI . This is guaranteed by (4.17) and (4.18) (bound-

ing � and r , respectively) combined with (4.21) (bounding j O� � �j and

jr � r O j, respectively), if rI is chosen small enough (depending only

and continuously on  and ıvy).

13 For a Dirichlet boundary condition, C 1;ˇ data would yield C 1;ˇ , but not C 1;ˇCıˇ regularity.

But for a derivative condition we can gain one order.
14 Here it is crucial that r not appear anywhere in (4.26), (4.27), and (4.28); otherwise gk

would only be C
1;˛
ˇ

in E� , which is not enough to gain regularity.
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The boundaries �k are A;PL, and PR, which are perfectly smooth, and

S has a C
2;˛
ˇ

bound (4.43), implying C 1;ˇ .15

Uniform ellipticity, obliqueness, and functional independence still hold

by (4.20), (4.36), and (4.37), combined with (4.21), for rI sufficiently

small(er).

All combined, Proposition A.1 and [23, cor. 1.4] (away from the cor-

ners) yield C2;

�

regularity. Here, � depends on ˇ only, whereas � does not

depend on ˛ or ˇ at all. Therefore we may pick ˇ D 1 C �=2 and then

˛ D �=2 for the resulting �. With ıˇ D �=2 and ı˛ D �=2, (4.45) is

satisfied for suitable CK. �
PROPOSITION 4.14 For sufficiently small rI > 0 (depending continuously and
only on  and ıvy/, K is a continuous and compact function of  and � onS
�2ƒF�.

PROOF: We have already shown in Proposition 4.8 that O is a continuous func-

tion of  . Therefore K depends continuously on � and  .

Moreover, K is compact: by (4.45) in Proposition 4.13 the range of O is a

bounded subset of C2;˛Cı˛

ˇCıˇ
.�/, which is precompact in C2;˛

ˇ
.�/. Pullback to

.�; �/–coordinates is continuous in the latter topology, so the image under it is

still pre-compact.16 Altogether K is a compact map. �

4.6 Pseudo-Mach Number Control
PROPOSITION 4.15 For � and ıLb sufficiently small, with bounds depending only
on ı�, if  2 F is a fixed point of K, then (4.19) is strict and

(4.47) L2 < 1 � � in � � PL � PR.

PROOF: We have

d
�
�; OP .0/L [ OP .0/R

� � 1

3
� �

for � small enough. Remember from Definition 4.5 that b D 0 on OP .0/L [ OP .0/R .

Therefore, on PL [ PR,

L2 D 1 � � < 1 � kbkC0;1„ ƒ‚ …
�1

� d�PL [ PR; OP .0/L [ OP .0/R

� � 1 � ıLb � b;
e.g., for ıLb � 1.

On the shock, we may use (4.17) combined with Proposition 3.11 to rule out

that L2 C ıLb � b has a maximum in a point where L < 1 and L � 1 � ıLS .

Here ıLb has to be chosen so that jıLbrbj � ıLS is satisfied. (Now ıLb depends

15 Here we can apply Proposition A.1 without the coordinate transform from Remark 4.12, be-

cause the shock is already known to be C 1;ˇ .
16 We may actually lose regularity because the pullback is defined by  , hence only C

2;˛
ˇ

, but

we do retain compactness.
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continuously on ı� as well.) Then L2 C ıLb � b < 1 as well if, again, ıLb is small

enough.

In addition, we can choose ıLb so small that ıLb � b satisfies the preconditions

of theorem 1 and theorem 2 in [12] (where it is called b). Note that b is even in � by

Definition 4.5, so @b=@n D 0 on the wall. Let ıL� be the ı from those theorems (it

depends only and continuously on �). Then L2 C ıLb � b cannot have a maximum

in a point where L2 � 1� ıL�. If, again, ıLb is chosen sufficiently small (no new

dependencies), then L2 C ıLb � b < 1 in � [ A, hence in �. Therefore (4.19) is

strict.

(4.47) can be shown in the same manner, by taking b D 0 instead, using the

actual boundary condition L D p1 � � on PL and PR and considering � <

ıLS ; ıL�. �

4.7 Second Derivatives on Arcs
Consider a fixed point � 2 F of K so that L2 D 1 � � is satisfied on PL and

PR. This can be restated as

(4.48)
1

2
jr�j2 C .1 � �/..� � 1/� � c20/

� C 1 � �.� � 1/ D 0:

In what follows, En will be an outer normal to PL or PR and Et D En?; @n and @t are

defined accordingly. When considering a particular point on an arc, we also use

� and �, which are Cartesian coordinates such that @� D @t and @� D @n in that

point (only).

Take @t of (4.48) (using @t@� D @2� and @t@� D @�@�):

0 D ����� C ����� C .� � 1/.1 � �/
� C 1 � �.� � 1/ ��

D �� �� C �� �� � 2

� C 1 � �.� � 1/ �� :(4.49)

We have two equations ((4.49) and the interior equation (2.14)) for the three

components of D2�. That is the case for other equation and boundary conditions

as well; it is not really sufficient for any control. But here there is an additional

tool: (4.47) implies that L attains its maximum in � in every point on PL [ PR.

Therefore .L2/� � 0 on PL [ PR, or equivalently

(4.50) �� �� C �� �� � 2

� C 1 � �.� � 1/ �� � 0:

From here on—and in the next few sections—we focus on PR; all results have

an analogous extension to PL.
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Combine (4.50), (4.49), and (2.15):

(4.51)

2
4 ���� 0

0 �� ��
c2 � �2� �2���� c2 � �2�

3
5
2
4 �� ��
 ��

3
5 D

2

� C 1 � �.� � 1/

2
4����
0

3
5C

2
40a
0

3
5

where we use a “slack variable” a � 0. We obtain in particular that

(4.52)  �� D 2

� C 1 � �.� � 1/
�
1C �
1 � � �

�2�
c2
� �

�
�.c

2 � �2�/��
.1 � �/c4 � a„ ƒ‚ …

�0

;

(where we used �2� D .1 � �/c2 � �2� ). The a term is positive due to �n < 0 (by

(4.32)).

Now consider radial coordinates, centered in the origin, with � D 0 corre-

sponding to the positive �-axis. PR is at a fixed radius r D .1 � �/1=2cR and

covers � 2 Œ0; �
. In these coordinates,

��� D r2.��� � r�1��/ D r2. �� � 1 � r�1��/ � f .c2; ��/;

f .h; p/ WD 2

� C 1 � �.� � 1/
�
1C �
1 � � �

p2

h
� �r2

�
� r2

C
q
r2h.1 � �/ � p2:

On the other hand, c2 D c20 C .1 � �/.�C jr�j2=2/ and (4.48) yield

(4.53) .c2/� D g.c2; ��/; g.h; p/ WD �2.� � 1/
� C 1 � �.� � 1/„ ƒ‚ …

DW
g

p:

We seek stationary points of the ODE system .p� ; h�/ D .f; g/. g.h0; p0/ D 0

obviously requires p0 D 0.

0 D f .h0; 0/ D �r2
�
1C 2�

� C 1 � �.� � 1/
�
C r

p
h0
p
1 � �

) h0 D
�
1C 2�

� C 1 � �.� � 1/
�2 r2

1 � � :(4.54)

g is already linear; we linearize f around the stationary point:

@hf .h0; 0/ D r
p
1 � �
2
p
h0
D 1 � �
2.1C 2�

�C1��.��1//
DW �f :
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Possible values
in E�R

Curve of

on PR

p

k

.p; k/ values

� D 0
(wall)

� D �
(in E�R)

FIGURE 4.5. �;r� on PR define a path � 7! .p.�/; k.�// (bold

curve). The path is constrained by (4.57) and (4.56). The possible k; p in
E�R are on the thin solid curve which is parametrized by �R; one endpoint

of the path is on this curve. The other endpoint is on the k axis.

For easier treatment of the isentropic case, we change coordinates again (see

Figure 4.5): take

(4.55) k WD
�
��f
�g

�1=2
.h � h0/:

From linearization we have

p� � �f .h � h0/CO..h � h0/2 C p2/(4.56)

D .��f �g/1=2„ ƒ‚ …
DW
�

� k CO.k2 C p2/;

k� D
�
��f
�g

�1=2
�gp D �.��f �g/1=2p D ���p:(4.57)

Here and later, O.x˛/ is a term with absolute value � Cx˛ for jxj � R, where

C and R may depend only on CL, but none of the other constants. While the

elliptic equation degenerates as � # 0, all ODE we discuss here are well-behaved

for � # 0. However, some � # 1 are delicate, because �g D � � 1 C O.�/, so

(4.55) has a singularity; we make detailed comments in each case.
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Represent .p; k/ by radial coordinates .q; �/, with � D 0 corresponding to the

positive p-axis and � D �
2

to the positive k-axis. Then

q� D @�
q
p2 C k2 D pp� C kk�

q
D
(
� O.q2/; p � 0;
� O.q2/; p � 0:(4.58)

�� D pk� � kp�
q2

D
(
� O.q/ � �� ; k � 0;
� O.q/ � �� ; k � 0:(4.59)

4.8 Arc Control
PROPOSITION 4.16 If CP t < 1 is sufficiently large, if ıPn > 0 is sufficiently
small, if � is sufficiently small, and if CPv and CP� are sufficiently large, with
bounds depending on CP t , then for any fixed point � of K, (4.31) and (4.32) are
strict, and

j� � �C j � CP��1=2;(4.60)

jEv � EvC j � CPv�1=2 on PC .C D L;R/:(4.61)

In the case where � > 1,

�.�/ 62
�
	

2
;
3	

2
� ���

�
C 2	Z on PR,(4.62)

�.�/ 62
�
�	
2
C ���; 	

2

�
C 2	Z on PL

(if q.�/ ¤ 0).

PROOF: We focus on PR first.

For E�R D E��
R we have p.�/ D 0 and c.�/ D cR, by construction of the R

shock in Section 4.3. p.�/ and c.�/ depend smoothly on E�R, so (4.14) yields

jp.�/j � Cpk�1=2;(4.63)

jc.�/ � cRj � Cpk�1=2;(4.64)

in E�R for some constant Cpk . L2 D 1 � �, combined with (4.31), as well as (4.31)

integrated in the tangential direction, then implies

(4.65) q.�/ � Cq�1=2 8� 2 Œ0; �

for Cq D Cq.CP t /. (C q may be � CP t , so this does not imply the sharp form of

(4.31) yet.)
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Isothermal Case
For � D 1 we need to consider only a single differential inequality, since c is

constant. (4.53) takes the form

(4.66) p� � �.1 � �/c2 � � CO.p2/:
� D 0 is the corner between A and PR where �� D r�� D 0 by the boundary

condition on A, so p.� D 0/ D 0. Integrating (4.66) from 0 to � yields

(4.67) p.�/ � O.�/:
On the other hand p.�/ is controlled by (4.63). Integrating (4.66) from � to �

yields

(4.68) p.�/ � O.�1=2/:
(4.67) and (4.68) combine to

c�1r�1 max
�2Œ0;��

p.�/ < CP t�
1=2

for � sufficiently small and CP t sufficiently large. This is the strict form of (4.31).

Isentropic Case
For � > 1, we first show (4.62). We fix � 2 Œ0; 2	/ here.

Assume that q.�0/ > 0 and �.�0/ 2 .	; 3�
2
� ���/ for some �0 2 Œ0; �
.

Necessarily �0 > 0 because p.� D 0/ D 0, so either q.� D 0/ D 0 or �.� D
0/ D 	 ˙ �

2
.

Let �0 2 Œ0; �0/ be maximal so that

�.�0/ 62 .	; 3�2 / or q.�0/ D 0:
Such a �0 must exist because p.� D 0/ D 0. For � 2 .�0; �0/, k.�/ < 0 and

p.�/ < 0.

By the p � 0 part of (4.58) (in the reverse direction), q.�/ > 0 for � 2 Œ�0; �0
.
On the other hand, (4.65) applies. Therefore q.�0/ D 0 is not possible, so either

�.�0/ D 	 or �.�0/ D 3�
2

. (4.57) with p < 0 (in the reverse direction) shows that

k.�0/ � k.�0/ < 0, so �.�0/ D 	 is not possible.

For � sufficiently small, with bound depending on Cq , the k � 0 part of (4.59)

yields

�.�0/ � �.�0/C �� .�0 � �0/„ ƒ‚ …
��

CO.�1=2/;

so since � < �
2

and �� < 1 (for � small),

�.�0/ 2 .	; 3�2 /:
Contradiction! So �0 cannot exist; �.�/ 62 .	; 3�

2
� ���/ for any � 2 Œ0; �
.
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k

p

Forbidden sector

q.��/ � O.q2/ for p < 0
Cannot cross:

Cannot reach:
p.��/ < 0 for k > 0

Curve
of
.p; k/
values

Not possible: �.��/ � 
� CO.q/ for k � 0, too slow

� D �0

� D �1

� D 3�
2

� 
��

� D �2

� D 0

FIGURE 4.6. The second-derivative inequality (4.59), combined with

the wall condition p D 0, rules out a sector of �� ; c
2 values.

Now assume q.�0/ ¤ 0 and �.�0/ 2 .�2 ; 	
 for some �0 (see Figure 4.6). Let

�1 2 Œ0; �0/ be maximal so that q.�1/ D 0 or �.�1/ 62 .�2 ; 	
. Again, p.� D
0/ D 0, so such a �1 must exist. For � 2 .�1; �0
, k.�/ � 0 > p.�/.

The p < 0 part of (4.58) (in the reverse direction) shows that q.�/ > 0 for all

� 2 Œ�1; �0
, so q.�1/ D 0 is not possible.

For sufficiently small �, by using (4.65), (4.56) yields p�.�/ > 0 for those �.

Thus p.�1/ < p.�0/, so �.�1/ D �
2

is not possible either.

Only �.�1/ D 	 remains, but then p.�1/ < 0 D k.�1/, so (4.57) yields

k�.�1/ > 0. Therefore �.�1 � ı1/ D 	 C ı2 for some small ı1 2 .0; �1/ and

ı2 > 0. This is in the sector we have already ruled out—contradiction. The proof

of (4.62) is complete.

Define

Q WD
(
q; p � 0;
jkj; p � 0:

By (4.62), for p < 0 necessarily k � p cot.���/ < 0, so

Q.��/ D �k.��/ (4.57)D ���p � ���k tan.���/ D �� tan.���/Q:

For p � 0, (4.58) yields Q.��/ � O.Q2/. Altogether Q.��/ � O.Q/ (where O

is with respect to jQj # 0), so integrating from � backwards yields

Q.�/ � O.Q.�// .� 2 Œ0; �
/:
Using jpj � jkj tan.���/ for p � 0 again, we get

c�1r�1q.�/ � c�1r�1O.q.�// < CP t�1=2 .� 2 Œ0; �
/;
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for sufficiently largeCP t and for � sufficiently small with bound depending onCP t
only. This implies the strict form of (4.31).

The strict form of (4.32) is immediate from L2 D 1 � �, in the form

�2n D �
q
.1 � �/c2 � �2t

(note that (4.32) (nonstrict) fixes the sign). Here ıPn is sufficiently small.

Density and Velocity
Finally, we obtain (4.60). (4.14) combined with � D �I on the shock yields

j�.E�R/ � �I .E��
R/j � C�1=2

for some constant C . Integrating (4.31) along PR, we obtain

max
PR

j� � �I .E��
R/j � C 0�1=2

for some other constant C 0. Combined with (4.31) and L2 D 1 � �, this implies

(4.60) for C , C 0, and CP� depending only on CP t .

(4.61) is shown in the same manner.

Left Arc
PL can be discussed in the same fashion by noticing that in the L picture (Fig-

ure 4.1) it has the same properties as PR, except for the wall not being horizontal,

which does not matter. Note that the mirror reflection in going back to theR picture

reverses the direction of � and therefore changes � to �� (see (4.62)). �

4.9 Corners Moving along Arcs
Since our shock is a free boundary, we cannot be sure where the shock-arc cor-

ner is located. We study the behavior of shock normal and downstream data when

keeping the upstream data �u; Evu fixed, imposing Ld D
p
1 � � and restricting

the shock location to be on PR. (This is different from Proposition 2.12, where we

imposed v
y

d
D 0 instead of the location.)

All the calculations in this section are done for the corner between S and PR,

but each has an analogous result for the left corner, using L-coordinates (Fig-

ure 4.1).

We abbreviate ! WD �R. In this section @! refers to derivatives of upstream

and downstream quantities as ! is varied, while keeping E�R 2 PR and maintaining

the shock conditions and the parabolic boundary condition. We use dot notation,

such as
�D, on relations that hold only for ! D ��

R. No @! may be taken of such

relations. In addition, we use the notation from Section 2.4; Evu D EvI , É D r�,

Ev D r , etc.

We required E�R 2 OP .0/R , so

� D
q
.1 � �/c2R � �2:
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Moreover,

En �D .0;�1/; Et �D .1; 0/;
´xu D ��; ´yu D vyu � �; ´nu

�D � � vyu ; ´tu
�D ��;

´xd
�D ��; ´

y

d

�D ��; ´nd
�D �; ´td

�D ��:
Thus,

@!� D @!
�q
.1 � �/c2R � �2

� D ��
�
;

@!n
y D �@!

q
1 � .nx/2 D �n

x

ny
@!n

x �D 0;
@!´

x
u D �@!� D

�

�
; @!´

y
u D �1;

@!.jÉuj2/ D @!.�2 C .� � vyu/2/ D 2�
�
��
�

�
C 2.� � vyu/ D �2vyu :

We use

L2d D 1 � �
, jÉd j2 D .1 � �/c2d D .1 � �/c2u C

.� � 1/.1 � �/
2

.jÉuj2 � jÉd j2/

, jÉd j2 D 2.1 � �/
� C 1C �.1 � �/ c

2
u C

.� � 1/.1 � �/
� C 1C �.1 � �/ jÉuj

2(4.69)

(4.69) yields

(4.70) @!.jÉd j2/ D � � 1
� C 1 @!.jÉuj

2/CO.�/ D �2.� � 1/
� C 1 vyu CO.�/:

On the other hand,

@!.jÉd j2/ D 2´xd@!.´xd /C 2´yd@!.´yd /
�D �2�@!.´xd / � 2�@!.´yd /;

so

(4.71) �@!.´
x
d /C �@!.´yd /

�D � � 1
� C 1 v

y
u CO.�/:

(2.19) can be restated:

0 D �u´nu � �d´nd
D �u.´xunx C ´yuny/ � 	�1

�
	.�u/C jÉuj

2 � jÉd j2
2

�
.´xdn

x C ´y
d
ny/:
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Take @! :

) 0 D �u.nx@!´xu C ´xu@!nx C ny@!´yu C ´yu@!ny/
� �d

2c2
d

�
@!.jÉuj2/ � @!.jÉd j2/

�
´nd

� �d .nx@!´xd C ´xd@!nx C ny@!´yd C ´yd@!ny/
�D

(4.70)
�u.��@!nx C 1/C

2�dv
y
u´
n
d

c2
d
.� C 1/ � �d

���@!nx � @!´yd �
) �

�
1 � �u

�d

�
@!n

x C @!´yd
�D ��u

�d
� 2v

y
u�

c2
d
.� C 1/

) �v
y
u

v
y
u � �

@!n
x C @!´yd

�D ��
� � vyu

� 2v
y
u�

c2
d
.� C 1/(4.72)

using �u=�d D ´nd=´nu
�D �=.� � vyu/. Finally, ´tu D ´td yields

0 D nx.´y
d
� ´yu

� � ny�´xd � ´xu/;
so take @! :

0 D @!nx.´yd � ´yu/C nx.@!´yd � @!´yu/ � @!ny.´xd � ´xu/
� ny.@!´xd � @!´xu/

�D �vyu@!nx C @!´xd �
�

�

) �vyu@!nx C @!´xd
�D �

�
:(4.73)

(4.71), (4.72), and (4.73) form a linear (nondegenerate) system for the three

derivatives. The solution is

(4.74) @!´
y

d
D .� � 1/vyu � 2.� C 1/� � 2c�2

d
v
y
u�.� � vyu/

.� C 1/.2� � vyu/
CO.�/:

Using v
y

d
D ´y

d
C �, we have

(4.75) @!v
y

d

�D 2vyu
�.v

y
u � �/c�2

d
� 1

.� C 1/.2� � vyu/
CO.�/:

Note that

(4.76) @!v
y

d

�
> 0

(for sufficiently small �) because v
y
u D vyI < 0 and � � vyu �D ´nu > 0.

Transform (4.71) to

(4.77) @!.´
x
d /

�D ��
�
@!.´

y

d
/C � � 1

� C 1 �
v
y
u

�
CO.�/

(no need to evaluate further; @!.n
x/ is not needed).
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Finally, the counterclockwise unit tangent for PR is

EtP D
E�?

jE�j
D r�1E�?;

so

p D �� D r�t D r É � EtP D E�? � É D �´y
d
� �´xd :

Thus

@!p D @!.�´yd � �´xd / D �
�´
y

d

�
C �@!´yd � ´xd � �@!´xd

�D �2

�
C � C �@!´yd � �@!´xd D

�2 C �2
�„ ƒ‚ …

D.1��/c2
R=�

C�@!´yd � �@!´xd

(4.77)�D
(4.74)

�
�
.� C 1/vyu � 2��

� � 2c2
d

.� C 1/.2� � vyu/
� v
y
u

�
CO.�/:

Using �
�D ´n

d
DW �cu, v

y
u D ´yu C � �D � � ´nu D .� � Lnu/cu, as well as

c2d D c2u C
� � 1
2

�
.´nu/

2 � .´nd /2
� D �1C � � 1

2

�
.Lnu/

2 � �2�� c2u;
we obtain a more convenient formula:

(4.78) p!
�D 2C Lnu

�
.� C 1/� C .� � 1/Lnu

�
Lnu C �

� �v
y
ucu

.� C 1/� CO.�/:

Since � D ´n
d
=cu < ´

n
u=cu D Lnu for any admissible shock, we can argue that

p!
�� 2C .� � 1/Lnu.� C Lnu/

Lnu C �
� �v

y
ucu

.� C 1/� CO.�/

�
�

2

Lnu C �
C .� � 1/Lnu

�
� �v

y
ucu

.� C 1/� CO.�/

� .ıp� C .� � 1/�/ � �v
y
ucu

.� C 1/� CO.�/(4.79)

for some ıp� > 0. (Note: LnuC� is uniformly bounded because the set of possible

shock locations is bounded.) Also,

.c2d � h0/! D .c2d /!
L2

d
D1��D .1 � �/@!.jÉd j2/

(4.70)D �2.� � 1/
� C 1 vyu CO.�/ > 0

(4.80)
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for � sufficiently small.

(4.81) k!
(4.55)D
(4.80)

�
��f
�g

�1=2
� �2.� � 1/

� C 1 vyu D
s
� � 1
� C 1.�v

y
u/CO.�/:

(The O term is uniform in � # 1 because .��f =�g/1=2 has a .� � 1/�1=2 singu-

larity that is cancelled by the � � 1 numerator.)

Extreme Corner Locations

Now we study the behavior of p, k, q, and � (as introduced in Section 4.7) for

� D �Ṙ . We use a superscript ˙ to indicate quantities evaluated for � D �Ṙ ; a

superscript � indicates ��
R. We omit superscripts if the choice is unimportant (e.g.,

if the difference incurs anO.�1=2/ term that is dominated by something else). This

is the case for p! , k! , and other derivatives; we may conveniently evaluate them

at ��
R (note that �C

R � ��
R D O.�1=2/).

p� D 0 and k� D O.�/ by (4.54) (with r D p1 � �cR and c� D cR). Then

pC D p!.�C
R � ��

R/CO.�/;(4.82)

kC D k� C k!.�C
R � ��

R/CO.�/
(4.54)D k!.�

C
R � ��

R/CO.�/;(4.83)

where p! and k! are the values at � D ��
R. Therefore

(4.84) qC D
q
p2! C k2!.�C

R � ��
R/CO.�/:

We estimate qC:

1 �
�
�
p
p2! C k2!
cdv

y
u

�2
(4.81)D
(4.78)

1 � c�2
d .vyu /

�2
�
� � 1
� C 1.v

y
u /
2 C

� 2
�C1 C Lnu.� C ��1

�C1L
n
u/

.Lnu C �/�=cu
vyu

�2�
�2 CO.�/

D c2u

c2
d

�
c2
d

c2u
� � � 1
� C 1

�2

c2u
�
� 2
�C1 C Lnu.� C ��1

�C1L
n
u/

.Lnu C �/
�2�
CO.�/

D c2u

c2
d

�
c2
d

c2u
� � � 1
� C 1

c2
d
� �2
c2u

�
� 2
�C1 C Lnu.� C ��1

�C1L
n
u/

.Lnu C �/
�2�
CO.�/

D c2u

c2
d

�
2

� C 1
c2
d

c2u
C � � 1
� C 1�

2 �
� 2
�C1 C Lnu.� C ��1

�C1L
n
u/

.Lnu C �/
�2�
CO.�/

D c2u

c2
d

 
2

� C 1
c2u C ��1

2
.jÉuj2 � jÉd j2/
c2u

C � � 1
� C 1�

2

�
� 2
�C1 C Lnu.� C ��1

�C1L
n
u/

.Lnu C �/
�2!
CO.�/ D
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D c2u

c2
d

 
2

� C 1
�
1C � � 1

2
..Lnu/

2 � �2/
�
C � � 1
� C 1 �

2

�
� 2
�C1 C Lnu.� C ��1

�C1L
n
u/

.Lnu C �/
�2!
CO.�/

D 2c2u
�
.Lnu/

2 � 1�
.� C 1/2c2

d
.Lnu C �/2

�
2 � .� C 1/�2 C .� � 1/.Lnu/2

�CO.�/:
(4.85)

The last factor is positive: (2.41) yields

� � � � 1
� C 1L

n
u C

2

� C 1;
so

2 � .� C 1/�2 C .� � 1/.Lnu/2 �
2.� � 1/
� C 1 .Lnu � 1/2:

Lnu � 1 is uniformly positive since the corner shocks allowed by (4.14) are uni-

formly not vanishing for � sufficiently small. All other factors are trivially positive

(note Lnu > 1; �). The right-hand side of (4.85) is positive, so

(4.86)

q
p2! C k2! <

�cRvyI
�

and therefore

(4.87) qC (4.84)� �cRvyI
�R

.�C
R � ��

R/CO.�/:

Extreme �-Value

tan

�
	

2
� �C

�
D pC
kC

(4.83)D
(4.82)

p!

k!
CO.�/

(4.81)D
(4.78)

s
� C 1
� � 1 �

2
�C1 C Lnu.� C ��1

�C1Lnu/
.Lnu C �/�=cu

CO.�/:

On the other hand, by the convexity of tan on Œ0; �
2
/, with ��� < � <

�
2

,

tan.���/ � �� tan� D ��
�C
R

�C
R

CO.�/ D
s
� � 1
� C 1 �

�

�=cu
CO.�/:

Then
tan.���/

tan.�
2
� �C/ �

� � 1
� C 1 �

�.Lnu C �/
2
�C1 C Lnu.� C ��1

�C1 Lnu/
CO.�/

The right-hand side is < 1 for sufficiently small � if and only if

.� � 1/�.Lnu C �/ < 2C Lnu..� C 1/� C .� � 1/Lnu/:
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Since � D ´n
d
=cu < ´

n
u=cu D Lnu and Lnu > 1, this is always true. Therefore

(4.88) �C 2 .0; �
2
� �� � �/C 2	Z:

The result for E��
R follows from symmetry:

(4.89) �� 2 .	; 3�
2
� �� � �/C 2	Z:

4.10 Corner Bounds
PROPOSITION 4.17 For � sufficiently small, for any fixed point  2 F of K, the
lower bounds in (4.14) are strict:

�L > �
�
L; �R > �

�
R:

PROOF: For � D 1, we may borrow (4.67) which contradicts

p� D p�„ƒ‚…
D0
Cp!.��

R � ��
R/CO.�/ D �p!�1=2 CO.�/

if � is sufficiently small, because p! > 0 by (4.78).

For � > 1, (4.62) contradicts (4.89) for � > 0 sufficiently small.

Again the proof for the left corner is analogous: in L-coordinates (Figure 4.1)

PL, E�L, and E��
L have the same properties as PR, E�R, and E��

R except that E�BL is not

on the horizontal axis, which is irrelevant. �

To prove that �R D �C
R is impossible, a more global argument is needed.

PROPOSITION 4.18 Consider �R D �C
R . There is a c so that for � sufficiently

small,
c.�/ < c for � 2 Œ0; �
.

For � > 1, c satisfies

(4.90) c D
q
h0 C Cc� C .��g=�f /1=2qC sin.�C C ���/

where Cc is some constant, as in the O terms; for � D 1 we may take any c > c.

PROOF: Consider � > 1. For k � 0 the result is trivial. Assume that there

is a �0 2 Œ0; �/ so that � 7! k.�/ has a positive local maximum in � D �0 (see

Figure 4.7). For �0 > 0 we need k�.�0/ D 0, which implies p.�0/ D 0 by

(4.57); for �0 D 0 we have p D 0 anyway. By (4.56), k > 0 means p� > 0

(if � is small enough, so that the O.k2/ D O.�1=2k/ term is dominated by ��k).

Therefore p > 0 on .�0; �2
 for some �2 > �0. Take �2 2 .�0; �
 maximal with

this property.

Assume that �2 < �. Then p.�2/ D 0 necessarily.

(4.58) for p > 0 implies q > 0 on Œ�0; �2
, so � is well-defined. Moreover, k

is strictly decreasing on Œ�0; �2
 by (4.57).
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� decreasing for k > 0

� D �C

cannot reach

� D ��� � > ��=2

�1

Too slow:
�� � ��� C O.q/

�2

�0

q� � O.q2/
Cannot cross:

for p > 0

k

p

Cannot cross:

for p � 0

� D �0
� D �:

.qC cos �C; qC sin �C/

q.��/ � O.q2/

for k � 0
�.��/ � �� C O.q/
Subject to

� D �C

FIGURE 4.7. Left: .p; k/ value curve (bold) from a k maximum on

PR to the upper endpoint for �R D �C
R . The curve cannot go past �C

because (4.59) does not allow it to pass through the lower right quadrant

“fast” enough. Right: .p; k/ curve (bold) in the opposite direction; the

constraints limit the value of k maxima.

Assume there is a �1 2 .�0; �2
 with k.�1/ D 0; hence k � 0 on Œ�1; �2
.

(4.59) (for k � 0) integrated from �1 to � 2 Œ�1; �2
 implies

�.�/ � �.�1/„ƒ‚…
D0
� ��„ƒ‚…

<1

�„ƒ‚…
<�=2

CO.�1=2/ > �	
2
:

In particular, 0 � �.�2/ > ��2—which contradicts p.�2/ D 0. The assumption is

wrong; necessarily k > 0 on Œ�0; �2
.

(4.59) (for k � 0) implies that � is strictly decreasing on Œ�0; �2
 (for O.q/ D
O.�1=2/, i.e., � is sufficiently small). Then �.�2/ 2 .0; �

2
/, which contradicts

p.�2/ D 0. The assumption is wrong; therefore �2 D �.

By integrating (4.59) (for k � 0) from � back to �,

�.�/ � �.�/C �� .� � �/CO.�1=2
D �C C �� .� � �/CO.�1=2/ .� 2 Œ�0; �
/:

Integrate (4.58) (for p � 0) backwards:

q.�/ � q.�/CO.�/ D qC CO.�/ .� 2 Œ�0; �
/:

Then

k�.�/ D ���p.�/ D ���q.�/ cos �.�/

� ���qC cos.�C C �� .� � �//CO.�/ .� 2 Œ�0; �
/
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so

k.�0/ � k.�/C ��qC
Z �

�0

cos.�C C �� .� � �//d� CO.�/

D qC sin �C � qC� sin �C � sin.�C C �� .� � �0/„ ƒ‚ …
��

/
�CO.�/

� qC sin.�C C ���/CO.�/:
Finally, we obtain a bound for c: let �0 be the global maximum point of k on

Œ0; �
. Then

sup
Œ0;��

c.�/2 D h0 C
s
��g
�f

k.�/ � h0 C
s
��g
�f

k.�0/

� h0 C
s
��g
�f

qC sin.�C C ���/C Cc�

for � > 0 small enough. This is exactly the statement. �

PROPOSITION 4.19 Again consider the case �R D �C
R . For � > 1, define

Qa.�/ WD p1 � � � cR
 ��

c

cR

�2
� sin2 �

�1=2
� cos�

!
;(4.91)

a WD Qa.0/ D p1 � �.c � cR/;(4.92)

where c is as in Proposition 4.18; for � D 1 take a D Qa D 0. For � sufficiently
small,

a D max
�2Œ0;��

Qa.�/;

and  C a� cannot have a local minimum (with respect to �) on PR [ fE�BRg.
PROOF: For � D 1, L2 D 1 � � implies �r � �

p
1 � � � c D �r , so  r � 0.

By the Hopf lemma, this does not allow a local minimum of  at PR. In E�BR
we argue that by Remark 4.7, we may consider the even reflection of  across A,

which still satisfies the same equation, so the Hopf lemma also rules out a local

minimum of  in E�BR.

For � > 1,

Qap
1 � � � cR

(4.90)D
�
h0

c2R
� 1C Cc

c2R
� C cos2 �

C
s
��g
�f

qC

c2R
sin.�C C �� .� � �//

�1=2
� cos�:
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Call the right-hand side f and take @� of it:

2.f � cos.�// sin� �
q�
g


f

qC

c2
R

�� cos.�C C �� .� � �//
2f

:

f > 0 by (4.54) and r D p1 � � � cR, so the denominator is positive. By (4.88),

cos.�C C �� .� � �// > 0, so the numerator is negative unless f � cos�. In

that case � D �
2
C O.�1=2/, because f is O.�1=2/ due to qC D O.�1=2/ and

h0 � c2R D O.�/ (by (4.54)). But 0 � � � � D arctan.�C
R=�

C
R / � �

2
� ı, with

ı > 0 uniformly in � # 0, so for sufficiently small � there is a contradiction. Thus

f is decreasing in �, so it attains its maximum in � D 0.

For a local minimum (with respect to �) of  C a� on PR, we need

0 D . C a�/� D  � C a�� D  � � ar sin�;

so  t D r�1 � D a sin� there. In E�BR this still holds (minimum or not) because

we have  � D 0 D a sin�. Another minimum condition is

0 � . C a�/r D  r C a�r L
2D1��D r �

q
c2.1 � �/ �  2t C a cos�

D p1 � � � cR �
q
c2.1 � �/ � a2 sin2 � C a cos�:

This is equivalent (by squaring to eliminate the root and solving a quadratic in-

equality for a) to

a � p1 � � � cR
�s�

c

cR

�2
� sin2 � � cos�

�
:

But a � Qa.�/, which, by Proposition 4.18, is greater than the right-hand side.

Contradiction! �

LEMMA 4.20

(4.93) a �
��vyI
�R
� ıa

�
.�C
R � ��

R/

for some ıa > 0 (depending continuously on �), and � > 0 sufficiently small.

PROOF: For � D 1, this is trivial since a D 0 and v
y
I < 0 < �R.

For � > 1, (4.54) (with r2 D c2R.1 � �/) means h0 D c2R.1C O.�//. Taylor-

expand the square root in (4.90) around h0:

c D
p
h0 CO.�/C 1

2
p
h0
qC
�
��g
�f

�1=2
sin.�C C ���/CO.�/

(4.54)D cR C qC
2cR

�
��g
�f

�1=2
sin.�C C ���/CO.�/

(4.87)�
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(4.87)� cR C .�C
R � ��

R/
�vyI
2�R

�
��g
�f

�1=2
sin.�C C ���/CO.�/

� cR C .�C
R � ��

R/

��vyI
�R
� ıa

�
for some ıa > 0 because�

��g
�f

�1=2
D 2

s
� � 1
� C 1 CO.�/ < 2

for � > 0 small enough and because sin.�C C ���// < 1 by (4.88). Use (4.92) to

get (4.93). �

PROPOSITION 4.21 Consider a as in (4.92). For � sufficiently small, the shock
through E�C

R with upstream data EvI and �I and tangent .1; a=�vyI / has vy
d
> 0.

PROOF: The shock through E��
R with tangent .1; 0/ is theR shock where v

y

d
D 0

by construction. v
y

d
for the new slope and location differs from 0 by

(1) moving the shock up to E�C
R from E��

R, while keeping it horizontal, and

(2) rotating it while holding it in E�C
R to make its slope the above.

Both of these changes are O.�1=2/, so it is sufficient to consider a first-order ex-

pansion using known derivatives. As before, we use uniformity in � # 0.

For (1), we use (2.42) (note vn
d
D Ev � En D �vy

d
, � D E� � En D ��): v

y

d
changes

by �
1 � @´

n
d

@´nu

�
.�C
R � ��

R/CO.�/:

For (2), we use (2.44) with En D .0;�1/:

@ˇv
y

d
D .@ˇ Evd / � En ny„ƒ‚…

D�1
C.@ˇ Evd / � Et ty„ƒ‚…

D0

(2.44)D ´t
�
1 � @´

n
d

@´nu

�
:

Here ˇ D arctan.a=�vyI / D O.�1=2/. So v
y

d
changes by

´t
�
1 � @´

n
d

@´nu

�
� arctan

a

�vyI
CO.�/

D
�
1 � @´

n
d

@´nu

�
´t

�vyI
aCO.�/

(4.93)�
´t �D��R

�
1 � @´

n
d

@´nu

��
�R

�vyI
ıa � 1

�
.�C
R � ��

R/CO.�/:
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With (1) and (2) combined, the change is

�
�
1 � @´

n
d

@´nu

�
�R

�vyI
ıa .�

C
R � ��

R/„ ƒ‚ …
D�1=2

CO.�/:

By (2.40) the first factor is � 2=.� C 1/. Therefore v
y

d
> 0 for �R D �C

R for �

sufficiently small. �

PROPOSITION 4.22 Let � 2 F be a fixed point of K. For C� sufficiently large and
for � > 0 sufficiently small, the upper part of (4.14) is strict:

�C < �
C
C .C D L;R/:

PROOF: Let a be defined as in (4.92). As shown in Proposition 4.19,  C a�
cannot have a local minimum at PL[fE�BRg. For �R D ��

R, we have . Ca�/2 D
 2 > 0 in E�R by (4.76) (for sufficiently small �), so the minimum cannot be in E�R
either (note that the domain locally contains the ray downward from the corner).

On the shock,  C a� D  I C a� , so

@t . C a�/ D @t . I C a�/ D EvI � Et C a

.1C s21/1=2
D v

y
I s1 C a

.1C s21/1=2
:

For a local minimum at the shock, we need @t . C a�/ D 0, so

s1 D a

�vyI
:

A global minimum, in particular �  .E�R/ C a�R, additionally requires that E�R
(as well as the rest of the shock) be on or below the tangent through the minimum

point, because  I and thus  I C a� are decreasing in �. Proposition 4.21 shows

that the shock through E�R with that tangent has v
y

d
> 0 for �R D �C

R . In the

minimum point the tangent has the same slope but is at least as high, so the shock

speed is at least as high, so v
y

d
D  2 > 0 is at least as high, in particular > 0,

too. But that contradicts a minimum (the ray vertically downwards from any shock

point is locally contained in �). Hence  C a� cannot have a global minimum on

the shock.

 n D 0 on A contradicts a minimum on A (by the Hopf lemma).

The equation (2.15) yields

.c2I � r�2/ W r2. C a�/ D 0
(a� is linear), so the classical strong maximum principle rules out a minimum in the

interior (unless  Ca� is constant, which means we are looking at the unperturbed

solution that has �R D ��
R < �

C
R).

On PL, for � D 1 we argue that  r � 0 on PL (in fact,  r < 0 except in

the unperturbed case ��
L D ��

R), as in the first paragraph of the proof of Proposi-

tion 4.19, so the Hopf lemma rules out a maximum at PL [ fE�BLg. In E�L, either
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�L � ��
L � ��

R < �
C
R so that  .E�L/ >  .E�R/ D  .E�C

R / due to  D  I on S and

 I
�
D 0 >  I� , or �L > ��

L so that  � > 0 in E�L, by the same analysis as for E�R,

if we rule out a minimum.

For � > 1,

. C a�/� D  � CO.�1=2/ (4.61)D vxL CO.�1=2/:
For C� sufficiently large and � sufficiently small,17 the right-hand side is negative:

vxL D 0 for ��
L D ��

R, it is strictly decreasing in ��
L (Proposition 2.12), and C�

bounds ��
L away from ��

R (see (4.7)). Again, no minimum is possible.

Conclusion: there is no  C a� minimum anywhere—a contradiction!

The argument for �L is similar, using the L picture (Figure 4.1). The wall still

passes through the origin, so the wall boundary condition �n D 0 implies  n D 0.

For � D 1 this implies that  cannot have minima at the wall (Hopf lemma). For

� > 1 we have to modify the argument at the wall since it is no longer horizontal.

A minimum of  C a� requires . C a�/n < 0 (where En points out of �), so

a�n < 0, so �n < 0 (by a > 0). But the wall slope is positive, so �n > 0 (for

outward En)—a contradiction.

The remaining arguments are as in R-coordinates. �

4.11 Density Bounds and Shock Strength
PROPOSITION 4.23 If � and ı� are sufficiently small (bounds depending only on
CP t ), then for any fixed point  2 F of K, the inequality (4.17) is strict.

PROOF: By Proposition 4.13,  and hence s are analytic. Thus we may use

Proposition 3.5, which rules out minima of � in � and (using Remark 4.7) at A,

unless  and s are linear so that � D �R is constant and (4.17) is trivially strict.

However, � 2 C.�/, so it must attain a global minimum somewhere.

Case 1. � attains its global minimum on S (excluding E�L;R). Then by Propo-

sition 3.13, the rest of the shock, including the corners E�L and E�R, must be below

the tangent in that point (see Figure 4.8). We assumed in Definition 4.1 that the

line through E��
L and E��

R does not touch or intersect the circle with radius cI cen-

tered in EvI . Hence if � is sufficiently small (depending on ��
L

), then by (4.14) the

shock tangent must have positive distance from the circle as well. Thus the global

minimum of � must be bounded below away from �I .

Case 2. � attains its global minimum on PL or PR . By (4.60) we know � up

to O.�1=2/.

Combining both (nonexclusive) cases, we see that for sufficiently small ı�
and �, depending continuously on CP t , �, and ��

L
, (4.17) is strict. �

17 We need C� > 0; otherwise the upper bound on � would become 0 as ��
L
" ��

R
.
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EvI

Radius cI

E�L tangent

shock

� minimum

E�R

PR

PL

FIGURE 4.8. In a � D �� minimum at S , the shock tangent must be

above E�L and E�R, so by (1.1) the minimum is separated from BcI .EvI /.
Therefore �� � �I .

4.12 Velocity and Shock Normal Control
PROPOSITION 4.24 If ıSA is sufficiently small, if Cvx and CvL are sufficiently
large (bounds depending only on CP t /, if CSn is sufficiently large (bound depend-
ing only on Cvx; CvL/, if ıvy and � are sufficiently small (ıvy bound depending
only on ı� and CSn/, and � bound depending only on CSn), and if ıCc is suffi-
ciently small, then for any fixed point  2 F of K, the inequalities (4.12), (4.33),
(4.18), (4.34), (4.35), and (4.15) are strict. Moreover,

(4.94) j�t j � ı	t (on S \ Bıd
.E�C /, C D L;R)

for some constants ı	t ; ıd > 0.

PROOF:

(1) For horizontal velocity (4.33), assume that vx attains a positive global

maximum (with respect to �) in a point E�0 on S . Since EvI D .0; vyI / with v
y
I < 0,

this means nx
�
< 0 (because ny

�
< 0), i.e., s1.�0/ < 0.

s1.�0/ can be expressed as a continuous function of vx.�0/ and E�0. The set of

possible E�0 is contained in the set of possible shock locations, which is precompact.

Therefore if vx has a maximumD Cvx�1=2 in some E�0 2 S , then

(4.95) s1.�0/ � �Cs1�1=2
where Cs1 D Cs1.Cvx/ > 0 is uniformly increasing in Cvx .

Since S and  are analytic (Proposition 4.13), we can apply Proposition 3.10

with Ew D .1; 0/. For a constant-state solution, (4.33) is immediate. Otherwise

(3.8) and (3.9) are satisfied. nx
�
< 0 means wn

�
< 0, so by (3.9) �

�
< 0, i.e.,

s11
�
> 0.
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Now we can use a similar argument to that for the density in Proposition 4.23

and Proposition 3.13 (see Figures 3.2 and 4.8): s11
�
> 0 implies s1.�/ < s1.�0/

for � < �0 near �0. On the other hand, for E�L D E��
L we have s1.�L/ � 0 by

construction of theL shock in Section 4.3, so for arbitrary E�L (satisfying (4.14)) the

continuous dependence of s1.�L/ on �L and by (4.14) shows s1.�L/ � �C2�1=2
for some constant C2 independent of �. If we pick Cvx so large that Cs1 > C2,

then s1.�L/ > s1.�0/ by (4.95) for any possible location of the left corner.

Therefore we can pick �a 2 .�L; �0/ maximal so that s1.�a/ D s1.�0/. Then

s1.�/ < s1.�0/ for � 2 .�a; �0/, so by integration

s.�a/ > s.�0/C s1.�0/ � .�a � �0/:
But that means the shock tangent in �a is parallel to the one in �0 but higher, so

� WD E� � En is smaller in �a. By (2.42), that means vn
d

is smaller in �a, whereas vt

is the same (parallel tangents). nx < 0, so vx
d

is bigger in �a. Contradiction—we

assumed that we have a global maximum of vx in �0.

Propositions 3.8 and 3.9 rule out local maxima of vx in � and on A, where we

use that � is analytic and that Ew is not vertical, i.e., not normal to the wall.

On PL [ PR we can use (4.61), increasing Cvx to > CPv if necessary (this

makes Cvx depend on CP t as well). Now (4.33) is strict.

(2) In any point E� 2 S , s1.�/ is a function of vx
d

, with sgn s1 D � sgn vx .

s1.�/ is continuous in E� and vx
d

, and the set of possible shock locations E� is pre-

compact, so (4.33) implies

sup ].En; EnR/ < CSn�1=2

where CSn D CSn.Cvx/.
(3) The arguments for (4.34) are analogous to those for (4.33): the transfor-

mation from R- to L-coordinates (Figure 4.1) turns En?
L into En?

R D .1; 0/ (and vice

versa). The wall is never vertical in L-coordinates, so Proposition 3.9 still applies

to vx . The other arguments are as before.

Moreover, (4.34) implies

sup ].EnL; En/ < CSn�1=2;
where CSn D CSn.Cvx; CvL/ now. (4.35) is strict with these choices.

(4) vy D 0 on A; vy D O.�1=2/ on PL [PR by (4.61). vy has no extrema in

� (Proposition 3.10); to show (4.18) it remains to discuss S .

(4.17) is in particular a lower bound for the shock strength, so jvn
d
� vnuj is

bounded away from 0. (4.35) bounds the shock normals away from horizontal.

Both combined imply (4.18) is strict if ıvy > 0 and � > 0 are chosen small

enough, with upper bound on ıvy depending on ı� and CSn, and upper bound on

� depending on CSn only.



1428 V. ELLING AND T.-P. LIU

(5) The shock normal bounds also imply (4.15) is strict, for ıCc > 0 and � > 0

sufficiently small(er), with the � bound depending only on CSn. Here we use (4.5):

(4.35) shows shock tangents are between En?
L and En?

R (up to O.�1=2), and these are

bounded away from arc tangents.

(6) Since the left corner is above the wall, the shock normal bounds imply

(4.12) is strict for � sufficiently small(er), with bound depending only on CSn and

for ıSA sufficiently small.

(7) Near each corner the shock normal bound bounds En away from the E�-

direction, so j�It j � ı	t and therefore (4.94) for some ı	t .

�

4.13 Fixed Points
PROPOSITION 4.25 For ıo sufficiently small, with bounds depending only on ı�
and CL, for Cd sufficiently large and ıd sufficiently small, with bounds depending
only on ı� and CL, and for � sufficiently small, with bounds depending only on
CP t , CL, and ı�:

If � 2 F is a fixed point of K, then (4.36) and (4.37) are strict.

PROOF: First, we check (4.36).

(1) For the wall boundary operator (4.28), the strict inequality (4.36) is obvi-

ous.

(2) The parabolic boundary operator (4.26) has Ep derivative giEp D r O�. We

use (4.31) with sufficiently small �, depending on CP t , to obtain (4.36) strictly

(with ıo D 1
2

, for example).

(3) For the shock boundary operator (4.27),

giEp D O�.1 � Oc�2r O�2/ EvI � r
O 

jEvI � r O j
� jEvI � r O j�1

�
1 �

� EvI � r O 
jEvI � r O j

�2�
� . O�r O� � �Ir�I /:

(4.96)

We exploit that for a fixed point we have O D  D  I at the shock, so

En D EvI � r O 
jEvI � r O j

D r�
I � r O�

jr�I � r O�j ;

where En is the downstream shock normal. Note that

jr�I � r O�j D �In � O�n
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because �It D O�t and �In > O�n.

giEp D O�.1 � Oc�2r O�2/En � jEvI � r O j�1Et Et � . O�r O� � �Ir�I /

O	t D	I
tD O�.1 � Oc�2r O�2/En � .�In � O�n/�1. O� � �I / O�t Et

(2.19)D O��.1 � Oc�2r O�2/En � . O�n/�1 O�t Et
�

D O��.1 � Oc�2 O�2n/En � O�t
�
. O�n/�1 C Oc�2 O�n

�Et�;(4.97)

En � giEp D O�EnT.1 � Oc�2 O�2n/En � En � Et„ƒ‚…
D0
� � �

D O�.1 � Oc�2 O�2n/ � ı0
o

for some ıo0 depending only on ı�, because (4.17) bounds downstream � away

from �I , and that means 1�c�2 O�2n D 1� .Lnd /2 is lower-bounded away from 0 by

the shock analysis in Section 2.4. jgiEpj is easily bounded from above, from (4.30),

so (4.36) is strict for a sufficiently small ıo, depending only on ı� and CL.

Now we check (4.37). For the parabolic-wall corners it is trivial: on PL or

PR, giEp D r O� is almost normal, by (4.31), by using a sufficiently small � (bound

depending only onCP t ); onA the vector giEp is normal; the corners enclose an angle

exactly equal to �
2

, so the giEp directions are independent (almost orthogonal).

For shock-parabolic corners, on PL and PR, respectively, again giEp D r O�.

On S , use (4.97). We normalize both derivative vectors and consider their cross

product:

r�
jr�j �

.1 � c�2�2n/En � �t ..�In/�1 C c�2�n/Etq
.1 � c�2�2n/2 C �2t

�
.�In/

�1 C c�2�n
�2

D � �t .1C �n=�In/
jr�j

q
.1 � c�2�2n/2 C �2t ..�In/�1 C c�2�n/2

:(4.98)

In the denominator, jr�j � p1 � � � c � c=2 for � � 1
2

. The square root is lower-

bounded by 1 � c�2�2n � ı > 0 for some ı depending only on ı� (see above).

(4.94) bounds the numerator away from 0.

Hence (A.9) is strict, for Cd sufficiently large, ıd and then � sufficiently small,

depending only and continuously on ı�. �
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PROPOSITION 4.26 If the constants in (4.6) in Definition 4.4 are chosen sufficiently
small (or large, depending on the conventions explained after (4.6)), then for any
� 2 ƒ, K� cannot have fixed points on F� � F�.

PROOF: Let � 2 F be a fixed point of K. We show that every inequality in the

definition of F is strict, so � 2 F .


 (4.30) and (4.10) are strict by Proposition 4.13.


 (4.12) is strict by Proposition 4.24.


 (4.17) is strict by Proposition 4.23.


 A fixed point satisfies  D O , so k � O k D rI . / > 0 cannot be true.

(4.21) is strict.


 (4.19) strict is provided by Proposition 4.15.


 Due to Proposition 4.15, L2 D 1 � � on each point of PL [ PR, so we

are in the situation of Section 4.7. Proposition 4.16 shows that (4.31) and

(4.32) are strict.


 (4.33) is strict by Proposition 4.24.


 (4.18) is strict by Proposition 4.24.


 (4.34) is strict by Proposition 4.24.


 Propositions 4.17 and 4.22 rule out �L D ��
L˙ ı�1� and �R D ��

R˙ ı�1�
if ı is small enough, so (4.14) is strict.


 (4.15) is strict by Proposition 4.24.


 (4.35) is strict by Proposition 4.24.


 Proposition 4.25 shows that (4.36) and (4.37) are strict.


 All inequalities are strict. �

4.14 Leray-Schauder Degree
We determine the Leray-Schauder degree of K on F for a particular choice of

parameters �: a straight horizontal shock (��
L D ��

R), with � D 1 (see Figure 4.9).

This problem is simple enough to compute the degree precisely, although the dis-

cussion is still difficult, especially due to the free boundary.

Another option is to introduce a homotopy to an even simpler problem (linear,

fixed boundary, etc.). But it would be necessary to prove a new set of a priori es-

timates for a family of arbitrary, unphysical problems, hence a lot of work without

useful side effects.

PROPOSITION 4.27 For sufficiently small �, for � D 1 and ��
L D ��

R, there are no
fixed points of K in F other than the unperturbed solution.

Remark 4.28. This result makes essential use of � D 1 as well as the considerable

simplifications from using the constant-state solution. At the time of writing we

do not know a way of proving uniqueness for � > 1 or MI < 1; this is why we

choose to argue by homotopy to � D 1, ��
L D ��

R.
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R

P
.0/
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.0/
L

E�.0/
R

E�.�/
R
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.�/
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L

EvI

E�.�/
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E�.0/
L

I

Wall A

Ev D 0, � D �L D �R

FIGURE 4.9. The unperturbed solution: a straight shock. This is the

asymptotic limit for MI " 1 while holding MI sin � constant. In this

limit, the wall corner moves to E� D .�1; 0/.

PROOF OF PROPOSITION 4.27: Let  be the unperturbed solution and s the

corresponding shock (s.�/ D ��
R for all �). Consider another fixed point  for the

same case � D 1 and ��
L D ��

R. Let s be its shock.

Consider E�-coordinates as defined by  D  .�; �/ (see Definition 4.4). Then

0 D .c2I � r�2/ W r2 D .c2I � r�2/ W r2. �  / (in �)

because  is constant. The classical weak maximum principle [17, theorem 10.1]

(the strong version applies but is not needed) implies that  �  must attain its

global minimum and maximum on the boundary. This excludes the bottom bound-

ary because we can make it interior by reflection (Remark 4.7).

Assume  has an extremum (with respect to�) in E� 2 PL[PR. Then  t D 0
there, so �t D 0 because E� � Et D 0 on PR and PL for ��

L D ��
R. So by jr�j2 D

.1 � �/c2 (this argument breaks down for � > 1), we get �n D �.1 � �/1=2c (the

sign is fixed by (4.32)) and finally

 n D �n C E� � En D �c
p
1 � � C cp1 � � D 0:

Again, there is a contradiction to the Hopf lemma. A reflection argument (Re-

mark 4.7) also rules out extrema (with respect to �) in E�BL and E�BR.

Assume  has a maximum >  on S . By  D  I on S , with  I strictly

decreasing in �, this corresponds to a minimum of s smaller than s D ��
R. Then

s� D 0 in that point, so graph s is horizontal there, like graph s. Since it is lower

than graph s, the shock S is weaker there, so by (2.42) we have  2 < 0. But this is

incompatible with a maximum.

Analogously, a minimum <  is ruled out.
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Assume  has a maximum>  in E�R. Then  D  I on S , and  I decreasing

in � means s.�R/ < ��
R, so  2.E�R/ < 0 by (4.76) for sufficiently small �. This

contradicts a maximum of  , because the negative vertical direction from E�R is

contained in the domain. After reversing some signs and inequalities we rule out a

minimum <  in the same manner. Analogous arguments apply to E�L.

Altogether we must have  D  . �

PROPOSITION 4.29 The unperturbed solution with � D 1 has index � ¤ 0 as a
fixed point of K from Definition 4.11.

PROOF: We use [30, prop. 14.5]. Since K is compact (Proposition 4.14), we

have to show that I�@K=@ . / has trivial kernel, where @K=@ . / is the Fréchet

derivative K at  D  . If this is true, then the index of  as a fixed point of K
is˙1.

We consider  D O D  in E� D .�; �/ 2 Œ0; 1
 coordinates (from Defini-

tion 4.4). We consider first variations  0 of  in these coordinates: i.e., consider

 C t 0 for t 2 R and evaluate @t at t D 0. Let K. /0, �0, .rE� /
0, etc., denote

the resulting first variations of other objects.

Assume that  0 D @K=@ . / 0 (which is K. /0). We have to show  0 D 0.

 0 D K. 0/ implies that the variations of the E� 7! E� transforms defined by  

and K. / (see Definition 4.4) are identical as well. We may write .E�/0 without

distinction. Moreover,  0 D O 0.
The following relations are all meant to hold for  D O D  and  0 D O 0

only.

We emphasize here that the variation  0 is taken in E�-coordinates. The varia-

tion of � D  � 1
2
jE�j2 is not (necessarily)  0� 1

2
jE�j2 because E� varies as well. We

deliberately vary  , not �, because r D 0 in all coordinates, allowing consider-

able simplification.

In particular,

.rE� /
0 D �rT

E� E�rE
 
�0 D �rT

E� E�
�0 rE
 „ƒ‚…

D0
CrT

E� E�.rE
 /0 D rT
E� E�rE
 0 D rE� 

0

and

.r2E� /
0 D

�X
k

@ 

@�k
r2E� �

k CrT
E� E�r

2
E
 rE� E�

�0

D
�X
k

@ 

@�k

�0
r2E� �

k C
X
k

@ 

@�k„ƒ‚…
D0

�r2E� �k�0
C �rT

E� E�
�0 r2E
 „ƒ‚…

D0
rE� E� CrT

E� E�
�r2E
 �0rE� E� CrT

E� E� r
2
E
 „ƒ‚…

D0
.rE� E�/0 D
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D
X
k

@ 0

@�k
r2E� �

k CrT
E� E�r

2
E
 

0rE� E�(4.99)

D r2E� 
0:

The same relations hold for O instead of  .

The Fréchet derivative of the interior equation is

0 D .c2I � .rE� O�/2/0 W r2E� O „ƒ‚…
D0

C.c2I � .rE� O�/2/ W .r2E� O /
0

D .c2I � .rE��/
2/ W r2E� 

0:

The resulting right-hand side is a linear elliptic operator without a zeroth-order

term, applied to  0. The classical maximum principle shows that  0 cannot have a

minimum in the interior.

On the parabolic arcs,

c2 D jrE� O�j2
linearizes to

0 D rE�� �
�rE� O�

�0 D . rE� „ƒ‚…
D0

�E�/ � �.rE� O /0 � .E�/0
�

D E� � .E�/0 � E�„ƒ‚…
DjE�jEn

�rE� 
0 D 1

2
.jE�j2/0„ ƒ‚ …

D.r2/0D0

CjE�j 0
n

)  0
n D 0:(4.100)

Here we use that variation of  may move E� but keep it on PR. (4.100) does not

admit any extrema of O 0 by the Hopf lemma.

By reflection across A, we can also rule out extrema on A by applying the

arguments for PL, PR, and � from above a second time.

For shock,  D  I D  I .0; 0/C vyI �, so

(4.101) �0 D .vyI /�1 0 on shock.

Moreover, � EvI � rE� O 
jEvI � rE� O j

�0
D �1
jEvI � rE� O j

�
1 �

� EvI � rE� O 
jEvI � rE� O j„ ƒ‚ …

DEn

�2�

„ ƒ‚ …
D.Et/2

rE� O 0

D �. O 0/t
jEvI � rE� O j

Et :

(4.102)
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Take the Fréchet derivative of (4.27):

0 D
�
. O�rE� O� � �IrE��

I / �
EvI � rE� O 
jEvI � rE� O j

�0

D �. O�/0rE� O�C �.rE� O�/0 � �I .rE��
I /0
� � En

C .�rE� O� � �IrE��
I / �

� EvI � rE� O 
jEvI � rE� O j

�0

D �c�2�� O�0 � rE� O� � .rE� O�/0
� O�n C �.rE� O � E�/0 � EnC �I .E�/0 � En

C .�rE� O� � �IrE��
I / �

� EvI � rE� O 
jEvI � rE� O j

�0

(4.102)D �c�2� � O 0 C E� � .E�/0 � rE� O� � .rE� O /0 C rE� O „ƒ‚…
D0

�.E�/0 � E� � .E�/0� O�n

C �.rE� O /0 � En � �.E�/0 � EnC �I .E�/0 � En �
.�rE�� � �IrE��

I / � Et
jEvI � rE� j

. 0/t

D ��c�2 0 C �.1 � c�2�2n/. 0/n � �c�2�n�t . 0/t C .� � �I /�0

� � � �I
jEvI � rE� j

�t . 
0/t

D �.1 � c�2�2n/. 0/n C
�

�I � �
jEvI � rE� j

� �c�2�n
�
�t . 

0/t

C .� � �I /�0 � �c�2. 0/
(4.101)D �.1 � c�2�2n/. O 0/n C

�
�I � �
jEvI � rE� j

� �c�2�n
�
�t . 

0/t

C
�
� � �I
v
y
I

� �c�2
�
 0

� D ��.1 � c�2�22/„ ƒ‚ …
<0

. O 0/2 C
�

�I � �
jEvI � rE� j„ ƒ‚ …

<0

C�c�2�2„ ƒ‚ …
<0

�
�1. 

0/1

C
�
� � �I
v
y
I„ ƒ‚ …
<0

� �c�2„ƒ‚…
>0

�
 0:(4.103)

Now consider the case of a positive maximum of K on the shock. Then . 0/t D
. 0/1 D 0, which also implies .En/0 D 0 by (4.102). (This is natural because then

we perturb the shock in a way that keeps it horizontal in that point, so the normal
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does not change in first order.) The two remaining terms are

0 D ��.1 � c�2�22/„ ƒ‚ …
<0

. 0/2 C
�
� � �I
v
y
I

� �c�2
�

„ ƒ‚ …
<0

 0:

For a positive local maximum of  0, we need . 0/2 � 0, but this is incompatible

with the previous equation. In the same way, a negative local minimum is ruled out.

Finally, consider a positive maximum of  0 in E�R. The parabolic condition

(4.100) means that rE� 
0 must be tangential to PR in the corner; for a maximum

we need that it points counterclockwise, hence into the upper left quadrant, unless

it is 0. On the other hand, the vector consisting of the . 0/2 and . 0/1 coefficients

in (4.103) points into the lower right quadrant (because �1 < 0 in the right corner),

so the scalar product is � 0. But the coefficient of  0 is < 0, so the right-hand side

of (4.103) is < 0—contradiction!

The same argument, with certain signs and inequalities reversed, rules out a

positive maximum in the left corner as well as a negative minimum in either corner.

We have ruled out that  0 has a positive maximum or negative minimum any-

where in the domain. Therefore  0 D 0, which is precisely what we had to

show. �

4.15 Existence of Fixed Points
PROPOSITION 4.30 For sufficiently small (or large, as explained after (4.6)) con-
stants in (4.6), K has a fixed point for all � 2 ƒ.

PROOF: Let t 2 Œ0; 1
 7! �.t/ be any path in ƒ. We have shown in Proposi-

tion 4.10 that U WDSt2Œ0;1�.ftg�F�.t// is open in Œ0; 1
�C 2;˛
ˇ
.Œ0; 1
2/, and that

its closure is contained in W WDSt2Œ0;1�
�ftg � F�.t/

�
, so

@U 	 V WD W � U D
[
t2Œ0;1�

.ftg � .F�.t/ � F�.t///:

By Proposition 4.14, K is a continuous and compact map onW . Finally, by Propo-

sition 4.26 we know K cannot have fixed points on V , hence on @U . U is bounded.

Thus we may apply property (D4*) in [30, sec. 13.6] to argue that the Leray-

Schauder index of K�.t/ on F�.t/ is constant in t 2 Œ0; 1
.
For �.0/ D .�; ��

L/ D .1; ��
R/, Proposition 4.29 shows that the Leray-Schauder

degree of K� is � ¤ 0. Since ƒ is path-connected (Lemma 4.3), there is a path

to any other � D �.1/. So K� has degree � ¤ 0 for all � 2 ƒ. Nonzero degree

requires at least one fixed point.18 �

18 We expect that there is only one, but we do not need this fact. For all we prove, there could be

more, e.g., two with index � and one with index �� (which would still yield a total Leroy-Schauder

degree �).
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DL

P
.�/
L

S

�

�R; EvR

�I ; EvI ER

P
.�/
R
P

�.�/
RP

�.�/
L�L; EvL

FIGURE 4.10. Extension from � to the entire domain.

4.16 Construction of the Entire Flow
PROOF OF THEOREM 1.1: For all �I ; cI 2 .0;1/ and M

y
I 2 .�1; 0/, for

each choice of � and ��
L

, and for all sufficiently small �, a separate ƒ is defined.

For sufficiently small constants in (4.6), Proposition 4.30 yields fixed points  

for all � 2 ƒ. Note that there is no lower bound on � except that ˛, ˇ, and

some other constants may deteriorate as � # 0. By Definition 4.4, Remark 4.6,

Proposition 4.16, and (4.44), the fixed points satisfy

.c2I � r�2/ W r2 D 0 in �.�/;(4.104)

j �  I .E��
C /j D O.�1=2/;(4.105)

j� � �C j D O.�1=2/;(4.106)

jr � EvC j D O.�1=2/ on P
.�/
C (C D L;R),(4.107)

� D �I ;(4.108)

.�r� � �Ir�I / � En D 0 on S ,(4.109)

�n D 0 on A,(4.110)

jE�C � E��.�/
C j D O.�1=2/ (C D L;R),(4.111)

where the O constants are independent of �. For regularity we have

k k
C0;1.�

.�/
/
� C1;(4.112)

k k
Ck;˛.K\�.�/

/
; jS j

Ck;˛.K\S.�/
/
� C2.d/;

where d WD d.K; OP .�/L [ OP .�/R / > 0
:(4.113)

for constants C1 and C2.d/ independent of �.

We extend each  to a function  .�/ defined on {W as shown in Figure 4.10:

we use �L and EvL in the region enclosed by the wall, L shock, and P
�.�/
L ; we use

�R and EvR in the region enclosed by R shock and P
�.�/
R , and �I and EvI elsewhere.
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In each of the four regions, .�/ is a strong solution of self-similar potential flow, so

we may multiply the divergence form (2.13) with any test function # 2 C1
c .{W /

and integrate over each of the four regions to obtain a sum of boundary integrals.

Set

DC WD P �.�/
C � P .�/C ; EC WD P .�/C � P �.�/

C ; C D L;R:
These curves have length O.�1=2/, so the integrals over them can be neglected

because .�/ has � uniformly boundedC 0;1 norm in each region. The two integrals

over S .�/ cancel because of (4.109). The two integrals over P
.�/
L \ P �.�/

L are

O.�1=2/ due to (4.106) and (4.107), and the same for PR. The integrals over each

piece of the wall vanish because �n D 0 in all cases. Therefore,

(4.114)

Z
{W

�.�/r�.�/ � r# � 2�.�/# d E� D O.�1=2/:

By (4.113) with a diagonalization argument, for every compact K 	 {W �
P

�.0/
L � P �.0/

R we can find a sequence .�k/ # 0 so that  .�k/ converges to  .0/

in C 0;1.K/. Moreover, the convergence is bounded in C 0;1.{W /, so we can take

� # 0 in (4.114) to obtain

(4.115)

Z
{W

�.0/r�.0/ � r# � 2�.0/# d E� D 0:

In addition, (4.108), (4.105), and (4.112) show that

(4.116)  .0/ 2 C.{W /:
Finally, by construction of  .�/,

(4.117) �.0/.sE�/; Ev.0/.sE�/! �I ; EvI .s !1/
for any E� 2 {W � f0g (note that any ray from the origin is either in W or enters

and stays in the I region).

(4.115), (4.116), and (4.117) show that �.t; Ex/ WD  .0/.t�1 Ex/ defines a solu-

tion of (1.2), (1.3), and (1.4).

Taking � " 1 and ��
L
.�/ # �xL.�/, we obtain a solution for every � 2 Œ1;1/

and ��
L 2 .�xL.�/; ��

R
. Note that ��
L " ��

R for � # 0 by Definition 4.1.

It remains to show that we have covered every tip shock that satisfies the con-

ditions of Theorem 1.1. Consider standard coordinates (Figure 4.1). By Propo-

sition 2.12, the shocks with some upstream velocity EvI D .0; v
y
I /, v

y
I < 0, and

density �I and downstream velocity parallel to the wall are uniquely determined

by ��
L. The choices with ��

L � ��
R cannot intersect the horizontal axis left of E��

L,

as their shock slope is negative by Proposition 2.12. The choices with ��
L � 0

are possible, but they are supersonic-subsonic at the intersection point (note that
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their other Ld D 1 point must be above the axis, as their slope is positive and

@Bcd
.Evd / is centered on the horizontal axis). Therefore, all supersonic-supersonic

tip shocks have ��
L 2 .0; ��

R
 after passing from original to standard coordinates;

there is only one such shock for each ��
L, and we have constructed a solution for

each that satisfies (1.1). �

Remark 4.31. It remains to discuss whether there are tip shocks that satisfy the

conditions of Theorem 1.1. Proposition 2.12, as discussed in the last paragraph of

the proof of Theorem 1.1, already settles that question. By Lemma 4.2, for any

M
y
I < 0, there is an interval .�xL.�/; �

�
R
 of ��

L so that (1.1) is satisfied. �xL < �
�
R,

so there are some nontrivial solutions. For small jM y
I j we have �xL > 0, so there

are cases where (1.1) is violated. But if jM y
I j is sufficiently large, then �xL D 0.

In particular, if M
y
I � �1, then BcI

.EvI / is below the wall (in R-coordinates), so

(1.1) is always satisfied.

Remark 4.32. In addition to mere existence, we obtain some structural information

in the proof:


 The solution has the structure shown in Figure 1.4, with L > 1 in the I , L,

and R regions, L < 1 in the elliptic region.


 The solution has constant density and velocity in each of the I , L, and R

regions.


 The solution is analytic everywhere except perhaps at the L;� and �;R

interfaces; it is analytic on each side of S .


 The shock is Lipschitz; it is straight between the I; L and I;R regions; it

is analytic between I and the elliptic region (away from the corners).


 Density and velocity are bounded.

It is expected that density and velocity are at least continuous. However, the meth-

ods developed in this article yield boundedness everywhere, but continuity only

away from P
�
L [ P �

R. Note that P
.0/
L and P

.0/
R cannot be classical shocks with

smooth data on each side, because the one-sided limit of L on the hyperbolic side

of the parabolic arcs isD 1 everywhere (> 1 is needed for positive shock strength).

In some points, continuity can be obtained a posteriori. For example vx � 0,

as implied by (4.33), yields continuity in �BR.

Some other structural information:


 The possible (downstream) normals of the curved shock portion are be-

tween the R and L shock normals (counterclockwise).


 The shock is admissible and does not vanish anywhere.


 Therefore, the shock is above the line connecting the arc-shock corners.


 In the elliptic region, the velocity vx tangential to the wall is between vxL
and vxR.


 In the elliptic region, the density � is greater than �I .

Additional information can be obtained from the inequalities in Definition 4.4.
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�1

�2
I 0

I

U
R

R0

x0

FIGURE A.1. Corner

Appendix A: Regularity in Two-Dimensional Corners

We obtain C2;˛
ˇ

bounds in a corner neighborhood from merely C1 (with a uni-

form C0;1 bound). Although our argument follows [23, theorem 2.1] without major

modification, we prefer to repeat it explicitly, because we need a uniformly large

neighborhood.

We keep the proof simple by restricting ourselves to smooth coefficient func-

tions and a priori C1 rather than C0;1 regularity.

PROPOSITION A.1

(1) Consider a point x0 2 R2 and polar coordinates .r; �/ with origin in that
point. Let R > 0. Consider two functions �1; �2 W Œ0; R
 ! Œ��

2
; �
2

 so that

�1 < �2. For j D 1; 2 let �j be the curve f.r; �j .r// W r 2 .0; R/g. Assume that
�j are C 1;
 curves (� 2 .0; 1
), including the endpoints:

(A.1) j�j jC1;� � C� :
Let I D f.R; �/ W � 2 .�1.R/; �2.R//g. Let U D f.r; �/ W r 2 .0; R/; � 2
.�1.R/; �2.R//g. Assume there is a � < 	 so that

(A.2) sup
r2.0;R/

�2.r/ � �
2
; inf

r2.0;R/
�1.r/ � ��

2
:

Consider a function u 2 C3.U / \ C2.U [ �1 [ �2/ \ C1.U / with

(A.3) kukC1.U / � Cu:
Assume that u satisfies

(A.4) aij .x; u.x/;Du.x//uij .x/ D 0 8x 2 U
(we use the Einstein convention in this section) as well as boundary conditions

(A.5) gk.x; u.x/;Du.x// D 0 8x 2 �k; k 2 f1; 2g:
Here aij and gk ,19 as functions of x, u, and ru, are assumed to satisfy

(A.6) kaij kC1.U	R	R2/; kgkkC1.U	R	R2/ � Cc :
19 Note that gk is defined for all arguments. See [23] for more general circumstances.
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Assume uniform ellipticity; there is a ıe > 0, independent of x 2 U , ´ 2 R,
p 2 R2, and y 2 R2, so that

(A.7) aij .Ex; ´; p/yiyj � ıejyj2:
Moreover, assume uniform nondegenerate obliqueness. There is a ıo > 0,

independent of x 2 �k , ´ 2 R, and p 2 R2 so that

(A.8) gkp .x; ´; p/ � n.x/ � ıo;
where n is the outer unit normal to �k (k D 1; 2).

Finally, let Cd be independent of x 2 U , ´ 2 R, and p 2 R2, so that

(A.9) kG�1k � Cd ;
where G is the 2 � 2 matrix with kth column gkp .x; ´; p/.

Then there are R0 2 .0; R/, � > 0, and Cr <1 so that

(A.10) jru.x/ � ru.x0/j � Cr jx � x0j� for x 2 U :
R0, �, and Cr depend only on Cd , ıe , Cc , ıo, Cu, C� , and R except R0 may also
depend on � .

(2) Assume in addition that

(A.11) kGkC1;� .U	R	R2/ � C� :
Then there are � > 0, Cr <1, and R0 > 0 so that

(A.12) kukC2;�
1C�

.BR0 .x0/\U;fx0g/ � Cr :
� is as before. R0 may have changed but has the same dependencies. Cr may

have changed and may depend on � now. � depends continuously and only on Cd ,
ıe, Cc , ıo, Cu, C� , � , and R.

PROOF: In this proof let C , Ci , ı, and ıi (for numbers i) represent constants

that may depend continuously and only on Cd , ıe, Cc , ıo, Cu, C� , and R (but

not �). C and ı may change from occurrence to occurrence. ı > 0 is meant to be

small, jC j <1 large.

Constructing the Interior of w. Define

v.x/ WD g1.x; u.x/;Du.x//CMw.x/:

Set

w.r; �/ WD r�f .�/; f .�/ WD 1 � �e�B� ;
with � 2 .0; 1

2

 and �;B > 0 to be determined. We take � so small that f � 1

2
.

In a given point of U , rotate coordinates to be angular and radial and let arr , ar� ,

and a�� be the corresponding components of aij .

aijwij D arrwrr C 2ar�.r�1wr� � r�2w�/C a��.r�2w�� C r�1wr/

D �arr�.� � 1/f C 2ar�.� � 1/f 0 C a��.f 00 C �f /�r��2 D
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D
�
arr�.� � 1/f„ ƒ‚ …

�0
C 2ar�.� � 1/„ ƒ‚ …

�2jar� j
��Be�B�

C a��„ƒ‚…
�0

.� f„ƒ‚…
�1
��B2e�B�/

�
r��2

� �e�B��B.2jar� j � Ba��/C �a���r��2:
We pick20

B D 1C 2 sup jar� j
inf a��

> 0

so that

1aijwij � .��Be�B� C �a��/r��2:
For any � > 0 we can pick a � D �.�/ > 0 so small that

(A.13) aijwij � ��B
2
e�B�r��2:

Boundary Condition for w. Let � and � be Cartesian coordinates that are nor-

mal and tangential, respectively, to a given point on �2 (then @� D @n and @� D @t ,
but higher derivatives differ). Let � be the outer normal and � point away from the

corner (clockwise from the � direction).

The angle between the radial and tangential direction is � C.R0/
 because of

(A.1). We can make R0 small to control it. Note that C can change from line to

line.

w� � .1 � C.R0/
 /r�1w� � C.R0/
 jwr j
D .1 � C.R0/
 /r��1�Be�B� � C.R0/
�r��1.1 � �e�B�/
D �B�e�B� � C.R0/


�
r��1

jw� j � .1 � C.R0/
 //jwr j C C.R0/
 jw� j � .�C C.R0/
B�/r��1:
For any constant T ,

(A.14) w� C Tw� �
�
B�e�B� � C.R0/
 � T .�C C.R0/
B�/

�
r��1:

D2u and D.g1/.

.g1/i WD @xi

�
g1.x; u;Du.x//

� D g1
pkuik C C .i D 1; 2/:

(C is a remnant of terms containing only u.x/ andDu.x/, which can be estimated

by Cu via (A.3).) Combined with (A.4) we have a system2
664
a11 2a12 a22

g1
p1 g1

p2 0

0 g1
p1 g1

p2

3
775
2
4u11u12
u22

3
5 D

2
4 0

.g1/1
.g1/2:

3
5C C:

20 We need full ellipticity later, but here only arr and a�� > 0 matter.
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The system matrix has determinant

a11.g1
p2/

2 � 2a12g1
p1g

1
p2 C a22.g1p1/

2

D ..g1p/?/TA.g1p/?
(A.7)� ıejg1pj2

(A.6)� ıeCc > 0:

Combined with an upper bound on the matrix (from (A.6)) we obtain that

(A.15)

2
4u11u12
u22

3
5 D D.x/r.g1/C C

where D.x/ 2 R3;2 with jD.x/j � C .

Interior PD Inequality.

(A.16) aij vij D g1pka
ijukij C .g1pkp`uj` C C/uik CMaijwij C C:

Again we use C to abbreviate terms depending on u and Du only, which are

bounded by (A.3).

Take @k of (A.4):

aijuijk C
�
a
ij

p`uk` C C
�
uij D 0:

Multiply by g1
pk and substitute into (A.16):

aij vij D �
�
C C g1

pka
ij

p`uk`
�
uij C .g1pkp`uj` C C/uik CMaijwij C C:

Apply (A.15):

aij vij DMaijwij C eij .g1/i .g1/j C ei .g1/i C C
for some coefficients eij .x/; ei .x/ D C . Use vi D .g1/i CMwi to obtain

aij vij C .�eij vj CM.eij C ej i /wj � ei /„ ƒ‚ …
DWqi

� vi

DMaijwij CM 2eijwiwj �Meiwi C C

(A.13)� �M�B
2

e�B�r��2 C CM 2jrwj2 C C

� �M�B
2

e�B�r��2 C CM 2.�2 f 2„ƒ‚…
�1
C�2B2e�2B�/r2��2 C C:
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We take M DM 0.R0/�� with M 0 � 1 to be determined:

aij vij C qivi �
�
�M

0�B
2

e�B�
�
r

R0

��
„ ƒ‚ …

.I/

C C.M 0/2
�
r

R0

�2�
. �2„ƒ‚…
.II/

C�2B2e�2B�„ ƒ‚ …
.III/

/

�
r�2 C C:

Given any M 0 and R0 2 .0; 1
, we take � (and �, which depends on it) so small

that the (III) term is dominated by the (I) term. Then we pick � even smaller so

that the (II) term is also dominated by the (I) term. In both cases we use that

.r=R0/� � .r=R0/2� because 0 < r � R0. Now

aij vij C qivi � �M
0�B
4

e�B�
�
r

R0

��
r�2

„ ƒ‚ …
�.R0/�2

C C:

Finally, we take R0 so small that the C term is dominated. We obtain

aij vij C qivi < 0 in U \ BR0.x0/.

Therefore v cannot have minima in that set.

Boundary PD Inequality. Take @� of the boundary condition (A.5) on �2 to

obtain

g2p	u�� C g2p
u�� C C D 0:
We plan to take a linear combination of this with the interior equation (A.4) to

obtain a new boundary condition of the form

C D .g1/� C T .g1/�(A.17)

D g1p
u�� C .Tg1p
 C g1p	 /u�� C Tg1p	u�� :

This problem can be written

	
y1 y2 �1


24 a�� 2a�� a��

g2p	 g2p
 0

Tg1p	 Tg1p
 C g1p	 g1p


3
5 ŠD 0:

It is solvable if and only if the determinant is 0, which is a linear equation for T ,

with solution

T D C

a�� � .g2p	g
1
p
 � g2p
g

1
p	 /
D C

a�� detG
:

The denominator is bounded away from 0 by (A.7) and (A.9), so jT j � C . The

solutions are

y1 D
g1p


a��
; y2 D

a�� .g1p
 /
2 � 2a��g1p	g

1
p
 C a��.g1p	 /

2

a�� detG
I
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clearly jy1j; jy2j � C . Therefore we are justified in writing C on the left-hand

side of (A.17).

Now:

v� C T v� DM.w� C Tw� /C .g1/� C T .g1/�
(A.14)�
(A.17)

M
�
�Be�B� � C.R0/
 � T .�C C.R0/
B�/

�
r��1 C C

DM 0.R0/��
�
�Be�B� � C.R0/
 � T .�C C.R0/
B�/

�
r��1 C C:

We can choose � and R0 so small that

v� C T v� �M 0.R0/�� �B
2
r��1e�B� C C for all r 2 .0; R0/.

The C term is bounded, so we can pick R0 so small that

v� C T v� > 0 for all r 2 .0; R0/.

This inequality implies that v cannot have minima on �2 \BR0.Ex/ because other-

wise v� � 0 and v� D 0 in the minimum point would cause a contradiction.

Conclusion of Corner C1;�. Let

I 0 WD f.R0; �/ W � 2 .�1.R0/; �2.R0//g;
U 0 WD f.r; �/ W r 2 .0; R0/; � 2 .�1.r/; �2.r//g:

We are still free to choose M 0 (� 1). Since Mw �M 0=2 on I 0, whereas

g1.x; u.x/;Du.x// D C;
we can take M 0 so large that v � 0 on I 0.
v must attain its minimum over U 0 on I 0 [ fx0g [ �1. On �1 the boundary

condition g1 D 0 yields v D w � 0. Therefore v attains its minimum v D 0 in x0.

Hence v D g1 CMw � 0 in U , so

g1 � �Mw � �M
0
2

�
r

R0

��
:

Moreover, we can apply the same arguments to v WD g1 � Mw by switch-

ing inequalities and signs and replacing “minimum” with “maximum” wherever

appropriate. Then

g1 � M 0
2

�
r

R0

��
:

The same arguments, but with the roles of �1 and �2 reversed, yield a bound

on g2. Now we argue that g1 and g2, as functions of ru with x and u.x/ held

fixed, are uniformly functionally independent, by (A.9). Therefore

jru.x/ � ru.x0/j � Cr�:
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Full C2;˛
ˇ

Result. This concludes the proof of (A.10). The C
2;

1C� result follows

from [23, cor. 1.4], where R is the distance from the corner, and

osc�R

Du

R
D R��1

by (A.10). �

Appendix B: Free Boundary Transformation

For a column vector x and a column-vector-valued function u, let ux be the

transpose of the gradient and uxx the Hessian. For “row” instead of “column” let

ux be the gradient. Boundary normals are row vectors.

PROPOSITION B.1 Consider a coordinate transformation y D y.x; u.x//.
(1) It is nondegenerate if and only if

yx C yuux
is regular. Let Cd be an upper bound for the norms of the matrix and its inverse
(for some fixed matrix norm).

(2) A quasi-linear equation

A.x; u.x/; ux.x// W uxx.x/C b.x; u.x/; ux.x// D 0
transforms into another quasi-linear equation. The first equation is elliptic if and
only if the second one is, and the ellipticity constants are comparable, up to con-
stant factors depending only and continuously on Cd .

(3) Consider a boundary condition

g.x; u.x/; ux.x// D 0:
As before we say it is oblique, with obliqueness constant ıo > 0, if

jngpj � ıojgpj;
where p represents ux . If

(B.1) D WD j1 � ux.yx C yuux/�1yuj � ıD > 0;

then the new boundary condition is oblique if and only if the old one is, and the
obliqueness constants are comparable, up to constant factors depending only and
continuously on ıD and Cd .

(4) Under the same assumptions, consider two functions g1 and g2 of ux .
The smaller angle between g1p and g2p is nonzero if and only if the smaller an-
gle between g1q and g2q is nonzero. They are comparable, up to constant factors
depending only and continuously on Cd and ıD . Here q represents uy .
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PROOF:

(1) Obvious.

(2) The new top-order coefficient matrix is

.yx C yuux/A.yx C yuux/T:
It is still symmetric positive definite, and the ellipticity constant bound is obvious.

(3) We omit the x and u.x/ arguments from the notation of the boundary con-

ditions.

u.x/ D u.y.x; u.x///:
Take the x derivative:

ux D uy.yx C yuux/ ) uy D ux.yx C yuux/�1:
If h.uy/ D 0 is the boundary condition in y-coordinates, then

g.ux/ D h.ux.yx C yuux/�1/:
Expressed with p and q:

g.p/ D h.p.yx C yup/�1/;
so

gp D
�
.yx C yup/�1 � p.yx C yup/�1yu.yx C yup/�1

�
hq

D .1 � p.yx C yup/�1yu/.yx C yup/�1hq:
With p D ux we have

gp D .1 � ux.yx C yuux/�1yu/.yx C yuux/�1hq:
Let n be the normal in x-coordinates, N the normal in y-coordinates. Then

n D N.yx C yuux/
jN.yx C yuux/j :

So

ngp D 1 � ux.yx C yuux/�1yu
jN.yx C yuux/j Nhq:

Clearly ngp ¤ 0 if and only if Nhq ¤ 0 as long as D > 0. The constant compari-

son is obvious.

(4) The two functions transform like the boundary condition above:

gkp D .1 � ux.yx C yuux/�1yu/.yx C yuux/�1hkq
where gk.ux/ D hk.uy/. Then clearly g1p and g2p are collinear if and only if h1q
and h2q are, and the constants are obvious.

�
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Remark B.2. We use the Sherman-Morrison formula: for an invertible matrix M ,

the rank 1 perturbation M C abT is invertible if and only if bTM�1a ¤ �1.

TakingM D yx C yuux , a D �yu, and b D uT
x , we see that (B.1) is precisely the

condition for yx to be invertible as well.
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