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ABSTRACT

The purpose of this investigation is to study theoretically the broad-
ening of the hydrogen Balmer lines observed in the radiation of high-tem-
perature partially ionized gases. The theory is based on the classical
path approximation for the motion of the perturbers. The general problem
of the broadening of a group of lines arising from transitions between
"nearly degenerate" states is considered. The method employed is not re-
stricted by the usual assumption of binary collision. The formalism is
subsequently specialized to the case where the broadening due to the in-
teractions between an ensemble of ions and a hydrogen atom can be treated
as a static perturbation. The validity of this approximation is discussed
in detail. The static ion field removes the normal degeneracy of the states
of the hydrogen atom. The high-velocity electrons present in the electri-
cally neutral plasma are then shown to cause phase changes and transitions
between these nearly degenerate states. The phase shifts due to adiabatic
effects and the collision-induced transitions due to nonadiabatic effects
are of comparable importance as sources of broadening by electrons. The
resultant profile caused by the electron-atom collisions is then averaged
over the static lon field splitting with the Holtsmark distribution func-
tion. ©Series expansions for the line profile are cbtained which reduce to
the Holtsmark expansion for zero electron density and to the dispersion
distribution for zero ion density.

The principal result of these calculations is that both ions and elec-
trons must be taken into account in the derivation of Balmer line absorp-
tion coefficients. This result is confirmed by experiments in the Shock
Tube Laboratory at The University of Michigan (E. B. Turner, Dissertation,
19563 see also ASTIA Document No. AD 86309, Univ. of Mich., Eng. Res. Inst.).

The broadening of the Lyman alpha line by electron collisions is con-
sidered in detail for comparison with other theories. For this line, the
nonadiabatic and the adiabatic effects are found to contribute in the ratio
one to two to the broadening.

OBJECTIVE

The objective of research under ARDC Contract No. AF 18(600)-983 is
the study of the hydrodynamics of and the spectra behind strong shock
waves produced in a shock tube.
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CHAPTER I

INTRCDUCTICN

This theoretical investigation of the broadening of hydrogen lines in
a high-temperature, partially ionized gas was motivated by experiments
performed in the Shock-Tube Laboratory at The University of Michigan.*l'u
These experiments showed that the broadening of the Balmer line HB was
greater than that predicted by the familiar Holtsmark?™! statistical theory
for broadening by static ion fields. In this dissertation the additional
broadening due to high-velocity plasma electrons is calculated in the
classical path approximation.*¥ It will be shown that the electron
broadening is comparable to the ion broadening at all densities and can-
not be neglected in a theoretical description of hydrogen line profiles.
An extensive comparison between the theory and the experiments has not
yet been carried out. However, the main features of the theory are con-
Tirmed by the existing data and it is probable that the additional
broadening observed can be ascribed to the presence of electrons.

The general conclusion that plasma electrons are an important source
of broadening of hydrogen lines is of some importance to astrophysics.
Until recently, hydrogen line profiles in stellar spectra have been
analyzed on the basis of the Holtsmark theory.5'7 From these calculations

one may derive the electron pressure and temperature structure of stellar

*These experiments were carried out by E. B. Turner and L. Doherty under
the supervision of Professor Otto Laporte.

**The perturber trajectories are treated classically.

1
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envelopes. Application of the theory developed in this dizsertation to
problems of this type by Aller, Jugaku and Elste  modifies in a non=-
trivial way the calculated pressure-tempersture diestribution in a typical
stellar atmosphere.

A survey of the existing literature on line broadening revealed that
there wasz no theory available with which one could calcurate a Balmer line
broadened by both ions and electrons. An carly theory by Spitzerg'll was
restricted to Lyman & since it did not take into account degenerate ground
states. FPurthermore, this theory was based on the binary collision assump-
tion and did not take into account the simultaneous broadening by both ions
and electrons. The results of Section ITI.15 constitute a generalization
of the opitzer theory.that ig applicable to Balmer line broadening Dby
electrons moving in a static ion field. The resulting profile is then
averaged over the static field with the Holtsmark probability distribution.
Other oalculationslo'lg of electron broasdening in the classical path approx-
imaticn either neglected nonadiabatic transitions or else took thnem into
account by rough order-of-magnitude estimates. These varlous theories
will be diccugsed in Chapter IV and compared with the theory developed

in Chapter 111 and Chapter V.

Chapter 11 containe a brief survey of hydrogen line broadening ex-
periments with shock tubes and high-tempersture arcs, TIn Chaplter III the
clasgical path theory is discussed in detail. Much of this material is
more or leas well known. For example, the adiabatic theory has received
much attentiori by many authors. Our contribution to this topic is a new
presentation in 3ection I1I1I1.12 and TII.13 of the validity criteria for

the phase=-shift and statistical approximations. Sections 111.1-8 and

1I1.10-11 contain background material necescsary for subsequent calcula-



tions. This includes a discussion of the validity of the classical path
approximation, the Stark effect in static homogeneous electric fields,
the Fourier integral expression for the line shape,* the principle of de-
tailed balance, the adiabatic approximation, and the method of averaging
over collisions. In Section III.9 an expression for the time-dependent
dipole matrix element uga(t) is obtained using first-order perturbation
theory. This result is used in Section IITI.14 to derive the frequency
distribution of spectral lines arising out of transitions between degen-
erate initial and final states. This formuls was obtained earlier by

L . . )
L who considered the pressure broadening of microwave and

Anderson,
infrared lines. Our derivation differs from Anderson’s and doeg not con=-
tain the assumption that the average duration of each coilision is small
compared to the average time between collisions. For long-range forces
the binary collision assumption fails, so this generalization is important
for hydrogen line broadening by fast plasma electrong. In Section IIT.15
a theory of the line wing is developed for the casze where a line is com-
posed of a composite of lines arising out of transitions between nearly
degenerate initial and final states. ‘This investigation was carried out
because the statistical theory is valid for calculating the influence of
the ion fields on the line wing., The static ion fields remove the normal
hydrogen degeneracy so that the plasma electronz interact with nearly de-
generate hydrogen atoms.

Chapter V contains a detailed application of the formal results of
Chapter IIT to the hydrogen lines. The electron broadening of ILyman <
wag worked out in detail in Section V.7 as an example. It was found that

the nonadiabatic contribution gives rise to two-thirds of the electron

*This discussion follows that of Bloom and Margenau, Ref. 13.



broadening of this line. Thege results are compared with a recent gquantum
mechanical theory15 in Section V.8.

In Section V.2-6 the validity range of the theory is discussed further
with numerical examples, errors in the velocity average are calculated,
the Debye cutcff is introduced,l6 the effect of close collisions is taken
into account, the adiabatic theory of electron broadening is analyzed in
detail, and new results are obtained for the adiabatic contribution to the
line shape. In Sections V.10 and V.12 the simultaneous effect of both ions
and electrons is calculated. DSeries expansions for the line profile are
obtained which reduce to the Holtsmark distribution for zero electron
density and to the dispersion distribution for zero ion density. Sections
V.11-15 contain a discussion of the relative importance of ion and elec-
tron broadening, nonadiabatic broadening by electrons, a preliminsry
comparison of the theory with experiment, and finalily some remarks on un-
solved problems connected with hydrogen line broadening in partially

ionlzed gases.



CHAPTER II

SURVEY OF THE EXPERIMENTAL STITUATION

1. Shock-Tube Experiments

Before taking up the theoretical problem of calculating hydrogen
line profiles, a short résumé of the experiments which stimulated this
research will be presented. Our attention will be focused mainly on
experiments pertaining to hydrogen line broadening in partially ionized
gases.

High-temperature spectra can be obtained in the laboratory by a
variety of techniques. However, of these the shock tube and certain arc
sources provide convenient means of obtaining fundamental data on line
broadening in high-temperature gases. In this chapter the results of
shock=-tube experiments will be briefly outlined. Recent arc data from
Kiel University will also be discussed and compared qualitatively with
the shock-tube results.

The shock tube provides a homogeneous high-temperature light source
in thermal equilibrium with which one can measure spectral line shapes
under known conditions in a luminous gas. The shock tube constructed by
E. B. Turnerl at The University of Michigan will be briefly described.
This shock tube consists of a high-pressure chamber containing a gas
(usually hydrogen and referred to as the driver gas) at pressures up
to 135 atmospheres, separated by a diaphragm from a low-pressure chamber
containing a gas (usually one of the rare gases) at a few mm Hg pressure.

A very strong shock wave is generated when the diaphragm iz broken. The

5
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gas behind this shock wave travels down the tube at a high velocity. Waen
the incident shock wave reflects from the end of the tube, the gas behind
it is brought to rest. The conversion of the kinetic energy of ordered
motion into thermal energy heats the gas behind the reflected shock wave.
By this means, temperatures up to 15,000°K can be eassily produced in the
gas which was initially in the low=-pressure chamber.*

The spectrum of the luminous gas is observed at the end of the shock
tube in the region behind the reflected shock wave. OSince the luminosity
is a transient phenomenon, it is desirable to measure the spectra as a
function of time. Thig is achieved by moving s film placed in the focal
plane of a spectrograph. The details of these experiments have heen pre=
sented in a dissertation by Turner.!

In order to study the Balmer linves, 2 small amount of hydrogen was
introduced into the low~pressure chamber togethor with the rare gag,

neon.** The Balmer lines Hy, Hg, H,, and B have been observed in this

')/ 2
- - o ..

way with widths ranging up to several hundred Angstroms, depending on

the strength of the shock wave. The neon lines appear sharp in contrast

to the hydrogen lines because hydrogen exnibite a first-order otark

effect, while neon does not. It is also obzerved that alternate members

of the Balmer series exhibit a double maximum, Figure 1¥** shows & typical

spectrum of the Balmer lines Hﬁﬁ H,, and H., which illustrates thie pe-

havior. The double maximum in He iz clearly in evidence. Hg is overex-

*3till higher temperatures can be obtained when an explosive mixture of
hydrogen and oxygen is ignited in the high-pressure chamber.

*¥Temperatures up to 15,000°K can be reached in neon with very little
continuum because of the high (21.5 ev) ionization potential of neon.

***¥Taken from page 107, Ref. L.
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posed. In Figure 2% a spectrum of HB as a function of time at a fixed
position in the tube behind the reflected shock wave is shown. The con=-
stant width over 100 psec indicates that the ion density is constant with-
in this time interval, implying that thermal equilibrium has been estab-
lished., The double maximum is clearly present in this spectrum. The
presence of a double maximum is to be expected from the selection rules
for hydrogen and the theory of the Stark effect since the odd members of
the Balmer series, i.e., Hg, Hg,etc., have no central Stark component in
an electric field., The absence of a central Stark component in the shock-
tube spectra demonstrates the existence of a first-order Stark effect due
to the presence of local electric fields of ions and electrons.

These general features have also been observed in the Oklahcma and
Cornell shock tubes. In Fowler's shock tube at Oklahoma; temperatures
up to 30,000 have been r'e_'portedol?-22 These high temperatures are pro-
duced behind shock waves generated by a high-voltage, low-inductance, elec-
tric discharge in hydrogen. Some recent experiments, initiated by the
author~ at the Naval Research Laboratory, indicate that still higher
temperatures can be attained in shock tubes of this general type. It
is also possible to study the high-temperature spectra of pure low-molec-
ular-weight gases (such as hydrogen or helium) by detonating high ex-
plosives in an atmosphere composed of the gas of interest. Seay and
Seelygu at Los Alamos studied helium line profiles and line shifts with
a shock tube of this type at temperatures near 20,000°K with ion densities
up to 10* em™®.

In addition to the great broadening of the hydrogen lines, the lines

of the rare gases used in the low-pressure chamber of the shock tube are

*Taken from page 115, Ref. 1.



100
MICROSECONDS

Figure 2. Time-resolved spectrum of H5 with corresponding wave-speed
photographs of the primary and reflected shock waves. The left-hand
wave-speed photograph was exposed with white light and the center with
only the light of HB.
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seen to be broadened and generally shifted to the red by perturbations
proportional to the square of the instantaneous local electric fields.
For example, half-widths and shifts of the order of 5A are observed in
the argon lines at ion densities in the neighborhood of 2 x 1017 em™2,
Figure 5* shows a typical spectrum of argon lines shifted and broadened
in the shock tube. The broadening in this case is attributed to the
second-order Stark effect due to the local electric fields of neighbor-
ing ions and electrons. Further experiments are needed to establish
conclusively the frequency distribution in spectral lines broadened by
the second-order Stark effect. An investigation of the red asymmetry

bpresent in many of the rare-gas lines would be of especilal interest and

should have a direct relation to the ion density.

2. High-Temperature Arc Experiments

It should be mentioned that hydrogen lines broadened by the Stark
effect have also been observed in arc spectra. Special attention will
be given here to the extensive experiments with a water-stabilized arc
performed at Kiel University by Professor Lochte-Holtgreven and his co-

11,25-30
255 In this work temperatures of 12,000°K and ion densities

workers.
— 17 -0 .- . N o .

of 5x 107" cm 3 can be easily maintained by circulating a stream of

water about an arc column. The Balmer line profiles obtained in this

way are in general similar to profiles obtained in the shock tube; how-

ever, there seem to be certain slight differences. The arc profiles do

not exhibit the Hg double maximum, while this feature is definitely present

*Taken from page 100, Ref. 1.

**see Chapter IV, Section 2, for detailed comparison with an Hﬁ profile.
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in the shock-tube profiles. It also appears that the dip between the
central maxima in HB is more pronounced in the shock-tube spectra com-
pared to the arc spectra. One interpretation of these differences is
that the shock tube provides a more homogeneous light source than does
the water-stabilized arc. In any event, the shock tube may be used to
verify and supplement conclusions reached at Kiel. At the present time,
the Balmer line profiles obtained by photographic photometry at Kiel are
more accurate than those obtained in the shock tube because longer ex-
posure times are possible with a continuously burning arc.* However,
the shock tube has the advantage that the ion density in the luminous
gas may be calculated from hydrodynamic considerations. Therefore,
various theoretical’results can be compared directly with observations
in which the ion density is a fixed parameter. From such experiments it
was concluded that ion broadening alone does not account for the width
of Hg in shock-tube spectra, and; in agreement with the conclusions of
Grieml (based on arc data), one must take into account the broadening
due to fast electrons present in a neutral plasma. These observations
are in general agreement with the theoretical results obtained in sub-

sequent chapters,51

*The luminosity in the shock tube lasts a few hundred microseconds.



CEAPTER III

THEORY

1. The Classical Path Theory of Line Broadening

In this chapter those aspects of the classical path approximation to
the theory of line broadening which are germane to the problem of hydrogen
line broadening by ions and electrons will be discussed in detail. 1In
the classical path approximation it is assumed that a quantum mechanical
system (atom or molecule) is perturbed by neighboring particles whose
trajectories may be described classically. This approximation has re-
ceived much attentioh in the literature, particularly in the adiabatic
limit where the effect of collision-induced transitions in the radiating
atom or molecule are neglected. However, this approximation has no justi-
fication for hydrogen atoms perturbed by high-velocity electrons, as will
be shown later. Nonadilabatic effects, which involve collision-induced

1L

transitions, have been considered by Anderson~  for radiation arising

from transitions between degenerate states with application to the prob-
lem of pressure broadening in the microwave and infrared regions of the
spectrum. Anderson's theory is restricted to the case where the dura-

tion of each collision is much less than the mean time between collisions
so that only binary collisions are important. The binary collision assump-
tion should be viewed with caution when long-range interactions cause the
broadening, as is the case for hydrogen lines broadened by ions and elec-
trons. A more detailled critique of other theories will be contained in

Chapter IV in order to facilitate a comparison with the results of this

chapter.
13



1h

The theory of the broadening of hydrogen lines is complicated by the
fact that both ions and electrons must be considered in different approxi-
mations., The ions move so slowly that they may be considered to be static
(statistical approximation). The electrons, on the other hand, move so
fast that one may neglect the duration of each collision (impact and phase-
shift approximations).* A discussion of the validity of these approxima-
tions will be presented in this chapter and also in Chapter V, where nu-
merical examples will be given. The theory is further complicated by the
fact that the "static" ions remove the normal hydrogen degeneracy by the
first-order Stark effect. In Section 15 of this chapter nonadiabatic
effects in nearly degenerate systems will be considered. The results of
this section constitﬁte a generalization of an earlier theory due to

9

opitzer,” who considered the transition region between the statistical
and impact approximations. This phase of the theory is still incomplete,

however, because of mathematical difficulties which arise near resonance

(i.e., rear the line center).

2. The Validity of the Classical Path Approximation

In trhe classical path approximation to the theory of spectral line
broadening, the simplifying assumption is made that the Hamiltonian may
be expressed as a.perfectly definite function of the perturbting particle
coordinates which depend on time. It is further assumed in practical cal-
culations that the particles move along prescribed trajectories with con-
stant velocity (see the next section). Because of this latter assumption,
one cannot treat by the classical path approximation inelastic collisions

which involve a large fraction of the kirnetic energy of the relative motion

*This does not mean that one must necessarily restrict the theory to
binary electron-atcm collisions. The phase-shift approximation is dis-
discussed in detail in IIT.13.
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of the perturber and radiator.

In order to talk about an individual ion or electron at all, it is
required that the gas be nondegenerate. The familiar Sommerfeld criterion
for nondegenerate gases is
(3-2.1) o A ,
where N is the number of particles per cublc centimeter and X is the mean

de Broglie wavelength

(3-2.2) o= —2
(gka)L/z
Since the mean distance between particles, r, is of the order N-l/s, the
inequality (3-2.1) may be written
(3-2.3) TR e

The Sommerfeld criterion for nondegenerate gases simply states that
the mean de Broglie wavelength be much less than the mean distance be=-
tween particlés; Substituting (3-2.2) into this inegquality gives
-2

2/3 -
s S / £°(7)
| KT TKT

(3-2.4)

T a typical case of astrophysical interest the temperature is of the
order lOéOK. For ion and electron densities in the range N = 1012 - 1018
em™2, the inequality (3-2.4) becomes
(3-2.5) m >> (107°7 - 107°%) gm.
This inequality is clearly satisfied by both electrons and ions.

ow since the de Broglie wavelength A is approximately A/mv, (3-2.3)
may also be written
(3-2.6) wr >>h .
This ‘nequality expresses the fact that the angular momentum corresponding

to collisions with impact parameters near the mean distance between par-

ticles must be much greater than the unit of angular momentum A. For long-
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range Coulomb forces it is just these collisions that are mainly respon-
sible for hydrogen line broadening by electrons. For large quantum num-
bers one may replace the angular momentum £% by the classical angular
momentum mvr. The quantum number I corresponding to the conditions of
temperature and density mentioned earlier is

2/3

(3-2.7) 1 = "n;l’“ n mth = 5000 - 50 .

Wit sucfi large quantum numbers it is not unreasonable to treat such
collisions classically.

These inequalities also satisfy the validity requirement of the WKB
approximation to the wavefunction descrilbing a passing perturber. If the
perturber interacts with its neighbors by an interaction of the type
(2-2.8) V(r) = comstant/r

thern it is reguired that the change in ¥(r) be small over a de broglie

wavelengtn 3V ()

(3-2.9) RIS
VAR JAvg

or

(3-2.10) o oo

FoleyBg has shown in some detail that a wave mechanical treatment of the
perturbers in the WKR approximation leads to the classical path theory of
line broadening if the classical angular momentum mvr is substituted for
.

From these considerations it appears that the classical path approxi-
mation may bhe employed for the calculation of hydrogen line profiles if
the broadening is assumed to ve mainly caused oy long-rarnge interactions

with ions and electrons.
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5,‘ A Model for the Trajectories

It is usually assumed that during the time of interaction the per-
turbers move in a straight line relative to the radiating atom, with con-
stant velocity. If v and p are the velocity and distance of closest ap-
proach of the perturber, then the interaction distance is given by
(3-3.1) r2(t) = VP2 + o,
where time is measured from the time of closest approach. Consider in-

teractions Hy(t) of the type

ey - P L An
(3-3.2) Hi(t) = Tt T (w2 + p2)njz

A A
(3-5.3) Hléo) " B " T
so that
o/n /. £ P
(5'50)'*) ' tl/2 = *+ (2 /Tl - l)i/"" v ~ v

The duration T3 of the collision is of the order of the width of H,(t)
at half its maximum value

~

<&

(3-3.5) T4 o~ 2t

1/2
The characteristic time 74 will appear frequently in later arguments
and is simply the time during which the principal contribution to the

perturbation by a passing particle (e.g., ion or electron) takes place.

L. The Stark Effect in a Homogeneous Electric Field

For sufficiently distant collisions the electric field due to an ion
or electron is nearly homogeneous over the radiating atom. If the Bohr
radius n2ay is taken to be a measure of the linear size of the radiating

atom, then the field is essentially homogeneous if the interaction distance,
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. 2
r, is much greater than n aq

r >> n%a 4,8 A Fy (n=3)

]

(3-k.1) = 8.4 AHg (n=h)
- 15 AE, (n5) .

Since most of the interactions take place with r i’lOO R for the electron
densities with which we are concerned here, the effect of inhomogeneous
fields is probably not too important. This is confirmed by more gquantita-
tive considerations due to Margenau and Meyerott55 and Spitzero9

Before embarking upon a discussion of the line broadening theory we
will first review briefly the theory of the Stark effect in a homogeneous
electric field. The theory is, of course, basically different for de-
generate systems (hydrogen) and for nondegenerate systems. It is included
here because it serves as the foundation for later calculations and dis=-

CusSs10n,

5. Tne First-Crder Stark Effect in Hydrogen

Consider now a hydrogen atom in an external electric field of strength

¥ in the z direction. The potential energy due to this field is -e¥Fz.

The total Hamiltonian is, therefore,
(3-5.1) L =

SchrSdingerBu and Epstein55 have shown that the Schrddinger equation with
this Hamiltonian is separable in parabolic coordinates and that <eFz> is
a diagonal matrix in this representation. The calculation of the Stark
shift in the energy levels 1s then reduced to a simple calculation of the

z matrix.

*The following presentation follows that of Condon and Shortlev, pages

398-399, Ref. 36.
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The Schrddinger equation,
(3-5.2) B = TV,

with the Hamiltonian (3-5.1) and the following well-known change variables

NE1E2 Cos @

X =
y = NEit2 Sin ¢
(3-5.3) _
z = % (E1-£2)
Vo= Fa(t1)Fa(kz) © ()
reduces to the following:
( 4 eim¢
5-50 0] =
N 21
and
5o5.5) 2 . iV b [m spefs LT L Lem2 g
. gg:' (Ei gg" = " op2 ht:i + 2e Bi - ',5;1’{; 5 eFEq Fs
i 5 .
ere 1= 1,0

If we let 1y = £s/nag, where a, is the first Bonr radius and n is the
principal quantum rumber, then for the electric field strength ' = O,

equation {5-5.5) can be solved in terms of Laguerre polynomials if the

usual way. The solution is

i - DL gy
/ i ™ ¢ _ 2 1?_ . A
(3-5.6) Fi(es) = e Lng) s
Ki + im‘

where ki and ks are the parabolic gquantum numbers which satisfy the re-

lations 1 1
. ki + §\m\ + 5
(3-5.7)  n = kyi+ke+|ml +1;8: = : =

-+ n

Finally, with the correct normalization, the wavefunction which charac-

terizes the state n, ki, m is

_ Okl Kol L/2
Vnkim = (a% nt (k1 = 18107 (ks + \m\):]e)

(3-5.8 (11) Fa(na) S
3-5.8) ° Fi(ny) Falne o
1 L o~
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The first-order change in the energy levels of a hydrogen atom due to the
electric field can now be calculated using the properties of the Laguerre
polynomials:

(3-5.9) AE = - eF < nkum|z|nkim > = g n (k1 - ka) eaF .

In the classical path appfoximation the field strength F at a partic-

ular time depends orn the instantaneous configuration of the assembly of

ions and electrons, namely,

. T L2 Loy
(3-5.10) Fo= oy )y 5 (Fedy

th

. + Y
where (Fi) and (Fe)k are the Coulomb fields of the ion and kt elec-

J

tron at the radiating atom.

-
14

(3-5.11) (fl)J - e;J(i)/[rj(i)]B 9 (?e)K = =€ k\e)/{rk

=

()@ .

Because of the time-deperndent nature of the interaction distance, these
fields are a function of time

(e)
trajectory Ve {tg-t)

-§— perturber

#(e),
Mk )&t)

radiating atom

so that
-;K(v)(t) _ pl{(6) 3 Vk(e) (t - tk)
5 (e))° A (e)E L (e)® 213/2
EAU ISR R () RS
(3-5,12) Xkﬁe . 3k(e) = 0.
With (3-5.12) we have .
e oy e) , Tele) (¢ - t)
-5.1 JFe = :
(5 5 5) k {gpﬁ]Z + [V]:e{ (t - tk)]2}3/2

and a similar expression for the individual ion fields. Substitution of

(3-5.13) into the expression (3-5.1C) for the total instantaneous field
->
F is seen to have a very complicated time dependence. However, because
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of the relatively high and low velocities of the electrons and ilons, re-
spectively, it is possible to approximate the interaction Hemiltonian
considerably for certain ranges of temperature and density. These approx-
imations will be discussed at length in connection with our discussion of
various approximations to the general theory of spectral line broadening

in the classical path approximation.

6. Second-Order Stark Effect for Nondegenerate Systems

If the electric field is in the z direction and uy, I1s the z component
of the atomic electric moment, then the apprcpriate Hamiltonlan is
(3-6,1) H = Hy=p, F
where H, is the Hamiltbnian for the unperturbed atcm. Now for nonde-
generate (nonhydrogenic) states having definite parity, the diagcnal
matrix elements of ., are zero since p, has odd parity.* The shift of
the unperturbed energy levels must then be calculated by second=crder
perturbation theory and is given by the welleknown formula

EnpriEEntp g
(3-6.2) AR = FZ2 nbm Z? " < nim luz| n'e'm® ><n*i'm* lug! nim >

b4
n's'm? Engm = Enrgme

where the E, ;. are the unperturbed eigenvalues of the unperturbed hamiitonian,
Eqo The above expression defines the polarizablility & of the atom, which

may be calculated if one has sufficient knowledge of the energy levels and
wavefunctions of the unperturbed atom. In the classical path approximaticn

o is left as a phenomenological parameter in the theory. Fortunately, how=
ever, a great number of experimental Stark effect data are avallable for

many spectral lines from which @ may be determined empirically. These

remarks apply only for weak electric fields that do not cause the normaelly

¥See, for exampie, Condon and Shortley, page 410, Ref. 36,
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unperturbed, nondegenerate levels of interest to overlap.

7. Quantum Mechanical Basis of the Classical Path Approximation
The intensity distribution I(w) (energy radiated per second) of
dipole radiation from a classical charge distribution with a time-de-
pendent dipole moment n(t) is proportional to the absolute value squared
of the Fourier transform of the dipole moment.*
lim 2w* 1 2

(3-7.1) I(w) = Tow 33 T L/‘ d‘cu(t)emiwG i
0

The formal quantum theory can be developed in a variety of ways. According
to the correspondence principle, the dipole moment u(t) is taken to be a
quantum mechanical operator. The intensity distribution is found by
taking matrix elements of this operator between the initial and final
states involved in the radiative transitions. The initial states must,
of course, be weighted with appropriate weighting factors (i.e., the usual
Boltzmann factors for a system in thermal equilibrium}). AndersonltF has
shown that either correspondence=-principle arguments¥*¥* or a quentum theory
for spontanecus radiation leads to the same gquantum mechanical generaliza~-
tion of the classical formuia (3-7.1). Bloom and Margenau15 also obtained
a similar result by considering absorption processes according to semi-
classical radiation theory. Since these results form the starting point
for the theory presented in this dissertation, the derivation of Bloom
and Margenau is given in Appendix A,

The results of Appendix A are summarized in the remainder of this

section. The intensity distribution is found by calculating the proba-

¥See, for example, Ref. 37, pp. 125, 193.

**Following the ideas of Klein (Ref. 38) and Pauli (Ref. 39).
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bility of a radiative transition between states of a radiating molecule
or atom perturbed by interactions with neighboring particles (molecules,
atoms, ions, or electrons), as well as by a thermal radiation field.
Standard time-dependent perturbation theory is used throughout. If Hj
is the Hamiltonian of the unperturbed atom or molecule and Hi(t) is the
Hamiltonian which describes the interaction of the radiator with the
assembly of perturbers, then there is a set of wavefunctions’in(t) which
describe the time development of the perturved molecule as it coliides
with the perturbers. The’in(t) satisfy the Schrodinger eguation

(3-7.2) i (8) = [ + T ()1 vn(t) o

H,(t) contains explicitly the coordinates of all the particles in the
gass In terms of the wavefumctionsfﬁn(t)j it is shown in Appendix A that

the intensity distribution for dipole radiation is given vy the expression

=
n

) 2ur* 1 - 7 fn c -1t
T _ : h s 7 ) 3 = ; Chd
i \,u\)) = Zge3 <€%Xp k_lg -l) %ﬁ Lc‘m(\)) = *)t’}((‘)} ]%_:;Zl T J dtr*nm(t )e
ﬁ_ - o}
T . 2
al s +1wt
{3-7.3) +] dtppy (t) e .
S Avg = average over collisious

v

where ugp(t) is a dipole matrix element defined by [¥%,(t),u%,;(t)] ; and
op(C) and p,(0) are Boltzmann factors for states of the radiator having
unperturoed energies E% and B, respectively., The term containing pp(0)

in the above sum involves transitions from the states m*n and serves to
populate the state n. The second term involves transitions n*m and serves
to depopulate the state n. If Ey is greater than E,, then the m»n tran-
sitions correspond to induced emission while the n+m transitions correspond

to induced abscrption. If Ej > By, then the opposite is true. The sum

over all states m and n therefore includes all processes which involve
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induced absorption and emission. Spontaneous emission is, of course, not
included since we have not considered the interaction of the radiating
system with the electromagnetic vacuum. It can be shown easily that 1if
EQ > EQ, then the term in (3-7.3) containing (-iwt) produces resonance
while the term with (+iwt) is norresonant and can be dropped in comparison
to the resonant term. In the microwave region the nonresonant term Is
sometimes important but will not concern us here for our considerations
of the optical region of the spectrumo' The expression (5—705) is to be
compared with the classical formula (3-7.1), which has the same form

The averaging process dencted by tre subscript Avg in {3-7.3) means that
one must average over the positions of the perturbing particles since
this expression was derived with a definite configuration of perturbers
in mind {[a definite time-dependent perturnation 7 (t)]. The configura-

tion average will he deait with in detail in subsequent discusslions.

8, The Principle of Letailed Balarce

For an atomic or molecular system irn thermal eguilibrium with a

radiation field, the energy emitted and abscrbed ny the watter is related

by Kirchoff's law., This law is emplogea directly in the theory of radia-
tive transfer in stellar atmospheres, for example, to relate the coefficlents
of emission and avsorpticn when one or the other is calculated theoreticallys
Towever, it is knowr® that tie line broadening theory under discussion here
apparently does not satisfy the principle cf detailed balancing at individ-
ual frequencies. It is of some importance to reconcile this difficulty be-
cause the application of the semiclassical radiation trheory for induced ab-
sorption and emission or the spontaneous emission theory of AldersonilL lead

to nontrivial numerical discrepancies in the calculation of the shape of

*See, for example, Eloom and Margenau, Ref. 12



highly broadened hydrogen lines. The difficulty seems to be connected with
the choice of the Boltzmann factor, p,(0) and p,(C), in the intensity dis-
tribution (3-7.3). 1In this section it will be demonstrated that the

Boltzmann distribution involves (ES + fidwy,) instead of the unperturbed

n
energies Eg and that this leads to detailed balance. The quantity hdw,
is the perturbation energy of the state n at the initial time t = O. The
proof is restricted to the "static" 1imit* where the perturbers move so
slowly that the perturber configuration does not change appreciably during
o y=1
times of the order (Aw,) .
o Lo ) . ‘s . .

Van Vleck and Margenau showed that the frequency distritution in
the spectral lines of a classical harmornic osciliator ard a Debye rotator
are the same in abtsorptiorn and spontaneocus emission if the radiation density
oveys the Rayleigh-Jeans law. These calculations were restricted to the
strong collision theory where each collision is assumed to interrupt the
radiation process completely (i.e., destroy all phase relationsnips). It

was also assumed that the time duration of =acn coilision is infinitely

m

short,

Tet us consider here an assemuly of hydrogen atoms 1n thermal equilib-
rizm with a Planck radiation field., Suppose that the troadening of the
hydrogen Ealmer lines is due to the presence of lons only (the electron
broadening will reguire another argument). It is now assumed that the
ions can be treated as if they were stationary so that the instantaneous
perturbation of the hydroger atoms car be taken to be time independent.

Let the time-independent perturbation of the state n and m be An and

Awy measured in units of circular frequency. The perturbation energy,

of course, depends on the instantaneous configuration of the stationary

*See Section 12 of this chapter for a more detailed discussion of the
static or statistical limit of the theory.
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ions. Using the results of Section 12, the statistical (static) limit

to the theory reduces to the average of a delta function
T

(3-8.1) 1im 1} | atus (t)e
Tree T| J
t,=0

=
-iwt B 2

[t (0)] 7 [6(0-aRy-ton+aay,) Iave s
Avg
where wgm is the unperturbed frequency corresponding to the transition
n*m and hAw, is the perturbation energy of the state n. Since in the
static limit the perturbers do not move during the times of interest,
the instantaneous energy at the initial time 1,:0is taken to be constant.
The density matrix¥* at {y=0 therefore involves the total energy, including

the perturbation energy, and is given by

— e»(ES#ﬁA@n)/kT
(3-8.2)  a%(0)a,(0) = p,(0) By, = ——5T) 8 2

where Z{t) is the sum over states. It will now be shown that with these
Foltzmann factors one obtains detailed balance at all frequencies.

With (3-8.2) the intensity distribution (3-7.3) becomes in the static

K3 K —10
Timit Botaey)  (E94mawyg)
() = = 'Hnm(u)l e KL - e KU
—=
> e /éxpég - ]) 7(T)
(3-8.3) ]
o - Ppp= b6y + Amm) Avg *

Anderson's theor’yl)+ for spontaneous emission yields the following result

for the intensity Ig{w) irn the static limit:

‘ 2

4

Subtracting the two expressions for I{w) and Is(w) vields

*See Appendix A.



[Fp - B - A{Awg - Awy))

57 i (0)] . -
St [1(@) - Ts)] = %e (Fo/RT - 1) -1
(3-8.5)
e-(E%+hAwm)/kT
. A6 . 3w - (wﬁm + by = day) ] -

Now since the delta function is nonzero only for ® = wg

m + A“h,‘ Amm where

ﬁ.aﬁm = Eg - E%, one observes that the right-hand side of the above ex-
pression is identically zero., Therefore, the spontaneous emission Just
balances the induced absorption and emission.

For very wide hydrogen lines the correction to the Boltzmann distri-
bution due to the static ion field can lead to a measurable asymmetry in
the line profile. For an emission line, the ratio of the Boltzmann factor
corresponding to the red and blue wing is exp - (BﬁAmn/kT)o For T =
10,00C"K and Ao, = 5x1013 (502\ from the line center), the ratio of the

red t

O

biue dnténsity due to the corrected Boltzmann factor is
o~ (2hhy ) /KT ~ 1.1,

so that the asymmetry is about ten percent. For wider lines asymmetry is
correspondingly greater, i.e., for lines 200A wide, such as are observed
ir white dwarf stars and in the shock tube, the asymmetry is about 17
percent due to this cause. The existing experimental data are not accurate
enough to verify these conclusions, although the shock tube is a promising
instrument for the investigation of asymmetries in the Balmer lines.

Further work is needed to generalize this discussion to the case of
time-dependernt perturbations. It is not clear at the present time what
one should take for the denmsity matrix p,(0) at the initial time t = O.
For narrow lines, however, one may safely assume that pn(O) is very nearly
the Boltzmann factor corresponding to the unperturbed energies, although

the theoretical situation is not completely satisfactory. The difficulties



are closely related to the problem encountered in deriving a statistical
transport equation from quantum mechanical perturbation theory, where it
is usually assumed that at some initial time the density matrix is diag-
onal in the unperturbed energy. Although this problem has been dealt
with extensively in connection with transport theory, it has been largely

ignored in the theory of spectral line broadening.

9. Evaluation of upm(t) by Perturbation Theory

Let us consider the broadening of a spectral line originating from
a transition between an initial degenerate state i1 and a final degenerate
state f. In hydrogen the degeneracy is Enz, where n is the principal
quantum number. For nonhydrogenic levels of other atoms there 1s also
a (2J+1)-fold Spatiél degeneracy in general. The exact calculation of
the line broadening would involve the solution of a Schr&diﬂger equation
with a time~dependent perturbation due to the entire assembly of fast-
moving electrons and slow-moving ions, (We will amplify later the exact
meaning of fast and slow.) It would then be necessary to calculate the
time-dependent dipole matrix ugm(t) with the wavefunctions obtained from
the appropriate Schrodinger equation. Finally, one would have to sub-
stitute this matrix into the formula for the intensity (5-705), perform
a statistical average over all configurations of the ions and electrons,
and finally do the resulting integrals. The approach to the problem as
outlined above is prohibitively difficult, so further approximations are
required to obtain quantitative results.

In the following discussion, for convenience we drop a factor
haﬁ[}cs(exp'ﬁw/kT-l)]'l in the expression (3-7.3) for the intensity distri-

bution and focus our attention on the term
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T . 2
(3-9.1) me(o)zmn(m) =Z o (0) s 1 f o) T s
m m o Avg

Induced absorption from all states m which serve to populate the state n
are taken into account in the above sum since it refers to transitions
for which E; > Eg and since initially the state m is occupied. The term
pm(O) is the appropriate Boltzmann factor. The above expression defines
the quantity I, (w), which is not to be confused with the total iutensity
T{w) in (3=T.3). For simplicity we will refer to Imn(m) as the absorption
coefficient in the following sections.

Let us now cconsider a group of spectral lines arising from transi-
tions between an initial state i with substates O and a final state T
with substates a. In the remainder of this work Greek letters refer to
substates of the initial state i and Roman letters to substates of the
final state f. Iﬁ (3-9,1) the index n » (a,f) and m » (¥,i). Summing
over all transitions, the absorption coefficient can now be written as

a sum over the degererate substates of i and f

-3
P

(3-9.2) Tir(e) = & Pal®) 1im1 det e-iwt(if qi) T 0) 1)
O,a AVE g

The expression'lg(t) describes the time development of a state function
which at t = 0 reduces to ¢£, the wavefunction corresponding to the energy
ng of the a substate of the unperturbed state f. These time-dependent
wavefunctions satisfy the time-dependent Schrgdinger equation (3-T.2).

In the following analysis it is assumed that the time-dependent perturba-
ticn does not cause transitions between the states 1 and fo In the case
of hydrogen line broadening this assumption means that collision-induced

transitions between states of different principal quantum number are



neglected. This is a fundamental limitation of the classical path theory.
The energies involved in the collision-induced transitions must be small
compared to the kinetic emergy of the perturbing particles so that the
perturber velocity is not changed appreciably during a collision. A
more exact gquantum mechanical theory would be required to treat inelastic
colliisions where the energy changes are large.
. — g f i
Tt is now convenient® to expand the wavefunctlons'xé(t) andﬁel(t)
in terms of the finite orthonormal set of functions ¢£(t) and Q;(t)
which satisfy the instantaneous Schr%dinger equation
. s i
gL(t)) BL(t) Pa(t)
(3-9.3) (B + Ea(t)] = | £
; # () il (4) ¢ (t)
a a a
where the time is taken to he a parameter in the stationary Schrodinger
equatior. The set of functions ¢;(t) and ¢£(t) is chosen to be the un-
Il * s - . N - - . - .
perturbed set {, and ¢£ at t = U, This implies that at some initial
time the time-dependent perturbation H-{t) is effectively zero. We have
seen already in our discussion of the principle of detailed balance

(Section ITI.8) tnat taking E.(t) to he zero at the initial time is in-

/
correct in the "statistical limit" where ¥:{t) is a constant for the

times of interest in the Fourier integral expression for the intensity.
However, it was also shown that the error introduced was small for lines
that are narrow compared to the unperturbed energy difference EU(O)—Ea(O)°
For perturtations that vary rapidly in time (eﬁg,, fast electron collisions)
one must average somehow over the different possible initial conditions in

a more precise theory. Taking H.(t) to be zero at t = 0 avoids these

difficulties which are iuherent in time-dependent perturbation theories

*See, for example, L. I. Schiff, Quantum Mechanics, p. 208, McGraw-Hill

(1949).
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where the perturbation is never zero; e.g., in a gas where there are long-
range interactions so that a radiating atom is never isolated. For narrow
lines, however, the assumption that H,(0)=0 probably does not lead to
serious errorss

Dropping the 1 and f superscripts on the wavefunctions and remem-
bering that the Greek and Roman letters are assoclated with the substates

i and f, respectively, we can now write down the expansions for‘xa and

’*'a: . )"\'1: )
. - L 1 Fg(tr)dt
\ o A.o B
Yo lt) = Taa(t) Falt) e 0
R
(3-9.1) o
I NGNS
N (E) = ;ﬂCba(t) {(t)e Blo "

Substitution of (3=G.h) into the Schrodinger equation (3-7.2) and using

(3-9.3) yields an expression for the expansion coefficients:

Pl

i i o o
C e g Eaplrt)ar
Cealtl) = - 2 Lda<¢b9¢d) e -
—
a
(3-9.5) .
L T ) ‘_%‘J Eyp{t!)des
Cpolt) = - / gya(¢§9W7) e MWO
Y

Wwhere Edb(t) = Ed(t) - E (t) and Eyﬁ(t) = Ey(t) - EB(t)o Now in the usual
fashion one can find an alternative form for the matrix (¢B’¢a) by

differentiating (3-9.3) and multiplying by ¢5:

(3-9.6) (@5 Bdy) + (&g5 Ely) = (Pas Fofle) + (Pps Eoffy)s E = Ho + Ha(t).
For B=1, (¢ﬁg Fofy) = O because of the orthogonality of the wavefunctions;

also, tecause of tne Hermitlian character of H,



(¢69%3)

I

(¢59 E%a) = (H¢5s %m)

(%-9.7)
so that (3-G.6) reduces to
QB

@

(3-9.8) (fss9,) =
ucstitution of this identity into (3-9.5) gives
ot
. -2/ BEoa(t")dt?
- ’ H = e . )
(3-9.9) Cpg = - Z Cory E%é e % - Cpalfass)
(]
d similarly for wba(t)o

i

notation Q
YFEX 4
lution in two extreme

) form a finite set of coupled linear differen-
=0

(with tne usual
S0

tially static, then () ™

The set of equations (3-%
hese equations have a simple
2) for long-range inter-

es

tial equations.
cases: (l) if the perturving field is
and the nondiagonal =lements of CB Kt, vanish; (C
impact parameters) it is somebimes the case that the
A 8) N a0} = 1 contributes to the
nts Cﬁq(t

o

actiors (large
term Cony
=9,2) for the expansion coef

B
"weak

Cﬁa{t} << 13 thern only tre
right-hand side of equatioz (3
i the vondiagonal =lements, Cﬁa(t); S%QQ are neglected completsly, then
one 18 deallng with the usual adiakatic theory of spectral line broadening.,
it is rnosections 1L and it of this chapter that this approximation
is valid for hydrog lings orcadened by slow-moving ion In Chapter V,
> wili he demonstrated that the neglect of collision-induced
ctrons leads to serious errors. In order to take
properly, the time-dependent dipole
(t)

nowever, it
transitions by plasma el

-ron broadening into account
his section up to first order in C

the electr
matrix p;w (t) is calculated in this
Hy It turns out that this

for equivalently to first order in H,{t)]
thecry is adequate for our provlem bhecause of the long-range

colldision
re of the Coulomb potential.
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With the weak collision approximation [Chy(t) v Cun(0) = l;,Cm(t)[<< 1]

the amplitude equation (3-9.9) becomes

. !
(3-9.10) bon(t) = - [f;l;tg]me A
o

t
[

Ji EaB(tl)dti
O

E.n{(t')dt?
(07
g at"

If the perturbation is due to a finite number, k, of passing electrons
whose time of closest approach ty 1s large compared to T4 (where Tq again
is the collision duration discussed in Section 5), then Hl(O)'» 0. Making

use of this, together with cne relation, H;(m):Op a partial integration

vields pt”

4 -7 Fogp (£ )at"
(5-9.12) 1im cu(t) A o
\9“90 l,_, ILT :}B’:XQ\ - - ‘E(Sj LLEE t )]f:, 2

The wavefunctions Yg(t) and‘Ya(t) {equation 3%-9.4) can now be ex-

pressed in terms of these expansion coefficients:

5 Pt - _;1__ *"L FEadt *
- /% / Eﬁédtﬁ o ; ’ /h\/ ﬁ
YJ = %Od(t) e O r/_‘,”ﬁfja\tmﬁﬁt) e 0
B
(%-9.13) £ i /J;
1 sp - = & at!
5 Eadt! hY L
X. = g (t) e T + %Ecba(t)%(t) e o
E@ = Eu(t> ;v,)'o; = 'Y‘o;(t) P
where to first order, Cu(t) ¥ Co () ¥ 1 .

With these wavefunctions the dipole matrix H;@(t) becomes



i
—~
ct
N
I

(W—a ’ Wa )

(3-9.1k4) i _ 1
- s J/ (Bg - Eg)dt
Posifp) Cow e ©
i/ (Bs - B )AL
7 ( p t
R :

Consistent with our perturbation treatment it is assumed that the line

strength is given to first order by the unperturbed strengths:

(3-9.15) [Falt),up,(t)] 2 (g (0),ug,(0)] = ugy .

We also drop the last term in (3-9.14) as small compared to terms of order

Cagit) and Cygft). The dipole matrix is now

~t

-3 (E, - E,) at*

“C [ Ay ,O fl\'é
Paphvi T oitgy ©
e
z S Sy O / “h Eg s Uy )t
v\);,ua_l_é, + ‘:»W vy i iz(ﬁlaﬁ‘t:) e O*b
: .
- _j‘_ ; 4 iy " I+ ¢
7 (Bg = Eg)dt
e - ~ . O
+ LE\‘U r«th B)u(‘r) e '
The time~-dependent energy is given by
(3-9.17)  Eylt) = (g, {t), B dy(t)] + g, (e),Halt )y (t)]
To flrst order thnis tecomes
1 oo ey 1 3 ; p v ~ = s ™ ]
(3-9.18) En(t) = / o) ¢ (C)] + L¢a<0)gﬂz\t)¢a<d>] = Lg + [ﬂl(t)]aa
T
/ ! . ! O HER
(3-9.19) auit) = oy + duglt)

PN . o) ) . o
where huq(t) = Y., (t) and haey(t) = [Fi(t)]ayye The expression [Hl(t)]aa
is simply the time-dependent shift in the position of the state & as a

consequence of the perturbation.
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Then

: t t
(3-9.20) %—fo Bg(t')at! = ag t + fo Mg (1 )dt?

For further simplification let us abbreviate the integral on the right

t
fo Moo (t)atr .
(@]

Employing these definitions and factoring out pga and exp 1 (w& - wa)t

side of this last identity,

]

(3-9.21) Poy(t)

from (3-9.16), we obtain the following expression for plq(t):

C6) = 8 e ilog - og)t W ~ilPap(b)-Paa(t)]

Kot

(3-9.22) + %! b o (t) JLB - af) t+ 1 [Ppy(t)-Pon(t)]

+ ' E% Cm(t) ei(wgé - (‘Dg) t+d [Paa(t)'ng(t”
P ugn

The spectral distribution in the line i -+ f is related to the absolute
value squared of the Fourier transform of pgu(t) according to (3-7.3).
The so-called adiabatic and impact theories of line broadening are con-

tained in this result as special cases.

10. Adiabatic Approximation

In the adiabatic approximation to the theory of line broadening the
expansion coefficients C,,(t) and CBa(t) are taken to be zero so that the
nondiagonal matrix elements of the perturbation Hamiltonian do not enter
into the problem. As is well known, this approximation neglects collision-
induced transitions and thereby allows a great simplification in the theory.
Since the adiabatic theory has been extensively applied by other authors

to various line broadening problems and because it contains much of the
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essential features of a more accurate classical path theory which takes
into account collision-induced transitions, we will discuss this approxi-
mation in some detail.

In the expression (3-9.22) for uga(t) the expansion coefficients
Cpa(t) and Cga(t) are taken to be zero in the adiabatic limit, so that

the dipole matrix becomes

(3-10.1)  [uSy(8)1pq = uy et “Bab=1lFuy(t)-Fan(t)]

where we have put ag - a& = aga > 0. Substitution of this time-dependent

matrix into the general expression for the absorption coefficient (3-9.2)

yields

2
T _iAdDyt-1[Pyy(t)-Pas(t)]

(3-10.2) Iaa(m) = 1im |Ham|® %w\jpdt e Yo aa( aa e

o

T  2gx

—

where Aaga = w%@;x. The usual correlation function form of this formula

is found by writing Igg(w) in the following form:

T T
s 0 O

T () = lim |uy|° fdtzf gty oHheta(ti-tz)

A T o o
(3-10.3)

-i[Pw(tl)-Pm(t2)+Paa(tl)-Paa(tl)]
. ,
b1 Avg -
where Py (t1)-Fyylta) = f Aayy(t1)dt" 5P, (t2)-Pyg(te) = -f Ay (t1)at!.
to T2

Putting t; - to = T, and integrating over T, holding t, constant, yields
T+t2

-1 (Aay-pay )dt!

) T T_tz . ]
2 - 1
(5—10.4) T ((1)) = 1im uaa dt aT e lAﬂgaT e 2
adc 2
T0 25T .
0] ) "ta

—IAvg
Now in a time interval T, the initial and final times do not affect fhe

statistical average for statistically stationary distribution of perturbing
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particles. Therefore, in the adiabatic approximation the absorption

coefficient is simply
T

i/
0] 2 o0 -iA(DO T ¥ IA(D ..A dt'
(5"1005) Ia((l)) = .I%E.L- f dt e ad e ~ 0O \80, (DO‘)
T
=00

a
Avg

In the static approximation, where the perturbation Hamiltonian is time

independent, the phase integral becomes

i/\ (b -payy)att = (bwg-bay)t .

@)

In this approximation the absorption coefficient (3-10.5) reduces to the
average of a delta function over the perturber coordinates (see Section

12 of this chapter for a more detailed discussion):

(3-10 6) Io(@) = |ueal®8 %}A@ga'(Awa'A@u){} Avg

It can also be shown in general that if Aw,-Ady is an even function of

T
i
time, then o "iAwgaT Ll: (Awb-Aau)dt:
d/‘ dr e e

=00 = Avg

T

0 .. 0O -1 (Aw, -Aayy )at"
+ a
Jﬁ ar e idwgy T o JL

o) Avg

so that (3-10.5) can also be written

5 %/q (Awg -Aayy)at?
P-gOt 'iA(DgozT (o)

(3-10.7) Tgg(@) = E22L Re dr e e
Yo Avg

The factor n is a normalization constant such that

7 o) o = 1"

=00

(3-10.8)

This will be verified in Chapter V.
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The integral (3-10.7) can also be simplified considerably if the
perturbers move sufficiently fast or slowlys These approximations are
commonly referred to as the phase-shift and statistical approximations,
respectively. In Sections 12 and 15 of this chapter these two limiting
cases will be discussed in some detail and rather simple derivations of
their range of validity will be presented. In addition it will be shown
that the usual assumption of binary collisions can be removed from the

phase-shift theory for scalarly additive perturbations.

11. Average Over Collisions

The phase factor which appears in the adiabatic theory (equation
3-10.8) must now be averaged over all types of collisions. Let us focus
our attention on a particular radiating atom perturbed by an assembly of
particles (ions, electrons, neutral atoms or molecules) assumed to move
on linear trajectories. In particular, take the case of scalarly additive

perturbations of the type

s ony, felen) Loy M Aaaloy)
gk Jk r? (t-ty ) Ik [vE(t-ty ) + P51/

(3-11.1)  Awg-day

J

where ty is the time of closest approach, vy is the velocity, pj is the
impact parameter, and Njk is the number of perturbing particles described

by the variables (Gj’pj’vk’t ). The proportionality constant Aal(oj) is

k

taken to be a known parameter for the interaction of interest. It can
depend, in general, on other collision parameters denoted by 050 For ex-
ample, when a fast electron interacts with a hydrogen atom, Aau(oj) has a

cos O:

3 angular dependence, where ©: is the angle determined by the position

J

vector ?j(t-tk) of the electron and the dipole moment vector of the atom

(see Chapter V).
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For scalarly additive perturbations of the type (3-11.1), the phase
factors to be averaged are

.
i 2, N. f dat
(3-11.2) ‘}J NJ Pnaoiji (7) - ‘:eljk JkJo Aga(95)
Avg I‘n t

3t = ) d g
where the quantity Pnajjk(T) has been introduced for simplicity. The
index n denotes the power in the rj(t~tk) dependence of the interaction,
a and @ refer to the atomic states in question, and (j,k) refer to
collisions described by the variables (vi, ty, P> o'j)0

For sufficiently dilute gases it can be assumed that the individual
perturbers move essentially independently of one another so that the
average phase factor (3-11.2) can be written as a product,
(5-11.3) ]:ei% NjkPnaajk(TzLVg _ ’ﬁ eiNjkPnaajk(T) o

Avg

The probability that Nk(vk) of the particles with velocity vy have a time
of closest approach in (ty, tyx + Aty) is given by the familiar Poisson
distribution for purely random tj:

Nk - AT

(3-11.4) W (t) = B (A ®

.
where T is the mean time between collisions with velocities in the range

(vk, Vk+dvk)e If the assembly of perturbers is contained in a spherical

box of radius R, then Ty 1s given by the kinetic-theory result

1
(3-11.5) el R® vy N (v )dvg o

N (vy )dvy is the average number of perturbers per unit volume with velocities

in the range (Vk, vk+dvk) and 1s given by the Boltzmann distribution

WT\J

Nk(vk) 2 ET dv. = W 5 )
(3-11.6) —f{—— v, = lx <2nkT> ) k (v Jav

N is the number of perturbers per cubic centimeter.
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The probability that of these Ny (vy) particles, Nji have p; and oy

., 0s+A0,) is given by Bernoulli distribu-

in the range (pj, pj+Apj), (0J 37y

tion for randomly distributed variables:

N.
N+ 2npsAps ApsN JK
k J
(3-11.7) Wy, (04,05) = ( 37PJ ) ,
where - = =
LoL T TNt
k3 k
(3-11.8) >2Trp.Ap. - mR®
J
Y Ao, = L
V.
J

The element of phase space (AojAijtk) can now be taken small enough in

the limit so that it can contain but one particle at a time; then Njk = 0,1,

Weighting each configuration with the probabilities ka(tk) and WNjk(pj,cj),

the average phase factor (3-11.3) can bte written

—

jk| in, P (1) JE 4 iN, P (1)
k" naQjk . o AT
e dJ J = h ka(tk)wNjk (pJUJ) e Jk nagjk
Avg Njk:O
- W\T 5 e Tk l' ( ﬂDjApj ch Atk) elekPnaajk T) ]
N.. ! 2 T
Nsx=0 Jk = L Tk

Substitution of (3-11.5) and (3-11.6) into (3-11.9) and summing over

Njk=0,l yields*
jk _ Atk 1P 005 ()
(3-11.10) ﬂe Tk |:1 + 2nNvypshpy %9- Aty W(vy )dvy e1 .

Now since 1lim eg =1+6,

£ >0

*Summing Njk = 0 »> o yields identically the same result.
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the average phase factor (3-11.10) is

1 i (T) At
najk
Z: _ 2nNv p-Ap .ég At W(V )dv e J - k
Jk L R k k k
(B-lloll) lim e 2 T

Ap35005,4t,>0

J’)

Replacing the sums by integrals over the continuous variables ty, 3> Uj’

Vk, and letting R¥w, yields
. =

h

. g 7 Zﬁoj r° Phagyk(T)

i/(Awa—qu)dt EﬂNL/ W(Vk)vkdvkk/ pjdpjk/p_ir./ dty (e -1]
J

(0]

(3-11.12) |e —e © © ° ©

Avg

12, Statistical Approximation

The statistical approximation to the adiabatic theory of line broadening
has been extensively discussed by many authors¢5'7’9'12’lu’41'u7 In this
section the validity criteria derived by Holsteinn7 for the statistical
approximation to the adiabatic theory will be obtained in a simple fashion.
It will then be demonstrated that in the validity range of the statistical
theory collision-induced transitions can also be neglected for degenerate
or nearly degenerate systems under certain conditions. The present in-
vestigation was carried out because it was not clear to the writer that
the Holstein validity criteria should necessarily be the same with degeneracy.
It was also of importance to determine how to incorporate the statistical
theory for ion broadening into a quantum mechanical theory which also took
electron broadening into account,

The phase Pnaajk(T) due to the passage of the nearest perturber is
written

Pt Ay (05)dt

P
\é [(t - tk)gvi + p?]n/z

nadjk(T)

(3-12.1)
.

Aaoz(cj ) I dt

p? \[) Vk(twtk) 2 ‘1 1’1/2
Lo
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Expanding the integrand by the binomial theorem yields

]

Pragjk (™) /dtl-——(t—tk) e

(3-12.2)

n

f@eﬁfﬂl—r nvk (7 - 5% + £5] 4 ..] .
&

Now let T-ty=AT, and for convenience shift the time origin to tk .so that

A~v(os) nvg
—a—a_rg—‘g""r l-i(AT) + aee .

1 6p2
Pj P

(3-12.3) Pragk(T) =

In the statistical limit it is required that the higher-order terms in
(3-12.3) be small compared to unity:
2

-12.4 no(ATvg)  _ 2n (AT <1,
(3 ) Z <pj 3 Td-

where

I

Ta 2p(j/vk ’
where Ty 1s again the duration of the collision. For frequencies de-

termined by AwAT N1, (3-12.4) yields

(3-12.5) n(VkQ «1i |

Wnen this inequality is satisfied the time-dependent perturbation can be

considered to be static.

The shift in frequency corresponding to the static field is

A .
(3-12.6) Ao = hag(0y)

n 2
PJ

so that 1

(3-12.7) oy = [éﬁgéEFQJ i
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Substituting this expression into the inequality (3-12.5) yields the

Holstein inequalityl+7
v 1 n/n-1
(5-12.5) o > | T (1) |
Ao (o) 6

These inequalities also imply that the total phase shift is large compared
to unity in the statistical limit. This fact will be important in our
discussion of nonadiabatic effects for degenerate systems. To see this,

substitute (3-12.6) into the inequality (3=12.5); then

(3-12.9) ﬁo‘ () > 1.
J

The total phase shift per collision is given by

. 00
i) dx Agy\os
(5-12-10) Pnaajk(oo) = j iG(X(GJ) - aO’, J L/\ .
(Vk x2 + p2)1/2 pn L v d
=00

Substitution of Pnaajk(w) into the inequality (3-12.9) gives

- 00

-12,11 P 2/ _d= 1 .
(5 ) 6 ) (22+l)l/2 f\/

naajk(w) >>

The line profile in the statistical or static limit can now be found

from the adiabatic theory (equation 3-10.7) as a special case. According

o (3-11.13), the average phase is given by

. T ) o] (o] %"0_ o iPnaajk_
g = 7 Vi )av P:dp. Vi e T)=4 ,
1 (bwg-Aay)dt ENf w( k)dkade_Zl dty (r)-1
fo) o)

(3-12,12) |e ° - e o 5

where, according to (3-11.2),

_ T Ago(oy)dt
Pnaﬂjk(T) = d/\ N ZjaE

Consider now the integral



Ll

5 [ i Agy(dj)at
% . 4% [(vktx - vkt)2 + p§1nlz
(3-12.13) JF pjdij[ v dty e -1 .
(6] O

The quantity vyt lk is the distance traveled by the kth perturber during
the time interval_(t=0+tk), where ty is the time of closest approach. Now
in the static limit to the adiabatic theory one is concerned with times in
the Fourier integral that are much shorter than the duration of a collision.
For such short time intervals it has been shown that the perturbation is

th

essentially static. Therefore, the distance r(t-tk) to the k™ perturber

given by r(t-tk);[r(t-tk)]t=o

integral (3-12.13) can therefore be written in the static limit

r
if Ago (o)t .
% © Lo [(vgty)® + p210/2
lim .dp. dal e
v-*Of pJ pJf k
k o) o

Consider now the diagram

, the position at the initial time t=0. The

(3-12.14)

J - l Q

4
k
t=0 i t=tk

For fixed r (since the perturbers do not move in this approximation) and

Vg we have

Ly
-I'_ = sin 8 P} é.lk = r cos © dé
1
N OO —
(3-12,15)  lim A, = limr | ©cos ©d0 = lim 2r = 20. .
k J
Vk')o 5 Vk')o Vk+o

The integral (3-12.14) is now

(3-12.16) o p? o, le -1] .

. n
fw lAa.OC(Gj)/pj
(e}
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Substituting this expression back into (3-11.13) yields the statistical

approximation to the phase factor

) . 5 [iAaa(cj)T ]
(3-12.17) i\/; (Mg ~Ay )t MnN\/; pjdpj‘]; 49 e of -
e Avg = € 2
The absorption coefficient with (5-12.17) is now . 5 . Aaa(GJ)T
| gl? e e+ b ooy T T
(3-12.18) TI,,() __%?__ Re\/; ar e ° ° 2*

and agrees with the usual form of the statistical theory of Margenau,
Holtsmark,5 Chandrasekhar,h6 et al. The situation when the perturbations
add vectorially can be treated by the same methods and will be discussed
in detail in subsequent chapters in connection with the theory of hydrogen
line broadening by ion fields.

The influence of nonadiabatic transitions can now be investigated in

the statistical limit. According to (3-9.11), the expansion coefficients

CBa(t) are given by .

. _ i 1)t
o —_

EBOC<t u)

)

Cpolt) =

wherelcm(t) |2 is the probability of a transition to the state B if at
the beginning of the perturbation the radiating atom is in the state Q.

Consider again perturbations of the type

1 Agp(oy)

(3-12.19)  Ua(Nes }2(Mlgp = 122, o - Feel®)
- tx

Then

(3-12.20) [ (t)]gg = - nf vZ(t - tx) Bog(oy)

[Vz(t _ tk)z + pa]n+2/2

With (3-12.19) and (3-12.20), Cay(t) becomes
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2

By (03) nvZ At (B" - ty)
C t = —_— at" .
31( ) Aaazdj5 02 %[\ [fz(tu - tk)2 . i]
" p
(3-12.21) ihgp (o) [P at
T J[
0

v2(t' - ty)2 n/z
~ +1 .
P

In the statistical approximation one is concerned with times that are

s €

small compared to the duration of a collision (AT<<Td) so that one may

neglect terms of the type
v2(t - t))2

p2
in comparison to unity. Then, on shifting the time origin so that t,=0,

one obtains the following expression for CBa(AT)ﬁ

Aaﬁ(o-)t
(3-12.22) Cay(AT) ?@géfg%_nv2 \jp %§.d+ £ - an
- . = ——— Ce e .
Ba AaB O'j p2 —_A_‘_l'_
2
Integrating yields
. _ |Baslog)n | 1o » AT Agploj) AT
JLBQ(AT)' = K&E(ggj" P 2y 5551337 cos —5 o0

(3-12.23)

- .
- Azas(cj) sin 5 pn .
Consider the first term in the bracket
n-2 2 . n-2 2
(3-12.24) bV LT o8 Aaﬁ(cg) AT < | Y AT .
Aaﬁ(cjj 2p A@ﬁ(cj)

Also, since AT K 14 =2 p/v, we have
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pn—EvaT AGB(GJ)AT o n-i v
(3-12.25) Kaérggj— cos 5 << 52515377 .
In addition, the second term satisfies the inequality

n-1 |2 n-1 |2
(3-12.26) 2 %p—-(u——y sinA—g-é-(—;Tij;)—rA;— <o X—Q—-(—-)— .

aptj P ap\9;

In statistical 1limit it has been shown that [Vpn-l/AaB(dj)] < 1 so that

CBa(AT) satisfies the following inequality:

(3-12.27) lcag(ar)| << i—g%f%)yﬁ )

Tt will be shown in Chapter V that BaB(cj)and AaB(cj) are comparable
numbers for hydrogen when the perturbers move very fast (e.g.,
electron collisions). For static perturbations the nondiagonal matrix
elements of the perturbation vanish identically according to the usual
theory of the first-order Stark effect.

Therefore, the ratio of Euﬁ(cj) and AaB(Gj) ranges from zero to
about unity for perturber velocities ranging from zero to infinity.
This means that the elements \CBa(t)l are small compared to unity and

approach zero in the static limit.

13. Phase-5hift Approximation

In the phase-shift approximation to the adiabatic theory of line
broadening the phase integral Ppagjk(T) is replaced by the total phase

change Pnaajk(m)s

® Aggloy) dt Aaa(cj)\/__ [

(3-13.1)  Pnagk(7)* Pnagjk() = [(t-t)2ve + D?T“/E ) Vi i (Z_l)
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This approximation is valid for the core of a spectral line for sufficiently
weak interactions [small Agy(oj) and/or high temperatures]. A validity
criterion for the phase-shift limit will be derived in this section.

These results will be applied in Chapter V to the problem of hydrogen

line broadening by high-velocity electrons.

It is of interest to compare the mathematical basis of the (1) statis-
tical and (2) phase-shift approximations to the adiabatic theory: (1) in
the statistical limit one is concerned with frequencies (measured from the
line center) that are high enough so that the Fourier integral expression
for the line profile receives contributions from times At that are much
less than the time duration of the collision T3, i.e., the perturbing
particles do not change their positions appreciably during the time AT;

(2) the phase-shift limit is valid for frequencies that are low enough
so that the Fourier integral receives contributions from times ATt that are
much greater than the time duration of the collisions 7.

The phase integral Phgysi(7) (3-12.1) can be written

[

For x >0 (1 < Tty tx > O), the integrand may be expanded in inverse

(3-13.2) Pnaajk(T) Aaa(UJ

powers of x:

T-Cx 2
nagjk\T/ = Tm = -5z | + o~
k = k k’
A (os) [
_ . adt ] 1 _ 1 ..
(3 1505) VE l_(n-l) (T_tk)n—_]_ (n-l) (-'tk)n"-l- t .o .:l
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For x >0, (7 >ty, t, >0) the phase integral is written
L=t
Tk

Aaa(oj) j

vl o Py 2m/2
il kvkx )J
+ /\w dx

J n P \2In/2
Tty X E + (;,—g{;)]

Again expanding the integrands by the binomial theorem and integrating

Pnaajk(T) = PnaOéjk(oo) -

(3-13.4)

term by term yields

Ager (o) 1 1

Pnaajk(T) = Pna@jk(m) VR (n-1) (7=t )2t i (n-1) (-t )2t

(3-13.5)
with > tk >0 .

The main contribution to the integral arises from times in the neighborhood

of 7=t} so that with T-ty=At, (3-13.5) and (3-13.3) become

(3-13.6) Pnaajk(T>tk) = Pnajjk(w) - Pnaajk(T<tk) + ..

Aaa(aj)

\ ~
(3-13.7) Pnack (T<ty) = vl (n-1)(aT)2"1

In the phase-shift approximation [Pnaajk(T) = Pnaajk(m)] it is required
that

|
|Pracyr(T<ti) | << 1

(3-13.8) ‘
]Pnaajk(7<tk)| < IPnaajk(m)i

With (3-13.1), these two conditions lead to the following inequalities:

— 1
) 1 (n~l)v§ n-1
) o < i)

and

n 1
i Fﬁ 2) =T

(3-13,10a) T3 Jr(n-1 {—( >

o o
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1
or J;Kn-l)fk?:£> n-1
2
(3-13.10b) L ot < Tk .

o [(3) 5

These inequalities restrict the phase-shift approximation to weak inter-

actions [large impact parameters and small Aaa(oj)] and high velocities
or temperatures. In contrast to the statistical approximation, the con-
dition (3-13.10a) demonstrates that the duration of a collision must be
small compared to times of the order (Aw)- . The validity criterion
(3-13.9) is essentially the same as that derived by Spitzer9 by a different
method.

The average phase factor (3-11.12) reduces to the following expression
in the phase-shift approximation

ifT (hwg - Aay,)dt

(3-13.11) e O A e‘(7aa'i7gaoa) T

The expressions 7.~y and 7! are defined b
alX aQy y

Ve _ (R 0 = Y do, | 1Ppgqik(®)
(3-13.12) < ad ;<e EJer W(Vk)deka pjdpjf __(11 . radjk 1
In

1
Taa/ o) (o) o]

where, subject to the validity criteria (3-13.8),

o0
Pnaajk(T) - Pnajjk(w) for tk<”r;k/W dtg » 71 .

(0]

The equation (3-13.12) for Yao, 8nd 72 contains a further approximation

in that the integral over the velocity and impact parameter is extended
from zero to infinity. This is inconsistent with the Spitzer inequality
(3-13.9) since the phase-shift limit does not apply to collisions in which
the velocity is near zero., However, it will be shown in Chapter V that

the error introduced by this approximetion is not significant for electron
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broadening at high temperatures since the main contribution to the integral
arises from velocities in the neighborhood of the average thermal velocity
and from large impact parameters.

Our expression for the parameters Y50, and 7&1 reduces to the Lindholmuh-
Foley52 half-width and shift parameters if W(v) is taken to a delta func-
tion 8(v-V) where Vv is the average velocity. The errors introduced by
this approximation are not entirely negligible (about 27 percent in the
case of the first-order Stark broadening of hydrogen by electrons) and
will also be discussed in detail later. It is also of some interest to
point out that we have not restricted our derivation of the phase-shift
theory to the consideration of a succession of single encounters. In
deriving the expression (3-13.12) for y,, and 7aq» the simultaneous
interaction of many perturbers with the radiating atom was taken into
account and is therefore somewhat more general than the derivations of

10,11,14,32

other authors who required the assumption of binary collisions

and low densities in evaluating the phase=-shift integrals.
The line profile corresponding to the phase-shift approximation is
found by substituting the phase factor (3-11.12) into the Fourier in-

tegral (3-10.7), giving the well-known result

(
{

o |2 ‘ . O .
=-iA0. T = - diy®r T
I () lﬁial ReL/ ar e 80 (Voo = 174a)

@)

~1%.1
(5-15.13) BNE Vo

T (0l = 72902 + (7g0)2

Q9

14, Nonadiabatic Effects in Degenerate Systems

Let us now consider the situation in which a group of spectral lines

are not resolved with respect to their breadth. These lines are thought
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to originate from transitions between the degenerate substates & and a of
the initial and final states i and f. This presentation constitutes an
extension to optical problems of the nonadiabatic impact theory worked
out first by Andersonlu and later by van Kranendonk,u8 using somewhat
different methods. These authors were mainly concerned with the pressure
broadening of microwave and infrared lines arising from dipole transi-
tions between states i and f having angular momenta J; end Jg. The
theory was developed with the following basic assumptions: (1) the so-
called impact assumption that the durations of the collisions are short
compared to the time between them and (2) that only binary collisions

are important. Both of these assumptions are highly restrictive for the
problem at hand; namely, the broadening of spectral lines by ion and
electron electric fields in a high-temperature plasma., The basic diffi-
culties can be illustrated in the case of hydrogen line broadening by
high-velocity electrons. The average duration of each collision'?d is

of the order 25/¥ (3-3.5), while the average time between collisions Te
is of the order

(3-14.1) T - — L

The ratio ?d/?c is therefore of the order

(3-14.2) Ta o 2PN
To Tt

A typical interaction distance p can be taken to be of the order of the
mean distance between electrons p A;Neml/a so that there is a significant
number of collisions for which ?d/?c ~ 1. This argument is, of course,
valid only for long-range interactions where distant collisions are im-
portant. Since the average time between collisions and typical collision

times are of the same order of magnitude, the binary collision assumption
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must also be viewed with caution.

The theoretical development of this section will be based on the ex-
pression (3-9.22) for the dipole matrix “;a(t)“ It will be remembered
that this matrix element was derived under the assumption that the ex-
pansion coefficients Cpg(t) and CBa(t) are small compared to unity. The

"strong" collisions, where this approximation is no longer valid,

k9

case of
must be considered separately and leads to the Lorentz type of theory.
However, it will turn out that the distant weak collisions are mainly

responsible for the electron broadening.

If the initial and final states 1 and f are degenerate, then

A, = EO - Eg = 0
ab a
-lh‘u
© °) AP, = EQ - EQ = 0O
op 07 B

This condition allows great simplification of the formal theory. Sub-
stitution of our expression (3-9.22) for uga(t) into the Fourier integral

(3-9.2) and using (3-14.3) yields the following intensity distribution:

T > _
I. () EL P (0) 1im 1 /\ dt e 1AW, £t o Paa(t)
ir\®) a3 o T T J Haoq €
© 2
(5-1)4'@&)
o 0 . o) .

W W -iP, (%) Upg ¥ -iP_. (t)
+ J%E 2! —%E C&d(t) e Pa + 2 —%g Cba(t) e Qb

Haor B Hog b Moy

Avg

where again

0

wal = wgf = wg - wg the unperturbed optical frequency

0 0 . ©
Awir = w - wip frequencies measured from 4 p

t
Py (t) - Poylt) sf (Awgy = Aayy)dt!

O

Po(t)

pga = unperturbed dipole matrix

B (t) - By(t) =% (w‘i’f + dwy - Aayy)
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o (t) = -1 L/‘t [ﬁl(t")] exp - i &” (b - Aay)at | at"
Ba £ A Bayy - Dayg “e '
o

Assuming that the collisions are weak so that }Cm(tﬂ << 1and [P(t)] <1,

and keeping terms in (B-IEaM) up to first order in these quantities, yields

nT o

Pa(0) | o (2 Lim 1| -ihw; ot .
I p(@) = %a e lhoo! ™ T T jo dt e 1 - iPyy(t)
2
(3-14.5) .
iR o . o) ¢ O . 0
- _I@T? %' p,a6 i CBa(t )“Oca +% Hpg 1 Cﬁa(t) ”Oéa] o
Avg

Consistent with the "weak collision" approximation this may also be

.2

written 5 o
T . .
0)|ug : ~inwifrt-100(t)
(3-14.6) Iiplw) = y fal@lecal T f dt e ? )
if oa 2% T T
© IAvg

where
o_,(t) = P, (t) + fe |3 wloic (t)uO + 00 p2¥ qo* (t)pox
act Qa pga|2 B "aP Bo Qa * 0 "Ab “Yha adl °

This formula is a generalization of the adiabatic theory in which the
nondiagonal matrix elements of Hi(t) were completely neglected. By the
same arguments used to derive the adisbatic formula (5-1097), one can

write (3-14.6) in the usual correlation function form,

o 2 co —ireeT | -i0_ (T)
5} if ac
G-1T) T = I oego) Bln, [Tare c o
o)

Avg

According to Section 13, in the limit of high velocities where times

(AT > Td) contribute to the Fourier integral, one may replace

T o]
f Hl(t')dt’by% f Hi(t') at' .
O

=00

X g
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In this approximation we have

(3-14.8)

0

)2 ) et [
a0’ AJ R aa hJ
i N 1Pa, (t")
Cag (™) +-—%¥/ [Fa(6) Iy = Pt
/‘;\k .‘P, ":
oo = 7 [ [Balt)]gg e O Vet -

= li%Ba
’\‘m
jix_ {" - ;
7 u/ LH]‘(t)](M dat ,
-

where we have simplified the notation by introducing the matrix ¢6a de-

fined above. In the high-velocity approximation @au(v) is now

(3-14:.9) o () > o, (0) = —5—3

Ra "‘

oy b
Hak:T0% B

(O Gy O O
b(wagwaa@aa) - (“ab¢ba“aa/ °

*

The final expression for Iif(m) can now be found from{3=-14.7) with (3-14.9)

by putting exp -1d,5(«)

collision theory]:

(3-14.10)

(3-14.11)

so that

Y l_lqgaa(oo;\ JYSiI",»Ce ;@a3¥
, oo(0) « 2 ¢ e
Lip(w) = & ko, TRy dt
if i ra any! < kj
O
O (O) ~®
M /. L =LA 2 12
~ _;__ Rej dr e if Ua!*‘aal
O
=LA,
_ Q@(O)(zzluo D e et
_ Qs ax! / eJ
O

{w) | << 1 in the weak

=1Aw, 7

if

—
[

D

- iQau(m)]Avg

v}

®8d<“)]Avg

Avg
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pa(o) 2 © _‘A(D? T 12

(3-14.12)  Tip(0) = ——ZL |udy| Reb/\dT g i0or T o, luaal
O
with (3-14.6) it follows that
O

G5thns) o meal® o (=) s (uffhran) - (aefaniva)

2 - > °

Lo Iiaal L kgl

This is the Anderson impact formula.lu It can be used to describe optical
transitions between degenerate initial and final states as well as transi-
tions between rotational states giving rise to microwave and infrared
spectral lines. However, in addition, this derivation does not contain
the usual assumption that the mean time between collisions is small com-
pared to the time duration of the collision. This generalization is
important for Coulomb interactions.

Now, tc first order in Hi(t), we have with (3-14.8) and (%3-14.9)

Moo
ac

- 00

(3-14.14)
o) _ o)

- (Paa (2 ()], ub;>

If Hi(t) is a scalar sum over all the perturbers, then the statistical

considerations of Sections 11 and 13 of this chapter apply directly to the

general nonadiabatic case since the phase factors

2 0 2
i © 0] I
. TR IR LV T et
—tAvg
can again be written as a product of individual collision phase factors.

The method of evaluating (3-14.11) is then identical to the adiabatic case

and the absorption coefficient is given by

Avg
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P (0) 7, . 7.

-1k.1 I = L g %) |
(3-14.15) 1o (@) (2 el (@0 7202 + 72 (wf,my,)?

where y, and 7y, are the real and imaginary parts of

2
+')’l

2
"7, Re e oo AL 1.0 ik () |49y
(3-14.16) - .f rti(v)av [ pdo [T E2 fexp 20 nedgE e
T % 5 O iz
72 ‘m|o o “g o édl“aal

The above expression* is valid for scalarly additive multiple interactions.
For completeness we have included the nonresonant term in (3-14.15), which
follows from the general intensity distribution (3-7.%). The result
(3-14,15), which has been derived on the basis of the weak collision
hypothesis [small phase shifts and amplitudes Cba(t) and Cﬁa<t)]’ is of
the same form as given by the "strong obinary coliision"0 theory of line

broadening in which 1/7l is replaced by 7.; the mean time between colli-

cs
sions. There is a slight difference, however, in that the more distant
weak interactions can cause a shift in the frequency maximum corresponding
to V?f The Van Vlieck-Weisskopf theorj,r50 does not contain a shift (72:0)0
Because of the fact that the strong and weak collision theories vield

such similar results near the line center, it is extremely difficult to
determine intermolecular forces from line broadening data alone. Roth
strong and weak collisions can be taken into account approximately by
considering two types of collisions with impact parameters ranglng Irom
O*p. and p.*w. The impact parameter p, separating the two regions is
chosen such that the matrix element of the phase integral is unity. The

weak collision theory fails for close collisions with such large matrix

elements since each collision can be considered to induce a transition

*@au(m) =§%_®namjk(w)’ where ®naajk(m) is the contribution of a single

collision to ®gy(w).
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with nearly unit probability. That is, for p < p. the contribution to
the half-width according to the strong collision theory is Jjust the mean
time between collisions. For collisions with p > Pe the weak collision

theory developed here is assumed to be applicable.

1 2 -
(B-luol'T) (71)p < pC = z = DC N v
© , Z -'lZCD . (oo)]p,o |2
(3-14.18) (7,) = - R, | 2nWwW(v) dav [ pdp [ QO |exp B0 REAJK ac
p>pc Z 2
. 2 |ugy |
o @ CoANRE Tl
pC
(3-14.19) 7eo= (g < 0. * 7)o >0,
where p. is to be determined from
(3-14.20) Pgp(®) = 1 (unit phase shift).

Collisions with pn~ P. are clearly treated incorrectly because our inter-
polation procedure is of doubtful validity in that region. A more exact
theory would require the solution of the set of coupled differential
equations (5-9°5)e This is prohibitively difficult if many eigenstates
are involved, as there are in the degenerate levels of hydrogen. However,
if either strong or weak collisions are mainly responsible for the
broadening, the above method of approximation is probably fairly accurate.
This interpolation scheme is somewhat simpler than that proposed by
Andersonel

In the above derivation of the line broadening to be expected in
the optical region for transitions between degenerate states, it was
assumed that D&ﬁ is zero (the condition of degeneracy) in the ex-

pression (3-9.22) for the dipole matrix pga(t)e If the degenerate
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splitting is not zero, but small in comparison to the width of the line,

then the theory is still applicable. To show this, consider the fre-

quency AwZB defined by
0 = 0 N T o _ 0 O  _ A0 0
(3-14.21) Awoas = g g T -0 =0 =W teg, = Bargey + Wy,
For frequencies much greater than the degenerate splitting (Aw&g >>-m6a)
we have
0 0
(3-14.22) Amgg v by, ,

so that Awgs can be taken to be independent of the degenerate indices

when the line width is much greater than the degenerate splitting. This

approximation leads directly to the nonadiabatic formalism of this section.
These results can be used to estimate the nonadiabatic effects due

to electron collisions in calculating the shape of the Balmer lines in the

far wings (Aw large compared to the avefage static splitting of the Balmer

levels due to ion fields). The situation when the static field splitting

and Amga are comparable (the core of the Balmer lines) leads to a much

more complicated theory and will he discussed in the next section. The

formal results which will be obtalned are similar to those of Spitzer,9

who considered the broadening of Lyman & in an ionized gas.

15, DNonadiabatic Effects in Nearly Degenerate Systems

The results of the previous section will now be generalized to take
into account transitions between nearly degenerate substates of an initial
state® 1 and a final state f. By nearly degenerate is meant that % wgb
and h w&g are not necessarily zero but small compared to the kinetic energy

of the perturbing particles. Considerations of this type are relevant to

*The substates of i are denoted by the subscript & and those of f by a,
as in previous sections.
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the problem of hydrogen line broadening by both ions and electrons. The
slow-moving ions produce a static electric field which removes the normal
hydrogen degeneracy. The static splitting wgb, mgﬁ can be calculated by
the ordinary theory of the Stark effect and averages over this splitting
can be performed with the usual Holtsmark probability function (see
Chapter V).

According to the weak collision theory, the time-dependent dipole
matrix is found from (3-9.22):

., O . O
o 1waat 1waBt

baq(t) = w e [1+ 1P, (t)] + g Mas Cag(t) e

(3-15.1)

O
: 10t
r T i Ot (6) o

Exponentials of the type exp iPaa(t) were approximated by [1+iP_,(t)] in
the expression (3-9.22) for uaa(t) and terms of the order Paa(t) CBa(t)
were neglected in first orderu This is consistent with the weak colli-
sion theory in which [P_,(t)| and ﬂCBa(t)ﬁ are assumed to be small com-
pared to unity. This approximation was also employed in the theory
(previous section) for transitions between degenerate initial and final
states.

The absorption coefficient is found by substituting the dipole matrix

(3-15.1) into the Fourier integral expression (3-9.2) for the line shape:

T C 0
1 lim 1 o) '1Awaa(t) )
Iglw) = B Toce T f dt du g € [1 + 1 P(t)]
O
(3-15.2) . . z
-ibapat o 1A Lt

+ %,' hpg CEa(t) e + %Y“aﬁ Cog(t) e ap
Avg

To proceed further, consider a typical term in this equation:
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" T 7 —iday
(3-15.3) Ty = ungdt Cag(t) € , Cry = ubaf at Cp (t) e oo

The expansion coefficient CBa(t) is given to first order in Hi(t) by

(see %3-9.12)

(3-15.4) c, (t) =

t
f at' [Hi(t")]. e .
5 pa t >> 71

This expression for Ca,(t) is valid for times which are large compared to
B

X e

Ba

the duration of a collision.

For scalarly additive perturbations, Hi(t) is a sum over all collisions

with times of closest approach tys velocities wvy, impact parameters pj,

etec.
(3-15.5) Hi(t) = 2 Hy(t-ty) .
k,J
The typical term (3-15.3) can now be written with (3-15.4) and (3-15.5):
1Am t ~igoat!
(3-15.6) Ty =3 p.aBZ Yat e Bf vt [y (e1ee)] e e

Letting t'-ty=7' and t-t, =T yields

. O
~ Al lAwaa k T-t IA%‘S T
Cog = 7 ug%j f k g7 e .
-t
(3-15.7) . £l
-1
f ar! [HJ(T')]Bae b .
-tk

A partial integration gives
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. O R O
-iAw- At -1Aw T
~ o P e ot cle’
C = - _ELQ“_E_ Z k d H. e
- Faat e f Tl J(T)}Ba
'tk
(3-15.8)
~idwg, T ATty -iwéBT
-e JF dT[Hj(T)]&d e .
-tk

In the phase-shift approximation, where one neglects the duration of each

N
collision, CBa becomes

o T -iAw t o —inal T
n Haa a8t al
CBO‘ = - %Za—)-o— %,,VK e dtde [Hj(T)]Ba e
aB 0 =00
(5-15.9) ] .
-1 AW QE ® -i@dBT
-e al ZL;'J f ar [Hj (T) ]Ba e ,

o0
where the sum over Tk has been replaced by an integral.

Substituting terms of this form into the Fourier integral (3-15.2),
and taking the square of the absolute value, yields a delta function from

the first term in (3-15.9):

T e
im 1 -iAw_ t 0
(5-15.10) 5= Tow T k/ﬁ ate | = Blaoy) .

This function is zero for frequencies Awga # 0 . In addition, cross
terms involving exp -iAwgaT do not contribute to any time averages over

~N
finite time intervals. For these reasons CBa can be written¥

~
*Similarly, Cga is given by

+iwo T
e ab
ab

~ > @
- - oo % ar [H; (7))
ﬁAa%a kJ Lo
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( ) M8 3 e (o) “ioeT o
3-15.11 C = dr [H. (T e for Aw o .

-0
One can now give a physical interpretation of this result. The
atomic system is initially in the state . A time-dependent perturbation
causes a transition 0B with the subsequent emission of a photon resulting

from a transition to a final state a. The term'gaa takes into account
these processes. The divergence at AQ§B=O reflects a lack of refinement
in our analysis, which can be traced to our weak collision approximation.
This approximation requires that matrix elements of the phase inteéral,
summed over all collisions, be small compared to unity. For large times
this approximation fails due to the cumulative effect of many collisions.
The large-time behavior of these matrix elements determines the behavior
of the absorption coefficient near resonance, This follows from general
considerations of the properties of Fourier integrals.

The absorption coefficient (3-15.2) can now be expressed in terms of

th % :
e Ba
R §
1 lim L1 \ *
» Avg
(3-15.12)
2
- Ly A Z' o
= x5 b *
25 v | B Coa a
Avg

In the adiabatic case, the nondiagonal elements are taken to be zero

and the above expression reduces to
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o v 2
[Iaa(w)]Ad = é% §,Vk Cog + Caa\
(3-15.13) . >
l”(;al 1 %
H. ()1 - [Hi(1)] d .
(e S P IOO(JT o ™ (T s)

Avg
This result is to be compared with the results of Section IIT.13 where,

according to (3-13.13),

(3-15.14) [I__(@)],. = peal® e
ac Ad b (Awga)z’

O
b | >> Vg0 7:;04 .

The half-width parameter Y a0 can be written (see 3%-13.12 and 3-1%.1):

: o , 0 Zdoj iPnaOdjk(oo)
7805 = -ET(NRef W(Vk)vkdka pjdpjf —Z—'- e -1
e} (@] o)

i

R, L 1 - e' %Im ([HJ(T)]aa - [HJ(T)]O@) ar

(3-15.15) - Ave

(=
_ 1 °
= 2.1/ O, - mo) et <

- CO

Avg

The two results (3-15.15), (3-15.14) and (3-15.13) agree with one another
to first order in the phase integrals. Since our expansion procedure for
the weak collision approximation requires this approximation, the two
results are consistent. It is therefore evident that the formula (5-15.12)
is valid for frequencies which are large compared to the half-width. For
example, consider a three-state atom with an energy-level diagram of the

type
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and spectral lines with the general appearance
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The nonadiabatic theory developed here is not valid for the shaded por-
tion of the lines, i.e., near resonance. Furthermore, the splitting
ﬁmgﬁ must be small éompared to the kinetic energy of the perturbers in
the classical path approximation.

The results of this section constitute a generalization of a theory
due to Spitzer9 for transitions between a doubly degenerate state and a

nondegenerate S-state if we put

[Hs(t)l. = nondegenerate final state)
J ab
2
(3-15.16) |pq N - 1~a§| (lines of equal intensity)
a&B = 0 (no degenerate fine structure)

and furthermore neglect all cross products in (3-15.12). The assumption
that the final state be nondegenerate restricts the applicability of the
Spitzer impact formula to the Lyman series in the case of hydrogen. The
assumption that all the dipole matrix elements !u§a| are equal restricts
the theory to a composite of lines for which the line strengths are all
equal. This condition is not satisfied for hydrogen since the various

Stark components have, in general, different strengths. Finally, the
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condition that there be no degenerate splitting restricts the theory to

the case in which there is no static perturbation field due to ions. To
include both ions and electrons in the theory of hydrogen line broadening,
the static ion field is important and cannot be neglected. These results
will be applied to Lyman & line in Chapter V and a procedure for calcu=-
lating Balmer line profiles will be outlined.

This completes our discussion of the formal aspects of the classical
path theory of line broadening for weak interactions. We will now proceed
to a discussion of some explicit calculations by various authors in
connection with the theory of hydrogen line broadening by ions and elec-
trons. This historical résumé was postponed so that we could compare

the different theories with the formulation given in the present chapter.



CHAPTER IV

PREVIOUS THEORIES OF HYDROGEN LINE BROADENING

1. The Holtsmark Statistical Theory

In this chapter various classical path theories of line broadening
will be reviewed. It is not our purpose to give a comprehensive summary
of the entire subject but to focus our main attention on those aspects of
the problem which pertain to hydrogen line broadening in a partially . ion-
ized gas at high temperature. The relationship between the theories and
experimental observations will also be discussed.

Holtsmark? recognized the need for a theory of spectral line broad-
ening which took into account explicitly the interaction between a radia-
ting atom and the perturbing particles. He was dissatisfied with the
earlier classical theory of Lorentz,LL9 who conceived of collision broad-
ening as arising from the interruption of a continuous wave train at each

51

collision. Prompted by the then recent experiments of Stark on the
shift and splitting of spectral lines in an external static electric
field, Holtsmark calculated the probability distribution of the strength
of the field produced by a static random distribution of ions, dipoles,
or quadrupoles. We are interested only in ion broadening here and will
therefore omit a discussion of dipole and quadrupole interactions. The
Jjustification of the static approximation for ions follows from the Hol-

bt

stein inequality ' given in Section IIT.12. Further discussion of this
point will be given in the next chapter. The Holtsmark theory for broad-
ening by static ion fields, however, is not valid for electron broadening

67



68

because of the large average velocity.

Holbssmark based his calculations on the Markoffu5 method* of calcula-
ting statistical distribution functions. Because of the importance of the
Holtsmark theory in practical applications, the basic theory will be given
here also, but from a slightly different point of view. The statistical
theory follows as a special case of the classical path theory of line broad-
ening developed in the previous chapter, so it is convenient to adopt the
notation and ideas embodied in the Fourier integral formalism. ‘1e results
to be obtained are, cf course, identical to those of the Markoff type the-
ory.

It was shown in Section II7.10, that the statistical approximation

follows from the adiabatic distribution function

T
1'.[ (Acy, -Auy,)dt
Tygi@) = ﬂ”aal éE-L/ . T e e Avg 9

when the prase integral is evaluated in the statistical limit by taking the

velocity of the perturbers to be zero:

v

T
(b-1.1) Lim f (Auy-Auy)dt = (Aug-pay)T
(0]

The adiabatic formula for the absorption coefficient is now reduced to

(h-1.2) - 2 1 f"" 1 -1 (sufyrhay Ay )T
-1 e L —— TiE

Avg
The case of scalarly additive perturbations was discussed in Chapter III

and the perturbation was written in the form

Ay -Adyy, = lej (b =My ey

*see the excellent review article of Chandrasekhar, Ref. 6.
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The averaging procedure was also given for this situation. Suppose now
that a spectral line arising from a transition between the states (i,a)
and (f,a) is shifted due to the presence of a static electric field and
that the shift is proportional to the absolute magnitude of the instantan-
eous field strength |fi = F. For hydrogen the shift can be calculated

from the relation given in Section III.5:
(3-5.9) AE = % n(k;-ks) e ag F

The field strength F is given by the absolute value of the vector sum of

the individual ion fields:

5 7 (t-ty )
(k-1.3) F = ejkm ; |rj(t-tk)!2 - Vi(t-tk)2+p§ .

For time-independent field strength F is given by

(b-1.4) lim _ ]
F = e 3
Vk‘*o J p
J
and the phase integral becomes
T 2 3
e<=a, ]
f (Awa-Awa)dt =T g % Q [n(kl-kg)}a - [n(kl'kZ)]a %‘E‘%
5 J
()4‘"'105)
b
= A Yl
Xaa 3 pg T ’

where A and Xaa are defined by

(k-1.6) A

2529 3 Xy = [n(ki-k2)], - [n(ki-k2)l,

]

N AN

The absorption coefficient corresponding to this type of interaction is then
+

/)
gl dw ” 'ilﬁiéa B % Ei z
I (w)dw = a — ds | e k aoy 03
(4-1.7) = Mg BT J
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-> >
For convenience let us define a vector A in the direction of F whose

magnitude is

4 A W=
(4-1.8) |A| = szz - AXaZa ;
then
N a3l - Aiia
The absorption coefficient may be expressed in terms of |K‘:
® -1 |3- % §§ 2
Iaa(lxl)dlﬂl = Iugalz é%%l \/:m az | e PJ

Avg
(4-1.10)

= o, alR| w(lk))

Consider now the probability distribution of the x component of Z:

ST S D W () ¥
(b-1.11)  W(A)dh, = % f_m at e 1|;AX s ]g

Avg

and similarly for the y and z components. The distribution W(K) dh of K

is given by the product
> >
(h=1.12) W(A)AA = W(AX)W(Ay)W(AZ)dAXdAydAZ

Since the distribution W(K) is independent of angles for an isotropic ion
._>
distribution, the scalar distribution W(IAI) is found by transforming to

polar coordinates
(4-1.13) dnaA AN, = ae|al® alal

and integrating over the solid angle df

Ly

(4-1.14) w(|al) alal =fo aa|x|2 a|a| W) bt (1) [2]2 a|A]
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The distribution function W(]K]) is now given by substituting (4-1.12)
and (4-1.11) into (4-1.14):"
> - >
WOADalAl = e R F0(A, (A, YA, )alA]

(4-1.15) -4 (A—%Sg)'é i,
) (2n) u/L/L/\ e ° f

JAvg
-00 w00 =00

where

o
e
n

dednat

1]

DN 3 ) 2
(83 p3/03) « ¢ (Ax-jojx/ag)g + (8 = gegy/e3) 1+ (8, =] P3./P3) ¢

This is precisely the integral encountered in the usual Markoff theory.

Transforming to polar coordinates yields

> > A ® > > 1 =1 Z’lg]
) ~ ]AWZ 2 +1 en . |2 1<:
(b=1.16)  w(lal)alal = — b£\ le] dlglu/\ duk/w ag

-1 e}

where
ae = ag au |e]” ale]

and integrating over the angles gives

-> 0.0} -> iz."a.n-g/oc?'
(b-1.17) w(laD)alal = % iA]\/ﬁ £ dt sin |A|E(e J ! alal -
6 Avg
The static phase
(4-1.18) 5 Pyl oy s L Ewi
1? pg 15 ipji 3 uj/pj 15 p§

is now a scalar sum and can be averaged according to our general formula
(3-12.17) for the average phase arising from scalarly additive time-inde-

pendent perturbations:

>d|AI

Avg
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o +1
2, 2 /“ au
2 SN 5/°3
iT ¢ M‘/Dj b 2 45. —_ J -1
(4=1.19) \e ! J A S I 2 ’

Vg - e J
where the variable 03 in (3-12.17) is the direction cosine by in this ap-

plication. The angular integration gives for the argument of the exponen-

tial,

© 1 - sin g/p?
(4=1.20a) nthb/\ p? dp; J

2
A E/oj

o

2
with x = g/pj, (4-1.20a) becomes

3/2 .
(4-1.200) -2 / k/ﬁ dx - ==X,
o X5/2 X

Integraticn bty parts gives the final result:

3/2 3
(4-1.20c) i: “159 N e/F = ko1 IZy .

The distribution function is now

“b.o1 N§3/2

(b-1.21) W(EKE) d!K§ = % Z' dj A b/ & d€ sin ]Kﬂg e o
o

Another ccnvenient form for this integral is found by putting € = Ao V>

then

(4-1.22) T (AXaay)S/z ,

and defining a new constant haa’

3/2 3 /2
Mooy /2 2 ym (AXaa)S/) N

(4-1.23)

Ny = 2061 AX /% - hsex w23

the abscrytion coefficient is now

2 © = (Ngo)
(d-Lo2h) 1.,(te, Jate,, = !uga] % pasg, b/\ dyey sin Lwgyye ac dAa
0
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Integrals of this type will also be obtained as a special case of formulas
in Chapter V, so only the results of the integration will be given in this
section. Defining a new dimensionless variable

o
Aoggy

(4-1.25) B = "

the Holtsmark statistical theory yields the following series expansions:

(o]

_ Iag(B)dp L (-1)" |2 n oo
w(p)dp TENE = 3n nél TB:ITTIﬂ[% (n+l€] g sin (n-1) g

(4-1.26) p<1

1 Er-lif)l;l r<5nz+l> (_?fll'l) sin (3n+1)m/4
« P2 B> 1

The numerical consequences of these equations have received adequate dis-

alro

W ~8

n

cussion elsewhere, so we will close our discussion of the mathematics con-
nected with the Holtsmark theory at this point and compare the experimental

observations with the theory.

2. Comparison of the Holtsmark Theory with Observation

1,2

Turner and Doherty2 compared experimental profiles of HB obtained
with the Michigan shock tube with the Holtsmark theory and zlso with a pro-
file obtained by Griemll with the water-stabilized arc. The temperature

in these experiments was about 12,000°K. Figure 4 shows the results,* The
ion densities were determined in the shock-tube experiments from measure-
ments of the shock velocity with a rotating-drum camera. The theory pre-
dicts that on the wing the intensity is inversely proportional to ADS/Z .

The observed intensity on the wings, however, is (Aw)p, where p 1s defin-

itely less than 2.5. The measurements indicated that the intensity on the

*Private communication with E. B. Turner and L. Doherty.
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wings did not drop off as rapidly as the Holtsmark theory predicted. It
should also be noted that the line shapes determined in the water-stabil-
ized arc and in the shock tube agree closely with one another on the wing.
Griem's photometry was more accurate than the time-resolved shock-tube
spectra because longer exposures could be made with the arc. The shock
tube has the advantage that the ion density can be determined independent-
ly from hydrodynamic calculations and that the radiation is produced in a
homogeneous region so that no corrections for temperature gradients are
necessary.

The qualitative conclusions drawn from these data are that there is
about a 20-percent discrepancy between the observed half-width and the
Holtsmark half-width and that there is approximately a factor of two be=-
tween the measured and Holtsmark wing intensities over the frequency range
Observed.

The laboratory data are also consistent with astrophysical observa-

o2 and Elvey55 recognized in 1929 that the Stark ef-

tions. Since Struve
fect plays an important role in the broadening of hydrogen lines in stel-
lar atmospheres, a great number of data have been accumulated and inter-
preted according to the Holtsmark theroy. The general impression that one
gets from this work is that the densities, temperatures, and surface grav-
ities derived from the observed profiles using the Holtsmark theory and

the general theory of radiative transfer are inconsistent with those de-
rived from the continuous-spectra, metallic line intensities and also mas-
ses and radii of components of eclipsing binaries. It appears that the ob-
served widths of the Balmer lines are greater than predicted by the sta-

tistical theory, which can treat only the broadening by ions. It has been

suggested by Odgers5h that electron broadening as well as ion broadening
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might account for the extremely wide hydrogen lines (EOOK) observed in
A-type stars. Miss Underhill®? also finds that the Holtsmark theory
seems to yield too narrow a profile for H7 in the C-type stars o Orionis

56

and 10 Lacertae. Similar conclusions were reached by Aller”  and Miss
McDonald? ! in connection with their studies of type-B stars. The hydro-
gen lines observed in the solar specirum are also wider than is predicted
by the statistical theory. This list is incomplete and serves only to
illustrate that the Holtsmark theory seems to be inadequate for a descrip-
tion of hydrogen line profiles in high-temperature atmospheres. The as-
trophysical observations must, of course, be viewed with caution since

some mechanism other than collision broadening (in the general sense) might
be responsible for the wide hydrogen lines. Thus, de Jager58 has suggested
that the additional broadening of the solar Balmer lines might be due %o
microturbulence in the solar photosphere. He found that the temperature
fluctuations necessary to reproduce the observed profiles must be of the
order :x 100CG°K. However, the astrophysical evidence coupled with data ob-
tained from shock tubes and arcs strongly suggests that certain modifica-

tions to the Holtsmark theory are necessary.

3. The Krogdahl Theory

The Holtsmark statistical theory follows as a special case of the ad-
iabatic approximation to the classical path theory of line broadening.
The perturbation is taken to be time independent in the statistical limit
so that the motion of the ions is completely neglected. Therefore, ac-
cording to the Holstein inequality, the theory is not applicable near the
line center. Mrs. Krogdahl’® sought to modify the Holtsmark distribution
by taking into account the motion of the ions. For scalarly additive time-

dependent perturbations, the formula (3-10.5) for the absorption coeffi-
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cient with the average phase (3-12.12) may be employed to calculate the
line profile. The integrals involved are perfectly definite and can be
done numerically in the intermediate range of frequencies where neither
the statistical nor the phase-shift approximations are strictly valid.

A method for carrying out these integrations was described by LindholmhlL
and improved recently by Anderson.,6O However, for vectorially additive
time-dependent perturbations of the type encountered in the Stark broaden-
ing of the Balmer lines by electric fields, the average phase (3=11.12)
derived for scalarly additive perturbations is not applicable.

Mrs. Krogdahl argued as follows:”?? "... since the perturbations are
to be added vectorially we must regard the frequency w as a vector as well
as the quantity t [time], as used in evaluating the phase shift. While at
first sight it may seem somewhat artificial to regard time and frequency
is vectors, it must be remembered that the quantity t, as it occurs here,
is really derived from the trajectory, which is a directed quantity depen=-
dent on the time. Likewise frequency differences are salways proportionszl to
"

differenceg of momenta ...

The absorption coefficient (3-10.5) was then written

Nt
>0 o =2 1 fm > ~:iu3§@°€ ijo (‘ﬁam@a)dg
(b3.1) Igg(aogy) = |u,ql (2r)% J e At & e Ave
and the distribution Iam(muga) was found from
(4-3.2) Toq(body) dMogy = [hn(mdy)? dmdy] zmwb’ga) ’
where
dmiga = )-l-n’(AﬁDga)?“ dmd, mza = 1A$§a§

The numerical calculations of Mrs. Krogdahl were based on these formulas
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and followed the integrating scheme of Lindholmcuh She has found that the

corrections to the Holtsmark theory obtained in this way were generally
quite small and certainly could not account for the observed discrepancy
between the experimental data and the Holtsmark theory.

The argument that the frequency and time must be taken as vectors for
vectorially additive perturbations because trajectories and momenta differ-
ences are involved is not self-evident. In this section it will be shown
that the Krogdahl formula follows from statistical assumptions and is not
connected with momenta changes or pertuber trajectories. However, we have
not yet been able to justify these assumptions from first principles.*

The basic expression for the absorption coefficient in the adiabatic
limit is again

.
dw © inegT i[o (B, Ay )dt
2 .,
(3-10.5) Ipg(w)dw = lpaa[ L dre e R

where the time=-dependent phase for the first-order Stark effect is

T T Z
(1-3.3) fo (0g-tog)et = AXay |

; 'k Ta.
WO J 1,,13

P
R

The notation here is the same as in the previous section pertaining to the
Holtsmark theory for time-independent perturbations. Letting z = AXgyT

and using (4-3.3), I,,(w) becomes
%/AXE l}_! %
s Mgy =y /r3] at
vaa|® daw | Qx ik 3/ 75
(h=3.4) I (w)dw = Aoy §E Avg

Let us now define a vector R (7) whose absolute magnitude is a constant

(but whose direction is time dependent):

*A preliminary report on this phase of the work was given at the Stellar
Atmospheres Conference, Indiana Univ., Oct, 1954, and before the Astronom-
ical Society, April, 1955, Ref. 31.
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(4-3.5) |a(m)| = Zac
Moo

The direction of K(T) is taken to be in the direction of the instantaneous

electric field,

-> - o
(4-5.6) TSty - o

/r\;

210 Jk i

with this substitution in (3-10.5), the following result is obtained:

>
(4-3.7) Toql@)dw = Iaa(&wga)dAwga = Mg Iag (1A]) diAl
z2/AX >
© N e :
> > aln -ilA - sk Ti/r3 at|z
Tl 1) ali] = [P L s \e T o -

1wk alfl

Ip'aa!

In obtaining (4-3.7) no assumptions were necessary. The only mathematical
operation involved was a simple transformation of variablesg by introducing
the auxiliary vector K(T), Since we have chosen K to be in the same direc-
tion as the instantaneous electric field, the x, y, and z componentg of X
are directly proportional to the x, y, and z components of the instantan-
eous electric field strength, respectively. To obtain the Krogdahl formula,
it is necessary to assume that the probability distribution of a component

of K, say Ay, 1is given by
£/ Axad

1 rs/r3 dfé&
00 =1lAw = I” -
/ 'Z\X Jo Jk J J

dAx at \e

(b=3.8) W(Ag)dh, = Avg

-
and that the distribution of A is given by the product

(4-3.9) WRYAD = W(Ag WAy W (A, )l ahydh, = b |K{® a|R] W(Ag)W (A, )W(A,)
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Then by exactly the same methods used in the previous section one obtains
the Krogdahl formula (4-3.1). 1In the static limit, where S (T) has a fixed
direction, this formula reduces to the exact Holtsmark distribution. For
time-dependent fields it is not clear that the probability distribution of
the x, y, and z components of K is statistically independent so that the
product distribution (4-3.9) can be justified. Because of this uncertainty,
the modifications of the Holtsmark theory derived with (4-3.1) and (4-3.2)
may not be correct. It appears, therefore, that the refinement of the
Holtsmark theory to take into account simultaneously the motion of the

ions and multiple interactions remains to be done.

L. Spitzer's Theory of Lyman &

In Section III.1h it was demonstrated that the weak coliision theory
leads as a special case to a formuia given by Spitzer9 for describing the
Lyman & line. The averaging procedure employed by Spitzer was based on
the assumption of binary collisions. The difficulties inherent 1in the
Krogdahl formula are thereby avoided since the vector addition of the elec-
tric fields of several ions does not enter into the problem if only binary
collisions are considered.

The numerical analysis contained in Spitzer's work showed a gradual
transition between the Holtsmark statistical distribution valid on the
wing of the line to a Weisskopf6l type impact distribution valid for the
line center. It was also stated by Spitzer that the broadening due to fast
electrons can be neglected, in general, in comparison with the broadening
due to an equal density of the slow=-moving ions. This assertion will be
re=-examined in connection with our work and also that of Griem. - The

Spitzer theory included an effect due to the rotation of the coordinate

system whose z-axis points in the direction of the passing lon. In the
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usual theory of the Stark effect, the z-axis is chosen to be in the direc-
tion of the external static electric field. The radiation field and tran-
sition matrix elements are then described with respect to the same space-
fixed coordinate system. For the time-dependent electric field due to a
moving ion, the matrix elements calculated with respect to the space-fixed
coordinate system used to describe the radiation have an additionsl time
dependence due to the rotation of the z-axis. For the long-range, weak
interactions which are important near the line core, Spitzer showed that
the electronic quantum states doe not adiabatically "follow" the rapidly
rotating field and that each distant collision produces a phase change of
1 in the radiation. Spitzer showed that this rotation effect can be taken
into account in a careful analysis which included a detailed account of
all nonadiabatic processes. Furthermore, it was demonstrated that the
statistical distribution applies to the line wing and that the rotation
effect is not important. In our work only the line wing is considered so
that the ions can be treated as if they were stationary. Consequently,
the usual theory of the Stark effect can be employed if a coordinate sys-
tem is chosen to be in the direction of fthe instantaneous ion field. In
treating the fast electronsz, the rotation effect is avoided by this choice
of a stationary coordinate system determined by the instantansous ion con-
figuration. This procedure is valid because, according to the Hoitsmark
theory, the probability of zero ion field 1s zero. Consequently, the ra-
diating atom always finds itself perturbed by ions. This perturbation
removes the normal hydrogen degeneracy and the resulting wavefunctions are
given by the usual Stark effect theory. FEach electron collision is then
considered to produce phase shifts and induce transitions among these non-

degenerate states. When the electron broadening is calculated in this way
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it is found that it is not negligible compared to the ion broadening. In
addition, the binary collision assumption of Spitzer can be completely re-
moved from the theory.

In this connection it should be noted that the Spitzer binary colli-
sion theory and the Krogdahl theory lead to completely different distribu-
tions in the line center. There could be several reasons for this: (1)
the corrections to the Holtsmark theory due to the motion of the ions are
important in the line center where the nearest neighbor (binary collision
theory employed by Spitzer) approximation also breaks down, and (2) the
Krogdahl formula may not be correct for the reasons discussed in the pre-
vious section. For these reasons the theory of Balmer line broadening
near the line center is very unsatisfactory and we have been unable to im-

prove the situation.

5. Inglis-Teller Theory of Electron Broadening
12

Inglis and Teller ™ attempted to calculate the manner in which the
spectral lines in hydrogen-like spectra merge into a continuum due to Stark
broadening. The broadening by both ions and electrons was considered by
these authors. However, they indicated that the el=ctron broadening is

not as important as the ion broadening. The Holtsmark theory was used in
treating the lons, while the electron broadening was found from order-of=-
magnitude comsiderations. In our notation, the Inglis-Teller estimate
follows from the following argument for distant colilisions. According to

(3=9.13) the wavefunctions describing the radiating atom in the weak col-

lision approximation are of the form

ift (') s Y )
"% Bg(t?)dt? . -7 Eg(t')dt’
(3-9.13) X (e) = e = ° eI () fy(t)e
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The coefficients CBa(t) describe the nonadiabatic transitions and the prob-

ability that such a transition has occurred is
' z
(4=5.1) 5 Icga(t)l

In the high=velocity limit (phase-gshift approximation or "collision" the-

ory in the terminology of Inglis-Teller), using (3-15.4), with wa =0, and

B
an inverse-square perturbation, the transition amplitudes are
n ¢ Apodt |2
c (t)}2‘+|0 ‘Jf [ (t Ba gt - J B
B am(V2t3+p2)
(b=5.2)
Apom |
‘h oV ’
but
A
0
(5 (0)]g, = £,
s
thus
2 D"ﬂg
- E Vi |2

The total transition probability for the nonadisbatic contribution to the

broadening is now approximately

(4-5.4) B !CBa\m)r' Zh? B8 l“Hl(O)jBa! °

This expression differs from that of Inglis-Teller in two respects. The
factor n® does not appear in their argument and their sum over B includes

|2 which does not enter into the nonadiabatic transition

a term |[H.(0) 10&
probability. It has been shown in Chapter III that the diagonal and non-
diagonal matrix elements of the perturbation enter formally into the weak

collision theory in an identical fashion. One might say, therefore, that
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the phase shifts act like transition probabilities since they cause a tran-
sition from an unperturbed wave to a new wave that is out of phase with the
original wave. The total transition probability, including transitions to
a wave of different phase (that is, the adisbatic as well as the nonadia-

batic transitions), is then given by the unprimed sum

(4=5.5) A R) (H, (0)1a. 7 = (B2 § (12 (0) ]
° Hv B 1 “Bo v Ly oo °

Now except for the factor #®, this is the expression obtained in the Inglis-
Teller paper. However, their argument that for distant collisions there
are two regions in which the broadening is purely adiabatic or purely non-
adiabatic is not correct. These two effects cannot be separated in such a
gimple fashion.

The broadening can now be estimated with {(4-5.5). Taglis arnd Teller

take [H%(O)jma to be of the order

(4-5.6) (25 (0) iy ™ :

where a iz the Bohr radius. The aumber of colliisions per recond with im=

pact parameter between p and p+dp ic given by vlN 21pdp so that there are

Rataates

transitions per second. The total numbsr of tran:zitions per second is
found by integrating from Pe 10 P2 where o, 1s the critical impsct param-
eter for which the phase shift is unity. For larger phase shifts the weak
collision theory fails. The impact parameter P ie a mawimum impact par-
ameter which takes screening into account. This will te discusced in the

next chapter in some detail. The line widtn is now found from the uncer-

tainty principle
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AE ~% . ftransition probability

(k-5.8) B 2x°NaZe? . /
= “—%‘;—“— PGPy s

which agrees again with Inglis-Teller, except for the factor 7% or the fac-

tor n in [Hi(O)]Que These arguments clearly do not follow in a rigorous
fashion from the general weak collision theory since the above gquantitative
results are based on an order-of-magnitude estimate of the matrix elements
of the perturbation. With the availability of relatively good experimental
data it is of interest to re-examine the influence of nonadiabatic effects
more precisely and to investigate how one should include both ion and elec-
trons simultaneously in a theory that includes the possibility of multiple
collisions., It should be remarked here, however, that these improvements

are in essential agreement with the order-of-magnitude egctimates of the

Inglis-Teller theory.

6. A Phase-5hift Theory for Electron Broadening

The astrophysical importance of the theory of hydrogen line broaden-
ing for high-temperature, partially ionized gases led Unzold to considear
perturbations due fo electrons as well as ionz. He applied the adiabatic

. , ] Ll .
Phase=-zhif't approximation of the Lindholm =~Foley type to elsctron broad-

ening. These results were later used by Griemll to Interpret the Balmer
line profiles obtained with a water-stabilized arc. A brief digcussion
of Griem's calculations and experiments will follow in the next section.
The use of the adiabatic approximation to the classical path theory
for electron broadening as applied by Unsold suffers from three major de-

fects: (1) the collision-induced (or nonadiabatic) transitions are not

considered; (2) the relative direction of the electron-impact parameter
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with a space-fixed axis of quantization is neglected; and (3) the average
over electron velocities was done by replacing the Maxwell=~Boltzmann ve-
locity distribution by a delta function &(v-v), where Vv is the average ve-
locity. It will be shown in Chapter V that all three of those approxima-
tions lead to appreciable errors. In order to compare our results with
this earlier theory, the Unsold half-width formula will be derived here
as an approximation to the formal theory given in Chapter IIT.

The interaction in the classical path theory between an electron and
a hydrogen atom is given by the diagonal matrix elements of —(e? . ﬁe)
where e? is the dipole moment operator for the radiating hydrogen atom
and Ee is the instantaneous total electric field of all the individual elec-

tron field strengths:

) > Z >
(4-6.1) Fe = 7 (Fe)y
) " . _ R P
In the Unsold calculation the interaction was written Hi(t) = = |2r!l|Fg

il.e., ; was taken to be in the direction of fe. This approximation is not
Justified and neglects an important angular dependence in the interaction.
The matrix elements of !e?l were taken by Uns¥ld to be those given by the
usual Stark effect theory. This approximation neglects completely all non-
adiabatic and "rotation" effects. If it is also agsumed that only binary

collisions are important, then one can write the Hamiltonian Ho(bt) as
()—l—mésg) H_L(t) '; Hi(t) = - ’e’

With these assumptions it is now a simple matter to obtain the half-
width in the phase-shift approximation. With the notation of Chapter IIT

the phase integral corresponding to the perturbation (4-6.2) is



~ 00 l hOO
= = o . 3
| ommg)ar = F o {0, - (B0 10)
¥ dt
(4-6.5) - o).
_ ﬁ%@@ n
PV

The half-width parameter y,, is found by substituting this phase integral

into the expression (3-11.1k4) with W(v) = 8(v=-¥):

podp [1 - cos AXaa f) P
oV

where the integration extends from zero to a maximum impact parameter pp

Pm

(4-6.1) - 2w |

7a(1

determined by the screening of other ions and electrons (see Chapter V).

letting
(4-6.5) x = aa®
oV
and
] 10
(4-6.6) Haa ™ 2 ooy
V on
the half-width parameter y,, becomes
oG
; N > [ ax .
=6 = a3 : ) - (1 = COo& X
(4-6.7) Yo = 2T (o) fao T3 G )

aly
A partial integration with Sm < 1 yilelds

2704
(4-6.8) gy = - 7 (AXaa)? [06925 ~ In bfr;a + ;(,,im ) + :l

<if=

-

It is easgily verified that the phase change Sgg is small compared to unity
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for the inverse=-square interaction so that the first two terms in the se-
ries expansion give a high degree of accuracy for the integral. The re-
sult (4-6.8)is that obtained by Unséia, ¥ According to the theory given
in Chapter III, there is also a nonzero shift Véa in the position of the
line center. Unsold argued that the shift could be negiected since the
Stark components are symmetric about the unperturved line center, This
result should follow from the formal analysis. It will be shown (Chapter
V) that the shift is in fact zero in the adiabatic approximation if the
angular dependence in the interaction is taken into account. It is there-
Tore unnecessary to take 75@ to be zero in an ad hoc fashion. It will

also be shown that the binary collision assumption is not necessary in

treating electron broadening.

. Griem's Theory for Hydrogen Line Broadening by fons snd Electrons
J L

Discrepancies between Balmer line profiles determined experimentally

(with a water-stabilized arc) and those predicted by ths Hol*zmark theory

] 11 . v . -
for ions led Griem to investigate further the effect of electron colli-

}.<J

sions on these profiles. His calculations were based on the half-width
Parameter octained by Unsold (previous ssction) with the adiabsatic phase-
ghift approximation. Griem recognized that the nonaliabatic transitions

/

and the Spitzer rotation effect* (see the discussion in Section IV.L) are
. y 10 oy Wl e i
not taken into account in the Unsold™ ~-Lindholm theory. An approximate
(ad hoc) procedure for taking nonzdiabatic effects into account for degen-

erate systems 1s to apply the adiabatic formuia for the nondegenerate case

with an inferaction derived from an unweighted average of the Ztark dis-

*Neglecting the "rotation effect" of Spitzer is eguivalent to negliecting
the anguiar dependence of the perturbation Hamiltonian discussed in Sec-
tion 6 of this chapter.
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placements in a homogeneous static electric field. This method tended *o
overestimate the electron broadening® but reduced considerably the dis-
crepancy between the theory and experiment. Our theoretical development
is essentially an attempt to calculate the phase-shift and nonadiabatic
contributions to the line shape in a more rigorous fashion. The results
will also be compared with the estimates of Inglis and Teller12 in the
next chapter.

It should be remarked also that Griem treated the ions in the sta-
tistical or static field approximation. It follows from the Holstein in=-
equalityu7 that this approximation should be quite accurate for the Balmer
line wings and is also used in our analysis. Griem was also concerned
with the justification of the binary collision approximation. He indica-
ted that since the close collisions are the most important in determining
the perturbation field, the more distant collisions may be neglected.

This conclusion is not supported by our work, where it will be shown that
the main contribution to the collision cross section arises from distant
collisions for inverse-square interactions. When one considers long-range
interactions, multiple collisions might be important. It was found (Chap-
ter V) that it is possible to include long-range multiple electron colli-
sions in the theory without difficulty. The results are exactly the same
as for the binary collision approximation. Because of this fact, the lim-
iting density derived by Griem at which multiple electron collisions be-

come important is not a fundamental limitation of the theory.

8. Summary
The Holtsmark theory for hydrogen line broadening due to ion pertur-

bations is valid on the Balmer line wings where the Holstein inequality

*¥Private communication with H. Griem.
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is satisfied. This conclusion is also supported by the work of Spitzer,
who considered deviations from the statistical theory. The correction
terms obtained by Mrs. Krogdahl are questionable because the Fourier in-
tegral used in her work cannot be shown to be rigorously Justified. A
theory that takes into account multiple collisions in the line center,
where neither the statistical nor the high-velocity approximations hold,
is still to be desired.

The theory of electron broadening can also be improved in several
ways. For long-range interactions where the binary collisions approxi-
mation might fail, it is of some interest to investigate the effect of
multiple collisions. This calculation will involve the consideration of
the relative direction of the electrons and the direction of the instantan-
eous static electric field due to the ions. One can also take into ac-
count nonadiabatic effects in these calculations. There is also the
question of what line shift is to be expected due to electron collisions.
This point was not considered by Inglis and Teller and was not discussed
in a quantitative 'fashion by Uns®ld. Furthermore, none of these theories
averages properly the electron velocities over a Maxwellian distribution.
In addition, the existing theories in the classical path approximation
contain only order-of-magnitude estimates of the various matrix elements
involved. Consideration of these factors will be the main concern of the

next chapter.



CHAPTER V

HYDROGEN LINE BROADENING BY IONS AND ELECTRONS

1. Introduction

In Chapters III and IV the formal theory of line broadening in the
classical path approximation was discussed and compared qualitatively
with the results of others. In this chapter the theory will be applied
quantitatively to the problem of hydrogen line broadening in a partially
ionized gas., Particular attention will be given to the Lyman & line
(n=1-2) 12164 since it has a relatively simple structure and also
because it has already received much attention in the literature. This
detailed study of Lyman & will serve to illustrate the main features of
the theory as a guide for the calculation of the profiles of the Balmer
lines which have a more complicated structure but for which experimental
data are available.

Before discussing Lyman & in detail, however, the validity cf the
approximations used for both ion and electron broadening will be first
examined on the basis of the Spitzer9-Halsteinh7 inequality. The adia-
batic contributicn (involving the diagonal matrix elements of the pertur-
bation) to the electron broadening will then be presented together with
a discussion of the Debye screening length. These results will next be

compared with the adiabatic theory of Lindho]meL o2

10 11

and Foley” ™ as applied

by Unsb1d~> and Griem ™ to the first-order Stark broadening of hydrogen
due to electron collisions.
The section concerned with Lyman & will include both adiabatic and

nonadiabatic effects and a comparison of the numerical results with the
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work of Spitzer,9 Inglis-Teller,l2 and the recent quantum theory of elec-
tron broadening due to Kivel, Bloom, and Margenau.l5 The classical path
and quantum theories will be shown to be equivalent. This lends support
to the arguments in Chapter III which were intended to justify the use of
the classical path approximation in the theory of hydrogen line broadening
by ions and electrons.

The remainder of the chapter will be devoted to some approximate pro-
cedures for calculating Balmer line shapes when both "static" ions and
"fast" electrons are responsible for the broadening. This phase of the
investigation has not yet been completed due to the large amount of nu-
merical analysis involved. The results obtained so far will be compared
with experimental Balmer line profiles obtained in the University of Mich-
igan shock tube by Turnerl’2 and Doherty.2 Suggestions for future cal-

culations will also be outlined briefly.

2. Conseguences of the Spitger-Holstein Inequality

In Sections III.12 and III.13 the Spitzer-Holstein inequality, which
expresses the validity range of the phase-shift and statistical theories,
was obtained by expanding the phase integral in powers of the velocities
l/v and v, respectively. It was found that the statistical theory is valid
if the perturbers moved slowly enough so that the duration of a collision
is long compared to the times (AT~1/Aw) that cortribute to the Fourier in-
tegral expression for the line shape. The phase-shift approximation, on
the other hand, may be used if the perturbers move so fast that the dura-
tion of each collision is small compared to At. In that case each inter-
action behaves like a delta function in time and the phase integral can be
replaced by the total phase change per collision. Both the statistical

and phase-shift approximations allow great simplifications 10 be made in
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the theory, as was indicated in Chapters III and IV. Fortunately, these
approximations turn out to be excellent for many applications to the study
of high=temperature phenomena.

According to the Spitzer-Holstein inequality, the statistical theory

is valid for frequencies satisfying the relation (see 3-12.8 and 3-13.9)

(5-2.1) M>>I = .,
AXHOL’

where the perturbation behaves like AXaa/r2 for the first-order Stark
broadening of hydrogen. The strength of the interaction, AX,y, is given
by (4=1.6). The phase-shift approximation can be used when the above in-
equality is reversed according to (3-13.9).

In Table I thekxaa are tabulated for the Stark components of the Bal-
mer lines Hy, HB, Hy, and Hg, together with the relative f-numbers, f..,

. . . . o) ; . .
which are proportional to the frequency W and the dipole matrix elements

o

ngagz These T-numbers were taken from the work of Schrb'dinger62 and
include a factor of twyo which takes into account both the x and y matrix
elements for the perpendicular radiatiorn (o components). This factor of
two was not included In the carly cslculations of Verweij, who applied
the Holtsmark theory to the Bazlmer lines of nydrogen. With these values
of Xaa one can now readily determine the frequencies and temperatures for
which the statistical and phase=-chift-—tvpe theories are applicable. In

Table IT we have tabulated A\, Tor HBG A\, is defined by the relation

2 ) 2
(5-2.2) = MM vE AN
c Pre AX 21

The broadening is assumed to be due to electrons and ions so that v is
taken to be the average electron and proton velocity in a center-of-mass

system with respect to a radiating hydrogen atom.



BAIMER LINE f-NUMBERS AND STARK DISPLACEMENT COEFFICIENTS

Ol

TABLE I

H

Xa0 fao Xaor b Tao Xao 7 Tao Xa01 ° 1 adl
8 1 12 16 22 7 32 2
6 36 10 373 20 80 30 18
5 32 8 38 18 1318 28 2h2
4 1618 6 669 17 52 26 10
3 230k 4 912 15 1152 2l 180
2 729 2 153 13 1664 22 250
1 3872 12 166 20 18
0 5490 10 1760 18 198

8 15 16 18
7 116 1k L
5 192 12 T2
3 932 10 196
2 156 8 32
0 1416 6 396
b 8
2 36
TABLE IT
M /T FOR THE BAIMER LINE Hg
" M (electrons) M (ions)
a0, i T
2 21 A (%K)t 25 x 1072 A (°k)"t
L 11 .12 x 1073
6 .070 076 x 1072
8 .05% 058 x 1072
10 L0l2 .06 x 107°
12 .035 038 x 10™°
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In Table IT it can be seen immediately that for temperatures in the
range 10,000°K AN, ranges from 2100 E to 350 K for electrons and from
2ﬁ5z.to .38 ﬁ for ions. For Balmer lines of the order 10-200 E_wide
(which are observed in spectra from the shock tube and from stellar en-
velopes) one may apply the statistical theory for the ions and the phase-
shift approximation for the electrons, except in the line center and far
wings of the lines. TFor temperatures much greater than 104°K the statis-
tical theory cannot be used to describe the ion broadening near the line
core, For Lyman a (1216 K), a line with which we will be concerned later,
there are two displaced components {(for which Xy = % 2) and two undis-
placed components. For the displaced components An. = 120 R and 0.1h4 E
for the electrons and protons, respectively.

If the ions which are responsible for the line broadening are not

protons but heavier ions, then (AXC) where Mp and

ions © W (Akc)protons
61
M; are the reduced masses of the protons and ions interacting with a hy-

drogen atom of mass my:

. My m m
My = BB TR (my ~omp)
Doy +Hly, 2 '
(5-2.4)
my m
Moo= = vh' ’
ml-an

where my = Amp is the ion mass and my 1is the proton mass. If A, the mass

number, iz large compared to unity,

Amp
Then
(A\e )protons
(5-2.6) (Axc)ions _ﬁT__protonb
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The statistical theory is therefore valid for somewhat smaller frequen-
cieg if the broadening is due to electrons and heavy ions instead of elec-
trons and protons. This is of some interest since shock-tube experiments
on hydrogen line broadening can be performed in which the ions responsible
for the broadening are mainly heavy rare-gas ions.*

From the considerations of this section one may conclude that since
the Balmer line wings receive their greatest contribution from the displaced
Stark components with large X o» the statistical theory may be used for the
ions to describe the line wings. In the remainder of this chapter we will
be mainly concerned with how the electron collisions tend to modify the
theoretical Holtsmark distribution for static ion fields. It will be seen
that the electron bfoadening is in general not negligible compared to the

usual Holtsmark ion broadening.

5. Electron Broadening in the Adiabatic Approximation

In the theory under discussion here the broadening of hydrogen lines
due to collisions between fast electrons and radiating hydrogen atoms in
a high-temperature plasma is considered to arise from two effects. The
passing electron can (1) cause a phase change in the atomic wavefunctions
or (2) induce transitions among the normally degenerate substates of the
unperturbed hydrogen atom. The first effect is characteristic of the us-
ual phase=-shift theory for a two-state (nondegenerate) atom and will be
referred to as the adiabatic broadening. The broadening which arises from
collision-induced transitions will be referred to as nonadiabatic broaden-

ing, It will be seen later that these two broadening mechanisms are es-

*Hydrogen can be introduced into the shock tube as an impurity with a rare
gas so that there is a relatively low proton density. Also, in the pho-
tosphere of the sun the ions come mainly from metals with a lower ioniza-
tion potential than hydrogen.



sentially incoherent processes and do not interfere with one another. It
is therefore convenient to discuss first the adiabatic broadening (which
involves only the diagonal matrix elements of the perturbation Hamiltonian).
The analysis of the adiabatic broadening is quite similar to the nonadia-
batic analysis, so it is instructive to consider first the simple case in
which collision=induced transitions are neglected. The analysis of Lyman
@ in following sections indicates the method of including both adiabatic
and nonadiabatic electron broadening in the theory.

The electric field of the electrons in a plasma can interact with a
radiating atom causing phase shifts and transitions among the degenerate

substates. The dipole interaction is given by

sz _ N ;j (t-tyx)
(5-3.1) Hi(t) = eFf « Fo(t) = %k er . e TEEZE:EESTE 5

where er is the dipole moment operator of the radiating atom defined with
respect to a space-fixed coordinate system and ?j(t-tk) is a vector de-

scribing the position of a passing electron with time of closest approach

tyx and impact parameter Qje

GEOMETRY OF A COLLISION

rj(t~tk)
> > >
The vector rj(t-tk) can be expressed in terms of vy and pj:

(5-3.2) Tile-ty) = by b (boty) T
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1]

Let Hj E cos Qj and py

vectors (?,Sj) and (¥, ¥}). The interaction (5-3.1) can be written with

cos O be the direction cosines defined by the

(5-3.2) in terms of by and pyp:

2

Z e r
H(t) = 2 > a7z Lospy + v (t-ty)]
k3 [vE(t-t) + 03] J
(5-3.3)
= Z egr . ( )
ik (Vixz + p§)37§' Py T Vghy X s

where t-t) = x. In the phase-shift approximation it was shown in Sec-

tion IIT.13% that the integrals

t
JF Hy(t) dt
o

can be replaced by integrals from =-co - o3

ft Hy (t)dt joo H, (x)dx y 2 JRp ax
-> X = e“rp sy s
, L L K pJqu/_m (vEx® + p§)3/2
(5-3.4)
= . egrp.u. _2_.
kJ J"d Vkp§

The term involving

N oo

(5-3.5) I xdx = 0

(v x* + p§)3/2

vanishes.

The phase change per collision is found from the diagonal matrix

elements of (5-3.4):

7 gt = [ L00)ge (o)

(5-3.6)
2, pe®
kJ pjvk‘ﬁ

[(¢aruj¢a) - (¢a;ruj¢a)]
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Now by = cos @j is the direction cosine between the directions defined by
T and Sja This direction cosine can be expressed in terms of the polar
angles (6,f) and (gj’¢j): which describe the orientation of ¥ and Ej with
respect to some space-fixed coordinate system. The atomic coordinates are
r, 8, and ¢, while @j and ¢j are coordinates which describe the position
of the moving electron relative to the radiator. It will be necessaryAto

perform a statistical average over these collision angles ©. and ¢j° Ac-

J

cording to the rules of spherical trigonometry, 3 is related to O, ¢,

@j, and ¢j by the relation

i

wj = cos @ cos Qj + sin @ sin @ cos (¢m¢j)
5=3.7) :
( sin © sin 03 rel(@w@j)

L

cos © cos O, + 1(9+@j)]
J 5

]

+ €

The diagonal matrix elements involve only the first term since integrals

involving eii¢ vanish. In parabolic coordinates the diagonal matrix ele-
ment (n kym |r cos @] n kym) is given by (3-5.9):

2
2

(3=5.9) (nkym |r cos o] nkym) = 0 (ki-kz) ag

The phase change per collision ig therefore

” 4 Z 2e2 5 N i A b r
k/; (&Da=ﬂq1)dt = K B};Eﬁ»COm @j 5 8o {?L(klmkg)ja = Ln(klmkg)]a}

(5-3.8)
X 2AX,y

= . cos 9.
kJj 03k J ’

where A and X,y have their usual definitions (equation 4-1.6). The half-
width Yac and frequency shift yl. corresponding to the phase shift (5-3.8)

can now be found from (3-13.12):

i T.Lk/ﬁ< Aoy (Uj) dx
“Yac) [Rg\ [ y - 2 dos | Je=x T2 2yn/z
(3-13.12) -1 8| entwW(v)av] pdp J le (vBx24p2)0/2 _ 4
O v O !
2

1 -
Yaof \m/~©°
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For the interaction (5-3.3) the above expression is specialized to the

case where

n=>3
Aaa(oj) = AXqq cos ©;
(5-3.9) Vi > v
JFZ:EEQ > \/>2ﬂ afy | T sin g qg.
o 7 @ St YO 2 J
x ) pm | sin QAXaa
(5-3.10) 755 = 2nN o vW(v)dv o pdp (L - ov
2AXan pv

Following the discussion in Section IV.6 of the phase-shift theory as ap-

plied by Unsbld,C let

(5""5'11) v = 2 Aaor
pv
and
(5-3.12) o, My 2(1.757) Xao
. m = o Vo ,

where p, is a cutoff parameter to be discussed in Section 5 of this chap-

ter. With the above change of variables, 7,y is given by

(5-3.13)

The integral can be done by parts:

Nnow 1 s .
dx sin x L sin 9 cos O sin & 1
=D — l o = = - o + U — C- 8
(5 5 :]_)“')\‘/6 XS ( X ) 252 563 662 66 6 1( ) b
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where C5(8) is the cosine integral,

n® cos x A 82
(5-3.15) C;(8) = - . x dx = 0.5772 + 0 & + 3=+ ...

up to the power (%;a)z, 7g0 DECOMmES

N

a2
» : W(v) co 1 ~al (5 )
(5-3.18) 744 = BnN(AX )" jo EJ dv [0.209% - 7 By "+ rguo

Other authors,lo:ll,l)

in their consideration of electron broadening,
took W(v) to be a delta function &(V-v), where ¥ is the average velocity.

This leads to a slight error since

(5-3.17) f Wv)al _ T _ % 1 1273
o] A% Ty X - 7 )

where W(v) was taken to be the Boltzmann distribution for a gas in thermal
equilibrium. Replacing W(v) by a delta function is seen to lead to a 27-

percent discrepancy in the average half-width parameter.

. ~E o i .
Since the dependence of Yaq O8 Op 1S esaentially logarithmic and

therefore is a slowly varying function of v, the approximation is made

that
[ 7/ » = -
(5-3.18) ‘j W) av g 3:47 Xgy _ = In é;ﬁi;ﬁgxz
(@] v p!n v A\ pm v
~a0
In the following formulas &, 1s taken to be
(5-3.19) by = X
PV
80 7, 15 now
22N 2 Yao
78.@ - Tf kA‘Xaa) ° G(bm )
-3.20
(9:3-20 a0, 1 s (B2
I = o T A\®m 7
G(bm ) E .200L Z’ﬂm &y TR
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L1
It iz of interest now to compare these results with the Unsold 0

phase-shift calculation in which all angular dependences were neglected.
Taking the ratio of the Unsold result (4-6.8) and our expression (5-3%.18)

for yields
7aa N 3

e
(5-3.21) _7Tau _ 16 (1,708 - qn By + oo-) .
( ) 3 N ~ o2
\7a0t/yned1d S (.923 - fn cia)

~at e
(note that &, =23, /=).
: . ‘" a . .11

The theory discussed by Unsold and later spplied by Griem  to the
electron broadening of the hydrogen Balmer lines yields a result that
overestimates the adiabatic contribution to the broadening by perhaps a
factor of five. This agrees qualitatively with the statement by Griem*
that his calculations tended to overestimate the electron broadening.
Furthermore, it iz seen that the present theory gives zero shift in a

natural way without recourse to additional assumptions.

L. Errorz in the Average Over Electron Velocities
. 2 . Fa Pt o _ s 4 9 e T g . © o o .
According to the Spitzer inequality,” the phase-c¢hift approximation

is valid for frequencies satisfying Aw << ?ﬁ/AXaqm The averaging process

52 than N AX oAb since

the phase-zhift approximation fails for velocities rnot satisfying the

O » w, Thic is clearly incorrect for velocities 1

Spitzer inequality.

Let us now compute the contribution to T7§ from velocities less than
VAXaaAm in order to estimate the errors introduced into Yacr by our aver-
aging procedure.

The Boltzmann velocity distribution is given by

*H., Griem, private communication.



5\ 3/2 o
W(v) = bLn (%) 2 o2V
(5=h4.1)
= —_= m
° KT
SO
T ” (v) o e aa/2 1
(5-L.2) = = \]; _g-_,dv Ly (;) =

The contribution to l}v from velocities less than N AAX . is given by

a
N MOAX,

" a/f2 -
(5=4.3) \/o Eézl dv =l (%) / éﬁég%% GhmnﬁAwaaa voo ;> .

With (5-4.2) and (5-4.3) we find the percentage contribution to 1/v from

velocities greater than N AWAX_ . 3

all
(5=k.k4) 100 Yo (V) V< NMAX = 100 - 100 mmmm 4 el
1 ‘
v

For temperatures of 10,000°K, a =quals 3.3 x 107*%, consider Hy (4861&)
at 50& from the line center. An is of the order of % x 10*% and Xooy 1s
of the order 6. For these conditions, aAwAX,~ ~ 0.1, o that 90% of the
contribution to I/ comes from velocities which satisfly the Spitzer in-
equality. For smaller frequencies the errorz introduced by treating the
low=velocity end of the velocity distribution in the phage-shift approxi-
mation are correspondingly smaller. The errors increase slightly for
larger X . However, this is not serious for H,, Hﬁ? and H7 since the

X o are of the order 1-10. A more exact theory would involve extensive
numerical integrations and might be of interest with more accurate exper-
imental data on hydrogen line broadening at high ion densities where the

lines are very wide.
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5. The Debye Cutoff Procedure

It was necessary to cut off our integrals over the impact parameter
at some value p, because of a logarithmic divergence. This difficulty is
not uncommon in theories dealing with Coulomb interactions. Following

6 £3
Bohm and Aller and Spitzer =t al., the cutoff O 1s taken to be the

-

collision parameter beyond which an electron is effectively screened by

m

the neutral plasms of lons and electrons, This distance is commonly re-
ferred to ag the Tebye length and may be derived az follows, according to

the discussion by Bohm and Aller.

The electric potentizl @ satis 1 equation

(5-5.1) A - CIA VA

where Ny and N, are the particle densitiez of lons and electrons and Zje
is the ionic charge. On expanding the exponentisals and making use of the
fact that the elsctron density is related to the ion density by the ex-
and that for high temperatures e@/kT iz small compared

ey ey — q‘l\"c
pression No = Z4Ny,

to unity, the Poisson eguation reducez 1o

20 bye@ (Zi4l) @ 7
o= OP) \7&2 = 1 D = »“Z)a o
oo ’ kT oz

The solution corresponding to a point charge having a finite potential at

infinity is

where pp, 1g given by
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If the ion and electron densities are equal, then Z; = 1 and p, is

1/2

(5-5.5) om = |-k

e28nN,,

~all
and the maximum phase shift Sm is given by

, ~a0L PAX - e
-5.6 50 = 8% - 1,80 x 10° X . o
(5-5.6) oo o

For temperatures of the order 10,000°K and ion densities of the order

Nj ~ 10 em™, the Debye length Py a@nd the mean distance between ions
(AJNiml/B) are very nearly equal. Therefore, on the average, an elec-
tron feels only a single ion at a time, i.e., only a single ion is con-
tained on the average in each Debye sphere. This is a physical justifi-
cation for the validity of a binary collision theory of the Foley52 type.
However, at higher temperatures, where the Debye length exceeds the mean
distance between particles, the binary collision assumption necessarily
fails. For this reason earlier phase-gshift theories were expected to
fail at high temperatures. Our theory, however, is not subject to this
restriction since we have included multiple interactions in the formal

theory.

6. The Effect of Close Collisions

In Section V.3 the half-width y_, was found to be

Taw = v (AXpq)® G(%p )
~a ~a0, (%aa)
-3,20 G(& = 0,209k - 1/6 In 3 + m +

i

1/6 (1.2564 - 1n 53% 4+ ...)

The integration over the impact parameter included the range p = 0 > P>



106

where p, was taken to be the Debye length. The above expression for the
half-width parameter Yao, must be modified to take into account the close
collisions. The weak collision theory developed in Chapter III fails

when the matrix elements of the phase integral

—_ H, (t)dt
ﬁf_w L (8)

are not small compared to unity. An approximate scheme for taking into ac-
count the close collisions was discussed in Section III.1lhk (see equations
3-14.17—3-14.20). The contribution to y., for collisions with impact
parameters small enough to give phase shifts greater than unity is given
by the kinetic-theory result

(5-6.1) (7aa) - L -« pZ W = mean time between collisions ,
p< pC Tc

where O 1s determined by the condition that the phase shift per collision

is unity
~80 EAXaa
(5-6.2) . = 1 = Hov
SO
(5-6.3) oo = tfea
v

Hence

6.4 ix 2
(5-6.4) Vagcp, = 5 Waa) ¥

The contribution to Yaq from the weak collisions is found by integrating

over the impact parameter from Pe * Py instead of from O -+ pp.

32N o ~al
(5-6.5) (7‘,ﬂ)p>pc - (AXaq)™ [G(Bp - G(1)]
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According to the expression (5-3.20), G(1) is given by

1
(5-6.6) G(1) = .2094 + Sig = 2136
SO
32N 2 ~al
aoé)p so = (Ax,)° (-1/6 n B~ - .00k2)
C
(5"“607)
e - %‘S__ﬁ ( aOé)2 ll’] %;a o

The total width, taking into account both strong and weak coliisions, is

found by adding (5-6.5) and (5-6.7):

(5-6.8) Yoo = S (ax,0)7 (236 - 1 B 4 oeo)

In the pure weak collision theory (where the integration over the impact
parameter is carried out from p = C + ®) the half-width parameter was found

to be

16N ~ a0
(5-3.20) (7aa)weak = (Lo26 = In S + cco) o

The difference between the two results is negligible if

(5-6+9) (2,36 = 1.26) = 1.10 << In ggz .

O

When this criterion is satisfied, the distant coliisions are mainly re-
sponsiblie for the broadening. For example, when Ny = 10*2, T = 20,000°K,
and Xgy = 1.10, then
1
In 5200
m
ranges from 5.86 to 3.56. The rather ad hoc procedure for treating the

close collisions introduces an uncertainty of perhaps 10-20 percent into
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the expression 5-3.20 for the half-width parameter ygqy-

7. The Broadening of Lyman & by Electrons

The broadening of the Lyman & line due to electron collisions will
now be considered in detail. The line originates from a transition be-
tween a fourfold degenerate state (n=2) and the ground state (n=1) of hy-
drogen. The passing electrons cause both transitions among the degener-
ate substate: (nonadiabatic effect) and phase shifts (adiabatic effect).
It will be shown that the adiabatic and nonadiabatic contributions to the
broadening are comparable. The quantitative results will be compared

with other theories.

Ta. Wavefunctions and Matrix Elements

It will be convenient first to calculate the matrix elements of in-
terest in the Lyman @ problem. The wavefunctions ¢n,£,m corresponding

to the states with principal gquantum numbers n=2 and 1 are

r -r/2a4 %i¢ e

¢2)1;Iftl = 8@\/__:?_—;‘“;7.:. = e sin 8
Ji O
r -r/2a
= T 0 ne
¢2,1,o - M—VG;; aos/g e cos 9
(5-Ta.1)
¢‘a,o,o = ""‘;L‘““_n LE:_I") ewr/?lao
P Bo
1 emr/ao

1
booo = A b
1,0,0 - ao& S

The appropriate stabilized eigenfunctions for a hydrogen atom in an ex-

ternal static electric field are given by
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o

I
) PA

(¢2,0,0 + ¢2,1,o)

(f2,0,0 - $2,1,0)

ol

(5-Ta.2) g =

¢2,1,i1 ©

If the ion broadening is neglected so that there is no associated static
electric field, then the electron broadening can be calcuvlated with ei-
ther set of wavefunctions. If, however, in addition to the rapidly fluc-
tuating electronic electric field there is a static ion field, then one
must employ the set of functions (5-7a.2) since these wavefunctions de-
scribe the perturbed hydrogen atom between electron collisiong. This point
will be discussed at length later when both ion and electron perturbations
will be considered simultaneously.

For the electron broadening one is interested in matrix elements of

the phase integral

0

L/im Hj(T)dT

which, according to (5-3.6) and (5-3.7), involve the matrix elements of

. . . . . D
(5-7a.3) rp, = r (;os © cos @j 4 S0 © sin 6 [%l(¢_¢J) + e'1(¢'¢J§l5
J L 2 j

The radial integrals involved in the computation of the various matrix ele-
ments are trivial and can all be done easily by a series of partial inte-

grations. The result of the calculations is as follows:
<2,l,ilirpji2,l,il>=0

<2,1,0 |rpj|2,l,0>=0



(5-Ta.l)

where ag is again the first Bohr radius.
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<2,0,0 lrpj|2,0,0>=O

<2,1,0 |ruzl|2,0,0>=3a, cos cp

a,
<2,0,0 Irpj[2,1,+l>=2—9

V2

sin 93 e+

i¢j

<2,0,0 Ir“J[2’1:*l>ﬁéig sin @ emiﬁj

V2

<2,1,0 IruJIE,l,tl>zO

< 4+ lrpj[ + >=3a, c

< = rugl oo >=e3ag

A
4

2

A
8

|rpj|2,l,il>=z ao sin 6. e

]rpj]2,l,il>=g ag sin 6. e

o8 @j

cos @j

J

d

ii¢j

iiéj

The intensity of the observed

radiation also depends on the dipcle matrix elements which are tabulated

below:

(5-72.5)

<2,1,+1{x]1,0,0>=e1 ===

<2,1,-1|x|1,0,0>=4+i ===

Rog

<2,1,xl|y!1,0,0>= .- 4
PR ‘y! »Ys 6ao

J;R2L

-4

<2,1,0 |z]1,0,0>=

<2,0,01%,y,2]1,0,0>=0
<2,1,0]|x,y|1,0,0>=0

<2,1,#1|z|1,0,0>=0

=3r/2a,
rt e / © gr
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Ra:
< 4+ [2]1,0,00= ==
6ag
< |z.11,0,0> e
= Z L =
PN bag
< + |x,y[1,0,0>=0

< - i%x,vy|1,0,0>=0

To. The Broadening of the Lyman ¢ Line Using the Wavefunctions (5-7a.l)

Iet us now compute the broadening of the Lyman ¢ line using the hy-

drogen wavefunctions (5-7a.l). Since we are neglecting the ion broaden-

ing here, wgﬁ = O and the.expression for Iaa(w) reduces to
(5-7b.1) Tqlo) = . [
al T[(M)atja)g

wherelﬂaa is defined by

N

(29}
_r .1 Zf 4 T o s
Mo [?;,o,o>a 2 3 |Jes O g Blrs0s0)8 (TG g

a = (2,0,0), (2,1,0), (2,1,+1), (2,1,-1)

With the table of matrix elementz (5-7a2.4) and (5-7a.5) it is¢ reasdily ver-

ified that only Fkl,o,o)(z’ 1s nonzero:

0,0)

" LA b ey
(1,0,0)(2,0,0) 2 3 1 doe ) (1,0,0)(2,0,0)73" 74 (2,0,0)(2,0,0)
(5-7b.3)
(@] : \
+ tHa(T ; + /
M(IJOJO)(Zleo) { J( /](211;0)(2;0)9) H\l:OJO)(Z:lyl)

‘ 0 - ) 2
[Hy(r)} + LHy(7) }

(2,1,1)(2,0,0) "(1,0,0)(2,1,-1)" J(2,1,%)(2,0,0)

Avg

According to (5=3.4), the phase integral is given by
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00 2
(5-3.4) f Hy(r)ar = .22 v
=00 v pj J

where ruj is given by (5=7a.3). Since <2,O,O!ru312,0,0>:0,[ﬂ(l’o,o)(g’o’o)

is now

Pe4 |

(1,0,0)(2,0,0) J Pj

T .
l“(l,o,o)(a,l,o)L "3 (2,1,0)(x,0,0)

+ u%l)oyo)(211:1>[ruj](21131)(2}010)

2
5 .
* “(1,0,0)(2,1,m1)[rujj(2;1:“1)(2f0’0)i_}Ayg ’

where we have abbreviated the matrix elements <¢x|rujlfS > Dby [rpj]aﬁo

e}

Now ﬂ
p(1,0,0)(2,1,:‘:1)

receives contributions from the x and y matrix ele-

ments corresponding to radiation with different polarizations and can be

written
o = Tvl, . I TN ,
H(1,0,0)(2,1,+1) = “Y(1,0,0)(2,1,1) ° Teti{1,0,0)(2,1,1)
- - Ix]
(5-b.5) [XJ(l:O;O)(a;lal) LXJ(l;O;O)<271)“1)
ly = Lyl
“y](l,o,o)(z,l,l) T (41,0,0)(2,1,-1)
» [[x] | iyl , 5
(5=Tb.€) (2’1’1>(1’O’O)i = i (2,1,1)(1,0,0)%

On averaging over the random phase 7 between the y and x radiation one
finds

o
(1,0,0)(2,1,%1)

i[x1

| d(l,O,O)(a,i,il)

(5=Tb.7)

On substituting for the various matrix elements into (5=Tb.4t), using the
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above relations with {(5-7a.4t) and (5-72.5), the following reszult 1s ob-

tained:
r | cnfee o E
(1,0,0)(2,0,0) 3 V2p§ﬁ2 % 2 ¢ 6ag « 3ag cos 05
(5-70.8)

|2
R
+ "g% & in +1)e w1¢J ng gin @ wk(Pln 1) —g=sin ©; e+l¢J]!
2
' a

€a VE;

O Avg

On squaring and averaging, all terms involving exp in and (sin @j cos @j)

vanish. Hence

(5-T0.9)

r - Z ﬁe‘ﬁa “ E&A-, = > . o . QE
(l)ojo)(?u}o)o) VpJfl 6&3 (LO§ @J +oste @J} nAVg

(5-Tb.10)

: fe?a \°
= !u:(l 0,0) z :;“ig
? J Vp f‘ Avg

This broadening arises solely from nonadiabatic transitions zince the di-

agonal matrix elements all vanish with the ®p o) we Do set of
,0,0 “2,0,%1 F2,1,0

wavefunctions. Let us now compare these results with a caleculation using

the Stark wavefunctions (5-T7a.2).

Tc. The Broadening of the Lyman & Line Using the Wavefunctions (5-72.2)

The broadening of the Lyman @ line of hydrogen will be computed again
with the set of wavefunctions (5-7Ta.2)(i.e., the =zet ¢., @_, ¢2,1,il>° The
final result is identical to the result obtained with the set of wavefunc-

tions (5-Ta.l) and is included in order to illustrate the importance of
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nonadiabatic transitions in the theory and to facilitate the comparison
with other theories of hydrogen line broadening. It is also to be remem-
bered that one must use the Stark wavefunctions when a static ion field
is present.

It is readilyiverified thatlﬂ(l,o’o)+ = rﬂ(l,o,o)_ for the displaced
Stark components. Since the calculations are similar to those of the pre-
vious section, the details will not be given. In addition, the term
rkl,0,0)(Z,l,il) is again zero (previous section).

Let us consider now the termslﬂ(l,o’o)+ =Tﬂ(l,o’o)_:

r'(l,o,o) = Z.E%\(ez>2
+ d ijﬁ

(5-Te.1)

o} O
“(1,0,0)+ [ruj]++ + U(l’o’o)(z’l,l)[r“j](2,1,l)+

I

+

u(1,0,0)(2,1,-1)[r“j}(2,1,-1)... Ave

Now according to (5-Ta.lk) and (5-Ta.5),

HO - M(1,0,0)(2,1,0)
(lJO}O)+ JZ;
(5-Tc.2) [y 5] = gl (201 1)(e,0,0)
J (2;191)+ JE;

T . = Ty -
: “J]++ : uJ](Z,l,O)(a,0,0)
With these substitutions, r becomes
(1,0,0)+
1,0, L Li_2e ), [rpy]
(1,0,0)y = 2 3 V2p§ﬁ2 (1,0,0)(2,1,0) " "d¥(2,1,0)(2,0,0)

(5—70.5) + “?1,0,0)(2,1,1) [ruj](z,l,l)(Z)O)O)

2
T } )
Avg

110)0)(2)1:'1) [rpj](2;17'l)(2}o;o)
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Comparing this expression with (5=Tb.4), one finds that

(5=Tc.k) ‘q(lyo,o) = l r (1,0,0)(2,0,0) -~

and T“

) . B
The broadening arises from both (1,0,0)4 (1,0,0)_ so that
(5-7c.5)  I(v) (1 0,0) 4-[1 (1,0,0) l“‘(:u.,o,o)(a,o,o)
=Tc. W) = =
n(m)z ()

Therefore, it is verified that either set of wavefunctions leads to the
same result. There is, however, an interesting comparison between the

two calculations. With the set of wavefunctions (5=7Ta.l), all the broad-
ening arises from nonadiabatic effects. However, the broadening is partly
due to nonadiabaticbeffects and partly due to adlabatic effects with the
Stark wavefunctions (5-7a.2). The ratio of the adiabatic to nonadiabatic

broadening in the second case is found from the ratio of the two terms in

(5-Tb.10):
(5-7c.6) 'ﬂadiabatic ~ <cos® 0 7TAvg 1
° = =
rhonadiabatic <ein® 9 5>Avg 2
so that

(5-Tc.T) rkl,o’o)(g,o’o) = r};,o,o)+ + r(l,o,o)w = r%diabatic + o, adiabatic

and the absorption coefficient is accordingly

3l

2

o

(5-7c.8) I@) -

7 AW

From this example it can be seen that it is necessary to include both none
adiabatic and adiabatic effects in the theory of hydrogen line broadening

by electron collisions.
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If one requires that the absorption coefficient (5-7c.8) be normal-

ized to 2|u° i.e., the line strength of the displaced Stark
l"L_!_( 2

1,o,o)iz (

components), then one can determine the appropriate damping constant.

This procedure leads to the following result:

o) 2
(5”70“9) I(w) = 2|“+(l,0,0)l o Ezgli__g
T y
where
3 g a.e2\® L [_1
(5=7c.10) ¢y = 7o s = 18 (‘; ; V202
ke (1,0,0) ] I Avg

Now there are EﬂpjdijV collisions per second with impact parameter between

(pj,pj+dpj) so that y is given by
18a2 e* P 1
(5-7c.1lla) y = __° . 2N dp. p: |\=3~
f2 o I ey
c J/ Avg over v

2 4
3bma, €

(5-Tc.11b) y = N L gn Pm
n v Pe
But
1 L
v T o ¥
so that y is finally given by
14k a2 e4 o
. 0 N m
=Tc.12 = T e— In —
(5=7 ) 14 2 = o
and
48 aZ e* m o
(5 70015) 7Ad - 5 ’ ﬁg i 12¢ DG

This result is to be compared with the result of the adiabatic theory (5-6.7):
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16N -
(5""607) 7&@ = 7(1,0’0)+ = 7 [AX(l,O,O)-l-] £1’1’p"‘g o

For Lyman &, X_. = 2 S0 that with the definition of A (3-1.6
> Tal

- _ (3 .2
(5-Tc.1h) CR (geagog
and
L8 ag e* N o
=Tc.1 E — e fn 0
(5=7c.15) 7(1,0,0)_&‘ »2 = n o ’

which agrees with (5-7c.13) as it should.

8. Comparison of the Classical Path Theory with a Recent Quantum Mechan-
ical Calculation

In a recent paper by Kivel, Bloom, and Margenaul5 a theory of the
electron broadening of the Lyman & line was presented. This theory was
completely quantum mechanical. The electrons were described by plane
waves (Born approximation) and the states of the hydrogen atom were ta-
ken to be the set of Stark wavefunctions (5-7a.2). It has been verified
that the perturbation matrix elements computed according to the classical
path theory and those computed guantum mechanically are identical. The
reason for this 1s that the distant collisions are mainly responsible for
the broadening so that the plane-wave spproximation for the electron wave-
function is quite good. The clagsical path approximation 1s also valid
because of the large orbital angular momentum associated with the distant
collisions,

In order to show the equivalence of the classical path and gquantum
theories, it was necessary to compute the diagonal perturbation matrix
element with the wavefunction o, in the quantum mechanical theory. This

matrix element (which was not computed by Kivel, Bloom, and Margenau) is
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large and contributes one-third of the broadening using the Stark wave-
functions. This is equivalent to the adiabatic part of the broadening
in the classical path theory. In the Kivel, Bloom, and Margenau (KBM)
theory this is referred to as the "universal" broadening. The broaden-
ing computed in KBM was due mainly to the (+) » (2,1,#1); (-) » (2,1,%1)
transitions induced by the passing electrons. This was called the "po-

"nonadiabatic" effect re-

larization by induction" broadening and is the
ferred to in our classical path theory. A third source of broadening
due to (+) + (-) transitions was found to be small in the quantum theory
and zero in the classical path theory. This broadening was called "po-
larization by reorientation" by KBM.

The only other differences between KBM and our treatment are: (1)
in the choice of the critical impact parameters with which one cuts off
the divergent integrals that appear in the theory (because of the loga-
rithmic nature of the divergence this difference is small, about 20 per-
cent); (2) our treatment includes a velocity averaging; and (3) the KBM
theory did not include a discussion of how to weight the various pertur-
bation matrix elements with the dipole matrix elements “2&” Including
the diagonal matrix element [H,], , together with [H1]+,(2,1,il) in the
quantum theory and weighting these elements with “+,(1,o,o) and
u(Z,l,il)(l,o,o) yields a half-width y that is three times that given
in KBM. In comparing the electron broadening with the usual Holtsmark
ion broadening it is also to be remembered that there are two displaced

Stark components. The wing intensity due to electron broadening is given

by

T(w) = 2 |uo R — - i
x |F+(1,0,0) Aw=+y2 n A®2+(57KBM)2

“+(1,o,o)‘
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Accordingly, the ratio of the electron broadening to the ion broadening
i1s some six times that given in KBM. A mpre detailed comparison between
the electron broadening and ion broadening will be made in subsequent

sections of this chapter.

9. Comparison with the Inglis-Teller Theory

In the Inglis-Teller12 theory of electron broadening discussed in
Section IV.5 it was found that the broadening of the ¢+ state was propor-

tional to the following matrix element:

U: H§(T) dT]H

If one employs the phase integral given by (5-3.4) and computes the above

matrix element exactly with the wavefunction

1
o = =
* \/—0 @2)0)0 ¥ ®21110>

instead of using the Inglis-Teller estimate, then the result for Lyman o
is in complete agreement with our calculations and also with the quantum
theory of Kivel, Bloom, and Margenau.l5

The agreement between our classical path theory and considerations
of the Inglis-Teller type is not expected necessarily to give identical
results for the other Balmer lines. The reason for this is that the ma-

trix element
(o.,6]
f [Hj(t)]ou dt
=00

contains all the nondiagonal matrix elements [Hj(t)]aa’ including those
between states of different principal gquantum numbers. Our theory con-
siders transitions only among the degenerate substates of hydrogen and

neglects transitions between states of different principal quantum number.
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The classical path theory camnot be used to treat transitions between states
whose energy difference is not small compared to the mean kinetic energy
of the perturbers.

10. Hydrogen Line Broadening by Both Ions and Electrons

In a partially ionized gas the spectral lines of hydrogen are broadened
by collisions with botia ions and electrons. In our "weak collision" theory
for the broadening due to high-velocity electrons, a static field splitting
of the normally degenerate hydrogen states was introduced. This splitting
is presumed to be due to the Stark effect of the static ion field.

In this section both ions and electrons will first be taken into ac-
count in the adiabatic approximation to the theory. This can be done ex-
actly for slow ions and fast electrons where the statistical and phase-
shift approximations are valid. The results can then be generalized to in-
clude nonadiabatic effects for frequencies large compared to the half-width
for electron broadening. For frequencies smaller than the half-width due
to electron broadening the divergence of our basic equations does not allow
us to obtain explici® formulas for the Line core {Aw < 7&1) in the nonadi-

abatic case,

1Ca. Ion and Electron Broadening in the Adiabatic Approximation

According to the adiabatic approximation to the classical path theory,

the absorption coefficient is given by

T
o 2 o0 . i/ (A, -Aay, )d%
(3-10.7) Iau(w) = lﬁégi—- R \/F dr e"lAagaT e VYo ™%

: e
T 0 Avg

If the perturbing particles are ions and electrons, the phase integral is

given by
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T

T T N
(5-10a.1) fo (A - Ay ) At =fo (Mg -Mdy){ong 4t +k/o (m)a-ma)electrons dt .

In the statistical approximation the perturbation due to the ions is time

independent:

i AX
(4-1.5) f (t3g -ty g 06 = “ad
@] e

where e is the charge of the ion and F is the instantaneous ion field

strength at the radiating atom. The absorption coefficient is now

( T
® (’imgoﬂ'i Mag P)“'i f (80~ A0 Je ectrons d{l
Jﬁ ar |e © Avg
o

|uac|? =
(5-10a.2) Iglw) = 22 R,

T

If all correlations between the electron and ion positicns are neglected
in the statistical averaging, then the results of Section V.3 can be used

directly for the average over the electron coordinates

.
l— . f _ ' at =7a0
(5-10a.3) l? 1 Jo (Ma-Mg)electrons -]Ayg = e

and the absorption coefficient becomes

0 . o) AX
-i(dwgy - —2% F) T- T
[ e < adt e > Tac d
o

.

o |2
-10a.4) I = l&fﬁl_ R [ ] :
(5 a ) aa(w) T[ € T AVg( ions )

The integration over 7 yields

(5-10a.5)
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where W(A)dA is the probability distribution of the quantity F/e. Accord-

ing to (4-1.10) and (4-1.21), W(A)AA is given by the Holtsmark distribution

> > 2 . =L.21 N, 3/
(b=1.21) wW(|pl) alal = wW(A)dA = ;)AdA\j; EdE =in A £ e i it / ,

where Ny is the lon density.

With the above expression for W(A), the absorption coefficient is now

~ X

{=
A oo -y, 21N, £3/% u
o Sy 2 40 g2 ) i (sin A E) A
(5-102.0)  Iag(@) = = fuag/ 7“J st Jo (Mnge-AXgoh )© *7ao¢

HSince the broadening is symmetrical about the line center, the integral over
A must include both the high- and low-frequency Stark components. The ab-

sorption coefficient for all frequencies is then

: 2 o 2 [ wmhﬂleigB/z

Igaw) = w2 Haal Yao | EdE .
(5-10a.7)

[, 1 1
<in A £ dA .
Yo (Awga + AXQQA)P* e (g0 = AXgoh )= + 750, ’
but
. ¥o) ) ,
(5-10.8) | - Aiinht o ot b b ol
” ’ Jo ’Amaa + AXQQA)R + 7§a \Jmm (&Daa = AXaaA *’7aa

so that (5-10a.7) becomes

© /. gt T
: 2 2 ‘ =PIy E3/2 A sin A & dA
(5=10a. I, (l)) e 0 Y. f dt& e 1 o)

The integral over A can be done =imply by s coutour integration

_ 7aq B
"% A sin A E dA 1e "Xaa Mot el
(5mlOaciOz/ IR O ﬂbgaﬁjly_?,,j’+yaa(XE AXa
A =00 ( AwaOC”AXaOﬁA ) "i")’aa" ( D,z,{:x '}' al al al
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The absorption coefficient is therefore

o % 3/2 1
IaOt((D) = .% IMaOé!g Ede e(-u°2l AXanNig -78,0(&) Aoy
T (AXyp)2 Jo
(5-10a.11)

o
0 0
<§Daa sin Moo + Yoo COS A5 6
AXaa AXgqy

It is immediately verified that this reduces to the Holtsmark distribu-
tion (4-1.2L4) in the limit of zero electron density (y,, + 0) and to the

dispersion line shape for zero ion density.

10b. A Series Expansion for Small Frequencies

For a given spectral line one may calculate the electron half-width
parameter Y a0t according to the weak collision theory and then evaluate
numerically the expression (5-10a.11) for the absorption coefficient
I q(w). Although the integral in (5-10a.ll) is not expressible in closed
form, it is convenient to derive asymptotic limits of the integral for
large and small frequencies Nbga to facilitate the numerical calculations.

Consider now the integral

% sin  , 0 . (-4.21 N;AX 53/2_ y_ &) _L
(5-100.11) d g Maot Haa B0 IR
o oS AX e
Q)
Now let & = AXéax, then this integral becomes
® sin o -(n QX)B/g = Vak
(5-10b.2) (A%, )7 xdx Mog X e a s
o cos &b

where A\, is the ion half-width parameter defined earlier in our discus-

sion of the Holtsmark theory,

(4-1.23) Ny = b.52 X

The expression Ayn 1s simply the Stark shift in units of circular frequency
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that corresponds to the familiar Holtsmark mean field strength. With

the above change of variables, the absorption coefficient is given by

[ve]
0 o 2 10 |2 0
Too(Mogg)dtwgy = 7 ugy| dﬂwaa&/; xdx

(5-100.3)

3/2
o -(Ngo) = YaoX
(Mogy sin MoX + 744 COS MbgoX) € ac” acr

It is now convenient to measure frequencies in units of Z\gq and to
introduce the ratio, R, of Ayy and y,o. Therefore, R is a measure of

the relative importance of ion and electron broadening:

. - o8
>\‘a,Oé
(5-10b.4)
R = 28
Yax

If we now make another change of variables in (5-10b.3) by putting NooX =

59

y2/3, then the distribution becomes

wap [° o .
La(@)ae = [P 3 5 | yM/2ay(e sin py?/® + & cos 8y°/%)
(5-100.5) . )
: L 1 —72/3 <__, _ 16> -y
= l“§a|2 3n 4B Re QiB + é)k/; y1/3 dy e ) R .

Expanding exp [-y2/3 (1/R-ip)] in a power series and integrating term

by term yields

‘ 0 2n-1
)+ 0 n-1 ) }_nf -y it
G400 1000 - bl 0 F i (o0 g) [ or v

The integral is given by a gamma function, so for small P we have finally

© n-1 n/2
(5-10b.7) E%Qé?%:ﬁ = % B ¥ %:i%j—— B[ﬂ E% (n+l{}° ¢f2+—§%> ucos(ntg-lBR)
Haor
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For the case of zero electron density, R + », so the above series

reduces to the well=known Holtsmark expansion

LoBlas 2 n-1
S = map It P 1 o
407 ? Lty 5 )] oo 3
(5=10b.8) s
T M= 4
5> e [(2) % - (5 BY + oo

10c. A Series Expansion for lLarge Frequencies

If we let z = By2/3 in the integral (5-10b.5), then the absorption

coefficient can be expressed in another convenient form:
. 2z [z afz
. _ 0 |22 dB&/\ . 1 BR \P
(5=10c.1) Iaa(ﬁ)dﬁ = I“aai =32 Jo zdz B sin z + = cos z] e

Expanding exp =~ (Z/B)3/2 in a power series and integrating term by

term gives

Lo(B)ap = |uS,I?

afm
U)!QJ
N gws)
]
gi_‘[\/-l 3
i
\./b
1
A
-
|
é““)
3
o
N
NS !
W
nis
+
[..__l
=
1)
]
‘UDlN
=

(5-10c.2)
© (B sin z + l/R cos Zi]

The integral in this expansion can also be expressed in terms of

gamma, functionm)6

© L -2 [(x)
-10c. JF dz 7+ o PR (sin z} . 1 Yk ([sin -1 o
& ) © cos z L+ (PR)Z)2  \cos k tg PR

With (5-10c.3) the absorption coefficient (5=10c.2) becomes
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- , Nel r 5n+>
: - 1,0 12 Z gp ‘ (1) 2
Iaa(ﬁ)dﬁ Hag! w ™ nzl (n-1)1% n+l
(b-10c.k) .
141
5 q1n<? ﬁ; * & cos 2;}: tgml B%
n+l
S
" (BRI
Using the following identity,
sin (t,”! BR)
(b=10c.5) PR = ( I

one finds

An+l -1 1 sn+l
B sin\™7%— tg BB + §cos \T5— tg™" BR) =

) 1/2

With this identity, the absorption coefficient becomes finally

(5=10c.6)

: I TP o B
Taa(B)AB = luggl” 98 = s +17M

(5-10c.7) Y“) cos Q‘E JQ iBR)
Y

J(gr)21 &

ezt (fl@l

/_\A

Let us now examine the two limiting caszeg where either the electron

density or the ion density is =et egqual to zero.

For zero electron den-

, _ . o BT
sity R - «, and one obtains the usual Holtsmark expansion

el r'( Al
L2 )\U ' cos {28=L ) .
o) (\J’lm )8 (;iif;;) H

p

2

(5-10c.8) Ian(pldp = ipga'g ap % 3 (-1
YN
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For zero ion density B + =, zo only the first term in (5-=10c.7) is non-

zero. With the definitions of B and R the first term is given by

!HO !2 (A0O~ 2 4 2
acl \ A5y 7aO£

‘ ) Yal
(5-10c.9) Lo Mogy) = =

This is the familiar disperzion line shape to be expected for electron

broadening only.

10d. Normalization of the Absorption Coefficient

It is now necessary to discuss the normalization of our distribution

function. From (5=10c.l) with z = Bp,

0 5 o oo | n 1 _p/R_pS/Z
(5-10d.1) fo Taa(B)ap = |udy|® = fofo pdpdp (Bsm Bp + = cos fp) e :

With a partial integration of the first term twice and the second term

once, this becomes

(5-104d.2)

Since

N e s _
0 B

the integrated absorption coefficient is now

Coo Lo 2 [ 32 1
I (B)dﬁ; e !IJ'“ E dp [t + e
]o ad al Jo R

(5-104.3)
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so that finally

!pco i 5 o
(5-10d.4) JO Tn(Blap = I“aocl ’

and, since the distribution function is an even function of B,

u/”m Ta(B)as = glugalg .

(o]

(5-10d.5)

It is to be remembered that |p§3]2 is proportional to the line strength
of a single displaced Stark component so that 2]ug@|2 is proportional

to the strength of a pair of displaced components. In calculating the
frequency distribution in a hydrogen line which is composed of several
Stark components, one must, of course, sum over the components, using
the distribution funcﬁion (5-10c.1) or the various series expansions de=

rived earlier:

(5-104.6) Lip(@) = 20, (0) Io(sedy)
where
(5-104.7) [ T.(@d = T 2 p,y(0) |2
J o lir o5 < Pa Heor °
o

This is the usual expression for the total absorption coefficient of an

unperturbed hydrogen line,

11. The Relative Importance of Ion and Electron Broadening

In this section the theory which takes into account both ion and
electron broadening will be compared with the usual Holtsmark theory for
ion broadening. For convenience, a set of functions Kﬁ(BR) will be in-
troduced. These functions are correction factors to each term in the

Holtsmark series (5-10c.8) and have been plotted in Figure 5 for n =



129

9% N &N

| |
| |
o

1.5
1.4
L3
-1.3

(4g) ux

10!

o

Corr

s for n

Figure 5.
serile

10”!



130

2, 3, bk, 5. They are defined by

i{fﬂ; .

cos <5r;-1 tgwl BR> - on-1
(5-11.1a) X, (BR) = <Cos, | [l+ l ]

(5-11.1b) K, (BR)

fit
Q
O
]
o
!"JE?
| i
ot
o
g
o
w
NS
ﬂ_m
+

for cos @%—91’ = 0,

The absorption coefficient written in terms of Kn(BR) is

. 2o 2 B ___
LoB)ae = = lugal™ pzRemy

e} "o jn%]_ N\
P L) i"(“‘?«f“) N G\ D
nep o= ° {. - cos i . K,(BR)

( :
(n-1)! (?3};&) L
B\ ?
(5-11.2) «
cos G%i '}‘{’) 40
1141
> Tiel r"mmm
2 f=1) < 2 ) )
n=5 % -1t @3&) KnxﬁR)
2
g 3n-1 )
CcOos T 5] =0
or
EEQ&EQEE, .2 R, 21235 K=(PR) , 12 Ka3(BR)
s T (BR7+l) T e T T

(5=11.3)

35.9 K4 (BR) 21

Bl]/g + 57 K= (BR) - + ] ap .
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In the limit of zero electron density these functions are constants

and independent of the frequency:

Kn(BR) > 1 cos '21[,&9 £ 0
(5-11.4)

K,(BR) = O cos —Tr-£> =0

From the graphs of the functions K,(BR) it is seen that they deviate con-
siderably from their Holtsmark values for BR < 100 (or for frequencies
measured from the line center that are less than 100 times the electron
half-width parameter y..,).

In addition to the correction factors, Kh(BR), to each term in the
usual Holtsmark series there is an additional term in the distribution
(5-11.2) that depends only on the electron density and has the well-known
Lorentzian frequency dependence. This term becomes large on the line wing.
In Figure 6 the theory for electron broadening alone, ion broadening alone,
and for both electron and ion broadening are compared for the following

; =10 cm™®, T = 15,000°K, and X,q = 10. It was found

conditions; N i

o =
that the series expansion (5-11.3) for B 2 5 was accurate to three sig-
nificant figures. For B < 5 the absorption coefficient was calculated by
numerically integrating (5-10a.11). In these calculations the nonadiabatic

contribution was estimated* by taking the contribution to y,n by the weak

collisions to be twice the adiabatic contribution (see 5-6.7):

. ~ 16 E@_ 2 ~all
(7a06)weak = -2 EB—'\Te (AXgq)™ 4n 8m‘]
X
(5'll°5) (7a0£)strong = 2-56 [%6- v—e <AXaoc)2]
e
Yaow = <7a@)weak + (7aa)strong .

¥For Lyman ¢, the half-width was three times that predicted by the adiabatic

theory for electron broadening and it is to be expected that the adiasbatic
and nonadiabatic contribution to the electron broadening for other hydrogen
lines will also be comparable.
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The detailed computation of the nonadiabatic contribution to y,o for hy-
drogen lineg other than Lyman O has not yet been completed. It is evident
from Figure 6 that the half-width predicted by our theory differs only
slightly (21 percent in this cése) from that predicted by Holtsmark, even
though the frequency distribution is greatly modified by including elec-
trons in the theory. For this reason the experimental determination of
the Balmer line half-width is not a sensitive measure of the validity of
either theory. WNote also from Figure 6 that the position of the Holtsmark
maximum does not depend on the electron density. This behavior is borne
out experimentally. In Figure 7 an experimentally determined profile®
of HB is compared with the Holtsmark theory. The qualitative features
(Figure 6) of our theory agree well with the qualitative features of the
experimental profile. In experimental applications, therefore, the meag-
urement of the frequency splitting of the double maxima in HB or Hy af-
fords an easy method for the estimation of ion densities in a high-tem-
prerature plasma.

The importance of electron broadening can also be demonstrated by

examining the limit of (5-10c.7) for large frequencies:

sl (L
(5=11.6a) Iaa(B)dB N % 'p?a! 1. RT‘Q cos T a
R NB '

With B = Magy and R = xaa/yaa, this equation can also be written

Naq
' 2 o, !®y - 707 P(g-) xaoaa/ : 5
(5-11.60) Ioq(Awaq)ddway = = L8 {;a - . S,
) o

*Taken from page 137, Ref. 1.
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In this formula the expression for Y a0 will also be taken to be that given
by (5-11.5) in order to take the nonadiabatic broadening into account ap-
proximately.

With the following relations obtained earlier,

3/2 ; 3/2
’)‘a(é = L4.21 Ny (AXgpy) /
~ 16N ~aQl
Yoo, = £ (AXpq)? (2.36 - 2 4n By )
3 Ve
~ - NN
(5-11.7) 52% = 1.80 x 107 X, —=
T
Yo = 6.215 x 105 NT
5 e2 a0
A = 5
2 ——

one finds that the distribution (5-11.6b) for large B (on the far wing)

becomes
s 6 N: T
(5-11.8) I (m2,) ~ 2 lvaol®7a 108 N T
. Lo\ PP/ T T oo - VEY —3
T (wGy)? e (X, 809y)Y3(2.36-24n %)

The first term in the above expression depends only on the electron
density. The second term iz the ratio of the wing intensity due to ion
broadening to the wing intensity due to electron broadening. Note that
for given frequency and temperature this ratio is independent of the ion

valy

density when No = Nj, except for the slowly varying dependence of [n &y

on N This is of importance in the application of this line broadening

e
theory to the study of Balmer line profiles in stellar atmospheres since
the wing distribution can generally be used with sufficient accuracy to

calculate the profiles. For given mmga and tenmperature the relative im-



portance of ion and electron broadening iz essentislly independent of the
ion density. Therefore, even for the low ion densities encountered in
stellar atmospheres, one cannot neglect the electron broadening comparec
to the ion broadening in calculating the shape of the wide Balmer lines
that are observed. The general impression that one gets from a survey of
the astrophysical literature is that the electron broadening can be ne-
glected at low ion densities. This conclusion is not justified by the
calculations presented in this dissertation. For example, for a gae
whose temperature is 15,000°K the second term in (5-11.8) is about 1.5
at 50& from the line center for the H7 Balmer line. Therefore, the ion
and electron broadening are comparable under these conditions for this
line. For the higher series members of the Balmer series the X . (see
Table I) are larger than for Hy. Therefore, the electron broadening be-
comes more important since X,y appears in the denominator of (5-11,8),
which involves the ratio of ion to electron broadening on the line wing.
Tt can be seen from the Holtsmark ion broadening theory (5-10c.8)
that the absorption coefficient behaves like &mms/z on the wing of the

line. Therefore, a log-log plot of the absorption coefficient vs fre-

quenicy should yield a straight line:
(5-11.9) (log I&a)ions = e % log mbga + constant

Oun the other hand, the theory involving electron broaderning alone predicts
that the absorption coefficient behaves like Awma onn the wing and yields

a8 slope of two on a log-log plot:

(5-11.10)  (log Inglelectrons = - 2 108 Mog, + constant

The combined theory of electron and ion broadening predictes that the slope
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termediate between 2 and 2.5. This behavior is borne out experimentally
and was also indicated by work of Miss Underhill,6h'who studied the fre-
quency dependence of Balmer line wings observed in B-type stars. In these
studies it was found that the slope was generslly near 2 and in no case
greater than 2.%. From these observations it was concluded that the Holts-
mark theory does not adequately represent the process of line formation

in B-type stars. The asgtrophysical results are not to be regarded as a
proof of the invalidity of the Holtsmark theory, but serve to confirm the

discrepancy between theory and laboratory data.

12. Broadening of the Balmer Lines by Nonadiabatic Electron Collisions
The theoretical results of Section IIT.15 for transitions between
nearly degenerate stateg are complicated by the presence of exponential
Tactors exp iwgyT in the phase integrals E%a (see 3-15.11). In this sec-
tion criteria for neglecting these exponentials will be obtained.
The E%a involve integrals of the type
—1wng

(5-12.1) /ﬁl dr [Hy(r)] 44

W/ =CC

For the electron broadening of hydrogen lines, HJ(T) is found from {5=3.3):

e2

2.2, .2
VETS+0S
( k pJ

r

(5-12.2) Hy(r) 1572 (Pghg+VicyT)

Substituting this expression for Hj(r) into (5-12.1) yields the following
two integrais:

RO
mmab‘r

(5-12.3a) Jf - dre
=00 (

V§T2+p§)3/2
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(5-12.%0) /m drer-e 180T

(v3:2 2)3/2

Mo (VT +pj

The second integral is identically zero for wgb = 0. The integral (5-12.3a)
has been evaluated by Foley32 in terms of Hankel functions, Hl(in), of the

first order with an imaginary argument

1o 4 0
(5-12.4a) \/hw ar e~1%BbT _ = 8o H 1p jwab

Similarly, the integral (5-12.%b) is given by

- _:,n‘o . @ QO
" P grereeTUBET ni d o 1P 3%
(5-12.4b) = — |ady Hy |——]| .
2.2 2)3/2 2 44 v
-0 (Vkr &-!‘-pJ pjvk Wy | k

For large Djagb/vk’ the Hankel function becomes*

O
-K ol
(5-12.5) Hy(ik) & &_ ; Pi%b = > 1 .

K v
5 k

Therefore, the nonadiabatic (off-diagonal matrix elements vanish expo-
nentially with increasing pjmgb/vk. However, for sufficiently high veloc-
ities, the collision time, 74 ~ p/Vv, is small compared to the rate (agb)'l
and one may approximate the exponentials exp iagbv in.g%a by unity.

If the splitting agb is due to static ion fields, then ng is of the

order
(5—12.6) Mgb ~ %.ab = l".52 XabN 2/3 »

where again Ag, is the Stark shift in units of circular frequency that

corresponds to the Holtsmark mean field strength (see 4-1.23). The maxi-

¥ Jahnke -Emde, Tables, pages 137-138, Ref. 65.
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mum value of k for a given density and temperature is of the order

2/3
1o - _ MNab Om - 562 Xgp — Ny
e

where p, is the Debye screening length (5-5.5), V is the average electron
velocity, me and e are the electronic mass and charge, and Ng and Ni are
the electron and ion densities. The Xgp can be calculated wita the

definition (L4-1.6). TFor equal ion and electron densities, k  becomes

/6

(5-12.7Dp) kg = 3.5 X 107 X N

For N = 10 ions/cm®, Ky = .016 X p+- Therefore, k is small compared to
unity for X;p = 1-20 and for impact parameters less than the Debye shield-
ing distance. Thus, one may neglect the exponentials exp imng in calcula-
ting the electron broadening of the Balmer lines. This simplifies the nu-
merical work immensely since one must average the line profile due to elec-
tron broadening over the static ion field splitting. This would involve
averages of the Hankel function with the Holtsmark probability distribution

if k were not small compared to unity.

1%. Comparizon of the Theory with Experiment

An experimental study of the broadening of the Balmer line Hp (M861£)
wag carried out by Turnerl’2 and Do}:ler'ty2 in the shock=tube laboratory at
The University of Michigan. These experiments were described briefly in
Chapters I7 and IV.

Tre Balme: line HB wag chosen for study for the following reasons:

1. The intensity of the HB line waz high enough so that time-resolved
spectra couid be obtained, but not so intense as to result on self-absorp-

tion. The Hy line was not selected because of self=-absorption.
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2. The line is isolated from the other Balmer lines so that there
is no overlapping. The higher series members of the Balmer series tend
to broaden and overlap at high ion densities.

3. There is no central component for HB (the central components do
not exhibit a static Stark effect and our theory for electron broadening
is uncertain at the line center).

L. There are relatively few Stark components in Hg, so the theoreti-
cal line profiles are comparatively easy to compute.

5. The HB line liegs in a convenient region of the spectrum (4861&)0

The line shape was calculated with the aid of the series expansion
(5-10c.7) for &b;a greater than the HB half-width. For frequencies smal-
ler than the half-width it was necessary to compute the intensity by nu-
merical integrations of the basic integral expression for Iaa(mwga)o The
result of these calculations for the wing of Hﬁ is shown in Figure 8,
where the theory for ion and electron broadening is compared with the
Holtsmark distribution for ion broadening. It is seen that the intensity
on the far wings is appreciably greater if the electron broadening is ta-
ken into acccunt. The temperatures and ion densities were chosen to con-
form to typical conditions encountered in the_shock tube. These calculs-
tions showed that the shape of the distribution is not very sensitive 1o
the temperature.

In Figure 9, where we have compared the Holtsmark theory with a ty-
pical Hg profile obtained in the shock tube,* it is shown that the Holts-
mark distribution yields too narrow & line, while our theory yields an
additional broédening that is of about the right order of magnitude. Fur-

ther experiments are needed to determine more accurately the wing distri-

*Private communication with-E. B. Turner and L. Doherty.
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IONS +
ELECTRONS

N T

5 x 10%cm3 11,000 °K

B HOLTSMARK (IONS) 4 x 10 12,600
8 x 10 13,500
2 x 107 15,000
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LOG —3s
|

Figure 8. Comparison between the Holtsmark theory and the theory for
broadening by both ions and electrons illustrating the density dependence.
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bution of Balmer lines other than HB in the shock tube and to correlate
this information with the ion densities and temperatures obtained from
hydrodynamic considerations. The good agreement between the theory for
ion and electron broadening and the existing experimental data is, how-
ever, encouraging. It appears, therefore, that serious errors are intro-
duced into calculations of Balmer line absorption coefficients at all

densities by neglecting electron broadening compared to ion broadening.

14, Critique; Some Unsolved Problems

The present theory of hydrogen line broadening by both lons and elec-
trons is not valid near the line center. There are two reasons for this.
The nonadiabgtic contribution to the electron broadening has been calcu-
lated with a perturbation approximation that is not vélid for large times
and small frequencies, Aw. This approximation restricts the applicability
of the theory to frequencies that are large compared to the half-width
due to electron broadening. A second source of difficulty in calculating
the line profile near resonance is the failure of the statistical theory
for small frequencies. Corrections to the statistical theory which take
into account the motion of the ions have been calculated by Mrs. qugdahlo59
However, it now appears that the statistical assumptions that are implicit
in the Krogdahl formalism are probably not correct. Furthermore, the
Krogdahl approximation was based on the adiabatic assumption. It is not
clear that one can neglect nonadiabatic effects in calculating corrections
to the statistical theory.

The theory for electron broadening also suffers from the ad hoc man-
ner in which the close collisions were treated. In reality there is a
gradual transition between the strong and weak collision approximations.

A theory which takes this transition region into account properly must
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avoid the assumption that the amplitudes |Cba(t)i2 are small compared to
unity.

Another interesting problem is the simultaneous consideration of both
the first- and second-order Stark effects. The quadratic Stark effect
will tend to shift the Balmer lines and will probably cause some asymme-

try in the frequency distribution.



APPENDIX A

DERIVATION OF THE INTENSITY DISTRIBUTION I (w)

Let H, be the Hamiltonian of an unperturbed atom or molecule and let
¢n and Ei be the wavefunctions and energies of the unperturbed eigenstates

of Hye The ¢n and Eg then satisfy the stationary Schr8dinger eguation
‘ 0
(Aol) HO ¢n = En ¢n °

The Hamiltonian which describes the interaction of the radiating system

with the assembly of perturbers is written
(A.2) H(t) = H, + Hi(t) ,

where Hi(t) contains the position coordinates of the perturbers and is
time dependent because of their motion. The Schrgdinger equation corre-

sponding to H(t) is
(A.3) Y, () = HE)P(t) ,

where the'in(t) are a set of wavefunctions which describe the time develop-
ment of the perturbed system. A set of initial conditions can now be
chosen such that at some time t=t, the set of wavefunctions [L,(t)] re-

duces to the unperturbed set [@,]

(A.4) Yolty) = @ -
Since the ¢n are a complete orthonormal set of functions, it follows
at once that the'¥n(t) also form an orthonormal set of functions. To

show this, consider two solutionsgfﬁl(t) and ¥ (t), which satisfy the
145
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time-dependent Schrodinger equation (A.3). By the Hermitian character of

the Hamiltonian it is clear that

(A.5) () = (h,ER) = @h)z) = -@,Xs) .

This is equivalent to writing

(5.6) 2 (uste) = 0,

so that the complete set of solutions which are orthonormal at t, stay
orthonormal for all time.

Now let us investigate how the perturbations due to the surrounding
assembly of particles affect the optical transition probabilities of the
radiating system. The interaction of the radiating atom with the elec-

tromagnetic field is

>

(A7) Hyp(t) = -p - ﬁw cos (wt + @) = =pEy, cos © cos (wt + @) ,

where p is the dipole moment operator, Ey is the amplitude of the electric
field vector, and & is the phase of the light wave. The total Hamiltonian
which now includes the radiating system, perturbing particles, and elec-

tromagnetic field is
(A.8) Ap(t) = E(t) + Hy(t) = Hy + Hi(t) + Hy(t),

and the wavefunction y(t) which describes this system satisfies the time-

dependent SchrSdinger equation
.
(A.9) it (t) = Hple)y(t) -

Tt is now convenient to expand V(t)in terms of the set of functions™ Ap(t):

*These wavefunctions are referred to as "collision smeared" wavefunctions
in the terminology of Bloom and M’argenauo15
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(A.10) v(e) = Zoag(e)w(e)

Substitution of this expression for V(t) into the Schrédinger equation

(A.9) yields an equation for the expansion coefficients
.2 c
(A.11) ih Ap(t) = %(Hg)nm Am(t) s

where (Hz);m = P#h(t), Hz(t)Vm(t)]. The superscript ¢ refers to matrix
elements between the "collision smeared" states'yn(t) (not the stationary
states @ ). Ap(t) can now be expanded by the well-known iteration

procedure. Integrating (A.1l) yields

t
(2.12) A (e) = Ap(ty) + é% | dt %m (Hz);m Ap(ta) -
O
Similarly,
, [T c
(.13) Ap(e2) = Aqlte) + o7 | aba L (Hy) Ap(62)

]

Putting Ap(ti) into the right-hand side of (A.12) gives directly

Ap(t) = At fz th aty [Hy(t1)1° Am(to)
tO
(Ao1k)
1 oy b rta
e L f ey | aval [y (52)lom [Ha(s2) Iy Aplee)
tO JEJO

Let A(ts) and Hi(ts) be matrices whose elements are A (tg) and [Hy(tg) nm

respectively. In matrix equation form (A.14) becomes

1 t
Alt) = At) +_E[ aty 1, (t1)A(t,)

O

(A.15)

t Nt
(;)Zf as | b ate B ()ES (62)A(t2) ©
i

tO tO
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Repeating this iteration procedure finally yields

(A.16) Ag) = [ +ZlRS(t)]A(tO)
S=
or
Aale) = Aplto) + D ZR(t) Ay(so)

where the time-development matrix [1 + % Rs(t)] is defined by

N t tq
(Aa17) 1 + ZSTRs(t) =1 +§S;-(-J%)—sft dtsf sdts_l f dt[Hj(tS)... Hi(tl) .

0o tO tO

The probability that at time t the radiating system is in a collision
smeared state described by, (t) is given by the absolute value squared

of the quantum mechanical amplitudes A (t). From (A.16) these probabil-

ities are 2 i . )
A ()17 = 1A, (e )17 = 5 1a, (6 )7 [RS (6) + RSX(£)]
+ 2 iAm(tO)lz 2 Rim(t) Rr*(t)
(A.18) + L1060 (66) Rop(v)
+ DL (e )an (8) R (8)

+ T T (1o )i (o) 2 Ron(t) B _(t) .

The first sum in this expression can be simplified by making use of the

unitary property of the time-development matrix [1 + g R%(t)1:

[1 +§Rs(t)]T (L+ZF) =1,
that
?1119? Z(RST +R%) = X g°T gr .
S rs

Then, for the diagonal elements one has



TSt 5 _ Ay 5t T
(2.20) LR *+ Byp) = L % R, Run
or
A.21 LRI +RY) = 2 ZRY*RY.
( ) s( oo nn) rs m° mn  mn

Using this relation (A.18) becomes

8,817 - 1aa(80)[* = T 1A (1)1 2 B3 (6) RN(E)
~ : 2 S r
(A, 22) -% A (6, ) | %S R“(t) Rmn(t)

. . *
+ nondiagonal terms in An(to)Am(to)

Now R°(t) is of order s in Hy(t) according to (A.17), so it is also of
order s in the electric field strength E,. Therefore, up to order Eg,

(A.22) involves only RY(t) and reduces to

1400612 - 8,(50) |2 = |ag(t)1? uagmwz - Ja(e) PR (6)]2

(A.23) + % (A% (6 )R, (80 RE (£) + Ax(t o)RL(t)]

+

20

'y A (£ )Am(t ) R 1® .
jo) nm

With the usual assumption that the phases of the guantum mechanical
amplitudes Am(to) of the unperturbed eigenvalues of Hy are randomly

distributed in a thermal ensemble, it follows that the density matrix

A (tg)Ap(ty) pnm(to) is diagonal when averaged over the ensemble

(A.24) o

Anderson, Bloom, and Margenau et al. take Qn(to) to be the Boltzmann

distribution corresponding to the unperturbed eigenstates of Ho:
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'Eg/kT 70
(A'25) pn(to) = eﬂ-'fr_ s Z(T) = I%e Em/kT

This assumption leads to certain difficulties which are examined in Chap-
ter IIT, Section 8. With the assumption of random phases, the transi-

tion probabilities per unit time are now

> > ——
(a.26) ()] t:tlAn<to)| = 5 & Doulto) - pnlto)) [RE(6) %

where, according to (A.17) and (A.7), Rinm(t) is given by

t
E., cos © c
(A.27) R: (t) = ® - fc Atyppy,(ty) cos (wty + @)
[e]

where 1S (t) = (Zy(t), iy (t)).

ILet us now fix ouf attention on a particular term in the expression
(A.26) for the transition probabilities. For matter in thermal equilib-
rium with a radiation field, the averaging process indicated by the dou-
ble bar includes an average over the random phase angle O, the amplitude
squared of the electric field vector Ebg, and the square of the direction

cosine, cos®@. This averaging process yields

Ei cos®e 2 2

t t A

-1 t

mw>me=——~]wmQMkmlnfm%wml
nm to to

e

where cos®e = l/BB

Now for a thermal radiation field the energy density ED(T) is given

by

8xn by 7 PN

(A.29) B, (T) = B l® + [Bol®  [|El? EZ cos?(wt+0) éE(%

where B/ (T) is given by the Planck distribution,
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(4.50) B (1) - 2 L

1% (exphw/KT-l)‘

The total transition probaebility, using equations (A.29), (A.30), (A.28),

and (A.26), is then

[An(£)]2 - [An(60)]® | 2 aB 1 1
t-t, 3 mc3 (exp% 1) (t-ty) °
2
(8.31) T loy(t,) - pnlty)] ft dtapin(ty) e 902
tO
+ Jﬁt dtluﬁm(tl) e+iwtl 2 ,
5

Avg

The energy radiated and absorbed per second I(w) due to transitions
which populate and depopulate the state n is given by the productfof the
photon energy %w and the total transition probability (A.31) after a time

long enough so that a transition has taken place

(4.32) I@) = %o lin 1+ [|a,(m)]% - [2(0)]%],
T T
or
2ot 1 [9,(0) - 5 (0)] Tom T
T (w) 508 (EOT) |m Pm - ppl0)] T>w T
(A.33)
AT . 2 T 2
’ J ul (t) T | 4 foufm(t) Tt g .
@]

Avg
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