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ABSTRACT

We have simulated the formation of an X-ray cluster in a cold dark matter universe using 12 different codes.
The codes span the range of numerical techniques and implementations currently in use, including SPH and grid
methods with fixed, deformable or multilevel meshes. The goal of this comparison is to assess the reliability of
cosmological gas dynamical simulations of clusters in the simplest astrophysically relevant case, that in which the
gas is assumed to be non-radiative. We compare images of the cluster at different epochs, global properties such as
mass, temperature and X-ray luminosity, and radial profilesof various dynamical and thermodynamical quantities.
On the whole, the agreement among the various simulations isgratifying although a number of discrepancies exist.
Agreement is best for properties of the dark matter and worstfor the total X-ray luminosity. Even in this case,
simulations that adequately resolve the core radius of the gas distribution predict total X-ray luminosities that
agree to within a factor of two. Other quantities are reproduced to much higher accuracy. For example, the
temperature and gas mass fraction within the virial radius agree to about 10%, and the ratio of specific kinetic
to thermal energies of the gas agree to about 5%. Various factors contribute to the spread in calculated cluster
properties, including differences in the internal timing of the simulations. Based on the overall consistency of
results, we discuss a number of general properties of the cluster we have modelled.

Subject headings:cosmology: theory — dark matter — galaxies: clusters — large-scale structure of universe

1. INTRODUCTION

Computer simulations have played a central role in modern
cosmology. Two decades after the first cosmological simula-
tions were performed, this technique is firmly established as
the main theoretical tool for studying the non-linear phases of
the evolution of cosmic structure and for testing theories of the
early universe against observational data.

The first generation of cosmological simulations employed

N-body techniques to follow the clustering evolution of a dissi-
pationless dark matter component. This approach proved pow-
erful enough to reject the idea that the dark matter consistsof
massive neutrinos and to establish the viability of the alternative
hypothesis that the dark matter is made up of cold collisionless
particles. In the last decade, N-body techniques have been fur-
ther refined and applied to a wide range of cosmological prob-
lems. N-body simulations are now sufficiently well understood
that the validity of analytic approximations is often gauged by
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2 The Santa Barbara cluster comparison project.

reference to simulation results.
The main limitation of N-body techniques is, of course, that

they are relevant only to the evolution of dark matter. In order
to model the visible universe, it is necessary to include addi-
tional physical processes. First, it is necessary to model agas
component that is gravitationally coupled to the dark matter. In
the simplest case, the gas may be assumed to be non-radiative.
Although still highly simplified, this case has immediate appli-
cations in the study of the hot plasma in galaxy clusters. At the
next level of complexity, heating and cooling processes must
be included. This is required, for example, to investigate the
physical properties of the gas clouds responsible for QSO ab-
sorption lines. Additional processes, such as star formation and
the associated feedback of energy and mass, are necessary to
model galaxy formation.

Since the late 1980s a variety of techniques have been de-
veloped to simulate gas dynamics and related processes in a
cosmological context. In part inspired by the success of theN-
body program, the first gas dynamical techniques were based on
a particle representation of Lagrangian gas elements usingthe
Smooth Particle Hydrodynamics (SPH) technique (Lucy 1977,
Gingold & Monaghan 1977, Evrard 1988). Soon thereafter,
fixed-mesh Eulerian methods were adapted (Cenet al. 1990,
Cen 1992) and, more recently, Eulerian methods with submesh-
ing (Bryan & Norman 1995) or deformable moving meshes
(Gnedin 1995, Pen 1995, 1998) have been developed, as well as
extensions of the SPH technique (Shapiroet al. 1996). These
codes are actively being applied to a variety of cosmological
problems, ranging from the formation of individual galaxies
and galaxy clusters to the evolution of Lyman-α forest clouds
and the large-scale galaxy distribution.

Because of the inherent complexity of gas dynamics in a cos-
mological context, such simulations are more difficult to vali-
date than N-body simulations. Standard test cases with known
analytical solutions (such as shock tubes) are far removed from
the conditions prevailing in cosmological situations where the
gas is coupled to dark matter and this, in turn, evolves through
a hierarchy of mergers. The closest analogue to a realistic cos-
mological problem is Bertschinger’s (1985) solution for the col-
lapse of a spherical cluster. Although this model provides a
useful test of numerical hydrodynamics implementations, it ig-
nores the merging processes that are a dominant aspect of the
formation of realistic clusters. In general, the strongly non-
linear and asymmetric nature of gravitational evolution ina cos-
mological context differs greatly from the regime that can be
studied analytically or in laboratory experiments.

In this paper we carry out an exercise intended as a step to-
wards assessing the reliability of current numerical studies of
cosmological gas dynamics. We address one of the simplest as-
trophysically relevant problems, the formation of a large cluster
in a hierarchical cold dark matter (CDM) model, using a variety
of codes that span the entire range of numerical techniques in
use today. The cluster problem is relatively simple because, ex-
cept in the inner parts, the cooling time of the gas exceeds the
age of the Universe and so, to a good approximation, the gas
may be treated as non-radiative.

The aim of this exercise is to assess the extent to which ex-
isting modelling techniques give consistent and reproducible
results in a realistic astrophysical application. Our compari-
son is, by design, quite general. We simply specify the initial
conditions for the formation of a cluster and let different simu-
lators approach the problem in the manner they regard as most
appropriate. Our comparison therefore encompasses not only

the hydrodynamics simulation techniques themselves, but also
individual choices of boundary conditions, resolution, internal
variables such as the integration timesteps, and even the defini-
tion of cluster center. We are therefore able to address issues
such as the reproducibility of the X-ray luminosity and surface
brightness of simulated clusters. It is not our intention totest the
accuracy of any individual code: all the codes used in this pa-
per have already been extensively tested against known analytic
solutions. An earlier comparison of a subset of the techniques
considered here was presented by Kanget al. (1994b). These
authors simulated a large cosmological volume and focussedon
statistical properties of the large-scale structure, rather than on
the non-linear properties of an individual cluster that concern
us here.

This project was initiated as part of the activities of the
program on “Cosmic radiation backgrounds and the formation
of galaxies” which took place at the Institute for Theoretical
Physics in Santa Barbara in 1995. Most active groups in the
field of cosmological hydrodynamics simulations agreed to par-
ticipate. Initial conditions for the cluster simulation were set up
as described in Section 2. The codes used in the comparison
are briefly described in Section 3. Participants were asked to
analyze their results with a suite of predefined diagnostics, in-
cluding images, global properties such as mass and X-ray lumi-
nosity, and radial profiles of the dark matter density, gas density,
temperature, etc. The images and a comparison of quantitative
results are given in Section 4. Our paper concludes in Section 5
with a summary and discussion of results, including some gen-
eral conclusions regarding the properties of the simulatedclus-
ter.

2. THE SIMULATION

We simulated the formation of a galaxy cluster in a flat CDM
universe. The initial fluctuation spectrum was taken to havean
asymptotic spectral index,n= 1, and shape parameter,Γ = 0.25,
the value suggested by observations of large-scale structure (eg.
Efstathiou, Bond & White 1992). The cosmological param-
eters assumed were: mean density,Ω = 1; Hubble constant,
H0 = 50km s−1 Mpc−1 ; present-day linear rms mass fluctuations
in spherical top hat spheres of radius 16 Mpc,σ8 = 0.9; and
baryon density (in units of the critical density),Ωb = 0.1.

2.1. Initial conditions

Initial conditions were laid down using the constrained Gaus-
sian random field algorithm of Hoffman & Ribak (1991). The
cluster perturbation was chosen to correspond to a 3σ peak
of the density field smoothed with a Gaussian filter of radius
r0 = 10 Mpc [in exp(−0.5(r/r0)2)]. The perturbation was cen-
tered on a cubic region of sideL = 64 Mpc. We used the fit to
the CDM transfer function given by eqn (G3) of Bardeenet al.
(1986) and recommended a starting epoch ofz= 20.

To offer flexibility, the initial conditions were generatedat
very high resolution. Two alternative forms were supplied:

(i) The dimensionless linearδρ/ρ field (normalized to the
present), tabulated on a 2563 cubic mesh.

(ii) The linear theory displacements for 2563 points on a cu-
bic mesh.

The initial conditions were generated by Shaun Cole.
These are publically available on the Internet at http://star-
www.dur.ac.uk∼csf/clusdata/ or by request from CSF.

http://star-www.dur.ac.uk~csf/clusdata/
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2.2. Simulation diagnostics

The simulation data were output at redshiftsz=8, 4, 2, 1, 0.5,
and 0 and the following properties were calculated:

Images.

At each epoch, 2-D images were generated of various quanti-
ties in the central (32 Mpc)3 comoving volume. The quantity of
interest was projected along thez-axis, smoothed as specified
below, and tabulated on a 10242 mesh. Two smoothings were
employed:

(i) A Gaussian smoothing with kernel, exp(−0.5(r/r0)2), at a
fixed resolution ofr0 = 250 kpc (comoving).

(ii) A smoothing of choice, as determined by each simulator.
The first set of images was used for a uniform comparison of
all the models, while the second set was supplied in order to
display the results of each technique in the best possible light.

Images of the following quantities were made:
(i) Projected dark matter density (in M⊙Mpc−2)
(ii) Projected gas density (in M⊙Mpc−2)
(iii) X-ray surface brightness,

∫
LXdl (X-ray emissivities

per unit volume were calculated asLX = ρ2T1/2, with ρ in
M⊙Mpc−3 andT in K.)

(iii) Emission-weighted temperature (
∫
LXTdl/

∫
LXdl).

Global properties.

We defined the cluster to be the mass contained inside a
sphere of radius,r200, such that the mean interior overdensity
is 200. The following global properties of the cluster were then
computed atz= 0:

(i) The value ofr200
(ii) Mdm : total dark matter mass (in M⊙)
(iii) Vdm : rmsvelocity of dark matter particles (in km s−1)
(iv) Mgas: total gas mass (in M⊙)
(v) T : mean (mass weighted) temperature (in K)
(vi) U : total bulk kinetic energy of the gas (in ergs)
(vii) Ltot =

∫ r200

0 LXdV (LX units as above;V in Mpc3)
(viii) I =

∑
i mixixi/

∑
i mi : inertia tensor for dark matter and

gas (in Mpc2).

Radial profiles.

In 15 spherical shells of logarithmic width 0.2 dex and in-
ner radii 10kpc≤ r < 10Mpc, the following quantities were
obtained:

(i) ρdm(r) : dark matter density profile (in M⊙Mpc−3)
(ii) σdm(r) : dark matter velocity dispersion profile (in km s−1)
(ii) ρgas(r) : gas density profile (in M⊙Mpc−3)
(iv) T(r) : mass-weighted gas temperature profile (in K)
(v) LX(r) : “X-ray luminosity" profile calculated as the to-

tal luminosity in each bin, divided by its volume (in units as
above).

Each simulator was provided with the two initial conditions
files and the list of required diagnostics (in a prespecified for-
mat). Everything else was left to the discretion of each simula-
tor including, for example, the definition of the cluster center.
All data were sent directly to the organizers (CSF and SDMW),
and participants were strongly discouraged from private inter-
comparison of results. A surprising number of iterations was
required to obtain consistent outputs in a single set of units and
formats.

Wadsley joined the project after the original deadline had ex-
pired and the first set of results was known. Discrepancies ina
preliminary comparison of results led Gnedin to revise his code

and resubmit a new simulation. Bryan’s stated spatial resolu-
tion was changed from 80 to 30 kpc after preliminary compar-
ison suggested that he had been too pessimistic in stating his
resolution.

3. THE CODES

The numerical codes used for this project employ a variety
of techniques to solve the evolution equations for a two com-
ponent fluid of dark matter and non-radiative gas coupled by
gravity. In what follows, each code is identified by the name
of the author who was primarily responsible for carrying out
each simulation. The codes are of two general types: SPH and
grid-based. SPH simulations were carried out by Couchman,
Evrard, Jenkins, Navarro, Owen, Steinmetz and Wadsley. The
simulations by Couchman and Jenkins used the same basic code
(HYDRA), the serial version in the former case and a parallel
version in the latter. (These two simulations were done inde-
pendently and used different numbers of particles and different
values for the simulation parameters: gravitational softening,
smoothing length, timestep, etc.) Owen’s code differs fromthe
others in the use of an anisotropic SPH kernel. The grid-based
methods employ either a single, fixed mesh (Cen, Yepes), a 2-
level multi-mesh (Bryan) or a deformable mesh (Gnedin, Pen).
Warren carried out a high resolution simulation of the evolution
of the dark matter only.

A brief description of each code follows, together with ref-
erences where the reader may find a fuller discussion of tech-
niques and the tests to which each code has been subjected.
Details of each simulation are given in Table 1.

3.1. SPH codes

3.1.1. Couchman & Thomas – Hydra (Adaptive P3M-SPH)

Hydra is functionally equivalent to the standard particle-
particle-particle-mesh, N-body-SPH (P3M–SPH) implementa-
tion, but with the automatic placement of a hierarchy of refined
meshes in regions of high particle density. This avoids the dra-
matic performance degradation caused by the direct summation
(PP) component of standard P3M codes under heavy particle
clustering. In the present simulation, at a redshift ofz = 0.5,
the cpu time per step had increased by a factor of 4.5 from the
essentially uniform initial conditions atz = 49, and remained
at this level to the end of the simulation. A maximum of four
levels of mesh refinment was chosen by the code.

The code automatically chooses a global timestep to ensure
accurate time integration. This value is determined by the max-
imum instantaneous values of particle velocities and accelera-
tions of both gas and dark matter particles. An optimal low-
order integration scheme is used for advancing particle posi-
tions and velocities. Full details of the code are availablein
Couchman, Thomas and Pearce (1995) and the source code
may be found in Couchman, Pearce and Thomas (1996).

The supplied initial displacement field was degraded to the
resolution used, 643 dark matter particles, simply by sampling
every fourth position in each dimension. This rather crude
method of resampling, although simple, has the disadvantage of
introducing noise into the perturbed particle distribution above
the effective Nyquist frequency of the 643 particles. Dark mat-
ter particles were displaced from a uniformly spaced grid and
gas particles were placed on top of the dark matter particles.
Particle displacements were scaled to correspond to a startred-
shift of 49. The center of the final cluster was identified with
the density peak withinr200.
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3.1.2. Jenkins & Pearce – Parallel Hydra

This simulation used a parallel version of Hydra, the code
just described in 3.1.1, whose distinguishing feature is its abil-
ity to place high resolution meshes recursively around clus-
tered regions. The SPH calculation used an M4 spline ker-
nel containing an average of 32 particles. Details of the se-
rial version of this code may be found in Couchman, Thomas
and Pearce (1995), while details of the parallel implementation
may be found in Pearceet al. (1995) and Pearce & Couchman
(1997).

The simulation was carried out on a Cray-T3D. Initial con-
ditions were laid down by perturbing 1283 particles distributed
in a “glass” configuration. This was generated in the manner
described by White (1996), ie. by evolving a Poissonian distri-
bution of points, with the sign of gravity reversed, over many
thousands of expansion factors. To optimize the resolutionin
the region of interest, the computational volume was divided
into two parts, a high resolution spherical region containing 1/4
of the volume and centered on the location of the constrained
peak, and a coarsely sampled exterior region. Dark matter and
gas particles (initially coincident) were placed in the high res-
olution region, and dark matter particles only in the exterior
region. The coarse sampling was achieved by smoothing the
distribution with a nearest grid point (NGP) assignment on a
643 mesh, so that, on average, each particle was 8 times more
massive than particles in the high resolution region. This pro-
cedure reduced the particle number from 2097152 dark matter
particles to 1247217 of both species, about one million of which
lay in the high resolution region. The initial particle positions
were set up atz = 20 using a trilinear interpolation of the dis-
placement field in the 8 mesh points surrounding each particle.
Velocities were assigned from the Zel’dovich approximation.
The center of the final cluster was defined to be the position of
the particle with the lowest gravitational potential.

Since this and Couchman’s simulation were carried out with
the same code, one in parallel and the other in serial mode, any
differences in the results must be due to differences in the ini-
tial conditions or the choice of integration parameters. Wehave
checked that running Couchman’s initial conditions in parallel
mode does not alter his results in any significant way.

3.1.3. Evrard – P3M-SPH

The P3M-SPH code combines the P3M code of Efstathiou
& Eastwood (1981) with an adaptive kernel SPH scheme, as
described in Evrard (1988). The simulation for this study em-
ployed a two–level mass hierarchy, with a high resolution (643

effective) inner zone of both dark matter and gas surrounded
by dark matter at low resolution (323). TheN3 mesh data were
generated by NGP subsampling of the original 2563 displace-
ment field. The mapping of the high resolution zone was deter-
mined by a low resolution (323) N–body simulation; particles
within a final density contrast of 6 centered on the group in this
run define a Lagrangian mask used to generate the two–level
initial conditions of the full run. Masked locations in the 323

subsampled field were locally “exploded” to a factor 2 higher
linear resolution, generating an effective 643 resolution within
the non–linear parts of the cluster. This procedure assuresno
contamination of low resolution particles within the cluster in
the production run. The run used 30456 particles for each high
resolution component (gas and dark matter) and 28961 particles
at low resolution, with a 1283 Fourier mesh for the long–range
gravity. The center of the final cluster was defined by the most

bound dark matter particle.
The number of interacting neighbors within the smoothing

kernel controls the hydrodynamics resolution of the calcula-
tion. This parameter was set so that approximately 168 par-
ticles lie within a sphere of radius 2h around any particle. As
discussed by Owen and Villumsen below, the value of this pa-
rameter varies considerably among experiments in the litera-
ture. The value employed here is larger than “typical” values
and reflects a desire to minimize the Poisson noise inherent in
the kernel summations required for calculation of the density
and pressure gradient terms.

The computation was performed on a local HP workstation.
The modest memory and CPU requirements of this calculation
reflect its nature as closer to “everyday” than “state–of–the–
art”. It is representative of the type of runs used in ensembles
to investigate statistical aspects of the cluster population (e.g.
Mohr & Evrard 1997).

3.1.4. Navarro – Grape+SPH

The code used was the N-body/SPH code described by
Navarro & White (1993), adapted to compute gravitational ac-
celerations using a GRAPE-3 board. The neighbor lists needed
for the SPH computations are also retrieved from the GRAPE
and processed in the front-end workstation. The implementa-
tion of these modifications is straightforward and very similar
to that described by Steinmetz (1996), where the reader may
find far more details.

The initial conditions were realized by perturbing a cubic
grid of particles with the displacement field made availablewith
the initial conditions package. The system was divided in two
zones, an inner cube of size 38 Mpc which was filled with 403

dark matter and 403 gas particles, surrounded by a sphere of
diameter 64 Mpc. The region outside the inner cube was filled
with ∼ 5,000 low-resolution dark matter particles of radially
increasing mass. Initially, gas and dark matter particles were
placed on top of each other and were given the same veloci-
ties, computed using the Zel’dovich approximation. The final
cluster center was calculated using a concentric sphere method
that isolates the highest density peak iteratively by computing
the center of mass of a sphere and successively removing the
outermost particle, until only about 100 particles are left.

The simulation was run on the SPARC10/GRAPE-3 system
at Edinburgh University.

3.1.5. Steinmetz – GrapeSPH

This simulation was performed using GrapeSPH (Steinmetz
1996), a direct summation hybrid N-body/SPH code especially
designed to take advantage of the hardware N-body integrator
GRAPE (Sugimotoet al. 1990). It is highly adaptive in space
and time through the use of individual particle timesteps and
individual smoothing lengths. Details of the code such as the
adaptive smoothing length or the multiple time stepping proce-
dure, are presented in Steinmetz & Müller (1993) and in Stein-
metz (1996).

The simulation used a multi-mass technique similar to that
described by Porter (1985). Firstly, a low resolution (323 par-
ticles) P3M simulation of the full periodic volume was per-
formed. The initial conditions were drawn from the distribu-
tion supplied by averaging positions and velocities in cubes of
83 particles. Atz= 0 the cluster which formed near the center
was identified and its virial radius,r200, determined. Particles
within r200 were marked and traced back to redshiftz = 20. A
sphere was then drawn containing all these particles – the high
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resolution region. Particles within that sphere were replaced by
the corresponding particles drawn from higher resolution initial
conditions. Thus, the particle number in the high resolution re-
gion was increased by factors of 8-64. Particles outside thehigh
resolution region were combined into larger mass nodes us-
ing the tree-pruning technique described in Porter (1985).The
mass of a particle thus increases logarithmically with distance
from the central sphere. Starting from these initial conditions,
the full simulation was performed, with gas dynamics followed
only in the high resolution region. The center of the final clus-
ter was defined as the center of mass of the smallest (radius
125 kpc) of a series of 7 concentric spheres of progressively
decreasing radius. (This agreed to about 5% with the minimum
of the gravitational potential.)

In the hardware integrator GRAPE, the interparticle force is
hardwired to obey a Plummer force-law. Thus, periodic bound-
ary conditions cannot easily be realized (for a more recent de-
velopment, see Huss, Jain & Steinmetz 1998). Because of the
tree-pruning, however, the CPU time scales only logarithmi-
cally with box size for a given numerical resolution. A typical
application thus starts from a very large simulation sphereas-
suming vacuum boundaries. Since the computational box sup-
plied for this cluster simulation was relatively small, effects due
to the finite box size cannot be excluded and this may also affect
the comparison with grid based methods. In order to minimize
the effects of finite box size and vacuum boundary conditions,
the simulation strategy was slightly modified. Tree pruningwas
not applied to the original box, but to an enlarged box including
the 26 neighboring periodic replicas of the original. Hence, vac-
uum boundaries apply to a surface of radiusr = 1.5lbox, rather
thanr = 0.5lbox.

A variety of simulations with differing numerical resolution,
particle numbers and size of the high resolution region were
performed. Results from one simulation only have been in-
cluded in this paper. This probably reflects the best compromise
between resolution and computational cost. In this simulation,
which took about 28 hours of CPU and 22 MBytes of mem-
ory,∼ 15000 gas and dark matter particles ended up within the
virial radius of the cluster at redshiftz = 0, a resolution simi-
lar to that achieved by Evrard, Navarro, Couchman and Wad-
sely. The largest simulation carried out had the same number
of gas particles but 8 times as many dark matter particles. This
run consumed a total CPU time of 254 hours and required 45
MBytes of memory.

3.1.6. Wadsley & Bond – P3MG–SPH

The Wadsley and Bond (1997)P3MG–SPHcode used in this
cluster comparison combines SPH for the hydrodynamics with
an iterative multigrid scheme to solve for the non-periodicgrav-
itational potential with a particle-particle correction for subgrid
forces. A recursive linked list is used to locate neighbor parti-
cles for SPH. At each timestep, a multipole expansion is usedto
obtain the gravitational potential boundary conditions ona 1283

grid. The multigrid technique is quite competitive with Fast
Fourier Transform methods in speed and can more efficiently
treat non-periodic configurations, for which theP3MG–SPH
code is designed. It is typically used to compute highly active
inner regions at high resolution, with large scale tides treated
using a sequence of progressively lower resolution spherical
shells in the initial conditions. The force is augmented by a
measured external tidal field evolved using linear theory.

This cluster had a Gaussian filter scale for the peak which
was too large for the periodic box size to treat the tidal environ-

ment adequately (i.e., the cluster was apodized). To a spherical
high resolution region of radius 25 Mpc, we could only add a
single lower resolution shell extending to 32 Mpc in radius.The
25 Mpc choice was based on the region the peak-patch theory
(Bond and Myers 1996) suggests would have collapsed. The
low resolution particles had 8 times the mass of the high reso-
lution ones. The self consistent linearly-evolved external shear
was also applied to the entire region. There were 74127 gas
and 74127 dark particles used in the simulation. The initial
2563 displacement field was sampled at every fourth lattice site
to transfer onto the computational grid for the high resolution
region. A similar transfer was done for the low resolution re-
gion, with slight smoothing added. Couchman used the same
one-in-four transfer method, probably accounting for the sim-
ilarities with the Wadsley and Bond result, especially withre-
gard to timing. Discrepancies may be due, at least in part, to
his use of periodic boundary conditions. The center of the final
cluster was taken to be the center of mass of the largest group
in the simulation identified with a standard friends-of-friends
group finder.

The computation was run on a Dec-Alpha EV5 and required
119 CPU hours and 100 Mb of memory. The current version
of this code has a significantly accelerated particle-particle sec-
tion, using tree techniques (the PP section of the old gravity
solver slowed by a factor of 10 byz= 0). The same computa-
tion now takes 33.6 CPU hours and 50 Mb of memory.

3.1.7. Owen & Villumsen – Adaptive SPH

This simulation was performed with a variant of the SPH
method called Adaptive Smoothed Particle Hydrodynamics, or
ASPH. ASPH generalizes the isotropic sampling of SPH by
associating an individual, ellipsoidal interpolation kernel with
each ASPH node, the size, shape, and orientation of which is
evolved using the local deformation tensor∂vi/∂x j . The goal of
the algorithm is to maintain a constant number of particles per
smoothing length in all directions at all times for each ASPH
particle. This anisotropic sampling allows the ASPH resolution
scale to better adapt to the local flow of material as compared
with the isotropic sampling of traditional SPH, thereby max-
imizing the resulting spatial resolution for a given numberof
particles. Another way of stating this is to say that in the frame
defined by the kernel, the distribution is locally isotropic.

The ASPH formalism is meaningful only when particles are
treated not as particles but as moving centers of interpolation.
The effects of momentum non-conservation are minimized so
long as internal consistency in the ASPH kernel field is main-
tained, a condition we enforce by renormalizing the ASPH ker-
nels periodically. The prescription for this renormalization, the
ASPH algorithm, and the code used here are described in detail
in Owen et al. (1997), and an earlier discussion of ASPH may
be found in Shapiro et al. (1996).

The ASPH interpolation between nodes is performed using
the bi-cubic spline interpolation kernel, which formally ex-
tends for two smoothing scales,h. Beyond this point, the bi-
cubic spline falls to zero, and therefore only nodes within 2h
can interact with each other. The local smoothing scales were
initialized such that there are roughly 2 nodes per smoothing
scale, so each node “sees” a radius of 4 nodes, or a total of
4/3 π 43 ≈ 268 nodes. Of course, since the bi-cubic spline
weighting falls to zero near the edge of this sampling volume,
each node effectively interacts with only about 4/3 π 33 ≈ 113
neighbors. While this represents a much larger number of
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neighboring particles than most contemporary SPH implemen-
tations (a more typical value is 1 particle perh, yielding 32
particles in a volume of radius 2h) it appears that keeping 1.5–
2 particles perh yields more reliable results for a wide vari-
ety of hydrodynamical test problems (see also Balsara 1995).
Evrard’s SPH simulation also used a a large number of inter-
acting particles. The disadvantage of this choice, of course, is
that it decreases the effective resolution. An additional feature
of the code is that it uses a compact, higher order interpolation
kernel for the artificial viscous interactions in an effort to more
closely confine the effects of the artificial viscosity to shocked
regions. The gravitational interactions are evaluated using a
straight, single-level Particle-Mesh (PM) technique.

This experiment was performed using 323 dark matter and
323 ASPH particles, and a 2563 PM grid for the gravity. Since
there are equal numbers of ASPH and dark matter particles,
each dark matter particle is 9 times as massive as an ASPH par-
ticle. The initial conditions were generated forz = 20 by per-
turbing the 2× 323 ASPH and dark matter particles (initially
exactly overlaying each other) from a cubical lattice with tri-
linear interpolation based upon the supplied displacementfield,
and assigning velocities using the Zel’dovich approximation.
The center of the final cluster was defined through an iterative
approach, similar to that used by Steinmetz. In this case, the
radius of each successive sphere was shrunk by a factor of 0.9
and the iterations were stopped when the center of mass shifted
by less than a small tolerance.

It is worth commenting on the fact that with only 323 ASPH
and dark matter particles, this is by far the lowest resolution of
the SPH experiments presented in this paper. This is primarily
due to the fact that at the time this experiment was performed
our 3-D ASPH code had only just been completed, and this was
one of the first problems tackled with that (then) highly experi-
mental code. Due to the lateness of our entry into this project,
we only had time to confirm that the experiment appeared to
have run successfully and submit that initial run. The current
version of our 3-D ASPH code is competitive with other con-
temporary cosmological hydrodynamical codes. Despite these
limitations, though, it is interesting to compare the results of
this simulation with the others in order to quantify how well
the regions which are resolved match the results of the higher
resolution models.

3.2. Grid-based methods

3.2.1. Bryan & Norman – SAMR

A newly-developed, structured, adaptive mesh refinement
(SAMR) code was used to perform this simulation. This
method was designed to provide adaptive resolution while pre-
serving the shock-capturing characteristics of an Eulerian hy-
drodynamics scheme. The code identifies regions requiring
higher resolution and places one or more finer sub-meshes over
these areas in order to better resolve their dynamics. Thereis
two-way communication between a grid and its ‘child’ meshes:
boundary conditions go from coarse to fine, while the improved
solution on the finer mesh is used to update the coarse ‘parent’
grid. The grid placement and movement is done automatically
and dynamically, so interesting features can be followed athigh
resolution without interruption. Since sub-grids can havesub-
sub-grids, this process is not limited to just two levels. The
control algorithm for advancing the grid hierarchy is similar
to that suggested by Berger & Colella (1989), and the equa-
tions of hydrodynamics are solved on each grid with a version

of the piecewise parabolic method (PPM) modified for cosmol-
ogy (Bryan et al. 1995). Dark matter was modeled with par-
ticles, and gravitational forces were computed via an adaptive
particle-mesh scheme. Poisson’s equation was solved on each
mesh using the Fast Fourier Transform.

The simulation was initialized atz = 30 with two grids al-
ready in place. The first is the root grid covering the entire 64
Mpc3 domain with 643 cells. The second grid is also 643 cells
but is only 32 Mpc on a side and is centered on the cluster,
yielding an initial cell size of 500 kpc (the initial conditions
were provided at higher resolution but were smoothed with a
sharp k-space filter where appropriate). The refinement crite-
ria was based on local density, so any cell with a baryon mass
of 3.5×109M⊙ or more, was refined, but only within the cen-
tral, high-resolution region. Atz= 0.5, the hierarchy consisted
of more than 300 grids spread out over 7 levels of refinement.
Each level had twice the resolution of the one above, produc-
ing, in very small regions, a cell size of 8 comoving kiloparsecs.
The final cluster center adopted was the cell-center of the cell
with the highest baryonic density. The simulation was carried
out on four processors of an SGI Power Challenge at the Na-
tional Center for Supercomputing Applications (NCSA).

3.2.2. Cen, Bode, Xu & Ostriker – TVD

This simulation employed a new shock-capturing Eulerian
cosmological hydrodynamics code based on Harten’s Total
Variation Diminishing (TVD) scheme (Harten 1983), and de-
scribed in Ryuet al. (1993). The original TVD scheme was im-
proved by adding one additional variable (entropy) and its evo-
lution equation to the conventional hydrodynamics equations.
This improvement eliminates otherwise large artificial entropy
generation in regions where the gas is not shocked. Details of
this treatment can be found in Ryuet al. (1993). The code is
able to capture a strong shock within 1-2 cells and a sharp den-
sity discontinuity within 3-5 cells. Poisson’s equation issolved
using the Fast Fourier Transform. The code is accurate in terms
of global energy conservation to about 1%, as gauged by the
Layzer-Irvine equation.

Initial conditions were laid down on a 5123 uniform grid, us-
ing the particle positions, velocities and gas densities provided.
The initial gas temperature was set to a low value, 113 K. The
total number of particles was 2563 and the total number of fluid
cells was 5123. The simulation started atz= 40. The final clus-
ter center was taken to be the cell with the highest X-ray lumi-
nosity.

The simulation was run on an IBM SP2 at the Cornell Theory
Center. Sixty-four SP2 processors were used for the simulation
for about 83 wallclock hours with 600 timesteps. The code
is well parallelized on the SP2 (as well as on the Cray-T3E)
and achieves an efficiency of about 50% on 64 SP2 processors
(Bodeet al. 1996).

3.2.3. Pen – Moving Mesh Hydrodynamics

The simulations were all performed with an early version of
the Moving Mesh Hydrodynamics and N-body code (MMH for
short; Pen 1995, 1998). Its main features are a full curvilin-
ear TVD hydro code with a curvilinear PM N-body code on a
moving coordinate system. The full Euler equations are solved
using characteristics in explicit flux-conservative form.The
curvilinear coordinates used in the code are derivable froma
gradient of the Cartesian coordinate system. Ifxi are the Carte-
sian coordinates, the curvilinear coordinates areξi = xi +∂ i

ξφ(ξ).
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The transformation is completely specified by the single poten-
tial field φ(ξ,t). During the evolution any one constraint can be
satisfied by the grid. In our case, we follow the mass field such
that the mass per unit grid cell remains approximately constant.
This gives all the dynamic range advantanges of SPH combined
with the speed and high resolution of grid algorithms. For rea-
sons of cpu economy (the computational cost increases linearly
with compression factor), this run was constrained to compress
by at most a factor of 10 in length, or a factor of 1000 in density.

The potential deformation maintains a very regular grid
structure in high density regions. The gravity and grid defor-
mation equations are solved using a hierarchical multigridal-
gorithm for linear elliptic equations. These are solved in linear
time, and are asymptotically faster than the FFT gravity solver.
At the same time, adaptive dynamic resolution is achieved. The
gravitational softening of 45 kpc listed in Table 1 applies to the
central region of the cluster; the average softening is 450 kpc.
The final cluster center was identified with the minimum in the
gravitational potential.

The algorithmic cost per particle per timestep is very small,
∼ 300 FLOP (floating point operations). The cost for the grid
deformation, gravity and hydrodynamics adds to about 20k
FLOP per grid cell per timestep. If memory is available, we
always use 8 particles per grid cell, at which point the particles
only account for a small portion of the computation time. This
ensures that we are unlikely to encounter artifacts due to 2-body
relaxation.

The code runs in parallel on shared memory machines with-
out load balancing problems. The simulation was carried out
using a 1283 grid and 2563 particles. Currently each timestep
takes 60 seconds on a 16 processor Origin 2000 at 195 Mhz.
The whole run takes 1600 time steps or about one day. At the
time the actual simulations were performed, the best available
machine was a 75 Mhz R8k Power Challenge, where the run on
8 processors took 60 hours.

Initial conditions were specified on an initially uniform grid.
The fluid perturbation variables were set up on the grid, and
particles displaced using the Zel’dovich approximation. (At the
time of writing, the code no longer uses the Zel’dovich approxi-
mation, but instead varies the mass of each particle.) The initial
grid can now be adjusted to resolve hierarchically any region of
interest with arbitrary accuracy. We expect the new versionto
perform significantly better.

3.2.4. Gnedin – Smooth Lagrangian Hydrodynamics

In this code, the hydrodynamical evolution of the gas is fol-
lowed using the Smooth Lagrangian Hydrodynamics or SLH
method (Gnedin 1995), in which all physical quantities are de-
fined in quasi-Lagrangian space,qk, and Eulerian positions,xi ,
are considered as dynamical variables. The imaginary mesh
connecting Eulerian positions,xi , thus moves with the fluid un-
til one of eigenvalues of the deformation tensor,Ai

k ≡ ∂xi/∂qk,
becomes smaller than the predefined softening parameter,λ∗.
Then in the direction corresponding to this eigenvalue the mesh
gradually decelerates and progressively approaches (but never
fully reaches) the locally stationary mesh, until (and if) the cor-
responding eigenvalue of the deformation tensor begins to in-
crease. This process of softening of the Lagrangian flow pre-
vents severe mesh distortions which can cause the stabilityand
accuracy of a purely Lagrangian code to deteriorate. The grav-
itational force in the code is computed using the P3M method
and is subject to the Gravitational Consistency Condition as de-
scribed in Gnedin & Bertschinger (1996).

Initial conditions were set up by sampling the supplied fields
on a 643 mesh and using the Zel’dovich approximation to ad-
vance the dynamic variables toz= 20. The cluster center was
defined using the DENMAX algorithm.

3.2.5. Yepes, Khokhlov & Klypin – PM-FCT

The code used for this simulation is a combination of an
Eulerian hydrodynamical code based on the Flux-Corrected-
Transport (FCT) technique (Boris 1971, Boris & Book 1973,
1976) and a standard Particle-Mesh N-body code (Kates, Ko-
tok and Klypin 1990). It uses the “low phase error algorithm”
whereby phase errors in convection are reduced on the uniform
grid to fourth order (Boris & Book 1976, Oran & Boris 1986).
This algorithm is applied to the hydrodynamics equations in
one dimension. At each timestep these are first integrated by
FCT for a half-step to evaluate time-centered fluxes; the FCTis
then applied to a full timestep.

Multiple dimensions are treated through directional timestep
splitting. In multiple dimensions, the code has overall second-
order accuracy in regions where the flow is continuous and pro-
vides a sharp, non-oscillating solution near flow discontinuities.
To avoid excessive temperature fluctuations at shocks, the gas
density is smoothed over the seven nearest nodes (one cell in
each direction) when estimating the temperature from the to-
tal energy, velocity and density. This smoothing is doneonly
for temperature estimates. Tests of the code and applications to
cosmological problems may be found in Klypinet al. (1992)
and Yepeset al. (1995, 1996).

The code has been fully parallelized for various shared mem-
ory platforms. The simulation reported here was performed
on the CRAY-YMP at CIEMAT (Spain) using 4 processors si-
multaneously. Due to memory limitations, the supplied initial
conditions were resampled from the original 2563 grid onto a
coarser grid with 160 cells and particles per dimension. The
initial particle positions were set up atz = 20 using cloud-in-
cell interpolation of the original displacement field and veloci-
ties were assigned by means of the Zel’dovich approximation.
The cluster center was found iteratively from the center of mass
of the particle distribution in spheres of radius equal to 2 cells.

3.3. Dark matter only

Warren – Tree
This dark matter only simulation was carried out using a par-

allel treecode (Warren and Salmon 1993, Warren and Salmon
1995) on 128 processors of the 512 processor Intel Delta at
Caltech. The algorithm computes the forces on an arbitrary
distribution of masses in a time which scales with the particle
number,N, asN logN. The accuracy of the force calculation
is analytically bounded, and can be adjusted via a user defined
parameter.

Initial conditions were obtained by perturbing the masses of
the particles in proportion to the values of the supplied initial
density field, starting at a redshift of 63. Growing mode veloc-
ities were assigned using the Zel’dovich approximation. The
initial conditions were coarsened at radii exceeding 24 Mpc
by grouping cells 8 to 1, resulting in a total of 5340952 dark-
matter particles in the simulation. Periodic boundary conditions
were implemented by using the treecode to obtain forces from
the 26 neighboring cube images, and an analytic treatment for
the remainder. The initial portion of the simulation (toz = 9)
was performed with a comoving Plummer softening of 50 kpc,
and a logarithmic timestep. Atz= 9, the softening was fixed at
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5 kpc in physical coordinates, and a global timestep of .005 Gyr
was used, resulting in 2550 total timesteps for the simulation.
The center was defined as the particle with the highest density,
smoothed with a spline kernel of width 20 kpc.

The upper limit for the fractional interaction force error was
set to 0.005. In the initial stages of the simulation, about 1200
interactions per particle were computed. Near the end, thishad
grown to about 2300 interactions per particle. In terms of wall-
clock time, this corresponded to about 144 seconds per timestep
initially, and 215 seconds per timestep towards the end, repre-
senting a sustained throughput of roughly 1.5 Gflops on the 128
processors.

4. RESULTS

We first present a qualitative comparison of the results of the
different simulations using a selection of the images. We then
discuss quantitative results for the bulk properties and radial
profiles of the clusters.

4.1. Images

The images display projections of the following quantitiesin
the inner 8 Mpc cube of each simulation:

(i) Dark matter density atz= 0 (Figures 1 and 8) andz= 0.5
(Figure 2),

(ii) Gas density atz= 0 (Figure 3) andz= 0.5 (Figure 4),
(iii) Gas temperature atz= 0 (Figure 5) andz= 0.5 (Figure 6),
(iv) X-ray luminosity atz= 0 (Figure 7).

In Figures 1-6, the standard smoothing (250 kpc) was used,
whereas in Figures 7 and 8 the optimal smoothing chosen by
each simulator was used (see Table 1). The time elapsed be-
tween the two epochs shown in the Figures is 6× 109 years,
almost exactly half the dynamical time of the final cluster (de-
fined astdyn = 2π(r3

v/GM)1/2 whererv is the virial radius and
M the mass within it). Warren’s dark matter simulation is il-
lustrated only in Figures 1, 2 and 8, in the bottom right hand
corner occupied in the remaining figures by Wadsley’s simula-
tion, which was the last to be completed. Wadsley’s dark matter
distribution has a very similar appearance to Couchman’s.

Dark matter density.

All simulations show a pleasing similarity in the overall ap-
pearance of the projected dark matter density at the final epoch
(Figures 1 and 8). The size, shape and orientation of the main
mass concentration are very similar in all cases. The cluster is
elongated in the direction of a large filament – clearly visible at
z = 0.5 (Figure 2) – along which sublcumps are accreted onto
the cluster. There are, however, noticeable differences atboth
epochs in the substructures present in the various simulations.
These differences are due to discrepancies in the boundary con-
ditions (assumed to be isolated in Navarro, Steinmetz and Wad-
sley and periodic in the rest), in the treatment of tidal forces,
and in the effective timing within the different simulations.

The models have been evolved for at least 21 expansion fac-
tors and inaccuracies in the initial conditions, tidal forces, or in-
tegration errors in the linear regime lead to a lack of synchrony
at later times. These timing discrepancies are manifest in the
differing relative positions of some subclumps atz = 0.5 and
are still apparent atz = 0. For example, there are two distinct
substructures in Figures 1 and 8 to the NW of the main clump
at z = 0 in slightly different positions in Bryan, Cen, Jenkins,
Owen, Pen and Warren. In Couchman, Evrard, Gnedin, Stein-
metz and Yepes, one of these substructures is already merging
with the central clump, while in Navarro both of them have

merged. The differences in the overall shape and orientation
of the main concentration are largely due to a mismatch in the
epoch at which substructures are accreted.

With a uniform, 250 kpc, smoothing significant noise is vis-
ible in Owen. Figure 8 shows the dark matter distribution at
z = 0, this time using the smoothing considered as optimal by
each simulator to display what they considered to be real struc-
ture. There is a larger variety of structure in these high reso-
lution images than in the uniform smoothing case of Figure 1.
The simulations of Jenkins and Warren which have the largest
number of resolutions elements also have the largest numberof
satellite structures. Varying numbers of these can be seen in
other images, although because of the slight timing differences
they often appear in different locations. The low and interme-
diate resolution simulations of Cen, Gnedin, Owen and Yepes
look quite similar when the standard smoothing or the smooth-
ing of choice is used.

Gas density.

At the present epoch, the gas in all simulations (Figure 3) is
rounder than the dark matter – a manifestation of the isotropic
gas pressure – and has only a residual elongation along the ac-
cretion filament. Most of the secondary clumps seen in the dark
matter are also seen in the gas, but they are clearly more diffuse.
At z= 0.5 (Figure 4), shortly before the final large merger, the
timing differences discussed above are quite apparent. In some
cases, the final major merger is already quite advanced but in
others two large subclumps are still clearly visible.

With this smoothing, the sampling in Owen is poor and
Yepes’ comparatively low resolution is more apparent than in
the corresponding dark matter image. In Owen’s case, the un-
derlying asphericity of the SPH sampling is lost when a fixed
smoothing length is used; less noisy images result when the ge-
ometry of the hydrodynamical sampling is maintained, as in the
X-ray image in Figure 7 below.

Gas temperature.

The gas temperature images (Figures 5 and 6) show the most
interesting differences between the simulations. These are par-
ticularly striking atz = 0.5 when the slight timing differences
apparent in the dark matter and gas density plots produce quite
dramatic differences in temperature structure. In particular, in
the simulations by Jenkins, Navarro and Steinmetz, in which
the final major merger has not yet occured atz = 0.5, an an-
nulus of shock-heated material is evident between the two ap-
proaching clumps, surrounding the axis of collision. In Evrard
and Owen, the merger is further advanced, but some residue
of the annular structure remains. The simulations of Bryan,
Cen, Gnedin, and Yepes are yet further advanced and while
their temperature plots show similar departures from symme-
try, the annular structure is no longer evident. In Couchman
and Wadsley, the merger is nearly complete and the tempera-
ture distribution appears close to spherically symmetric.

At z= 0 the plots are broadly similar and most of the temper-
ature structure, both inside the cluster and in the outer regions
of the clusters, reproduces amongst the different simulations.

X-ray surface brightness.

Like the dark matter distributions in Figure 8, the X-ray
surface brightness images in Figure 7 were generated using
each simulator’s smoothing of choice. Since the X-ray sur-
face brightness is calculated by integratingLX = ρ2T1/2, these
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images are similar to those of the surface density (Figure 3),
except that higher weight is given to the central parts of the
clumps. As a result, the central intensity is strongly depen-
dent on resolution. In the region where the bulk of the X-rays
are produced, most images are quite similar. However, there
are large differences in the number and brightness of satellite
structures. Jenkins and Wadsley produced the largest number
of such structures, followed by Bryan and Steinmetz. Again,
the substructures appear in different places because of thetim-
ing discrepancies discussed above.

The high resolution grid codes of Bryan and Pen, and the in-
termediate resolution grid code of Gnedin, show sharper struc-
ture in the low density regions than the SPH codes, a reflec-
tion of their better treatment of shocks in low density regions.
Bryan’s, Pen’s, and all but Owen’s SPH codes have high central
resolution and generally produce brighter central regionsthan
the low and intermediate resolution grid codes.

4.2. Global properties

All simulators were requested to calculate global properties
of their clusters at the final time. The cluster was defined to
be the material lying within a spherical region around the cen-
ter, of radius such that the mean enclosed mass density is 201
times the critical value. In practice, each simulator was left free
to choose a preferred algorithm for locating the cluster center
since this choice is part of the uncertainties that we are trying
to assess. (The algorithms used in each case are described in
Section 3.) The mean value of the cluster radius, averaged
over all simulations, wasr200 = 2.70 Mpc, with an rms scat-
ter of 0.04. We display the global properties of the clustersin
graphical form in Figure 9, and discuss the different quantities
one at a time. In each panel in this figure, the simulations are
arranged, from left to right, in order of decreasing resolution,
which is taken to be the maximum of the spatial resolution for
the gas at cluster center (column 3 of Table 1) and the gravita-
tional force resolution (column 6 of Table 1). Open circles are
used to represent SPH simulations and filled circles grid based
simulations.

The simplest property of the cluster is its total mass, and all
simulations agreed on a value just over 1015M⊙, to within better
than 10%. Differences arise from resolution and timing effects.
Among the grid-based codes, there is a clear trend of decreas-
ing mass with decreasing resolution. The timing discrepancies
discussed in Section 4.1 affect the position of substructures and
thus the estimates of the cluster mass. For example, among
the SPH codes, Jenkins, Navarro, and Steinmetz find slightly
smaller masses than the others because of a significant lump
clearly visible in Figures 7 and 8 which falls just outside the
cluster boundary in their simulations but just inside it in the
others. This is a result of the late formation of their clusters,
apparent in Figure 2.

The velocity dispersion of the dark matter particles withinthe
cluster is also reproduced to better than 10% in all simulations
except Yepes’ whose low value reflects the low force resolution
of his simulation. (The quantity plotted is the one-dimensional
velocity dispersion, calculated asσ/

√
3, whereσ is the full

three-dimensional velocity dispersion in the rest frame ofthe
cluster.) There is some tendency for the simulations which pro-
duced the largest total masses also to give the largest velocity
dispersions, but the correspondance is not exact, reflecting the
fact that the cluster is not in virial equilibrium to better than
10% and that the actual virial ratio depends on the detailed po-
sitions of infalling clumps.

Fig. 9. Global properties of the cluster in the various simulations. All quantities are
computed within the virial radius. From top to bottom, the left column gives the values of:
(a) the total cluster mass; (b) the one-dimensional velocity dispersion of the dark matter;
(c) the gas mass fraction; (d) the mass-weighted gas temperature. Also from top to bottom,
the right column gives the values of: (a)β = µmpσ

2
DM/3kT; (b) the ratio of bulk kinetic to

thermal energy in the gas; (c) the X-ray luminosity; (d) the axial ratios of the dark matter
(circles) and gas (crosses) distributions. In each panel, the models are arranged, from left
to right, in order of decreasing resolution which is taken tobe the maximum of the spatial
resolution for the gas at cluster center (column 3 of Table 1)and the gravitational softening
length (column 6 of Table 1). Open circles are used to represent SPH simulations and filled
circles grid based simulations.

As might be expected, although still quite good, the agree-
ment on the properties of the gas is noticeably worse. The total
amount of gas is most interestingly expressed as a fraction of
the total cluster mass. The overall gas fraction in the modeluni-
verse is 10% and the highest resolution grid simulations finda
cluster gas fraction which is almost exactly equal to this. Lower
resolution grid simulations find progressively smaller gasfrac-
tions, reflecting differential resolution effects in the treatment
of dark matter and gas in these codes. There is excellent overall
agreement among the SPH models except for the lowest resolu-
tion one: everyone except Owen finds a gas fraction very close
to 0.09. There seems to be a systematic offset between the SPH
models and the highest resolution grid models but there is no
clear indication of what may be causing this difference. We ex-
plore this issue further in the next section by considering the
radial dependence of the gas fraction.

As a measure of temperature, all simulators calculated a
mean, mass-weighted temperature for all the gas within the
cluster. Everyone found a value between 4.9 and 5.9× 107K.
Figures 5 and 6 suggest that some of the differences result from
the timing differences discussed above which produce slightly
different histories for the clusters just prior toz= 0. It is encour-
aging that the rms scatter in the measured mean temperature is
less than±7%. An even smaller scatter,±5%, is found for the
ratio of specific dark matter kinetic energy to gas thermal en-
ergy,β = µmpσ

2
DM/3kT, if Yepes’ low value is excluded. (Here
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µ denotes the mean molecular weight andmp the proton mass.)
This is further evidence that the differences in velocity disper-
sion and temperature result from slightly different dynamical
histories rather than from differences in the treatment of the gas.
Most simulations giveβ ≃ 1.17, indicating that non-thermal or
bulk turbulent motions contribute to the support of the gas.The
ratio of bulk kinetic to thermal energy in the gas, plotted inthe
next panel of Figure 9, is indeed about 15%. This ratio corre-
lates well withβ, but with small residuals that reflect slight de-
partures from virial equilibrium. The agreement on the values
of β andUkin/Utherm indicates that the shock capturing proper-
ties and the efficiency with which infall kinetic energy is ther-
malized in shocks is similar in the SPH and grid-based codes,at
least in the regime explored in this simulation. Most simulators
obtained values of about 3.6×1062ergs for the bulk kinetic en-
ergy, except Gnedin and Wadsley who found values about 25%
smaller. Lower turbulent energies probably result from some
combination of smaller noise-induced motion, greater viscous
damping, and, in Wadsley’s case a more dynamically advanced
state, but the actual factors responsible in each case are unclear.

There is substantially less consensus about the estimated
X-ray luminosities of the cluster, calculated approximately as∫

ρ2T0.5dV, and so given in units of M2⊙K1/2Mpc−3. The values
found span a range of a factor of∼ 10, or a factor of∼ 5, if we
exclude Yepes’ low resolution model. Resolution effects also
account for the small values obtained by Cen and Owen. The
largest values were obtained in the intermediate and high res-
olution grid-based simulations of Gnedin and Pen respectively,
and in Evrard’s SPH simulation. Evrard’s and Wadsley’s mod-
els produced larger X-ray luminosities than other SPH simula-
tions because their clusters are in a slightly more advanced(and
more active) dynamical state. The higher luminosities fromthe
high resolution grid-based codes are due to their slightly more
concentrated central gas distributions (see Figure 3 and Sec-
tion 4.3 below). Because the total X-ray luminosity is sensitive
to the structure of the inner few hundred kiloparsecs of the clus-
ter, it fluctuates quite strongly in time and is very sensitive to
simulation technique.

As a final test, we compare the shapes of the clusters, as
measured by the inertia tensors,I =

∑
mixixi/

∑
mi , for both

the dark matter and the gas within the spherical region which
defines the cluster. We label the eigenvalues of this tensor
a2 > b2 > c2, and define the axial ratios to bea/b anda/c. As
can be seen in Figures 1 and 3, the cluster is aspherical, withthe
orientation of its longest axis reflecting its formation by infall
along a filament. The axial ratios shown in Figure 9 show, in
fact, that the cluster is triaxial. The dark matter distribution (cir-
cles in Figure 9) is considerably more aspherical than the gas
(crosses) in all cases except Gnedin’s. There is generally good
agreement amongst the different simulations, although there are
a few anomalies. For example, Owen finds the smallest axial
ratios for the dark matter distribution even though the inner re-
gions of his cluster appear quite elongated in Figure 1. Thisis
probably because of the relatively large contribution toI from
the largest infalling clump which lies close tor200 in his simu-
lation. Gnedin’s dark matter and gas distributions are consider-
ably more aspherical than the rest.

4.3. Radial profiles

In order to perform more detailed quantitative comparisons
of cluster structure, each simulator was asked to provide the
radial profiles of a number of cluster properties. These were
averaged in a specified set of spherical shells centered at the

position deemed by each simulator to be the cluster center (cf
§2.2). Simulators were also asked to specify the effective res-
olution of their simulation, and throughout this section weplot
data for each model only at radii larger than this. Most simu-
lators identified the resolution of their simulation with the ef-
fective gravitational force resolution (see Table 1), but the fol-
lowing specified different values: Cen (200 kpc), Owen (500
kpc), Pen (50 kpc), Steinmetz (35 kpc), and Yepes (400 kpc).
In the figures that follow, the data points are slightly displaced
from the bin centers for clarity, and we use a solid line to show
the mean profile obtained by averaging all the data plotted in
each bin. At the top of each diagram we plot the residuals from
this mean, defined in most cases as lnx− < lnx>, wherex is the
property of interest and the brackets denote the average of the
data points in each bin. This definition applies to the residuals
of all the radial profiles, except those of the normalized baryon
fraction (Figure 13), which we define as (x− < x >)/ < x >,
and those of the radial velocity profiles (Figures 14 and 15) and
the entropy (Figure 18) which we define asx− < x>. The sam-
pling errors in the estimates of the different cluster properties
are largest in the innermost bin plotted where they are typically
less than about 10%.

Fig. 10. Projected dark matter density atz = 0. The images, covering the inner 8 Mpc of
each simulation cube, have been smoothed using the standardGaussian filter of 250 kpc
half-width described in the text. Wadsley’s simulation, not shown here or in Figure 2, has
a similar appearance to Couchman’s.

We begin by comparing the dark matter density profiles plot-
ted in Figure 10. In general there is very good agreement be-
tween the different calculations over the regions resolvedby
each simulation. The two highest resolution models, Warren’s
pure N-body simulation, and Jenkins’ AP3M/SPH simulation,
agree extremely well at all radii. The residuals plot shows that
all simulations agree to within±20% at all radii. The dark mat-
ter profile in this cluster is well fit by the analytic form proposed
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by Navarro, Frenk and White (1995), all the way from 10 kpc
to 10 Mpc. This fit is shown as a dashed line in Figure 10 and
corresponds to a value of the concentration parameter,c = 7.5,
appropriate to a typical isolated halo of this mass in anΩ = 1
CDM model (Navarro, Frenk & White 1997). Only in the very
center is there a slight indication that the true profile, as defined
by Warren’s model, might be steeper than the analytic form.

The dark matter velocity dispersion profiles in Figure 11 con-
firm that all the codes give very similar results for the dynamical
properties of the dark matter. (Note the very different dynamic
ranges in Figures 10 and 11.) Except for the last bin, which
is particularly affected by noise arising from subclustering, the
scatter in the velocity profiles is comparable to that in the mass
profiles, about 20%. The velocity dispersion profile rises near
the center, has a broad peak around 100-500 kpc, and declines
in the outer parts. Warren’s N-body model and all the high res-
olution SPH and grid models resolve the inner rising part of the
velocity dispersion profile.

Fig. 11. The dark matter velocity dispersion profile. The quantity shown in the main
plot is the one-dimensional velocity dispersion, calculated asσ/

√
3, whereσ is the full

three-dimensional velocity dispersion. See the caption toFigure 10 for a description of the
symbols and other details of the plot.

The agreement of the gas density profiles (Figure 12) is
less good but is still quite impressive. In the fixed Eulerian
grid models of Cen and Yepes, the gas density at their inner-
most point is somewhat low, whereas the corresponding dark
matter matter densities agree well with the other calculations.
This shows, unsurprisingly, that the resolution of such codes is
somewhat poorer for the hydrodynamics than for the N-body
dynamics. Bryan’s multilevel grid code produces results that
agree quite well with other high resolution models, except that
his two innermost points lie slightly below those of the highest
resolution SPH models. Gnedin’s and Pen’s variable resolu-

tion grid codes give higher than average gas densities in the
200 to 600 kpc range and, as a result, their density profiles
are steeper than the others. Pen’s simulation produced a more
pronounced core structure within about 150 kpc than all other
models while Gnedin’s simulation shows the largest departures
from the mean profile. There is also significant scatter among
the results of the various SPH codes, Evrard finding system-
atically high gas densities in the inner cluster and Couchman
finding systematically low values. It seems likely that at least
some of these differences result from the differences in thetim-
ing of cluster collapse noted in Section 4.1, rather than from
differences in the treatment of the hydrodynamics between the
different techniques and implementations although the twocan-
not be clearly disentagled. For example, Couchman’s gas den-
sities between 80 and 200 kpc are somewhat lower than those
obtained by Jenkins using the same SPH implementation but
different numbers of particles and integration parameters. The
dashed line in Figure 12 is the mean dark matter density profile
reproduced from Figure 10. It is interesting that this profile is
substantially steeper than the mean gas density profile in the in-
ner cluster, indicating that the gas has developed a much more
clearly defined “core” than the dark matter.

Fig. 12. The gas density profile. The dashed line shows the mean dark matter density
profile reproduced from Figure 10. See the caption to Figure 10 for further details.

The discrepancies between the various dark matter and gas
density profiles become clearer when we examine the variation
of the normalized gas fraction,Υ = Mgas(< r)/(ΩbMtot(< r)),
with radius (Figure 13). There is considerable scatter (∼ 50%)
in this gas fraction over the 100 kpc to 1 Mpc range, Gnedin
finding the highest values and Couchman, Cen, and Yepes the
lowest. Well inside the virial radius, three of the grid models,
Bryan’s, Pen’s, and especially Gnedin’s, rise aboveΥ = 1, the
mean for the simulation as a whole. At larger radii, Pen’s val-
ues fall slightly below this mean, while Bryan’s and Gnedin’s
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remain slightly above unity well beyond the virial radius. By
contrast, none of the SPH models ever rise aboveΥ = 1 and
they all give very similar results at the virial radius, similar also
to the Eulerian models of Cen and Yepes. Although relatively
small, these discrepancies appear to reflect a systematic differ-
ence in the final distribution of the gas between the three inter-
mediate and high resolution grid simulations (Gnedin, Pen and
Bryan) and the rest of the models. Particularly puzzling is the
excursion towards large values ofΥ seen by Gnedin atr ≃ 1
Mpc and the fact that Bryan and Gnedin obtain values ofΥ > 1
beyond three virial radii where one might expect the mixtureof
dark matter and gas to attain the mean universal value. Note,
however, that the deviations fromΥ = 1 at large radii are quite
small.

The infall patterns of dark matter and gas around the clus-
ter (i.e. the run of peculiar radial velocities) are illustrated in
Figures 14 and 15. For the dark matter, the radial velocity pro-
files are quite similar: net infall is seen in most models beyond
∼ 700 kpc, except in Pen’s case, in which the radial velocity
remains close to zero until about twice this radius. There are
larger differences in the radial velocity profiles for the gas. In
most models the gas is infalling over the same range of radii as
the dark matter, but at a slightly lower speed. Gnedin’s model
is anomalous in this respect. In Pen’s simulation, on the other
hand, there is a small net outflow of gas at∼ 1 Mpc. The scat-
ter in the radial velocity profiles beyond∼ 1 Mpc is about 200
km s−1 .

Fig. 13. The radial dependence of the gas fraction. The quantity plotted is the gas
fraction normalized to the value for the simulation as a whole (10%). See the caption
to Figure 10 for further details, but note that in this Figurethe residuals are defined as
(Υ− < Υ >)/ < Υ >.

Fig. 14. The radial velocity profile of the dark matter. Velocities are computed in the rest
frame of the cluster and do not include the Hubble expansion.See the caption to Figure 10
for further details, but note that in this Figure the residuals are defined asvr − < vr >.

Fig. 15.The radial velocity profile of the gas. Velocities are computed in the rest frame
of the cluster and do not include the Hubble expansion. The dashed line is the dark matter
radial velocity profile from Figure 14. See the caption to Figure 10 for further details, but
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note that in this Figure the residuals are defined asvr − < vr >.

The differences between the codes become most obvious if
we look at various thermodynamic properties of the gas. Fig-
ures 16 through 19 show radial profiles for the pressure, tem-
perature, entropy and X-ray emissivity. (Of these, only the
temperature was calculated directly by the simulators; theother
quantities were derived from the binned values of temperature,
density, and X-ray luminosity.) Agreement among the pres-
sure profiles is reasonably good. This reflects the good agree-
ment of the dark matter density profiles and so of the gravita-
tional potential wells, together with the fact that the intracluster
gas is close to hydrostatic equilibrium in all cases. In the cen-
tral regions, simulations which give flatter gas density profiles
(e.g. Bryan, Pen, Couchman, and Cen) can be clearly seen to
give correspondingly higher temperatures, as required in order
to maintain comparable pressure gradients. The differences in
the temperature profiles appear substantially larger than in other
quantities, but this is in part a reflection of the smaller dynamic
range of the plot. There is a suggestion that the temperature
structure in the inner parts may be systematically different in
the SPH and grid models. In the former, the temperature profile
is flat or slowly declining towards the inner regions, but in the
grid simulations, the temperature is still rising at the innermost
point plotted, a trend that is particularly noticeable in Bryan’s
simulation. In the outer cluster, the temperature profile drops
substantially in all cases.

Fig. 16. The gas pressure profile. See the caption to Figure 10 for further details.

Fig. 17.The gas temperature profile. The quantity plotted is the mass-weighted tempera-
ture. See the caption to Figure 10 for further details.

The entropy and X-ray luminosities show the patterns ex-
pected for quantities derived in a simple way from the density
and temperature of the gas. Note, in particular, that the entropy
(defined ass= ln(T/ρ

2/3
gas) decreases systematically towards the

center in all the SPH models, but that this decline is less obvious
in the grid models and is, in fact, absent in the central partsof
Bryan’s simulation in which the entropy remains approximately
constant within∼ 200 kpc. This difference might reflect differ-
ences in the way in which shocks are treated in the SPH and grid
codes; however, the effect is small and occurs at the resolution
limit of the grid simulations. Finally, Figure 19 shows the con-
tribution to the total X-ray luminosity per logarithmic interval
in radius, 4πr3LX . Most of the X-ray luminosity is produced
in the radial range 200-500 kpc. This region was well resolved
by all the SPH simulations and by Bryan’s model which agrees
remarkably well with them. On the other hand, Cen, Owen and
Yepes did not resolve this radial range and, as a result, their to-
tal luminosities ended up being smaller than average. The large
gas densities found by Gnedin and Pen in this range account for
their larger than average total luminosities (see Figure 9). Thus,
the large scatter in total X-ray luminosity seen in Figure 9 re-
sults partly from the low resolution of some of the models and
partly from the unusually high gas densities found by the two
deformable grid models. Between∼ 1 Mpc and the virial radius
the different models agree better although the scatter in 4πr3LX

is still larger than in all other properties.
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Fig. 18.The radial variation of the gas entropy. The entropy is defined ass = ln(T/ρ
2/3
gas).

See the caption to Figure 10 for further details.

Fig. 19. The X-ray luminosity profile. The quantity plotted is 4πr3LX , whereLX de-
notes the X-ray luminosity density in each bin. See the caption to Figure 10 for further
details.

5. DISCUSSION AND CONCLUSIONS

We have simulated the formation of an X-ray cluster in a
cold dark matter universe using 12 different cosmological gas
dynamics codes that span the range of numerical techniques
and implementations presently in use. This comparison aimsto
assess the reliability of current cosmological simulations in the
regime relevant to the bulk of the gas in galaxy clusters, andto
set a standard against which future techniques may be tested.
(The initial conditions and a selection of results are available
at http://star-www.dur.ac.uk∼csf/clusdata/ or by request from
CSF.) Because our goal is to compare results in a realistic sit-
uation, only the initial conditions were specified. Other vari-
ables such as resolution, the treatment of boundary conditions,
and integration parameters were left to the discretion of simula-
tors. Our comparison therefore encompasses not only the cur-
rent variety of hydrodynamics techniques, but also the different
choices commonly made by individual authors for these vari-
ables. Seven of the codes used for this comparison are based
on the SPH technique, while the other five are based on grid
methods, employing either a fixed, a deformable or a multi-
level mesh. The resolution of the simulations varied from a few
tens to a few hundreds of kiloparsecs. Although there is, of
course, no guarantee that any of the calculations gives the cor-
rect solution to the problem, the agreement among the various
simulations was better than a pessimist might have predicted.
Nevertheless, some important differences do exist.

The simulated cluster was chosen to have a mass comparable
to the Coma cluster at the present day and to appear fairly re-
laxed on visual inspection. We assumed cold dark matter initial
conditions,Ω = 1,h = 0.5, and a global baryon fraction of 10%.
The cluster formed by the merging of subclumps infalling along
a filament and experienced a final major merger betweenz= 0.5
and z = 0. The final cluster mass, virial radius, gas fraction
within the virial radius, and mass-weighted gas temperature,
averaged over all the simulations, and the standard deviation
in each quantity areM = 1.1×1015M⊙, σM = 0.05×1015M⊙;
rv = 2.70 Mpc, σrv = 0.04 Mpc; fb = 0.092, σ fb = 0.006; and
T = 5.4×107K, σT = 0.34×107K respectively.

The properties of the cluster dark matter are gratifyingly sim-
ilar in all the models. The total mass and velocity dispersion
agree to better than 5%. The dark matter density and veloc-
ity dispersion profiles are also similar and match the resultof
a higher resolution dark matter only simulation. Over the re-
gions adequately resolved in each simulation, the scatter in
these quantities, relative to the mean profile, is less than about
±20% per logarithmic bin in radius. For the most part, this
scatter seems to be due to a slight asynchrony in the evolution-
ary state of the models introduced by inaccuracies in the initial
conditions, the treatment of boundary conditions and of tidal
forces and the integration procedure. Thus, small subclumps
often appear at different positions and the timing of the final
major merger differs slightly in the different models.

There is less agreement on the gas properties of the cluster,
although in most cases they are quite similar. For example, all
models agree to 10% (rms) on the gas mass and baryon frac-
tion within the virial radius. In all the SPH and all but one of
the grid models, the gas is slightly more extended than the dark
matter. The scatter relative to the mean in logarithmic radial
bins seldom exceeds 20% in the case of the density profile and
30% in the case of the gas mass fraction. There is no obvious
systematic difference in the gas density profiles produced by
the SPH and fixed grid models, but the deformable grid models

http://star-www.dur.ac.uk~csf/clusdata/


Frenket al. 15

produced somewhat larger core radii. At large distances from
the cluster, some of the grid based models rise slightly above
the theoretical expectation of a universal baryon fraction.

The mean (mass-weighted) gas temperature is reproduced to
within 6% (rms) by all the codes. The ratio of specific dark mat-
ter kinetic energy to gas thermal energy is reproduced to a simi-
lar accuracy. The scatter per logarithmic bin in the temperature
profiles falls in the±20% band and is only slightly larger for the
pressure profile. In the central regions (r ≤ 100kpc), however,
the SPH codes produce a flat or slightly declining temperature
profile while all the grid codes produce a temperature profile
that is still rising at the resolution limit. The entropy of the gas
declines continuously from the virial radius to the resolution
limit but there is a suggestion that the entropy in the grid codes
may bottom out at small radii while it continues to decrease in
the SPH codes.

Amongst all the properties we have examined, the largest dis-
crepancies occur in the predicted cluster X-ray luminosity. This
is proportional to the square of the gas density and so is strongly
dependent on resolution and is further affected by variations in
the potential produced by the exact timing of the final major
merger. The large range of effective resolution in the various
models gives rise to a factor of 10 variation in the total X-ray
luminosity. The luminosity per logarithmic interval in radius
peaks just outside the gas core radius. The eight simulations
that resolved this region (all the SPH and two of the grid mod-
els) show a much narrower spread in total X-ray luminosity,
amounting to a factor of 2.6 (or 1.8 if the most extreme model
is excluded.)

We conclude that the different approaches to modelling
shocks and other hydrodynamical processes implicit in the di-
verse techniques employed in this comparison give, in most
cases, fairly consistent results for the dynamical and thermo-
dynamical properties of X-ray clusters. Variations introduced
by differences in the internal timing of the simulations tend to
be at least as important as variations in the treatment of hy-
drodynamics. An illustration of this is the comparison of the
simulations of Couchman and Jenkins who used serial and par-
allel versions of essentially the same code, but with different
numbers of particles and other simulation parameters. The fi-
nal temperatures of their clusters differed by 15%, the X-ray
luminosities by 20%, and the bulk gas kinetic energy by 15%.

The conclusions discussed in this paper apply exclusively to
the particular case of a non-radiative gas. They cannot be ex-
trapolated to other regimes such as that appropriate to galaxy
formation where gas cooling is a dominant process. The behav-
ior of the gas in this situation is determined by the resolution
of the simulation because the cooling rate depends stronglyon
gas density. In addition, simulations of galaxy formation often
include algorithms to convert cold gas into stars and to model
the feedback processes associated with star formation. A com-
parison of galaxy formation simulations, analogous to the com-
parison of X-ray cluster formation carried out in this paperis
clearly desirable, but would be much more complex to imple-
ment in practice. The level of agreement among the techniques
currently in use for studies of galaxy formation remains an open
question. Perhaps a simpler, but instructive, next step might be
a comparison of simulations of high redshift gas clouds (the
“Lyman-α forest” clouds), in which gas cooling is less impor-
tant.

Based on the overall consistency of the simulations discussed
in this paper, we can draw a number of conclusions regarding
the properties of the simulated cluster which we expect to be

typical of near equilibrium, massive clusters in a CDM uni-
verse. Some of these conclusions mirror those found in ear-
lier work (eg. Evrard 1990, Whiteet al. 1993, Bryanet al.
1994, Cen & Ostriker 1994, Kanget al. 1994, Navarro, Frenk
& White 1995, Anninos & Norman 1996, Bartelman & Stein-
metz 1996.)
1) The dark matter distribution in our simulated cluster is elon-
gated along the direction of the dominant large filament along
which subclumps were accreted onto the cluster. The final gas
distribution is rounder than the dark matter distribution and, as
a result, the direction of the filament is difficult to identify in an
X-ray image.
2) The dark matter density profile in the cluster is well fit by the
analytic form proposed by Navarro, Frenk and White (1995),
all the way from 10 kpc to 10 Mpc. This form has a radial de-
pendence close tor−1 in the inner regions, steepens tor−2 at
intermediate radii and falls off liker−3 in the outer parts. The
corresponding velocity dispersion profile rises from the center
outwards, has a broad maxium around 100-500 kpc, and de-
clines in the outer parts.
3) Although the gas is close to hydrostatic equilibrium through-
out the cluster, mergers disturb both the gravitational potential
and the dynamical state of the gas. Bulk motions make a small
but significant contribution to the support of the gas: the kinetic
energy in bulk gas motions is about 15% of the thermal energy
of the gas. The quantityβ = µmpσ

2
DM/3kT has a mean (aver-

aged over all the simulations except the lowest resolution one)
of 1.15 with an rms scatter of only 0.05.
4) The radial density profile of the gas in the highest resolu-
tion simulations develops a “core radius", ie. a region in which
the slope of the profile flattens rapidly. This change of slopeoc-
curs atr∼<250 kpc and, inside this radius, the gas density profile
is significantly flatter than the dark matter density profile.The
gas fraction within a given radius therefore rises from the center
outwards and, at the virial radius, the mean over all the simula-
tions is 0.92 of the global value, with a fractional rms scatter of
only±0.065. The temperature distribution in the inner parts has
an approximately flat profile and, beyond a few hundred kpc, it
begins to decline so that at the virial radius, the temperature is
∼ 30% of the central value.
5) A reliable estimate of the cluster X-ray luminosity requires
resolving the radial range 200-500 kpc, or 5%-20% of the virial
radius, where the X-ray luminosity per logarithmic interval in
radius peaks. Even when this is possible, the strong sensitivity
of X-ray luminosity to local variations in gas density leadsto
a spread of a factor of∼ 2 in the predicted X-ray luminosity.
These variations are due to a variety of numerical effects, and
a factor of 2 uncertainty is a realistic estimate of the accuracy
with which cluster X-ray luminosities can be predicted withthe
present generation of techniques and computing resources.
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FIG. 1.— Projected dark matter density atz= 0. The images, covering the inner 8 Mpc of each simulation cube, have been smoothed using the standard Gaussian
filter of 250 kpc half-width described in the text. Wadsley’ssimulation, not shown here or in Figure 2, has a similar appearance to Couchman’s.

FIG. 2.—Projected dark matter density atz= 0.5. The images, covering the inner 8 Mpc of each simulation cube, have been smoothed
using the standard Gaussian filter of 250 kpc half-width described in the text.

FIG. 3.— Projected gas density atz= 0. The images, covering the inner 8 Mpc of each simulation cube, have been smoothed using
the standard Gaussian filter of 250 kpc half-width describedin the text.

FIG. 4.— Projected gas density atz= 0.5. The images, covering the inner 8 Mpc of each simulation cube, have been smoothed using
the standard Gaussian filter of 250 kpc half-width describedin the text.

FIG. 5.— Integrated, mass-weighted gas temperature atz= 0. The images, covering the inner 8 Mpc of each simulation cube, have
been smoothed using the standard Gaussian filter of 250 kpc half-width described in the text. (The roughly circular “cut-out” regions
seen in the outer parts of this and the next figure are associated with cool, infalling clumps of size comparable to the resolution of the
smoothed image (see Figures 3 and 4); the edges are enhanced by the choice of color table.)

FIG. 6.— Integrated, mass-weighted gas temperature atz= 0.5. The images, covering the inner 8 Mpc of each simulation cube, have
been smoothed using the standard Gaussian filter of 250 kpc half-width described in the text.

FIG. 7.— Projected X-ray luminosity atz= 0. The images, covering the inner 8 Mpc of each simulation cube, have been smoothed
with the filter chosen by each author to best portray the results of each simulation (see Table 1).

FIG. 8.— Projected dark matter density atz= 0. The images, covering the inner 8 Mpc of each simulation cube, have been smoothed
with the filter chosen by each author to best portray the results of each simulation (ee Table 1).
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Name code h Mdm Mgas ǫ ∆tmin ∆tave Nres Image Computer Tcpu Mem Date
(Ref.) kpc 1010M⊙ 109 M⊙ kpc Smooth. hrs Mbyte

Bryan SAMR 15 0.78 – 30 1/4000 1/1000 3.3×105 Adaptive SGI Pow. Ch. 200 500 3/96
(BN98) 2h
Cen TVD 125 0.10 – 312 1/660 1/660 36751 Gauss IBM SP2 5312 4400 1/96
(ROKC93) 200 kpc
Couchman Hydra 40 6.25 6.94 40 1/2500 1/1826 15291 Adapative DECalpha 77.3 95 12/95
(CTP95) 1h 250 MHz
Evrard P3M-SPH 53 6.25 6.94 75 1/4000 1/4000 15571 Adaptive HP735 320 16.5 1/96
(E88) 3.5h
Gnedin SLH-P3M 100 6.25 6.94 100 1/4096 1/2315 1.5×105 Gauss SGI Pow. Ch. 136 90 9/97
(G95) 100 kpc
Jenkins Par. Hydra 20 0.78 0.87 20 1/20000 1/4489 2.5×105 Adaptive Cray-T3D 5000 512 4/96
(PC97)
Navarro Grape+SPH 30 6.18 6.87 30 1/26074 1/651 13700 Gauss Sparc10 120 75 4/96
(NW93) 30 kpc + GRAPE-3AF
Owen ASPH 300 50 55.5 250 1/133713 1/980 1691 Adaptive Cray-YMP/4E 40 106 3/96
(OVSM98)
Pen MMH 50 0.10 0.87 45 1/3523 1/1630 88953 Adaptive SGI Pow. Ch. 480 900 4/96
(P98)
Steinmetz GrapeSPH 50 6.25 6.94 25 1/7267 1/6500 14876 Adaptive Sparc10 28 22 4/96
(S96) + GRAPE-3AF
Wadsley P3MG-SPH 33.7 6.25 6.94 24 1/4496 1/1630 15918 Adaptive Dec-Alpha EV5 119 100 7/96
(WB97) h ≥ 40kpc
Warren Tree 5 0.11 - 5 1/2550 1/2550 - Adaptive Intel-Delta 15360 1000 4/96
(WS95)
Yepes PM-FCT 400 0.45 - 960 1/15000 1/6364 1024 None Cray-YMP 350 480 11/95
(KKK92)


