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ABSTRACT

Recent studies have shown that periodic processing can improve
certain chemical processes. This research is primarily concerned with
the optimal control of an inherently periodic process, the cyclically
operated molecular sieve adsorber. This adsorber is operated by alter-
nating the flow of the feed gas mixture with the flow of exhaust gas at
one end of the adsorption column while regulating the product end of the
column for constant flow. The separation accomplished and the fraction
of feed gas recovered as product depend upon the manner in which the
pressure is controlled at the feed boundary.

A simplified model for this system, neglecting rate limitations
and neglecting variations of the flow and adsorption properties with
composition, is presented. Using a variational approach, the necessary
conditions for optimality are derived for the resulting system of par-
tial and ordinary differential equations. The maximization of a perfor-
mance index, which includes a product composition profit term and can
include an exhaust rate cost term, is considered. For this performance
index the controls of maximum pressure, minimum pressure and zero flow
are possible nonsingular optimal control function segments. Because the
state and adjoint equations of the control problem are exceedingly com-
plex, a cell model approximation for the adsorber and the associated
adjoint variable equations are also presented.

A numerical slgorithm, similar to that suggested by Horn and Lin,
is used to locate the optimal control function. From the numerical com-
putations for a nitrogen-methane gas mixture with 20-50 mesh Davison 5A

Molecular Sieve as the adsorbent, it is found that the éyclic sequence

xiii



of maximum pressure followed by minimum pressure maximizes product compo-
sition. This is then investigated experimentally for a 5 foot column with
a permeability of 101 darcys and a comparison is made between the predicted
and actual optimal controls. It is found that the optimal frequency of
0.35 cycles/sec. is independent of product flowrate in the range of 1.16
SCFH - 2.4 SCFH. However, the optimal fraction of period for applying the
maximum pressure is affected by product flowrate. Both numerical and ex-
perimental results indicate thatthis optimal fraction increases as product
flowrate increases.

The»addition of the exhaust minimzation term into the performance
index changes the form of the optimal control. In this case, the cyclic
sequence of maximum pressure, zero flow, minimum pressure optimizes the
performance index. As the importance of the exhaust minimization term in-
creases relative to the product composition maximization term, the opti-
mal frequency decreases, the optimal fraction of the cycle for applying
maximum pressure decreases and the optimal fraction of the period for
applying the control of zero flow increases. Experimental results verify
the fact that short applications of the zero flow control decreases the
exhaust rate without significantly reducing the separation accomplished.

A dimensional analysis of the state equations is also presented
to determine the influence of the design factors. From this analysis it
is concluded that the area affects only the capacity of the system. It
is also found that within the region of the validity of the model, shorter
lengths for the adsorption column or higher permeability iﬁ the packed bed
results in higher capacity without affecting the relationship between sep-
aration and fraction of feed gas recovered as product. However, as short-

er lengths or higher permeabilities are used, the frequencies required to

xiv



obtain the optimal operation are increased.

‘Another design parameter that is studied is the volume between
the product end of the column and the pressure regulator. Preliminary
numerical results show that increasing this volume both increases pro-
duct composition and decreases the exhaust flowrate. It thus appears
that maintaining constant pressure at the end of the column is most
beneficial to the process.

The mathematical model and the numerically computed optimal
controls provide a better understanding of the influence of both the
above mentioned design factors and the feed boundary pressure control
in the cyclic adsorption process. Also, the theoretical and computa-
tional procedures that are presented should be useful in the treatment
of other optimal control problems involving periodic distributed-para-

meter systems.
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1. INTRODUCTION

For most continuous processes within the chemical industry, it
was formerly assumed that using constant operating conditions was the
best mode of operation. Recent studies have shown, however, that cyclic
or periodic operations in some of these processes can lead to improve-
ments in the process outputs. Since the magnitude and direction of the
change in process outputs caused by cycling can vary, it is important
to be able to locate the best possible operating conditions. This leads
to the application of optimal control theory.

Initial contributions to the theory of optimal control were pri-
marily concerned with discrete systems. ©Bince there are many distrib-
uted-parameter systems in chemical processing, recent attention has been
directed to optimal control theory in this area. It is the purpose of
this thesis to theoretically, computationally and experimentally inves-
tigate the optimal control of a periodic distributed-parameter process.

An inherently periodic process and the subject of this research
is a cyclically operated molecular sieve adsorber. This gas separation
column has practical significance due tc the following advantages over
some present adsorption methods:

1) No separate adsorbent regeneration process necessary

2) Continuous operation

3) No solids handling needed during operation.

In addition, its fast startup time may make it practical where the start-
up delays of conventional continuous mode plants are not acceptable.

This cyclic adsorber is operated at ambient temperature by alter-

nating the flow of a feed gas mixture with the flow of exhaust gas at



one end of the column while regulating the product end of the golumn for
constant flow. It is noted that the manner in which the column is pres-
surized and depressurized at the feed end, that is, the feed boundary
pressure control, can greatly affect the composition of the product
stream and the amount of gas exhausted. Therefore, if 1s necessary to
establish the optimal feed boundary pressure control which maximizes
certain performance criteria of the adsorber.

The above adsorber is described by two partial differential equa-
tions for pressure and composition, and by ordinary differential equa-
tions at the product boundary. In this research the necessary conditions
for the optimal control problem have been derived both for the distrib-
uted-parameter system and for a cell model approximation of it. Compu-
tational work using the cell model and experimental studies, investigate
the performance index of product composition maximization for a fixed
product flowrate and a limited available pressure for the methane-nitro-
gen feed gas. A comparison is then made between the numerically deter-
mined optimal feed boundary pressure cycle and the one determined from
actual equipment performance.

Another performance criterion, which includes a term for mini-
mizing exhsust rate as well as a term for maximizing product composition,

is also investigated computationally.



2. LITERATURE SURVEY

Since the subject of this research involves the areas of periodic
processing, adsorption and optimal control, the literature in each of

these areas will be briefly examined.

2.1. Periodic Processing

During the past decade, controlled cycling has been investigated
in a number of chemical processes. Initial work was concentrated on the
staged operations of distillation and extraction. Cannon reviewed these
studies which found that by alternating the liquid (or heavy phase) flow
with the vapor (or light phase) flow, the capaéity and efficiency of a
plate distillation (or extraction) column could be increased (9). Fur-
ther work in distillation was carried out on a plant scale by Schrodt
et al. (35).

Investigation into periodic processes was stimulated when ther-
mal parametric pumping was conceived by Wilhelm. This separation prin-
ciple depends upon the dynamic coupling of a cyclic relative displace-
ment between two phases and a cyclic interphase solﬁte flux. Unlike the
cycled staged operations, the relative motions between the two phases is
not unidirectional but alternates. Separations using parametric pumping
in an ion exchange column were reported by Wilhelm, Rice and Bendelius
(40) and by Wilhelm, Rice, Rolke and Sweed (L41l). An equilibrium theory
for the mathematical modeling of this system was presented by Pigford
(30) while Rolke and Wilhelm (33) and Sweed and Wilhelm (38) presented
models and computational procedures for their work.

The batch gas adsorption process, which operates in a separation

3=
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mode followed by regeneration, can also be thought of as being a cyclic
process. Since there are two major means of regeneration, thermal and
pressure swings, two types of parametric pumping can be applied to ad-
sorption. McAndrew studied thermal parametric pumping using a gaseous
methane-nitrogen system (27). The process known as heatless adsorption
was described by Skarstrom in 1959 as a system for dfying alr over a
silica gel bed (37). This process is very similar to parametric pumping
using pressure as the varied parameter. Alexis then applied heatless
adsorption to upgrade hydrogen by the removal of hydrocarbons (1).

In separating oxygen and nitrogen, the Esso Research Laboratories
used a variation of the heatless adsorber which no longer required two
alternating adsorbers (18). Rapid pressure swings at the feed boundary
of the .adsorber were imposed while a limited purified fraction of gas
was removed from the product end. This cyclically operated adsorber then
fits into the category of pressure parametric pumping. Further research
into this process was done by Turnock studying a methane-nitrogen system
using molecular sieve as the adsorbent (39). As a result of his work,
Turnock found that use of the equilibrium theory in modeling this dis-
tributed-parameter system adequately described the process.

Recently, attention has also been directed to the effects of
cyclic operations in chemical reactors. Studies by Douglas show that
product yields in certain reaction systems could be improved by periodic
operations (1L4). Research into the performance of periodic polymeriza-
tion reactions has been reported by Ray (32) and by Laurence and

Vasudevan (25).



2.2. Adsorption

A basic text concerned with the theory and conventional applica-
tions of adsorption has been written by Mantell (28).

Adsorption equilibria for methane-nitrogen mixtures on Linde
Molecular Sieve Type 5A were studied extensively at high pressures by
Lederman (26). At the pressures studied, the total amount of gas ad-
sorbed appeared to be composition invariant and the data were well repre-
sented by the Freundlich isctherm relationship. To relate the relative
equilibrium adsorption of the gas components a composition invariant
relative volatility was introduced.

Further data on molecular sieve behavior are presented in a text
prepared by Hersh (19). However, well defined properties for methane-
nitrogen adsorption on Davison Molecular Sieve Type 5A, which is used in

this research, are not available in the literature.

2.3. Optimal Control Theory

Initially, the theory used to compute optimal control functions
was based on the calculus of variations. Interest in optimal control
theory was greatly stimulated when Pontryagin and his co-workers wrote
the basic theoretical text on the Maximum Principle (31). This work was
then simply presented by Rozonoer (34). An elementary text which pre~
sents the basic principles of control, a heuristic proof of the Maximum
Principle, and several applications of the theory was written by Athans
and Falb (3).

The development of the Maximum Principle enabled workers to in-

vestigate the optimal control of systems that are described by ordinary

differential equations. In chemical engineering, following the work of



Bilous and Amundson (L), Aris (2) and Jackson (21), Javinsky reviewed and
studied the minimization of reactor startup time (22) and Newberger re-
viewed and studied the maximization of reactor product yields (29). Boﬁh
included experimental as well as computational work. Horn and Lin pre-
sented a method to solve both the system equations and the optimal con-
trol of a lumped-parameter periodic process (20).

However, there are many physical systems which are distributed-
parameter systems and require formulation by partial differential equa-
tions. For example, some systems with heat, mass and momentum transfer
must be modeled by éartial differential equations. Thus, the need devel-
oped to derive a maximum principle for distributed-parameter systems.

The first workers to formulate this problem were Butkovskii and
Lerner (5). Butkovskii subsequently considered the optimal control of a
class of systems describable by a set of nonlinear integral equations
(6, 7). He also suggested discretizing the partial differential equa-
tions to create a set of lumped-parameter systems to which the Maximum
Principle is applicable (8). He did point out, however, that convergence
as the number of spacial grid points is increased is not guaranteed.

Although Butkovskii had derived the necessary conditions for
optimality, the results depended upon the solution of nonlinear integral
equations involving rmultiple integrals. This method required an explicit
solution of the sy§tem equations which restricted the results to linear
systems. With thefuse of functional analysis, Katz eliminated the above
problem by formulating a maximum principle which could be applied to
parabolic and first-order hyperbolic systems as well as lumped-parameter

systems (23). Here, however, the adjoint operator must be constructed

for each specific problem, which is an unwieldy procedure, and the
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formulation does not include cases where the control enters through the
boundary conditions. Similar necessary conditions were presented by
Egorov for second order hyperbolic systems and parabolic systems (15-17).
Following the approach he used for lumped-parameter systems, Denn
used a variational procedure with a Green's function solution to provide
a simplified derivation of the necessary conditions for distributed-
parameter systems (12). In addition, boundary controls could be consid-
ered as well as distributed controls. Denn, Gray and Ferron then used
the conditions of optimality to maiimize the conversion in a packed tubu-
lar reactor with the wall heat flux as the control variable (13). Other
applications of distributed-parameter optimal control theory in chemical
engineering have been limited to heat exchangers and chemical reactors.
Seinfeld investigated, with reference to heat transfer and reaction sys-
tems, the computational methods available for constructing optimal con-
trols as well as presenting the theoretical basis for computing singular
controls (36). Koppel and Shih considered the optimal control problem
with heat exchangers (24) while Chang and Bankoff studied the optimal

control of tubular reactors (11).

None of the problems of optimal control of distributed-parameter
systems thus far examined has involved a separation process. In addi=-
tion, except for Chang and Bankoff's study where a noncontrollable peri-
odic input was imposed (10), a study of the optimal control of a periodic
distributed-parameter process has not yet been reported. Therefore, in-
vestigating the optimal control of a cyclically opérated molecular sieve
adsorber will not only increase the understanding of this separation
process but will also yield further insight into optimal control problems

in periodic distributed-parameter processes.



3. THEORETICAL BACKGROUND

This chapter will deal with the development of a mathematical
model of the molecular sieve adsorber and with the formulation of the
necessary conditions for optimal control. The resulting set of equations
for the state variables of the system and for the adjoint variables of
the control problem will be governed by partial differential equations.
Because of the complexity of these equations and of the computational
procedures involved, the computer cost for a finely spaced finite differ-
ence solution of these equations would be excessive. Therefore, after
the distributed-parameter system is examined, a lumped-parameter model,

i.e. cell model, approximation of it will be studied.

3.1. Bases for Model of Adsorption System

The adsorption system being studied is a molecular sieve bed that
is flow controlled at the feed boundary and regulated for constant flow
at the product boundary. A simplified diagram of the process is shown
in Figure 3.1. It is the feed boundary pressure control that produces
the alternating flow of the methane-nitrogen feed mixture with the ex-
haust gas. For a chosen constant product flowrate the resulting composi-
tion of the product and the resulting exhaust rate depend only upon this

feed boundary pressure cantrol.

FEED GAS PRESSURE
MIXTURE REGULATOR
— ———
MOLECULAR SIEVE BED < -
—e CONSTANT
EXHAUST PRODUCT

FLOWRATE

Figure 3.1. Molecular Sieve Adsorber,

_8-
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In establishing the bases for a model for the molecular sieve
bed, Turnock made the following assumptions and approximations (39):
(A) Ideal gas behavior
(B) Darcy's Law representation of the gas flow
(C) Viscosity of the gas phase is composition invariant
(D) Plug flow conditions
(E) At any instant, equilibrium exists between the gas
phase and the adsorbed phase.
Based upon Lederman's studies of methane-nitrogen adsorption on Linde
Molecular Sieve Type 5A (26) the following observations were made:
(F) The total equilibrium amount adsorbed is independent
of composition.
(G) The equilibrium adsorption isotherms are fit well by
the Freundlich relationship:
N=4WPT (3.1)
(H) The relative volatility, &, relates the relative
adsorption of the two gas components and does not vary

with composition.
_ y/ x
X = (/‘f#)/(/—x) (3.2)

With the above assumptions, approximations and observations

the behavior of the system is fully described. However, before deriving
the state equations for the system, a brief look into the validity and
importance of some of the above relations will be made.

Since Davison 5A Molecular Sieve was used in this study, the
adsorption equilibria of methane and nitrogen on this sieve were inves-—

tigated and reported in Appendix I. Shown in Figure 3.2 are the
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adsorption isotherms for the pure components and for a mixture of 28.6%
nitrogen and the balance methane. Also shown on this figure is the pre-
dicted isotherm for 60% nitrogen and L40% methane based upon a linear re-

lationship between adsorption and composition.

200

100

MOLES ADSORBED/(440 G. ADSORBENT)

ol
o

N - MG.

PRESSURE - PSIG

Figure 3.2. Methane-Nitrogen Adsorption lsotherms (295°K).

Looking at the pure component adsorption, it would seem that re-
lation (F) is not valid. However, the composition during the operation
of the bed will only vary from a feed composition of about 30% nitrogen

to a product composition of about 60% nitrogen. It is therefore a
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reasonable approximation to use an average total adsorption independent
of composition. This approximation is an important factor in uncoupling
the solution of the pressure equation from the solution of the composi-
tion equation. This greatly simplifies the numerical solution of the
system equations and the optimal control problem.

Relations (C) and (H) are also needed to uncouple the pressure
equation. The relative volatility has been found to be constant over
the range of operating conditions. However, the gas viscosity will
vary with composition. But here again, it is a reasonable approach to
use an average for the viscosity.

Since the rate of adsorption is rapid, instantaneous equilibrium
is assumed as in relation (E). This then eliminates rate considerations

from the model.

3.2. Mathematical Model

With the use of Darcy's Law to describe the gas flow and a
Freundlich isotherm to describe the phase equilibria, the equations for
pressure and composition are derived from material balances on the dif-

ferential element shown in Figure 3.3.

LN N, | O5@82a)  FLow o

Figure 3.3. Differential Element of Packed Bed.

For all material balances on the element,

FLOW (IN-OUT) = ACCUMULATION (GAS + ADSORBENT) (3.3)
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Total Material Balance:

A[VC) = (v¢) ] = Aelan)? (——‘; ) +LX(M)2(&95’2

AT A AT A+4A (3.1)
Darcy's Law: = _/.(_._.8
y v IR (3.5)
Tdeal Gas Law: ¢ = —/5—7-_ (3.6)
Combining (3.4) - (3.6),
AP - 45, ]
oA
RT ,wP ] - & 4 m( (3.7)
AA
In the limit as AAX—=
P
7-1 =
opfea , whvF™) _ Ak 3(P3r) (5.8)
at | RT 7L = KRT X o
Letting Z = P* ana rearranging,
AK I/X az'z
22 _ 7 - & AT
dt [eA + WRTRY Z0517R) (3.9)
L
Grouping constants and simplifying notation,
/2
Z = = (3.104)
(Q/ _/_,03 Z((f"l)/l)) /C:
WRTRY
Where a,:eA , a, = %—K and Q3 = ——L———" (3.10B)

The above parabolic partial differential equation requires one

time condition and two boundary conditions. For periodic processes,

Z(A)to) = z()‘) t’o-f'[) (3.11) |

At the feed boundary, z-(OJI':) is controlled. ©Since there is negligible
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pressure drop in the product line between the product end of the column
and the pressure regulator, uniform pressure,ifﬂ(t), will be assumed in
this product line volume. Then for the boundary condition at the product

end of the column
Z(Lt) = % (t) (3.12)

With the pressyre regulator providing constant molar flow, (QP,

a material balance on the product line volume, Kk , yields

Alve) -Q, 9(7?7‘) (3.13)
A= L Tt
Again using equations (3.5) and (3.6)

At A=L, /q/(fD’B;D - + V 25/9
/L/er A Qp RRT az/.f (3.1k)
_AK 22 _ 2RT Vo 2z
or AL = + R TR
T TX Qp 2% 3t (3.15)
Rearranging, grouping constants and simplifying notation,
o bﬁ
Ze = G, = VR (022, + a3 Qp) (3.164)
where Qg = 2RT (3.168B)

Since (3.16) is an ordinary differential equation, it requires a

time condition. TFor periodic processes,

Zo(t,) = 24 (ts+7) (3.17)

With the pressure equations for the adsorption bed and the prod-

uct line now fully described, attention is turned to the composition

equation.
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Nitrogen Material Balance:

F)
A[(vc,,) ~{ch,) J = Ae(an (%) Wk P) (3.18)
It L ot

TAT Ata

P
Ideal Gas Law: Cry = —%‘7—-' (3.19)

Substituting (3.5) and (3.19) into (3.18) and letting AA—=0

AK ’W”%) = Ae yP) . wh xPT)

AT X Y 7 Ta (3.20)
Expanding partial derivatives and using equations (3.2) and (3.8)
.4
2y [AeP + WP ]
o5 ‘a_% RT L(w:x(/——j))z
_9__. _i (3.21)

/‘RTP” 22 T “”3’0[\/\/%3’/’ }(/—y)(/ o()]
L/j,a- "7 J))

Rearranging and letting & =P,

[WRT% 72{ " )/;; {1-—7)(/—0@

2?: - 5/ A X RRLTIOE T
4 FF-1572)
2 Zzl/z [eA + WRT 4 « z ]

L(dtfm(/—dy))"

(3.22)
Replacing é by equation (3.10) and simplifying notation,
((¥~1/2) -
Lz 2, % (252 (! jw )]
e /
; = F = z»% (2, +2, % ((a’I)z)( f-d.(/-j,))
an'ﬁllj
(3.23A)
w¥=1)/2)
D = (a, + 2% (
where ( 7(;,+o<(/~j))r) (3.23B)
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The above is & hyperbolic partial differential equation. Its
solution requires one time condition. It also requires a boundary con-
dition when and where flow enters into the adsorber. When flow leaves

the system, no boundary condition is required. TFor periodic processes,
gyt = %(/\, tot ) (3.24)

At the feed boundary, the flow into the system is the feed gas.

when z/\/O,t)<O y(alt) - }F (3.25)
The flow into the product boundary, if any, would come from the product
line.

when % (L,¥)>0 7’(th> = yR (t) (3.26)

The above two boundary conditions correspond to the beginning of
characteristics of the hyperbolic partial differential equation. Bound-
ary conditions are not needed at A=L when Z,(L,€)£0 or at A=0 when
Z, (0,£) 20 . The latter lack of a boundary condition will have an im-
portant consequence in the optimal control problem.

Equation (3.26) requires knowledge of the composition in the
product volume. Use of a nitrogen material balance for this volume as-

suming uniform composition and of equation (3.15) yields

F
. _AK 2%,
when ZA/L_,f><O yk = A 22 (’Zz. ;R) (3.27)
Z/M V&ER
or Yo = G, = *azz.*?-,#’z} (3.284)
Zzﬁf’ Va
when Z',\(L,'é>20 jﬂ = 0 (3.28B)

where yﬂ (ts) = %K/t°+1> (3.29)
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For any given feed boundary pressure control and a set product
flowrate, the system is fully described by the differenfial equations,
time conditions and boundary conditions which are compiled in Table 3.1.
For a desired product capacity, the performance of the adsorption system
is directly related to this feed boundary pressure control. It is then
necessary to establish the conditions necessary to find the control that

optimizes the performance of the adsorber.

TABLE 3.1

MATHEMATICAL MODEL FOR THE ADSORPTION SYSTEM

State Equations:

Adsorption Bed:

Y
° a-‘ 2 z)_* ( )
Z2=Ff = Ty 3.104
A (2, +a, 2°7%)
{(v-1)/)
2,z,[a,z2 #(/-})(/—d)]
- (Y-1)/:
i = £ = 225 po (2,#a52" ”’)(,7’“““7?’) (3.234)
y'f‘ 2 - /2 .
£z D
Product line at A=L:
) Z ’/Z
Zp=G="2R (a,z,+a;Q,) (3.164)
Va
;] _ —a,2,(4~9) .28A
when %/\{L,f)éo , ;& = 6:2 — 2 Al/;f jR (3 )
22"V

-4

when i.‘/\(L;t)ZO R yk (3.28B)

i
o
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TABLE 3.1 (continued)

~-r

Time Conditions:

Z(Nt) = 2, t,+7) (3.11)
PIES AN Z/A,tow) (3.24)
Ze(t) = Z(¢,+7) (3.17)
Ya(t) = 7R(to+’5) (3.29)
=0

vhen 2,(0,t) < 0O, g(o,t) = yp (3.25)
Z(0,t) controlled

A=L

vhen Z,(L,t) > O | e = Jy( (3.26)
2(L,t) = Z(t) (3.12)

For the above equations,

a, = €A | a = 'A)T/{' and 43 = WBE&K (3.10B)

a4 = 2RT (3.16B)
« ((¥-1)/2)

p = (a+ ZB% ) (3.23B)

Wj,vh x(/-y))’“

3.3. General Optimal Control Problem

With ordinary differential equations entering the boundary con-
ditions at A=L and the control entering at the A=0 boundary, the method
for setting up the necessary conditions as proposed by Katz (23) or the

conditions presented by Egorov (15-17) are inadequate. TFollowing the
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variational approach used by Denn (12), however, the necessary conditions
for optimality in the adsorption system can be formulated.

. —
To simplify the development, the state vectors w and 7“ will be

defined.
A Z(A,t) _ w, (A, t)
.30
2o (1) r(t) (3.30)
F(t) = A ¢ = I(’t)
yk() ry
Noting from Table 3.1 that
7;-' = E(Z, Z/\/\)
° (3.31)
Jo= Rlroga gt
0
and Z, = G, (Z,g , [ZA],\=L)
° (3.32)
when Z,\(L’f)<0, %K= G-l (zﬂ';’"[:y' ZA]A:L_)
when Z',\(L;f)?-o, ;2&":
Thus, the state equations take the form
> = Flw w, o,) 0< ALL
o, R (3.33)
7 = G—(P) w ) A=L

The general distributed system, containing a distributed control,
Yy , as well as a boundary control, W , is optimized by maximizing the
value of the performance index, I . This index is an average over a

steady state cycle of functions of the state and control variables.

t,+ T

- ._-( f[m_ (@, w,\ [mz(w?] + My(F) +jm,(c27, l))o//lj&f (3.34)
0

In the above, depending upon the forms of the functions m,, m,, My and Mm,,

the criteria for optimum performance of the distributed system can vary.
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For this adsorption system, there is no distributed control, » , nor
do the values taken by the state variables within the bed have any direct
significance. The only terms of interest in the performance index for
this research will depend upon the product composition and the exhaust
from the system. For further work, therefore, only the following per-

formance index will be considered:
t,+ v
A
I = Z'J [ml(w”\),\;:. MB(Q)J dt (3.35)
t,

where mz(‘-‘j) = m,,./&)" ) = 0

P .
m,(w,w,‘) - m’[w’,\),\-.:o

Ao (3.36)

mj(‘r‘-) = Ms(ry)
The value that the above index can achieve is constrained by
equations (3.33). The control, & , applied at the A= Oboundary is
constrained by the maximum available feed gas pressure and atmospheric

pressure so that

At A':O . /é z ES iﬂmax (3.37)

In addition, the control is required to be periodic, piecewise continuocus
with discontinuities only at a finite number of points.

The differential equation constraints (3.33) are introduced into
the performance index with the use of the adjoint variables; that is,
the set of Lagrange Multipliers. In the following development, the
existence of these adjoint variables, although not guaranteed, will be

assumed and they will be denoted by

(A, ¢) R , ()
F and 7 (t) = ,Z(f) (3.38)
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Entering the differential equation constraints into the performance index

for an arbitrary value of B,

t,+7 I T
[m,w,)]  =FUF ~G(F, [w,w) )
1 A=o A=t dat
T

—-l_‘

I: L (-]
+ My (Vi) "‘BJFT(“—; -—F{w) OUA/‘U»))G{/\

(3.39)
Lo

The value of L has not been altered as

= _—
w - Flu, o, @) =o
As stated previously, using a given product flowrate, for a par-

ticular control function, U , the system is fully specified. That is, a

. ) o\
unique solution W and r is defined. Thus, if a small variation 8« is

. . -~ — - —t —d -
made, a new solution is defined, W +§ W and » + §7r . diw and §F
may be made as small as desired by choosing a sufficiently small §u . If
b —

the functions F and G— have bounded derivatives at all but a finite num-
ber of points, then the following variational equation, for constant T ,
can be written. Whenever repeating indices arise, summation will be as-

sumed.

++T
2
a""sw/J [ne 7= (535 st S swi %f‘“uj

2w

SI= % e
=7
'm : .
Jgr Bj[ﬁ Sw f’.} 9/:8(4/ "/"9251 5LU¢;\ —f—é?-aflfwt;\'\)]dx
“A O

R

(3.41)
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Integration by parts operating on 72,; Sf?;, P‘:SW‘

’FJQJ SuJ and FSF‘Z Su; N
2ot T 1o+ ?
- Lpesn] ﬁ/’ Su;] o2 *ﬁ’z [ 551+ 50 at
4ot 7
/ j(Bﬁ(OJ 9w,,] [FJ aw,,’\]) +[QJ ch] ){w‘-dt
ST =7 tot ¥ .
(en ] [y35,] D, o251 5] )
br?
\+ Bj j(f ﬂ “{fJ gwc *‘(ﬂ —-J ) )gw d) dt

(3.42)

The purpose of this variational approach is to relate the change
of performance, §L , with a change in control, §u . In order to elimi-
nate all the terms in the above equation that do not relate to §w , the
form of the control must first be decided upon. The inequality con-
straint (3.37) directly limits Z2(ot). Although Z(0,t) is the actual con-
trolled variable, and will be treated as such in the numerical computa-
tions, a simpler analysis of the variational equation results if z)‘(o,t)
is treated as the controlled variable. Then at A0,

w = LU,’\

i
Su = [wla (3.L43)

Then all terms remaining that involve Sw(, [WL,\ , and 5"',_' must
be made to vanish. The relations that result fully define the behavior
of the adjoint variables. These equations are compiled in Table 3.2 as
functions of Z , y, » Xg and j’R' A complete derivation of these and the

remaining terms of the variational equation is provided in Appendix IT.
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Vith small modifications, the necessary conditions could also have been
derived for w'= Z(0,t) . Major simplification of these complex equa-

tions was possible by letting P¥=/.0. Since a narrow pressure range is
used in this work and the experimental value for ¥ 1s 0.87, the approx-~
imation using ¥ = /.0 1is reasonable.

It should be noted that the uncoupling of the pressure and compos-
ition equations led to a partial differential equation for Pz independent
of e'. Thus, a complete solution for fz may be made before P, need be
considered. The significance of this uncoupling will become clear when
the problems involved in the numerical computations are discussed.

When the adjoint variables are described as in Table 3.2 then

t,+T
L oM, _ . OF
ST =7 (G4 ~ Be; ai;%))fo“’ dt (3.52)
t

For convenience the function /Jo is defined such that

_ 2F
e = miuw) — (Bp; E,’L,M) w (3.53)
Then
t,+ T
A dH
5T = tf [372 5“] dt (3.54)

For the optimal choice of w(t), which is denoted by u¥* and is composed of
subarcs which will hereafter be referred to as the optimal control compo-
nents, §1 must be nonpositive for all allowable variations. Therefore,
for an optimal system where the adjoint variables are described as in

Table 3.2, the following maximum principle must be satisfied:
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Fxcept at a finite number of points, the
function }ﬂ>, the feed boundary Hamiltonian, is
made stationary with respect to the components of
LL#which lie in the interior of its admissible
region. The Hamiltonian is made a maximum with
respect to the components of w* which lie at the

boundary of the admissible region.

Note that the optimal control satisfying the above maximum
principle is not necessarily a unique extremal nor is the existence
of such an optimal control assured.

The preceding development for the necessary conditions were
based on a constant period, T. & necessary condition for the optimal
period is now needed. Following the approach used by Horn and Lin (20)
for ordinary differential equations, consider a variation of the length

of operating period.

Let .I:I = Zf;[

totT (3.55)
=j [, (wn) + 7y (ry it
)

!

Then j[

Once an optimal control has been found at a constant T , consider a
variation in period length, §T . Then
— P}
Swi(t) = §a(t,+T) + F(ts+1) ST
L (3.56)
SF(ty) = SF(t,+T) + G(tetD) ST
Horn and Lin have shown that retaining the definition for the adjoint

. §
system (for’Z and 7 as given in Table 3.2) yields the following relation

if the variation of the optimal control, §U , is independent of the
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variation of the period length §T

§T '2 5r —f-Bchgw df m, (W) + Mj(g)j §1 (3.57)

to"'z"
Using relations (3.56),

L
§T :{7 G +B|PTFdr+ m(meﬁr)j 5T (3.58)

Since e
dl 1 ! a4 dT’
T = T I + < T (3.59)
then
I
dL _ 1 (a7 ORI
AT — T GrBIPTEdN + mlw)t ma(r;)j - -“*I (3.60)
o £yt

The above relation is only valid when @/= #(0,t) is treated as the
control. If u==2}(0{t)is treated as the control, the change in the peri-
od length would result in a change of the region of permissible pressure

gradients. Thus, the above necessary condition for optimal T could not

be used.

3.4. Applications of the Maximum Principle

Before the maximum principle can be used to predict possible
forms of the optimal control, the behavior of the Hamiltonian should be

examined. Written in terms of fﬁ s fﬁ , £ and éf ,

H, =mi(u)-u Ba, ( _ aav(/-—q)(f~ot> )

(a,+a; 2,+Q3) {a ’/1Dﬂ(yfﬂ<(/ ;)) (3.61)

For gas entering the system, U. < O, the behavior of Fz_is de-
scribed by the hyperbolic partial differential equation (3.4L4). When

flow direction changes and leaves the system at A=o0 , &> O , there is
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no boundary condition for composition so that Pg, is immediately con-
strained by the boundary condition Pl-z O . This could lead to a dis-
continuous behavior for '%f_ZZ and would occur only in switching from
ULoO told > 0.

In switching from & 20 to U <o , initially Fp=o0. This
adjoint variable must then change value continuously as described
by equation (3.44) and thus no discontinuity in e would result from
a switch in this direction. For the case where exhaust flow is to
be minimized, 2m, has a value only when flow leaves the system, & >0 .

F.172

This could increase still further any discontinuous behavior of %’f{lz
in switching from <0 to W >0 and would create a discontinuity in

switching from WL >0 to W <o.

3.4.1. Maximization of Product Composition
The simplest performance criterion is that of maximization of

product composition. For this performance index
4+ 7T

= —‘ll”fj&df (3.62)
%o

In order to understand the behavior of LL* for the above index,

the Hamiltonian is examined.

Letting Mo = ——/43(/%//—;)//_0(>> > O
ZZD(/?‘ d{/_;)),\n

I b

, W>0) A=o

(3.63)

From the maximum principle, for components of u,* that lie at the boundary
of the admissible region, the Hamiltonian is maximized. From this prin-

ciple, possible optimal control components can be derived for values of
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24,
U

Where Wpm 8nd Umay are the extreme values of the control of

F‘ such that # 0 .
(pressure)2 gradient obtained by applying the maximum available feed
pressure and the minimum (atmospheric) pressure respectively and remem-

bering that f”’jo’t) =0 for WLWZO0,

At A=0 for o+ M,p, >0
' i

and "'F/ WU max < - (Pl +Mo fz) Wppin

then Ll,* = Umin
(3.6L4)
or if "’PI Uma.x > '—((0, + MOFL)L‘"’H"
then L(r* = U

max

If P + M, IoL<o but F,)o , application of either WUmpy or Um, would
give a negative Hamiltonian. In this case, restricting flow into or out

of the system, UL =0 , maximizes the Hamiltonian.

Thus, for Pt Mspa < O
! i

and P <O
then "L* = Mr'”ax
(3.65)
or if /Dl >0
then ¥ =0

Thus, where a switch from W<0 to U >0 might have created a discontinu-

ous change in Ho , a control of W= 0O is applied and Ha retains a contin-

uous behavior.

2H,

For any situation where —5-. = O , it 1s possible that a con-
w
trol from the interior of the admissible region maximizes the Hamiltonian.

This will arise if, for an interior control,

p=—Mope (3.66)
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occurs at more than a finite number of points. The optimal control is
then referred to as a singular control. A graphical representation of
all the optimal control éomponents for values of PVo,t) is presented in

Figure 3.k.

Line of wu¥=Upmaox
-,

S

“Region of W¥ =0
NSCCSON\g>

Figure 3.4. Relation of Optimal Control Components and Adjoint Variables

at the Control Boundary for Product Composition Maximization,

At some time in the operation of this adsorption system the situ-

ation must exist when u>0. Otherwise, with no exhaust flow, there could
be no separation in steady state operation. From Figure 3.4 it can be

seen that L£¥=:‘€m is the only possible optimal control component for
ax
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W >0 unless F,(O,t) =0 for a singular control component. It is also
noted that since Ho would exhibit the discontinuous behavior only in
the switch from U< O to & >0 , the component w* o can only occur, if
at all, after w¥< O has been applied.

To find the actual optimal control switching sequence, it is
necessary to know the optimal trajectory of Ff(ta,t) . Although it is
established that this trajectory must complete a closed loop (since
F(/\,fo) = ?(%‘Q'ﬁ T) ), other loops within the larger loop may exist.

Thus, actual numerical computation is neededto determine the optimal
trajectory which establishes the optimal control switching sequence.

Although at this point in the mathematical development the unique-
ness of such an optimal control is not assured, knowledge of the behavior
of the adsorption system leads to the conclusion that the existence of at
least one such practical extremal is guaranteed. Specifically, if no con-
trol switching is made, there is no steady state separation. If infinitely
fast switching is made between W, and U ,,,. , the feed gas would almost
completely bypass the bed and exhaust except for a small unseparated prod-
uct flowrate. Since it is known that steady state cyclic separations are
possible, there must exist some maximum in product composition for a con-
trol switching sequence between no switching and infinite switching.
3.4.2. Minimization of Exhaust Rate with Maximization

of Product Composition

In the operation of the adsorption system, it is noted that the
highest product compositions are accompanied by large exhaust rates.

Since the large exhaust rates are undesirable in the performance of the

adsorption system, an exhaust minimzation term is introduced into the
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‘performance index. 6t
/
I = —ff ( Yo —Cu) dt
g (3.67)
where C = 0 for U<KO

With the exhaust rate proportional to & when « >0, the magnitude of C
determines the relative importance to be placed on exhaust minimization

versus product composition maximization. This leads to-
H = —-WU [(30-2,2. )][:e M°€1; LL_(..O
0 a,+23 P+ J
c’, u>o
O = Cla,+a,) (3.68)

5 42. 2' 172 A=0
Examination of the above Hamiltonian leads to the possible optimal con-

trol components. A graphical representation of the regions for applying
these optimal components for values of F/o,t) is presented in Figure 3.5.
Since C” enters or leaves the Hamiltonian for the switch from «<oto
u>0 or from Uyoto UKo, the optimal control component (,L =0 can occur
after u¥= WUpyq or after LL*‘:Q,,,QX.

Thus, in order to find this optimal control sequence, it is
necessary to find the optimal trajectory in adjoint variable space.
Again, because this will determine whether or not singular control com-
ponents exist and the seQuence and number of switches between the control

u

max * O and W, , it is necessary to follow the trajectory via nu-
merical computation.

The model for the adsorption system previously derived leads
to a very complex adjoint system. Therefore, in turning to the numeri-

cal solution of the problem, a simplified cell model approximation of

the system will be derived.
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// M,fz(o,t) +c’
Singular

/%/

Line /”z..—r'

Line of u*= u.mxf‘/

/

SN

N

7

/ ‘Region of W *= U

v #

Cl

Lr

pi (o)==

Figure 3.5.
ables at the Control

i

i

/ Pilot)
S

\Region of u¥=o0

D N N N

N\

Relation of Optimal Control Components and Adjoint Vari-

Boundary for Product Composition

Maximization and Exhaust Minimization,

3.5.

Cell Model Approximation of Adsorption System

In the formulation of the cell model the column is equally di-

vided into n
stage. To fully describe this cell

lowing assumptions are made:

segments, each one of which behaves like an ideally mixed

system shown in Figure 3.6 the fol-

(A) Within each ideally mixed state the gas and adsorbed phases

are in equilibrium.

(B) The pressure drop between cells is caused by a Darcy's Law

pressure drop across the adsorbent.
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(C) The pressure of the gas flowing between cells is taken as
the average of the cell pressures.

(D) The last cell includes the volume of the product line.

t=n

t=n-|

‘ L=2 VR
E R =
o105 a0 0901008

T

Figure 3.6. Model for the Cell System.

Total Material Balance:

_ P P
A ([ vc]ct*fvt'f]&) = Ae(—l,‘—;) 3(;-L-gg ) +k;\<_ 3(;‘55 ) (3.69)

- K (R-P)
D 's Law: v = —_—— bt
arcy's Law /.l. S (3.70)
Average Pressure — ( Pf»‘l+ P‘-) (3.71)
in Ideal Gas Law: L 2RT

For simplifying the complexity of the control problem, as in the case of
the distributed system, let ¥=10. Then the equation for the pressure

L +h
of the L stage becomes

| 2
o Q2 ZFZ (Pz 2 Pz)

R = 2(a,+ay) i —2h 4+ Ry (3.72)
A similar balance on the Yl_ﬂ' cell yields
{ 2 2
e az(u/n)(Pn-, ’“E,)"a«pr
A = (3.73)

2[(a,+a3)~A4) + Vg ]
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Letting Z. = P-z'

L ¢
° '/2,
Z, = 2% (2,;.,~22‘- f'i",.,) (3.74)
(Q,+a3) (L/m)
]
and é,, = Zj’:/z /0.1 (L/"')(Z‘n—l_ Zn) *@QP) (3.75)

[{Q,+Q3)(L/n) + VR ]

Noting that equations (3.T4) and (3.75) contain the finite difference

2

2 = . .
approximations for 21 and 22 respectively, these equations will con-
PP I 2A

verge to equations (3.10A) and (3.16A) of the distributed model, for
'b/= ).0 , in the limit as N —*—o00. Z, then becomes equivalent to ZR.
The boundary control enters into equation (3.70) for L=/ .
If the control at the feed boundary is to be (pressure)2
w =z, (3.76)

If the (pressure)? gradient at the feed boundary is to be the control,

- (% - Z,)
(L/n)

In either case the pressure at the feed boundary is limited by the in-

U (3.77)

equality (3.37). Since in each of these cells the pressure is periodic,

the time conditions are
Z(t) = Z,(t,+7) (3.78)

Nitrogen Material Balance:

AJtvey), - (ve), ] = AelR) 2T . W Al AR

2t "ot
Average Pressure (3.79)
in Ideal Gas Law: CNL,: V%d (PL;., + PL) (3.80)
L RART

Using equations (3.69), (3.70) and (3.80) in equation (3.79)
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for = /.0 and simplifying,

Q[P PR -4 (P B Wi )] — 2% 4 U= Y M=) ( )
B PG g~ R 4] (3, (142

. XA 4
2R [at (4 +°(("/"c))‘] ()

°
L =

(3.81)
where 7& = ;é when Pc z ﬁ‘—f

and g,; = 7{[-/ wvhen £ < A,

A similar balance on the YIM cell yields

. (32)[( £ “Pf)/}? ~4a)] — % By s (1= 1=2) (/)

G = (4 +"oc(/—;;»))
A3 7
2&[("'+(;n+*”'/"»z)//n) e (3.82)
Letting 2; = Pcz and DL' = (a. + X z) >

l (;*l.'*"((/-/"»
" L —~2\/Towu-) - - YT Qs Z; y‘-(/-)/")(l-x)(‘-/n)
4 = Tony (2, 200 (g4 ~(2c= Zu ) o }“)] R
[/4

2 Z"l/"' D‘ (L/n.)

(3.83)
a o
o _ & ~ 23T -4p)] — _23Zn Ynli- W1—2)(L/n)
e Vil (L/")[(z”" z,,){;,, / / %,.,'"”(;n fyx(/-}n )
ZzJ/Z[Dh(L/")"'W{Ij 7 (3.84)

Since equations (3.83) and (3.84) contain the finite difference
. . 2% 2 e . .
approximations for 3 and —31;#\— , these equations will converge to
equations (3.23) and (3.28), for ¥=/0, in the limit as N —eod, ynthen
becomes equivalent to #R .
For the periodic process it is also required that

y(;(t'o)= gg(tn‘t’) (3.85)
At the feed boundary,

i

#o

which enters into equation (3.83) for t=/ and 2,< 2, At the product

gF (3.86)
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boundary, the convergence of equation (3.83) for L= m -/ is examined.
Because (?n"}nﬁ) for 2,2 2Z,, does not become a differential quantity as
" —= 00, 70,,_, would then become unbounded unless
for Rn 2 Zp-, ;n = #"-" (3.87)

This relation is equivalent to equation (3.26) as ;fnﬁ becomes equivalent
to %(L,f) as n —ego.

Thus, this system of equations for the cell model compiled in
Table 3.3 in the limit as h—=e0, will converge to the mathematical
description of the distributed model. Therefore, if the cell model is
examined numerically for increasing values of »n , the limits of its con-
verging behavior will define the behavior of the distributed model.

Before the cell model is examined numerically, the necessary
conditions forvoptimality associated with this approximate system must

be derived.

3.6. Optimal Control Problem for the Cell Model

Butkovskii (8) has suggested the discretization of the distributed-
parameter model so that Pontryagin's Maximum Principle can be used to
derive the necessary conditions for optimal control (31). These necessary
conditions are well presented and applied in the text by Athans and Falb (3).
The following formulation will concern itself only with the system of
interest.

For the cell model, the behavior of the system is described by
Fi (Z , w)
g (%, 4, w)

where £ and ji are the right hand sides of equations (3.7k), (3.75),

r?*_No
J

(3.88)

Qe
]
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TABLE 3.3

EQUATIONS FOR THE CELL MODEL APPROXIMATION TO THE ADSORPTION SYSTEM

Pregssure Equations

a2
° . _ a—z zZ (Zl:-l -2 2, + Zl.'-rl)
== (@, +a3)(/n)* (3.7
. . 2, (20 (TANZ 0= 20) — 0, Gp)
ol [(a+a)(5m) + Vg ] (3.75)
Z(ty= Z (t,+7) (3.78)
w' =2, or "(‘%Z';T%—)“ (3.76) or (3.77)
Composition Equations
N [ L i
y = (_‘:7- zZ: Zo Ny~ ) (= “2;-,,)( A ;) "4” 81— ‘))
y: n') XZZ.'/Z [a_ +J “Z—J' = ](V{/* lJU?
¢ ' (;,‘..f.c((',_;,‘.))z ( ”)
wvhen % > E. 2}: 2%' (3.83)
when %; < Z., 7’5 :%i-l
a PP A, 2, Yo (1-4a) (1-2)(t/n)
70,1 _ (L/r\.)[(z'n-, Zh)(%n. ;I»)] - Z’t’..u(y’n fd (,_.% ) : o)
*a \/ 3.
FEN [(a,, +( n'*"l“"#n »L'}(L/n) + VR ]
¢
f/fo): 75(23*7") (3.85)

;1, = ZF for 214 Z,

(3.86)
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(3.83) and (3.84). These state equations are the dynamical constraints

on the performance index

t+7
[}

I =%) Mms(&, fauldt (3.89)
to
As in the variational approach, adjoint variables must be used to intro-

duce these dynamical constraints into the performance index. Thus, sim-
ilar to equation (3.38), fﬁ (t) ﬁill be the adjoint variables associated
with Z; and i,‘, (t) will be the adjoint variables associated with ;" .
The Hamiltonian function is defined as _
Ho=(pdi+ Qi) + mslz,, yau) ' (3.90)
The maximum principle states that for an optimal control trajectory, the
above Hamiltonian is maximized with respect to the control at all times

provided that the adjoint variables are defined by

5. = — OH -
n o in .29 2
or  Pi = (f" oz, T 1 524') B ‘é‘Zf

: (3.92)
o 2

. . am

ws o= (4 45) - 2

.z jJ cy, 22*[

The adjecint variables are also constrained by the time condition for

periodic processes.
79,: (to):: }9,,' ('f‘of’l') and 25 (f,,) = ii (f°+’C) (3.93)

The maximized Hamiltonian, for the optimal system using the above defini-

tions for the adjoint system, will be constant over the time period when

the directly constrained variable, &, , is treated as the control.
Replacing ;; andC?i in equations (3.88) by expressions given in

Table 3.3 and expanding the partial derivatives, these equations can be
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written in terms of %, and %d . This development is presented in
Appendix III and the resulting equations are compiled in Table 3.L.
As was shown in the development, as the number of cells in the model
increases, these equations will approach the mathematical description
of the adjoint variables for the distributed-parameter model.
However, the equivalence of these two sets of equations was
established for B = DQLV%). As the number of cells increases,
B will increase and in the limit as A —»00, B —=c0. It then
seems as though convergence of the solution of these equations is
not guaranteed. This problem is resolved by noting that the adjoint
equations are linear in the adjoint variables. Thus, any particular
adjoint variable can be redefined such that
}%?:: ﬁ& P
%= % g

Then the Hamiltonian would be redefined by

(3.102)

H = ((9,;795 fi + §i2&jx) + My (Z,,fn,u) (3.103)

For example, the values of the arbitrary constants could have

been picked such that
— = L ; = -
lsi & = /n or t=1,n-l

and Pn = En o= (3.104)
For these values B =/ would equalize the two systems of adjoint variables.
This then suggests that, in numerical computation, if any of the adjoint
variable profiles begins to diverge as n—»o0 , these variables could be
scaled down by the proper selection of the constants Fﬁ and &; to maintain

convergence of the complete set of profiles.
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Also derived in Appendix III is the form of the Hamiltonian for
the cell system. Since the Hamiltonian must be maximized with respect
to the control, just that part of the Hamiltonian that directly depends

upon the control is presented,

_ (% -2,) |
for a-—-'——(L——/;‘—)—', Mjsf,,-(,’u
(3.1054)
(a+a3)(G,~y,) y, (1-4,)(-)
o= =t g Ll LA j*o((/‘l})) ]
l/,_—%
‘= 4y — C(2-u)
for L= X, , ﬂ (l-/h)
(3.105B)

Yo Clu'-2) , Qa(u-7) w . flarag~y) - L YlI=4X-4)
Yo (+/n) +m,+¢3)(,.;n)z)_—f’zl + '( ; ; (7,+--({/ f’» ]
2 z"/z D/

Thus, where C' = _C{(&, +23) ( ~/n)
Qg zl'/a.

’/ 4 /("' )(l—o()
2H, 2H, Q 14 % P A
(W T8 =~ 50 = farafiz s Pilg ’W’]

SR A2 v 2

22’,Dl

(3.106)

Analysis of the Hamiltonian components above, as with the dis-
tributed-parameter model, shows adiscontinuity could exist when a switch
in either direction i}s made between u<o(w' > Z,) and u>o(u' < 2). The
continuous and discontinuous terms have ‘been separately grouped in equa-
tion (3.106). Although this analysis leads to the possible optimal con-
trol components u,#:.- umu, O and ll.,,,m (u,_'*: u'm,n, Z, and LL'W ), the
sequence in which * =0 may be applied is not clear as was the case with
the distributed-parameter model. Since the optimal control components

for u. or W'are both limited by the inequality constraint (3.37), the
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optimal pressure forms for the two sets of optimal components would
be equivalent.

Once the necessary conditions for optimality have been satisfied
for constant T , an equation similar to (3.60) is needed for the cell
.model. Using the same procedure as before, the necessary condition for

the optimum Y can be written for a time invariant Hamiltonian.

dT _ _L £ 1g.0.] — L
7 = 7 [ms(z,,y,,,w)va, . +zc(/%'zc,,rf z L (3.107)

With the use of the necessary conditions developed for optimality
of the cell model, numerical computations for the optimal control can be

made.



L. COMPUTATION OF OPTIMAL CONTROLS

In order to compute the optimal econtrols, a method suitable for
use on the IBM 360 digital computer must be developed to find the solution
to the necessary conditions for optimality. This method must not only
provide a means far converging to the optimal control function from an
initial assumed control function but must also provide solutions to the

state and adjoint equations.

4.1. Solution of State and Adjoint Equations

Because the state and adjoint variable time conditions require
matching, a‘technique with minimum computation is needed to find the
necessary set of conditions. As the mathematical properties of the
equations describing thése two systems of variables are diffefent, sep-
arate techniques are used for the two systems. Horn and Lin suggested

the techniques to handle both (20).

4.1.1. State Equations

Using an assumed initial state of the system for an arbitrary
control function, the state differential equations, wheh_integrated,
will follow the behavior of the system during a startup pericd. After
integration over a number of cycles, the periodic steady state profiles
will develop. - This is equivalent to following the startu§ of the actual
physical system when the assumed initial conditions and control funétion
are used.

‘Since the startup of the pressure profile is rapid (less than
5 cycles for most assumed initial states), the integration following this

startup would be an acceptable procedure to find the steady state profile.

45~
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However, because it may take L&O‘—lOO cycles for the complete startup of
the composition profile, another technique must be devised to quickly
locate this steady state profile. The following technique can be useful
in locating both state variable profiles.

Where the sets of state equations are governed by ordinary dif-

ferential equations (3.74), (3.75), (3.83) and (3.84), the following

identities hold: .
/r B
g ) [2, ~Fi(z, W] dt = o

(L.1)

Il

o

51 9 () [7, —;;(z;,ya,u)]olt

[}

which are valid for any set of FZ&) or FH:) and _‘Z‘:(t) or E(t) . Since the
relative placement of the initial time t,will have no effect on the re-
sults, ‘t,, has been set equal to O . Because the pressure equation is un-
coupled from the composition equation, these two relations can be treated
separately. Then first treating the pressure equation, making a varia-

tion in the pressure variables Z,,

(4
‘ . of
. — -——-L . -

‘5 ;o,_(t)[Szt- azJ.SzJ] dt =0 (k.2)

-]
No variation in control is considered because the solution of the state
equations needed are for an assumed control function. Integration by
parts then yields:

p. (o) §2,(0) = Pe (V) §z, (1)

o 2% (4.3)
where 79,‘_ = - ﬁ‘ 3;")‘

The above is a set of linear differential equations that have m independ-

ent solutions. It is noted that these equations are the homogeneous parts

of the corresponding adjoint differential equations given in Table 3.kh,
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From experience it has been learned that the integration of the adjoint
equations in the direction of decreasing t is numerically more stable
than that for increasing t. Using a backwards integration in time, the
h independent solutions of equation (L4.3) arise from h independent
-~ .
choices of 79(’5) These independent solutions then form the rows of the
matrix TI{t) and equation (4.3) becomes
) - = '
(o) §z(0)= T(T)§Z(7) (h.4)
This equation relates the change in the set 2Z(7%)caused by a
A = '
small variation in the set of initial values, 2(0). This relation then
is used to find the conditions so that the periodic conditions can be
obeyed.
Zi(0) = 2Z;(7) (3.78)
=t
Specifically, a set of 2 (o) is chosen and integration of the
-—
state equations yields Z*('t) . Initially, these sets will not obey
equation (3.78).
> — R
ZH1) -2t (0) = AZ* (k.5)
It is then necessary to determine the changes needed for the set of
?f(o) to meet the periodic requirements of (3.78).
. -t
From equation (4.4), the change in the set #(7) resulting from
—
changes in the set Z(0) is established.
- - -,
§2(7) = TI(T) (o) §Z (o) | (L.6)
—
Because the aim here is to make A% vanish, the change in the set 3(0)
is made such that
- - ~ - PN
ZMo)= ZT0) +§7 (0)= ZH (M) + 52 (%)  (h.7)
Substituting equation (4.6) into (L.T) and solving for the corrected
—
set 2*+@ba

— - ' - —_
Z70)=7%0) - [T(0)~T(x)] M) AE" (4.8
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The above relation for the corrected initial conditions for the set Zi(t)
is based upon a variational technique which considered only small changes
of the state variables. ' With second order and higher térms neglected,
equation (4.8) does not give an exaét solution for the matching time con-
ditions. Thus, application of the above equation may be required more
than once.

When fhe sét of pressure equations has been solved, the composi-
tion time conditions ¢an be attacked in the same manner. Thus,

?”(o) = ;’“ro) —?[ﬂ(o) - Qm)]'bmm? (4.9)

where the matrix 2(t)is made up of h independent solutions of 1i(t)such

5& =% %%;i (4.10)

Again it is noted that these equations are the homogeneous parts of the

that

correéponding adjoint differgntial equations given in Table 3.h.

The above technique for speeding up the procedure to locate the
periodic time conditions is a Newton-Raphson iteration. For either state
variable, pressure or composition, each cycle integrated requires a solu-
tion to the nicell state equations and n solutions of the madjoint equa-
tions. For the rapidly évolving pressure profile this technique is not
rewarding. However, it does reduée the number of cycles needed for com-
puting the composition profile (using the startup procedure) to but 2-3

cycles.

4.1.2. Adjoint Equations
The uncoupling of the pressure equation from the composition egua-
tion allowed the adjoint variables associated with composition,_ii , to

be determined before considering the pressure adjoint variables, 79;.
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The complete solution of this linear differential equation.

o

y _iJ ; - %?? (3.92)
can be made up of two parts: a set of homogeneous solutions and a partic-
ular solution‘ The set of homogeneous'solutions is ﬁovmore than the set
j:ljt):from equatlon (4.10). The partlcular solution, 1 (t) , is deter-
mined for an arbltrary initial or end CQndltlon, j (o) or.i (TU Here
again, backwards 1ntegratlon is used so that equation (3.92), for an ar-
bitrary set 1‘5’(“2’) s establishes'the set i‘-p(‘t) . Then the complete or

general solution of (3.92) is given in matrix form by

(h.11)

,7 (t}—- ’(t) -+ 'A.Tﬂ(z‘.')

-~

where'ﬁ,is the set of n—integration'constants. Since there is a periodic

—lie .
time requirement for-zihﬂ, the vector h is chosen so that

?ﬂ”? f;“ﬁ)’ (3.101)

Then using equation (4.11) at t=oand t=7, and eqaating,

- - p -1
-7l [am-ad

And thus,

ST 2F 2p o ap T ' i
ilt): ‘1 (t) +[2 (6) =9 ("c)] [ﬂ(«cy-ﬂ(o)] LL(E)  (4.13)
Using ﬁhe above‘general solution for %;[t), the adjoint eqﬁations

associated with pressure can be solved in a similar manner. The general

solution is made up of a set of homogeneous’solutions to equation (4.3)

and a partlcular solution of the llnear differential equation

3
’f’( = = 'FJ 2, jJ - 5‘35 (3.92)
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Then the general solution becomes
-7 >7 =, - T, =1
pTt) = BPit)+ [P /o)—f"m] [TT0)~Te)] ) (1)

The significance\of uncoupling the pressure equations from the com-
position equations now!becomes clear. Had these equations been coupled,
the search for these steédy state profiles would have had to have been
treated together. The‘homogeneous part of the pressure adjoint equations
would then have contained not only the terms involving'? but also the
terms involving ib. Ig addition, the homogeneous and particular parts of
composition adjoint equations would have contained terms involving ;;.

This increased interdependency of adjoint equations has three ef-
fects. First, use of the Newton-Raphson iteration would have reguired,
for each cycle integrated, a solution to the Zn state equations and 2n
solutions of the Z&n homogeneous adjoint equations, ﬁow of a more complex
form. Thus,‘4nz adjoint solutions per cycle would be needed to find the
steady state profiles compared to n}'solutioﬂs for the uncoupled system.
Second, the general solution of the adjoint equations would require 4n*+2n
adjoint solutions versus the 2n%* +2n solutions needed when the state
equations are uncoupled. Lastly, for large n, where digital computer
storage is limitéd, the entire 4n? +2n solutions must be stored for each
time increment. Presently, storage is needed for but n3+4¢ solutions
because by treating these sqlutions separately, the same storage space

may be used for both sets of homogeneous and particular solutions.

4.2, Algorithm for Location of Optimal Controls

The equation relating a change in performance index with a change
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in the control function is given by

/ H
ST =7 2% gy dt (3.54)

This equation can be used to converge from an initial arbitrary control
to the optimal control by improving the performance index until no fur-
ther improvement is possible. Then where Wht) is used as the initial

control and.uf+ﬂd is the improved control
kol - + Z_Ho . >0 )4.1
W = wte) + ¢au, ; ¢ (4.15)

unless this violates the inequality constaint (3.37). In this éase,lLﬂ@)
takes the value of the corresponding‘boundary of the admissible set of
controls. Since second order and higher terms were not considered in
deriving equation (3.5k4), gb should be chosen small enough so that these

neglected higher order terms will not be significant. With such a value

Ho

of ¢ the integrand in equation (3.54) becomes ¢ 25'(1

2
) which is always
positive and thus improves the performance index . 1r gé is chosen too
large, then a worsening of the performance index may result.

Using this technique for changing the control function, the en-

tire method for computing the optimal control is diagrammed in Figure L4.1.

4.3. Computation of Optimal Controls to Maximize Product Composition

The number of equations to be integrated, per cycle of computation,
is approximately four times the square of the number of cells used in the
model using the preceding algorithm. This rapid increase in computation
and computer storage requirements was an important factor that led to the
formulation of the cell model rather than directly discretizing the nec-
essary conditions for the distributed-parameter model. Thus, the aim was

to use the IBM 360 digital computer to compute the optimal controls for a
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small number of cells. Then the effect of m on these controls was to be
examined.

With each of the variables (Z(t), #,L‘(t), jilt) ‘and ﬂ-@)) being
described by a number of interrelated ordinary differential equations, a
fourth order Runge;Kutta solution was used for integration. With small wn ,
this procedure was adequate. However, as larger values of n were used,
smaller time grid spacings were needed to maintain numerical stability of
the solution. This stability problem is similar to the oné encountered
with some explicit solutions of parabolic partial differential equations.
Therefore, had a large value of . been contemplated for much of the work,
an implicit method of integration would>have been used. The optimal con-
trol function for a feed pressure limited to 10.0 PSIG and 1.16 SCFH was
computed for the system constants listed in Table L.1.

Using the algorithm based upon w'= Z, to make corrections in the
control function, the resulting improvement in the performance index of
product maximization for the L4 cell model is presented in Figure 4.2. The
corresponding development of the control function is shown in Figure L4.3.

The cyclic control sequence of [yihax) Z, ] maximizes product compo-

'
) u'Mm

sition.

TABLE k4.1

SYSTEM CONSTANTS USED IN NUMERICAL COMPUTATIONS

A = 3.45 cm.d 4 = 0.155 mg. moles adsorbed gas
g. adsorbent
= hho. g. & = 2.3
L =152, cm. € = 0.623
Vk = 40.0 cm.3 K = 101. darcys
g’p= 28.6 % M = 0.0175 cp.
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PRESSURE AT CONTROLLED FEED BOUNDARY - PSIG

l ] | I l T I
UPPER BOUND~—
10 h 10T
- INITIAL FORM — 15t sTEP
o-U ————————— ~ T )
LOWER BOUND
L | | [ | 1 |
0 T 0 7"
TIME TIME
I I I I l ! I I
10— 10F—- —— e ]
— ond gTEp B 6th sTEP -
OfF— === —————— 0 ——————— = —
1 | l | 1 | | |
0 T 0 v
TIME TIME
[ l I I I I
10—
— 12th stEPp
oF— ———————-
| | | | | | | I
0 T 0 v

TIME

TIME

Figure L4.3. ‘Evolution of Optimal Control
Function for ¢ = 10.0 sec.
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If a constant pressure had been used as the initial control in the
improvement procedure, the state variables would all be time invariant and

thus,

F(t) =0 3 .

¢ and ?—;“ = 33‘ = 24: = Time invariant (L.16)
955 22 oYy

7‘-0&) =0

This would then lead to an adjoint system the solution of which is given by

I

27 2, , am
- 3% %5% t 2z
1Y ? (k.17)
and '32:3%% = Eéz?

Since this system would automatically satisfy the necessary conditions

l

for optimality, no improvement in the control function could be made even
though it is known that a constant pressure control will not result in

a steady state gas separation. Therefore, to initiate the improvements,

a short interval of the minimum allowable feed boundary pressure is added
to a control function of maximum allowable pressure as shown in Figure L.3.

Other possible initial controls that were studied are shown in Figure k4.hL.

@ 10""F ____________ s O - - —-
g %
] []
" w 5
) oD
(7] w
L I 4
Q.
0 o. 0______ ___________

0 TIME T 0 TIME | T

Figure 4.L4. Alternate Control Functions Used to Initiate
Performance Index Improvement Procedure
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It was found that for each of these initial controls, the same
optimal control of the 4 cell system was evolved. To allow a slow
enough convergénce to locate any possible singular control regions or
any other optimal contfol forms, a value of ¢=O.+ was used. When the
value of the Hamiltonian components are such that uf*E=£,is the optimal
control form, as is u*:oin equation (3.65), the numerical procedure
immediately corrects the control so that the resulting pressure gradient
is zero or uf+t=ih. Physically, this is equivalent to closing both the
feed and exhaust valves so that the resulting correction in pressure is
a small continuous change as presented in Figure L.3. Because use of
this overall technique leads to a unique control for all three initial
controls, a very large value of ¢ was tried to obtain as rapid a con-
vergence to the optimal form as possible. The evolution of the optimal
system shown in Figures 4.2 and 4.3 was achieved using ¢>=/oo. As was
expected from the analysis in section 3.4, the control w=o(w?= Z,)

*
is applied directly after the component LL*: Umin( W’ = o has been

max)
applied.

The optimal control form was evolved for the 3, 4, 5 and 6 cell
models for the same set of operating conditions listed in Table L.1. 1In
order to present a trajectory of the feed boundary Hamiltonian terms
through optimal component regions similar to those shown in Figure 3.k,
the continuous and discontinuous terms of this Hamiltonian are separately

grouped. The continuous and discontinuous groups, yfand.y,respectively,

are defined by

_ 9 4 (=91~
y="r" 22,0, (Y +o(1-4:)

= ‘9 {9%-—7%)
x ‘“12 2,0,

(4,18)




-59-

These groups are plotted for M. =3, 4 and 6 in Figure L4L.5. The ¢ axis
has been expanded in the region y/<{o so that the part of the trajectory
lying on this line can be followed. Time marks at each 2% of the period
have been placed on the trajectory for 2 =3 to indicate the rate of
travel through the various regions.‘ The fractions of the period spent in
the regions of u’*=i, and LL'*—:. I,L’ma_x are presented in Figure L.6.

It is evident from this figure that although the application of &’ 1‘Lz z,
decreases to a short interval, the fraction of the period for cu*= “;mxa
F;V , does not change much for increasing 7. .

The number of cells used in the model has a great effect on the
optimal period length, ’Z*. Figure 4.7 shows the change of 7f*with
increasing N~ . In addition to the values for the 3-6 cell models, T*
was computed for the 10 and 12 cell models assuming that the shape of
the optimal control form was no longer changing. Although the core
storage of the IBM 360 system is large enough to evolve the optimal
control for a model containing as.many as 20 cells, the extreme increase
in computing cost as M increased made the use of the optimal-control-
seeking algorithm impractical for the 10 and 12 cell models. Specifically,
the computer time required to find the state and adjoint variable profiles
for an assumed control function was only about 5 seconds for the L celi
model. This computation time increased to 35 seconds for the 10 cell
model and to 65 seconds for the 12 cell model. Since over twenty-five
such computations were required to fully evolve the optimal control, the
algorithm was not used for the higher values of Yo . By plotting ¥
versus /n , as in Figure L.T, the 'Z* for rvu= ©0 can be predicted by
extrapolation.

For purposes of comparison with experimental studies, the
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FRACTION OF PERIOD FOR MAXIMUM
FEED PRESSURE (FEED VALVE OPEN)

FRACTION OF PERIOD BOTH FEED
AND EXHAUST VALVES CLOSED
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Figure L4.6.
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Change of Computed Optimal.Control Timing
as Number of Cells in Model Increases.
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convergence of the calculated optimal composition and exhaust rate is
presented in Figure 4.8. An additional computation was made for v =20
assuming ’L/*=6 seconds.

The method used for calculating the optimal control functions
was based on W = Z,. Although the control w= z%(o,t) is most convenient
for the analysis of the distributed-parameter Hamiltonian behavior, w’
is more suitable for actual computation. This arises from the fact
that the inequality constraint (3.37) directly limits &’ whereas it only
indirectly limits W = (:e,-—z,)/( L/n) . Thus, where u:,,,n and LL',,,“ are

constant controls, W,,, and &, . are variable controls.

4.4, Sensitivity of the Optimal Control Function to
System Parameters and Operating Variables

The system parameters presented in Table L.1 and the operating
variables of product flowrate and maximum available feed pressure, all
affect the opera@ion of the adsorption system. It is noted that the
values of these barameters could differ from those used in the previous
computations; there is uncertainty involved in determining the adsorbent
properties, the equipment specifications were arbitrarily chosen, and
operating conditions can vary.

So that the reliability of the computational work can be ade-
quately assessed and extended to new sets of operating conditions, the
influence on the optimal control form of the system constants and oper-
ating variables was investigated. These computations were cérried out for
the 4 cell model and the performance index of maximization of product com-
position. The results of the studies are presented in Table L4.2. Unless
otherwise noted, the system constants shownkin Table 4.1 were used with

a product flowrate of 1.16 SCFH and a maximum feed pressure of 10.0 PSIG.
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I I I
—18
N
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1/(NUMBER OF CELLS) = 1/n

Figure 4.8. Convergence of Product Composition and Exhaust
Rate as Number of Cells in Model Increases.
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TABLE L.2

CHANGES IN THE COMPUTED OPTIMAL CONTROL TIMING WITH
VARTATIONS IN THE SYSTEM PARAMETERS FOR n= 4

Parameter
Varied

New
Value

Optimal Control

% of Period to

be applied Period
Feed Both *
Valve Valves sec.
Open Closed

Computed System

Outputs
Product Exhaust
Composition Rate
% N, SCFH

Unless otherwise noted,

None

SN X oo &R

\k * %
Qy
@y
Qf
Fona

X

1.65
2.95
0.169
0.700
75.0
0.127
0.200
70.0
500.0

5000.0

0.60
SCFH

1.80
SCFH

2.40
SCFH

20.0
PSIG

the parameters shown

37.0 2.
36.5 2.
37.5 2.
37.0 2.
37.0 2.
L1.0 2.
34.0 2.
37.5 2.
37.0 2,
41.0 2.
46.0 2.
29.0 2.
43.0 2,
L7.0 2.
21.0 1.

1k,
1k,
1h.
15.
1k,
19.
10.
1k,
1k,
>20.
25.
1k,
1k,
1k,

15.

in Table L.
3 33.
5 31.
3 35.
2 33.
6 33.
0 33
L 33
3 2k,
p) 33
0 34
0 35.
8 3k,
3 32.
3 32.
0 * %% 37

1 were used.

ST 6.19
33 5.16
37 6.22
66 6.10
L3 6.13
.13 L.58
.98 8.49
00 6.22
.61 6.17
.23 5.71
53 5.09
28 5.81
85 6.10
39 5.89
LTh 12.03

*%k

*%% nonoptimal T

nonoptimal computation made to determine

system outputs
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.5, Computation of Optimal Controls to Minimize Exhaust
Rates while Maximiging Product Composition ’

In order to consider a performance index which includes two
factors, the relétive importance of these factors must be established.
For exhaust rate minimization and product composition maximization

T H
T =%~5(yn - Lz, -w)y dt
(o]

(L/n)
(4.19)

where C = 0 for w’ > Z,
Thus, the value of  will establish the relative importance of the
two performance factors. If exhaust rate minimization is relatively
unimportant,(f:C)and the optimal controls will be the same as computed
in the last two sections. If too large a value of C were used, the
optimal operation Woﬁld be either not to operate at all or to operate
with a steady flow through the bed. In either case a purified gas
product would not be obtained. The value of C thus strongly influences
the criterion for optimal control.

In the following computations, the relative importance between
the above performance factors was not investigated. Instead, the optimal
control has been computed for a few values of C. The effect on the
optimal pressure control form of increased importance of the exhaust rate
term is then clear. These computed optimal controls for n=4and product
flowrate of 1.16 SCFH are shown in Figure 4.9 aléng with the corresponding
system outputs. From Figure 4.8 it is noted that for this small value
of ., the degree of gas separation is a much smaller fraction of the
extrapolated value for M= oo than is the computed exhaust rate. Thus,
Figure 4.9 illustrates only the relative changes in optimal control form

for changing C rather than the actual changes that would be computed for
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the distributed-parameter model.
The optimal pressure wave forms here again are made up of the
optimal control sequence [uéhax Z, ,L;”n] . Time marks on an optimal

trajectory shown in Figure L4.10 show the rate at which the trajectory

passes through the optimal control component regions.
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5. THE EXPERIMENTAL ADSORPTION SYSTEM

With unlimited possible control policies, an exhaustive
experimental exploration of the adsorption system would be unreal-
istically complex, Thus, the actual adsorber performance will be
investigated only for variations iﬁ the general optimal pressure

control form that has just been established.

5.1. Equipment

The basic experimental adsorption system used in this research
was based upon the work done by Turnock (39). A schematic of this
experimental system is shown in Figure 5.1.

The computed cyclic pressure control forms can be physically
constructed with two 2-way solenoid valves usingvthe following cycling
sequence:

1. Feed valve open, exhaust valve closed

2. Both valves closed

3. Feed valve closed, exhaust valve open
These valves are electricaily controlled by direct current relays which
are activated by the square wave outputs of an Applied Dynamics AD2-24PB
analog computer. The analog circuit used is presented in Figure 5.2 and
requires the sine wave output of a Hewlett-Packard function generator.
If step 2 of the above sequence is not included in the control, only one
single pole, double throw relay is used to control both valves.

To fully implement the control policy of maximal flow in either

direction at the feed boundary, surge vessels are used for both the inlet

and outlet flow. The nitrogen-methane mixture, pressure regulated at the

-T1-
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feed gas cylinder, passes through a 500 cubic inch surge vessel while

the exhaust flows through a 2100 cubic inch surge vessel before its flow
is measured. Any other flow resistances are kept to a minimum by using
short sections of three-eighth inch diameter polyethylene tubing between
the solenoid valves and the surge tanks. The 2-way Valcor solenoid valves
were chosen for the one-quarter inch internal orifice which presents very
little resistance to flow. The only other obstacle to flow between the
surge vessel and the adsorption column is one thickness of 80 mesh screen
used to support the adsorbent.

In his research, Turnock found that the use of crushed Linde
molecular sieve pellets led to variable flow resistance caused by attri-
tion of the adsorbent particles. Use of 20-50 mesh round particles of
Davison 5A molecular sieve as the adsorbent eliminated that problem.
Adsorbent is packed into a three-fourth inch diameter, five feet long,
steam jacketed, schedule 40 pipe. This packed bed has been mounted on a
35° angle to eliminate the possibility of forming a void channel along
the bed. The column and jacket are connected to stainless steel flanges
at each end. Matching flanges, with one-fourth inch nominal pipe diameter
openings, bolt to the column flanges. A pipe tee connects the solenoid
valves to the inlet flange. Quick-disconnect couplings here and at
several locations on the column allow measurement of the pressure pulses.

At the end of the column, the product stream passes through a
pressure regulator which fegulatés the pressure of the downstream flow.
Thus, the product flow to the product flowmeters is nearly constant
whereas the flow at the end of the column varies significantly. This
product stream is then metered by two rotameters: one metering and con-

trolling the flow to the Gow-Mac thermal conductivity cell with the
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other measuring and controlling the remainder of the product flow.

The composition of this product stream is measured by the cal-
ibrated thermal conductivity cell. A 100% N2 stream, also serving as
the reference flow, a 50% Ny - 50% CHh mixture, and the feed gas mixture
are used as the calibration gases. The output signal from this thermal
conductivity cell is displayed by g 0-20 millivolt Digitec digital volt
meter. |

A material balance of the operating system is complete when the
exhaust flow 1s measured. The flow pulses from the column are damped
by the large surge volume so that the flow is easily measured by two
wet test meters. A water saturator precedes these meters to insure the

saturation of the gas measured.

5.2. General Operating Procedure

Prior to the operation of the adsorption system, the molecular
sieve bed must be prepared. - Because the molecular sieve will easily
adsorb moisture, regeneration is required after the column has been
packed. While maintaining the column at a temperature of 300°F,
alternating nitrogen purges with system evacuations accomplishes the
regeneration.

To achieve the desired cyclic pressure control, the signals
activating the relays which control the feed and exhaust valves must
be properly set. The frequency of the cycle is easily fixed by setting
the frequency of the output of the Hewlett-Packard function generator.
The fraction of the period that the feed valve is to be open is ad-

justed by the relative settings of potentiometers #1 and #3 in the

analog computer circuit shown in Figure 5.2. If the exhaust valve
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is to be open for the remainder of the period, just one square wave signal
controlling the single pole, double throw relay is required. However, to
achieve the delay in opening the exhaust valve, two adjustments must be made.
The setting on potentiometer #7 varies the initiation of the signal to

.open the exhaust valve while the relative settings of potentiometers #6

and #8 will determine the fraction of the period that this valve is to re-
main open. Care must be taken to make certain that the closing of the
exhaust valve exactly coincides with the opening of the feed valve. If
there is any time that both valves are simultaneously open, gas will by-
pass the column and flow directly from the feed to the exhaust.

Once the valve control has been constructed, the operation of the
system is straightforward. The feed pressure 1s limited with the pressure
regulator on the feed gas cylinder while the product flow is adjusted with
the product rotameters. Becguse the pressure profile within the column
is established rapidly, very little change in these settings is required
as the run progresses.

During the startup period, the composition is continuously metered
with the output of the thermal conductivity cell. By rechecking the out-
put of this thermal conductivity cell for the calibration gases before and
after each run, the uncertainty of a composition based upon the calibra-
tion curve is within 0.2% composition. Thus, although the accuracy of a
calibration curve determined with the three known gas samples is only
within 2%, the precision of the results allows the difference between the
compositions of different runs to be known much more accurately.

After the initial startup, the exhaust flow is measured with the
wet test meters over a few cycles. This flow, together with the steady

state composition output, fully defines the performance of the system
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for a given control. These steady state outputs are achieved after

periods of five to twenty minutes depending upon the product flowrate.

5.3. Experimental Resgults

The experimental work was undertaken both to optimize the
system to provide a measure by which the computational studies can be
compared and to gain a better understanding of the effects of various
operating parameters on the performance of the system. Thus, for
different product flowrates the outputs of the system were examined as
variations were made in the frequency and timing of the cyclic control
sequence. BSo that the amount of gas required for an experimental run
is kept to a reasonable level, the limitation of 10.0 PSIG was imposed
on the available feed pressure. Although this was a somewhat arbitrary
choice, an investigation of the effect of maximum feed pressure is
beyond the scope of this work.

As was shown in section 4.2, the computed optimal control form
for product maximization requires the closihg of the feed and exhaust
valves simultaneously for only a small fraction of the period, if at all.
Therefore, the initial experimental studies were run with the cyclic
sequence [ uwlp,y W] » that is, the feed and exhaust valves alternately
opening. The first study, shown in Figure 5.3, presents the effect of
frequency on product composition. It is noted that heither a different
product flowrate, a variation in the per cent of the period that the
feed valve remains open, nor a small change in feed gas composition from
28.6% N, to 32.2% N, will change the frequency at which the maximum in

product composition occurs. Thus, the next level of studies, the variation

in the timing of the valve switches was carried out at only one frequency
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for all product flowrates studied.

Before turning to the next series of studies, the exhaust
flowrate is examined as a function of the frequency of the applied
control, As expected, Figure S.ﬁ shows that the faster the control
is cycled, the more gas is exhausted. It is this behavior that led
to the computational study that included exhaust rate minimization
in the performance index. Although not shown here, the exhaust rates
were only slightly sensitive to the changes in product flowrate: the
exhaust rate decreases slightly as the product flowrate is increased.

At the constant frequency of 0.35 cycles/sec., the effect of
the length of time that the feed valve is open,on the product compo-
sition is shown in Figure 5.5. As anticipated, a clear maximum in this
composition is exhibited. It is clear that if the valve were either
not open at all or if it were open 100% of the time, no steady state
separation would be possible. Runs were performed in the vicinity of
the maxima to more exactly fix their locations. The exhaust rates that
accompany these product compositions are shown in Figure 5.6. Here,
there are also clear maxima for the exhaust rates.

For simple on-off operation of the feed and exhaust valves, the
controls to maximize product composition for different product flowrates
have now}been specified. Now the effect of delaying the opening of the
exhaust valve after the feed valve has been closed can be examined.

By using the three part control sequence previously outlined,

a pressure wave form, such as the one shown in Figure 5.7, is imposed
at the feed boundary of the column. It is apparent from this profile,
obtained with a Statham pressure transducer and a Beckman Dynograph, that

the maximum and minimum boundary pressure are not immediately imposed
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Figure 5.7. Feed Boundary Pressure Wave Form Resulting
from Three Part Control Sequence,

upon making a.control switch.

The system outputs for varying times of holding both valves
closed simultaneously is shown in Figure 5.8. These runs were carried
out at a frequency of 0.35 cycles/second with the feed valve open LT%
of the period. The large deviations of the three data points from the
curves for exhaust rates were probably caused by incorrect timing of
the valve openings so that both feed and exhaust valves were open at
the same time.

Ffom the results in Table 4.2 it is clear that a change in bed
resistance will not only alter the frequency and timing of the optimal
control but will also change the system outputs. It was for this reason
that Davison 5A molecular sieve had been chosen to insure constant bed
resistance. In order to ascertain the effectiveness of this aépect of
the round molecular sieve particles, the bed permeability was measured

both before and after all the cyclic adsorption runs were made. The
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resulting permeability of 101 Darcys was found to have remained constant
over the course of the experimental exploration. These measurements, in
the form of a graphical representation of Darcy's Law, as well as a com-

plete tabulation of the experimental adsorption runs have been presented

in Appendix 1IV.



6. INTERPRETATION OF RESULTS

6.1. Optimal Control Sequence for Maximization of Product Composition

The computational résults presented in section L4.3 indicated that
the optimal feed boundary control is the cyclic sequence [maximum pressure,
zero flow, minimum pressure]. These results were based on models contain-
ing 6 cells or less. Before it can be concluded that thié control sequence
would be optimal for a model with any number of cells, Y, the optimal
trajectories shown in Figure L.5 should be examined further.

For the 3, 4, 5 and 6 cell models with a product flowrate of
1.16 SCFH, the optimal trajectory for product composition maximization
passes through the optimal control regions for u"ma.x ) Z, and LL)MM_ .
From Figure 4.6 it appears that the fraction of the period that the trajec-
tory spends in each of the control regions for large M can be prediéted by
extrapolation. However, the path that the trajectory takés between these
control regions may exhibit different behavior as the number of cells is

increased.

As can be seen from Figure 4.5, as n is increased, the trajectory,

)

? . .
on. TO Upmgy (minimum pressure to

in passing from the region of (W
maximum pressure),is approaching a path through the origin. This is ex-
pected for the path taken thrqugh the control regions of the distributed-
parameter model previously presented in Figure 3.4. For this modél the
trajectory would be constrained to move through the origin because Fa/oﬂﬂ==o
for ' <,E§, and cannot instantaheously change to another value.

The direction of the trajectory moving away from the origin has

special significance. If X decreases as quickly as % increases, a singular

control subarc would result. Although such a singular control component

-86-
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can not be ruled out absoclutely, it can be neglected practically. The
rate of travel of the optimal trajectory from LL;”A to u/m¢x , as indi-
cated on the trajectory for n=3, ié very rapid. Thus, if a singular
control does exist here for large n, it would be applied for such a
small fraction of the period that its effect would be insignificant.

The path taken by the optimal trajectory in moving from the region

of Ldmax to Hjm“% is also of interest. The control w'= 2, from the in-

7o
terior of the admissible region of allowable controls, can be thought of
as a singular control component which has a unique form; that which‘main—
tains the condition of zero flow at the feed boundary. From Figure 4.6
it is clear that the fraction of the period spent along this singular
control line is decreasing to a very small value. Thus, it would be ex-
pected that application of this control component for a short interval

following the maximal pressure control would have little noticeable effect

on the product composition.

!

After the trajectory has moved onto the line for w,

" there is
a reversal in direction for a short interval of time. This direction
reversal has been attributed to numerical error because the time interval
over which this reversal occurs decreases as the number of time increments
used in the numerical computation increases.

Understanding that a very small singular control component, if it
exists, 1s being ignored, it can be concluded that the cyclic sequenée
[ LUmmx ,Lbuum, J] is the practical control that maximizes product composi-
tion. The optimal period, ”f*, for a maxiﬁum feed pressure of 10.0 PSIG
and product flowrate of 1.16 SCFH was found by a straight line extrapola-

tion in Figure 4.7 to be about 4 seconds. Although all the data shown on

this figure are computed, there is uncertainty attached to the values



~-88-

for =0 and n=/2 . For these computations the adjoint system was not
solved and T*was determined by comparing the product composition outputs
for a fixed control form at different values of T . This comparison is
based on system values close to, but not exactly at steady state and thus
the 'Z*determined may be inaccurate.

Since it was found that the optimal fraction of period that the
feed valve is to be §pen, F;va does not decrease significantly as n in-
creases, the optimal control timing was also evolved for the product flow--
rates of 0.60, 1.80 and 2.40 SCFH using a 4 cell model. As shown in
Table 4.2, the computed'f*does not vary significantly with these different
flowrates.

Experimental results, presented in Figure 5.3 have also shown that
the optimal frequency of control cycling does not noticeably vary with
product rate. At a constant frequency of 0.35 cycles/second, which cor-
responds to the maxima in product compositions in Figure 5.3, F;V‘was
varied for the flowrates of 1.16, 1.80 and 2.40 SCFH. From the resulting
product compositions plotted in Figure 5.5, /;;Fwas détermined and is com-
pared with the cpmputed results in Figure 6.1. Although the trend of an
increase in F;:;with increasing product flowrate is evident with both sets
of data, there is a larger difference between absolute values than can be
explained by experimental uncertainty. - In addition, the experimentally
determined optimal frequency of 0.35 cycles/second is significantly dif-
ferent from the value of 0.25 cycles/second based upon computational
results.

Of course, exact agreement of results could not have been expected
because of the many simplifying assumptions made in the construction of

the distributed-parameter model and because of the approximate numerical
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solution of it. In order to assess the factors within the model that may
have contributed to the deviations between experimental and computational
results, the effect on the computed optimal controls of variations in the
values used for the system's properties must be examined.

Since the value for & was determined to be 2.35 with a standard
deviation of .09, it is important to know the sensitivity of the numerical
calculations to the value of & . As shown by the results in Table k.2,
wide variations in o¢ (1.65-2.95) have almost no effect on the optimal
control. Similarly, a variation was made in the value of € , the porosity.
The effect of changing this parameter, also presented in Table 4.2, is in-
significant. However, variations in K ana ’/L , the permeability and
average viscosity, do have great effect on the computations.

A dimensional analysis of the state equations, presented in

Appendix V, shows that if the dimensionless groups

v/
( KT ima.:z 2RT L Qp VR. ( W (F-1)/2) s { Zn

wir )\ tarp) ar) i K%

Z max

are not changed, the solution to the dedimensionalized state equations

will not change. This means that the optimal control which maximizes the
product composition of the dimensionless state equations will not change
form, other than the optimal period length, 't*, if the above dimensionless
groups are kept constant. Thus, if (K4u) is changed to(¥<4“:f the optimal
solution will be maintained if the optimal time constant, 't*; changes by

a factor of (th)//(K/7*>,' In addition, C?P must be changed by the inverse
of this factor. This is confirmed by the computed results in Table 4.2
where the values of K and /u_ were varied. Since QP was not changed, the

T*computed in both cases was changed by the factor (K//L)/(K%{.), but the

*
F;y corresponded to that of a product flowrate which was changed by the
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same factor, (K/?L),/(szk),. For any such solution of the dimensionless
state equations where the above dimensionless groups are kept constant,

the exhaust rate will change by the factor
/

/2
AL Zmax
(v

Thus, a yariation in K or M by changing the thimal period
length, ’Z*, will change the exhaust rate. Since:’t*is changed by the
factor (K,éu)/Ql</9u)), the exhaust rate will change by the inverse factor
(Ké&)t/(Kéu) from the value corresponding to a product flowrate which was
changed by (K4u)/(K4MY.

The value of M used in the computations, as shown in Table k4.1,
was 0.0175cp., that of 100% Ng. Since an average viscosity was called
for in the model, a value closer to 0.0108cp. for 100% CH& should have
beén used. For example, had./u =0.0127cp., the viscosity of the feed

mixture, been used in the computations, the optimal frequency would have

been
I \! ! 0.0175¢cp.
—— — D el
(ﬁd*> - ( f‘) 0.0127cp. (6.1)

Thus, the computed optimal frequency would have been 0.325 cycles/second
which is in excellent agreement with the experimental value of
0.35 cycles/second. However, using this value of /L would have.led
to an increase in the difference between the experimental and computed
values for f;:Em;shown in Table L.2.

A possible argument that could resolve the above problem is that
the introduction of a composition invariant viscosity was expedient but
not accurate. The average composition of N2 over the feed portion of

e cycle, when : , 1s higher an e average composition
th 1 h 2’/\(0,‘7‘: <0 higher than th posit
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of N, over the exhaust portion of the cycle, when Z, (o,t)>o . This is
illustrated in Figure 6.2 for the computedvpressure and composition pro-
files of the first 3 cells of the 10 cell model. In addition, when the
control is switched so that 2)(of€)<<3, the bed is pressurizing quickly.
‘During this pressurization methane is being adsorbed in mucﬁ greater
quantity than nitrogeniso that the concentration of the gas layer nearest
the adsorbent would be more depleted of methane than the bulk of the gas
flow. Convergely, when the contfol is switched so that ZA<Q%19>>O, the
gas layer nearest the adsorbent particles would be richer in methane than
the bulk of the fluid. Thus, because of these two factors, the viscosity
when Zaabf)<10 is closer to that of nitrogen than is the viscosity when
Z,(0,t) > 0 .

Had the viscosity differences been taken into account in the
model, the computed exhaust portion of the c&cle would have been of shorter
duration. This results from the increased time derivatives caused by the
lower viscosity value. Thus, the computed value of ﬁ;;vould increase and
at the same time decrease the computed value of’z*which wouid bring about
a better agreement with experimental results.

The sensitivity of the optimal solution to the value of fé , the
adsorption constant, is not as simply defined as it is for K or’/x .
However, it is noted that the time derivatives of the system are inversely
related to the value of £ . Thus, it would be expected that the computed
/t*-would be directly related to the value of 4 used. As shown in
Table 4.2, an increase of 9% in the value of 4 leads to an increase of
6% in the computed ¥ 1 & value of £ corresponding more closeiy to
that of the feed composition had been used, a smaller 'X*; closer to that

determined experimentally, would have been computed.
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Since the feed composition in most of the experimental work was
32.2% N, and not 28.6% N, as used in the computations, the effect of
changing éfk , the feed composition, was investigated. The change in the
optimal solution for a change in ZfF of 8.6% Ng’ as shown in Table k4.2,
was insignificant.

It is therefore evident that the optimal solution is not notice-
ably influenced by the parameters affecting only the composition, o and

7@-. However, this solution is directly affected by the parameters re-
lating to the.flow and adsorption characteristics, KZ}L and 1§ . The
relationship between flow and pressure drop, Darcy's Law (equation (3.5)),
upon which the direct relation between the flow and K is based, includes
a viscous term but assumes the inertial term is negligible. This assump-
tion is essential to the construction of a model that is not too unwieldy
to be freated numerically. Although the assumption is well founded over
the major portion of the cycle, it is limited for the initial periods of
rapid flow directly after a valve switch is made. Because of this limi-
tation and the fact that both yz and *t must be approximated by average
values when in fact both vary with composition, it is not surprising that
the solutions based upon this model will differ from experimental results.
Although this precludes placing complete confidence in the mddel,.there
are still some very important conclusions that were drawn from the com-
puted results that could not have been madé otherwise.

From the computed optimal trajectories two significant conclusions
were made. First, the possibility of singular control components was
found to be of no practical importance. Second, because there was but one
loop in the trajectory over a single cycle, it was concluded that the

)
single cyclic sequence [ W mayx » Whin ] maximized the product composition.
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Without knowledge of this form of the trajectory, a control cycle with
unequally timed switches between LUmax_and “/m”u may have been possible.
An example of such a control cycle is shown in Figure 6.3. With such
uneven control sequences possible, a thorough experimental exploration

would then have been greatly complicated.

10-——- - ———

PRESSURE - PSIG

o TIME — T

Figure 6.3. Control Cycle Form Ruled Out by Knowledge
of the Form of the Optimal Trajectory.

In addition, glthough the computed results did not predict the
exact location of the optimal solutions, they did lécate the approximate
area about which the experimental study should be based. Thus, the fre-
quencieé experimentally investigated were initiated in the range of the
computed result of 0.25 cycles/second and quickly encompassed the true
optimal frequency. Where the computations indicated that the control of

;5A(Cﬂt) — o (zero flow) was not of significant value, the experimental
exploration could then have ignored it as a possible control component.
For completeness this control was studied and presented in Figure 5.8.
Within the experimental uncertainty no increase of product composition
was noted when Za(<%f)==o was applied although application of this
control component for short intervals (~L% of the period) did not no-
ticeably decrease the product composition. A discussion of the effect

of this control on the exhaust rate will be held for the next section.



~06-

If a prior knowledge of the adsorption system's capabilities had
been required, the numerical solution of the model would have given ex-
cellent approximations of the performance outputs. For example, for a
feed composition of 28.6% N,, a product composition of about 60% N, and
an exhaust rate of about 13.4 SCFH would be the predicted outputs based
on an extrapolation of the computer data in Figure 4.8. These results
are in good agreement with the actual systems operation. For a 32.2% N2
feed, a U4 second cycle with.F}y=O.35 resulted in a product composition of
about 62.2% N2 and an exhaust rate of 15.2 SCFH as read from Figures 5.3
and 5.4 respectively. Thus, if no experimental system were available,
the model could be relied upon to predict the potential separations
possible on this kind of separation system.

A point worth noting is that the use of a viscosity of 0.0175cp.
was the factor that led to a computed exhaust flow smaller than that ex-
perienced with the experimental system. The use of this higher viscosity
more than compensate@ for the higher flows that resulted from the absence
of an inertial term in the equation relating flow and pressure drop.

6.2. Optimal Control Sequence for Product Composition Maximization
with Exhaust Rate Minimization

Experience with the experimental system, as illustrated in
Figures 5.3-5.6, clearly shows that increases in product composition are
usually attained at the expense of increasing the exhaust rate. It is
only natural, then, that a performance index was considered which included
a term to minimize the exhaust rate.

This performance index was investigated for a product flowrate of
1.16 SCFH using the L4 cell model for a varying degree of importance

placed on the waste minimization term. The optimal trajectory, presented
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in Figure 4.10, passes through the regions of &', , %, , and ' .
Unlike the optimal'solution for maximizing only the product composition,
the fraction of the period spent in the region for a/:,zﬁzero flow)

is of major importance. The computed results in Figure 4.9 indicate that
as the waste minimization term becomes more important, the optimal fre-
quency decreases, F;:fdecreases and the fraction of the period that both
valves are to be kept closed increases.

Experimental results in Figures 5.4, 5.6 and 5.8 clearly illus-
trate the behavior of the exhaust rate as the times spent in the three
control regions are varied. By employing the control sequence which
includes the control component for zero flow, the exhaust rate can be
reduced without significantly decreasing the product composition. A
decrease in the frequency or a decrease in fiv from the optimal values
found for product composition maximization will also result in a decrease
in the exhaust rate. However, from 5.6 it can be seen that increasing
f;v sufficiently from the previous optimal value will also decrease the
exhaust rate. It would then be expected that two optimal solutions might
exist. This was found not to be the case. For a product flowrate of
1.16 SCFH the Fgy for the maximum in exhaust rate does not correspond to
the F%V for the maximum in product composition. As F;V is decreased from
the value that maximizes composition, F}:b, the exhaust rate decreases.

But as F._, is increased from ﬁ;:'the exhaust first increases before it

Fvy

decreases. Thus, the optimal control for the performance index including
exhaust minimization, for the values of C'studied,has a unique solution
for which the optimal F;V is smaller than that for the optimal control
which only maximizes product composition. Of course, the limiting case

*
=0.0 and F 1.0 .

— . . ] * -
of € = o0 has two optimal solutions: F;:'V =y =
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For the sake of completeness, the path of the trajectory in moving
from the region of W, to W),,, should be discussed. Although the tra-

jectory for the 4 cell system shown in Figure L4.10 jumps from the region

'

to UL may

for '

min , an analysis of the boundary adjoint variables of the

distributed-parameter model as in Figure 3.5, 1leads to the conclusion that
the trajectory must pass through the point where the singular control line
meets the line for u,'*= u.’mm(or e Upaex)- This arises because Pu (o,t)=0
for W'<%, and being governed by the partial differential equation (3.LL)

it cannot instantaneously change to another value. The trajectory would
then have to go along the singular control line until it enters the region
for “Jt=‘L%ax' However, the time marks on the trajectory in Figure 4.10
indicate that the rate of travel along this singular control subarc would
be so rapid that it would be of no practical significance.

From the preceding discussion it can be concluded that cyclic con-
trol sequence of major importance to the operation of the adsorption system
is [maximum pressure, zero flow, minimum pressure]. The actual timing
between control components would depend upon the importance of the exhaust

minimization term relative to the product composition maximization.

6.3. Design Considerations

In the preceding experimental work a system of fixed dimensions
was operated at different levels of product throughput for a fixed avail-
able feed pressure. The problem that should now be considered is how
these operating variables and system dimensions affect the operation of
the cyclic adsorption process.

From the experimental results in Figures 5.3 and 5.5 it is appar-

ent that decreased product flowrate increases the separation accomplished.
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However, accompanying this increase is a decrease in the fraction of feed
gas that is recovered as product. Illustrated in Figure 6.4 is the change
of the process outputs of separation accomplished and fraction of feed
gas recovered, as the frequency of operation is varied or as the fraction
of the period that the feed valve is open, is varied. These changes are
shown for the three different product flowrates of 1.16, 1.8 and 2.4 SCFH.
From this figure it is seen that decreased frequency results in an in-
crease of the fraction of feed gas recovered while, as in Figure 5.3, the
accomplished separation goes through a maximum. It is clear that varia-
tions of the frequency from the optimal value, Dht*, do not decrease the
separation accomplished with respect to the fraction of feed gas recov-
ered, nearly as much as variations of F;,from its optimal value. Thus,

if the system is to be run at different flowrates, the frequency of oper-
ation need not be set as carefully as the fraction of the period that the
feed valve is to be open,

If the separation accomplished and the fraction of feed gas re-
covered as product were the only important factors in the operation of
the system, it would appear from Figure 6.4 that operation at lower pro-
duct flowrates would result in the best performance. However, a factor
not yet discussed is the capacity of the system. For example, in obtain-
ing a recovered fraction of 0.09, a 56.6% N, product would be achieved
for & product flowrate of 1.16 SCFH whereas a product composition of only
55.8% N, would be achieved for a product flowrate of 1.8 SCFH. Although
a smaller separation would be obtained for the latter operating condition,
a 55% increase in capacity would result. Thus, in order to find the best
operating conditions for the adsorption system, the capacity, as well as

the fraction of feed gas recovered as product, needs to be considered.
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of Period that the Feed Valve is Open, for a Feed Gas

Composition of 32.2% Npo - 67

.8% CHy.
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Another factor of interest, for which no experimental exploration
was made, is the level of the available feed pressure. From the computed
results in Table 4.2 it can be seen that for an increased value of
20.0 PSIG for the constraint on feed pressure while maintaining the at-
mospheric exhaust pressure, the f;»,needed to maximize the product compo-
sition decreased to 0.21 for a product flowrate of 1.16 SCFH compared
with 0.37 for a feed pressure of 10.0 PSIG. Although the separation for
this increased pressure markedly increased, the amount of gas exhausted
increased as well. In considering the pressure level for column opera-
tions, the increased separations for higher pressure levels must be
balanced by the increase in the energy required for the pressurizing of
the feed gas and the decreased fragtion of feed gas recovered as product.

The system dimensions of 4 , L and Vk were constant during
the course of the experimental work. In addition, the bed permeability,

K , was a fixed quantity. In order to design a cyclic adsorption
system, the effect on operations of these equipment specifications must
be understood. The following discussion will be based on the model
presented in Table 3.1 and the dimensional analysis presented in
Appendix V.

As discussed in section 6.1, the optimal control will not change
form, except for ’f*' if the following dimensionless groups are held

constant:

K’tim‘a/.?; 2RTL Qp) (VR) <W oTAY (¥3-1¥/2) %
( aL* ,<2,,mxiAK4u_5 > _A—Z_ s \AL. Lo and(‘z':;).

Y
The corresponding exhaust rate is proportional to (A L%m&)/(z't RT).
Thus, if the area is changed from A to A' , the optimal control

will be unchanged if the product flowrate is changed by the factor OAVA)
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and Yk changed by the same factor. The resulting separation will be ex-
actly the same as will be the fraction of the feed gas recovered as product
since the e#haust rate alsco changes by the factor (Aﬂ/A) . Therefore, it
can be concluded that the area affects only the capacity of the systemn.

As concluded in section 6.1, variation in permeability from K to
K' will result in a change of 'Z'#by the factor (K/K'>. If the product
flowrate 1s also altered by this factor, the same separation will result
and because the exhaust rate changes by the same factor, the fraction of
the feed gas recovered as product will remain unchanged. It is then clear
that the permeability directly affects the capacity of the system but not
the relationship between the fraction of feed gas recovered and the separa-
tion achieved. This explains why Turnock was successful in correlating his
results by plotting separation versus fraction of feed gas recovered (39),
even though the permeability of the adsorbent used was variable. From the
effect of the parameter K, it can be concluded that use of adsorbent par-
ficles more permeable to flow will increase the capacity of the system.

Caution must be used in extending the above result. Permeability
changes are brought about by changes in the size of the molecular sieve
particles. Because the permeability is increased by increasing particle
size and because of the increased overall flowrates, the inertial term
in the flow equation, neglected in the model of the system, becomes more
important. In addition, the limitation of the rate of adsorption, pre-
viously neglected because the rate was considered to be extremely rapid,
will be more significant as the particle size increases. The above two
factors will result in greater deviations of predicted behavior from
actual performance.

An increase in the length, L. , of the adsorption column, unlike
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the behavior of most chemical process equipment, will result in a de-
crease in the capacity of the system. A change in length from L to L
will change ™ by a factor of (Lvl)zand the same optimal control form
and separation will result if the product flowrate is changed by a fac-
tor of (L,/LQ . Since the exhaust rate is also altered by the factor
(l_/LJ) , the fraction of feed gas recovered as product does not change.
Thus, the length of the column inversely affects the capacity of the
system.

As before, caution must be used in extending the above result.
It would appear that short lengths will favorably affect the performance
of the system. However, since the frequency of the control is inversely
proportional to Lf', the optimal frequency for shorter lengths may re-
quire faster operation than is attainable with available solenoid valves.
In addition, the increased flowrates will increase the significance of
the rate limiting factors.

The effect of changing the volume of the product line on the
performance of the process is not obvious. However, results shown in
Table L4.2 indicate that increasing W{ will not only increase the sep-
aration but also decrease the exhaust rate. Thus, a different boundary
condition at A=k of Zp = constant, will result in improved equipment
performance. Because the results in Table 4.2 are based only on the
L cell model, further work would be required to completely define the
importance of the design parameter Vk .

There has already been some consideration of the effect of in-
creasing F;ax . A further conclusion can be made by referring to the
dimensionless equations. For X=l.0, if F%ax is increased and P,,, increased

by the same factor, the capaéity of the system will be increased but not
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the separation or the fraction of feed gas recovered. Since the work
required in the compression of the feed gas is proportional to ELQX/’R"“‘
no increase in work for compression is required for the increase in
capacity. But again, the increase in optimal frequency and the resulting
higher flowrates will 1limit the applicability of the model.

In the preceding experimental work, a nitrogen-methane mixture
was used as the feed gas with Davison 5A molecular sieve. The relative
volatility for this system was 2.35. For such a system only about 5%
of the energy of compression is converted into energy of separation. To
achieve significantly greater thermodynamic efficiencies, a system with
a higher relative volatility would be required. Thus, although the puri-
fication of nitrogen-methane mixtures using a cyclically operated molecular
sieve may not be commercially attractive, other gas pairs with an appro-
priate adsorbent may well have high enough relative volatilities so that

the optimal design will be of practical value.



7. OSUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The primary purpose of this,research was to investigate the. op-
timal operation of a cyclically operated molecular sieve adsorber. This
investigation was carried out both computationally and experimentally
with a methane-nitrogen gas mixture and Davison 5A Molecular Sieve.

In order to study the adsorption system numerically, a mathemat-
ical model was required. The model that was presented to describe the
behavior of‘the system was simplified by neglecting rate limitations and
neglecting the variation of gas.and adsorption prdperties with composi-
tion. With the resulting uncoupled partial differential equations
describing the pressure and composition, the necessary conditions for
optimality were derived for product composition maximization and exhaust
rate minimization, using the variational technique proposed by Denn'(12).
With the use of a maximum principle, it was concluded that for nonsingular
controls the optimal boundary control components are maximum preséure,
zero flow and minimum pressure. Without computational work, the optimal
timing and sequehce for the control components are unknown.

Because of the complexity of the distributed state and adjoint
system, a cell approximation of the adsorption system was formulated.
This new model,.made up of ordinary differential.equations, was used in
conjunction with Pontryagin's Maximum Principle to locate the optimal
feed boundary pressure controls. The algorithm used for the numerical
computations was based on the work of Horn and Lin (20) which dealt with
a periodic lumped-parameter process. Since the cell model ié, in a
sense, g discretization éf a distributed system, the successful use of

the method of Horn and Lin in this work suggests that this method may
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be useful in treating other periodic distributed systems. Certainly, the
solution of the homogeneous part of the adjoint system was invaluable in
locating the periodic steady state composition profiles.

From the numerical computations it was seen that the cyclic se-
quence [maximum pressure, minimum préssure] will maximize the product
composition. For a product flowrate of 1.16 SCFH, the effect on the op-
timal control function of the number of cells used in the model was
studied. Although it was found that the number of cells used greatly
influences the optimal frequency, the timing of the optimal switching
sequence within a dedimensionalized period length does not change signif-
icantly for cell models larger than the 4 cell model. For the above
product flowrate, it was found that the optimal frequency approaches
0.250 cycles/second as the size of the cell model increases.

A numerical investigation of a 4 cell model for the two other
product flowrates of 1.8 SCFH and 2.4 SCFH showed that the optimal fre-
quency does not vary significantly for this operating variable. .However,
greater product flowrates require application of the maximum pressure
for larger fractions of the cycle. Operations on the experimental ad-
sorption system substantiated the above behavior.

The experimental results verified the fact that the control com-
ponent of zero flow was not needed in the control sequence to maximize
product composition. Although the optimal frequency of 0.35 cycles/second
was not in exact agreement with the computed results, there was no
noticeable effect of changing product flowrate on this frequency. In
addition, it was verified that the optimal fraction of the period spent
applying maximum pressure increased with increasing product flowrate.

By including a separate term for exhaust minimization in the
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performance index, as well as product composition maximization, the
control component of zero flow becomes imﬁortant. This component is
applied after the maximum pressure component has been applied but
before the minimum pressure component is applied. As the importance

of minimizing exhaust rate increases, the computed optimal frequency
decreases, the optimal fraction of the period spent applying maximal
pressure decreases and the fraction of the period spent applying the
control component of zero flow increases, This behavior was confirmed
by experimental results. 1In fact, it appears that applying the zero
flow control for a short interval (< 6% of the périod) does not notice-
ably decrease the product composition although it aoes significantly
reduce the exhaust rate and, thus, improves the performance of the
adsorption system. To construct this control compoﬁent; two valves

are needed at the feed boundaryvof the adsorption column. The timing
of the optimal sequence [feed valve open (exhaust valve closed), both
valves closed, exhaust valve open (feed valve closed)] will depend upon
the relative importance of the exhaust minimization term compared to
the term for maximization of product composition.

In the thermal parametric pumping separation process developed
by Wilhelm, et al. (40), the derivative for composition depends upon the
direction of the flow of the solvent. It is this kind of behavior in
the cyclic adsorber that gives rise to the possibility of the optimal
control component of zero flow. Thus, it is anticipated that this contrql
camponent may also play a role in the optimal control of the thermal para-
metric pumping process. A full theoretical and numerical iﬁvestigation

would be necessary to define the actual optimal sequence.
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In an analysis of the dimensionless state equations of the cyclic
adsorber, it was found that the area of the adsorber affects only the ca-
pacity. In addition, it was found that the permeability of the packed
bed will also affecf the capacity if the frequency of operation is adjust-
ed. The higher the permeability, the greater the capacity of the system
provided that the appropriate higher frequencies are used. Consideration
of this behavior for design purposes requires two notes of caution. First,
if larger adsorbent particles are used to achieve higher permeability, the
optimal operation will be at higher frequencies and higher flowrates, for
which the rate limitations previously neglected may become significant
enough to invalidate the predictions of the model. Second, unless the
permeability is constant, the optimal timing of the control sequence will
vary and unless corrections for this are made in the control, suboptimal
operation will result. To avold this problem, adsorbent particles that
resist abrasion and maintain a constant flow resistance should be used.
The round particles of the Davison 5A Molecular Sieve used in this re-
search were found to be satisfactory.

Another factor that affects the operation of the adsorber is the
length of the coiumn. Unlike most chemical process equipment, decreased
length increases the capacity of the system. To achieve the same maximum.
product composition for shorter lengths, higher frequencies are.required.
Since the optimal frequency increases as the inverse of the square of the
length, shorter lengths would require faster operation. Again, this result
is valid for flowrates for which the rate limitations can be neglected in
the model. 1In fact, since the optimal frequency increases so quickly as

length decreases, the performance of the controlling solenoid valves may

limit the achievement of the optimal frequency for shorter lengths.
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Despite these limitations, it is clear that attempts should be made to
use shorter lengths of column to increase.capacity‘and decrease equip-
ment costs at the same time.

From numerical computations with the 4cell model, it was found
that the effect.of increasing the volume of the product line preceding
the pressure regulator isvbeneficial to the process. Product composi-
tion increased while exhaust rate decreased. This means that the cy-
clic adsorption process will oberate best with the boundary condition of
constant pressure at the end of the adsorption column rather than at the
outlet of the pressure regulator. Further experimental work would be
required to determine the extent of the process improvement with this
new boundary condition.

Before the operations of the cyclic adsorber can be fully speci-
fied, the maximum available feed pressure must be set. Although it is
known that higher feed pressuresvdecrease the optimal fraction of the
period for applying maximum pressure, the resulting increase in pro-
duct composifion is not simply defined. Since higher feed pressures
require more energy of compression, a careful study, either numerical
or experimental, would be required té find the optimal feed pressure.

Having found the optimal feed boundary cyclic control of
[maximum pressure, zero flow, minimum pressure] and haVing gained a
better understanding of the design parameters, a cyclic adsorption sys-
tem can now be more properly designed. For the separation of gas pairs
for which there exists an adsorbent with a high relativé volatility,

the cyclic adsorption process may well be of commercial value.



APPENDIX I

' INVESTIGATION OF METHANE-NITROGEN ADSORPTION
ON DAVISON 5A MOLECULAR SIEVE

Because of its high abrasion resistance, Davison 5A Molecular
Sieve was chosen over Linde 5A Molecular Sieve as the adsorbent in this
research. Although Lederman (26) had examined the characteristics of
methane-nitrogen adsorption on the Linde Sieve, his study was not appli-
cable for this new system. Therefore, for the operating conditions of
1 to 2 atm. pressure and 295°K, the methane-nitrogen adsorption on the

Davison 5A Molecular Sieve has been investigated.

I.1. Experimental Apparatus

In order to insure that the properties of the investigated
molecular sieve were exactly the same as the molecular sieve used for
the cyclic adsorption system, the 4LOg of 20-50 mesh sieve used in the
adsorption system was used as the sample. With the adsorption column
as an integral component, the equipment for this study was set up as
in the schematic shown in Figure I.1.

The column, isolated by needle valves at each end, was placed
in a loop with a large surge volume and a Manostat tube roller pump.
This loop can, in total or part, be connected to either a vacuum system
or to the supply of the gas being studied. A continuous flow thermal
conductivity cell, for composition measurement, is fed by a nitrogen
reference stream and either the sample stream from the surge volume or
a calibration stream. The flowrates of these streams are controlled by
needle valves at the entrance to the rotameters that precede the thermal

conductivity cell.
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FEED GAS '—<:>

~—D—

TO VACUUM
[ j | ' : —<:> TUBE
TO WET TEST L—{><}— CALIBRATED SURGE VOLUME Rgbth
METER !

VENT -

THERMAL CONDUCTIVITY CELL"//Y//

I < SAMPLE
ROTAMETERS STREAM

REFERENCE
STREAM (N2) CALIBRATION
STREAM

Figure I.1. Schematic Diagram of Adsorption Measurement Apparatus.

I.2. Experimental Procedure

Before the adsorption isotherms can be determined, the void vol-
umes of the packed molecular sieve column and the surge system must be
calibrated accurately. As helium is not adsorbed by the molecular sieve,
yet is small enough to fill the 5A pores, the void volume of the packed
bed is determined using helium. First the column is pressurized to a
known pressure and then the flow is measured when the column is vented

through a wet test meter to a lower known pressure. Application of

Dalton's Law yields the void volume of that portion of the system. The
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same procedure was used for calibrating the surge volume although nitrogen
was used instead of helium.

Because the adsorption of methane and nitrogen on the molecular
sieve can be affected by the adsorption of water vapor, the bed was regen-
erated after it was packed. This was accomplished by alternately purging
with nitrogen and evacuating while the temperature of the column was main-
tained at 300°F with the steam jacket.

For pure component adsorption isotherms, the bed is completely
evacuated while the surge system is pressurized to a known pressure. The
two systems are then connected. The new equilibrium pressure and knowledge
of the volumeé of the systems involved coupled with Dalton's Law makes the
amount adsorbed readily calculable. Repeating this procedure for various
pressure levels in the surge.system yields the adsorption isotherms at the
ambient temperature of 295°K.

For mixed methane-nitrogen adsorption, the bed is again evacuated
while the surge system is pressurized with a known mixture. The two systems
are then connected and allowed to equilibrate. The Manostate tube roller
pump is used at a low flowrate to allow ample circulation to speed attain-
ment of composition equilibrium. After a period of 30 minutes the surge
system is isolated from the bed. The compoéition of the gas is then meas-
ured by using the pressurized mixture in the surge system to supply the
sample flow for the thermal conductivity cell. Knowledge of the original
gas mixture composition and the pressure levels involved allows calculation
of the composition and of the amount of the adsorbed phase.

For adsorption of arbitrary methane-nitrogen mixtures, the bed and
the surge system are first pressurized with one pure component. The surge

system alone is then further pressurized with the other component. The two
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systems are then allowed to equilibrate and are measured as outlined

above.

I.3. Ixperimental Results

Having determined the void fraction of the 525 cm 3 packed column
(0.623) and the volume of the surge system (2535 em3), the adsorption of
100% CH), 28.6% N, - T1.4% CHy and 100% Np were studied and presented
in Figure I.2. The data sre well represented by the Freundlich Adsorption

Isotherm.

N=4WP*
Thus, the data are plotted on a log-log scale and straight lines drawn.
The Freundlich constants, which are the intercepts and slopes of these
three isotherms, are shown in Table I.1. It should be noted that these

constants are based on data for the pressure range of 1-2 atm.

TABLE I.1

FREUNDLICH ADSORPTION. ISOTHERMS (295°K)

N = AWP?
Gas %zk/ X

mg. moles

100% CH), 97.8 0.83
71.4% CH), - 28.6% N, 77.2 0.87
100% N, 36.5 0.88

To relate the equilibrium compositions in the gas and adsorbed

phases, the relative volatility is used.
_ yrx
(l~7)/(l-><>
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This relative volatility was investigated over the range of pres-
sures and compositions expected in the experimental adsorption system.
The results are shown in Table I.2. Although there is some variation,
these results are sufficiently accurate because the optimal control
calculation, for which the value of o{ is needed, is not very sensitive

to variations in &K .

TABLE I.2

RELATIVE VOLATILITY FOR METHANE-NITROGEN ADSORPTION (295°K)

Y/ x
X = (=97 (=)
e y o=
PSIG % %
1.55 18.7 34.8 2.32
1.56 18.8 3h.7 2.29
3.66 18.2 35.0 2.43
6.58 18.1 34.9 2.43
T.91 18.0 3k.9 2.k
8.72 29.2 48.6 2.29
9.35 19.1 3h.2 2.20
10.80 35.4 56.8 2.39
Average X = 2,35
Standard = _

Deviation




APPENDIX II

DERIVATION OF THE DISTRIBUTED-PARAMETER NECESSARY CONDITIONS

In order to eliminate the unwanted terms involving SuQ . Su&A

and §r; from the variational equation (3..42) on page 21, the following

relations must hold:

O<}—<La

[brp % - (p%), +(p 258, Jsw

= 0 (I1.1)
A
A=0,
| L- B(p; awu (i %¢ 'awL >J5w =o  (IL.2)
A =L,
[Bﬁ %ELM ] 23“%] we, =0 (11.3)

E (ﬁ 9“)“/\ (ﬁ ZUJ“MA>+QJ ] bw

(11.4)
| ‘ Zk; S
Q t l r- t ar"l i =0

O< AL,

Pilt) sw(ty) = . (£.+8) SW; (£, +7) (11.5)
A=L
6D S (t) = np (2 t) Srp (£o+7)

—

I11.6)

To further simplify the above relations, attention is directed

to the state equations, time conditions and boundary conditions.
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Writing out the components of the state equations (3.33),

w, = F ("U/) W//\;{)
wﬂ. = /::Z,(LUI’ w&nw’,\zwl/\)w(/\A)
2 (11.7)
roo=gG, (P’:[w’/\],\:L)
E/\(L,t)<0, 2 = T, (V;, Fa, ["U//\) “jz],\-;/)
Z, (L) >0, " =o0
From the above,
2F _ 9k °oF _ 2F
ow,  dw, = 2wy, ~ owp = ©
JF,
Za
Qaﬁkx:: O
é%?? = Eﬁé; = 255} = Eaék = 0
o 2w, 2Up, dun, - (11.8)
26"2 = .9_._6.:2 = 0
AU, asz

w’,\(’“»ﬂ?O

23:?'——%2:2—%2“‘2_6—2"‘0

o o 2wy 2y,

From the peribdic time conditions (3.11), (3.24), (3.17) and (3.29),

Wt = @(tt )

(11.9)
Pty = Pttt

Thus, § @ (€)= S® (£ +7T)
SFEt) = SF(to+7) (IT.10)
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Boundary conditions (3.25), (3.12) and (3.26) can be rewritten as

A=L, w, = r, (11.11)
LUZ:» $ for (,U,,\ >0

These relations lead to

A=0 SWZ =0 for wIA = w < O
1A=L Sw, = 5’7 (11.12)
Swz = Srz_ for Ld,,\ >0

Equipped with relations (II.8), (II.10) and (II.12), equations (II.1)-(II.6)

can now be f_‘ully"examined.

From equation (II.1) since 544/,; are arbitrary nonzero variations

?‘: (f 22:—.,1,1-&* 90()) ((dz gu///\)

25k
4 w’» AA

_ ”(ez ) ( ] aw ) (I11.13)

2F,
—-(F, —97‘(/]’)) + {0,_

The partial differential equation describing la, is parabolic and
will require two ’boundary conditions and a time cohdition. The partial
differential equation describing 62 is hyperbolic and will require a time
condition as well as boundary conditions at A=0o or A=L when gas flow

is leaving the adsorber.
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At A =0, equation (II.2) yields boundary conditions for the

above partial differential equations.

7 2E 25
= QO —& _( —2
A , <%z 2w, F/ 9“@m F& 9“Q%Ajty> = ¢ (II.14)
wy, >0 2
2y 5]0,3 2uy, — 0o (II.15)
Since ?._F;;’ + O for (,U,/\ >0, /01. = O (IT.16)
ZCQQ

At A= L , equation (II.3) produces one boundary condition

2h L ) ) -0
LU//\ <o, B(ﬂ 9LU/M gw’ (?I;w/ '729w/

55 (11.17)
26 _
w//\ >O’ B(KQW/A +ﬁ29 )1"71%) -0
From equation (3.35), g (?> :M3(C¢)-
g%j =o  (I1.18)

With the above, relations (II.8) and (II.12), equation (II.L) then yields

PN
the differential equations describing Vl and another boundary condition.

¢}

Wi <o, 7/“”(7'%7“71 ) (P’“Z/i—(ﬂ%’q,\ /0*9‘”/»,\)
701: (?2_9@:i %)

>0, 7,—:—(7,;;6/7) 8(p. 2 5, -(p 2t E 9%))

I a3
=== (BFZ Wy, r aq)

(11.19)
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And for w,/\ < 0 A 2F,
y =

2%, 7& —= = 0 (11.20)

9602
The time conditions are derived from (II.5) and (II.6) and use relation
(I1.10) to yield

[5“(&,,) - F(ﬁ,,+ )
7 (k) = 7 (ko + )

(11.21)

With equations (II.13)-(II.21) governing the behavior of the adjoint

variables, equation (3.42) reduces to

tot T
L 2F;
T~ = 2 Q_/??,) t (II.22)
) f( B pj wi, T 5% Su d
A=o
With relation (II.8) the above becomes
t,+7
L 25
= j oM, -———B(ﬂg{:—u + F )) Sudt
2> “ha (11.23)

In the precedlng development the mathematical description of the
adjoint variables and the remainder of the variational equation was
written in terms of functions E ) /".—z s 9‘, , and 62-. At this point,
conversion to terms involving Wy, Wy, 1 and ’2 or Z, j ’ Z—Kand /k
is required.

From the state equations in Table 3.1 the following relations

are derived for 7: 1.0 .

o p(aa
In the following let D = (a )

’ 7,‘0«(/}»* (11.24)
YA .
.25 _ _2__,51' _ Ay £ 2, _ z
2w, 22 2(a, taz) 2Z

)
Ih 25 = a—z’z/k (11.25)

2Wpy 2R (a,+as)
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Q2 8 2y 4 O-4)01-)

_2_52 —= 2Fk :_a‘k Z/\%'/\ + (a.lfaa)?%;a((l-j)) — - Z
z

9“// 2z '423/z D

20 _pf _ 22 p
ONEN 2z"72D

25 _og _ —aadyg (0
Wy 9B ZZ'/";/Q,f-aj)/;'fﬂf(’”f))D

(11.26)

~a, 53(/-&)[4/ (o([;—/)z—f') —das(y(3yl-a) - 2R«—1))~ v()]

1yt «(1-y)*

B IR 3 ¢
g2 _ e = _u R
Juw, 7 RZD /}mui»
Q,zz,\%/\a—_?o((/“W()
2z DZ(Z;M(/?)P
..2_/:.7:_ — .2_5_2::: Qs ‘%/\
2 Z/\ 2 A 22’/1D
/2
24 _ 2G . %2%r
w, 22, Ve
’ ° (11.27)
G = 9G = —(a:2,+2,Q,) = Zg
2r, DZg ZZR'/" Va 22
z 1
?W//\ J A 2ZK/Z. \&
_‘.9_61:1 —2—6:2_—_—_- ——a;{Z')‘
2 7
AWy /’f 22,\ 7 V& (11.26)
25 24, Q% (4~ R
2r; 7 -
RS 4237 R Z¢,
G _05 _ i
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Relations (II.25)-(II.28) are then substituted into equations
(11.13)-(IT.20) and (II.23) to give the final form of the adjoint equations
and variational equation.

(B2 - B, (esh)

22'/2_

/0‘ - ~(F’sz‘/z _ f’:.Qzaﬁ %(I*%)(,-%) )
(a+as) 2z'% (cf,+43”)(; +o((17)) D

(11.29)
a2 (-, (aly=1Y-y%) — 0{43/1}(39(1'4) 2(24-/)) - «)
Rz (%%x (/—/))%DZ” 4

,-i—(Ezazi‘,\) __ fr%24s (/—o()d% Z,
222D /) 22"* //L;M(/-"/))jpz

o

~
1

At A =0,

—- PrQz Z,\ ) & (1-y 21—«
‘p Z73 D <(£'1:6L3j- IDQQZQJ# //Lf I) O

27" (a, m;)/ M(/j))

for u-~-o , ((OIKI.?):?)O
At A= L,
’?/ = ( j{gi %) (I1.31)

— 5 ‘Dzazil\ f/ a—z% pz_ Qld_g g,(/"g)(/ ﬂ() ) )
221/1 D (ﬂ-/ 7‘"43) 22 /z(dlfdg)(;fa((/j)).p

ror 2y (L,t) <O,
I/z

R E' a, B (314143%(/—#)(1—0() )
((a.ﬁ—as) Zz_l/z(a_lfga3>/;+0((/y))l-) =0

2/ Az Z,Q‘/z —~ N2 a2 fj";ye)

Ve 22.% Vk

(11.32)
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7a = M . 2ms (11.33)
* 22, Vi 9/& '
For ZK(L—/'&) > O s
G, _f/azf/z lldga3}(/~g)(/"0<) )
z
(Q/+43) 22 /4,7&43)?/7%((/ ;))D ‘,Z“M
(II 3k)
)?: _ —Bpazzyn  _ oms
2z D 9;& (11.35)
AL A= o,
tot+ T
- _ ﬁm,_ _ [y -) =)
oL j uw (&;7%3) (F' ! Zz’/zi,ia({/ ;))D))SU‘OH
ts

(T1.36)



APPENDIX III

DERIVATION OF THE CELL MODEL ADJOINT EQUATIONS

This section will deal with the specification of the adjoint
equations for the cell model and will establish the relation between
these equations and those derived for the distributed-parameter model.

The adjoint equations for this system, using %,

[ and 7‘; as the

state variables, take the form

_47% )%
- ‘(zJ;é’“)"a'“s

Using the relations for -F and i given in Table 3.3 and letting

(3.92)

(a * (j +o((// »* ) (III.1)

For (=2 n-/

b

. a ‘.
29:_ 2 (Z- 2:) 5-%._,
it . /4 III.2
Y 22:‘. /2. D: (L/n)z _ | ( )
For (= /, n~1 ,

29 _ a,. 25 Gomig
‘%i - 22‘.1/21061(1_/’))1 (B~ ZL)[_(# ~|)D«; + 24a3(1 -()(%, %L ]

(Yol (i ; (N3
~(2;- zm?[(—gm ~)D; + 2485 (= Fio,~ s )]
0 y,hz(l* P
ajéb(/~d> [da«4(%l {3’('“"'()_’-2{2'(—’)) ) d., (K(g—l) —%L)
22D ()l (Yrxti-g0* T A Loyt
L) et gD
? (o — Q. (Zi ~Zyy) 24
_ajm_ _ 3{;; (111.3)
| 2z ~D; (‘-/n)’“
For ‘::"L
2% — a—z./i Zn)¢ (L/n
5;;1"/ :/z [D(z_/n) + Mg )

-124-
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@ ()2 = 2D [ = )0, (h) + V) + 245 (L/n )= )5~ ﬂ
(o) )[(3?” )( (R W)+ (;nmu*/»»’”w

%? — . Ay (/n)ly, (3y, (1=) + 2(2:-1) — )
n sy %y (1=%)(+/n) 4 ”(7%'* “("%n))z'

Bt <O g\ o, () 4 Vil ")
2%11'/2' Ll%( L/n) + Va 7*

For  (=/, u=g,,

2 =2 -y)+ (G4 — R (g .
22 [ 7 ;’ %z ? (zz,m!)(y,,fx(/y,)) — _gf’_
Rz D, (+/m)* A%
. (111.5)
2% - %2 (u' -6z, + Z2) _ 7 2a, 2‘,1/2'
2%, Ra,taz) (bm)? z/2 2z (a,+43)(L/n)*
For  [=/, = (2, -Z,)/(L/n) ,
Dg, . —G 2, (g -y - Q3G I=4 =) o
/%["" [7" /:) (a/tas) (y,+ A{/—/t/,))] - Zl_
ZZ/D/ (L/r:>2’ . 221
25, _ Q&(M(L/n)—32,f‘7'c'x): ;fl . dzzlf/n- (111.6)
2%, 2(at+az) (+/n)" 7, 22 (a,ta3)(Lin)*
For L= 2, n-1
29 A z. 7= G -y ) ~ a3 yyd[/“%')(/"v() ]
3%‘—' R [(yc %) /0.,7"43)(7:'#&(1-}5))
¢l 4
225 DL' (L‘/K)z’
y (I11.7)
2f_ 4z % ¢
A2 (4, +43)(L)*
) 7= . o A= 1-a) e,
9. _ ”a‘—l%;l/ ( e ¢)+/ L 6)- ZQ& ‘j‘ Ug - ¢
3%- [7 ; 7 J (a,%b)/}; u(w;‘)) %_;_

'ZZL' Dc' (L/")z

oFc Ayl —lz t Zi) 2 24, 2.7
A 2(a,+az) ;> = - 2k

Az [Q, ‘/‘Qa)(L/h,>27
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For L = l n-i ’
. ' 3 yc[/ yc)(l ’()

?2_%‘: — Lﬂl [(7”! } ) [d +d_;j/(}(. '}‘ﬂ({/-}b))]
et ZZL D (L/'Q)z'

ok _ ag % " (171.8)
2t (@,1+d3)(L/n)*
For L, = 7{,, | ]

A3 (L/n) Yn (1~=Yn)(1— &)
?#!’ — azznﬁ [{j %) (a,+43 /L/n)'/"/)/yn'/‘ﬁf//—gn))
o Rzn LDy (Lin) + 7{L/n)
_9_{'1- et » a—z z;n’/a_ (III.Q)
Pt (e, +as) () +Vg J(5n)

— Q.22 (7, ~y,) - dséL/n)y,,(/ Yn)(1=) ] G
%ﬂ = Zh [7,1 y (a,tas) (‘-/n)+)ﬁ>(7,,+o((/-#,,)) :g;,,_
hn
22 [Da(n) + Ve J(Ln)

5 . |
5‘/;\3: jronnd Qz (zn-/ szh —@QP> — Zn _ AZZ zl /3‘

RlarasXm ik J( )2, % 22, 2(Em)larras) (5t Ve ]

Substituting equations (IIT.1)-(III.L) into equation (3.92) for t=2.7n-2:

ﬁ, /2 f,_/> i ( "'I -4 ]
(‘-/m)z 22 (%:

R 2% D 24D,
+ az(i‘;:) Z) | 9., (37—1"—) 7 (7‘/_*'—/)]
jo- _ zzmz DL-H 22”'/1‘ D
¢

~Qy ?_d 72 (/"'OC)[/;—;'N "/76)/%,;.,.,"25) *(7_—‘ "{7[)(2“ —Z,;_,)]
S T N O

_a, 7‘% (1-<) 43 (4 (G (1-4) # 2024-)) o) a,(x/};-/)‘—;f )
(}, +ol (1 /))" /,9 roli-gi))*

22,; D‘:Z.

(111.10)
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Note that when Ry < 2, < 2,

_9_#:: =0 g % =/ (ITI.11A)
27(. 9%6

And when Z;,, > Z; 2 Be-i s

——

Y. —
'#i = = 2fin =0 (IIT.11B)

27& gi
Then a close examination of equation (III.10), recognizing the finite

difference forms, shows that in the limit as 72— 00, for c":z_, -2,

9%
2, @@% _ 424370((/—00(%) %—?)

0 A 2z D’“(7+d(/~/))3
j: 2 (1o (y-1)_g®) — X%3(yBy(1==)#+2(2=))-X)
S S R A A 72T
2z D’*(;rx(/——/))“'

(IT11.12)

Comparison with equation (3.44) in Téble 3.2 shows that ﬁ‘ andj are
identical. Thus, the adjoint- equations associated with composition for
the cell model will converge, as 2 —m 20 , to the partial differential
adjoint equation for the distributed-parameter model.

However, at ¢ =/ , equation (III1.10) does not hold. Since i=/ is
within the adsorption column, it should also converge to equation (3.k4L).
In order to make equation (II.10) valid for this first cell, the following
term must be added: .

— 9o (Qz (%, - 2o) '37;%:)
22,2 D, (“/n)*

If this term is equated to zero then it can be introduced into the equation

o
or s an in e ec maxe equa 10n . vallid.
f | d 1 ffect mak ti (II1.10) valid
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Thus, a new condition, i.e. boundary condition, must be satisfied.

At M=o, | —

az—%'
1227 4,

2z .D”(I-/n)

0 (I11.13)

i

When Z‘)‘<O, E,# /s and the above relationship is satisfied as ?I =
[

When ZA >0, ?7 =/ » and thus it is required that
ZI

For Z, (0,t) >0, =0 (ITT.1h)

Using equations (III.1)-(III.L) for (=n, equation (3.92) becomes

A Mo - g

I (v tpr)?
o 4 4 2, (=)L) | Aas(th)( Yn (B4, (1-4) + 2(24-1) —)
1= Z,2 /;;,ﬁ x(/—/,,ﬁ‘ 4 (;# x ( /—7,))2
L | = (a (/) V@)(x[yw)z—/y *)

22_ 1/ [.Dp.(l"/n) +\/R]?.

+ i"‘ [az(z’n—/_‘{n)%ﬂ ] — M5

7D, (t/n)* 2]" (171.15)

In the limit as N —» o0, 2n becomes assoclated with the composition in

the pressure regulator, Replacing j" with ZR , and noting that (= n—i

approaches the end of the column, equation (III.15) converges to

i igazz)\(—j?— l) _1&12)\(3%2') ~ M5 (111.6)

2 Vg 27% 2z 7~D(L/m) 2pr

Where % , Z, andj are evaluated at A=L. Then for ,{;(L,-t) <o,

2 — Qe %2 Za 2ms

iﬁ - 2 \/R ggl/z 5}—&

(IIT.17A)
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and for iA(L,t)‘>O,

i“ = _"j?* Za _ 2k (II1.17B)
22" D (“n) ayg

Comparison of equations (IT.17) with (3.48) and (3.50) shows the
equivalence of AZK and 72' provided the arbitrary constant B is taken to
be '/(t/m). A discussion of the convergence of this factor is presented
in Section 3.6 of the text.

Equation (IIT.10) was presented for (= 2, n-2 . A =n-/,
the factor (L/n)D,;,, is réplaéed by [D,‘(L/h)H/R]. Since C=p-/ is within
the adsorption column, the adjoint variable for composition at this point
should, in the limit as N —» oo, be described by the partial differen-
tial equation (III.12). With j” converging to _ZR (or 72), a new variable,
j; , 1s introduced to be associated with the A=L end of the column.

Then equation (IIT.12) becomes valid at ¢=n-{ if

G (2,7 %n) 24 a, (%, %) -9#4’

_i l -t ) 2/»-1 =0
R —_

Z(L/n)z,é/z(ph(%,)qt Vk) jn 2L/n)* Z',:/L D,

(111.18)
When 55,\ (L.,'t).)o s 29 n = o and the above relationship is automatically
; n-f

satisfied. When z/\ (L)-é)(O , A8 YL ——am O

C}'nliazz,\ . Qg A2 B N
2z'% D (n) 2 Ve B (I11.19)

Then for B chosen as before, the above relation becomes equivalent to

the boundary condition (3.47) given in Table 3.2. Now attention is
turned to the adjoint variables associated with pressure. Using equation

(3.92) and (III.6)-(III.9),
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For t'-'=2. , T

— a, "
(a,+as)(L/n)? ):70“"‘ "' 270 Z: 'f‘}’u-/ (.Hj]

— 9~ 22

. —y- — 23 (“il:-l)('°/‘fc'—l>("“"(>
2 2% D, (L/n)Z[(y:. Jw) (Q.,Bf"&.g)[;‘::-{-o((/-—;g))

Fi = |
+ 94 _ 283 Y, (=4 Y1-x)

2 —~_uN— /7 ~u-
Zz(-’/*-Dg(L/n)z[(?L 4= (oo ) CRERIF A0

e [y Galg )
22, Dy, (Y (@,#83) Ciny ot (1-gi1)

o

+ ¢ — P&

A <z (1IT.20)

Examination of the above equation, recognizing the finite difference

forms, leads to the following equation in the limit as L —= co.

- 2y Zz(yz'/‘) Y ¥
£ @y iy Tz “’L‘%f

azqsqyu (1-2) ) (II1.21)
[ <12"’v1> + (Zz""/a,ﬂg) }+a<<l 37)

2A*
Comparison with equation (3.44) shows that F' and 19 are identical.

Proceding, as before, to make the adjoint equation (III.20) valid at

(; =/ , the following condition must hold when ( = (f,;;_:))
L/n

~ag (o2, = p7") _ 9522 [(% g~ gl =N

OETRIE S PO, YOS L RS B )
+ 9,22 — _\_ 43 %(/'éf’ )(1-)
E'ZI'IQD; ([7/”)2 [(yl ZI) (4l+&3 )ljl *“[/?l ))

(111.22)

=0
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Then as N -—w= oo , this becomes

a 922 @ Y(i-y) (1)
7“ 9(2 +§l35) (( ,+az3)2§' g (/7*’(4”}7) = 0

7A (III.23)

'/x D

which is equivalent to the boundary condition at A=0 given in equation

(3.45). Again, to make equation (III.20) valid at (= m-i , the following

[

requirement results:

- a,z,'"* 43(“/»)%{ (- Z&)U—"O
<L,,§2 %j)(; o )‘? a% [(}R P Sy R ;,o)]
o YCAY NS

! 3 ' - a 7n (1~‘,/n)[/~ L)
-};'77;21 Qz i'h ) + jn Q&[( h ;n) _'(2/-:_25) (;,;”f‘((/“j“l)) ]
(/h) (d,-l"l} Z(L/n>2 zh‘/l D". (ITI.24)

As n—= oo, this converges to the boundary condition

Z
PorR " _ Jaads g L1mi-) ~ PR 9pa(4ge) _
(@ ta5)(L4n) z;"tb(mf@){;mu—;»(L/n) Va AT o
| R (II11.25)
which is equivalent to (3.46A) for 8':-(’:/:). The differential equation

o +h ,
for —Fn , taken from the N cell, gives rise to the last equation for

comparison.
At C:YL,
(G -y~ B (1-4d(1-2)

2 (L/n {a,+asXtln)4 Ve ) (Yn+ U %n)
(-D (L'/h) + VK ) 7

o _ 'f“ir) %‘h . f’n %h — fn-, ath—a 7°n 4»7. %h
n 2 Z‘h zzh (&/*’43)("/”)2 //Q/ 7‘—‘43-)(LA’)+ R)(L/h)

3B i e ()
(L‘/’\) Zn~l:D [7" g (a 1"43)/;" /+°((/"’ih /)J

(111.26)
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As N—=o0, ?,,""—jk and Ibh———»f&. Equation (III.2k) when

substituted into (III.26) then converges to

[+ )

£r = RZg. 2z L2 D (L/n)
[(10% 2% gagls Yl ﬂ("l‘)
(@, +4.3) 22 /% (a,,fdj)(%f-d(/-}))j) MIACZ

which, for the value of B used previously, shows that fR and 7, are

(171.27)

A=L

equivalent.
To complete the derivation of the necessary conditions for
optimality, the Hamiltonian should be presented. ©Since the Hamiltonian

is to be maximized with respect to the control, only the portion of

this function that depends directly upon the control is shown.

LL‘-':(J%“?), M = “ n
For S 5= Ms (U, 4n)

o e ?4,&:5( ~/n) f'z'vx+j'(((cl+4’)9/ 4 (d;,'/yf%l—);, )j)
‘ <25 (ITII.28A)
vor W=z, ' = oms' (7, @, f”)
222D,
(III.28B)

Examining the behavior of this function, it is noted that

For 21720’ (E/\(O,f) > o) ;’/:J/

— (I11.29)
ror 2, <Z,, (%, (0,¢t)<0) G = Yr

which makes /-/o exhibit a discontinuous behavior, as in the distributed

system, when the control is switched. Because when X, < %,

N — o0 n—e o

fim 7’ = 7{_— and /im i, = i{o/t) (I11.30)
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The above Hamiltonian will approach the form given in equation (3.53)
for the distributed system as the number of cells taken in the model
increases.

In the preceding development the forms of the adjoint equations
for the cell model have been derived. It has been showm that as the
number of cells in the model increases these equations will become

equivalent in all aspects to the necessary conditions derived for the

distributed-parameter model.



APPENDIX IV

COMPILATION OF EXPERIMENTAL RESULTS

Flow measurements made to determine the flow resistance of the
adsorbent bed were made directly after packing the bed and after all the
experimehtal cyclic runs were completed. As can be seen by thé graphical
representation of Darcy's Law in Figure IV.1, the resistance did not
change over the course of the experimental studies.

The complete set of experimental data for the cyclic adsorption
runs are tabulated in Table IV.1l. As noted in the table, runs 1-17 were
carried out u;ing a 28.6% N2 feed gas whereas the feed gas for runs 18-Tk

contained 32.2% NQ.

-13kh-
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] | 1 | 1 ]
3.6 —
O — MEASURED BEFORE CYCLIC ADSORPTION EXPERIMENTS
A — MEASURED AFTER CYCLIC ADSORPTION EXPERIMENTS
3.2F ' -
2.8+
2.4+ —
2.0 -
1.6 -
1.2 — —
0.8 - ]
0.4 — 1
0.0 ] | i | | |
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
~(aP) P ATM.X10-2
AL CM.-CP.

Figure IV.1. Measurement of Darcy's Law Permeability
Through the Packed Adsorption Column.
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TABLE IV.1

TABULATION OF EXPERIMENTAL RESULTS

Fixed Parameters System Outputs
Experiment Cycling  Part of Period Product Exhaust Product
Number Frequency Feed Valve Rate Rate Composition
(cps) Open * (SCFH) (SCFH) % W,

Feed Composition of 28.6% No - 71.L4% CH), for Experiments 1-17

1 0.100 0.493 1.20 10.0 53.0
2 0.100 0.492 0.5k 10.4 68. 4
3 0.100 0.492 1.85 9.6 L6.1
L 0.133 0.493 1.83 11.2 48.4
5 0.133 0.493 1.19 11.h 55.7
6 0.133 0.493 0.53 12.0 T1.5
T 0.200 0.496 0.52 1k.5 75.2
8 0.200 0.496 1.17 13.9 58.7
9 0.200 | 0.496 1.83 13.6 | 51.0
10 0.285 0.495 1.17 16.5  60.4
11 0.285 0.500 1.82 16.0 52.7
12 0.285 0.500 1.17 16.7 60.0
13 0.400 0.500 1.82 19.9 53.1
1 ' 0.400 0.500 1.185 20.6  59.k
15 0.5k4T 0.498 1.19 21.6 58.0
16 0.547 0.498 1.83 21.5 51.9
17 0.790 0.500 1.8k 25.0 50.1

Feed Composition of 32.2% N, - 67.7% CH) for Experiments 18-Th

18 0.200 0.350 1.16 13.3 61.0

* Unless otherwise indicated, the following runs alternate opening the
feed and exhaust wvalves.
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TABLE IV.l (continued)

Fixed Parameters System Outputs
Experiment Cycling Part of Period Product Exhaust. Product
Number Frequency Feed Valve Rate Rate Composition
(eps) Open (SCFH) (SCFH) %N,
19 0.300 0.350 1.16 16.7 62.7
20 0.400 0.350 1.16 15.3 62.7
21 0.600 0.350 1.16  23.6 60.8
22 0.100 0.35b 1.16 9.4 55.9
23 1.000 0.350 1.16 32.5 58.1
2k 0.350 0.350 1.16 18.0 62.8
25 0.100 0.500 1.16 10.2 56.3
26 0.200 0.500 1.16 1kh.k 61.8
27 0.300 0.500 1.16 17.8 6k .0
28 0.400 0.500 1.16 19.9 63.8
29 0.600 0.500 " 1.16 2k.6 62.0
30 0.350 0.500 1.16 19.2 64,0
31 0.350 0.800 1.16 15.0 53.6
32 0.350 0.650 1.16 17.6 60.9
33 0.350 0.500 1.16 19.2 6k.0
3k 0.350 0.350 1.16 18.1 63.0
35 0.350 0.200 1.16 S 1hLT 56.6
36 0.350 0.kes 1.16 18.9 6k.0
37 0.350 0.k470 1.16 19.2 6h.1
38 0.100 0.550 1.81 9.9 ho.2
39 0.200 0.550 1.79 k.2 53.9
Lo 0.300 0.550 1.78° 17.3 55.5

L1 0.400 0.550 1.79 19.9 55.6
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TABLE IV.1 (continued)

Fixed Parameters System Outputs
Experiment Cycling Part of Period Product  Exhaust Product
Number Frequency  Feed Valve Rate Rate Composition

(cps) Open (scFH)  (SCFH) % N,

Lo 0.600 0.550 1.82 2h.3 sh.T
L3 0.350 0.550 1.78 18.7 55.9
Lk 0.350 0.815 1.83 13.9 hr.1
L5 0.350 0.650 1.75 17.7 53.9
46 0.350 0.396 1.76 18.2 55.2
b7 0.350 0.207 1.77 14.3 49.8
48 0.350 0.483 1.7k 18.8 56.1
e 0.350 0.510 1.79 18.8 56.1
50 0.350 0.455 1.72 18.6 56.0
51 0.350 0.798 2.7 1k h Ls.2
52 0.350 0.60k 2.he 18.1 51.3
53 0.350 0.398 2.38 17}7 50.8
5k 0.350 0.202 2.k 13.3 Ls.3
55 0.350 0.500 2.h1 18.5 51.8
56 0.350 0.540 2.38 18.4 51.8
57 0.350 0.459 2.37 18.2 51.6

Part of Period
Both Valves

Closed *
58 0.350 0.470  0.06 1.16 19.8 63.6
59 0.350 0.470  ——== 1.16 19.2 6.1
60 0.350 0.k70  0.06 1.78 19.6  56.2

¥ For the following runs, there is a delay between closing the feed valve
and opening the exhaust valve.
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TABLE IV.1 (continued)

Fixed Parameters

System Outputs

Part of Period

Experiment Cycling Product Exhaust Product
e Fr??;:?cy Soed g (sorm)  (sern) Comféoivjm
Open Closed
61 0.350 0.470 _— 1.78 18.7 56.3
62 0.350 0.470 0.06 2.43 19.1 51.3
63 0.350 0.470 _— 2.ho 18.3 51.5
6h 0.350  0.470 0.125 2.43  16.1 50.7
65 0.350  0.470 0.125 1.78  16.6 55,2
66 0.350 0.470 0.125 1.16 17.0 62.5
67 0.350 0.478 0.031 1.16  18.6 63.9
68 0.350 0.478 — 1.16 19.2 63.9
69 0.350 0.478 0.031 1.75 18.2 56.1
T0 0.350 0.478 —— 1.79 18.7 56.3
T1 0.350 0.478 0.031 2.43 17.7 51.h
72 0.350 0.L478 —— 2.k 18.2 51.4
73 0.350 0.480 0.068 1.16 17.7 ——
h 0.350 0.480 0.068 .77 17.h —-
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APPENDIX V

DIMENSIONAL ANALYSIS OF THE STATE EQUATIONS

Tn order to assess the significance of the design parameters A .
K ana L , in the state equations a dimensional analysis of these equa~-
tions is needed. From Table 3.1 the state equations for pressure and com-

position can be rewritten in dimensionless form.

. t X
Letting 6 =— > - - and -
Vo, Z'/Z azz"
IZ _ ( KT Zmay L5
Y-S KDY (v.1)

e L* WRT—k Y=l (¥=iy/2)
(6 AL — & )

I 2 % WRTR ¥z, A Migw -1)/2)

7,{1—5/)//»0]‘1

2% oy _ U2
2 12 WRT*‘.Y,E:’"V") 3-1/1) ~
5%{ (KT’Z;“) al 3 (e + T w7 )(/wo(///)) (v.2)
AL ~| -
7 Z'/‘ (e . < WRTH z,ﬁf,{ 1)/2) Z//f l)/z))
AL (;,-H((I“y))l
Factoring out the dimensionless term
( K7 z},.’:x)
M k*
the boundary conditions become
A d=1,
v A ( RRTL @, ]
gﬁ =<K’r’%max)[ Z {ZmaxAK%) >‘J (v.3)

A’f.)
For %(I )< o,

DYy [ KTZmaX\ 2% (y-
—a_'gg_ ( ) 24 [i /R) (v.La)

Lx ,
M ’Z{Z\_/ﬁ_) zﬂ/z
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For %% (1,6) >0

2 4 — O (V.4B)
26

With the pressure constraint at the control boundary (3.37) written with

a controllable exhaust pressure

Zmn & R < 2

— max (v.5)
the dimensionless constraint becomes
(zmm)ﬁ Z £ | - (v.6)
Zrax -

Because the system output of exhaust rate is also of interest,

the expression for this rate is also dedimensionalized.

3
when 2 (0,t) >o exhaust _ L | _AK ?Z
A9 e = 2/¢RT 32 dt (Vv.7)
]
In terms of dimensionless variables,
when 2% (o 8)> O exhaust _ ALE"A K 208 aZ A6
a0’ rate Z.YRT /u.L‘
(v.8)

Thus, if the dimensionless terms involving equipment specifications

[(rsd) BRTeery .o (%) .

the dimensionless terms involving adsorbent properties

(¥-1/2)
€ UL Y and (W RT*X Zmax ) \

2

and the dimensionless terms involving operating conditions ( z""") and F’__y
max

are not changed, the solution to the dimensionless equafions (Vv.1)-(v.k)

will not change.
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