HPLC and Mass Spectrometry-based Proteomics and Glycoproteomics for Biomarker Discovery

by

Yinghua Qiu

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in The University of Michigan 2008

Doctoral Committee:

Professor David M. Lubman, Chair Professor Michael D. Morris Professor Richard D. Sacks. Deceased Professor Robert Zand Assistant Professor Kristina I. Hakansson

To my family

Acknowledgements

First, I would like to give my most sincere thanks to my advisor Dr. David M. Lubman for his consistent support, guidance, and supervision through these years. I am very thankful for his understanding, aid and encouragment. I am fortunate to have an advisor like Dr. Lubman who is never tired of helping his students. Sincerest appreciation also goes to the members of my dissertation committee, Professor Michael D. Morris, Professor Robert Zand, and Professor Kristina Hakansson. This thesis would not be possible without their help and support.

I would also like to thank many collaborators for the research, Professor Subramaniam Pennathur M.D. from Department of Internal Medicine, Professor Dean E. Brenner M.D. from the UM Cancer Center, Professor David G. Beer Ph.D. from the Department of Surgery at the University of Michigan, as well as professor Sophia Kathariou Ph.D. from the Department of Food Science at North Carolina State University for providing valuable samples and constructive suggestions. I would also like to thank professor Kerby A. Shedden Ph.D. from the Department of Statistics at the University of Michigan for providing statistic tools in data analysis.

I am grateful to all the members of my research group for all of their help and friendship. Here, I would like to extend my special thanks to Suping Zheng, Kan Zhu, and Manoj Pal for their selfless help especially when I first joined the group. I would also like to thank research assistant professor Dr. David Misek and other members in the group. Most importantly, I would like to express my appreciation to my husband, my parents, my parents-in-law, and my unborn son for their support through all the difficult times. It is a new beginning after graduation, their love will continue to accompany me, encourage me, and bless me at my new work.

Table of Contents

Dedication	ii
Acknowledgements	iii
List of Figures	ix
List of Tables	xii
Abbreviations	xiii

Chapter 1. Introduction

1.1 Prote	comics	1
1.1.1	Introduction of Proteomics	.1
1.1.2	Protein Separation and Protein Expression Mapping	.2
1.1.3	Protein Identification by Mass Spectrometry and Database Searching	4
1.2 Glyce	oproteomics	7
1.2.1	Introduction of Protein Glycosylation	.7
1.2.2	Isolation of Glycoproteins by Lectin Affinity Chromatography	.8
1.2.3	Identification of N-glycosylation Changes by Glycoprotein Microarrays	.9
1.2.4	Statistical Analysis of Glycoprotein Microarray Data	10
1.3 Refer	rences	12

Chapter 2. Proteomic Analysis of Cold Adaptation in a Siberian Permafrost Bacterium – *Exiguobacterium Sibiricum* 255-15 by Two Dimensional Liquid Separation Coupled with Mass Spectrometry

2.1 Introd	uction	15
2.2 Materi	als and Methods	17
2.2.1	Chemicals	17
2.2.2	Cell Culture and Sample Preparation	18
2.2.3	Chromatofocusing	19
2.2.4	NPS-RP-HPLC Online Couple with ESI-TOF MS	20
2.2.5	Tryptic Digestion	21
2.2.6	MALDI-TOF MS for Peptide Map Fingerprinting	21
2.2.7	MALDI-QIT-TOF MS MS/MS Peptide Sequencing	
2.3 Result	s and Discussion	23
2.3.1	Protein Purification Using 2-D Liquid Phase Separation	23
2.3.2	Protein Identification by PMF Using MALDI-TOF MS	

2.3.3	Protein Identification by Peptide Sequencing Using MALDI-	QIT-TOF
	MS	25
2.3.4	Homologous Cold Shock Proteins (Csps).	27
2.3.5	Cold Acclimation Proteins (Caps).	27
2.3	3.5.1 Caps Characterized as Csps in E. coli	
2.3	3.5.2 Caps Characterized as Other Stress-induced Proteins	
2.3	3.5.3 Enzymes	29
2.3	3.5.4 Possible Posttranslational Modifications	
2.4 Concl	uding Remarks	
2.5 Refere	ences	42

Chapter 3. Effect of Growth Temperature and Culture Medium on the Cryotolerance of Permafrost *Exiguobacterium Sibiricum* 255-15 by Proteome-wide Mass Mapping

3.1	Introdu	iction	46
3.2	Materi	als and Methods	48
	3.2.1	Chemicals	48
	3.2.2	<i>E. sibiricum</i> 255-15 Cell Culture	49
	3.2.3	Freeze-thawing	49
	3.2.4	Cell Lysis	50
	3.2.5	2-D Liquid Phase Separation	50
	3.2.6	Protein <i>M</i> r Measurement and Interlysate Quantification by ESI-TOF	
		MS	51
	3.2.7	Tryptic Digestion	52
	3.2.8	Protein Identification by PMF and Peptide Sequencing	52
3.3	Results	5	53
	3.3.1	Freeze-thaw Tolerance	53
	3.3.2	Protein Separation and Comparison of 2-D Mass Maps of Protein	
		Expression in Cells Grown Under Different Conditions	54
	3.3.3	Proteins Identified by PMF and Peptide Sequencing	55
	3.3.4	Cold Shock Proteins in Inducing Cryotolerance	56
	3.3.5	Variation of Cellular Proteins According to Different Growth	
		Conditions	56
	3.3	.5.1 Down-regulation of Proteins Associated with the Improved	
		Cryotolerance	57

3.3.5.2 Up-regulation of Proteins Associated with the Improved	
Cryotolerance	58
3.4 Discussion.	
3.5 Concluding Remarks	64
3.6 References	75

Chapter 4. Plasma Glycoprotein Profiling for Colorectal Cancer Biomarker Identification by Lectin Glycoarray and Lectin Blot

4.1 Introd	luction	78
4.2 Mater	ials and Methods	80
4.2.1	Plasma Samples	80
4.2.2	Preparation of Glycoprotein Samples	81
4.2	2.2.1 Delipidation and Immunodepletion of the Plasma Samples	81
4.2	2.2.2 <i>N</i> -Glycoprotein Enrichment with ConA Affinity Capture	82
4.2	2.2.3 HPLC Separation of Glycoproteins	82
4.2.3	Lectin Glycoarrays	83
4.2.4	Statistical Analysis of Lectin Glycoarray Data	83
4.2	2.4.1 Principal Components Analysis (PCA)	83
4.2	2.4.2 Hierarchical Clustering	84
4.2	2.4.3 Z-statistics	84
4.2.5	SDS-PAGE and Lectin Blot	84
4.2.6	Protein Digestion	85
4.2	2.6.1 Tryptic Digestion and <i>N</i> -deglycosylation of NPS-RP-HPLC	
	Fractions	85
4.2	2.6.2 Tryptic Digestion and <i>N</i> -deglycosylation of SDS Gel Bands	85
4.2.7	LC-MS/MS for Protein Identification and Glycosylation Site	
	Determination	86
4.3 Result	ts and Discussion	87
4.3.1	Reduction in the Complexity of Plasma Glycoprotein Mixtures by	
	Immunoaffinity Depletion and Lectin Affinity Enrichment	87
4.3.2	Glycoarrays for Identification of N-glycosylation Pattern Changes	89
4.3.3	Statistical Analysis of <i>N</i> -glycosylation Pattern Changes	90
4.3.4	Identification of Plasma Biomarkers with Altered N-glycosylation	91
4.3.5	Lectin Blot of a Control Set for Detection of Potential Biomarkers for	
	Differentiating the Different Clinical States	93

4.4 Conclusion	94
4.5 References	

Chapter 5. Serum Glycoproteomics of Esophageal Adenocarcinoma by Multi-Lectin Detection Based Glycoprotein Microarrays and Mass Spectrometry

5.1 Iı	ntrodu	action	109
5.2 N	1ateri	als and Methods	110
5	.2.1	Samples	110
5	.2.2	Sample Preparation for Protein Microarrays and Lectin Blot	111
	5.2	.2.1 Delipidation and Immunodepletion	111
	5.2	.2.2 N-Glycoprotein Enrichment with ConA Affinity Capture	112
	5.2	.2.3 NPS-RPHPLC Separation	112
5	.2.3	Lectin Glycoarrays	113
5	.2.4	Data Analysis and Clustering	114
5	.2.5	SDS-PAGE and Lectin Blot	114
5	.2.6	Tryptic Digestion	115
	5.2	.6.1 Tryptic Digestion of NPS-RP-HPLC Fractions	115
	5.2	.6.2 In-gel Trypsin Digestion	115
5	.2.7	Protein Identification	116
5.3 R	lesults	s and Discussion	117
5	.3.1	Reduction in the Complexity of Serum Glycoprotein Mixtures by	
		Immunodepletion and Lectin Affinity Enrichment	117
5	.3.2	Lectin Glycoarrays for Identification of N-glycosylation Pattern	
		Changes	119
5	.3.3	Statistical Analysis of N-glycosylation Pattern Changes	119
5	.3.4	Identification of Plasma Biomarkers with Altered N-glycosylation .	120
5.4 R	efere	nces	128
Chapter	6. Co	onclusions	129

List of Figures

Figure	
2.1	Comparison of 2-D mass maps between <i>E. sibiricum</i> 255-15 grown at 4°C and 25°C
2.2	MALDI-QIT-TOF peptide sequencing of 1098.7 (SLDEGQEVEF EITEGAR) from Csp (7.150 kDa, pH 4.54)
2.3	ESI-TOF spectra of NPS-RP-HPLC fraction containing 7.150 kDa and 7.414 kDa Csps at 25°C (A) and its corresponding HPLC fraction at 4°C (B). Their deconvoluted spectra are shown in (C) and (D). A protein of 7.442 kDa was exclusively expressed at 4°C as shown in (D)
2.4	MALDI-TOF peptide sequencing of NPS-RP-HPLC fraction containing proteins of 7.150 kDa, 7.414 kDa, and 7.442
2.5	MALDI-QIT-TOF peptide sequencing of 1937.9 (SLDEGQEV SFEVEEGQR) from homologous Csps of 7.409 kDa (pH 4.55) and 7.409 kDa (pH 4.41).
2.6	MALDI-QIT-TOF peptide sequencing of 2098.0 (ESGDDVFVH FSAIQTDGFK) from Csp (7.409 kDa, pH 4.55)40
2.7	MALDI-QIT-TOF peptide sequencing of 2125.1 (ENGDDVFVH FSAIQTDGFK) from Csps (7.409 kDa, pH 4.41)41
3.1	Viability of <i>E. sibiricum</i> 255-15 cells grown in liquid broth or on solid agar medium at both 25°C and 4°C after repetitive cycles of freeze-thaw treatment
3.2	Experimental overview of 2-D liquid phase separation combined with MS for proteomic analysis of cryotolerance in <i>E. sibiricum</i> 255-15
3.3	2-D mass map of <i>E. sibiricum</i> 255-15 after 25°C TSB-YE liquid broth growth and 25°C TSA-YE agar surface growth of all CF fractions in Mr range of 5-95 kDa with the mass map of lane 5 from each sample highlighted on the left and right plot respectively

3.4	Reproducibility demonstration of protein profiling by 2-D mass mapping is generated by two independent CF/NPS-RP-HPLC/ESI- TOF MS experiments with two groups of samples cultured separately	72
3.5	(A) MALDI-TOF MS spectrum of protein (18.900kDa, pI 5.44). MALDI-QIT-TOF MS/MS fragmentation of peptide 1837.8 (DDATDETSGASWIDQVK) was shown in (B) and peptide 1657.9 (FIGIFHDESSLHQK) in (C). Both MS/MS spectra confirm the protein identity.	73
3.6	Alignment of hypothetic protein of 24460 Da in <i>E. sibiricum</i> 255- 15 with putative homologous phage shock protein A from <i>Bacillus</i> <i>cereus, Bacillus anthracis, Trichodesmium erythraeum,</i> <i>Clostridium perfringens</i> and <i>Yersinia berovieri</i>	74
4.1	Schematic presentation for high throughput analysis of plasma N-glycosylation pattern changes in colorectal cancer.	99
4.2	(A) Representative chromatographic profiles of immunoaffinity depletion of plasma from normal, adenoma, and colorectal cancer patients using ProteomeLab IgY-12 kit. (B) UV chromatograms of all the plasma samples from colorectal cancer, adenoma, and normal controls.	100
4.3	Microarray images of N-glycosylated proteins separated from NPS-RP-HPLC with different lectins.	101
4.4A	PCA plot for normalized glycoprotein microarray data derived from the replicates of healthy individuals, adenoma, and colorectal cancer patients. Ovals indicate the areas where the data points of the three groups are distributed.	102
4.4B	Reproducibility demonstration of PCA for normalized glycoprotein microarray data derived from the replicates of healthy individuals, adenoma, and colorectal cancer patients.	103
4.5	Unsupervised hierarchical clustering of glycoprotein microarray data distinguishes colorectal cancer (c1-c6) from adenoma (a1-a5) and normal controls (n1-n9).	104
4.6	Nano LC-MS/MS mass spectra of (A) doubly charged N- glycosylated peptide GLN*VTLSSGH ($m/z = 553.28$) from complement 4 and (B) doubly charged N-glycosylated peptide LANENN*ATFYFK from kininogen-1.	105
4.7	Elevated fucosylation and sialylation of complement C3 (A) and histidine-rich glycoprotein (C) by AAL and SNA blot analysis. The	

corresponding protein expression levels are shown in (B) for complement C3 and (D) for histidine-rich glycoprotein respectively.....106

5.1	Representive chromatographic profiles of immunodepletion of serum form normal, high grade dysplasia and esophageal adenocarcinoma patients using ProteomLab IgY-12 kit
5.2	UV chromatograms of all the serum samples from normal, high grade dysplasia and esophageal adenocarcinoma patients. The similarity among these UV chromatograms among different samples indicated that proteins undergo heterogeneity of glycosylation modifications without necessarily changing protein124
5.3	PCA plot for normalized glycoprotein microarray data derived from the replicates of healthy individuals (red), high grade dysplasia (green), and esophageal cancer patients (blue). Ovals indicate the areas where the data points of the three groups are distributed
5.4	Reproducibility demonstration of PCA for normalized glycoprotein microarray data derived from the replicates of healthy individuals (red), high grade dysplasia (green), and esophageal cancer patients (blue)
5.5	Unsupervised hierarchical clustering of glycoprotein microarray data distinguishes healthy individuals (red), high grade dysplasia (green), and esophageal cancer patients (blue). The clustering method was the average linkage, and the dissimilarity was obtained from the Pearson correlation coefficient

List of Tables

Table2.1	Caps identified in <i>E. sibiricum</i> 255-15
2.2	Sequence alignment of the homologous Csps in <i>E. sibirium</i> 255-1534
3.1	Cold shock proteins expressed at different growth conditions
3.2	Proteins down-regulated at 4°C TSB-YE, 4°C TSA-YE AND 25°C TSA-YE growth that are associated with the improved cryotolerance
3.3	Proteins upregulated at 4°C TSB-YE, 4°C TSA-YE AND 25°C TSA-YE growth that are associated with the improved cryotolerance
4.1	The amount of protein processed through the IgY antibody column and recovered in the depleted fraction from 250 μL plasma samples96
4.2A	Z-statistics of differentially glycosylated proteins detected by lectins
4.2B	Differentially glycosylated proteins identified with the glycosylation sites
5.1	Z-statistics of differentially glycosylated proteins detected by lectins

Abbreviations

2-D	two-dimensional
CF	chromatofocusing
p <i>I</i>	isoelectric point
RP	reversed-phase
NPS	nonporous
SB	start buffer
EB	elute buffer
ESI	electrospray ionization
TOF	time-of-flight mass spectrometer
Mr	molecular weight
PMF	peptide mass fingerprinting
MALDI	matrix-assisted laser desorption/ionization
QIT	quadrupole ion trap
ConA	Concanavalin A
AAL	Aleuria aurentia lectin
MAL	Maackia amurensis lectin
PNA	peanut agglutinin
SNA	Sambucus nigra bark lectin