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ABSTRACT 

 

 Dopamine D2-like receptors are involved in the regulation of a variety of 

behaviors, and have proven to be important pharmacologic targets for the 

treatment of diseases such as Parkinson’s disease, schizophrenia, restless leg 

syndrome, and depression, however, the receptor(s) responsible for the 

therapeutic and behavioral effects have yet to be elucidated.  Identification of 

behaviors specifically mediated by the D2 and/or D3 receptors would not only 

provide insight into the receptor(s) mediating these therapeutic and behavioral 

effects, but it would also aid in the evaluation of novel D2-like agonists and 

antagonists.  These studies were primarily aimed at the pharmacologic 

evaluation of the hypothesis that the induction of yawning by D2-like agonists is 

mediated by a specific activation of the D3 receptor, while the inhibition of 

yawning observed at higher doses is mediated by a concomitant activation of 

the D2 receptor.   

 

 Convergent evidence from the effects of D2-like agonists alone, and in 

combination with a series of D2-like antagonists support this general 

hypothesis.  All D3-preferring agonists elicited dose-dependent yawning 

behavior resulting in a characteristic inverted U-shaped dose-response curve.  

These functions were differentially modulated by D3- and D2-preferring 



 xv

antagonists, with D3-preferring antagonists producing selective rightward shifts 

of the ascending limb, and D2-preferring antagonists producing selective shifts 

of the descending limb.  The selectivity of these effects was confirmed by a 

comparison of the relative potencies of D2- and D3-preferring agonists to induce 

yawning and hypothermia (a well validated D2-mediated effect), as well as the 

relative potencies of D2- and D3-preferring antagonists to inhibit the induction of 

yawning and hypothermia by D2-like agonists.  Similar comparisons of the 

effects of D2-like agonists and antagonists on the induction of yawning and 

penile erection not only provided further support for the differential roles of the 

D3 and D2 receptors in the regulation of yawning, but suggest that D2-like 

agonist-induced yawning and penile erection are similarly mediated by the D3 

(induction) and D2 (inhibition) receptors in rats.  These studies not only provide 

strong pharmacologic evidence for a specific D3-mediated behavior, but have 

also allowed for the identification of other D3-mediated behaviors and 

determinations of in vivo D2/D3 selectivity. 
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CHAPTER I 
 

General Introduction 

 

Early Laboratory Work 

 

 While the catecholamine, 3-hydroxytyramine, was known to occur 

naturally in urine and heart (e.g., Holtz et al., 1947; Goodall, 1950), it was 

thought to be of little importance other than its role as a biosynthetic precursor 

of norepinephrine and epinephrine.  It was not until 3,4-dihydroxyphenylalanine 

(DOPA) was shown to reverse the behavioral effects of reserpine in the rabbit 

(Carlsson et al., 1957), and the later discovery of large quantities of 3-

hydroxytyramine in the rabbit brain (Carlsson et al., 1958), that 3-

hydroxytyramine began to be thought of as the independent neurotransmitter 

we now refer to as dopamine.  The capacity of DOPA to reverse the akinetic 

state induced by reserpine coupled with the finding that finding that the majority 

of the brain’s dopamine was located in the striatum led Carlsson (1959) to 

hypothesize on a role of dopamine in the regulation of motor function.  In fact, it 

was the similarities between the akinetic state induced by reserpine and that of 

Parkinson’s patients, combined with the relatively low levels of dopamine 

observed in the caudate and putamen of post-mortem Parkinson’s patients 
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(Ehringer and Hornykiewicz, 1960) that led to the initial trials which 

demonstrated the effectiveness of L-DOPA at reversing the symptoms of 

Parkinson’s disease (Birkmayer and Hornykiewicz, 1961).  However, it was not 

until L-DOPA was combined with an inhibitor of peripheral aromatic-L-amino-

acid decarboxylase, the enzyme responsible for converting DOPA to 

dopamine, that a clinically effective, oral dosing procedure for the treatment of 

Parkinson’s disease with L-DOPA was developed (Cotzias et al., 1967). 

 

 Shortly after the discovery of large quantities of dopamine in rabbit brain 

(Carlsson et al., 1958), the development of formaldehyde histofluorescence 

allowed for the visualization of catecholamine- (norepinephrine and dopamine) 

containing neurons in the central nervous systems of laboratory animals (Falck 

and Torp, 1962).  It was through this method that Dahlstrom and Fuxe (1964) 

were able to produce the first detailed description of the catecholamine-

containing neurons of the rat brain.  This report identified twelve groups of 

catecholamine-containing cells which were distributed from the medulla 

oblongata to the hypothalamus, and designated A1 through A12 based on their 

anatomical orientation.  Later studies identified five additional groups of 

catecholamine-containing cells resulting in the seventeen groups of cells now 

referred to as groups A1-A17.  Of these seventeen groups of cells, groups A8-

A17 represent dopaminergic cell groups, while groups A1-A7 represent 

noradrenergic cell groups.  Subsequently, Ungerstedt (1971b) produced the 

first stereotaxic map detailing the dopaminergic pathways of the brain by 
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combining the lesioning of distinct cell groups with formaldehyde 

histofluorescence. 

 

 Further advances in histochemical techniques, including the use of 

glyoxylic acid fluorescence (Lindvall and Bjorklund, 1974a) and more recently 

the use of immunohistochemical techniques for the identification of tyrosine 

hydroxylase (e.g., Hokfelt et al., 1976; Hokfelt et al., 1977), have allowed for 

the study of dopaminergic pathways with much greater resolution.  While the 

nine major groups of dopaminergic neurons are still classified as A8-A17, these 

groups have been functionally divided into four main groups, the midbrain 

dopamine neurons comprised of groups A8-A10, the diencephalic dopamine 

neurons comprised of groups A11-A15, dopaminergic neurons in the olfactory 

bulb (A16), and the dopaminergic neurons located in the retina (A17).  Figure 

1.1 shows the distribution of the dopamine neuron cell groups in the rodent 

brain. 

 

Dopaminergic Systems of the Central Nervous System 

 

 The mesencephalic, or midbrain dopaminergic system has been further 

sub-divided into three separate pathways, the nigrostriatal, mesolimbic, and 

mesocortical pathways, all of which originate from the A8-A10 cell groups.  The 

nigrostriatal dopaminergic pathway originating primarily from the A9 group of 

the substantia nigra pars compacta, and to a lesser degree the A10 neurons of 
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the ventral tegmental area (VTA) and A8 neurons of the retrorubal nucleus 

projects to a variety of structures within the dorsal striatum including the 

caudate, putamen, and globus pallidus, and is important in the regulation and 

coordination of locomotor activity (Ungerstedt, 1976).  While the nigrostriatal 

pathway projects to the dorsal striatum, the mesolimbic dopaminergic pathway 

projects from the A8-A10 neurons to ventral striatum.  However, unlike the 

nigrostriatal pathway, the majority of the neurons that make up the mesolimbic 

dopaminergic pathway originate from the A10 neurons of the VTA, with fewer 

neurons originating from the A8 and A9 groups, and project to the nucleus 

accumbens (NAcc), amygdala, and olfactory tubercle.  In addition to its role in 

the regulation of affect, emotion, and locomotor activity, the mesolimbic 

dopaminergic pathway has also been shown to be involved in motivation and 

reinforcement, and is often referred to as the “reward pathway” of the brain.  

The third major dopaminergic pathway originating from the A8-A10 groups of 

neurons innervates a variety of cortical structures including the prefrontal 

cortex, pallidum, subthalamic nucleus, superior colliculus, and cerebral cortex, 

and is commonly referred to as the mesocortical pathway.  Similar to the 

mesolimbic dopaminergic pathway, the majority of the neurons that comprise 

the mesocortical dopaminergic pathway originate from the A10 group of 

neurons within the VTA, with fewer neurons originating from the A9 group.  

While similarities in the origins of the mesolimbic and mesocortical 

dopaminergic pathways have led some to refer to these pathways as the 

mesolimbocortical dopaminergic pathway, neurons within the VTA are rarely 
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double labeled in retrograde labeling studies (Swanson, 1982; Loughlin and 

Fallon, 1984) suggesting distinct populations of dopaminergic neurons project 

to the limbic and cortical structures described above.  Furthermore, unlike the 

mesolimbic pathway, mesocortical dopaminergic neurons appear to be 

important for social behavior, working memory, attention, and executive 

function (e.g., Stam et al., 1989; Bubser and Schmidt, 1990; Sawaguchi and 

Goldman-Rakic, 1994; Robbins et al., 1998; Romanides et al., 1999; Floresco 

and Magyar, 2006).   

 

 The diencephalic dopaminergic system is composed of the A11-A15 

groups of dopaminergic neurons located in the periventricular, hypothalamic, 

incertohypothalamic, and preoptic regions of the brain, and can be functionally 

subdivided into three main pathways, the diencephalospinal, 

incertohypothalamic, and tuberoinfundibular dopaminergic pathways.  The 

diencephalospinal dopaminergic pathway originates in the A11 group of 

neurons located in the periventricular gray matter of the thalamus, and 

hypothalamus, and to a lesser degree the A13 group of neurons located in the 

zona incerta.  The diencephalospinal pathway sends projections to the spinal 

cord and, to a lesser degree, the dorsal raphe nucleus and has been shown to 

be involved in dopamine-mediated nociception, and regulation of movement.  

The incertohypothalamic dopaminergic pathway originates from the A11, A13, 

and A14 groups of neurons and projects to the anterior and periventricular 

hypothalamus as well as the medial preoptic area, and has been shown to play 
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a crucial role in the regulation of sexual behavior (Melis and Argiolas, 1995).  

The tuberoinfundibular dopaminergic pathway, originating in the A12 group of 

neurons and terminating in the median eminence of the pituitary, is involved in 

the regulation of reproductive processes, as well as the regulation and release 

of a variety of pituitary hormones, including prolactin.  

 

Dopaminergic Receptors 

 

 While the existence of two types of dopamine receptor was first 

demonstrated in 1979 (Kebabian and Calne, 1979), it was not until the early 

1990’s that the D3, D4, and D5 receptors were identified (Sokoloff et al., 1990; 

Sunahara et al., 1991; Van Tol et al., 1991).  To date there are five known 

dopamine receptors, D1-D5, all of which are members of the G-protein coupled 

receptor super-family, but are subdivided into two families of dopamine 

receptors, the D1-like and D2-like families of dopamine receptors based on the 

G-proteins with which they couple, as well as their sequence homology.  The 

D1-like family (D1 and D5 receptors) are coupled to Gαs G-proteins with agonist 

activation resulting in increases in cAMP levels, while the D2-like family, 

comprised of the D2, D3 and D4 dopamine receptors, have been shown to 

couple Gαi/o G-proteins with agonist activation resulting in decreases in 

intracellular cAMP levels.  Within the D2-like family a high degree of sequence 

homology exists between the D2 and D3 receptors (52% overall and 75% in the 

transmembrane domains; Sokoloff et al., 1990), however, this high degree of 
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sequence homology does not extend to the D4 receptor which shares ~40% of 

the overall amino acid sequence, and only ~50% when the transmembrane 

domains are compared to those of both the D2 and D3 receptors (Van Tol et al., 

1991).  The differences in the sequence homology of transmembrane domains 

of the D2, D3, and D4 receptors have influenced the availability of selective 

agonists and antagonists for the D2, D3, and D4 receptors as these regions are 

thought to form the ligand binding domains.  For example, although few 

agonists or antagonists exist with greater than 100-fold selectivity for either the 

D2 or D3 receptors (Heier et al., 1997; Stemp et al., 2000; Millan et al., 2002; 

Grundt et al., 2005), several agonist and antagonists with greater than 1000-

fold selectivity for the D4 receptor have been described (Glase et al., 1997; 

Patel et al., 1997; Cowart et al., 2004). 

 

 Although the levels of expression differ greatly (e.g., D2 ~2X greater 

than D3; Levesque et al., 1992), D2-like receptors have been shown to have 

partially overlapping patterns of distribution.  For example, while all three 

receptor subtypes are expressed to some degree within limbic regions of the 

brain, D2 receptors possess a much more global pattern of distribution with 

relatively high levels of expression seen in almost all dopaminoceptive areas of 

the brain including both limbic (NAcc core, olfactory tubercle), and striatal 

(substantia nigra pars compacta, caudate-putamen, and globus pallidus) 

regions of the brain (Sokoloff et al., 1990; Bouthenet et al., 1991; Mengod et 

al., 1992; Gurevich and Joyce, 1999).  Similar patterns of expression have 
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been reported for D4 receptors (Van Tol et al., 1991; Defagot et al., 1997).  

Unlike the D2 and D4 receptors, D3 receptors display a much more restricted, 

limbic pattern of distribution in both the rat (Levesque et al., 1992; Defagot et 

al., 1997) and human brain (Lahti et al., 1995; Gurevich and Joyce, 1999) with 

high levels of expression observed in the NAcc shell, Islands of Calleja, and 

olfactory tubercle, while only moderate levels of expression are seen in striatal 

regions such as the substantia nigra pars compacta, ventral caudate-putamen, 

and globus pallidus.  

 

Dopaminergic Diseases 

 

 Central dopaminergic systems are important for the regulation of a 

variety of processes including cognitive, (i.e., memory, attention, and problem 

solving), affective, and emotional states, motivation, and the coordination of 

movement.  Due to the fact that dopaminergic systems are involved in the 

regulation of many different behaviors, dysregulations these systems have 

been implicated in a wide variety of disease states including movement 

disorders, such as Parkinson’s disease and restless leg syndrome, psychiatric 

disorders, such as schizophrenia and depression, as well as diseases of 

addiction, such as drug abuse and eating disorders.  In fact, D2-like antagonists 

have long-been known to possess antipsychotic activity (Anton-Stephens, 

1954; Janssen et al., 1960; Madras et al., 1981), while D2-like agonists are 

effective in the symptomatic treatment of both Parkinson’s disease (Calne et 
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al., 1974; Kapoon et al., 1989; Molho et al., 1995) and restless leg syndrome 

(Lin et al., 1998; Bliwise et al., 2005).  These effects, combined with the 

relatively high levels of expression within the basal ganglia has led many to 

hypothesize that the D2 and D3 receptors are of pharmacologic interest for the 

treatment of a variety of dopaminergic diseases (e.g., Joyce, 2001; Heidbreder 

et al., 2005; Newman et al., 2005).  However, due to the relative lack of 

subtype selective agonists and antagonists, the receptor(s) mediating either 

the therapeutic or mechanistic effects are yet to be fully elucidated.   

 

 While the causes, and processes involved in the onset of Parkinson’s 

disease are not well known, the neurodegeneration of the nigrostriatal 

dopaminergic pathway is thought to be responsible for the majority of the 

clinical symptoms of Parkinson’s disease which include tremor, rigidity, 

akinesia, and postural instability.  Since the initial discovery that L-DOPA was 

effective at the symptomatic treatment Parkinson’s disease (Birkmayer and 

Hornykiewicz, 1961), L-DOPA has remained the primary therapeutic for the 

symptomatic treatment of the disease, despite the fact that L-DOPA does little 

to slow disease progression, and that long term treatment is commonly 

accompanied by the development of dyskinesias.  While no animal model 

perfectly reproduces the progression and/or symptomology of Parkinson’s 

disease, the unilateral lesioning of the substantia nigra with 6-

hydroxydopamine (6-OHDA) has been a widely used model as it results in an 

almost complete degeneration of the nigrostriatal pathway and an asymmetry 
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of movement and posture (Ungerstedt, 1968; Ungerstedt, 1971a), similar to 

that observed in Parkinson’s patients.  Furthermore, the motor effects are 

exaggerated following dopaminergic stimulation with direct- or indirect-agonists 

resulting in contralateral (opposite the lesioned side) and ipsilateral (toward the 

lesioned side) rotational behavior, respectively (Ungerstedt and Arbuthnott, 

1970; Ungerstedt, 1971c).  This model has proven to have good predictive 

validity in identifying dopaminergic agonists with therapeutic potential for the 

symptomatic treatment of Parkinson’s disease.  Interestingly, newer direct 

acting D2-like agonists, such as pramipexole, are proving to be equally 

effective at alleviating the symptoms of Parkinson’s disease while slowing the 

onset and/or reducing the severity of the dyskinesias that typically accompany 

the long-term use of L-DOPA (e.g., Montastruc et al., 1999; 

ParkinsonStudyGroup, 2000; Inzelberg et al., 2003; Jenner, 2003; Marras et 

al., 2004; Hauser et al., 2007).  Moreover, several recent studies suggest that 

pramipexole has neurogenic effects and may actually slow, or even reverse, 

the neurodegeneration seen with Parkinson’s disease (e.g., 

ParkinsonStudyGroup, 2000; Clarke and Guttman, 2002; Joyce et al., 2003; 

Van Kampen et al., 2004; Izumi et al., 2007; Joyce and Millan, 2007).   

  

 While Parkinson’s disease is marked by a variety of severe motor 

symptoms, dopaminergic systems have also been implicated in other, less 

severe, movement disorders such as restless leg syndrome.  Patients with 

restless leg syndrome report uncomfortable sensations in their legs when 
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sitting still or lying down, a symptom that is typically exaggerated at night and 

results in the urge to move their legs (e.g., Hening et al., 2007; Karatas, 2007).  

Unlike Parkinson’s disease which affects the nigrostriatal dopaminergic 

pathway, restless leg syndrome is thought to result from a dysfunction of the 

A11 neurons of the diencephalospinal pathway which modulate spinal 

excitability, and have been implicated in the sensory processing of the legs.  

While there are no validated animal models of restless leg syndrome, low 

doses of D2-like agonists, namely pramipexole and ropinirole, are effective at 

the symptomatic treatment of restless leg syndrome in humans (Lin et al., 

1998; Bliwise et al., 2005).   

 

 In addition to movement disorders such as Parkinson’s and restless leg 

syndrome, dysregulation of dopaminergic systems has also hypothesized to be 

involved in the pathophysiology and/or symptomology of a variety of psychiatric 

conditions including schizophrenia, depression, and bipolar disorder.  The 

observations that depletion of monoamines with reserpine produces negative 

affect, while psychostimulants, such as amphetamine, have mood enhancing 

effects (Freis, 1954; Ferguson, 1955; Cameron et al., 1965; Hurst et al., 1969) 

were the basis for the hypothesis that a reduced function of the mesolimbic 

dopaminergic pathway may, at least in part, underlie major depression (e.g., 

Schildkraut, 1965; Willner, 1997; Dunlop and Nemeroff, 2007).  Interestingly, 

D2-like agonists have also been shown to have antidepressant activity in 

animal models of depression (Basso et al., 2005; Brocco et al., 2006), as well 



 12

as in depressed individuals (Goldberg et al., 1999; Corrigan et al., 2000; 

Ostow, 2002).  While the receptor(s) mediating these antidepressant effects 

are currently unknown, studies in rats have suggested a role for the D3 

receptor.  For example, increases in D3 receptor expression within the NAcc 

have been observed following chronic treatment with a wide range of 

antidepressants including selective serotonin (5-HT) reuptake inhibitors, 

tricyclic antidepressants, monoamine oxidase inhibitors, as well as 

electroconvulsive shock (Lammers et al., 2000a; Lammers et al., 2000b).  

While these findings do not provide strong evidence that the D3 mediates the 

antidepressant effects of these treatments, they do suggest that increased D3 

receptor activity may be involved in the alleviation of depression. 

 

 While D2-like agonists are effective in the treatment of diseases 

involving low dopaminergic activity, D2-like antagonists are known to be 

effective at treating diseases involving high levels of dopaminergic activity such 

as schizophrenia and addiction.  Schizophrenia is a complex psychiatric 

disorder which is difficult to fully treat because it is marked by both positive 

symptoms, such as delusion and hallucination, and negative symptoms, such 

as apathy, anhedonia, disorganization and social isolation.  While it is clear that 

other neurotransmitter systems (i.e., cholinergic, serotonergic, and 

glutamatergic systems) are also involved in schizophrenia, dysregulations of 

dopaminergic systems are thought to be involved in both the positive, and 

negative symptoms of schizophrenia (e.g., Dajas et al., 1983; Olney and 
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Farber, 1995; Yeomans, 1995; Meltzer, 1999).  It has been hypothesized that 

the negative symptoms result from a hypoactivity of the mesocortical 

dopaminergic pathway, while the positive symptoms result from a hyperactivity 

of the mesolimbic dopaminergic pathway (e.g., Matthysse, 1973; Meltzer and 

Stahl, 1976; Snyder, 1976; Seeman, 1980; Davis et al., 1991).  While the 

development of an animal model of schizophrenia has been difficult due to the 

complex nature of the symptoms, the two most commonly employed animal 

models are acute, high-dose, administration of the N-methyl-D-aspartate 

(NMDA) receptor antagonist, phencyclidine (PCP), and chronic, or sub-chronic, 

administration of amphetamine. Validation for these models is provided by the 

fact that both typical (e.g., haloperidol) and atypical (e.g., clozapine) 

antipsychotics are effective at reversing some of the behavioral effects 

observed in these animal models (Featherstone et al., 2007; Mouri et al., 

2007), as well as the fact that psychostimulants (Janowsky and Davis, 1978) 

and NMDA antagonists (Lahti et al., 1995) intensify the symptoms of 

schizophrenia when administered to schizophrenic patients.  While typical 

antipsychotics are effective at treating psychosis, their use is limited due to a 

number of side-effects such as tardive diskinesia, catalepsy, and 

hyperprolactinemia; effects that are thought to result from their antagonist 

activity at the D2 receptor.  It has recently been hypothesized that the D3 

receptor may provide a useful therapeutic target for the treatment of 

schizophrenia as the D3 receptor displays a much more restricted limbic 

pattern of distribution, combined with the fact that most typical antipsychotics 
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are roughly equipotent at D2 and D3 receptors.   Thus, it is thought that 

antagonists selective for the D3 receptor may provide antipsychotic activity 

without the negative side-effects that generally accompany typical 

antipsychotics (e.g., Joyce, 2001). 

 

 It was the discovery that animals would repeat actions that were 

followed by electrical stimulation of specific regions of the brain (Olds and 

Milner, 1954) that led to the theory that there were specific “reward centers” in 

the brain.  While the catecholamine theory of reward was first suggested in the 

early 1960’s (Poschel and Ninteman, 1963), it was significantly strengthened 

by the fact that the brain regions that maintained self-stimulation corresponded 

to the major catecholamine projections of the brain (Ungerstedt, 1971b; 

Lindvall and Bjorklund, 1974b), as well as the fact that inhibitors of 

catecholamine synthesis attenuated the self-administration of 

methamphetamine (Pickens et al., 1968; Davis and Smith, 1972).  A specific 

role for dopamine, and more specifically the mesolimbic dopamine system was 

proposed based on the work of Roberts and colleagues (Roberts et al., 1977), 

who showed that 6-OHDA lesions of the NAcc resulted in a long-lasting, ~70% 

decrease in cocaine self-administration, while lesions of ventral noradrenergic 

neurons did not alter the rate of cocaine self-administration.  Shortly thereafter, 

similar decreases in d-amphetamine self-administration were reported following 

6-OHDA lesions of the NAcc (Lyness et al., 1979), further strengthening the 

notion that the mesolimbic dopaminergic pathway, and more specifically the 
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NAcc is important in the reinforcing effects of psychostimulants.  Subsequent 

studies demonstrating that increases in NAcc dopamine levels are observed 

with a wide variety of drugs including amphetamine, cocaine, opiates, ethanol, 

barbiturates, and nicotine (Di Chiara and Imperato, 1986; Imperato et al., 1986; 

Di Chiara and Imperato, 1988) suggests that dopamine plays an important role 

in the effects of a variety of drugs of abuse.   

 

 The high levels of dopamine D2 and D3 receptor expression within the 

core and shell of the NAcc, respectively (Levesque et al., 1992; Gurevich and 

Joyce, 1999; Stanwood et al., 2000a), has led many to hypothesize that D2-like 

receptors play important roles in the mediation of the reinforcing properties of 

drugs of abuse such as cocaine (e.g., Heidbreder et al., 2005; Le Foll et al., 

2005; Newman et al., 2005).  Support for this notion has been provided by the 

findings that D2/D3 receptor levels are inversely correlated with the positive 

reinforcing effects of psychostimulants.  Briefly, human subjects with lower 

striatal D2/D3 receptor levels report more pleasant effects of methylphenidate 

compared with those with higher D2/D3 levels (Volkow et al., 1999; Volkow et 

al., 2002), while monkeys with lower striatal levels of D2/D3 receptors more 

readily self-administered cocaine compared with monkeys with higher striatal 

D2/D3 levels (Morgan et al., 2002).  Further evidence for the involvement of D2 

and D3 receptors in the reinforcing effects of drugs has been provided through 

the study of D2/D3 agonists and antagonists in a variety of operant procedures 

in animals.  In drug discrimination experiments, D2/D3 agonists often generalize 
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to cocaine-trained cues (Barrett and Appel, 1989; Terry et al., 1994; Barrett et 

al., 2001), suggesting that the D2 and/or D3 receptors may, at least in part, 

mediate the interoceptive effects of cocaine.  In self-administration procedures, 

D2/D3 agonists maintain responding when substituted for cocaine in rats (Caine 

and Koob, 1993; Parsons et al., 1996; Collins and Woods, 2007), mice (Caine 

et al., 2002), and monkeys (Woolverton et al., 1984; Nader and Mach, 1996; 

Sinnott et al., 1999; Caine et al., 2002; Woolverton and Ranaldi, 2002).  

Moreover, D2/D3 agonists induce non-reinforced, drug-appropriate, responding 

when given as pretreatments in reinstatement procedures (Khroyan et al., 

2000; De Vries et al., 2002; Koeltzow and Vezina, 2005; Edwards et al., 2007), 

while antagonists at D2/D3 receptors have been shown to inhibit the capacity of 

drug-paired cues (Gilbert et al., 2005; Gal and Gyertyan, 2006; Cervo et al., 

2007), stress (Xi et al., 2004), as well as drug “primes” (Andreoli et al., 2003; Xi 

et al., 2006) to reinstate responding.  Taken together, these findings suggest 

that the D2 and/or D3 receptors play important roles the mediation of the 

reinforcing and/or interoceptive effects of a variety of drugs of abuse, and that 

the D2 and/or D3 receptors may provide a useful pharmacological target for the 

treatment of addiction disorders. 

 

 Since the initial discoveries that dopaminergic agonists and antagonists 

were effective at the symptomatic treatment of diseases such as Parkinson’s 

disease and schizophrenia, respectively, there has been a longstanding and 

sustained interest in the potential of dopamine, and in particular D2-like, 
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agonists and antagonists in the treatment of a variety of disease states.  The 

development of longer acting ligands with modest improvements in selectivity 

(i.e., pramipexole), or reduced efficacy (i.e., aripiprazole) have proven to be 

equally effective, or improved, therapeutics with reduced side-effect profiles.  

However, due to the relative lack of sub-type selective agonists and 

antagonists, as well as well validated animal models of specific receptor 

activity, the receptor(s) mediating either the therapeutic or mechanistic effects 

are yet to be fully elucidated.   

 

Behavioral Effects of D2-like Agonists and Antagonists 

 

 While a great deal is known about the behavioral effects of D2-like 

agonists and antagonists, the characterization and separation of in vivo effects 

specifically mediated by either the D2 or D3 receptor has been complicated by 

the lack of agonists and antagonists highly selective for either receptor 

subtype, as well as a lack of in vitro functional assays that are generally 

predictive for the D2 and D3 receptors.   In vivo characterization has been 

further complicated by the large degree of variability in reported in vitro binding 

affinities and selectivities for both agonists and antagonists at the D2 and D3 

receptors resulting from differences in methodology and assay conditions 

(Levant, 1997); the extremes of which are shown in table 1.1.  While D2-like 

agonists have been shown to induce yawning, penile erection, stereotypy, and 

changes in locomotor activity, body temperature, as well as certain 
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neuroendocrine responses in addition to other behavioral measures (Faunt and 

Crocker, 1987; Millan et al., 1995a; Depoortere et al., 1996; Smith et al., 1997; 

Boulay et al., 1999a; Boulay et al., 1999b), few of these effects have been fully 

characterized and validated through both pharmacologic and genetic means.  

Perhaps the strongest evidence in support of a subtype specific in vivo effect is 

the induction of hypothermia resulting from agonist activation of the D2 

receptor.   

 

 D2-like agonists produce dose-dependent decreases in body 

temperature, an effect that is observed following administration of relatively 

high doses of D2-like agonists with a wide range of selectivities for the D2 or D3 

receptor (Yehuda and Wurtman, 1972; Calne et al., 1975; Faunt and Crocker, 

1987; Millan et al., 1994; Collins et al., 2007).  The hypothermic effects of D2-

like agonists was first linked specifically to the D2 receptor by Boulay and 

colleagues who showed that while D3 receptor-deficient mice displayed a 

normal hypothermic response to 7-OH-DPAT and PD-128,907, the effect was 

completely absent in D2 receptor-deficient mice suggesting that the induction of 

hypothermia by D2-like agonists results from their activation of the D2 but not 

D3 receptor (Boulay et al., 1999a; Boulay et al., 1999b).  Pharmacologic 

validation of these findings was later provided as the D2-preferring antagonist 

L-741,626 significantly, and dose-dependently, inhibit the induction of 

hypothermia by the D2-like agonist trihydroxy-N-n-propylnoraporphine (TNPA), 

while the D3-preferring antagonist A-437203 was without effect at any dose 
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tested (Chaperon et al., 2003).  Together, these studies provide convergent 

evidence that the hypothermic effects of D2-like agonists are mediated by their 

agonist actions at D2 receptors in both rats and mice, however, the receptor(s) 

mediating other behavioral effects of D2-like agonists are less clear.   

 

 While the hypothermic responses to D2-like agonists are similar in rats 

and mice, these species appear to be differentially sensitive to the locomotor 

effects of D2-like agonists.  In mice, D2-like agonists inhibit locomotor activity at 

doses lower than those required to induce hypothermia (Boulay et al., 1999a; 

Boulay et al., 1999b), and continue to suppress activity over a wide range of 

doses resulting in a monophasic dose-response curve (Pugsley et al., 1995; 

Pritchard et al., 2003).  Studies in D2 and D3 receptor-deficient mice suggest 

that the D2-like agonist-induced inhibition of locomotor activity in mice is 

mediated by the D2 receptor, as the effect is observed in D3 receptor-deficient 

mice, but absent in D2 receptor-deficient mice (Boulay et al., 1999a; Boulay et 

al., 1999b).  However, D3 receptor-deficient mice display elevated levels of 

spontaneous locomotor activity compared to their wild-type littermates 

suggesting that the D3 receptor may also involved in the inhibition of locomotor 

activity in mice (Accili et al., 1996; Xu et al., 1997).   

 

 Similar hypotheses have been made regarding the receptor regulation of 

locomotor activity in rats.  However, unlike in mice, D2-like agonists have 

typically been shown to have biphasic effects on locomotor activity in rats, with 
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the inhibition of locomotor activity occurring at low doses, and stimulation of 

locomotor activity observed at higher doses, effects that are often attributed to 

the D3 and D2 receptors, respectively (Ernst, 1967; Mogilnicka and Klimek, 

1977; Protais et al., 1983; Collins et al., 1989; Waters et al., 1993; Svensson et 

al., 1994; Pugsley et al., 1995; Smith et al., 1997; Pritchard et al., 2003; Millan 

et al., 2004).  This hypothesis is further supported by the fact that D2- and D3-

preferring antagonists have been shown to decrease and increase 

spontaneous locomotor activity, respectively.  However, the fact that D2- and 

D3-preferring antagonists affect spontaneous locomotor activity has 

complicated the interpretation of their effects on D2-like agonist-induced 

locomotor activity.  

 

 In addition to their effects on body temperature and locomotor activity, 

D2-like agonists have also been shown to dose-dependently induce a variety of 

stereotyped behaviors in rats and mice including sniffing, gnawing, object 

chewing, vacuous chewing, and yawning (Ernst, 1967; Mogilnicka and Klimek, 

1977; Protais et al., 1983; Collins et al., 1989; Smith et al., 1997).  Similar to 

the hypothermic effects of D2-like agonists, many of these behaviors are 

observed at doses higher than those required to inhibit locomotor activity 

suggesting that they may be mediated by D2 receptor activation.  While non-

selective D2-like antagonists are able to inhibit the induction of many of these 

behaviors, several of these effects, such as sniffing, have also been shown to 

be inhibited by D1-like antagonists, an effect that is not observed with D2-like 
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agonist induced hypothermia, but is suggestive of a permissive role for the D1 

receptor in their mediation (Walters et al., 1987; Double and Crocker, 1990).  

However, unlike D2-like agonist-induced sniffing and vacuous chewing, which 

are generally observed at doses that correspond to the stimulation of locomotor 

activity and induction of hypothermia, the induction of yawning behavior by D2-

like agonists is observed over a range of lower doses that generally correspond 

to their inhibitory effects on locomotor activity (Protais et al., 1983; Stahle and 

Ungerstedt, 1990; Stahle, 1992; Ferrari et al., 1993; Brus et al., 1995; Ferrari 

and Giuliani, 1995; Bristow et al., 1996; Smith et al., 1997). 

 

 Although yawning was first identified as a cholinergic response (Urba-

Holmgren et al., 1977), the ability of dopaminergic agonists to induce dose-

dependent increases in yawning behavior over low doses and subsequently 

inhibit the induction of yawning at higher doses in rats has been a long-studied 

phenomenon (e.g., Mogilnicka and Klimek, 1977; Holmgren and Urba-

Holmgren, 1980; Yamada and Furukawa, 1980).  Early hypotheses regarding 

the inverted U-shaped dose-response curves for yawning behavior attributed 

the increases in yawning behavior to agonist activity at pre-synaptic D2 

receptors, and the subsequent inhibition of yawning to agonist activity at post-

synaptic D2 receptors, or the concomitant activation of D1 receptors (Yamada 

and Furukawa, 1980; Urba-Holmgren et al., 1982; Yamada et al., 1990).  While 

this hypothesis supposes that the induction of yawning by dopamine agonists 

results from the increased cholinergic activity secondary to the activation of 
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dopaminergic autoreceptors, there is considerable evidence to argue against 

the autoreceptor hypothesis of yawning.  In a series of experiments, Stahl and 

Ungerstedt, demonstrated that the induction of yawning was not correlated with 

changes in synaptic dopamine levels, but rather occurred with a shorter 

latency, suggesting that yawning is mediated by postsynaptic receptor 

activation. This notion was also supported by the fact that pharmacologic 

manipulations that increased or decreased synaptic dopamine levels did not 

alter the capacity of D2-like agonists to induce yawning (Stahle and Ungerstedt, 

1987; Stahle and Ungerstedt, 1989b; Stahle and Ungerstedt, 1989a; Stahle 

and Ungerstedt, 1990; Stahle, 1992).  Subsequent hypotheses proposed that 

the biphasic nature of yawning was mediated by multiple post-synaptic D2 

receptors with differing sensitivities (Stahle, 1992), however it was not until a 

role for the D3 receptor in the mediation of D2-like agonist-induced 

hypolocomotion was proposed (Waters et al., 1993; Svensson et al., 1994) that 

the D3 receptor was thought to be involved in the mediation of D2-like agonist-

induced yawning behavior (Levant, 1997).  Around this time, it was reported 

that newly developed D2-like agonists with relatively high degrees of selectivity 

for the D3 receptor, such as PD-128,907 and 7-OH-DPAT induced yawning in a 

manner similar to that observed with non-selective dopamine agonists, such as 

apomorphine (Levesque et al., 1992; Pugsley et al., 1995; Khroyan et al., 

1997).  However, the specific dopamine receptor(s) involved in the regulation 

of dopaminergic agonist-induced yawning behavior could not be determined 
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due to a lack of antagonists highly selective for either the D2 or D3 receptor 

sub-types.   

 

 Although the mechanisms involved in the regulation of dopamine 

agonist-induced yawning behavior received considerable attention during the 

mid-80’s to early 90’s, the specific mechanism remains unknown.  Early studies 

demonstrated that dopaminergic agonists induced yawning as a result of the 

activation of dopamine receptors within the central nervous system as the 

induction of yawning was blocked by the centrally active D2-like antagonist, 

sulpiride, but not the peripheral D2 receptor antagonist, domperidone (Stahle 

and Ungerstedt, 1984).  While several studies reported that microinjections of 

apomorphine into the striatum or septum induced yawning in rats (Dourish et 

al., 1985; Yamada et al., 1986), these studies typically administered 5 to 40X 

greater doses than those required to induce yawning following injection into the 

paraventricular nucleus (PVN) (Melis et al., 1987), an area of the brain that had 

previously been shown to mediate the induction of yawning by oxytocin (Melis 

et al., 1986).  Subsequently, Melis and colleagues have confirmed that 

dopamine and oxytocin induce yawning through their actions in the PVN, 

however, they are only two of a growing number of neurotransmitters and 

neurohormones including acetylcholine, 5-HT, NMDA, nitric oxide, opioid 

peptides, and adrenocorticotropin (ACTH), that have been shown to be 

involved in the complex regulation of yawning behavior (Ferrari et al., 1963; 
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Urba-Holmgren et al., 1977; Roeling et al., 1991; Melis et al., 1992; Melis and 

Argiolas, 1993; Stancampiano et al., 1994).  

 

 Interestingly, while a variety of neurotransmitter and neurohormones 

affect yawning, antagonist studies have demonstrated a hierarchical order with 

regard to their involvement in the neuronal circuitry of yawning behavior.  For 

example, yawning induced by dopaminergic agonists is blocked by D2-like 

antagonists (e.g., Mogilnicka and Klimek, 1977; Yamada and Furukawa, 1980), 

oxytocin antagonists (Melis et al., 1989), nitric oxide inhibitors (Melis et al., 

1994), and cholinergic antagonists (e.g., Holmgren and Urba-Holmgren, 1980; 

Yamada and Furukawa, 1980), but not serotonergic antagonists 

(Stancampiano et al., 1994).  Conversely, cholinergic yawning is blocked by 

cholinergic antagonists (e.g., Urba-Holmgren et al., 1977), but not D2-like, 

oxytocin, or serotonergic antagonists (Yamada and Furukawa, 1980; Yamada 

and Furukawa, 1981; Fujikawa et al., 1996b), while oxytocin-induced yawning 

is blocked by oxytocin and cholinergic antagonists, but not dopaminergic 

antagonists (Argiolas et al., 1986).  Together with the results of microinjection 

and microdialysis studies, these studies suggest that dopaminergic-, 

glutamatergic-, and oxytocinergic-induced yawning results from an increased 

activation of oxytocinergic neurons originating in the PVN.  These neurons 

innervate a variety of structures including the CA1 region of the hippocampus 

and medulla oblongata, and are thought to result in increases in cholinergic 

transmision (e.g., Argiolas and Gessa, 1991; Argiolas and Melis, 1998).  While 
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the precise cholinergic neurons mediateding the induction of yawning are not 

known, activation of the M1 receptor (Fujikawa et al., 1996b) is thought to play 

an important role in the induction of yawning by dopaminergic, serotonergic, 

oxytocinergic, and serotonergic mechanisms (e.g., Yamada and Furukawa, 

1980; Argiolas et al., 1986; Protais et al., 1995). 

 

 Similar to their capacity to induce yawning, D2-like agonists also induce 

penile erection (PE) over a range of low doses in a variety of species including 

mice, rats, monkeys, and humans (Benassi-Benelli et al., 1979; Gisolfi et al., 

1980; Lal et al., 1989; Rampin et al., 2003).  Interestingly, the pro-erectile 

effects of D2-like agonists are typically observed over a range of doses that 

also induce yawning and inhibition of locomotor activity, with the subsequent 

inhibition of PE observed at higher doses (Mogilnicka and Klimek, 1977; Melis 

et al., 1987; Ferrari and Giuliani, 1995).  As with yawning, the pro-erectile 

effects of D2-like agonists are thought to be centrally mediated as they are 

inhibited by relatively non-selective, centrally active, D2-like antagonists such 

as haloperidol, sulpiride, and clozapine, but not the peripheral D2-like 

antagonist domperidone (Benassi-Benelli et al., 1979; Gower et al., 1984; 

Doherty and Wisler, 1994; Hsieh et al., 2004).  Moreover, a significant body of 

literature supports a common role for the paraventricular nucleus (PVN) in the 

induction of PE and yawning by both physiologic and pharmacologic means 

(e.g., Argiolas and Melis, 1998; Melis and Argiolas, 1999; Melis and Argiolas, 

2003); however, the specific receptor(s) mediating the pro-erectile effects of 
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D2-like agonists are yet to be elucidated.  Recently, dose-dependent increases 

in PE have been reported following systemic and intra-PVN administration of a 

variety of D4-selective agonists (Brioni et al., 2004; Hsieh et al., 2004; Melis et 

al., 2005; Enguehard-Gueiffier et al., 2006; Melis et al., 2006), suggesting the 

D4 receptor may mediate the induction of PE by D2-like agonists.  This notion is 

further supported by the finding that PE induced by D4-selective agonists, such 

as PD-168,077 and PIP3EA, are blocked by the D4-selective antagonist, 

L745,870 (Melis et al., 2005; Enguehard-Gueiffier et al., 2006; Melis et al., 

2006).  However, D4-selective agonists generally induce fewer erections 

compared to less selective D2-like agonists such as apomorphine, and L-

745,870 has been shown to be ineffective at altering the induction of PE by 

apomorphine (Melis et al., 2006), suggesting that other receptor(s) are also 

involved in the mediation of D2-like agonist-induced PE.   

 

 Characterization of the receptor(s) involved in the mediation of elicited 

effects of non-selective drugs has provided valuable information with regard to 

the receptors mediating the behavioral, therapeutic, and adverse effects of 

drugs with diverse mechanisms of action.  However, to date there is no well 

validated behavioral measure for assessing the action of agonists or 

antagonists at the dopamine D3 receptor.  Therefore, the primary goal of this 

thesis is to identify a behavior that is specifically mediated by the D3 receptor in 

rats.  Identification of such a behavior will allow for a more accurate 

interpretation of the effects of D2-like agonists and antagonists and aid in the 



 27

design and development of novel agonists and antagonists selective for the D2 

and/or D3 receptors. 

 

Specific Aims 

 

 Specific Aim 1:  The aim of the first set of studies was to investigate the 

receptor regulation of dopaminergic yawning behavior by characterizing a 

series of D2-like agonists with varying degrees of selectivity for the D3 

compared to D2 receptor with respect to their capacity to dose-dependently 

induce yawning in rats.  Likewise, a series of dopaminergic antagonists, 

including D1-like, and D2-, D3-, and D4-preferring antagonists, were assessed 

for their capacity to dose-dependently alter the dose-response curve for 

yawning induced by the prototypical D3-preferring antagonist, PD-128,907.  

Additionally, the dopaminergic selectivity of the effects of D3-preferring 

antagonists on yawning behavior was determined by comparing D3-preferring, 

serotonergic, and cholinergic antagonists with respect to their capacity to alter 

the induction of yawning by the indirect-cholinergic agonist, physostigmine, the 

5-HT2 receptor agonist, TFMPP, and the D3-preferring agonist, PD-128,907. 

 

 Specific Aim 2:  The second set of studies were aimed at 

characterizing D2-, D3-, and D4-preferring agonists with respect to their relative 

potencies to induced yawning, a putative D3-mediated behavior, and 

hypothermia, a putative D2-mediated effect, in rats.  The capacity of 
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antagonists selective for the D2 and D3 receptors to alter the induction of 

yawning and hypothermia by a series of D2-like agonist was also assessed to 

characterize the involvement of the D2 and D3 receptors in the induction of 

yawning and hypothermia.  Likewise, a series of non-selective D2/D3, and D2- 

and D3-preferring antagonists were also characterized with respect to their 

relative potencies to inhibit the induction of yawning by the D3-preferring 

agonist, PD-128,907, and the induction of hypothermia by the D2-preferring 

agonist, sumanirole.  In vivo D3 selectivity ratios for D2-like agonists were 

determined using the induction of yawning and hypothermia as in vivo D3 and 

D2 potency measures, respectively.  Similar determinations of in vivo selectivity 

were made for D2-like antagonists using the inhibition of yawning and 

hypothermia as in vivo potency measures for the D3 and D2 receptors, 

respectively.  

 

 Specific Aim 3:  The aim of the third set of studies was to characterize 

the receptor regulation of the pro-erectile effects of D2-like agonists.  To this 

end, a series of D2-, D3-, and D4-preferring agonists were compared with 

respect to their capacity to dose-dependently induce yawning and penile 

erection in rats.  Antagonist selective for the D2 (L-741,626), D3 (PG01037), 

and D4 (L-745,870) receptors were then assessed for their capacity to 

selectively alter the dose-response curves for apomorphine- and pramipexole-

induced yawning and penile erection.  Finally, a series of D2-like antagonists 

with a wide range of selectivities for the D2, D3 and D4 receptors were 
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assessed for their capacity to dose-dependently alter the induction of yawning 

and/or penile erection induced by the maximally effective dose of pramipexole. 
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Figure 1.1. Distribution of dopamine neuron cell groups in the rodent brain 
shown in a sagital view.  The mesencephalic dopamine neuron cell groups (A8-
A10) send projections to the striatum and cortex and are subdivided into the 
nigrostriatal, mesolimbic, and mesocortical dopaminergic pathways.  The 
diencephalic dopamine neuron cell groups (A11-A15), and are subdivided into 
the diencephalospinal, incertohypothalamic, and tuberoinfundibular 
dopaminergic pathways.  The A16 group of dopamine neurons are located in 
the olfactory bulb. 
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Table 1.1. Range of reported in vitro binding affinities at D2 and D3 receptors 
and D3 selectivity ratios for D2-like agonists and antagonists 
 
  Ki D2 (nM) Ki D3 (nM) D2/D3 

Agonists    

pramipexole 3.9a - 955b 0.5a - 10.5b 2.1c - 488d 

PD-128,907 42e - 389f 1.3g - 18h 6.1h - 340g 

7-OH-DPAT 2.6i - 223j 0.34g - 7.1j 5.2k - 302g 

quinpirole 1.8a - 1902l 0.86f - 410m 0.11m - 133i 

quinelorane 5.7h - 708b 3.4h - 6.1n 1.7h - 131b 

U91356A 1.6o- 875p 36o- 63.8p 0.044o- 13.7p 

apomorphine 2.3f - 168i 2.2f - 73f 0.33e - 5.4i 

sumanirole 9.0q - 53.8r 1940s - 2333q 
0.0046s - 
0.0038q 

ABT-724 >10,000t,r >10,000t,r N.A. 

PD-168,077 2810u 3740u N.A. 

Antagonists    

PG01037 93.3v 0.7v 133v 

SB-277011A 1050w - 2820w 10.7w - 11.2w 94w - 263w 

U99194 992x - 2281g 31x -160g 14.3g - 32x 

nafadotride 3.0y - 7.0h 0.31y - 3.0h 2.3h - 9.7y 

haloperidol 0.12z - 17k 0.2aa - 1020k 0.0043z - 3aa 

L-741,626 2.4bb - 12cc 64m - 120cc 0.1cc - 0.024bb 
 
a(Mierau et al., 1995); b(Millan et al., 2002); c(Seeman et al., 2005); d(Gerlach 
et al., 2003); e(Pugsley et al., 1995); f(Sautel et al., 1995a); g(Audinot et al., 
1998); h(Flietstra and Levant, 1998); I(Burris et al., 1995); j(MacKenzie et al., 
1994); k(Levant and DeSouza, 1993); l(Kula et al., 1994); m(Patel et al., 2003); 
n(Millan et al., 1995b); o(Piercey et al., 1996); p(Kreiss et al., 1995); q(Heier et 
al., 1997); r(Brioni et al., 2004); s(McCall et al., 2005); t(Cowart et al., 2004); 
u(Glase et al., 1997); v(Grundt et al., 2005); w(Reavill et al., 2000); x(Haadsma-
Svensson et al., 2001); y(Sautel et al., 1995b); z(Leopoldo et al., 2002); 
aa(Burstein et al., 2005); bb(Kulagowski et al., 1996); cc(Bristow et al., 1998).  
Binding affinities represent the extremes of reported Ki values for agonist and 
antagonists for the D2 and D3 receptor.  D2/D3 selectivity ratios represent the 
range of reported ratios as determined from binding studies in which affinities 
for both the D2 and D3 receptor were reported in the same publication. 
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CHAPTER II 
 
 

Dopamine Agonist-Induced Yawning in Rats: A Dopamine D3 Receptor 
Mediated Behavior. 

 

Introduction 

 

 Dopamine D3 receptors have received considerable interest since 

originally cloned (Sokoloff et al., 1990).  The D3 receptor shares significant 

sequence homology with the dopamine D2 receptor, but displays a much more 

restricted, limbic pattern of distribution compared to that of the D2 receptor in 

the rat (Levesque et al., 1992) and human brain (Gurevich and Joyce, 1999).  

Based in large part on this restricted distribution and high sequence homology, 

it has been hypothesized that the D3 receptor may be of interest as a 

pharmacological target for antipsychotics and antiparkinsonian therapeutics 

(for review see Joyce, 2001).  Additionally, the D3 receptor is thought to play a 

role in reinforcement pathways, as the D3 receptor is expressed in high levels 

within the mesolimbic dopaminergic system, and more specifically, the nucleus 

accumbens shell (Sokoloff et al., 1990; Stanwood et al., 2000a).   

 

 However, progress in defining a role for the D3 receptor has been 

slowed by the inability to identify behavioral effects that can be linked 
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exclusively to a D3 mechanism (Levant, 1997).  This is, at least in part, due to 

the lack of pharmacologically selective compounds acting at either the D3 or D2 

receptors, as well as the fact that potentially selective agonists have failed to 

elicit obvious, direct behavioral changes.  While D2/D3 agonists and antagonists 

have been shown to produce changes in body temperature, locomotor activity, 

and other behavioral measures (Millan et al., 1995a; Pugsley et al., 1995; Varty 

and Higgins, 1998), a role for the D3 receptor in the regulation of these effects 

has typically not been confirmed by studies using D3 receptor-deficient mice 

(Boulay et al., 1999a; Boulay et al., 1999b; Xu et al., 1999).  Recently, 

increases in locomotor activity by MK-801 (Leriche et al., 2003) and blockade 

of the convulsant effects of dopamine uptake inhibitors (Witkin et al., 2004) 

have been proposed as in vivo models of D3 receptor activation.  However, 

systematic replication of those findings or confirmation by other means has not 

been reported.  The studies reported herein provide evidence supporting the 

contention that yawning induced by D2/D3 agonists is mediated specifically 

through D3 receptor activation. 

 

 The ability of dopaminergic agonists to elicit biphasic yawning resulting 

in an inverted U-shaped dose-response curve in rats has been a long-studied 

phenomenon (e.g., Mogilnicka and Klimek, 1977; Holmgren and Urba-

Holmgren, 1980; Yamada and Furukawa, 1980).  An early hypothesis 

regarding the biphasic regulation of apomorphine-induced yawning behavior 

attributed the induction of yawning behavior to a D2 agonist activity, while the 
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inhibition seen at higher doses was thought to be due to a competing D1 

agonist activation (Yamada and Furukawa, 1980; Urba-Holmgren et al., 1982).  

The cloning of the dopamine D3 receptor and the development of agonists such 

as PD-128,907 (Pugsley et al., 1995) and 7-OH-DPAT (Levesque et al., 1992; 

Pugsley et al., 1995) as well as antagonists including U99194 (Cannon et al., 

1982; Haadsma-Svensson et al., 2001), SB-277011A (Reavill et al., 2000; 

Stemp et al., 2000) and PG01037 (Grundt et al., 2005) with greater degrees of 

in vitro selectivity for the D3 receptor have allowed greater insights into the 

regulation of dopaminergic agonist-induced yawning behavior to be made.  

Based on a series of studies examining the unconditioned behavioral effects of 

7-OH-DPAT (Daly and Waddington, 1993; Ferrari and Giuliani, 1995; 

Kurashima et al., 1995), as well as binding studies (Levant et al., 1995), Levant 

(1997) hypothesized in an extensive review that, D2/D3 agonist-induced 

yawning may be a D3 agonist-mediated effect, while the inhibition seen at 

higher doses was a result of concomitant D2 agonist activation. 

 

 This hypothesis was evaluated in the present studies using a host of 

pharmacological tools.  The abilities of a series of compounds with varying in 

vitro selectivities for the D3 relative to D2 receptors to elicit yawning were 

examined.  A series of antagonists, again defined by binding in vitro selectivity 

for the D3 and D2 receptors, were evaluated with respect to their modification of 

dose-response relationships for D2/D3 agonists, with the majority of the studies 

using PD-128,907 as a prototype D3 agonist.   
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 Finally, in addition to dopaminergic mechanisms, yawning can be 

induced by cholinergic (Urba-Holmgren et al., 1977; Yamada and Furukawa, 

1980) or serotonergic (Stancampiano et al., 1994) compounds.  While the 

exact mechanisms and neural pathways involved in the regulation of yawning 

behavior have not been fully elucidated, there is a large set of data that 

suggests that dopaminergic, serotonergic, and cholinergic induction of yawning 

occur via distinct mechanisms.  In addition both dopaminergic and serotonergic 

pathways are thought to eventually feed onto cholinergic neurons, thus 

allowing for differential regulation of dopaminergic and serotonergic yawning, 

with a cholinergic component common in all three pathways (for review see 

Argiolas and Melis, 1998).  Therefore, some D3 antagonists that reduced PD-

128,907-induced yawning were also assessed for their capacity to alter non-

dopaminergic-induced yawning.   

 

 The convergent evidence from the agonist and antagonist studies 

support the hypothesis that dopamine agonist-induced yawning is mediated 

specifically through activation of D3 receptors.  Therefore, yawning in rats may 

provide a critical model for establishing the in vivo activities of putative D3 

selective ligands, a first step toward defining their role in normal and 

pathological physiological states. 
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Methods 

 

 Subjects:  Male Sprague-Dawley rats (250-400 g) were obtained from 

Harlan (Indianapolis, IN) and housed three to a cage for the duration of the 

study.  Rats had free access to standard Purina rodent chow and water, and 

were maintained in a temperature and humidity controlled environment, on a 

12-h dark/light cycle with lights on at 7:00 AM.  All studies were performed in 

accordance with the Declaration of Helsinki and with the Guide for the Care 

and Use of Laboratory Animals, as adopted and promulgated by the National 

Institutes of Health, and all experimental procedures were approved by the 

University of Michigan Committee on the Use and Care of Animals. 

 

Behavioral Observations: 

 Yawning:  Yawning behavior was defined as a prolonged (~1 sec.), 

wide opening of the mouth followed by a rapid closure.  On the day of testing 

rats were transferred from their home cage to a test chamber (19 in. x 9 in. x 8 

in. clear “shoebox” rodent cage with standard cob bedding), and allowed to 

habituate to the chamber for a period of 30 minutes.  Antagonist or vehicle was 

administered as a 30 minute pretreatment prior to the injection of agonist or 

vehicle.  Behavioral observations began 10 minutes after all injections, and the 

total number of yawns was recorded for a period of 20 minutes thereafter.  

Dose-response curves were first generated for all agonists with a vehicle 

pretreatment, with antagonists substituted for vehicle pretreatments in 
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subsequent sets of experiments.  Each rat was tested multiple times, with 

separate groups of rats used to establish dose-response curves for each 

agonist, or antagonist X agonist combination.  At least 48 hours was allowed 

between experimental sessions to allow for a drug washout period.  Food and 

water were unavailable during individual test sessions, and all experiments 

were conducted between the hours of 12:00 PM and 6:00 PM. 

 

 Dopamine D2/D3 agonist-induced yawning:  A series of dopaminergic 

agonists with varying degrees of in vitro selectivity for the D3 and D2 receptors 

were used to assess the ability of D2/D3 agonists to induce yawning behavior in 

rats.  The D2/D3 agonists used in this series of experiments included: 7-OH-

DPAT (0.0032, 0.01, 0.032, and 0.1 mg/kg), apomorphine (0.001, 0.0032, 0.01, 

0.032, 0.1, and 0.32 mg/kg), bromocriptine (0.32, 1.0, 3.2, and 10.0 mg/kg), 

PD-128,907 (0.0032, 0.01, 0.032, 0.1, and 0.32 mg/kg), PD-128,908 (0.01, 

0.032, 0.1, 0.32, and 1.0 mg/kg), pramipexole (0.00032, 0.001, 0.0032, 0.01, 

0.032, 0.1, 0.32, and 1.0 mg/kg), quinelorane (0.0001, 0.00032, 0.001, 0.0032, 

0.01, and 0.032 mg/kg), and quinpirole (0.0032, 0.01, 0.032, 0.1, and 0.32 

mg/kg).  All agonists were investigated in separate groups of rats, with doses 

presented in a random order. 

 

 Effects of dopaminergic antagonists on D2/D3 agonist-induced 

yawning behavior:  The effects of dopaminergic antagonists on D2/D3 agonist-

induced yawning were examined, with each antagonist X agonist combination 
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determined in separate groups of rats. Agonist and antagonist dose 

combinations were presented in a random order, with dose-response curves 

for vehicle X agonist treatments determined before and after antagonist X 

agonist combinations to insure there were no changes in agonist-induced 

yawning behavior.  

 

 D2-selective antagonists:  The effects of L-741,626 (0.32 and 1.0 

mg/kg) on yawning elicited by PD-128,907 (0.01, 0.032, 0.1, and 0.32 mg/kg), 

or quinelorane (0.00032, 0.001, 0.0032, 0.01, and 0.032 mg/kg) were 

determined.  Only a dose of 1.0 mg/kg L-741,626 was used in the quinelorane-

induced yawning studies.   

 

 Non-selective dopamine receptor antagonism:  Haloperidol was 

used to determine the effects of non-selective dopaminergic antagonist activity 

on PD-128,907- (0.032, 0.1, 0.32, and 1.0 mg/kg) and quinelorane- (0.001, 

0.0032, 0.01, 0.032, and 0.1 mg/kg) induced yawning.  Doses of 0.01 and 

0.032 mg/kg haloperidol were used in PD-128,907 experiments, while only the 

lowest active dose of 0.032 mg/kg was used in quinelorane studies.  

 

 D3-selective antagonists:  The D3-preferring antagonists; nafadotride 

(0.01, 0.1, and 0.32 mg/kg), U99194 (1.0, 3.2, and 10.0 mg/kg), SB-277011A 

(3.2, 32.0, and 56.0 mg/kg), and PG01037 (10.0, 32.0, and 56.0 mg/kg) were 

used to examine their effects on PD-128,907- (0.01, 0.032, 0.1, and 0.32 
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mg/kg) induced yawning.  In rats treated with 0.32 mg/kg nafadotride the range 

of doses used for PD-128,907-induced yawning was extended to 1.0 mg/kg.  

 

 D1/D5 and D4-selective antagonists:  The D1/D5 antagonist, SCH 

23390 (0.01 mg/kg), and the D4 antagonist, L-745,870 (3.2 mg/kg), were used 

to address the possible involvement of these receptors in yawning elicited by 

PD-128,907 (0.01, 0.032, 0.1, and 0.32 mg/kg).   

 

 Effects of cholinergic and serotonergic agonists and antagonists 

on yawning:  Yawning elicited by cholinergic and serotonergic mechanisms 

were established by administration of physostigmine (0.01, 0.32, 0.1, 0.32, and 

1.0 mg/kg; i.p.), and TFMPP (0.32, 1.0, 3.2, and 10.0 mg/kg) respectively.  

Scopolamine (0.0001, 0.001, and 0.01 mg/kg) was used to examine the effects 

of muscarinic cholinergic antagonism on yawning elicited by physostigmine 

(0.1 mg/kg; i.p.), TFMPP (3.2 mg/kg), and PD-128,907 (0.1 mg/kg).  Likewise, 

the ability of the 5-HT2 receptor antagonist mianserin (0.0032, 0.032, and 0.32 

mg/kg) to antagonize yawning induced by TFMPP (3.2 mg/kg), physostigmine 

(0.1 mg/kg; i.p.), and PD-128,907 (0.1 mg/kg) was determined.  

 

 D3-selective antagonists on cholinergic and serotonergic yawning:    

The ability of nafadotride (0.01, 0.1, and 1.0 mg/kg), U99194 (1.0, 3.2, and 

10.0 mg/kg), SB-277011A (3.2, 32.0, and 56.0 mg/kg), and PG01037 (10.0, 

32.0, and 56.0 mg/kg) to modulate yawning behavior induced by PD-128,907 



 41

(0.1 mg/kg), TFMPP (3.2 mg/kg) and physostigmine (0.1 mg/kg; i.p.) was 

determined in separate groups of rats. 

 

 Drugs:  (±)-7-OH-DPAT [(±)-7-Hydroxy-2-dipropylaminotetralin HBr], (-)-

apomorphine [(R)-(-)-5,6,6a,7-Tetrahydro-6-methyl-4H-dibenzo[de,g]quinoline-

10,11-diol HCl], (+)-bromocriptine [(+)-2-Bromo-12'-hydroxy-2'-(1-methylethyl)-

5'-(2-methylpropyl) ergotaman-3',6'-18-trione methanesulfonate], haloperidol 

[4-[4-(4-Chlorophenyl)-4-hydroxy-1-piperidinyl]-1-(4-fluorophenyl)-1-butanone 

HCl], mianserin [1,2,3,4,10,14b-Hexahydro-2-methyldibenzo[c,f]pyrazino[1,2-

a]azepine HCl], PD-128,907 [(S)-(+)-(4aR,10bR)-3,4,4a,10b-Tetrahydro-4-

propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol HCl], PD-128,908 [(R)-(–

)-(4aS,10bS)-3,4,4a,10b-Tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-

1,4-oxazin-9-ol HCl], physostigmine [(3aS)-cis-1,2,3,3a,8,8a-Hexahydro-

1,3a,8-trimethylpyrrolo[2,3-b]indol-5-ol methylcarbamate hemisulfate], 

quinelorane [(5aR-trans)-5,5a,6,7,8,9,9a,10-Octahydro-6-propylpyrido[2,3-

g]quinazolin-2-amine dihydrochloride], (-)-quinpirole [trans-(–)-(4aR)-

4,4a,5,6,7,8,8a,9-Octahydro-5-propyl-1H-pyrazolo[3,4-g]quinoline HCl], SCH 

23390 [(R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-

benzazepine HCl], scopolamine [(a,S)-a-(Hydroxymethyl)benzeneacetic acid 

(1a,2b,4b,5a,7b)-9-methyl-3-oxa-9-azatricyclo[3.3.1.02,4]non-7-yl ester 

hydrobromide], and TFMPP [N-[3-(Trifluoromethyl)phenyl]piperazine HCl] were 

obtained from Sigma Chemical Co (St. Louis, Mo).  L-741,626 [3-[[4-(4-

Chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole], L-745,870 [3-(4-[4-
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Chlorophenyl] piperazin-1-yl)-methyl-1H-pyrrolo[2,3-b]pyridine trihydrochloride], 

nafadotride [N-[(1-Butyl-2-pyrrolidinyl)methyl]-4-cyano-1-methoxy-2-

naphthalenecarboxamide], and U99194 [2,3-Dihydro-5,6-dimethoxy-N, N-

dipropyl-1H-inden-2-amine maleate] were obtained from Tocris (Ellisville, MO). 

Pramipexole [N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine] was 

generously provided by Dr. Edward F. Domino, MD (University of Michigan 

Medical School, Ann Arbor, MI), SB-277011A [trans-N-[4-[2-(6-Cyano-1,2,3, 4-

tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide] by Dr. 

Deyi Zhang (Lily Research Labs, Indianapolis, IN), and PG01037 [N-{4-[4-(2,3-

Dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide 

HCl] by Dr. Amy H Newman (Medicinal Chemistry Section-NIDA, Baltimore, 

MD).  All drugs were dissolved in sterile water with the exception of haloperidol, 

which was dissolved in 5% ethanol, L-741,626, which was dissolved in 5% 

ethanol with 1M HCl, and SB-277011A, which was dissolved in 10% β-

cyclodextrin.  All drugs were administered sub-cutaneously (s.c.) in a volume of 

1 ml/kg, with the exception of physostigmine, which was administered i.p. in a 

volume of 1 ml/kg.  The 56.0 mg/kg doses of SB-277011A and PG01037 were 

administered in a volume of 3 ml/kg s.c. due to solubility limitations. 

 

 Data Analysis:  All yawning studies were conducted with 8 rats per 

group, and results are expressed as mean number of yawns during the 20 

minute observation period ± standard error of the mean (SEM).  A one-way, 

repeated-measures ANOVA with post-hoc Dunnett’s tests was used to 
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determine if agonist-induced yawning was significantly greater compared to 

vehicle (GraphPad Prism; GraphPad Software Inc., San Diego, CA).  

Significant differences in the maximal amount of yawning elicited were 

determined by one-way repeated-measures ANOVA with post-hoc Tukey’s 

HSD tests.  Significant effects of antagonist pretreatment on agonist-induced 

yawning was determined using an unbalanced, two-way ANOVA with post-hoc 

Bonferroni tests to determine significant differences among antagonist and 

vehicle treated groups (SPSS, SPSS Inc., Chicago, IL).  One-way repeated-

measures ANOVAs with post-hoc Dunnett’s tests were also used to determine 

if D3-preferring, cholinergic, or serotonergic antagonists significantly inhibited 

yawning elicited by the maximal effective dose of D2/D3, cholinergic, or 

serotonergic agonists (GraphPad Prism). 

 

Results 

 

 Dopamine D2/D3 agonists on yawning behavior:  D2/D3 agonists 

generally elicited dose-dependent increases in yawning behavior, with a 

subsequent inhibition of yawning seen at higher doses resulting in a 

characteristic inverted U-shaped dose-response curve as shown in figure 2.1.  

PD-128,907 [F(5,35)=19.86; p<0.0001], quinelorane [F(6,42)=29.68; 

p<0.0001], pramipexole [F(8,56)=14.50; p<0.0001], 7-OH-DPAT 

[F(4,28)=39.68; p<0.0001], quinpirole [F(5,35)=42.47; p<0.0001], and 

apomorphine [F(6,42)=3.81; p<0.01] all elicited significant, dose-dependent 
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increases in yawning behavior compared to vehicle, while yawning induced by 

bromocriptine [F(4,28)=1.14; p>0.05] failed to reach significance.  PD-128,908, 

the inactive enantiomer of PD-128,907 (DeWald et al., 1990) did not elicit 

yawning at any dose tested [F(4,28)=0.30; p>0.05].  Significantly greater 

amounts of yawning compared to vehicle were observed for PD-128,907 

(0.032 and 0.1 mg/kg; p<0.01), quinelorane (0.001 and 0.0032 mg/kg; p<0.01), 

pramipexole [(0.01, 0.032 and 0.1 mg/kg; p<0.01); (0.32 mg/kg; p<0.05)], 7-

OH-DPAT (0.01, and 0.032 mg/kg; p<0.01), quinpirole (0.01, and 0.032 mg/kg; 

p<0.01), and apomorphine (0.032 mg/kg; p<0.05).  

 

 There were no significant differences [F(4,28)=1.70; p>0.05] in the 

amount of yawning elicited by the maximal effective doses of PD-128,907 (0.1 

mg/kg; 20.0±1.7), quinelorane (0.0032 mg/kg; 29.3±3.1), pramipexole (0.1 

mg/kg; 24.5±4.4), 7-OH-DPAT (0.032 mg/kg; 23.4±3.0), and quinpirole (0.032 

mg/kg; 27.5±2.9); however, the maximal effective dose of apomorphine (0.032 

mg/kg; 10.4±3.1) [F(5,42)=4.67; p<0.01] produced significantly lower levels of 

yawning compared to all other D2/D3 agonists that elicited significant amounts 

of yawning. 

 

 D2 selective-antagonism of D2/D3 agonist-induced yawning:  The 

effects of L-741,626, a D2-preferring antagonist approximately 50-fold selective 

for D2 compared to D3 receptors in vitro (Kulagowski et al., 1996), at 

behaviorally active doses (Chaperon et al., 2003), on PD-128,907- and 
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quinelorane-induced yawning and are shown in Figures 2.2A and 2.2B 

respectively.  An analysis of variance determined that there was an overall 

significant effect of L-741,626 on PD-128,907-induced yawning, and that the 

effect was dependent on both the dose of L-741,626 and PD-128,907 

administered [main antagonist-dose effect, F(2,103)=8.29, p<0.001; main 

agonist-dose effect, F(4,103)=20.34, p<0.001; antagonist-dose x agonist-dose 

interaction, F(6,103)=7.52, p<0.001].  Likewise, L-741,626 significantly 

modified quinelorane-induced yawning, an effect that was dependent on both 

the dose of L-741,626, as well as the dose of quinelorane [main antagonist-

dose effect, F(1,79)=11.91, p<0.001; main agonist-dose effect, F(4,79)=18.64, 

p<0.001; antagonist-dose x agonist-dose interaction, F(4,79)=11.81, p<0.001].  

L-741,626 significantly increased the amount of yawning elicited by high doses 

of both PD-128,907 (0.32 mg/kg; p<0.001) and quinelorane (0.01 mg/kg; 

p<0.001), while having no effect on yawning induced by lower doses of either 

PD-128,907 or quinelorane.   

 

 Non-selective dopaminergic antagonism of D2/D3 agonist-induced 

yawning:   Haloperidol, a non-selective dopaminergic antagonist with high 

affinities for all DA receptor subtypes (Sokoloff et al., 1992; Kulagowski et al., 

1996), was used at behaviorally active doses (e.g., Leriche et al., 2003) to 

examine the effects of dopaminergic antagonism on yawning induced by PD-

128907 and quinelorane (figures 2.2C and 2.2D, respectively).  Pretreatment 

with haloperidol modified PD-128,907-induced yawning in a manner that was 
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dependent on the dose of agonist administered [main antagonist-dose effect, 

F(2,79)=1.86, p>0.05; main agonist-dose effect, F(3,79)=12.52, p<0.001; 

antagonist-dose x agonist-dose interaction, F(4,79)=21.30, p<0.001].  The 

effects of haloperidol on quinelorane-induced yawning were similar to those on 

PD-128,907-induced yawning, and were dependent on both the dose of 

haloperidol and the dose of quinelorane [main antagonist-dose effect, 

F(1,71)=10.78, p<0.01; main agonist-dose effect, F(4,71)=13.50, p<0.001; 

antagonist-dose x agonist-dose interaction, F(3,71)=22.55, p<0.001].  Unlike L-

741,626, haloperidol produced differential effects on D2/D3 agonist-induced 

yawning. Pretreatment with 0.032 mg/kg haloperidol resulted in significant 

decreases in yawning elicited by low doses of PD-128,907 (0.032 mg/kg; 

p<0.05) and quinelorane (0.001 mg/kg; p<0.01), while producing significant 

increases in the amount of yawning elicited by high doses of PD-128,907 (0.32 

mg/kg; p<0.001) and quinelorane (0.01 and 0.032 mg/kg; p<0.001 and p=0.001 

respectively).   

 

 D3-preferring antagonists on D2/D3 agonist-induced yawning:  

Nafadotride, U99194, SB-277011A, and PG01037 have been shown to 

preferentially bind the D3 receptor over the D2 receptor in vitro, with D3 

selectivities of approximately 3-, 30-, 100-, and 133-fold respectively (Sautel et 

al., 1995b; Audinot et al., 1998; Flietstra and Levant, 1998; Stemp et al., 2000; 

Grundt et al., 2005), and were used at behaviorally active doses (Waters et al., 
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1993; Vorel et al., 2002; Di Ciano et al., 2003; Leriche et al., 2003; Millan et al., 

2004) to examine their effects on yawning behavior in rats.   

 

 The effects of nafadotride (0.01, 0.1, and 0.32 mg/kg) on PD-128,907-

induced yawning are shown in figure 2.3A.  An analysis of variance revealed 

that nafadotride altered PD-128,907 induced yawning in a manner that was 

dependent on the dose of agonist administered [main antagonist-dose effect, 

F(3,135)=0.34, p>0.05; main agonist-dose effect, F(4,135)=20.48, p<0.001; 

antagonist-dose x agonist-dose interaction, F(9,135)=3.92, p<0.001].  While 

slight reductions in yawning elicited by low doses of PD-128,907 were 

observed with doses of 0.1 and 0.32 mg/kg nafadotride, these effects were not 

significant at either dose.  However, pretreatment with 0.32 mg/kg nafadotride 

did produce significant increases in yawning elicited by 0.32 mg/kg of PD-

128,907 (p<0.001).   

 

 The effects of U99194 (1.0 mg/kg, 3.2 mg/kg, and 10.0 mg/kg) on PD-

128,907-induced yawning are shown in figure 2.3B.  U99194 modified PD-

128,907-induced yawning in a manner that was dependent on both the dose of 

U99194 and dose of PD-128,907 [main antagonist-dose effect, 

F(3,119)=40.08, p<0.001; main agonist-dose effect, F(3,119)=42.26, p<0.001; 

antagonist-dose x agonist-dose interaction, F(8,119)=4.69, p<0.001].  At a 

dose of 3.2 mg/kg, U99194 decreased the amount of yawning elicited by low 

doses of PD-128,907 (0.032 and 0.1 mg/kg; p<0.05 for both) while there was 
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no effect on yawning elicited by 0.32 mg/kg PD-128,907.  At the highest dose 

of U99194 tested (10.0 mg/kg), PD-128,907-induced yawning was completely 

inhibited at all doses tested [(0.032 mg/kg; p<0.001); (0.1 mg/kg; p<0.001) and 

(0.32 mg/kg; p>0.05)].   

 

 The effects of SB-277011A (3.2, 32.0 and 56.0 mg/kg) on PD-128,907-

induced yawning are shown in figure 2.3C,  and they were dependent on both 

the dose of SB-277011A as well as the dose of PD-128,907 administered 

[main antagonist-dose effect, F(3,119)=29.18, p<0.001; main agonist-dose 

effect, F(3,119)=37.29, p<0.001; antagonist-dose x agonist-dose interaction, 

F(8,119)=4.40, p<0.001].  SB-277011, at a dose of 32.0 mg/kg, significantly 

inhibited PD-128,907-induced yawning at doses corresponding to the 

ascending limb of the dose-response curve [(0.01 mg/kg; p<0.05); (0.032 

mg/kg; p=0.001); and (0.1 mg/kg; p<0.001)].  Likewise, 56.0 mg/kg SB-277011 

further reduced PD-128,907 elicited yawning at both 0.032 (p<0.001) and 0.1 

mg/kg (p<0.001).  There were no effects of any dose of SB-277011A on 

yawning induced by a high dose of 0.32 mg/kg PD-128,907.   

 

 PG01037, a D3-preferring antagonist with similar in vitro selectivity for 

the D3 receptor compared to SB-277011A, was administered at doses of 10.0, 

32.0, and 56.0 mg/kg, and the effects on PD-128,907 elicited yawning are 

shown in figure 2.3D.  Pretreatment with PG01037 altered PD-128,907-induced 

yawning in a manner that was dependent on both the dose of PG01037 and 
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dose of PD-128,907 administered [main antagonist-dose effect, 

F(3,119)=17.68, p<0.001; main agonist-dose effect, F(3,119)=33.10, p<0.001; 

antagonist-dose x agonist-dose interaction, F(8,119)=2.69, p<0.05].  Similar to 

SB-277011A, PG01037, at a dose of 32.0 mg/kg, significantly reduced yawning 

elicited by low doses of PD-128,907 [(0.032mg/kg; p<0.01) and (0.1 mg/kg; 

p<0.001)].  Further decreases in yawning induced by low doses of PD-128,907 

[(0.032mg/kg; p<0.001) and (0.1 mg/kg; p<0.001)] were observed with a dose 

of 56.0 mg/kg PG01037.  There were no effects of any dose of PG01037 on 

yawning induced by a high dose of 0.32 mg/kg PD-128,907.   

 

 Other dopamine receptor antagonists:  The D1-like receptor selective 

antagonist SCH 23390 (Barnett et al., 1986) and the D4 selective antagonist L-

745,870 (Kulagowski et al., 1996) were used at behaviorally active doses 

(Patel et al., 1997; Chaperon et al., 2003) to assess the ability of D1/D5 and D4 

antagonism respectively, to modulate the dose response curve for D2/D3 

agonist-induced yawning.  SCH 23390, at a dose of 0.01 mg/kg did not 

produce any significant change in the amount of yawning elicited by any dose 

of PD-128,907 tested (0.01 – 0.32 mg/kg; data not shown).  Likewise, at a dose 

of 3.2 mg/kg, the D4-selective antagonist L-745,870 failed to alter PD-128,907-

induced yawning at any dose tested (0.01 – 0.32 mg/kg; data not shown). 

 

 Cholinergic- and serotonergic- induced yawning:  Both 

physostigmine [F(4,28)=7.11; p<0.001] and TFMPP [F(4,28)=7.15; p<0.001] 
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also elicited, inverted U-shaped, dose-dependent yawning behavior in rats, as 

shown in figure 2.4A; however, both the cholinergic and serotonergic agonists 

were significantly less effective compared to PD-128,907 [F(2,14)=9.50; 

p=<0.01].  Maximal amounts of yawning induced by physostigmine and TFMPP 

occurred at doses of 0.1 mg/kg i.p, and 3.2 mg/kg, respectively, and were the 

only doses to elicit significantly greater amounts of yawning compared to 

vehicle treated rats (p<0.01 for both).   

 

 The effects of the non-selective, muscarinic antagonist, scopolamine 

(0.0001, 0.001, and 0.01 mg/kg), on yawning elicited by physostigmine (0.1 

mg/kg; i.p.), PD-128,907 (0.1 mg/kg), and TFMPP (3.2 mg/kg) are shown in 

figure 2.4B.  Scopolamine produced significant, dose-dependent antagonism of 

physostigmine-induced yawning [F(3,21)=16.89; p<0.0001], with a dose of 0.01 

mg/kg scopolamine significantly inhibiting physostigmine-induced yawning 

compared to vehicle treated rats (p<0.01).  In addition, scopolamine dose-

dependently, and significantly inhibited yawning elicited by both PD-128,907 

[F(3,21)=17.25; p<0.0001], and TFMPP [F(3,21)=22.40; p<0.0001].  

Significantly lower levels of PD-128,907-induced yawning were observed with 

doses of 0.001, and 0.01 mg/kg scopolamine (p<0.01 for both). Scopolamine 

significantly reduced TFMPP elicited yawning at all doses tested (p<0.01 for 

all).   
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 The effects of the 5-HT2 receptor subtype antagonist, mianserin (0.0032, 

0.032, and 0.32 mg/kg), on yawning elicited by TFMPP (3.2 mg/kg), PD-

128,907 (0.1 mg/kg), and physostigmine (0.1 mg/kg; i.p.) are shown in figure 

2.4C.  Mianserin produced a dose-dependent and significant inhibition of 

TFMPP-induced yawning [F(3,21)=9.85; p<0.001], with doses of 0.032 and 

0.32 mg/kg mianserin significantly inhibiting TFMPP-induced yawning 

compared to vehicle treated rats (p<0.01 for both).  Mianserin did not 

significantly effect yawning elicited by either PD-128,907 [F(3,21)=0.84; 

p>0.05] or physostigmine [F(3,21)=0.26; p>0.05],  at any dose tested.  

 

 D3-preferring antagonists on dopaminergic, cholinergic and 

serotonergic agonist induced yawning:  Figure 2.5 shows the effects of the 

D3-preferring antagonists; nafadotride, U99194, SB-277011A, and PG01037 on 

yawning elicited by PD-128,907 (0.1 mg/kg), physostigmine (0.1mg/kg; i.p.), 

and TFMPP (3.2 mg/kg).  Nafadotride (figure 2.5A), dose-dependently and 

significantly inhibited yawning elicited by PD-128,907 [F(3,21)=5.36; p<0.01) 

with a dose of 1.0 mg/kg significantly reducing yawning compared to vehicle 

treated rats (p<0.01).  There were no significant effects of nafadotride on either 

physostigmine- [F(3,21)=0.32; p>0.05] or TFMPP- [F(3,21)=0.60; p>0.05] 

induced yawning.  As shown in figure 2.5B, U99194 dose dependently and 

significantly reduced the amount of yawning elicited by PD-128,907 

[F(3,21)=29.78; p<0.0001], with doses of 3.2 and 10.0 mg/kg U99194 

significantly inhibiting yawning compared to vehicle treated rats (p<0.01 for 
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both).  Unlike nafadotride, U99194 also significantly inhibited the amount of 

yawning elicited by physostigmine [F(3,21)=11.91; p<0.0001], and TFMPP 

[F(3,21)=7.07; p<0.01],  with a dose of 10.0 mg/kg U99194 resulting in a 

significant reductions in the amount of yawning elicited by both physostigmine 

(p<0.01) and TFMPP (p<0.01).  The effects of SB-277011A on PD-128,907-, 

physostigmine-, and TFMPP-induced yawning are shown in figure 2.5C.  SB-

277011A dose-dependently and significantly reduced the amount of yawning 

elicited by PD-128,907 [F(3,21)=12.09; p<0.0001], with doses of 32.0 and 56.0 

mg/kg (p<0.01 for both) significantly inhibiting yawning compared to vehicle 

treated rats.  No significant effects of SB-277011A were seen on yawning 

elicited by either physostigmine [F(3,21)=0.68; p>0.05] or TFMPP 

[F(3,21)=2.20; p>0.05].  Similarly, PG01037 significantly and dose-dependently 

inhibited yawning elicited by PD-128,907 [F(3,21)=29.43; p<0.0001], with 

doses of 32.0 and 56.0 mg/kg (p<0.05 for both) PG01037 significantly reducing 

yawning compared to vehicle treated rats (figure 2.5D).  PG01037 did not 

significantly effect yawning elicited by either 0.1 mg/kg physostigmine 

[F(3,21)=0.16; p>0.05], or 3.2 mg/kg TFMPP [F(3,21)=0.07; p>0.05] at any 

dose tested. 

 

Discussion 

 

 Evidence has been provided in the present paper to support the 

hypothesis that D2/D3 agonist-induced yawning behavior in rats is mediated by 
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agonist activation of the dopamine D3 receptor, while the inhibition of yawning 

is a result of a competing agonist activation of the dopamine D2 receptor.  In 

agreement with the majority of previous studies, all of the D2/D3 agonists tested 

with exception of bromocriptine and PD-128,908 (Figure 2.1C), the inactive 

enantiomer of PD-128,907, elicited significant, dose-dependent increases in 

yawning behavior with inhibition seen at higher doses, resulting in the 

characteristic inverted U-shaped dose response curve for yawning in rats.  

Evidence is also provided for the selective antagonism of the induction of 

yawning behavior by D3-preferring antagonists, and the inhibition of yawning by 

D2-preferring antagonists.  In addition, the current studies demonstrate that 

inhibition of D3 agonist-induced yawning by D3-preferring antagonists is a result 

of their selective antagonist activity at the D3 receptor, and not through 

antagonist effects at D2, serotonergic, or muscarinic cholinergic receptors.   

 

 Yawning is a D3-mediated behavior:  Several lines of evidence have 

been provided in support of the hypothesis that yawning is a D3 agonist-

mediated behavior.  In general, all D3-preferring D2/D3 agonists induced 

significant amounts of yawning at low doses.  While there were no significant 

differences in the effectiveness of the agonists with respect to induction of 

yawning behavior with the exception of apomorphine, there were differences in 

the potency of the D2/D3 agonists to induce yawning.  The rank-order potency 

of the D2/D3 agonists to elicit yawning behavior was as follows; quinelorane, 

apomorphine, quinpirole, 7-OH-DPAT, pramipexole, and PD-128,907, while 
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bromocriptine and PD-128,908 failed to elicit significant levels of yawning.  The 

stereoselectivity of the yawning response with regard to PD-128,907 [and PD-

128,908] is an important finding, as dopamine receptors are selective with 

respect to more rigid agonists (DeWald et al., 1990).  Taken together with the 

findings of Stahle and Ungerstedt (1984), who showed that (+)-3-PPP, but not 

(-)-3-PPP, will elicit yawning, our current findings provide further evidence that 

D2/D3 agonists are inducing yawning via dopaminergic agonist mechanisms.  

Differences in yawning induced by bromocriptine may be a result of 

pharmacokinetic differences, as bromocriptine has been shown to induce 

significant levels of yawning in studies using a 60 minute observation period 

(Protais et al., 1983; Zarrindast and Jamshidzadeh, 1992).  

 

 Antagonists with a high degree of selectivity for the D3 compared to the 

D2 receptor selectively antagonized the induction of yawning behavior.  Three 

of the four D3-preferring antagonists (U99194, SB-277011A, and PG01037) 

tested in the current studies possess the ability to dose-dependently and 

selectively antagonize the induction of yawning by PD-128,907, while having 

no effect on the inhibition of yawning observed at higher doses.  As shown in 

figures 2.3C and 2.3D, respectively, SB-277011A and PG01037, D3-preferring 

antagonists with similarly high degrees of in vitro D3 selectivity (100- and 133-

fold respectively) produced almost identical effects on PD-128,907-induced 

yawning; significant, dose-dependent, downward/rightward shifts of the 

ascending limb of the yawning dose-response curve were observed, while the 
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descending limb of the dose-response curve for PD-128,907-induced yawning 

was not changed.  Similar effects were seen with the moderately selective (30-

fold) D3-preferring antagonist U99194, however, unlike SB-277011A and 

PG01037, at relatively high-dose of 10.0 mg/kg, U99194 completely inhibited 

PD-128,907-induced yawning; however, it should be noted that at this dose 

U99194 effectively antagonized not only dopaminergic, but cholinergic and 

serotonergic yawning as well. Nafadotride, the least selective (3-fold) of the 

D3-preferring antagonists, was the only D3 antagonist to produce a non-

selective antagonism of yawning behavior; shifting both the ascending and 

descending limbs of the dose-response curve for PD-128,907-induced yawning 

at the highest dose tested.  This effect was similar to that observed with 

haloperidol, a non-selective dopamine antagonist, and suggests that at a dose 

of 0.32 mg/kg, nafadotride is no longer selective for the D3 receptor, but rather 

is active at both the D3 and D2 receptors.  Taken together, these data provide 

strong support for the hypothesis that the induction of yawning by D2/D3 

agonists is mediated by an agonist activation of the D3 receptor. 

 

 Inhibition of yawning is a D2-mediated effect:  We have also provided 

evidence in support of the hypothesis that inhibition of D2/D3 agonist-induced 

yawning occurring at higher doses is mediated by an agonist activity at the D2 

receptor.  As shown in figure 2.2A and 2.2B, the D2-preferring antagonist L-

741,626, at the first behaviorally active dose (1.0 mg/kg), selectively 

antagonized the inhibitory effects of high doses of PD-128,907 and 
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quinelorane, resulting in a rightward shift in the descending limbs while having 

virtually no effect on the ascending limbs of the dose-response curves for both 

PD-128,907- and quinelorane-induced yawning.  In addition L-741,626 

produced a rightward shift in the maximal effective dose of PD-128,907 and 

quinelorane, resulting in an increased effectiveness for both agonists.  These 

data not only suggest that L-741,626, at a dose of 1.0 mg/kg, is an effective D2 

antagonist in vivo, but that it is also devoid of D3 antagonist activity.   

 

 Further support for the differential regulation of yawning behavior by the 

D3 and D2 receptors was provided by the effects of the non-selective DA 

antagonist haloperidol.  As D3- and D2-preferring antagonists selectively 

antagonize the ascending and descending limbs of the dose-response curve 

for D2/D3 agonist-induced yawning respectively, it would be expected that 

antagonists with mixed D2/D3 actions, such as haloperidol, would shift both the 

ascending and descending limbs of yawning dose-response curves at their 

initial active doses.  Indeed, at the first behaviorally active dose (0.032 mg/kg), 

haloperidol produced rightward shifts in both the ascending and descending 

limbs of the dose-response curves for both PD-128,907- and quinelorane-

induced yawning (Figures 2.2C and 2.2D).  This not only suggests that the 

effects of D3- and D2-preferring antagonists are a result of selective antagonist 

activity, but that non-selective D2/D3 antagonists produce effects distinct from 

those of other dopaminergic antagonists on D3 agonist-induced yawning.  
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 However, it should be noted that in addition to possessing high affinities 

for the D3 and D2 receptors, haloperidol also has significant affinities for the D1, 

D4, and D5 receptors.  It is, however, unlikely that activity at these receptors is 

influencing PD-128,907-induced yawning behavior as the D1/D5-selective 

antagonist, SCH 23390, and the D4-selective antagonist, L-745,870, at 

behaviorally active doses (Patel et al., 1997; Chaperon et al., 2003) did not 

alter yawning elicited by either low (0.032-0.1 mg/kg) or high (0.32 mg/kg) 

doses of PD-128,907.  This provides further evidence that D2/D3 agonist-

induced yawning behavior is under the direct control of the D3 (induction) and 

D2 (inhibition) receptors, but not the D1, D4, or D5 receptors.  However, the 

possibility remains that other dopaminergic receptors may modulate D3 

agonist-induced yawning elicited by other D2/D3 agonists, as several of the 

agonists tested, such as apomorphine, quinelorane, and quinpirole, possess 

significant affinities for the D1, D4, and D5 receptors (apomorphine), or D4 

receptor (quinelorane and quinpirole) in addition to the D3 and D2 receptors. 

 

 Dopaminergic, serotonergic, and cholinergic regulation of 

yawning:  The findings of the current study confirm, and extend those of 

earlier studies (e.g., Yamada and Furukawa, 1980; Ushijima et al., 1984; 

Zarrindast and Poursoltan, 1989; Stancampiano et al., 1994), and demonstrate 

that while scopolamine will dose-dependently antagonize yawning induced by 

cholinergic, serotonergic, and dopaminergic agonists (figure 2.4B), 

serotonergic and dopaminergic antagonists are able to selectively antagonize 
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yawning elicited by their respective agonists.  More specifically, nafadotride, 

SB-277011A, and PG01037, D3-preferring antagonists with a wide range (3-

133 fold) of selectivities for the D3 receptor over the D2 receptor in vitro, were 

able to selectively antagonize PD-128,907-induced yawning, while having no 

effect on yawning elicited by either physostigmine or TFMPP (Figure 2.5).  This 

suggests that SB-277011A and PG01037 are not only selective for the D3 over 

the D2 receptor, but that they are also selective for the D3 receptor over certain 

serotonergic and cholinergic receptors at doses up to 56.0 mg/kg.  Similarly, 

while nafadotride demonstrated little or no preference for the D3 compared to 

the D2 receptor in vivo, no serotonergic or cholinergic antagonist activity was 

detected at doses up to 1.0 mg/kg.  However, in contrast to the effects of the 

other D3-preferring antagonists, U99194, at a dose of 10.0 mg/kg, significantly 

antagonized yawning elicited by PD-128,907, TFMPP and physostigmine, 

suggesting that at higher doses, it is no longer selective for dopaminergic 

receptors.  While U99194 is unique in this regard within this group of D3-

preferring antagonists, clozapine, an antagonist with significant affinities for 

dopaminergic, serotonergic and cholinergic receptors has also been shown to 

antagonize both dopaminergic and cholinergic yawning (Dubuc et al., 1982), 

suggesting that antagonism of physostigmine-induced yawning may be a 

reliable measure of anti-cholinergic activity.  Further evidence of an in vivo anti-

muscarinic activity of U99194 has been demonstrated by Goudie and 

colleagues (2001) who showed in discrimination studies that U99194 

generalized to a scopolamine cue, suggesting that U99194 may possess anti-
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cholinergic activity at higher doses.  Although it has been suggested that 

U99194 functions as a D3 selective antagonist in vivo at doses ranging from 

13.0 to 40.0 mg/kg based on its inability to increase plasma prolactin, to induce 

catalepsy, and to inhibit the induction of hypothermia by PD-128,907 (Audinot 

et al., 1998), the results of the current study suggest that while U99194 may be 

selective for the D3 compared to the D2, a significant anti-cholinergic effect is 

apparent at 10.0 mg/kg.  Thus the current studies support the hypothesis that 

dopaminergic, serotonergic and cholinergic agonists induce yawning via 

distinct mechanisms, and furthermore that yawning induced by D2/D3 agonists 

is a result of agonist activation of D3 receptors, and not serotonergic or 

cholinergic receptors. 

 

 To summarize the results of the studies reported herein, evidence has 

been provided in support of the hypothesis that the induction of yawning by 

D2/D3 agonists is mediated through an agonist activity at the D3 receptor, while 

the subsequent inhibition of yawning seen at higher doses is a result of an 

increasing D2 agonist activity.  Based on these findings several conclusions 

can be drawn:  First, the ascending limb of the dose-response curves 

corresponds to doses that are selectively activating D3 receptors over D2 

receptors, while the descending limb corresponds to those activating both the 

D3 and D2 receptors.  Additionally, determinations of in vivo D3 potency and 

effectiveness may be possible, based on the onset and maximal amount of 

yawning elicited.  Furthermore, inhibition of yawning may provide useful 
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information regarding in vivo D2 potency, and lastly, the shape of the dose-

response curves may allow for determinations of in vivo D3 selectivity of D3-

preferring D2/D3 agonists to be made.  The results of the current set of studies 

have demonstrated that D3 selective antagonism will only shift the ascending 

limb of the yawning dose-response curve, that D2 selective antagonism will 

only shift the descending limb of the yawning dose-response curve, while non-

selective D2/D3 antagonism will shift both the ascending and descending limbs 

of the dose-response curve for D2/D3 agonist-induced yawning behavior in rats.  

In conclusion, as the current studies have provided evidence that the induction 

of yawning behavior by D2/D3 agonists is mediated by the D3 receptor, yawning 

may be an important pharmacological effect that can be used in the 

characterization, classification, and discovery of in vivo D3 agonist and 

antagonist actions.  Thus, it may be possible to relate other behavioral effects 

of D2/D3 agonists and antagonists to their ability to modulate yawning.  

Whether the potency and selectivity measures of these compounds can be 

utilized across behavioral measures will need to be explored in the future. 
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Figure 2.1. Dose-dependent induction of yawning by dopamine D3-preferring 
agonists A) PD-128,907 (0.0032 – 0.32 mg/kg), quinelorane (0.0001 – 0.032 
mg/kg), and pramipexole (0.00032 – 1.0 mg/kg); B) PD-128,907 (0.0032 – 0.32 
mg/kg), 7-OH-DPAT (0.0032 – 0.1 mg/kg), and quinpirole (0.0032 – 0.32 
mg/kg); C) PD-128,907 (0.0032 – 0.32 mg/kg), bromocriptine (0.32 – 10.0 
mg/kg), apomorphine (0.001 – 0.32 mg/kg), and PD-128,908 (0.01 – 1.0 
mg/kg).  Data are presented as mean (±SEM), n=8, number of yawns during a 
20 minute observation period. 



 62

Figure 2.1. D2-like agonist-induced yawning in rats 
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Figure 2.2. Effects of the D2-selective antagonist L-741,626 (0.32 and 1.0 
mg/kg) on A) PD-128,907 (0.0032 – 1.0 mg/kg) induced yawning, and B) 
quinelorane (0.0001 – 0.032 mg/kg) induced yawning.  Effects of the non-
selective dopamine receptor antagonist haloperidol (0.01 and 0.032 mg/kg) on 
C) PD-128,907 (0.0032 – 1.0 mg/kg) induced yawning, and D) quinelorane 
(0.0001 – 0.1 mg/kg) induced yawning. Data are presented as mean (±SEM), 
n=8, number of yawns during a 20 minute observation period.  * p<0.05; ** 
p<0.01; *** p<0.001; Significant difference from vehicle-treated animals was 
determined by unbalanced, two-way ANOVA with post-hoc Bonferroni tests. 
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Figure 2.2. Effects of D2-preferring and non-selective D2/D3 antagonists on D2-
like agonist-induced yawning in rats 
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Figure 2.3. Effects of D3-preferring antagonists on PD-128,907 (0.0032 – 
0.32 mg/kg) induced yawning in rats.  A) Nafadotride at doses of 0, 0.001, 0.1, 
and 0.32 mg/kg; B) U99194 at doses of 0, 1.0, 3.2, and 10.0 mg/kg; C) SB-
277011A at doses of 0, 3.2, 32.0, and 56.0 mg/kg; and D) PG01037 at doses 
of 0, 10.0, 32.0, and 56.0 mg/kg.  Data are presented as mean (±SEM), n=8, 
number of yawns during a 20 minute observation period.  * p<0.05; ** p<0.01; 
*** p<0.001; Significant difference from vehicle-treated animals was 
determined by unbalanced, two-way ANOVA with post-hoc Bonferroni tests. 
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Figure 2.3. Effects of D3-preferring antagonists on D2-like agonist-induced 
yawning in rats 
 

 



 67

Figure 2.4. A) Dose-response curves for PD-128,907 (0.0032 – 0.32 mg/kg), 
physostigmine (0.01 – 1.0 mg/kg; i.p.), and TFMPP (0.32 – 10.0 mg/kg) 
induced yawning in rats.  B) Effects of scopolamine (0, 0.0001, 0.001, and 0.01 
mg/kg) on yawning induced by PD-128,907 (0.1 mg/kg), physostigmine (0.1 
mg/kg; i.p.) and TFMPP (3.2 mg/kg).  C) Effects of mianserin (0, 0.0032, 0.032, 
and 0.32 mg/kg) on yawning induced by PD-128,907 (0.1 mg/kg), 
physostigmine (0.1 mg/kg; i.p.) and TFMPP (3.2 mg/kg).  Data are presented 
as mean (±SEM), n=8, number of yawns during a 20 minute observation 
period.  * p<0.05; ** p<0.01; *** p<0.001; Significant difference from vehicle-
treated rats was determined by one-way repeated-measures ANOVAs with 
post-hoc Dunnett’s tests. 
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Figure 2.4. Effects of cholinergic and serotonergic antagonists on yawning in 
rats 
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Figure 2.5. Effects of D3-preferring antagonists on yawning induced by PD-
128,907 (0.1 mg/kg), physostigmine (0.1 mg/kg; i.p.) and TFMPP (3.2 mg/kg).  
A) Nafadotride at doses of 0, 0.01, 0.1, and 1.0 mg/kg; B) U99194 at doses of 
0, 1.0, 3.2, and 10.0 mg/kg; C) SB-277011A at doses of 0, 3.2, 32.0, and 56.0 
mg/kg; and D) PG01037 at doses of 0, 10.0, 3.2, and 56.0 mg/kg.  Data are 
presented as mean (±SEM), n=8, number of yawns during a 20 minute 
observation period.  * p<0.05; ** p<0.01; *** p<0.001; Significant difference 
from vehicle-treated rats was determined by one-way repeated-measures 
ANOVAs with post-hoc Dunnett’s tests. 
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Figure 2.5. Effects of D3-preferring antagonists on dopaminergic, cholinergic, 
and serotonergic yawning in rats 
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CHAPTER III 
 

Yawning and Hypothermia in Rats: Effects of Dopamine D3 and D2 
Agonists and Antagonists 

 

Introduction 

 

 Dopamine D2 and D3 receptors are both members of the D2-like family of 

dopamine receptors, and are known to possess a high degree of sequence 

homology (52% overall and 75% in the transmembrane domains; Sokoloff et 

al., 1990), and a partially overlapping pattern of distribution in the brain.  For 

example, D2 receptors are expressed at relatively high levels within cortical, as 

well as limbic regions, while the D3 receptor has been shown to possess a 

much more restricted limbic pattern of distribution in both the rat (Levesque et 

al., 1992) and human brain (Gurevich and Joyce, 1999).  These high levels of 

expression within limbic brain regions have led many to hypothesize that the D2 

and D3 receptors are of particular interest as pharmacologic targets for the 

treatment of a variety of movement and psychiatric disorders including 

Parkinson’s disease, restless leg syndrome, depression, and schizophrenia 

(e.g., Joyce, 2001; Happe and Trenkwalder, 2004), as well as a variety of 

aspects of drug abuse (e.g., Heidbreder et al., 2005; Newman et al., 2005).  

Due in part to the lack of highly selective agonists and antagonists, the 
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receptor(s) mediating either the therapeutic or mechanistic effects are yet to be 

fully elucidated.  

 

 Although several agonists and antagonists have been reported to be 

over 100-fold selective for either the D3 (e.g., Stemp et al., 2000; Grundt et al., 

2005) or D2 (e.g., Vangveravong et al., 2006) receptors based on in vitro 

binding studies, a large degree of variability exists with respect to the reported 

in vitro binding affinities and D2/D3 selectivity ratios.  A variety of factors may 

account for these differences in affinity and selectivity including differences in 

receptor species, expression systems, radioligands, and/or assay conditions.  

For example, reported binding affinities for pramipexole at the D2 receptor 

range from 3.9 nM to 955 nM depending upon whether agonist or antagonist 

radioligands were used (Mierau et al., 1995; Millan et al., 2002) while reported 

D3 selectivity ratios range from 2- to 488-fold selective for the D3 over D2 

receptor depending upon whether binding affinities from cloned human 

receptor cell systems or human brain tissue are used to make the 

determinations (Gerlach et al., 2003; Seeman et al., 2005).  Furthermore, in 

vitro binding studies often provide greater affinity and selectivity values than 

those obtained through functional studies suggesting that differences in D2 and 

D3 efficacy may also greatly influence a ligand’s receptor selectivity.  For 

example, in three separate studies which characterized D2/D3 agonists based 

on their binding affinities for the D2 and D3 receptors and ability to stimulate 

mitogenic activity, quinpirole was found to be either 9-, 15- or 36-fold selective 
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for the D3 over D2 receptor as determined by radioligand binding, but the D3 

selectivity ratios for quinpirole dropped to 2.5-, 1.3- and 3.3-fold when ED50 

values for the induction of mitogenic activity were compared (Chio et al., 1994; 

Pugsley et al., 1995; Sautel et al., 1995a).   

 

 The identification of agonists and antagonists highly selective for the D2 

and/or D3 receptors has been complicated by a lack of well characterized 

behavioral effects specifically mediated by either the D2 or D3 receptor.  While 

D2/D3 agonists have been shown to modulate body temperature, locomotor 

activity, and certain neuroendocrine responses in addition to other behavioral 

measures (Faunt and Crocker, 1987; Millan et al., 1995b; Depoortere et al., 

1996; Smith et al., 1997; Boulay et al., 1999a; Boulay et al., 1999b), few of 

these effects have been fully characterized and well validated.  There is strong 

pharmacological and genetic evidence in support of subtype selective in vivo 

effects for the induction of hypothermia resulting from D2 receptor activation, 

and significant pharmacological evidence for the induction of yawning resulting 

from agonist activation of the D3 receptor.  

  

 The first indication that D2/D3 agonist-induced hypothermia was 

mediated by the D2 but not D3 receptor was the finding that D3 receptor-

deficient mice displayed a normal hypothermic response to D2/D3 agonists 

while the effect was completely absent in D2 receptor-deficient mice (Boulay et 
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al., 1999a; Boulay et al., 1999b).  This was later supported by pharmacologic 

studies in rats that demonstrated that the D2-preferring antagonist, L-741,626, 

produced a dose-dependent inhibition of D2/D3 agonist-induced hypothermia, 

whereas the D3-preferring antagonist A-437203 failed to alter the hypothermic 

response at any dose tested (Chaperon et al., 2003).   

 

 Yawning behavior in rats has been a long studied phenomenon, and is 

known to be regulated by a variety of neurotransmitter systems including 

cholinergic (Urba-Holmgren et al., 1977; Yamada and Furukawa, 1980), 

serotonergic (Stancampiano et al., 1994), and dopaminergic (Mogilnicka and 

Klimek, 1977; Holmgren and Urba-Holmgren, 1980) systems associated with 

the paraventricular nucleus of the hypothalamus (Argiolas and Melis, 1998).  

Recently, a specific role for the D3 receptor in the induction of yawning 

behavior has also been demonstrated.  A series of D3-preferring agonists 

induced dose-dependent increases in yawning behavior over low doses, with 

inhibition of yawning occurring at higher doses resulting in a characteristic 

inverted U-shaped dose-response curve.  Several D3-preferring antagonists 

were also shown to selectively inhibit the induction of yawning behavior, while 

the D2-preferring antagonist, L-741,626, produced a selective rightward and 

upward shift in descending limb of the dose-response curve for D2/D3 agonist-

induced yawning (Collins et al., 2005).  Thus, although it has been suggested 

that the induction of yawning is mediated by activation of the D2 receptor 

(Millan et al., 2000), our data indicated that the induction of yawning by D2/D3 
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agonists is mediated by a selective activation of the D3 receptor while inhibition 

of yawning behavior at higher doses is a result of a concomitant D2 receptor 

activation. 

 

 The present studies were aimed at further characterizing the roles of the 

D2 and D3 receptors in the regulation of body temperature and yawning 

behavior.  Thus, a series of D2-like agonists with a range of reported in vitro 

selectivities for the D3 over D2 receptor (pramipexole ≥ PD-128,907 = 7-OH-

DPAT > quinpirole = quinelorane >apomorphine > U91356A > sumanirole), as 

well as two D4-preferring agonists (ABT-724 and PD-168,077) were assessed 

for their ability to induce yawning and hypothermia, while a series of D2/D3 

antagonists with a similar range of reported in vitro selectivities (PG01037 = 

SB-277011A >> U99194 > nafadotride > haloperidol > L-741,626) were 

characterized for their ability to modulate the induction of yawning and 

hypothermia in the rat.  Convergent evidence support the hypotheses that the 

induction of hypothermia and yawning behavior are mediated by the selective 

activation of the D2 and D3 receptors.  Furthermore, these studies suggest that 

the minimal effective dose (M.E.D.) for the induction and inhibition of yawning 

behavior and hypothermia may provide a means for the determination of in vivo 

D3 and D2 receptor potency measures for agonists and antagonists 

respectively. 
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Methods 

 

 Subjects:  Male Sprague-Dawley rats weighing 250-300 g were 

obtained from Harlan (Indianapolis, IN) and given free access to standard 

Purina rodent chow and water.  Rats were housed three to a cage for all 

yawning studies, and singly housed for hypothermia studies.  All rats were 

maintained in a temperature (21-23 ºC) and humidity controlled environment, 

on a 12-h dark/light cycle with lights on at 7:00 AM.  All studies were performed 

in accordance with the Guide for the Care and Use of Laboratory Animals, as 

adopted and promulgated by the National Institutes of Health, and all 

experimental procedures were approved by the University of Michigan 

Committee on the Use and Care of Animals. 

 

 Observation of Yawning Behavior:  Yawning behavior was defined as 

a prolonged (~1 sec.), wide opening of the mouth followed by a rapid closure.  

On the day of testing, rats were transferred from their home cage to a test 

chamber (48 cm x 23 cm x 20 cm clear rodent cage with standard cob 

bedding), and allowed to habituate to the chamber for a period of 30 min.  A 

sterile water injection was administered 30 min prior to the injection of agonist 

or vehicle; behavioral observations began 10 min thereafter, and yawns were 

scored for a period of 20 min.  A mirror was placed behind two stacked 

observation cages to allow for the simultaneous observation of two rats by a 
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trained observer.  Each rat was tested multiple times with at least 48 hrs 

between test sessions to allow for drug washout.  Food and water were 

unavailable during test sessions, and all experiments were conducted between 

the hours of 12:00 PM and 6:00 PM.  Yawning induced by peak doses of 

agonists were redetermined throughout the duration of the experiment to insure 

there were no changes in agonist-induced yawning behavior. 

 

 Measurement of Core Body Temperature:  Rats were anesthetized 

with ketamine (100 mg/kg; i.m.) and xylazine (10 mg/kg; i.m.) and their 

abdominal area was shaved and cleaned with iodine swabs prior to surgical 

implantation of radio-telemetric probes (E-4000 E-Mitter, Mini-Mitter, Bend, OR, 

USA).  A small rostral-caudal incision was made in the abdominal wall to allow 

for insertion of the probe, and the abdominal wall was closed using absorbable, 

5-0 chromic gut suture, and the skin was closed using 5-0 Ethilon® suture.  

Rats were allowed at least 5 days to recover prior to the beginning of 

experimentation.   

 

 On the day of testing, rats were weighed and returned to their cages 

which were placed onto a receiving pad (ER-4000 Receiver, Mini-mitter, Bend, 

OR) to allow for the real time detection and recording of core body 

temperature.  Temperature measurements were taken every min with at least 

45 min of baseline temperature data recorded prior to the administration of 
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antagonist or vehicle.  Agonist or vehicle injections were administered 30 min 

after either antagonist or vehicle pretreatments, and core body temperature 

was recorded for a period of 120 min thereafter.  Rats were removed from the 

receivers for a period of 5 min to allow for injections to be administered, but 

were otherwise uninterrupted.  Each rat was tested multiple times with each 

dose of one agonist with at least a 48 hr drug washout period allowed between 

test sessions.  All experiments were carried out between the hours of 9:00 AM 

and 3:00 PM. 

 

 D2-Like Agonist-Induced Yawning and Hypothermia:  A series of D2-

like agonists were assessed for their ability to induce yawning behavior and 

hypothermia in rats.  The following agonists were assessed at 1/2 log unit dose 

increments: 7-OH-DPAT (0.0032 - 1.0 mg/kg), ABT-724 (0.001 - 1.0 mg/kg), 

apomorphine (0.001 - 1.0 mg/kg), PD-128,907 (0.0032 - 1.0 mg/kg), PD-

168,077 (0.0032 - 1.0 mg/kg), pramipexole (0.0032 - 3.2 mg/kg), quinelorane 

(0.0001 - 0.032 mg/kg), quinpirole (0.0032 - 1.0 mg/kg), sumanirole (0.032 - 

3.2 mg/kg), and U91356A (0.032 - 1.0 mg/kg).  Yawning and hypothermia were 

determined in separate groups of rats, with subgroups of rats receiving each 

dose of an agonist in random order. 

 

 Effects of D2-like Antagonists on Hypothermia and Yawning 

Behavior:  The ability of the D2 antagonist, L-741,626, and the D3 antagonist, 
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U99194, to alter hypothermia induced by either D2/D3 agonists, or 8-OH-DPAT 

was investigated in separate groups of rats for each agonist.  Pretreatments of 

1.0 mg/kg L-741,626, 3.2 mg/kg U99194, or vehicle were presented in random 

order, while the agonist dose (0.1 mg/kg 7-OH-DPAT, 1.0 mg/kg 8-OH-DPAT, 

0.1 mg/kg apomorphine, 0.32 mg/kg PD-128,907, 0.32 mg/kg pramipexole, 

0.01 mg/kg quinelorane, 0.1 mg/kg quinpirole, 1.0 mg/kg sumanirole and 0.32 

mg/kg U91356A) remained constant.   

 

 The D2 antagonist, L-741,626, and the D3 antagonist, PG01037, were 

assessed for their ability to alter D2/D3 agonist-induced yawning in separate 

groups of rats for each agonist.  Each rat was tested six times, with 

pretreatments of either 1.0 mg/kg L-741,626, 32.0 mg/kg PG01037, or vehicle 

presented in random order prior to each of two doses of a single agonist (0.032 

and 0.1 mg/kg 7-OH-DPAT, 0.032 and 0.1 mg/kg apomorphine, 0.1 and 0.32 

mg/kg PD-128,907, 0.1 and 0.32 mg/kg pramipexole, 0.0032 and 0.01 mg/kg 

quinelorane, 0.032 and 0.1 mg/kg quinpirole, 3.2 mg/kg sumanirole, and 0.1 

and 0.32 mg/kg U91356A).   

 

 The doses of agonists selected for the yawning study represent low 

doses that produce peak levels of yawning and high doses that are on the 

descending limb of the dose-response curves for yawning behavior.  These 

high doses were also used in the hypothermia study as they all possess 
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significant hypothermic effects.  The doses for the antagonist were chosen 

based on their ability to selectively shift the ascending (PG01037 and U99194) 

or descending (L-741,626) limbs of the dose response curves for PD-128,907 

induced yawning in rats (Collins et al., 2005). 

 

 Effects of D2/D3 Antagonists on PD-128,907-Induced Yawning 

Behavior and Sumanirole-Induced Hypothermia:  A series of antagonists 

with varying in vitro selectivities for the D2 and D3 receptors were examined 

with regard to their ability to antagonize hypothermia induced by 1.0 mg/kg 

sumanirole, as well as yawning induced by 0.1 and 0.32 mg/kg of the D3-

preferring agonist, PD-128,907.  The D3-preferring antagonists nafadotride 

(0.1, 0.32, and 1.0 mg/kg), U99194 (1.0, 3.2, and 10.0 mg/kg), SB-277011A 

(3.2, 32.0, and 56.0 mg/kg), and PG01037 (3.2, 32.0, and 56.0 mg/kg), as well 

as the D2-preferring antagonists L-741,626 (0.32, 1.0, and 3.2 mg/kg) and 

haloperidol (0.01, 0.032, and 0.1 mg/kg), were given 30 min prior to the 

administration of either sumanirole in hypothermia studies or PD-128,907 in 

yawning studies.  Separate groups of rats were used for yawning and 

hypothermia studies with subgroups of rats for each agonist.  Doses were 

administered in random order.   

 

 Drugs:  (±)-7-OH-DPAT, (-)-apomorphine, PD-128,907, quinelorane, 

and (-)-quinpirole were obtained from Sigma Chemical Co (St. Louis, Mo).  L-
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741,626, PD-168,077, and U99194 were obtained from Tocris (Ellisville, MO).  

ABT-724 was prepared and generously provided by Dr. Kenner Rice (Chemical 

Biology Research Branch, NIDA, Bethesda, MD), PG01037 by Drs. Amy H. 

Newman and Peter Grundt (Medicinal Chemistry Section-NIDA, Baltimore, 

MD), pramipexole and SB-277011A by Drs. Jianyong Chen and Shaomeng 

Wang (University of Michigan, Ann Arbor, MI), and sumanirole by Drs. Cédric 

Chauvignac and Stephen Husbands (University of Bath, Bath, U.K.).  U91356A 

was provided by Dr. Lisa Gold (Pfizer, Ann Arbor, MI).  All drugs were 

dissolved in sterile water with the exception of L-741,626, which was dissolved 

in 5% ethanol with 1M HCl, PD-168,077 which was made up fresh daily, and 

dissolved in 5% ethanol, and PG01037 and SB-277011A, which were 

dissolved in 10% β-cyclodextrin.  All drugs were administered subcutaneously 

(s.c.) in a volume of 1 ml/kg.  The 56.0 mg/kg doses of SB-277011A and 

PG01037 were administered in a volume of 3 ml/kg s.c. due to solubility 

limitations. 

 

 Data Analysis:  Determination of dose-response curves for agonist 

induced hypothermia were conducted with 6 rats per group with results 

expressed as the mean change in body temperature 30 min post agonist 

injection compared to the body temperature 1 min prior to the agonist injection 

± standard error of the mean (SEM).  All yawning studies were conducted with 

8 rats per group with results expressed as mean number of yawns during the 

20 min observation period ± SEM.  A one-way, repeated-measures ANOVA 
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with post-hoc Dunnett’s tests were used to determine if agonist-induced 

yawning or hypothermia were significantly different from vehicle treated 

animals (GraphPad Prism; GraphPad Software Inc., San Diego, CA).  

Significant differences in the maximal amount of yawning elicited by agonists 

were determined by one-way repeated-measures ANOVA with post-hoc 

Tukey’s HSD tests. Significant effects of antagonists on the induction of 

yawning and hypothermia were determined by one-way, repeated-measures 

ANOVA with post-hoc Dunnett’s tests. 

 

 The M.E.D. for D3 agonist activity (M.E.D.D3) was defined as the 

smallest dose that produced a statistically significant increase in yawning.  The 

M.E.D. for D2 agonist activity (M.E.D.D2) was defined as the smallest dose that 

produced a statistically significant decrease in core body temperature.  

Selectivity ratios were calculated as the M.E.D.D2/ M.E.D.D3.  Similar M.E.D. 

values were established for the antagonists (M.E.D.ANT.D2 and M.E.D.ANT.D3) 

and defined as the M.E.D. for inhibition of hypothermia or yawning induced by 

D2 and D3 agonists, respectively. 

 

Results 

 

 Agonist-Induced Yawning Behavior and Hypothermia:  As shown in 

Figure 3.1, seven of the eight agonists with significant affinity for the D3 and D2 
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receptors induced dose-dependent increases in yawning behavior over low 

doses, with inhibition of yawning and significant decreases in core body 

temperature observed at higher doses.  With the exception of apomorphine 

and U91356A, there were no significant differences between the maximal 

amounts of yawning produced by these agonists, and they will subsequently be 

referred to as D3-preferring agonists.  Unlike the D3-preferring agonists, the D2- 

and D4-preferring agonists differed in their ability to induce yawning and 

hypothermia in rats.  As shown in Figure 3.1, sumanirole induced significant 

increases in yawning, although these increases were relatively small and 

observed only at the highest dose, whereas significant decreases in core body 

temperature were observed at lower doses; sumanirole will subsequently be 

referred to as a D2-preferring agonist.  The D4-preferring agonists, ABT-724 

and PD-168,077 (Figure 3.2), failed to induce significant levels of yawning or 

hypothermia over a wide range of behaviorally active doses (Brioni et al., 2004; 

Enguehard-Gueiffier et al., 2006) suggesting that, at these doses, they are 

devoid of agonist activity at the D3 and D2 receptors.   

 

 Table 3.1 shows the M.E.D.D2 and M.E.D.D3 values, as well as the in vivo 

selectivity ratios for each of the agonists.  The selectivity ratios obtained for the 

seven D3-preferring agonists, as calculated from the M.E.D.s for the induction 

of yawning and hypothermia, range from 3.2 to 32.0, indicating that these 

agonists were more potent at inducing yawning behavior than in producing 

hypothermia.  Unlike the other D2/D3 agonists, the currently available in vitro 
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data suggests that sumanirole preferentially binds the D2 over D3 receptor 

(Piercey et al., 1996; Heier et al., 1997), and in the current studies sumanirole 

displayed a distinctly different profile of activity.  Not only was sumanirole more 

potent at inducing hypothermia than yawning, but as will be discussed later, the 

low levels of yawning produced by sumanirole may not be mediated through 

the D3 receptor, and therefore the M.E.D.D3 and D2/D3 ratio for sumanirole in 

Table 3.1 are placed in parentheses.  

 

 Antagonism of D2/D3 Agonist-Induced Yawning and Hypothermia:  

As shown in Table 3.2, the D3 antagonist PG01037 and the D2 antagonist L-

741,626 produced differential effects on yawning behavior, and these effects 

were dependent on the dose of agonist tested.  At a dose of 32.0 mg/kg, 

PG01037 significantly inhibited yawning induced by the low doses of all D3-

preferring agonists, while having no effect on the low levels of yawning 

observed at the high doses of these agonists.  Unlike with the D3-preferring 

agonists, the small amount of yawning produced by the D2-preferring agonist, 

sumanirole, was not significantly altered by administration of PG01037, but 

was completely blocked by the cholinergic antagonist, scopolamine (data not 

shown), suggesting that it may be mediated by cholinergic rather than by D3 

receptors.  Pretreatment with the D2 antagonist L-741,626 (1.0 mg/kg) did not 

significantly alter induction of yawning by low doses of D3-preferring agonists, 

but significantly increased yawning induced by high doses of all D2/D3 agonists, 

including sumanirole.  This dose of L-741,626 was also found to significantly 
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antagonize the induction of hypothermia induced by high doses of all D3-

preferring agonists as well as the D2-preferring agonist, sumanirole (Table 3.3).  

Conversely, pretreatment with a behaviorally active dose of the D3 antagonist, 

U99194, did not significantly alter the induction of hypothermia resulting from 

any of the D2/D3 agonists tested (Table 3.3). 

 

 Antagonism of PD-128,907-Induced Yawning:  The left two panels of 

Figure 3.3 show the effects of the D3-preferring antagonists on yawning 

induced by a low and high dose of the D3-preferring agonist PD-128,907.  

Pretreatment with all of the antagonists dose-dependently inhibited the 

induction of yawning by the low dose of PD-128,907 (left panel, Figure 3.3).  

Differences were observed, however, with respect to the effects of the 

antagonists on yawning induced by the high dose of PD-128,907.  PG01037, 

SB-277011A, and U99194 had no effect on the low levels of yawning elicited 

by this high dose of PD-128,907, whereas pretreatment with the highest two 

doses of nafadotride resulted in significant increases in yawning induced by the 

high dose of PD-128,907 (center panel, Figure 3.3).  The M.E.D. for the 

inhibition of yawning induced by 0.1 mg/kg PD-128,907 (M.E.D.D3 ANT) for both 

PG01037 and SB-277011A was 32.0 mg/kg, while the M.E.D.D3 ANT for U99194 

was 3.2 mg/kg, and 1.0 mg/kg for nafadotride (Table 3.1).   
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 The two left panels of Figure 3.4 demonstrate that, similar to 

nafadotride, the D2-preferring antagonists, haloperidol and L-741,626, 

produced increases in the amount of yawning observed following 

administration of the high dose of PD-128,907 (center panel, Figure 3.4).  

Moreover, these effects were observed at doses that did not alter yawning 

increased by the low dose of PD-128,907 (left panel, Figure 3.4); however 

decreases in yawning induced by this low dose of PD-128,907 were observed 

at higher doses for both of these antagonists.  The M.E.D.D3 ANT for L-741,626 

and haloperidol were 3.2 and 0.1 mg/kg, respectively (Table 3.1).  

 

 Antagonism of Sumanirole-Induced Hypothermia:  The effects of the 

D3-preferring antagonists PG01037, SB-277011A, U99194 and nafadotride on 

sumanirole-induced hypothermia are shown in the right panel of figure 3.3.  

There were no significant effects of PG01037, SB-277011A or U99194 on the 

hypothermia produced by 1.0 mg/kg sumanirole.  Larger doses of PG01037 

and SB-277011A could not be given due to solubility limitations, and larger 

doses of U99194 were not used as they have been shown to produce anti-

cholinergic effects (Goudie et al., 2001; Collins et al., 2005); for this reason, 

M.E.D.D2 ANT values and D2/D3 ratios for these antagonists could not be 

calculated (Table 3.1).  A significant and dose-dependent inhibition of 

sumanirole-induced hypothermia was observed following administration of 

nafadotride (right panel, Figure 3.3), with an M.E.D.D2 ANT of 0.32 mg/kg (Table 

3.1).  Similarly, haloperidol and L-741,626 both produced a significant and 
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dose-dependent inhibition of sumanirole-induced hypothermia (right panel, 

Figure 4), with M.E.D.D2 ANT values of 0.032, and 1.0 mg/kg respectively (Table 

3.1).  

 

Discussion 

 

 The current studies replicate and extend the findings of a previous study 

that suggested that the induction of yawning by low doses of D2/D3 agonists is 

mediated by the selective activation of the D3 receptor, whereas the inhibition 

of yawning occurring at higher doses is mediated by a concomitant activation 

of the D2 receptor (Collins et al., 2005).  As was demonstrated in the earlier 

paper, yawning induced by a low dose of the D3-preferring agonist PD-128,907 

was selectively, and dose-dependently inhibited by the D3 antagonists, 

PG01037, SB-277011A, and U99194,  whereas the inhibition of yawning 

observed at a high doses of PD-128,907 was reversed by the selective D2 

antagonist L-741,626, but not PG01037, SB-277011A, nor U99194.   

 

 The current studies extend the previous findings in several ways.    In 

addition to evaluation of agonist and antagonist interactions on yawning, the 

effects of the D2/D3 agonists alone and in combination with selective 

antagonists were evaluated on core body temperatures to test the notion that 

the hypothermic effects of these agonists are mediated by the activation of the 
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D2, but not the D3 or D4 receptor (Boulay et al., 1999a; Boulay et al., 1999b; 

Chaperon et al., 2003).  Several lines of evidence presented herein support 

this notion.  The selective D2 agonist, sumanirole, produced decreases in body 

temperature at relatively low doses that did not induce yawning.  The 

hypothermic effects of sumanirole were prevented by prior administration of the 

D2-preferring antagonists, haloperidol and L-741,626.  L-741,626 also inhibited 

the hypothermic effects of high doses of all of the D3-preferring agonists in 

addition to producing dramatic increases in yawning when combined with the 

same high doses of D3-preferring agonists.  The latter is likely to reflect 

reversal of the D2-mediated inhibition of yawning produced at high doses of the 

agonists, and is consistent with the notion that these antagonists are D2-

selective and that the suppression of yawning and hypothermic effects 

observed at relatively high doses of D2/D3 agonists are D2 agonist-mediated 

effects.  Importantly, these differential effects of D3 and D2 antagonists on 

yawning induced by low and high doses of D2/D3 agonists were observed with 

all of the D3-preferring agonists tested in the current study (Table 3.2), and 

occurred at doses of PG01037 that do not alter the induction of yawning by 

physostigmine or TFMPP (Collins et al., 2005), and a dose of L-741,626 that 

does not alter the induction of hypothermia by the serotonin-1A agonist, 8-OH-

DPAT (Table 3.2) suggesting that these effects are a result of a selective 

antagonist activity at D3 and D2 receptors, respectively. 
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 These in vivo measures of selective D3 (yawning) and D2 (hypothermia) 

activation were used to characterize ten D2-like agonists and six D2/D3 

antagonists.  This extensive evaluation, comparing the potency of each agonist 

to produce increases in yawning with its potency to produce hypothermia 

(Table 3.1), indicated that pramipexole was the most selective D3 agonist, 

followed by PD-128,907, quinelorane, quinpirole and 7-OH-DPAT with nearly 

equal D3 selectivity.  Both apomorphine and U91356A were relatively non 

selective D2/D3 agonists, inducing yawning at doses that were only slightly 

lower than those required to decrease body temperature.  Sumanirole was a 

selective D2 agonist.  Although sumanirole increased yawning slightly at doses 

that were higher than those necessary to decrease body temperature, this 

yawning was not sensitive to the D3-selective antagonist, PG01037, but was 

inhibited by the cholinergic antagonist scopolamine and may therefore 

represent cholinergic rather than D3 activation.  McCall et al. (2005) reported a 

200% increase in striatal acetylcholine release in rats at doses of sumanirole 

roughly equivalent to those which induced yawning.    The two D4-preferring 

agonists, given at behaviorally active doses (Brioni et al., 2004; Enguehard-

Gueiffier et al., 2006), did not produce either yawning or hypothermia 

suggesting that at these doses, they are devoid of significant D2 and D3 

receptor agonist activity. 

 

 As was seen with the agonists, distinct behavioral profiles emerged for 

D3- and D2-preferring antagonists.  Three of the four D3-preferring antagonists, 
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PG01037, SB-277011A, and U99194 inhibited yawning at doses that did not 

alter hypothermia suggesting they function as selective D3 antagonists in vivo.  

The doses of these antagonists that were able to be tested was limited by 

solubility (PG01037 and SB-277011A) and anti-cholinergic activity (U99194), 

and thus in vivo D2/D3 selectivity ratios were indeterminate other than being 

slightly greater than 1.  Interestingly, nafadotride, which is mildly D3-preferring 

in vitro, and generally considered to be a D3-preferring antagonist in vivo (e.g., 

Richtand et al., 2000; Leriche et al., 2003), displayed a profile of activity that 

was more like those of the D2 antagonists, haloperidol and L-741,626, than of 

the other D3-preferring antagonists.  L-741,626, haloperidol and nafadotride 

were all more potent at inhibiting the induction of hypothermia and increasing 

high dose yawning, however, suppression of low dose yawning was also 

observed with each of these antagonists, and thus were all determined to be 

~3-fold selective for the D2 over D3 receptor in vivo. 

 

 Evidence provided in the current, and past (Collins et al., 2005), studies 

support distinct roles for the D2 and D3 receptors mediating the hypothermic 

and yawning effects of D2/D3 agonists although these generalizations are 

contrary to earlier characterizations (see Millan et al., 2000).  These 

investigators determined that the hypothermic effects of 7-OH-DPAT were 

mediated by agonist activity at both the D2 and D3 receptor as it was attenuated 

by the D3 antagonists, S33084 and GR218231, as well as the D2 antagonist, L-

741,626.  Furthermore, they concluded that 7-OH-DPAT-induced yawning was 
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mediated by the D2, but not D3 receptor as they observed inhibition of yawning 

with L-741,626, but not S33084 or GR218321. Although our data do not 

support this interpretation, we recognize that relatively large doses of D3-

preferring agonists induce hypothermia, and likewise that relatively large doses 

of L-741,626 suppress yawning induced by D3-preferring agonists.   However, 

these effects likely represent a loss of receptor selectivity rather than a primary 

effect of the agonists and antagonists, a notion that is supported by the 

biphasic nature of the D2/D3 agonists and antagonists with respect to their 

effects on yawning and hypothermia.  In the current study, all D3-preferring 

agonists, including 7-OH-DPAT, induced yawning at low doses, with inhibition 

of yawning and induction of hypothermia occurring at higher, presumably less 

selective, doses.  Similarly, at relatively low doses, L-741,626, haloperidol and 

nafadotride equipotently increased high dose yawning and inhibited 

hypothermia, while inhibition of yawning induced by a low, presumably D3-

selective, dose PD-128,907 was not observed until higher doses.  Moreover, in 

the current study, the D3 antagonists PG01037, SB-277011A and U99194 all 

selectively inhibited PD-128,907-induced yawning while failing to alter the 

induction of hypothermia by sumanirole suggestive of a selective D3 antagonist 

activity.   

 

 While the M.E.D.s for the inhibition of yawning by PG01037 and SB-

277011A (32.0 mg/kg for both) are slightly higher than those reported for SB-

277011A on a variety of operant behaviors (3.0 - 24 mg/kg; Andreoli et al., 
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2003; Di Ciano et al., 2003; Xi et al., 2004; Gilbert et al., 2005; Xi et al., 2005; 

Cervo et al., 2007) and are likewise higher than might be expected based on in 

vitro D3 affinities of 0.7 nM and 10.7 nM respectively (Stemp et al., 2000; 

Grundt et al., 2005) there is no evidence to suggest that the inhibition of 

yawning by these antagonists results from anything other than an antagonist 

activity at the D3 receptor.  Not only did PG01037 and SB-277011A not inhibit 

sumanirole-induced hypothermia or increase yawning induced by high doses of 

PD-128,907 in the current studies at doses up to 56.0 mg/kg, but SB-277011A 

also failed to induce catalepsy and increases plasma prolactin levels at doses 

up to 78.8 and 93 mg/kg; p.o. respectively (Reavill et al., 2000).  However, this 

is not to say that these antagonists are completely devoid of D2 antagonist 

activity as U99194 has been reported to inhibit the induction of hypothermia 

with an ED50 of 12.9 mg/kg (Audinot et al., 1998) suggesting that inhibition of 

sumanirole-induced hypothermia by PG01037, SB-277011A and U99194 

would have been observed if higher, less selective doses would have been 

assessed.  Unequivocal resolution of these issues will depend on greater 

selectivity of ligands for these receptors. 

 

 The rank order of the in vivo D3 selectivity ratios obtained for these 

agonists and antagonists (Table 3.1) is in general agreement with similar 

determinations reported for in vitro binding studies.  The magnitudes of the in 

vivo selectivities reported herein are much lower than those obtained by in vitro 

binding studies.  However, similar differences have been reported when in vitro 
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binding and functional assays are compared (Chio et al., 1994; Pugsley et al., 

1995; Sautel et al., 1995a), and are therefore not surprising.  These data 

suggest that while comparisons of in vitro binding affinities provide an 

estimation of receptor selectivity, the utilization of in vitro functional assays and 

behavioral measures may provide a more accurate measure of an agonist or 

antagonist’s selectivity as they allow for both potency and efficacy measures to 

be made, and may therefore be more informative in interpreting the in vivo 

pharmacology of D2-like agonists and antagonists.  

 

 To summarize, the results of these studies provide further support for 

specific roles for the D3 and D2 receptors in the mediation of D2/D3 agonist-

induced yawning behavior and hypothermia, respectively, and demonstrate the 

usefulness of yawning and hypothermia in the characterization of in vivo D3 

and D2 receptor activity.  They are the first to provide in vivo determinations 

and comparisons of D3 receptor selectivities for a series of D2/D3 agonists with 

a range of in vitro selectivities for the D3 or D2 receptors. Thus, these data 

suggest that yawning and hypothermia may provide useful endpoints for the 

evaluation of in vivo antagonist activity and selectivity of future antagonists with 

improved solubility and selectivities for the D3 or D2 receptors.   
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Figure 3.1.  Dose-response curves for D2/D3 agonist-induced yawning (Ο), and 
hypothermia (Δ).  Characterization of pramipexole, PD-128,907, 7-OH-DPAT, 
quinpirole, quinelorane, U91356A, apomorphine, and sumanirole was 
conducted in different groups of rats, with data presented as mean (±SEM), 
n=8, number of yawns during a 20 minute observation period, and mean 
(±SEM), n=6, change in core body temperature as measured 30 min after, 
compared to 1 min before agonist injection.  Gray filled, p<0.05, and black 
filled, p<0.01, symbols represent significant levels of yawning or hypothermia 
compared to vehicle treated rats as determined by one-way, repeated-measure 
ANOVA with post-hoc Dunnett’s tests. 
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Figure 3.1. Comparison of yawning and hypothermia induced by D2-, and D3-
preferring agonists in rats 
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Figure 3.2.  Dose-response curves for D4-preferring agonist-induced yawning 
(Ο), and hypothermia (Δ).  Characterization of ABT-724 and PD-168,077 was 
conducted in different groups of rats, with data presented as mean (±SEM), 
n=8, number of yawns during a 20 minute observation period, and mean 
(±SEM), n=6, change in core body temperature as measured 30 min after, 
compared to 1 min before agonist injection.  Gray filled, p<0.05, and black filled 
symbols, p<0.01, represent significant levels of yawning or hypothermia 
compared to vehicle treated rats as determined by one-way, repeated-measure 
ANOVA with post-hoc Dunnett’s tests. 
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Figure 3.2. Comparison of yawning and hypothermia induced by D4-selective 
agonists in rat 
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Figure 3.3.  Effects of the D3-preferring antagonists, PG01037 (0, 3.2, 32.0, 
and 56.0 mg/kg), SB-277011A (0, 3.2, 32.0, and 56.0 mg/kg), U99194 (0, 1.0, 
3.2, and 10.0 mg/kg), and nafadotride (0, 0.1, 0.32, and 1.0 mg/kg) on yawning 
induced by 0.1 mg/kg PD-128,907 (left column), and 0.32 mg/kg PD-128,907 
(center column), or hypothermia induced by 1.0 mg/kg sumanirole (right 
column).  Antagonists were administered 30 min prior to agonist injections, and 
data are presented as mean (±SEM), n=8, number of yawns during a 20 
minute observation period, and mean (±SEM), n=8, change in core body 
temperature as measured 30 min after, compared to 1 min before agonist 
injection.  *p<0.05, **p<0.01.  Significant difference from vehicle treated rats as 
determined by one-way, repeated-measure ANOVA with post-hoc Dunnett’s 
tests. 
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Figure 3.3. Effects of D3-preferring antagonists on PD-128,907-induced 
yawning and sumanirole-induced hypothermia 
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Figure 3.4.  Effects of the D2-preferring antagonists, haloperidol (0, 0.01, 
0.032, and 0.1 mg/kg), and L-741,626 (0, 0.32, 1.0 and 3.2 mg/kg) on yawning 
induced by 0.1 mg/kg PD-128,907 (left column), and 0.32 mg/kg PD-128,907 
(center column), or hypothermia induced by 1.0 mg/kg sumanirole (right 
column).  Antagonists were administered 30 min prior to agonist injections, and 
data are presented as mean (±SEM), n=8, number of yawns during a 20 
minute observation period, and mean (±SEM), n=8, change in core body 
temperature as measured 30 min after, compared to 1 min before agonist 
injection.  *p<0.05, **p<0.01.  Significant difference from vehicle treated rats as 
determined by one-way, repeated-measure ANOVA with post-hoc Dunnett’s 
tests. 
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Figure 3.4. Effects of D2-preferring and non-selective D2/D3 antagonists on PD-
128,907-induced yawning and sumanirole-induced hypothermia 
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Table 3.1  in vivo D3 selectivity ratios determined from the minimal effective 
doses for D2/D3 agonist-induction, and antagonist-modulation of yawning and 
hypothermia 
 

 M.E.D. (mg/kg; s.c.)  
 in vivo D2 in vivo D3 in vivo 

Compound Hypothermia Yawning D2/D3 
Agonists    

Pramipexole 0.32 0.01 32 
PD-128,907 0.32 0.032 10 
7-OH-DPAT 0.1 0.01 10 
Quinpirole 0.1 0.01 10 

Quinelorane 0.01 0.001 10 
U91356A 0.32 0.1 3.2 

Apomorphine 0.1 0.032 3.2 
Sumanirole 0.32 (3.2)a (0.1)a 

ABT-724 n.d.b n.d.c n.d.b,c 
PD-168,077 n.d.b n.d.c n.d.b,c 

Antagonists    
PG01037 >56.0 32.0 n.d.d 

SB-277011A >56.0 32.0 n.d.d 
U99194 >10.0 3.2 n.d.d 

Nafadotride 0.32 1.0 0.32 
Haloperidol 0.032 0.1 0.32 

L-741,626 1.0 3.2 0.32 
 

 

aM.E.D.D3 was not determined for sumanirole as the observed yawning was not 
sensitive to D3 antagonism.  bM.E.D.D3 could not be determined as compound 
failed to induce significant increases in yawning behavior.  cM.E.D.D2 could not 
be determined as compound failed to induce significant decreases in core body 
temperature.  din vivo D3 selectivity ratio could not be determined as compound 
failed to significantly alter the induction of hypothermia by sumanirole at any 
dose tested. 
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Table 3.2  Effects of the D2 antagonist L-741,626 and the D3 antagonist 
PG01037 on D2/D3 agonist-induced yawning behavior 
 

 Vehicle 32.0 PG01037 1.0 L-741,626 

Agonist Yawns (±SEM) Yawns (±SEM) Yawns (±SEM)

Pramipexole – 0.1 mg/kg 24.6 (±2.3) **6.6 (±3.6) 23.0 (±1.7)

0.32 mg/kg 8.0 (±2.0) 4.0 (±1.7) **22.9 (±3.2)

PD-128,907 – 0.1 mg/kg 20.0 (±1.7) **9.5 (±1.2) 21.6 (±3.6)

0.32 mg/kg 3.6 (±1.7) 2.1 (±0.7) **27.6 (±3.1)

7-OH-DPAT – 0.032 mg/kg 22.5 (±4.9) **6.5 (±2.3) 25.6 (±3.9)

0.1 mg/kg 4.9 (±0.4) 3.6 (±1.1) **15.5 (±2.9)

Quinpirole – 0.032 mg/kg 18.3 (±1.1) **4.9 (±1.1) 14.9 (±2.1)

0.1 mg/kg 5.3 (±1.0) 3.0 (±0.5) **14.4 (±1.7)

Quinelorane – 0.0032 mg/kg 26.0 (±4.5) **6.0 (±2.8) 21.5 (±1.7)

0.01 mg/kg 2.6 (±0.7) 2.8 (±0.9) **17.4 (±3.0)

U91356A – 0.1 mg/kg 14.6 (±1.1) **4.3 (±1.1) 16.8 (±1.4)

0.32 mg/kg 1.5 (±0.6) 1.1 (±0.1) **9.6 (±1.9)

Apomorphine – 0.032 mg/kg 12.0 (±3.2) **2.6 (±1.2) 13.4 (±2.4)

0.1 mg/kg 7.3 (±1.6) 4.1 (±1.1) **17.5 (±2.1)

Sumanirole – 3.2 mg/kg 11.1 (±2.3) 8.6 (±1.3) **19.4 (±0.9)

 

Antagonists were given as 30 min pretreatments with the total number of 
yawns recorded during a 20 min period starting 10 min after agonist 
administration.  Data are expressed as mean ±SEM, n=8 rats per group; 
*p<0.05, **p<0.01 with respect total yawns of antagonist treated rats compared 
to vehicle treated rats. 
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Table 3.3. Effects of the D2 antagonist L-741,626 and the D3 antagonist 
U99194 on D2/D3 agonist-induced hypothermia 
 
 Vehicle 1.0 L-741,626 3.2 U99194 

Agonist Δ Temp. (±SEM) Δ Temp. (±SEM) Δ Temp. (±SEM)

Pramipexole – 0.32 mg/kg -1.50 (±0.11) **-0.52 (±0.13) -1.51 (±0.06)

PD-128,907 – 0.32 mg/kg -1.30 (±0.12) **-0.38 (±0.12) -1.34 (±0.17)

7-OH-DPAT – 0.1 mg/kg -1.15 (±0.23) **-0.53 (±0.10) -1.12 (±0.17)

Quinpirole – 0.1 mg/kg -0.93 (±0.14) *-0.23 (±0.15) -0.84 (±0.22)

Quinelorane – 0.01 mg/kg -0.73 (±0.07) *-0.52 (±0.05) -0.67 (±0.05)

U91356A – 0.32 mg/kg -1.25 (±0.17) **-0.58 (±0.12) -1.29 (±0.18)

Apomorphine – 0.1 mg/kg -0.74 (±0.13) *-0.39 (±0.07) -0.72 (±0.08)

Sumanirole – 1.0 mg/kg -1.05 (±0.10) *-0.50 (±0.07) -1.09 (±0.13)

5-HT1A-preferring    

8-OH-DPAT – 1.0 mg/kg -2.61 (±0.08) -2.73 (±0.08) -2.56 (±0.09)

 
aAntagonists were administered as 30 min pretreatments with Δ Temp. 
representing the change in core body temperature 30 min after, compared to 1 
min prior agonist administration.  Data are expressed as mean ±SEM, n=8 rats 
per group; *p<0.05, **p<0.01 with respect to Δ Temp of antagonist treated rats 
compared to vehicle treated rats. 
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CHAPTER IV 
 
 
Pro-erectile Effects of Dopamine D2-like Agonists are Mediated by the D3 

Receptor in Rats 
 

Introduction 

 

 The involvement of dopamine in the regulation of penile erection (PE) 

has been a long studied phenomenon (Hyyppa et al., 1970), and systemic 

administration of the non-selective D2-like agonist, apomorphine, is known to 

induce PE and yawning in a variety of species including rats (Benassi-Benelli 

et al., 1979), monkeys (Gisolfi et al., 1980), and man (Lal et al., 1987), 

suggesting that the receptor regulation of these effects may be similar across 

species.  Several D3-preferring agonists, including 7-OH-DPAT, pramipexole, 

and quinpirole (Melis et al., 1987; Ferrari et al., 1993; Ferrari and Giuliani, 

1995), have been shown to induce PE over low doses with inhibition of PE 

occurring at higher doses as has previously been demonstrated for yawning 

(e.g., Collins et al., 2005; Collins et al., 2007).  D2-like agonist-induced PE and 

yawning are thought to be centrally mediated as they are inhibited by relatively 

non-selective, centrally active, D2-like antagonists such as haloperidol, 

sulpiride, and clozapine, but not the peripheral D2-like antagonist domperidone 

(Benassi-Benelli et al., 1979; Gower et al., 1984; Doherty and Wisler, 1994; 
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Hsieh et al., 2004).  Moreover, a significant body of literature supports a 

common role for the paraventricular nucleus (PVN) in the induction of PE and 

yawning by both physiologic and pharmacologic means (e.g.; Argiolas and 

Melis, 1998; Melis and Argiolas, 1999; Melis and Argiolas, 2003; Argiolas and 

Melis, 2005), however, the specific receptor(s) mediating the pro-erectile 

effects of D2-like agonists are yet to be elucidated.   

 

 Recently, a specific role for the D4 receptor in the induction of PE by D2-

like agonists has been suggested.  Dose-dependent increases in the percent 

incidence of PE were reported following systemic administration of D4-selective 

agonists (Hsieh et al., 2004), and further studies have reported similar dose-

dependent inductions of PE following systemic (Brioni et al., 2004; Enguehard-

Gueiffier et al., 2006; Melis et al., 2006) or intra-PVN (Melis et al., 2005; Melis 

et al., 2006) administration of a variety of D4-selective agonists (e.g., ABT-724, 

CP226269, PD-168,077 and PIP3EA), while the D4-selective antagonist, 

L745,870, has been reported to block PD-168,077- and PIP3EA-induced PE 

(Melis et al., 2005; Enguehard-Gueiffier et al., 2006; Melis et al., 2006).  While 

these findings support a role for the D4 receptor in the mediation of PE, D4-

selective agonists generally induce fewer erections compared to less selective 

D2-like agonists such as apomorphine, and L-745,870 has been shown to be 

ineffective at altering the induction of PE by apomorphine (Melis et al., 2006), 

suggesting that other receptor(s) are also involved in the mediation of D2-like 

agonist-induced PE.  Interestingly, a variety of D3-preferring agonists (e.g., (+)-
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3-PPP, 7-OH-DPAT, pramipexole, quinelorane, and quinpirole) have also been 

reported to increase PE (Melis et al., 1987; Ferrari et al., 1993; Doherty and 

Wisler, 1994; Ferrari and Giuliani, 1995) suggesting that D3 receptors may be 

involved in the induction of PE by D2-like agonists.   

 

 The current studies were aimed at characterizing the roles of the D2, D3, 

and D4 receptors in the regulation of D2-like agonist-induced PE.  Thus, in vitro 

binding affinities for a series of D2-like agonists and antagonists with varying 

degrees of selectivity for the D2, D3, and D4 receptors were first determined to 

compare receptor selectivity.  Agonists were then assessed for their capacity to 

induce PE and yawning, while antagonists were assessed for their capacity to 

alter the induction of PE and yawning by apomorphine and pramipexole.  

Convergent evidence from the evaluation of the agonists alone, and in 

combination with antagonists, supports the notion that the induction of PE and 

yawning by D2-like agonists are similarly mediated by the D3 receptor, while the 

inhibition of PE and yawning observed at higher doses results from a 

concomitant activation of the D2 receptor.   

 

Methods 

 

Subjects:  Male Wistar rats, 250-350 g, (Harlan; Indianapolis, IN) were 

housed three to a cage in a temperature and humidity controlled room on a 12-

h dark/light cycle with lights on at 7:00 AM.  Food and water were freely 
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available; however, no food or water was available during observations.  All 

studies were performed in accordance with the Guide for the Care and Use of 

Laboratory Animals, as adopted and promulgated by the National Institutes of 

Health, and all procedures were approved by the University of Michigan 

Committee on the Use and Care of Animals. 

 

 Behavioral observations:  On the day of testing rats were transferred 

from their home cage to a test chamber (48cm x 23cm x 20cm, clear rodent 

cage with cob bedding), and allowed to habituate for a period of 30 min prior to 

vehicle or antagonist pretreatment.  Following a 30 min pretreatment, one dose 

of agonist was administered and the total number of yawns and PEs were 

recorded for a period of 45 min thereafter.  Yawning was defined as a 

prolonged (~1s), wide opening of the mouth followed by a rapid closure, while 

PE was defined as an emerging, engorged penis usually followed by an upright 

posture, repeated pelvic thrusts, and genital grooming.  All experimental 

sessions were separated by at least 48 hr to allow for drug washout. 

 

 D2-like agonist-induced yawning and penile erection:  The following 

D2-like agonists were assessed for their capacity to induce PE and yawning: 

apomorphine (0.01 - 0.32 mg/kg), pramipexole (0.01 - 1.0 mg/kg), PD-128,907 

(0.01 - 0.32 mg/kg), quinpirole (0.0032 - 0.32 mg/kg), sumanirole, (0.1 - 3.2 

mg/kg), ABT-724 (0.001 - 0.32 mg/kg), PD-168,077 (0.0032 - 0.32 mg/kg), and 

PIP3EA (0.0032 - 0.32 mg/kg).  All agonists were investigated in separate 
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groups of 8 rats, with each rat receiving each dose of one agonist presented in 

random order.  

 

 Effects of D2-, D3-, and D4-selective antagonists on apomorphine- 

and pramipexole-induced yawning and penile erection:  The following D2-

like antagonists were assessed for their capacity to alter the induction of PE 

and yawning by apomorphine (0.01 - 0.32 mg/kg) and pramipexole (0.01 - 1.0 

mg/kg): PG01037 (32.0 mg/kg), L-741,626 (1.0 mg/kg), and L-745,870 (1.0 

mg/kg).  PG01037 and L-741,626 was administered as 30 min pretreatments, 

while L-745,870 was administered 15 min prior to agonist injection.  Each 

antagonist X agonist combination was assessed in separate groups of 8 rats, 

with each rat receiving all dose combinations in random order. 

 

 Effects of D2-like antagonists on pramipexole-induced yawning and 

penile erection:  The following series of D2-like antagonists were assessed for 

their capacity to alter the induction of PE and yawning by pramipexole (0.1 

mg/kg): PG01037 (1.0 - 32.0 mg/kg), SB-277011A (1.0 - 32.0 mg/kg), 

raclopride (0.0032 - 0.1 mg/kg), haloperidol (0.0032 - 0.1 mg/kg), L-741,626 

(0.32 - 10.0 mg/kg), Ro-61-6270 (1.0 - 32.0 mg/kg) and L-745,870 (0.32 - 10.0 

mg/kg).  Each antagonist was assessed in separate groups of 8 rats with each 

rat receiving all dose combinations, presented in random order. 
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 Drugs:  ABT-724 (2-[[4-Pyridin-2-yl)piperazin-1-yl]methyl]-1H-

benzimidazole) was synthesized by Dr. Kenner Rice (Chemical Biology 

Research Branch, NIDA, Bethesda, MD). Apomorphine ((R)-(-)-5,6,6a,7-

Tetrahydro-6-methyl-4H-dibenzo[de,g]quinoline-10,11-diol hydrochloride), 

haloperidol (4-[4-(4-Chlorophenyl)-4-hydroxy-1-piperidinyl]-1-(4-fluorophenyl)-

1-butanone hydrochloride), PD-128,907 ((S)-(+)-(4aR,10bR)-3,4,4a,10b-

Tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol 

hydrochloride), and quinpirole (trans-(–)-(4aR)-4,4a,5,6,7,8,8a,9-Octahydro-5-

propyl-1H-pyrazolo[3,4-g]quinoline hydrochloride) were obtained from Sigma-

Aldrich (St. Louis, MO).  L-741,626 (3-[4-(4-Chlorophenyl)-4-hydroxypiperidin-l-

yl]methyl-1H-indole), L-745,870 (3-(4-[4-Chlorophenyl]piperazin-1-yl)-methyl-

1H-pyrrolo[2,3-b]pyridine trihydrochloride), PD-168,077 (N-(Methyl-4-(2-

cyanophenyl)piperazinyl-3-methylbenzamide maleate), and raclopride (3,5-

Dichloro-N-(1-ethylpyrrolidin-2-ylmethyl)-2-hydroxy-6-methoxybenzamide 

tartrate salt) were obtained from Tocris (Ellisville, MO).  PG01037 (N-{4-[4-(2,3-

Dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide 

hydrochloride) was synthesized by Drs. Amy Newman and Peter Grundt 

(Medicinal Chemistry Section-NIDA, Baltimore, MD).   PIP3EA (2-[4-(2-

Methoxyphenyl)piperazin-1-ylmethyl]imidazo[1,2-a]pyridine) was synthesized 

by Drs. Alain Gueiffier and Cécile Enguehard-Gueiffier (Francois-Rabelais 

Universite, Tours, France).  Pramipexole (N'-propyl-4,5,6,7-

tetrahydrobenzothiazole-2,6-diamine dihydrochloride) and SB-277011A (trans-

N-[4-[2-(6-Cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-
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quinolinecarboxamide) were synthesized by Drs. Shaomeng Wang and 

Jianyong Chen (University of Michigan, Ann Arbor, MI).  Ro 61-6270 (2-amino-

benzoic acid-1-benzyl-piperidin-4-yl-ester) was provided by Hoffmann-La 

Roche (Basel, Switzerland).  Sumanirole ((5R)-5,6-dihydro-5-(methylamino) 

4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (2Z)-2-butenedioate) was synthesized 

by Drs. Stephen Husbands and Benjamin Greedy (University of Bath, Bath, 

U.K.).  All drugs were dissolved in sterile water with the exceptions of PG01037 

and SB-277,011A which were dissolved in 10% β-cyclodextrin, and haloperidol, 

L-741,626, PD-168,077, and PIP3EA which were dissolved in 5% ethanol and 

sterile water.   All drugs were administered sub-cutaneously in a volume of 0.1 

ml/kg, with the exception of L-745,870 which was administered 

intraperitoneally.  The cDNAs for the human dopamine (hD2, hD3, and hD4) 

receptors were generously provided by Drs. Olivier Civelli (University of 

California at Irvine), Pierre Sokoloff (INSERM. France) and Dr. Hubert VanTol 

(University of Toronto, Canada).  

 

 Binding Analysis:  All Ki values were assessed using membranes 

prepared from cells recombinantly expressing the hD2, hD3 and hD4 receptors. 

Ligands were assessed for their capacity to inhibit [3H]PD-128,907 (or 

[3H]spiperone) binding to the D3 receptor, or [3H]spiperone binding to the D2, or 

D4 receptor.  Membranes for D2, D3 and D4 receptor binding assays were 

prepared as previously described (Enguehard-Gueiffier et al., 2006) from hD2-

baculovirus-infected insect cells (HighFive Cells, Invitrogen, Carlsbad, CA), or 
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SH-SY5Y neuroblastoma cells stably expressing either the hD3 or hD4 receptor 

(~1-2 pmol/mg protein).  Competitions using [3H]PD-128,907 were performed in 

a buffer containing 50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 2 mM MgSO4 and 2 

mM CaCl2 with 5 μg of hD3-SH-SY5Ymembranes in the presence of 2 nM 

[3H]PD-128,907 and varying concentrations of competing ligands (10-11 M to 

10-4 M, final), while competitions using [3H]spiperone for D3 (5 μg membrane), 

D2 (5 μg membrane), and D4 (10 μg membrane) receptors were performed in 

50 mM Tris-HCl, pH 8.0, 120 mM NaCl, 1 mM EDTA, 2 mM MgSO4 and 2 mM 

CaCl2 with 2 nM (D3) or 200 pM (D2 and D4) [3H]spiperone (final volume of 500 

μl) in the presence of varying concentrations of competing ligands (10-11 M to 

10-4 M, final).  Radioligand binding assays were performed at room 

temperature in 96-well microtiter plates, and filtered onto GF/B filter plates with 

radioactivity detected by liquid scintillation counting on a TopCount counter 

(Perkin-Elmer, Waltham, MA).  All Ki values were determined from the IC50 

values derived by non-linear fitting analysis, and the Kd values for 

[3H]spiperone on the D2 and D4 receptor and [3H]PD128-907 on the D3 

receptors (not shown), according to Cheng-Prusoff (Cheng and Prusoff, 1973). 

 

 Data analysis:  Radioligand binding data were analyzed using a non-

linear regression fitting program and analyzed for one-or two-site inhibition 

curves (GraphPad Prism, San Diego, CA).  All yawning and PE studies were 

conducted with 8 rats per group with results expressed as the mean number of 

yawns or PE observed over 45 min ± standard error of the mean (S.E.M.).  
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Percent incidence represents the number of rats displaying at least one PE 

during the 45 min observation period.  Significant effects of agonists on the 

induction of PE, or antagonists on agonist-induced PE were determined using 

Mann-Whitney U-Tests (GraphPad Prism).  One-way, repeated-measures 

ANOVA with post-hoc Dunnett’s tests was used to determine significant levels 

of agonist-induced yawning (GraphPad Prism), while significant effects of 

antagonists on apomorphine-, and pramipexole-induced yawning were 

determined using two-way ANOVA with post-hoc Bonferroni tests (SPSS, 

SPSS Inc., Chicago, IL).  One-way repeated-measures ANOVA with post-hoc 

Dunnett’s tests were used to determine significant effects of antagonists on 

pramipexole-induced yawning.  (GraphPad Prism).   

 

Results 

 

 Since a comparison of binding affinities of the ligands used in these 

studies at the D2, D3, and D4 receptors has not been previously reported in a 

single study, the binding potencies of each compound against recombinantly-

expressed human hD2, hD3, and hD4 receptors were directly compared using 

radioligand filter binding assays to allow for a proper comparison of the 

receptor subtype selectivities of the D2-like ligands used in these studies.  The 

capacity of all of the agonists and antagonists to displace the antagonist, 

[3H]spiperone, was assessed for each receptor subtype, while displacement of 

the D3-preferring agonist, [3H]PD-128,907 was also assessed for the D3 
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receptor subtype.  Most ligands displaced radioactive probes with a single 

phase inhibition, consistent with a one-site model; only agonist binding to D2 

receptors displayed biphasic inhibition curves (composed of a low affinity state 

and a guanine nucleotide-sensitive high affinity state).  Binding affinities and 

selectivity ratios for ligands binding to the D2 and D3 receptors (D2/D3) and D4 

and D3 receptors (D4/D3) are shown in Tables 4.1 and 4.2; note that the more 

relevant comparisons with the D2high state and D3 receptors (D2high/D3) are also 

shown.  The Ki’s obtained in this studies are generally consistent with those 

reported in several previous studies, though the absence of good 

correspondence with in vivo activity is duly noted as previously described (e.g., 

Levant, 1997).  

 

 D2-like agonist-induced yawning and penile erection:  Dose-

dependent increases in PE and yawning were observed for the non-selective 

D2-like agonist, apomorphine, as well as the D3-preferring agonists, PD-

128,907, pramipexole, and quinpirole, while inhibition of both responses 

occurred at higher doses resulting in inverted U-shaped dose-response curves 

for PE and yawning (Figure 4.1).  Peak levels of PE and yawning were 

observed at the same dose for apomorphine (0.1 mg/kg), pramipexole (0.1 

mg/kg), and PD-128,907 (0.1 mg/kg), while doses of 0.032 and 0.1 mg/kg 

quinpirole induced peak levels of yawning and PE respectively.    

Apomorphine, pramipexole, and PD-128,907 induced at least one PE over the 

45 min in 87.5% of rats, while the maximal percent incidence of PE for 
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quinpirole was 75%.  None of the D4-selective agonists induced significant 

levels of PE or yawning (Figure 4.1).  PIP3EA induced at least one PE in 50% 

of rats at a dose of 0.1 mg/kg; the maximal percent incidence of PE for PD-

168,077 and ABT-724 was 25%.  While significant levels of yawning were 

observed with the D2-preferring agonist, sumanirole, PE was not induced 

(Figure 4.1). 

 

 D3-, D2-, and D4-selective antagonism of apomorphine- and 

pramipexole-induced yawning and erection:  The effects of the D3-selective 

antagonist, PG01037, the D2-selective antagonist, L-741,626, and the D4-

selective antagonist, L-745,870 on apomorphine- and pramipexole-induced PE 

and yawning are shown in figure 4.2.  Significant inhibition of the induction of 

both PE and yawning by apomorphine and pramipexole was observed 

following a dose of 32.0 mg/kg PG01037; no effect on the inhibition of PE or 

yawning observed at higher doses was observed (Figure 4.2A-D).  PG01037 

also reduced the maximal percent incidence of PE for APO from 87.5% to 

12.5%, and from 87.5% to 25% for pramipexole (Figure 4.2E-F).  Unlike with 

PG01037, the D2-selective antagonist, L-741,626 (1.0 mg/kg) selectively 

reversed the inhibition of PE and yawning observed at higher doses of 

apomorphine and pramipexole while having no effect on the induction of 

yawning at lower doses (Figure 4.2G-J).  Pretreatment with L-741,626 not only 

increased the maximal number of PEs and yawns observed, but also shifted 

the peaks of the PE and yawning dose-response curves for apomorphine and 
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pramipexole ½ log unit to the right.  L-741,626 also shifted the descending limb 

of the dose-response curves for the percent incidence of PE for apomorphine 

and pramipexole resulting in 100% of rats exhibiting at least one PE at doses 

of 0.1 and 0.32 mg/kg (Figure 4.2K and 4.2L).  When given at a behaviorally 

active dose of 1.0 mg/kg (Enguehard-Gueiffier et al., 2006), L-745,870 failed to 

modify apomorphine- or pramipexole-induced PE or yawning, and furthermore, 

did not alter the percent incidence of PE for either apomorphine or pramipexole 

(Figure 4.2M-R). 

 

 D3, D2, and D4 antagonism of pramipexole-induced yawning and 

erection:  The effects of a series of D2-like antagonists, with varying degrees 

of selectivity for the D2, D3, and D4 receptors, on PE and yawning induced by 

the maximally effective dose of pramipexole (0.1 mg/kg) are shown in figure 

4.3.  Dose-dependent inhibition of pramipexole-induced PE and yawning was 

observed with both of the D3-selective antagonists, PG01037 and SB-277011A 

(Figure 4.3A-B), however, there were slight differences in the relative potencies 

with PG01037 inhibiting PE at a dose (3.2 mg/kg) ½ log unit lower than that 

required to inhibit yawning (10.0 mg/kg), while SB-277011A was equipotent at 

inhibiting the induction of yawning and PE (10.0 mg/kg).  Similar to SB-

277,011A, inhibition of pramipexole-induced yawning and PE was observed at 

the same dose (0.032 mg/kg) for the non-selective D2/D3 antagonist, raclopride 

(Figure 4.3C), while the relatively non-selective D2-like antagonist, haloperidol, 

and the D2-selective antagonist, L-741,626, produced a dose-dependent 
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inhibition of pramipexole-induced PE and yawning with a significant inhibition of 

yawning observed at a dose ½ log unit lower than was required to inhibit the 

induction of PE (Figure 4.3D-E).  Unlike all other D2-like antagonists tested, the 

D4-selective antagonists, L-745,870 (Figure 3F) and Ro 61-6270 (Figure 4.3G), 

did not alter the induction of either PE or yawning by pramipexole, although a 

slight, but not significant, reduction of pramipexole-induced PE was observed 

following a dose of 10.0 mg/kg L-745,870. 

 

Discussion 

 

 These studies were aimed at characterizing a series of D2-like agonists 

and antagonists, with varying degrees of selectivity for the D2, D3, and D4 

receptors, with respect to their capacity to modulate the induction of PE in rats.  

Convergent evidence from the evaluation of the effects of the agonists alone, 

and in combination with D2-, D3-, and D4-selective antagonists suggests that 

the induction of PE is mediated by activation of the D3 receptor, while the 

inhibition of PE observed at higher doses results from the concomitant 

activation of the D2 receptor.  These studies also confirm previous reports 

(Collins et al., 2005; Collins et al., 2007) suggesting a similar role for the D3 

(induction) and D2 (inhibition) with respect to D2-like agonist induced yawning 

behavior.  However, a role for the D4 receptor in the mediation of D2-like 

agonist-induced PE was not supported. 
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 In agreement with previous reports, apomorphine, pramipexole, and 

quinpirole induced PE and yawning with inverted U-shaped dose-response 

curves, and 75 to 87.5% of rats displaying at least one PE at the peak dose, 

however, these are the first studies to report a similar capacity of the D3-

preferring agonist, PD-128,907, to induce PE.  Moreover, increases in yawning 

and PE were observed over a similar range of doses for all agonists even 

though large differences exist between these agonists with respect to their in 

vitro selectivity for D3 compared to D4 receptors (e.g., apomorphine D4/D3 ≈ 

0.05 and PD-128,907 D4/D3 ≈ 1280; Table 4.1), suggesting that their capacity 

to induce PE is related to their activity at the D3, but not D4 receptor.  In 

agreement with this notion, but contrary to previous findings (Brioni et al., 2004; 

Melis et al., 2005; Enguehard-Gueiffier et al., 2006), the highly selective D4 

agonists all failed to induce significant levels of PE.  Although the current 

studies were unable to confirm the pro-erectile effects of D4 agonists, it should 

be noted that the total number of PEs observed for apomorphine, quinpirole, 

and pramipexole in the current study was lower than previous reports (e.g., 

Melis et al., 2006) suggesting differences in procedure may have affected the 

PE response.  However, as the percent incidence of PE for apomorphine and 

quinpirole was similar to previous reports (e.g., Hsieh et al., 2004), any 

potential differences in procedure only affected the magnitude of the PE 

response, but not the capacity of the agonists to induce PE. 
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 Furthermore, although D4-selective agonists have been reported to 

induce PE, they have generally been shown to be less effective than other D2-

like agonists, such as apomorphine (Melis et al., 2005; Melis et al., 2006), 

suggesting that these compounds may be functioning as partial agonists, 

although as increases in extracellular dopamine have been shown to 

correspond to the induction of PE resulting from the non-contact exposure of a 

receptive female (Melis et al., 2003), D4 agonists may be potentiating the pro-

erectile effects of other receptor subtypes activated by endogenous dopamine.  

Interestingly, similar increases in dopamine have also been reported with 

exposure to novelty (Feenstra et al., 2000; Legault and Wise, 2001; van der 

Elst et al., 2005), and light-dark transitions (Smith et al., 1992) suggesting that 

procedural differences such as lighting conditions (Brioni et al., 2004), or 

experimental history (Brioni et al., 2004; Enguehard-Gueiffier et al., 2006; Melis 

et al., 2006) may be sufficient to alter the effects of D2-like agonist.  In fact, 

light-dark transitions have been shown to increase both spontaneous (Anias et 

al., 1984) and apomorphine-induced yawning (Nasello et al., 1995), suggesting 

light-dark transitions can enhance D3-mediated behaviors.  Thus, it is possible 

that the reported pro-erectile effects of D4-selective agonists may have resulted 

from a combined effect of an increased endogenous activation of D3 receptors, 

and a potentiation this effect by agonist activation of the D4 receptor. 

 

 Specific roles for the D3 and D2, but not D4 receptor, in the mediation of 

D2-like agonist-induced PE is further supported by the effects of D2-, D3-, and 
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D4-selective antagonists on apomorphine- and pramipexole-induced PE and 

yawning.  When given at behaviorally active doses (Collins et al., 2005; 

Enguehard-Gueiffier et al., 2006; Collins et al., 2007), PG01037, and L-

741,626 differentially effected apomorphine- and pramipexole-induced PE and 

yawning, while no effect of L-745,870 on the induction or inhibition of PE or 

yawning was observed.  Similarly, to the effects of D3 and D2 antagonists on 

yawning, PG01037 produced a selective rightward and/or downward shift of 

the ascending limb, while L-741,626 produced a selective rightward shift of the 

descending limb of the PE dose-response curves for apomorphine and 

pramipexole with respect to both the absolute number or PEs observed, as well 

as the percent incidence of PE.  Together with the finding that yawning and PE 

were induced over similar ranges of doses, these results support the notion 

that the induction of PE by D2-like agonists is mediated by the activation of the 

D3 receptor, while the inhibition of PE observed at higher doses results from a 

concomitant activation of the D2 receptor, as has been previously reported for 

yawning (Collins et al., 2005; Collins et al., 2007).   

 

 This general notion is further supported by the dose-response analysis 

of a series of D2-like antagonists on pramipexole-induced PE and yawning.  

Dose-dependent inhibition of pramipexole-induced PE was observed following 

pretreatment with D3-selecitve (PG01037 and SB-277011A), non-selective 

D2/D3 (raclopride), non-selective D2-like (haloperidol), and D2-selective (L-

741,626) antagonists, an effect that was correlated with the inhibition of 
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yawning, but was not observed with either of the D4-selective antagonists (L-

745,870 and Ro 61-6270).  Furthermore, as was seen with the capacity of D2-

like agonists to induce PE and yawning, the potencies of D2-like antagonists to 

inhibit PE was similar to their potencies to inhibit yawning regardless of the fact 

that large differences exist with respect to their in vitro selectivity for D3 

compared to D4 receptors (e.g., PG01037 D4/D3 ≈ 1.3 x 1004, raclopride D4/D3 ≈ 

64, and haloperidol D4/D3 ≈ 0.1; Table 4.2), while antagonists highly selective 

for the D4 compared to D3 receptors (e.g., L-745,870 D4/D3 ≈ 1.7 x 10-04 and Ro 

61-6270 D4/D3 ≈ 9.1 x 10-05; Table 4.2) failed to alter pramipexole-induced PE 

or yawning.  While Ro 61-6270 has not been extensively characterized (Clifford 

and Waddington, 2000), L-745,870 has been shown to possess favorable 

pharmacokinetics (0.3 mg/kg; p.o. is thought to be sufficient to occupy ~90% of 

D4 receptors; (Patel et al., 1997), and has been shown to inhibit PD-168,077- 

and PIP3EA-induced PE at a dose of 1.0 mg/kg (Enguehard-Gueiffier et al., 

2006; Melis et al., 2006), suggesting that the range of doses used in the 

current studies were sufficient to block D4 receptors.  Together with previous 

reports that L-745,870 was unable to alter apomorphine-induced PE (Melis et 

al., 2006), the current studies suggest that the pro-erectile effects of D2-like 

agonists (e.g., apomorphine and pramipexole) are mediated by activation of 

the D3, but not D4 receptor.  Inferences with regard to the receptors mediating 

the pro-erectile effects of D4-selective agonists could not be made as all D4-

selective agonists failed to induce PE in the current studies. 
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 To summarize, a series of D2-like agonists with varying selectivities for 

the D2, D3, or D4 receptors, alone, and in combination with a series of D2-like 

antagonists with varying selectivities for the D2, D3, or D4 receptors were 

assessed for their capacity to induce PE and yawning in rats.  Similar to 

apomorphine, all D3-preferring agonists induced dose-dependent increases in 

PE and yawning over a similar range of low doses, while inhibition of PE and 

yawning occurred at higher doses, while all D4-selective agonists failed to 

induce either PE or yawning at any dose tested.  The D3-selective antagonist, 

PG01037, and D2-selective antagonist, L-741,626, had similar effects on 

apomorphine- and pramipexole-induced PE and yawning, with PG01037 

selectively inhibiting the induction, and L-741,626 selectively reversing the 

inhibition of PE and yawning observed at higher doses.  Furthermore, a series 

of D2-like antagonists with a wide range of selectivities for the D3 and D2 

receptors dose-dependent inhibited pramipexole-induced PE and yawning with 

similar potencies, while D4-selective antagonists were ineffective.  In 

conclusion, these studies provide convergent evidence in support of a role for 

the D3 receptor in the induction of PE by D2-like agonists, with the inhibition of 

PE observed at higher doses resulting from the concomitant activation of the 

D2 receptor. 
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Figure 4.1.  Dose-response curves for D2-like agonist-induced PE and 
yawning.  Characterization of PE and yawning induced by A) apomorphine; B) 
pramipexole; C) quinpirole; D) PD-128,907; F) ABT-724; G) PD-168,077; H) 
PIP3EA; and I) sumanirole was conducted in separate groups of rats with data 
presented as mean (±SEM), n=8, number of PEs and yawns observed in 45 
min.  E and J) Percent of rats displaying at least one PE over 45 min.  *, 
p<0.05; **, p<0.01. Significant differences in agonist-induced yawning as 
determined using one-way, repeated-measures ANOVA with post-hoc 
Dunnett’s tests and,  +, p<0.05; ++, p<0.01; agonist-induced PE as determined 
by Mann-Whitney U-Test compared to vehicle treated animals. 
 

 

 

 

 

 

 

 

 

 

 

 

 



 124

Figure 4.1. Comparison of yawning and penile erection induced by D2-, D3-, 
and D4-preferring agonists in rats 
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Figure 4.2.  D3-, D2-, and D4-selective antagonists on apomorphine- and 
pramipexole-induced PE and yawning.  Effects of the D3-selective antagonist 
PG01037 (32.0 mg/kg) on apomorphine- and pramipexole-induced A and B) 
yawning; C and D) PE; E and F) percent incidence of PE.  Effects of the D2-
selective antagonist L-741,626 (1.0 mg/kg) on apomorphine- and pramipexole-
induced G and H) yawning; I and J) PE; K and L) percent incidence of PE.  
Effects of the D4-selective antagonist L-745,870 (1.0 mg/kg) on apomorphine- 
and pramipexole-induced M and N) yawning; O and P) PE; Q and R) percent 
incidence of PE.  Data are presented as mean (±SEM), n=8, number of PEs 
and yawns observed in 45 min.  *, p<0.05; **, p<0.01; ***, p<0.001. Significant 
effect of antagonist on agonist-induced yawning as determined by a two-way 
ANOVA with post-hoc Bonferroni tests.  +, p<0.05; ++, p<0.01; +++, p<0.001. 
Significant effect of antagonist on agonist-induced PE as determined by Mann-
Whitney U-Test.  
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Figure 4.2. Effects of D2-, D3-, and D4-selective antagonists on apomorphine- 
and pramipexole-induced yawning and penile erection in rats 
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Figure 4.3.  Effects of a series of D2-like antagonists with a range of 
selectivities for the D3, D2, and D4 receptors on PE and yawning induced by 0.1 
mg/kg pramipexole.  Effects of the D3-selective antagonists A) PG01037 (1.0-
32.0 mg/kg); and B) SB-277011A (1.0-32.0 mg/kg); the non-selective D2/D3 
antagonist C) raclopride (0.0032-0.1 mg/kg); the non-selective D2-like 
antagonist D) haloperidol (0.0032-0.1 mg/kg); the D2-selective antagonist E) L-
741,626 (0.32-10.0 mg/kg); and the D4-selective antagonists f) L-745,870 
(0.32-10.0 mg/kg); and G) Ro 61-6270 (1.0-32.0 mg/kg). *, p<0.05; **, p<0.01. 
One-way repeated-measures ANOVAs with post-hoc Dunnett’s tests were 
used to determine significant effects of antagonists on pramipexole-induced 
yawning and +, p<0.05; ++, p<0.01; Mann-Whitney U-Tests were used to 
determine significant effects of antagonists on pramipexole-induced PE.   
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Figure 4.3 Effects of D2-, D3-, D4-selective, and non-selective D2-like 
antagonists on pramipexole-induced yawning and penile erection in rats 
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Table 4.1. In vitro binding affinities and selectivity ratios at D2, D3, and D4 
receptors for D2-like agonists 
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Table 4.2. In vitro binding affinities and selectivity ratios at D2, D3, and D4 
receptors for D2-like antagonists 
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CHAPTER V 

 
 

Conclusions 

 

 The evaluation of unconditioned, elicited behavioral effects has been an 

important and long-used method for characterizing potential agonist and/or 

antagonist activity of novel ligands acting on a variety of neurotransmitter 

systems.  For example, while drugs that increase synaptic serotonin levels 

were known to induce a behavioral syndrome consisting of behaviors such as 

resting tremor, head-twitch, hyperactivity, lower lip retraction, salivation, head 

weaving, and forepaw treading (e.g., Chessin et al., 1957; Udenfriend et al., 

1957; Hess and Doepfner, 1961), it was not until the specific receptors 

mediating the individual behaviors within this syndrome were defined that the 

head-twitch response (Corne et al., 1963; Colpaert and Janssen, 1983; Green 

et al., 1983) and lower lip retraction (Berendsen et al., 1989; Koek et al., 1998) 

became useful tools for the evaluation of agonist and antagonist activity at the 

5-HT2 and 5-HT1A receptors, respectfully. 

 

 Similarly, although agonists acting at D2-like receptors have long been 

reported to induce a variety of behavioral effects including yawning (Mogilnicka 

and Klimek, 1977), stretching (Baggio and Ferrari, 1983), sniffing (Costall et al., 
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1975), PE (Benassi-Benelli et al., 1979), and alterations in locomotor activity 

(Di Chiara et al., 1976), the receptor(s) mediating these effects have remained 

elusive.  While the biphasic nature of many of these behavioral effects (i.e., 

yawning, PE, and locomotor activity) suggests that multiple receptors are 

involved, early hypotheses often attributed these effects to pre- and post-

synaptic D2 receptors (e.g., Mogilnicka and Klimek, 1977; Yamada and 

Furukawa, 1980; Urba-Holmgren et al., 1982; Dourish et al., 1985).  A more 

detailed analysis of the temporal relation of these behaviors to other 

autoreceptor effects, such as decreases in extracellular dopamine, combined 

with pharmacologic studies aimed at manipulating synaptic dopamine levels, 

argues against the autoreceptor hypothesis, and has led to newer hypotheses 

attributing many of these effects to postsynaptic receptors of the D2-like 

receptor family (e.g., Stahle and Ungerstedt, 1989b; Stahle and Ungerstedt, 

1989a; Stahle and Ungerstedt, 1990; Stahle, 1992; Levant, 1997).  The 

discovery of other D2-like receptors, namely the D3 (Sokoloff et al., 1990) and 

D4 (Van Tol et al., 1991) receptors, together with the identification of agonists 

and antagonist displaying higher degrees of selectivity for the D3 and/or D2 

receptors has allowed for the refinement of these hypotheses to incorporate 

specific roles for the D2 and D3 receptor in the receptor mediation of D2-like 

behavioral effects. 

 

 One of the earliest hypotheses focused on a role for the D3 receptor in 

the inhibition of locomotor activity, while the stimulation of locomotor activity 
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observed at higher doses of D2-like agonists was thought to be mediated by 

the D2 receptor.  This hypothesis was based on the findings that D3-preferring 

agonists inhibited locomotor activity over low doses (Svensson et al., 1994) 

while D3-preferring antagonists stimulated spontaneous locomotor activity 

when given alone (Waters et al., 1993).  While this hypothesis has remained 

popular, validation has been complicated for several reasons.  Not only have 

environmental and experimental conditions been shown to influence the 

locomotor effects of D2-like agonists, (Szumlinski et al., 1997; Van Hartesveldt, 

1997; Pritchard et al., 2003), but D2 and D3 antagonists often affect 

spontaneous locomotor activity when given alone (Waters et al., 1993; Sautel 

et al., 1995b; Millan et al., 2000) making the interpretation of their effects 

difficult.  For example, while pharmacologic evidence for a role of the D2 

receptor in the stimulation of locomotor activity was provided in a recent study, 

Millan and colleagues (2004) were unable to confirm a role for the D3 receptor 

in the locomotor inhibitory effects of D2-like agonists, raising question about 

generality and reliability of this putative D3-mediated behavioral effect.  This 

hypothesis has been further complicated by the use of D2 and/or D3 receptor-

deficient mice in the evaluation of the roles of the D2 and D3 receptors in the 

regulation of locomotor activity.  Although the fact that D3 receptor-deficient 

mice typically show increased levels of spontaneous locomotor activity (Accili 

et al., 1996; Xu et al., 1997) supports an inhibitory role of the D3 receptor, D2-

like agonists typically have monophasic effects on locomotor activity in mice, 

with the inhibition of locomotor activity observed over a large range of doses 
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(e.g., Pugsley et al., 1995; Pritchard et al., 2003) suggesting the involvement of 

a single receptor sub-type.  Further support for the involvement of a single 

receptor sub-type is provided by the findings that D3 receptor-deficient mice 

display a normal hypolocomotor response to D2/D3 agonists, while the 

hypolocomotor effects were absent in D2 receptor-deficient mice (Boulay et al., 

1999a; Boulay et al., 1999b), effects that are suggestive of a role for the D2, but 

not D3 receptor in the locomotor inhibitory effects of D2-like agonists in mice.  

While this is contrary to popular hypotheses, these findings demonstrate the 

difficulty in evaluating and interpreting behavioral effects across different 

species.   

 

 Despite the apparent species differences with regard to the effects of 

D2-like agonists on locomotor activity, the use of D2 and D3 receptor-deficient 

mice has been very useful in the characterization of other in vivo effects of D2-

like agonists.  For example, based on the differential capacity of D2-like 

agonists to induce hypothermia in D2 and D3 receptor-deficient mice it was 

hypothesized that the hypothermic effects of are mediated by their activity at 

the D2, but not D3 receptor, a hypothesis that was later supported by 

pharmacologic studies in rats (Boulay et al., 1999a; Boulay et al., 1999b; 

Chaperon et al., 2003).  Interestingly, some of the behavioral effects of D2-like 

agonists correspond to the induction of hypothermia (e.g., sniffing, and 

stimulation of locomotor activity), while others are often observed at lower 

doses (e.g., yawning, PE, and inhibition of locomotor activity).  Based on this 
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relation, and the biphasic nature of D2-like agonist-induced yawning we 

hypothesized that the induction of yawning behavior by D2-like agonists was 

mediated by their selective activation of the D3 receptor, while the inhibition of 

yawning behavior at higher doses resulted from a concomitant activation of the 

D2 receptor.  The results of the studies reported herein provide strong support 

for this general hypothesis, and have extended it in several ways.  In addition 

to providing pharmacologic validation for a specific role for the D3 receptor in 

the induction of yawning behavior, the use of yawning as a D3-mediated 

behavioral effect has provide the opportunity for determinations of in vivo D3 

and/or D2 selectivity ratios to be made for D2-like agonists and antagonists, as 

well as the identification of other elicited behaviors specifically mediated by the 

D3 receptor. 

 

Yawning as a D3-mediated Behavior 

 

 In agreement with previous reports (e.g., Mogilnicka and Klimek, 1977; 

Urba-Holmgren et al., 1977; Yamada and Furukawa, 1980; Stancampiano et 

al., 1994), yawning was observed following administration of dopaminergic, 

cholinergic, and serotonergic agonists.  Dose-dependent increases in yawning 

were observed following low doses of the D2-like agonists, 7-OH-DPAT, 

apomorphine, bromocriptine, PD-128,907, pramipexole, quinelorane, and 

quinpirole, with the dose-dependent inhibition of yawning observed at higher 

doses resulting in a characteristic inverted U-shaped dose response curves for 
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all agonists.    While there were no differences in the effectiveness of the D2-

like agonists to induce yawning (with the exception of apomorphine, a non-

selective D1/D2-like agonist), the rank-order potencies for the agonists to 

induce yawning were in general agreement with other D2-like agonist-induced 

behavioral effects (e.g., Sanger et al., 1996) suggesting that yawning was 

mediated by the activation of a D2-like receptor(s).  Importantly, these studies 

are the first to provide strong pharmacologic support for a specific role of the 

D3 receptor in the regulation of a D2-like agonist-induced behavioral effect.  D3-

preferring antagonists with varying degrees of D3 selectivity (30-133 fold 

selective for the D3 compared to D2 receptor) produced a dose-dependent and 

selective inhibition of the induction of yawning behavior without altering the 

inhibition of yawning observed at higher doses.  Conversely, a selective 

reversal of the inhibition of yawning observed at high doses of these agonists 

was observed following pretreatment with the D2-preferring antagonist, L-

741,626 (~10-fold selective for the D2 compared to D3 receptor), while no effect 

was observed on the induction of yawning.  Together, these findings support 

the notion that the induction of yawning is mediated by a specific activation of 

the D3 receptor, while the subsequent inhibition of yawning results from a 

concomitant activation of the D2 receptor.  In agreement with specific roles for 

the D3 (induction) and D2 (inhibition) receptors in the mediation of D2-like 

agonist induced yawning, the non-selective D2-like antagonist, haloperidol, 

produced rightward shifts of both the ascending and descending limbs of the 

dose-response curves for D2-like agonist-induced yawning, while the D1/D5 
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antagonist, SCH23390, and the D4-selective antagonist, L-745,870, did not 

alter the induction, or inhibition of PD-128,907-induced yawning.   

 

 Further evidence for a specific role of the D3 receptor in the induction of 

yawning by D2-like agonists was provided by the examination of the 

interactions of dopaminergic, cholinergic, and serotonergic systems in the 

regulation of yawning behavior.  In agreement with previous reports (e.g., 

Holmgren and Urba-Holmgren, 1980; Yamada and Furukawa, 1980; Protais et 

al., 1995), and in support of common cholinergic pathway, scopolamine 

inhibited yawning induced by the indirect cholinergic agonist, physostigmine, 

the 5-HT2 agonist, TFMPP, as well as the D3-preferring agonist, PD-128,907.  

Conversely, the 5-HT2 antagonist, mianserin, inhibited yawning induced by 

TFMPP, but not physostigmine or PD-128,907.  A similar selectivity was 

observed with most of the D3-preferring antagonists tested.  PG01037, SB-

277011A, and nafadotride dose-dependently inhibited the induction of yawning 

by PD-128,907 at doses that did not alter the induction of yawning by 

physostigmine or TFMPP, suggesting that their capacity to inhibit PD-128,907-

induced yawning resulted from their antagonist activity at the D3 receptor.  

Interestingly, while the moderately selective D3 antagonist, U99194, 

preferentially inhibited PD-128,907-induced yawning, a suppression of yawning 

induced by PD-128,907, TFMPP, and physostigmine was observed at a dose 

of 10.0 mg/kg; an effect that is suggestive of a significant anti-cholinergic 

activity (Goudie et al., 2001).  Taken together, the effects of D2-like agonists 
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alone and in combination with D3- and D2-preferring antagonists, along with the 

dopaminergic selectivity of the D3 antagonists provide the strongest evidence 

to date in support of a specific role for the D3 receptor in the regulation of a D2-

like agonist-induced behavior. 

 

Yawning and Hypothermia: in vivo Selectivity of D2-like Agonists and 

Antagonists 

 

 While the initial antagonist studies provide support for the hypothesis 

that yawning is differentially mediated by the D3 (induction) and D2 (inhibition) 

receptors, comparison of the relative potencies of D2-like agonists and 

antagonists to affect the induction of yawning and hypothermia is important in 

validating the selectivity of the effect.  To investigate this relationship, a series 

of D2-like agonists with a wide range of selectivities for the D2, D3, and D4 

receptors were assessed for their capacity to induce yawning and hypothermia.  

Through this characterization, three distinct behavioral profiles emerged.  D3-

preferring agonists (7-OH-DPAT, PD-128,907, pramipexole, quinelorane, and 

quinpirole) induced yawning over low doses with hypothermia occurring at 

higher doses that corresponded to the inhibition of yawning.  Conversely, the 

D2-preferring agonist, sumanirole, induced hypothermia at doses lower than 

those required to induce yawning, while D4-preferring agonists did not induce 

either yawning or hypothermia at any dose tested.  These differences in the 

relative potencies of D3- and D2-preferring agonists to induce yawning and 



 139

hypothermia provide support for specific roles for the D3 and D2 receptors in the 

induction of yawning and hypothermia by D2-like agonists, respectively.  These 

notions were further supported by the differential effects of D3- and D2-selecitve 

antagonists on the induction of yawning and hypothermia by each of the D2-like 

agonists.  Pretreatment with a D3-preferring antagonist resulted in an inhibition 

of yawning induced by the maximally effective dose for each agonist, while not 

affecting the low levels of yawning or induction of hypothermia observed at 

higher doses of these agonists.  Conversely, the D2-preferring antagonist, L-

741,626, inhibited the induction of hypothermia, and reversed the inhibition of 

yawning resulting from high doses of the D2-like agonists, while peak levels of 

yawning were unaffected.  Taken together with the previous reports in rats 

(Chaperon et al., 2003; Collins et al., 2005) and mice (Boulay et al., 1999a; 

Boulay et al., 1999b), these findings not only provide strong pharmacologic 

support for specific roles for the D3 receptor in the induction of yawning 

behavior, and D2 receptor in the induction of hypothermia by D2-like agonists, 

but also suggest that yawning and hypothermia may be useful for 

determinations of in vivo potency measures at the D3 and D2 receptors, 

respectively. 

 

 Although several of the agonists and antagonists assessed in these 

studies have been reported to be greater than 100-fold selective for the D3 

compared to D2 receptors in vitro, the lack of a validated D3-mediated 

behavioral effect has prevented similar determinations from being made in 
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vivo.  Thus, the relative potencies of D2-like agonists to induce yawning and 

hypothermia were compared as a measure of in vivo D2/D3 selectivity, while 

similar determinations of in vivo D2/D3 selectivity were made for D2-like 

antagonists based on comparisons of their relative potencies to inhibit D2-like 

agonist-induced yawning and hypothermia.  Of the agonists examined, 

pramipexole had the highest degree of D3 selectivity (32-fold selective for the 

D3 compared to the D2 receptor), sumanirole had the highest degree of D2 

selectivity (10-fold selective for the D2 compared to the D3 receptor), while 7-

OH-DPAT, PD-128,907, quinelorane, and quinpirole were all ~10-fold 

selectivity for the D3 compared to D2 receptor.  While similar determinations of 

in vivo D2/D3 selectivity were possible for the D2-preferring antagonist, L-

741,626, the non-selective D2-like antagonist, haloperidol, and the mildly 

preferential D3 antagonist, nafadotride (all ~3-fold selective for the D2 

compared to the D3 receptor), in vivo selectivity ratios could not be determined 

for the more selective D3 antagonists, U99194, SB-277011A, and PG01037 

due to the lack of effect on sumanirole-induced hypothermia.  However, it 

should be noted that while the doses of the D3-selecive antagonists were 

limited by solubility (PG01037 and SB-277011A) and anti-cholinergic activity 

(U99194), U99194 has been reported to inhibit the induction of hypothermia at 

a dose of ~13 mg/kg (Audinot et al., 1998), suggesting that similar 

determinations would have been possible if higher, presumably less selective 

doses could have been assessed.  Regardless of these minor drawbacks, 

these findings suggest that assessing the effects of D2-like agonists and 
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antagonists on yawning and hypothermia may provide a valuable diagnostic 

tool in the characterization of in vivo D3 and D2 effects, respectfully. 

 

D2-like Agonist-Induced Yawning and Penile Erection 

 

 In addition to their capacity to induce yawning, D2-like agonists are 

known to induce PE in a variety of species including mice, rats, monkeys, and 

man (Benassi-Benelli et al., 1979; Gisolfi et al., 1980; Lal et al., 1987; Rampin 

et al., 2003), however, the receptor(s) mediating this effect are still unknown.  

Recently, a specific role for the D4 receptor in the induction of PE by D2-like 

agonists has been suggested (Brioni et al., 2004; Melis et al., 2005; 

Enguehard-Gueiffier et al., 2006), however, other studies suggest that the pro-

erectile effects of D2-like agonists are mediated by D2-like receptor(s) other 

than the D4 receptor (Melis et al., 2006).  In an attempt to determine the 

receptor(s) involved in the regulation of D2-like agonist-induced PE, the 

potencies of a series of agonists with varying degrees of selectivities for the D2, 

D3, and D4 receptors to induce PE were compared with their potencies to 

induce yawning, an effect that has previously been shown to be differentially 

mediated by the D3 (induction) and D2 (inhibition) receptors.   

 

 Similar to previous reports, D3-preferring agonists induced significant 

levels of both yawning and PE over low doses, while both endpoints were 

inhibited at higher doses.  However, unlike previous reports (Brioni et al., 2004; 
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Melis et al., 2005; Enguehard-Gueiffier et al., 2006), none of the D4-selective 

agonists induced significant levels of PE or yawning.  Importantly, the induction 

and inhibition of yawning and PE was observed over a similar range for all of 

the D3-preferring agonists, suggesting that yawning and PE by D2-like agonists 

are similarly mediated by the D3 (induction) and D2 (inhibition) receptors.  This 

notion was further supported by the findings that a D3-selective dose of 

PG01037 inhibited the induction of both yawning and PE by apomorphine and 

pramipexole, while a D2-selective dose of L-741,626 reversed the inhibition of 

yawning and PE observed at higher doses of apomorphine and pramipexole.  

The D4-selective antagonist, L-745,870, did not alter yawning or PE induced by 

apomorphine or pramipexole.  These effects were confirmed by a dose-

response analysis of the effects of a series of D2-like antagonists with a range 

of selectivities for the D2, D3, and D4 receptors on the induction of yawning and 

PE by the maximally effective dose of pramipexole.  Yawning and PE were 

inhibited by roughly equivalent doses of D3-selective, D2/D3, D2/D3/D4, and D2-

preferring antagonists, while the D4-selective antagonists, L-745,870 or Ro 61-

6270 did not affect either yawning or PE.  Taken together, the effects of the 

agonists alone and in combination with antagonists not only confirm the 

differential roles of the D3 (induction) and D2 (inhibition) receptors in the 

regulation of yawning, but also provide strong pharmacologic evidence to 

suggest that the induction of PE by D2-like agonists is similarly mediated by an 

activation of the D3 receptor, while the inhibition results from a concomitant 

activation of the D2 receptor. 
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 In summary, the experiments reported herein provide strong 

pharmacologic evidence supporting a specific role for the D3 receptor in the 

induction of yawning by D2-like agonists, while also supporting the notion that 

the inhibition of yawning observed at higher doses results from a concomitant 

activation of the D2 receptor.  Not only were D3- and D2-preferring antagonists 

found to differentially modulate the ascending, and descending limbs of the 

yawning dose-response curve, respectfully, but the inhibition of yawning 

observed at higher doses corresponded to the induction of hypothermia, a D2-

mediated effect that has been validated through both pharmacologic and 

genetic means.  In addition, these studies strongly suggest that D2-like agonist-

induced yawning and PE are mediated by similar receptors, with the induction 

of PE resulting from an agonist activity at the D3 receptor, and the inhibition of 

PE observed at higher doses from a concomitant activation of the D2 receptor.  

Moreover, the identification of a behavioral effect specifically mediated by the 

D3 receptor has allowed for determinations of in vivo D2/D3 selectivity to be 

made for both agonists and antagonists, and suggest that evaluation of D2-like 

agonist-induced yawning, hypothermia, and PE will provide a valuable tool for 

the characterization of novel compounds with respect to agonist and antagonist 

activities at the D2 and/or D3 receptors. 
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Alternative Hypotheses and Potential Problems 

 

 Perhaps the most popular hypothesis regarding the receptors involved 

in the regulation of D2-like agonist-induced yawning is the autoreceptor 

hypothesis which posits that the induction of yawning is mediated by 

presynaptic D2 autoreceptors, while the subsequent inhibition of yawning 

results from the activation of postsynaptic D2 receptors (e.g., Mogilnicka and 

Klimek, 1977; Yamada and Furukawa, 1980; Urba-Holmgren et al., 1982; 

Dourish et al., 1985).  However, a considerable amount of evidence has been 

reported to support the notion that the induction and subsequent inhibition of 

D2-like agonist induced yawning are both mediated by postsynaptic D2-like 

receptors.    For instance, not only do D2-like agonists induce yawning with a 

shorter latency than the decreases in extracellular dopamine levels (Stahle and 

Ungerstedt, 1989a; Stahle and Ungerstedt, 1990), an effect mediated by 

presynaptic D2-like autoreceptors (e.g., Di Chiara et al., 1976), but D2-like 

agonist-induced yawning is unaffected by pretreatment with α-methyl-dl-p-

tyrosine, but enhanced following a ~24 hr pretreatment with reserpine (Yamada 

and Furukawa, 1980; Arnt and Hyttel, 1984; Serra et al., 1986; Stahle and 

Ungerstedt, 1990; Fujikawa et al., 1996a).  Together, these effects suggest that 

yawning is not affected by changes in extracellular dopamine levels, but the 

reserpine-induced enhancement suggests that yawning is affected by changes 

in the sensitizativity of postsynaptic D2-like receptors.  Finally, when considered 

with the finding that yawning is induced by (+)-3-PPP, a pre- and postsynaptic 
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D2-like agonist, but not (-)-3-PPP (Stahle and Ungerstedt, 1984; Melis et al., 

1989) a ligand that has been shown to act as a presynaptic D2-like agonist, and 

a postsynaptic D2-like antagonist (Hjorth et al., 1983; Koch et al., 1983), these 

studies provide strong evidence that the induction of yawning is mediated by 

an activation of postsynaptic D2-like receptors. 

 

 Although new hypotheses regarding the regulation of D2-like agonist-

induced behaviors began to be formed with the discovery of the D3 receptor, 

and the development of D3-preferring agonists, such as 7-OH-DPAT and PD-

128,907 (e.g., D3-mediated inhibition of locomotor activity; Waters et al., 1993; 

Svensson et al., 1994), the induction of yawning behavior is still commonly 

thought of as a D2 receptor-mediated behavior (e.g., Millan et al., 2000; 

Eguibar et al., 2003; Brown et al., 2006; Millan et al., 2008).  However, many of 

these claims are based on findings reported before the identification of the D3 

receptor, or the effects of agonists and antagonists with limited selectivity 

(Morelli et al., 1986; Melis et al., 1987; Cooper et al., 1989; Stahle, 1992).  

Millan and colleagues have argued against a specific role for the D3 receptor in 

the induction of yawning behavior based on the inability of purported D3-

selective antagonists to inhibit yawning at doses lower than those required to 

inhibit the induction of hypothermia, an effect they claim to be mediated by both 

D2 and D3 receptor activation (Millan et al., 2000; Millan et al., 2008).  

Moreover, they claim that the relatively high doses of SB-277011A and 
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PG01037 required to fully inhibit yawning (Collins et al., 2005; Collins et al., 

2007) are excessively high and likely acting at both D3 and D2 receptors.  

 

 While it is true that relatively high doses of D3-selective antagonists 

were required to fully inhibit the induction of yawning, significant decreases in 

yawning have been observed at doses of 10.0 mg/kg for both PG01037 and 

SB-277011A, dosed that are only slightly higher than those required to affect a 

variety of operant behaviors (3.0 - 24 mg/kg; Andreoli et al., 2003; Di Ciano et 

al., 2003; Xi et al., 2004; Gilbert et al., 2005; Xi et al., 2005; Cervo et al., 2007). 

The D3 selectivity of PG01037 and SB-277011A is further supported by the fact 

that neither PG01037 nor SB-277011A affected the induction of hypothermia 

by either the D2-preferring agonist, sumanirole (Collins et al., 2007), or the D3-

preferring agonist, 7-OH-DPAT (Ootsuka et al., 2007) at doses up to 56.0 

mg/kg.  These findings suggesting that, even at these relatively high doses, the 

effects of PG01037 and SB-277011A on yawning and PE are mediated by their 

antagonist activity at the D3, and not D2 receptor.  Regardless of the selectivity 

of these effects, the relatively high doses of D3-selective antagonists required 

to produce effects remain problematic due to the low nM affinities of these 

antagonists.  Interestingly, a recent pharmacologic magnetic resonance 

imaging (phMRI) study has shown selective increases in regional cerebral 

blood volume (rCBV) within the NAcc shell compared to NAcc core (Grundt et 

al., 2007), brain regions with high and low levels of D3 receptor expression, 

respectively (Diaz et al., 1995; Diaz et al., 2000; Stanwood et al., 2000a), 
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following intravenous administration of low doses of PG01037 (1.0-2.0 mg/kg), 

suggesting that differences in the route of administration may significantly 

affect the potency of these antagonists. 

 

 As discussed earlier, the use of receptor-deficient mice has become a 

popular and powerful tool for the characterization of the involvement of specific 

receptors in a variety of diseases, as well as roles for specific receptor(s) in the 

regulation of a behavior.  Unfortunately, receptor-deficient mice can not be 

used to validate the results of the pharmacologic characterization of the 

receptor regulation of D2-like agonist-induced yawning, as unlike other species, 

mice do not yawn in response to D2-like agonists (Li et al., in preparation).  

Regardless of this species difference, it is important to note that the induction 

of yawning and PE by D2-like agonists has also been reported in monkeys 

(Pomerantz, 1991), and humans (Lal et al., 1989), suggesting that the analysis 

of D2-like agonist-induced yawning and PE may prove to be useful in the 

evaluation of D3 and D2 receptor function and/or sensitivity in humans. 

 

Implications for Human Disease 

 

 Since its discovery (Sokoloff et al., 1990), the D3 receptor has received 

considerable interest as a pharmacologic target for the treatment of a variety of 

diseases including Parkinson’s disease, depression, schizophrenia, restless 

leg syndrome and a variety of aspects of drug abuse (Joyce, 2001; Heidbreder 
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et al., 2005; Newman et al., 2005; Clemens et al., 2006).  While several D2-like 

agonists, partial agonists, and antagonists are currently approved for use in 

humans (i.e., haloperidol, pramipexole, ropinirole, aripiprazole, and rotigotine) 

the receptor(s) mediating their therapeutic effects remain unknown.  Elicited 

behavioral effects have proven useful for characterizing the effects of novel 

pharmacologic compounds with diverse mechanisms of action.  However, 

despite the potential therapeutic utility of D2- and/or D3-selective ligands, 

relatively few agonists and/or antagonists highly selective for D2 and/or D3 

receptor have been identified, making the determination of the receptor(s) 

mediating the behavioral and/or therapeutic effects of D2-like agonists and 

antagonists difficult.  These studies provide strong pharmacologic evidence for 

a specific role of the D3 receptor in the induction of yawning and PE by D2-like 

agonists, and suggest that they may provide a useful method for the 

determination of agonist and/or antagonist activities at the D3 and D2 receptors 

in a variety of species. 

 

 Interestingly, changes in normal levels of yawning have been a 

frequently observed, but often overlooked side-effect of treatment, or symptom 

of a variety of disease states including Parkinson’s disease, depression, 

Huntington’s disease, ALS, schizophrenia, and migraine (e.g., Daquin et al., 

2001).  While the presentation of yawning in patients does not necessarily 

represent dopaminergic activity (e.g., yawning induced by high doses of SSRIs; 

Beale and Murphree, 2000), several studies suggest that a more careful 



 149

analysis of yawning behavior may be a useful diagnostic tool in the diagnosis 

and/or treatment of a variety of disease states.  For instance, while several 

groups have used apomorphine-induced improvements in motor performance 

as a predictor of Parkinson’s patients’ sensitivity and responsiveness to 

dopaminergic therapeutics (e.g., Barker et al., 1989; Hughes et al., 1990; 

Gasser et al., 1992; Bonuccelli et al., 1993), only one of these studies also 

quantified the induction of yawning.  In this study, increases in yawning were 

observed at doses that were roughly equivalent to those that produced motor 

improvements, but lower than doses that induced other “side-effects” such as, 

nausea, vomiting, and hiccups (Bonuccelli et al., 1993).  Similarly, doses of 

pramipexole that have been shown to induce rotation and improve functional 

hand movements in hemi-parkinsonian monkeys, (Domino et al., 1997; Domino 

et al., 1998), correspond to doses that induce yawning in un-treated monkeys 

(unpublished data).  Moreover, Parkinson’s patients being treated with L-DOPA 

or apomorphine have reported increases in yawning just prior to the “on-state” 

transition (Goren and Friedman, 1998; O'Sullivan and Hughes, 1998) 

suggesting that D3 receptor activation may play an important role in the anti-

parkinsonian effects of a variety of dopaminergic therapeutics.  

 

 While L-DOPA remains the “gold-standard” for the initial treatment of 

Parkinson’s disease (e.g., Weiner, 1999; Hely et al., 2000; Zesiewicz et al., 

2007), the long-term use of L-DOPA is known to result in the development of 

dyskineasias, on-off motor fluctuations and tolerance, often requiring adjunctive 
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therapies, or increases in dose and/or frequency of L-DOPA (e.g., Fabbrini et 

al., 2007; Jankovic and Stacy, 2007).  However, the fact that newer, direct 

acting D3-preferring agonists such as pramipexole, ropinirole, and rotigotine 

are generally equally effective at treating the symptoms of Parkinson’s disease 

while reducing the risk of developing motor complications (e.g., Montastruc et 

al., 1999; ParkinsonStudyGroup, 2000; Inzelberg et al., 2003; Jenner, 2003; 

Marras et al., 2004; Hauser et al., 2007) has led many to rethink initiating 

therapy with L-DOPA.  For instance, initiating therapy with pramipexole has 

been shown to effectively reverse the symptoms of Parkinson’s disease while 

also reducing the occurrence of on-off motor fluctuations and slowing the onset 

of dyskinesias as compared to patients treated with L-DOPA alone 

(ParkinsonStudyGroup, 2000; Marek et al., 2002; Barone, 2003; Reichmann et 

al., 2006).  Additionally, recent studies in laboratory animals (Jenner, 2003; 

Van Kampen et al., 2004; Iravani et al., 2006) and humans 

(ParkinsonStudyGroup, 2000; Clarke and Guttman, 2002; Izumi et al., 2007; 

Joyce and Millan, 2007) suggest that D3-preferring agonists, such as 

pramipexole, may actually promote neurogenesis, raising the possibility that 

treatment with D3-preferring agonists such as pramipexole and ropinirole may 

slow, or even reverse, the progression of Parkinson’s disease.  However, it 

should be noted that while patients treated with pramipexole and ropinirole 

have been shown to have a reduced risk of developing motor complications, 

recent studies have reported an increased risk of developing psychiatric and 

behavioral side-effects such as, hallucination, compulsive gambling, eating, 
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shopping, and hypersexuality (Driver-Dunckley et al., 2003; Dodd et al., 2005; 

Nirenberg and Waters, 2006; Weintraub et al., 2006; Driver-Dunckley et al., 

2007). 

 

 While the mechanism(s) responsible for the development of compulsive 

behaviors are currently unknown, it is thought to result from the prolonged 

stimulation of D2 and/or D3 receptors within the NAcc, or even a more general 

increase in the activity of the mesolimbic dopaminergic pathway (Dodd et al., 

2005; Driver-Dunckley et al., 2007).  Interestingly, repeated administration of 

relatively high doses of pramipexole (0.3-1.0 mg/kg twice daily) increase the 

expression of D3 receptors within the NAcc shell, while repeated dosing with 

similarly high doses of quinpirole (1.0 mg/kg/day) have differential effects on 

the expression of D3 (increase) and D2 (decrease) receptors (Bordet et al., 

1997; Maj et al., 2000; Stanwood et al., 2000b).  Furthermore, similar patterns 

of quinpirole administration have been shown to induce a variety of 

compulsive-like behaviors in rats, including path stereotypies, checking 

behavior, and excessive responding for water in the presence of freely 

available water (Szechtman et al., 1998; Cioli et al., 2000; Amato et al., 2006; 

Dvorkin et al., 2006) suggesting these effects may result from changes in the 

relative expression levels of D2 and D3 receptors.   

 

 Similar changes in the relative expression levels of D2 (decreased 

expression) and D3 (increased expression) receptors have been reported in 
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rats, monkeys, and humans following exposure to a wide variety of drugs of 

abuse including cocaine, ethanol and heroin (Segal et al., 1997; Le Foll et al., 

2003; Spangler et al., 2003; Neisewander et al., 2004; Nader et al., 2006; 

Volkow et al., 2007).  These decreases in D2 receptor expression have been 

suggested to enhance the subjective and reinforcing effects of 

psychostimulants (Volkow et al., 1999; Morgan et al., 2002).  The D3 receptor 

is also thought to be important for a variety of aspects of reinforcement, 

including the reinforcing effects of stimuli associated with reward (Wolterink et 

al., 1993; Pilla et al., 1999; Gal and Gyertyan, 2006; Cervo et al., 2007; Collins 

and Woods, 2007).  Thus, it is possible that the combined effects of increased 

D3 and decreased D2 receptor expression observed following prolonged 

exposure to drugs of abuse, L-DOPA, and D3-preferring agonists, such as 

pramipexole, may underlie the development of compulsive behaviors and/or 

addictive disorders similar to those observed in Parkinson’s and restless leg 

patients. 

Future Directions 

 

 When taken together the results of the studies described in this thesis 

provide strong evidence for specific roles for the D3 (induction) and D2 

(inhibition) receptors in the regulation of D2-like agonist-induced yawning and 

PE, while also confirming a specific role for the D2 receptor in the mediation of 

D2-like agonist-induced hypothermia.  However, the fact that relatively high 

doses of D3-selective antagonists are required to inhibit these yawning and PE, 
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the lack of a highly selective D2 antagonist, and the inability to validate these 

effects in receptor deficient mice are problematic.  The following experiments 

are proposed to address these issues, and extend the use of D2-like agonist-

induced yawning and PE to gain insight into the effects of environmental and 

pharmacologic manipulations on the function of D3 and D2 receptors. 

 

 An important first step is to address the concerns of the selectivity of the 

effects of the D3-selecitve antagonists, SB-277011A and PG01037, on 

yawning.  The fact that relatively high doses of PG01037 and SB-277011A 

were required to inhibit the induction of yawning even though they possess the 

low nM affinities for the D3 receptor has led some to question whether these 

effects are truly mediated by the D3 receptor (Millan et al., 2008).  However, the 

lack of effect on sumanirole-induced hypothermia, combined with the fact that 

increases in rCBV were observed following i.v. administration of low doses of 

PG01037 (Grundt et al., 2007) suggests that this may be due, at least in part, 

to poor pharmacokinetic properties following s.c. administration.  To address 

this issue, it would be interesting to compare the potencies of these 

antagonists to inhibit the induction of yawning, PE, and hypothermia following 

administration by various routes of administration (s.c., i.p., and i.v.).  These 

studies would not only provide valuable pharmacokinetic information, but given 

the relatively low solubility limits of SB-277011A and PG01037 (32.0 mg/ml) 

these studies may also allow for smaller doses to be used, thus increasing the 

probability of observing D2 antagonist effects at higher doses.  This would not 
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only allow for in vivo D3 selectivity ratios to be determined, but would also 

provide further evidence for the differential roles of the D2 and D3 receptors in 

the regulation of D2-like agonist-induced yawning, PE, and hypothermia. 

 

 Although the limited selectivity of the currently available D2-selective 

antagonist (L-741,626) was sufficient to make distinctions regarding specific 

roles for the D2 versus D3 receptor, the relatively low degree of in vivo D2 

selectivity (~3.2-fold) limits the information that can be gained through its use.  

For instance, although determinations of in vivo D3 and/or D2 selectivity are 

possible based on the relative potencies of D2-like agonists to induce yawning 

and hypothermia, similar comparisons of in vivo effectiveness cannot be made.  

While this is in large part due to the fact that D2 activity inhibits both of the 

behavioral endpoints identified as D3-mediated, the limited selectivity of the 

agonists is also to blame.  This is evident by the fact that pretreatment with L-

741,626 resulted in increases in the maximal number of yawns and PE 

observed for all of the D3-preferring agonists, including pramipexole.  However, 

if it were possible to completely remove the inhibitory effects of the D2 receptor, 

either with a more selective D2 antagonists, or the use of small interfering RNA 

(siRNA) aimed at inhibiting the expression of the D2 receptor it could allow for 

the emergence of monophasic dose-response curves for D2-like agonist-

induced yawning and PE, and the ability to compare D3-preferring agonists with 

respect to their effectiveness at the D3 receptor.   
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 Alternatively, similar determinations of in vivo effectiveness may be 

possible in mice.  Interestingly, although mice do not yawn in response to D2-

like agonists (Li et al., in preparation), D2-like agonists have been shown to 

induce PE in mice (Rampin et al., 2003).  Thus, it would be interesting to 

assess the capacity of D2-like agonists to induce PE in wild-type, D2, D3, and 

D4 receptor-deficient mice.  This would not only allow for a genetic validation of 

the role of the differential roles of the D3 (induction) and D2 (inhibition) 

receptors, as proposed by the results of the pharmacologic studies reported 

herein, allow for determinations of in vivo selectivity to be made in mice, but 

may also allow for in vivo comparisons with regard to effectiveness at the D3 

receptor to be made.  Moreover, the ability to evaluate D2-like agonists and 

antagonists in mice is advantageous for several reasons including the ability to 

exploit various knock-out and knock-in mice to gain insight into potential 

differences with respect to the signaling pathways activated following D2 and 

D3 receptor activation.   

 

 Besides its obvious utility as a means to evaluate novel compounds for 

potential D3 and/or D2 agonist, partial agonist, or antagonist activity (e.g., Chen 

et al., in preparation), perhaps the most exciting use for D2-like agonist-induced 

yawning is in the characterization of the effects of environmental and/or 

pharmacologic manipulations on the normal function of D2 and/or D3 receptors.  

For instance, we have recently exploited the differential roles of the D3 

(induction) and D2 (inhibition) receptors in D2-like agonist-induced yawning, PE, 
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and hypothermia to assess the effects of food restriction on the function and/or 

sensitivity of the D2 and D3 receptors (Collins et al., 2008).  While these studies 

were able to confirm previous reports that food restriction increases the 

sensitivity and/or function of the D2 receptor (e.g., Carr et al., 2003), by 

assessing the effects of food restriction on pramipexole-induced yawning and 

PE, two D3-mediated behaviors, it was possible to demonstrate that food 

restriction did not alter the sensitivity and/or function of the D3 receptor.  While 

this study focused on dietary manipulations of dopaminergic systems, similar 

studies could provide valuable information regarding how pharmacologic 

histories or disease states affect D2 and/or D3 function.  In fact, studies in 

human suggest that heroin addicts have an enhanced yawning response to 

apomorphine as compared to controls (Casas et al., 1995; Guardia et al., 

2002), suggesting that it would be possible to determine drug-induced changes 

in receptor expression might result in changes of yawning dose-response 

curves.  Together, the changes in D2-like agonist-induced yawning observed in 

food restricted rats, and human drug abusers suggest the analysis of D2-like 

agonist-induced yawning may provide a valuable tool to elucidate the changes 

in D2 and/or D3 receptor sensitivity that may underlie other conditions such as 

the development of dyskinesias or compulsive behaviors following prolonged 

exposure to dopaminergic therapeutics such as pramipexole.   

  

 In conclusion, these studies are the first to provide strong pharmacologic 

evidence in support of behaviors specifically mediated by the D3 receptor.  
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These findings have wide ranging implications for our understanding of 

agonists and antagonists acting at D2 and D3 receptors, as well as the 

involvement of the D2 and D3 receptors in the regulation of behavior.  

Additionally, D2-like agonist-induced yawning and PE not only provides a 

method for the characterization of the functional selectivity of D2-like agonists 

and antagonists in the whole animal, but will aid in the identification of novel 

compounds with agonist, partial agonist, or antagonist activities at the D3 

and/or D2 receptors.  Furthermore, D2-like agonist induced yawning and PE will 

allow for an inexpensive and non-invasive method for the determining the 

effects of environmental and pharmacologic manipulations, as well as animal 

models of disease affect on function and/or sensitivity of D2 and D3 receptor. 
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