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CHAPTER 1 
INTRODUCTION 

 

1.1. Motivation 

 
Cardiac arrhythmia is a serious health problem whose prevalence increases as the 

population ages. Over 2.2 million U.S. citizen suffer from atrial fibrillation and 400,000 

deaths are attributed to ventricular fibrillation annually [1, 2]. In advanced cases when 

drug therapy is ineffective, the arrhythmia can be treated through either ablation or 

resynchronization therapy. These interventions are planned and evaluated through 

mapping of the activation sequence. Traditional mapping techniques are done through 

time-consuming sequential mapping, are guided by fluoroscopy and place significant 

demands on the operator for mentally visualizing the activation [3]. In the last 10-15 

years these procedures have been improved through the use of electro-anatomical 

mapping. These techniques record the spatial location of the mapping catheter with 

respect to a reference coordinate system. By moving the catheter around the cardiac 

chamber of interest, the operator can sequentially build up a computerized map of the 

cardiac anatomy and the activation pattern. This reduces fluoroscopy time and facilitates 

the visualization of the arrhythmia [4-6]. However, these maps are coarse, the sequential 

mapping procedure is slow and the geometric reference they provide is static, being 

acquired with electrocardiogram (ECG) gating. These techniques are therefore inadequate 

for mapping complex, unstable arrhythmia.  
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Non-contact mapping has been developed to reduce mapping time. In non-contact 

mapping the endocardial distribution is estimated from far field potentials, measured with 

a free floating array catheter, by solving an inverse problem. In principle this allows the 

operator to map the entire endocardial surface in a single heart beat [7]. As a result, the 

beat to beat variability of unstable arrhythmia can be captured. However, the inverse 

problem is highly underdetermined and ill posed and thus sensitive to geometrical errors 

and electronic noise [8]. 

Presurgical imaging with Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) provide anatomical images of the heart to help guide the procedure, 

whereas ultrasound pulse-echo imaging provides real-time feedback of the 

endocardium’s morphology [9-14]. The registration process is not perfect and the 

registration error between the high resolution CT/MR images, intracardiac pulse echo, 

and electroantomical maps can be significant [15, 16]. 

The motivation for this thesis was to develop a new imaging method, Ultrasound 

Current Source Density Imaging (UCSDI) that could potentially improve on the existing 

methods. UCSDI is based on the acoustoelectric (AE) effect, a pressure modulated 

change in electric conductivity [17]. By combining an electronically steered ultrasonic 

beam with an array of electrodes, this method has the potential to rapidly map the cardiac 

activation wave with high spatial resolution determined by the ultrasonic point spread 

function. A further advantage of this method is that UCSDI is automatically registered to 

B-mode ultrasound because the same acoustic wave produces both. 
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1.2. The Cardiac Activation Wave 

 

1.2.1. Spreading of the Activation Wave 

The role of the activation wave is to control the contraction of the heart. The 

anatomy of the heart and its conduction pathways are shown in Fig. 1.1. The wave starts 

in the sino-atrial (SA) node which is a bundle of specialized muscle cells in the right 

atrium next to the vena cava. It is under the ultimate control of the nervous system but 

has an intrinsic rate of firing of ~70 beats-per-minute (bpm). The wave spreads from the 

SA node throughout the atria, causing them to contract. The atria are largely electrically 

insulated from the ventricles except at the atrio-ventricular (AV) node. Wave propagation 

through the node is slow, which allows the ventricles to fill completely prior to 

contraction. From the AV node the wave enters the specialized conduction system 

composed of the His-bundle, the right and left bundle branches and the Purkinje fibers. 

The propagation speed within the specialized conduction is faster (3-4 m/s) than in 

normal myocardium (0.5-1 m/s). This allows it to spread the activation wave throughout 

the endocardial surface, first at the septum then from the apex to the base. This ensures 

that as the wave propagates from the endocardium outwards the entire myocardium is 

activated simultaneously, resulting in a uniform contraction. [18, 19].  

 

1.2.2. Cardiac Current Density Modeled as a Sheet of Dipoles 

The cardiac activation wave can be modeled in terms of equivalent current density to 

estimate its spatial extent and magnitude. For a single isolated fiber of circular cross 

section the equivalent current density, Jsf , is 
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iJ
x

Vm
isf ∂
∂

−= σ .  (1.1)

where the fiber lies along the x-axis, i is the unit vector along the x-axis, σi is the 

intracellular conductivity and Vm is the membrane potential. Idealized shape and values 

for Vm, and ∂Vm/∂x in cardiac tissue are shown as a function of x in Fig. 1.2. Vm(t) 

satisfies the wave equation due to the regenerative properties of excitable membranes. 

Assuming these idealized parameters and σi=2mS/cm the equivalent peak current density 

is ~5 mA/cm2.  

The extension of equation (1.1) to three dimensions in an infinite homogenous 

myocardium is  

mids V∇−= σJ .  (1.2)

Equation (1.2) describes, Jds, a 1-mm wide, gaussian shaped, sheet of dipoles or double 

layer of current sources propagating in 3D [20]. 

 

1.3. Arrhythmias and Their Mechanism 

 

Arrhythmia is a condition when the heart beats incorrectly due to abnormal 

generation or propagation of the activation wave. It is classified according to timing into 

bradycardias, tachycardias, and premature beats and according to the anatomical location 

into ventricular and supraventricular arrhythmias as well as blockages of the bundle 

branches and Purkinje fiber system. Supraventricular arrhythmias are problems in the 

atria, pulmonary veins, the sinus node and the junction between the atria and ventricles 

(junctional rhythm) [18]. 
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Bradycardias (slowing of the cardiac rhythm) is commonly caused by a congenital 

condition, AV block, sick sinus dysfunction or medication [21, 22]. Tachycardia, a 

condition where the rate of impulses is more rapid than the normal heart beat, is due to 

either focal discharge or reentry [23, 24]. Focal discharge in the atria commonly 

originates in the pulmonary veins through a poorly understood mechanism [25-27] while 

focal discharge in the ventricles arises most commonly during acute ischemia at the 

border between ischemic and healthy tissue [28]. One reason for this focal discharge is an 

injury current due to a gradient in extracellular potassium across the boundary. 

Extracellular potassium concentration increases in the ischemic zone because cellular 

potassium pumps become less efficient due to lack of energy [29, 30].  

Reentry is a condition where the impulse travels along a circuitous route that may or 

may not be stationary. There are two requisites for reentry to occur: there has to be a 

unidirectional block of conduction and the wave has to take longer to propagate along the 

path than the longest refractory period [24]. Reentry is subdivided further into anatomic 

and functional reentry. In anatomical reentry the wave travels around a anatomical 

structure such as an artery or region with reduced or no excitability, for example due to 

infarction, while functional reentry is caused when an activation wave encounters a 

region of healthy tissue in refraction [24].  
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1.4. Cardiac Activation Mapping Technologies. 

 

1.4.1. Traditional Catheter Mapping Techniques 

Traditional catheter mapping is guided by fluoroscopy and uses both fixed curve 

electrode catheters, placed for reference in key anatomical positions, and steerable 

mapping and ablation catheters. The choice of reference positions is guided by pre-

operative analysis of surface ECG and the arrhythmia being treated. The arrhythmogenic 

regions are found through an interactive combination of activation mapping and pacing. 

The activation mapping is done sequentially with a mapping catheter and the operator 

builds the activation map mentally. Pacing is used to identify if a particular position is at 

the focus of an arrhythmia or a part of a reentrant circuit by sending pacing pulses at a 

rate that matches the arrhythmia. If during pacing the endocardial electrograms and 

surface ECG match those during arrhythmia, the position is declared a part of an 

arrhythmogenic region [31].  

Because these techniques require a mental representation of the cardiac currents, 

they may be adequate for characterizing basic arrhythmias, but not complex and unstable 

reentrant circuits [3]. To overcome some of these short-comings these techniques have 

for the last 10-15 years been augmented with electroanatomic and noncontact mapping.  

 

1.4.2. Electroanatomic Mapping 

There are three main catheter-based technologies in clinical use for endocardial 

geometric mapping and catheter guidance: triangulation by magnetic fields, electric 

fields, or ultrasound. The mapping is performed in a similar way for all of these 
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technologies. The mapping catheter, which has a sensor at its tip, is moved sequentially 

around the cardiac chamber of interest. At each location the position of the catheter tip is 

triangulated and the position is recorded at a certain point in the cardiac cycle through 

ECG gating [3, 31]. In addition to facilitating mapping of complex arrhythmia the key 

advantage of electroanatomical mapping is reduction in fluoroscopy time needed [32, 

33]. This is significant since for every 1 hr of fluoroscopy the risk of fatal malignancy is 

0.7-1 per 1000 patients [34]. 

In the CARTOTM system from Biosense Webster the mapping catheter has a 

magnetic sensor in its tip. Using this sensor to measure the magnetic field strength 

emitted by three coils located under the patients the location of the catheter can be 

triangulated. It was first demonstrated by Gepstein and co-workers [4] and is illustrated in 

Fig. 1.3. In their seminal paper they reported mean relative location error of 0.73±0.03 

mm and good reproducibility of 0.73±0.05 mm. However, they did reject any point that 

wasn’t stable enough with inter-cycle distance > 2 mm. In one study the time 

(mean±standard deviation) to acquire the 3D map of a chamber was 35.7±17.8 min [35].  

EnsiteTM Nav XTM uses generation and detection of electric field to locate the 

electrodes. The system has two configurations. In one (the LocaLisa system), electric 

fields are generated by three pairs of orthogonally placed skin electrodes and detected by 

catheter electrodes (see Fig. 1.4). The assumption is that the fields within the heart are 

unidirectional and the difference in potential measured by a catheter electrode at two 

different locations is proportional to the distance between them along the field direction. 

The localization accuracy of LocaLisa is better than 2 mm with reproducibility of 1.4±1.1 

mm [5].  
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In the other configuration potential is generated between a mapping catheter and a 

catheter electrode array. The position of the mapping catheter relative to the array is 

derived from potentials measured with each array electrode and the known 3D shape of 

the array. The accuracy of the system, which was tested in phantoms by locating an 

electrode emitting a driving potential with an EP roving electrode, was determined to be 

2.33±0.44 mm and 7.50±1.13 mm using inverse solution [7, 11].  

The Realtime Position Management (RPM) System from Cardiac Pathways uses 

ultrasound transducers placed on the catheters as illustrated in Fig. 1.5. Two fixed curve 

catheters with four transducers each are used for reference and a steerable catheter with 

three transducers for mapping. The relative location of the catheters with respect to each 

other is obtained from time of flight measurements of acoustic pulses between the 

transducers. The reproducibility of this system is 2.0±1.2 mm [6].  

The nominal accuracy (< 2 mm) of these methods is comparable to each other. As a 

result the sequential acquisition of these methods the mapping has to be performed over 

multiple cycles. As a result both cardiac and respiratory motion can negatively affect this 

accuracy such that the total accrued error can be 5-10 mm [36]. EnsiteTM is more flexible 

than either CARTOTM or RPM because it can be used to locate any electrode catheter; it 

also does not require catheters with specialized sensors. On the other hand, the low 

frequency magnetic fields and the intracardiac ultrasound waves employed by CARTO 

and RPM respectively are not distorted by the body to the same degree as the low 

frequency electric fields employed by EnsiteTM. The common disadvantage shared by 

these methods is that it is performed over multiple cycles. As a result it is difficult to map 

unstable arrhythmias using this technology alone. To map unstable arrhythmias, non-
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contact mapping has been developed. 

 

1.4.3. Non-Contact Mapping 

Non-contact mapping of the heart has been studied for decades using both 

intracardiac and surface electrodes [8]. The first intracardiac non-contact mapping using 

multielectrode catheter was done by Taccardi and co-workers in 1987 [37]. Intracavity 

non-contact mapping is accomplished by measuring far-field potentials with a multi-

electrode catheter array and then solving an inverse problem to estimate the spatial 

distribution of electrical activity [8]. The two main approaches are potential mapping and 

activation sequence mapping, where the goal of potential mapping is to reconstruct the 

endocardial potential, whereas activation time mapping is only concerned with 

reconstructing the activation time for each part of the myocardium [38, 39]. Endocardial 

potential mapping has been developed into a clinically available system, EnsiteTM. In this 

system the endocardial potential at 3360 points is estimated from potential measurements 

on 64 electrodes on an electrode catheter by solving the inverse Laplace equation. A 

geometrical transfer matrix (size 3360 x 64) is calculated between the endocardial surface 

and the catheter [7, 11]. This problem is ill posed, and the solution space must be 

constrained to physiologically plausible outcomes. The solution of this inverse problem is 

sensitive to perturbation in the geometrical transfer matrix (or the geometrical estimation 

of the heart surface), as well as electronic noise [7, 8].  

.  
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1.4.4. Registration of Electroanatomical Mapping with CT and MRI 

The electro-anatomical methods described in 1.4.2 produce coarse maps of 

endocardial anatomy and take a long time to produce. To obtain greater anatomical detail, 

CT and MR images are obtained pre-operatively and then registered to the electro-

anatomical map.  

Registration is accomplished in three steps. First CT/MRI and electroanatomical 

coordinate systems are aligned. Second, a number of anatomical landmarks such as the 

aorta are selected and aligned between them. Finally, the average surface error between 

electro-anatomic points and the CT/MRI surface is minimized through an optimization 

algorithm [16, 40]. For good registration, CT/MR images and the electro-anatomical 

mapping must be obtained at the same point in both cardiac and respiratory cycles. There 

is even a measurable difference in cardiac dimensions between inspirational and 

expirational breath holding [41, 42]. Reports of the registration error of these methods are 

conflicting. Some report small average surface to surface errors of 1.33±0.96 mm and 

2.3±0.4 mm [43, 44] while others report extremely large errors of 10-20 mm [15, 45]. 

 

1.5. Ultrasound Current Source Density Imaging (UCSDI) 

 

1.5.1. Introduction 

Ultrasound current source density imaging maps electric current distributions using 

the acousto-electric effect, focused ultrasound transducers, and electrode technology. We 

first proposed this technique in a conference paper [46] and demonstrated its sensitivity 

and generated first images with in vitro experiments [47].  
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1.5.2. The Acousto-Electric Effect 

It has been known for just under a century that pressure affects the conductivity of 

electrolytes [17]. The first to study this effect using ultrasound was Fox in 1946 [48]. 

Interest in the phenomenon was revived recently by Jossinet, Lavandier and Cathignol 

[49]. The conductivity, σ, of a binary electrolyte can be written as 

)ûzûz(CkF −−++± += ασ , [S m-1] (1.3)

where F is the Faraday constant [96487 Coulomb mol-1], k±=mean ionic activity, 

α=dissociation coefficient, C = volume concentration [mol m-3],  = number of charges, 

 = electric ionic mobilities of anion/cation [m2V-1s-1] [17]. Most physiological ions are 

fully disassociated (α ≈ 1) and k±≈1 at physiological concentrations. Therefore, the 

differentials of equation (1.3) are 

±z

±û

)ˆˆ(
)ˆˆ(

−+

−+

+
+Δ

+
Δ

≈
Δ

uu
uu

C
C

σ
σ , (1.4)

For short pulses and small pressures, the system can be assumed to be adiabatic. That is, 

thermal energy does not flow into or out of the system [50]. The ultrasound wave changes 

σ through two mechanisms. The primary mechanism is modulation of material density 

since the ionic charge density of physiological saline solutions is proportional to material 

density. The secondary mechanism is modulation of ionic mobility from adiabatic 

temperature change due to acoustic pressure. As a result, the change in σ, Δσ, due to a 

pressure wave with amplitude ΔP can be written as 
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and βs is the adiabatic compressibility of water. HP is the change in ionic mobility due to 

the change of the viscosity of water with pressure and mT±≈ 0.02 K-1 is the percent change 

in ionic mobility as a function of temperature. 

The value of KI for NaCl, KCl and CaCl2 is 10-9 Pa-1
 [17, 51]. The interaction 

constant  is stated for change in conductivity. The equivalent relationship to equation 

(1.5), in terms of resistivity is 

IK

PK IΔ−=
Δ

0ρ
ρ

, (1.7)

where Δρ is the resistivity change and ρ0 the direct current (DC) resistivity. 

 

1.5.3. Lead Fields and Voltage Measurement 

A pair of electrodes is called a lead. A lead’s sensitivity distribution is called its lead 

field, a vector field with dimensions of m-2. Its shape and distribution are the same as that 

of the electric field when unit current is injected through the electrodes [20, 52]. The 

voltage measured by lead i, Vi, due to a distributed current source  is ( )zyxII ,,JJ =

zdxdyd)~(V IL
ii ∫∫∫ •= JJρ , (1.8)
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where ( zyxL
i

L
i ,, )~~ JJ =  is the lead field of lead i and ( )zyx ,,ρρ =  is the resistivity. 

Integration variables (such as x, y and z) are omitted from subsequent equations, except 

when needed for clarity.  

 

1.5.4. Acousto-Electric Signal Equation 

An approximation of the AE signal equation was presented in [17] and is rewritten 

here below 

∫∫≈Δ
path width

I dv)t(P)z,y,x()z,y,x(sK)t(Z σ . (1.9)

where the path width is the extent of the acoustic beam, Z(t) is the complex impedance 

measured with the electrodes, P(t) is the pressure waveform, s(x,y,z) is sensitivity region 

of the electrodes and dv is a differential volume element dxdydz. The authors define 

s(x,y,z) in a way that is equivalent to the dot product of the lead fields in equation (1.8) 

although they don’t refer explicitly to the concept of lead fields.  

We expand on these results by deriving the AE signal equation for focused 

ultrasound using a more complex model of the pressure field. At time t the ultrasound 

pressure field is  and using (1.7) the resistivity distribution is ( tzyxPP ,,,Δ=Δ )

PK I Δ−= 00 ρρρ . (1.10)

Substituting (1.10) into (1.8) leads to  

( )( ) zdxdydPK~V 0I0
IL

ii ∫∫∫ Δ−•= ρρJJ . (1.11)

Expanding  gives iV
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AE
i
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i V

0I
IL

i

V

0
IL

ii
44444 344444 214444 34444 21 ∫∫∫∫∫∫ Δ−•+•= ρρ JJJJ . 

(1.12)

The first term, , represents the low frequency (DC – 10 kHz) content of  while the 

second term, , represents the high frequency (MHz) AE signal. In practice  and 

can be separated using analog and digital filters. Within  we expand the ultrasound 

pressure factor,

LF
iV iV

AE
iV LF

iV

AE
iV AE

iV

PΔ , into its subcomponents such that 

( ) )c/zt(a)z,y,x(bPt,z,y,xP 0 −=Δ , (1.13)

with ultrasound beam pattern b(x,y,z) defined with respect to the transducer at the origin 

with the beam parallel to the z-axis, P0 the amplitude of the pressure pulse, and a(t) the 

pulse waveform. Inserting (1.13) into (1.12) we rewrite  as  AE
iV

( )∫∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−−•= dxdydz

c
ztaP)z,yy,xx(bK~)t,y,x(V

B

011I

A

0
IL

i11
AE
i

444444 3444444 21
43421
ρJJ , 

(1.14)

where  represents the AE voltage trace measured when the ultrasound beam 

has been translated to (x1,y1). 

( tyxV AE
i ,, 11 )

There are two ways to think about equation (1.14). One way is to think of it from an 

imaging standpoint, where A is analogous to a reflectivity distribution while B is the one-

way point spread function of the ultrasound system. The other way to think about it is 

from an electrophysiological point of view where B is a sifter/localizer of an electric 

measurement. 
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1.5.5. The Sifting Property of the Ultrasound Beam in UCSDI 

Traditional inverse methods reconstruct electric current density from voltage 

measurements using (1.8). This is a projection of the entire unknown current density field 

onto the lead field of the recording electrodes. To resolve a 2D current density 

distribution on an N x M grid, with N and M integers, at least 2NM independent 

measurements are required; otherwise the problem is underdetermined [53].  

The AE signal equation (1.14) is essentially the same as (1.8) except for the 

multiplicative factor of the ultrasonic beam pattern. The focal volume of a beam b(x,y,z) 

is typically an ellipsoid with short axis diameter of 1 mm and long axis diameter of 3-4 

mm [54]. By contrast, the integration volume of a lead is on the order of centimeters. 

Because b(x,y,z) is small compared to the integration volume, it acts as a sifting function 

similar to a Dirac delta function. The AE voltage measurement is, therefore, only 

proportional to the projection of onto the lead field local to the focal zone, not the 

entire field. Furthermore, the MHz frequency of a(t) is a spatial label distinguishing it 

from the low frequency voltage, , simultaneously measured by the electrodes.  

IJ

LF
iV

The sifting property of b(x,y,z) is illustrated in Fig. 1.6. In this example two 

electrodes (+ and -) generate a dipole current distribution  (blue, dashed vector field) 

in a 2D circular bath and the ultrasound beam spot is presented as a dashed circle. Two 

different recording leads 1 and 2 are shown, which correspond to two different positions 

of the mobile recording electrode M. The lead fields of leads 1 and 2 are  and  and 

are depicted as red vector fields. Since is anti-parallel to  within the beam spot, the 

AE signal measured by lead 1 is relatively large. By contrast, as  is roughly 

IJ

L
1
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2
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L
1

~J IJ
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orthogonal to , we expect the AE signal measured by lead 2 to be small. From this 

example, we see that  cannot be obtained using only one lead. To solve from 

UCSD images, at least one independent lead field for each spatial dimension is required. 

That is, two measurements are required for a 2-D geometry, and three for a 3-D 

geometry. This is, however, a great improvement over conventional methods since only 3 

leads are required to yield a fully determined inverse problem, and still retain good 

spatial resolution. The sifting property of b(x,y,z), as well as the spatial label of the high 

frequency of a(t), are two key enhancements to electrical mapping with UCSDI. 

IJ

IJ IJ

 

1.6. Overview of Thesis 

 

The overview provided in this chapter has shown the need for an accurate and rapid 

mapping of the cardiac activation wave during intracardiac ablation treatment. Current 

methods provide a static geometric reference frame, have limited spatial resolution and 

are time-consuming. The objective of this dissertation is to describe a new method, 

Ultrasound Current Source Density Imaging, that can potentially improve on these 

existing methods for mapping cardiac activation currents. 

Chapter 2 describes a validation study where UCSDI was used to map and 

reconstruct an artificially generated two-dimensional current distribution. The results 

were compared both to direct electrode mapping of the distribution as well as to the 

results of a conventional inverse algorithm. 

Chapter 3 describes the first mapping of cardiac activation currents in an isolated 

rabbit heart using UCSDI. In this proof-of-principle study the motion of the heart was 
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reduced with an excitation-contraction decoupler to reduce any possible influence of 

motion on UCSDI measurements. The heart was stimulated alternatively from apex and 

right atrium and the timing of the UCSDI, measured on each pair of electrodes, was 

compared to ECG signals independently measured on the same electrodes. 

Chapter 4 describes the first measurements of localized electromechanical delay in a 

live rabbit heart using a new method that combines UCSDI with phase sensitive 

ultrasound speckle tracking. The delay between UCSDI and both local displacement and 

strain was measured.  

The dissertation concludes in Chapter 5 with a summary of the results and some 

thoughts on future work and clinical application. 
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Figure 1.1. The conduction system and anatomy of the heart. Adapted from [19]. 
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Figure 1.2. Idealized shape and values of the transmembrane voltage Vm and its spatial 
derivative ∂Vm/∂x as a function of space. Adapted from [55]. 
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Figure 1.3. A schematic of the CARTO catheter localization system. Three magnetic 
coils (C1, C2, C3) emit weak temporally coded magnetic fields. A magnetic sensor (S) on 
the catheter measures the field strength of each coil and from the field decay estimates 
the relative distance (D1, D2, D3) to each coil. Adapted from [4]. 
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Figure 1.4. One component of the Ensite Nav X (LocaLisa) electroanatomical system. A 
30 kHz current is passed between 3 pairs of skin electrodes, depicted on the left, placed 
orthogonally to each other. When each pair of electrodes is activated the voltage 
measured by an intracardiac probe at two different locations is proportional to the 
distance between them. In the schematic on the right a movement of the probe across 
the cardiac chamber is equal to a voltage drop of 8 mV. Adapted from [5]. 
 

 

 21 



 

 

Figure 1.5. Real time Positioning System is based on ultrasound ranging. Two fixed 
curve catheters depicted in B have each four ultrasound transducers are used as 
reference for other flexible mapping catheters. The two reference catheters calibrate the 
position of each other as depicted in B and then they can locate through triangulation a 
third mapping catheter as depicted in C. Adapted from [6]. 
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Figure 1.6. Illustration of the different factors in (1.14), the AE signal equation, as well as 
the sifting property of the ultrasound beam, the basis for UCSDI. The electrodes 
generating the unknown current distribution JI are depicted as blue circles marked as “+” 
and “-”. The recording electrodes are labeled R (reference) and M (mobile). Two different 
configurations of the recording electrodes are shown which produce two distinct 
recording lead fields  and . All currents in this simple example are assumed to be 2-
D and limited to the x-y plane. An ultrasound transducer is focused on the x-y plane. Its 
beam axis is parallel to the z-axis and its beam position has been shifted to coordinates 
(x1, y1). The beam spot size is shown as a small dashed circle. As (1.15) shows, the AE 
voltage signal only depends on the dot product of the lead fields within the beam spot. 
Consequently, the beam “sifts” the distribution. Notice also that within the beam spot,  
is anti-parallel to the local current field, while  is orthogonal to it. The origin of the 
coordinate system is at the center of the circular bath. 
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CHAPTER 2 
VALIDATION OF ULTRASOUND CURRENT SOURCE DENSITY IMAGING 

 

2.1. Introduction 

 
Section 1.5 introduced Ultrasound Current Source Density Imaging (UCSDI) and its 

theoretical description. In this chapter a validation study of UCSDI is described as well as 

a new method for reconstructing current densities based on UCSDI. Both UCSDI and a 

conventional electrode mapped a two-dimensional (2-D) dipole current distribution 

generated in a thin, circular bath filled with a saline solution (0.9% NaCl). Results of 

these methods were compared to each other and to the results of custom simulation 

package. The results of UCSDI reconstruction were compared to the outcome of a 

conventional dipole locating inverse algorithm. An initial report on this material was 

given at a conference [1].  

 

2.2. Instrumentation 

 
2.2.1. Acousto-Electric Signal Measurement and Processing  

Fig. 2.1 illustrates the experimental setup designed to generate and detect the 2-D 

current distribution. A low frequency sinusoidal current (arbitrarily chosen to be 500 Hz) 

with peak amplitude of either 28 mA or 0 mA (control) was injected through a pair of 

AgCl electrode wires (0.15 mm diameter), marked “+” and “-” into a 1-mm bath of 0.9% 

NaCl placed in a circular container (38.1 mm diameter). At low frequencies (<1 kHz), 
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saline and tissue are primarily resistive, and the alternating current reduces polarization at 

the electrode interface compared to direct current. Also, at 500 Hz the frequency of the 

injected current is much lower than the ultrasonic frequency of the AE signal, which can 

be easily filtered from the detected voltage. Stimulating AgCl electrodes were used for 

their electrochemical stability. The bottom of the container was a thin plastic film acting 

as an acoustic window. A 5-mm thick layer of mineral oil was placed on top of the saline 

to insulate the 2-D conductive saline layer. The mineral oil allowed the acoustic wave to 

pass through the saline window and minimized surface reflections at the saline interface.  

Ultrasound was coupled to this container with de-ionized water (DI-H2O). The 

current waveform was generated by a signal generator (33120A, Agilent, Santa Clara, 

CA), amplified (MDT694, Thorlabs, Newton, NJ) and AC coupled to the electrodes. The 

current was monitored using a multimeter (Toolkit 2707A, BK Precision, Yorba Linda, 

CA), as well as a differential amplifier, which measured the voltage across a 1-ohm 

resistor placed in series with the current injecting electrodes.  

An AgCl electrode fixed at 0o was used as the recording reference, while a mobile 

tungsten electrode was rotated around the boundary in 20o steps from -60o to 260o (N = 

17). A 7.5 MHz single element ultrasound transducer with a diameter of 1.27 cm and 

focal length of 5.08 cm was focused on the membrane from below, as illustrated in Fig. 

2.2. The transducer was moved in a raster scan pattern in the xy-plane covering a 16 x 17 

pixel grid with a step size of 2.2 mm in each direction. The current generator (33120A, 

Agilent) provided the master trigger for the experiment at the start of each cycle. It was 

fed into an Field-Programmable Gate Array (FPGA) (ezFPGA, Dallas Logic, Plano, TX), 

which issued a trigger to an ultrasonic pulser/receiver (5077PR, Panametrics Inc., 

 30 



Waltham, MA) and a digital acquisition board (PDA12, Signatec, Newport Beach, CA) at 

either the maximum or minimum of the current waveform. At each location, the 

transducer was pulsed 128 times on both the maximum and minimum of the current 

waveform. The AE signals corresponding to the positive peak were averaged, as well as 

those corresponding to the negative peak. The triggering diagram is shown in Fig. 2.2 to 

the left. The average AE signal from the positive current peak was subtracted from the 

AE signal of the negative peak to remove common-mode noise, such as transducer 

ringing. 

To measure the AE signal, each electrode was connected via an analog high pass 

filter (single pole, 480 kHz cut off frequency) to a differential amplifier (1855A, LeCroy, 

Chestnut Ridge, NY) with a gain of 20 dB and bandwidth of 20 MHz. The output was 

further amplified by an additional 29 dB (5072PR, Panametrics Inc.). The AE signal and 

pulse echo were sampled concurrently at 50 MHz and digitized with 12-bit precision. All 

data were processed in Matlab (MathWorks Inc, Natick, MA). Signals were bandpass 

filtered between 1 and 3 MHz and converted to analytical form in Matlab. Since the 

phantom was a saline bath bounded on one side by a plastic membrane and mineral oil on 

the other, the conductivity profile along the beam axis was approximately rectangular. As 

the membrane was not perfectly flat, the timing of the pulse echo of the membrane was 

used to shift the AE signals to align them to the same time index. The signals must be 

aligned, as the correlation scheme, described below, assumes that signals are identical in 

shape, differing only in magnitude and sign. 

To assign values to the 2-D grid, a representative AE template waveform [one with 

good signal to noise ratio (SNR)] was chosen and correlated with all other AE 
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waveforms. Under the assumption that the AE signals were perfectly aligned, the value at 

zero lag in the cross correlation sequence was chosen as the representative measured 

value at each grid point. Correlation detection was used to filter out noise spikes within 

the bandwidth of the AE signal. This resulted in 17 UCSD images arranged in a 16 x 17 

pixel grid, one image per angle of the recording electrode. As shown below, each UCSD 

image was the result of the dot product of the unknown current field and the lead field of 

the recording electrodes. The next section explains decoupling of recording lead fields 

from the measured AE signal. 

 

2.2.2. Conventional Low Frequency Mapping of the Field 

The dipole current field was independently measured using conventional methods to 

compare results of UCSDI reconstruction and simulation. The potential distribution in the 

bath was mapped with a mobile tungsten electrode, mounted on a motorized 2-D 

translation stage and scanned across a 25 x 24 step grid in steps of Δx = Δy = 1.5 mm. 

The potential was measured with respect to a fixed reference placed on the boundary of 

the circle at angle 0o using a differential amplifier (1855A LeCroy). The geometry is 

illustrated in Fig. 2.1 to the right. The output of the amplifier was sampled and digitized 

using an oscilloscope (TDS1002, Tektronix, Beaverton, OR) and transferred to a 

computer for storage. The magnitude and sign of the trace corresponding to each pixel 

were measured. In addition, boundary voltages were measured using the same 

instrumentation and signal processing except that the mobile electrode was rotated 

around the boundary of the saline bath in 32 steps of 10o from -60o to 250o.  

 

 32 



2.3. Current Source Reconstruction 

 
2.3.1. The Forward Problem of a Single Dipole 

The forward problem relevant to this method is finding the measured boundary 

voltage distribution produced by a point dipole current source. Rewriting (1.8) in two 

dimensions yields 

∫∫ •= dxdyV IL
ii )~( JJρ , (2.1)

with , ( )yxII ,JJ = ( )yxL
i

L
i ,~~ JJ =  and ( )yx,ρρ = . A single point dipole source J0

I at 

location (x1, y1) gives  

),(),( 1120 yyxxyx II −−= δJJ , (2.2)

with δ2(x,y) the 2-D Dirac delta function, which produces the lead voltage  

)),(~)(,( 01111
IL

ii yxyxV JJ •= ρ . (2.3)

If we have N leads, the vector of boundary voltages  

T
NVVV ][ 21 K=V  (2.4)

(where [*]T indicates transpose) is related to  at (x1,y1) by a N x 2 transfer matrix T  I
0J

TL
N

LL yxyxyxyx ]),(~),(~),(~[),( 1111211111 JJJT L=  (2.5)

by  

Iyxyx 01111 ),(),( JTV ρ= . (2.6)

Equation (2.6) is the solution to the forward problem. That is, the relationship 

between the source J0
I and the boundary voltage is determined [2]. Some inverse 

algorithms solve this forward problem for all points (x,y) and calculate the normalized 

sum squared error (NSSE) between the measured and estimated boundary voltage 

distribution for each point. The normalization factor is the maximum error. The algorithm 
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ranks the pixels in terms of likelihood (1- NSSE). The pixel likeliest to contain the dipole 

is the one that minimizes the sum of squares error between the measured and calculated 

boundary voltage distribution [2]. We compare this algorithm with USCDI.  

 

2.3.2. UCSDI Reconstruction 

To derive the reconstruction algorithm, the signal equation (1.14) is rewritten and 

simplified. In the special case of an infinite saline film of thickness h and uniform 

resistivity ρ’, the 3-D resistivity distribution is  

))()(()( hzuzuz −−′= ρρ , (2.7)

where u(z) is the step function. We further assume that the thickness h is small enough 

such that the recording lead field LJ~ nd unknown current field IJ  e primarily 2-D and 

the beam pattern b(x,y,z) has a constant cross section across the thickness of the bath 

 a ar

),,(),,( yxbzyxb =  hz ≤≤0 .  (2.8)

With the ultrasound focus at (x1, y1), the voltage measured between the fixed reference 

and the mobile electrode at angle θi = i Δθ, i=1,..,N is  

( )
43421

44444444 344444444 21

B

h

A

IL
iI

AE
i dz

c
ztadxdyyyxxbyxyxPKtyxV ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −−−•′−=

0
11011 ),(),(),(~),,( JJρ . (2.9)

Based on these assumptions, A and B in (2.9) are convolutions. In convolution A, 

b(x,y) sifts out the value of the dot product at (x1,y1), whereas B describes the generation 

of the high frequency component of the signal as the acoustic pulse traverses the saline 

bath.  

For the development of the algorithm, we assume the beam is narrow, that is, 
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),(),( 20 yxbyxb δ≈ .  (2.10)

By defining  

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=

h

dz
c
ztatA

0

)(  and , 00 bPKK Ia ρ′−=
 

(2.11)

(2.9) becomes 

( ) )(),(),(~),,( 111111 tAyxyxKtyxV IL
ia

AE
i JJ •≈ . (2.12)

From (2.12), it is clear that the exact time point of A(t) does not affect the reconstruction, 

so for the sake of argument we choose here the maximum, A0 = max{A(t)}. 

( )),(),(~),( 1111011 yxyxAKyxV IL
ia

AE
i JJ •≈ . (2.13)

Now, (2.13) has the same form as (2.6) except that the boundary voltage is also a 

function of space. Dropping the superscript on , (2.13) becomes 

AE
iV

AE
iV

),(),(),( 1111011 yxyxAKyx I
a JTV ≈ . (2.14)

The minimum norm estimate of the dipole, , given  is  ),( 11 yxIJ ),( 11 yxV

),()),((1),( 1111
0

11 yxyx
AK

yx
a

I VTJ += , (2.15)

where (*)+ denotes a Moore-Penrose pseudo inverse (i.e., T+ = (TTT)-1TT) [2]. 

 

2.3.3. Simulation of Lead Fields and Current Distribution 

All lead fields ( L
iJ~  and ) were computed using a 2-D QuasiStaticSmallCurrents 

simulation in Femlab (Comsol AB, Stockholm, Sweden). These fields were simulated to 

calculate the transfer matrices T(x,y) in (2.15) and verify the measurements and 

IJ

 35 



reconstructions in two steps. First, simulations were compared to conventional low 

frequency measurements and, second, actual UCSDI reconstructions were compared with 

simulations. 

The bath was modeled as a circular base domain (diameter = 38.1 mm) with the 

electrodes modeled as two 0.2-mm diameter circular inner boundaries of the base 

domain. Each lead field was simulated separately such that there were three boundaries: 

one exterior and two interior. Boundary conditions prevented flow across the exterior 

boundary, while assuring inward flow at one interior boundary and outward flow at the 

other. To simulate the recording lead field the positions of the recording electrodes were 

identical to the experimental setup. For the simulations, the injected current lead field 

(cathode) was placed at (x,y) = (-1.7, -10.8) mm, while the anode was placed at (x,y) = 

(0.7, -5.3) mm, based on their actual positions during the experiment.  

To determine the transfer coefficients, the lead fields ),(~
11 yxL

iJ  were calculated for 

each angle on the same 16 x 17 pixel grid used in the experiment. The AE data were 

simulated by calculating the lead fields and the current distribution  on a high 

density 241 x 257 grid with Δx = Δy = 0.137 mm and then calculating their dot product. 

From (2.9), the AE signal measures the dot product 

),( yxIJ

),(),(~
1111 yxyx IL

i JJ •  with low pass 

filtering by the ultrasound beam. Therefore, to simulate the effect of the ultrasound beam 

pattern, a Gaussian filter with a 3-mm diameter at -3dB was applied to the high density 

dot product data. The result was then downsampled to the same 16 x 17 pixel grid used in 

the experiment. For the low frequency simulation, this upsampling/downsampling was 

not used, and no filtering was applied. The potential distribution was simulated and 
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sampled on a 25 x 24 grid with 1.5- mm step size. The low frequency boundary voltage 

was sampled at 10o intervals, along the boundary of the domain. 

 

2.3.4. Processing of Reconstructed Images 

The measured and simulated reconstructed vector fields were smoothed with a 2-D 

Gaussian filter (-3dB = 1.5 mm) and interpolated to a 300x300 grid. The source density 

of the current field ICSD was calculated by taking the divergence of the interpolated data 

[3]: 

),(),( yxIyx csd
I −=•∇ J  . (2.16)

 

2.4. Results  

 
Both UCSDI and low frequency measurements agreed well with simulation. The 2-

D current field was successfully reconstructed by UCSDI with the current source and 

sink located to within 1 mm of their actual locations.  

A map of the potential distribution measured with conventional methods is 

contrasted with the simulated field in Fig. 2.3. Current injecting electrodes extending 

above the saline bath prevented the entire region to be mapped, as illustrated in Fig. 2.1. 

Nonetheless, the correlation coefficient between measured data and the simulated 

distribution for the remaining pixels (88% of total) was 0.996.  

A comparison between boundary voltage measurements and simulations is shown in 

Fig. 2.4. Measurement closely matched simulation with a correlation coefficient of 0.999. 

The position of the stimulating electrodes prevented measurements between Θ = 260o and 

300o. Fig. 2.5 presents a typical high frequency trace at a single pixel location and single 
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lead (Θ=260o). The relevant experimental geometry is shown on the right. The resistivity 

profile along the beam axis was rectangular. The polarity of the AE signal follows the 

sign of current injection (plot 2.5B). Plot 2.5C denotes the subtraction of the “-” trace in 

2.5B from the “+” trace, eliminating common-mode noise. Note that the AE signal is 

shifted down in frequency to approximately 2 MHz from the incoming acoustic pulse. 

This is consistent with convolution B in equation (2.9) stating that the AE signal is a 

convolution between the acoustic pulse and an averaging (low pass) filter with a 

rectangular shaped impulse response. 

Fig. 2.6 shows an example of a detected UCSD image for a single angle (Θ=260o). It 

corresponds to (2.13). Even for a single lead of two electrodes, the location of the source 

is highly resolved. There were 16 other similar UCSD images--one for each position of 

the mobile electrode. All 17 UCSD images were used to reconstruct the current density as 

described by (2.14) and (2.15). The results of the reconstruction are displayed in Fig. 2.7 

(left). Reconstruction based on experimental results (top row) is consistent with simulated 

reconstructions (bottom row). The x and y component of the current density, as well as 

the divergence, are also shown in Fig. 2.7. Results using a conventional inverse algorithm 

(i.e., the likelihood as a function of space) are illustrated to the far right [2]. This 

conventional algorithm, described at the end of Section 2.3.1, finds the most likely 

location of a single dipole given the boundary voltage distribution displayed in Fig. 2.4.  

The divergence of the current density is related to the current source density by 

(2.16). Reconstructions were quantified by locating the current sources and sinks based 

on the extrema of the divergence distribution of the simulated and measured data. The 

estimated and actual positions are summarized in table 2.1. Simulations agreed well with 
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UCSDI and low frequency measurements. The reconstructed current field by UCSDI 

located the current source and sink to within 1 mm of the actual locations. Note that in 

this case the full-width-half-maximum (FWHM) values of UCSDI were dominated by the 

lateral dimensions of the -3dB focal spot of the ultrasound transducer, which was 

approximately 3 mm, based on its f number (f/#=4) and the center frequency of the AE 

signal (2 MHz). 

 

2.5. Discussion 

 
We have described UCSDI, a new method to map current densities based on the AE 

effect with improved spatial resolution. In this initial study under controlled conditions, 

UCSDI accurately located a 2-D current source to within 1 mm of its actual position, 

without making prior assumptions about the nature of the source, other than the resistivity 

distribution. The accuracy was within one sampling interval of the grid step size (2.2 

mm). 

The spatial resolution of UCSDI according to the simplified AE signal equation (2.9) 

is dominated by the ultrasound beam, due to its sifting property in UCSDI. The thin 

current injecting electrodes (diameter = 0.2 mm) can be considered point sources. The 

average FWHM of 4-mm for both simulated and measured data was consistent with the 

beamwidth of the transducer (3 mm) and the applied smoothing filter. The lateral 

resolution can be improved by choosing a transducer with a tighter focus than the f/4 

used for this study. The beam spot size of a narrow band transducer is roughly equal to 

the product of the wavelength and f/number, where f/number is the ratio of the 

transducer’s focal length to its diameter. For example, a tightly focused transducer with 
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f/1 at the same frequency would have a -3dB focal diameter of approximately 0.75 mm 

[4].  

The conventional inverse algorithm produced the broad likelihood distribution 

shown in Fig. 2.7 (FWHM = 15 mm). The chosen inverse method represents the best-

case scenario for conventional algorithms. The dipole source geometry dovetails with the 

explicit single-dipole assumption, and the algorithm uses multiple measurements with 

high SNR. In contrast, our method directly resolves the location of the dipole’s source 

and sink with only the assumption of the resistivity distribution, (in this case, 

homogenous) which is a necessary assumption of most inverse algorithms. Furthermore, 

in Fig. 2.7 a map of the entire 2-D current field is illustrated as an image of the x and y-

components of the field. Direct estimates of the current field would not normally be 

possible using conventional electrical mapping methods. 

Although we demonstrate that UCSDI reconstructs both the magnitude and direction 

of the current from a synthetic array of 18 electrodes, as few as two electrodes provide 

detailed information on the actual location of the current dipole (Fig. 2.6). Conventional 

dipole localization would require a large number of electrodes to approach similar results, 

as Fig. 2.7 demonstrates.  

Although these initial results are promising, the approach has limitations. The small 

AE signal must be conditioned appropriately (filtering, etc), such as that shown in Fig. 

2.5. The effect of the small signal can be seen in the noise ripples in the upper left 

quadrant of the detected UCSD image in Fig. 2.6. This affected the reconstruction of JX 

and JY as illustrated in Fig. 2.7. However, the SNR of the reconstructed image was still 
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sufficient to accurately estimate the current source and sinks to within 1 mm. Further 

investigations will be aimed at increasing signal size, while reducing sources of noise. 

In this work, a simple 2-D current system was used, for the sake of clarity, to 

directly compare UCSDI with other methods for mapping biopotentials. However, it is 

clear from the AE signal equation (1.14) that this method can be extended to three 

dimensions and more complicated source geometries. Reconstruction using three 

dimensions will probably be not as straightforward as in the 2-D case for which (1.14) 

could be separated into two factors in (2.9), one that depends only on x and y and the 

other on z. In a 3-D reconstruction, the dependence of the beam pattern b(x,y,z) on z 

needs to be taken into account. If the ultrasound transducer and electrode array are fixed 

in position with respect to each other, a known electrical source can be used to self-

calibrate the system. 

Although this Chapter focuses on applications of UCSDI to electrocardiography, the 

technique could also be used for current density analysis in the exposed brain or other 

neural structures. If this technique were applied to intracardiac electrocardiography, it 

could potentially generate 3-D current maps of the cardiac activation wave with high 

spatial resolution. High frame rate UCSDI is possible via electronic ultrasound beam 

steering. Although existing catheters that integrate electrodes with ultrasound are limited 

to 2-D imaging, technology exists to steer 60ox60o sectors in 3-D, which might be used to 

generate 3-D images of current flow co-registered with pulse-echo images illustrating 

structure [5-7]. The relative motion of the catheter might not be a significant problem, 

since the heart is quasi-stationary during the spread of the activation wave. Motion-
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compensation algorithms could be used to reduce artifacts associated with heart motion 

[8]. 

USCDI has unique advantages over other methods because there is no registration 

error between anatomical images and maps of electrical activity. This is superior to 

conventional inverse localization methods that use pre-surgical CT or MRI images for 

anatomical mapping fused with an electroanatomical map for catheter guidance. MRI and 

CT provide pre-surgical, static images of the heart and typically provide no functional 

information. Registration error between the CT/MRI images and the electro-anatomical 

map has been reported to be in the range of 2-10 mm [9-12]. Preliminary studies have 

shown that a combined electrode and ultrasound catheter can be used for anatomical 

mapping and guidance [6, 7]. If such a device is made compatible for UCSDI, pulse-echo 

ultrasound images showing myocardial anatomy and kinematics can be simultaneously 

integrated with electrical mapping. Such automatic real-time co-registration is currently 

not found in typical cardiac imaging and would dramatically facilitate guidance during 

corrective heart surgery. 
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Table 2.1. Location estimates of current source and sink. Actual locations refer to 
independent measurements of the positions of the current-injecting electrodes. The 
FWHM is defined as twice the mean distance from a given extrema of the divergence to 
the half maximum contour. FWHM = Full Width at Half Maximum 

Current 
Source/Sink Name x 

[mm] 
y 

[mm] 
FWHM 
[mm] 

Source Simulated AE -2.2 -10.3 3.8 
Source Measured AE -2.3 -10.3 3.8 
Source Actual  -1.7 -10.8  
Sink Simulated AE 0.3 -5.4 3.8 
Sink Measured AE -0.05 -3.7 4.2 
Sink Actual 0.7 -5.3  
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Figure. 2.1. Experimental setup for conventional low frequency measurement. A current 
distribution was generated by injecting current I through two AgCl electrodes “+” and “-” 
into a 1-mm thick 0.9% NaCl saline bath. The bath was in a circular container with a 38.1 
mm inner diameter. The potential V0 was measured between a fixed reference AgCl 
electrode and a mobile tungsten electrode. The tungsten electrode was moved in 
discrete steps across the entire bath to map the potential distribution. The presence of 
current injection wires above the saline prevented complete mapping of the potential 
distribution close to these wires. The origin of the coordinate system is at the center of 
the circular bath. 
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Figure. 2.2. Right: Experimental setup for the AE measurement. Left: Experimental 
timing. The current waveform I(t) was generated using an Agilent 33120A. Its sync 
output (CURR TRG) was fed into an FPGA which sent a trigger (US TRG) to the pulse-
receiver and data acquisition board (DAQ). The AE and pulse-echo signals were 
acquired after each US TRG. The FPGA triggered the ultrasound transducer on either 
the positive or negative peak of the current waveform. The top view of the bath and the 
layout of the electrodes is shown on top. 
 

 45 



 

 

Figure. 2.3. Left: A simulation of the potential distribution generated by the current 
injected into the bath. Right: The potential distribution measured directly between the 
roving tungsten electrode and the fixed AgCl reference electrode. The presence of the 
current injecting wires over the bath (illustrated in Fig. 2.1) precluded the mapping of the 
field close to the electrodes. The color scale is linear. Pixel dimensions for all plots are 
127 x 127 μm2. 
 
 
 

 46 



 

 

Figure. 2.4. Conventional measurement (open blue circles) and simulation (dashed 
green line) of the potential distribution at the boundary of the bath generated by the 
current injected through the stimulation electrodes. Θ is the location at the boundary of 
the roving tungsten electrode. The inset illustrates the measurement geometry. The 
current-injecting wires over the bath (illustrated in Fig. 2.1) prevented measurement 
between Θ = 260o-300o. 
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Figure 2.5. Sample traces for a single pixel of a single lead. Geometry is illustrated on 
the right. Trace A) is the pulse echo with the echoes from different features in the picture 
to the right. Trace B) has two AE traces, one captured when ultrasound is triggered on 
the positive peak of the current waveform (+) and the other when ultrasound is triggered 
on the negative peak (-). As expected the “+” waveform is 180o out of phase with the “-” 
waveform. Trace C) is the subtraction of the “-” waveform from the “+” waveform to 
minimize common-mode interference. On top is illustrated graphically the rectangular 
resistivity distribution along the z-axis. 
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Figure 2.6. UCSDI for a single lead when the roving electrode is at Θ = 260o, while the 
reference electrode is still at Θ = 0o, as illustrated with the cartoon above and center. 
The figure on the right is the actual measurement, while the figure on the left is the 
theoretical prediction.  
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Figure 2.7. Left: Reconstruction results for both measured (top row) and simulated 
(bottom row) data. The left, middle, and right columns correspond to the x-component, y-
component, and divergence of the current density, respectively. The “+” signs illustrate 
extrema positions. Right: Results of a conventional algorithm that finds the most likely 
position of a single dipole given the low frequency boundary voltage distribution shown 
in Fig. 2.4.  
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CHAPTER 3 
CARDIAC ACTIVATION MAPPING USING UCSDI 

 
 
3.1. Introduction 

Chapter 2 described the validation of UCSDI by mapping an artificially generated 

two-dimensional current distribution using UCSDI. In previous in vitro experiments 

UCSDI has been shown to have sufficient sensitivity to detect and map biological 

currents [1-3]. In this chapter, the first application of UCSDI for mapping cardiac 

activation currents in an isolated rabbit heart will be described.  

The heart was perfused with an excitation-contraction decoupler to reduce motion 

while retaining electrical function. This reduced the risk of motion artifacts and 

facilitated analysis of results. The heart was alternatively paced from the apex and the 

right atrium while AE and ECG were collected simultaneously from tungsten electrodes 

embedded in the left ventricle. A focused 540 kHz transducer, scanned across the heart 

from apex to base, was used as the ultrasound modulation source. The spatial pattern of 

UCSDI was compared to the disposition of the electrodes and its timing to ECG. 

Preliminary results from this study were presented at a conference [4].  
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3.2. Methods 

 
3.2.1. Langendorff Isolated Rabbit Heart Setup 

Two hearts were excised from white New Zealand rabbits. They were used in 

separate experiments and will be referred to as hearts A and B. Each was placed in a 

Langendorff setup and retroperfused through the aorta with a modified Kreps-Henseleit 

(K-H) buffer (In mM: NaCl 117, KCl 4, MgCl2 1.2, KH2PO4 1.1, glucose 5, NaHCO3 25, 

CaCl2 2.6, pH 7.44, 370C) oxygenated with a mix of 95% O2 and 5% CO2 [5]. To 

eliminate motion artifacts, 15 mM of an excitation-contraction decoupler (2,3-butane 

dione monoxime (BDM)) was mixed into the K-H buffer. BDM reduces mechanical 

contraction, yet preserves the electrical cardiac wave [6]. All protocols were approved by 

the University Committee on the Use and Care of Animals at the University of Michigan. 

 
3.2.2. Instrumentation 

The experimental geometry is shown in Fig. 3.1. Each heart was placed in a small 

tank inside a larger outer tank. The outer tank was filled with de-ionized water and a 

single element 540 kHz f/1 ultrasound transducer with 90 mm focal length (Etalon, 

Indianapolis, IN) was placed in the water underneath the small tank. The heart was placed 

in a custom made holder in the inner tank such that the long axis of the heart was 

horizontal and the left ventricle facing down. In Fig. 3.1 the long axis of the heart 

coincides with the x-axis of the imaging coordinate system. 

Eight teflon coated tungsten electrodes were inserted into the heart, four recording 

electrodes (1, 2, 3, 4) and four stimulating electrodes (S1, S2, S3, S4). The tip of each 

electrode was stripped and bent into a hook such that the electrode, once inserted, would 
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have better purchase. One pair of stimulating electrodes (S1, S2) were inserted 1 mm part 

into the apex of the heart while the other (S3, S4) were inserted 2 mm apart into the right 

atrium. The recording electrodes were inserted into the left ventricle in a row 

approximately parallel to the long axis of the heart. The electrodes were placed 

sequentially such that 1 was closest to the apex of the heart while 4 was closest to the 

base of the heart. The spacing between electrode pairs 1-2, 2-3 and 3-4 was 4, 6 and 3 

mm in heart A and 3, 4, 3 mm in heart B as measured after the conclusion of the 

experiment. A large ground electrode was placed beside the heart in the small tank. 

The pacing signal was a 5V high and 500 μs wide rectangular pulse emitted by a 

function generator (33120, Agilent, Santa Clara CA). The heart was paced either from the 

apex (with electrodes S1 and S2) or from the right atrium (with electrodes S3 and S4).  

Each recording electrode was connected to a low frequency amplifier with a gain of 

100 and bandwidth 0.1 Hz to 3000 Hz. Each amplifier measured the voltage between the 

corresponding electrode and the ground electrode. Electrodes 1 and 2 were connected to 

an AM502 differential amplifier (Tektronix, Beaverton, OR), while electrodes 3 and 4 

were connected to a SRS560 differential amplifier (Stanford Research Systems, 

Sunnyvale, CA). These amplifiers recorded the normal low frequency electrocardiograms 

(ECG) corresponding to  in (1.12) and their outputs were connected to two digital 

oscilloscopes (TDS1002, Tektronix). The oscilloscopes digitized the signals and sent 

them via General-Purpose-Interface-Bus (GPIB) to the computer. The sync output of the 

stimulation function generator was used to trigger data acquisition. 

LF
iV
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To measure the high frequency AE signal (corresponding to in (1.12 and 1.14)), 

two electrodes were connected via an analog high pass filter (single pole, 200 kHz, -3 dB 

frequency.) to a differential amplifier (DA1855A, LeCroy, Chestnut Ridge, NY) with a 

gain of 10 and a 1MHz bandwidth. The AE signal was measured with a pair of 

electrodes, either 1-2, 2-3, or 3-4. In every case the electrode with the lower number was 

connected to the positive terminal of the amplifier. The AE signal was further amplified 

by 45 dB (5072, Panametrics, Waltham, MA.) and filtered at 2MHz (BLP-1.9, Mini-

Circuits, Brooklyn, NY). The experimental timing (illustrated in Fig. 3.2) was controlled 

by a field-programmable-gate-array (FPGA) chip (ezFPGA, Dallas Logic, Plano, TX). 

The FPGA sent out two trigger signals, a 3Hz signal to pace the heart and 500 trigger 

burst to an ultrasound pulser/receiver (5077PR, Panametrics). Each burst was sent to 

coincide with the pacing signal such that 20 triggers were sent before the heart was paced 

and 480 afterwards in one heart cycle. The interval between ultrasound triggers was 625 

µs (1600Hz).  

AE
iV

The pulser-receiver excited the ultrasound transducer which was focused on the left 

ventricle. For each trigger, AE and pulse echo (PE) traces were acquired concurrently and 

sampled at 12.5 MHz by a digital acquisition (DAQ) board (PDA12, Signatec, Newport 

Beach, CA). Each trace was 2048 samples long. Consequently, data acquired with each 

trigger burst were two 2048 x 500 matrices, an AE matrix and a PE matrix. The first 

dimension of each data matrix will be hereafter referred to as the fast-time axis and the 

second dimension will be referred to as the slow-time axis.  
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3.2.3. Experimental Procedure 

The AE and PE data were acquired in an XZ-slice by moving the transducer in 20 1 

mm steps along a line parallel to the x-axis. At each step AE and PE matrices were 

averaged over 64 heart cycles (trigger bursts). For each pair of electrodes (1-2, 2-3, 3-4), 

an XZ-slice was captured for each pacing location, right atrium or apex. After every XZ-

slice was captured, two control experiments were performed. One (FOAM) repeated the 

experiment unchanged except the path of the ultrasound was blocked with a piece of 

polystyrene. In the other control (US off), the ultrasound path was clear but the 

ultrasound transducer was disconnected from the pulser. In the control experiment only 

the A-line corresponding to x=0.54 mm was captured. An XZ-slice corresponding to a 

single slow-time index will be referred to as a frame in the remainder of the Chapter.  

 
3.2.4. Data Processing 

To reduce noise each data matrix (AE or PE) was band pass filtered along its fast-

time axis (0.4-0.8 MHz) and AE data were further band pass filtered in slow time (pass 

band = 15-80 Hz). The AE signals were converted to complex analytical form, 

basebanded and low-pass filtered in the xz-plane where z is the fast time axis. The 2D 

filter was Gaussian in the frequency domain with a full width at half maximum (FWHM) 

= 0.36 mm-1. For fair comparison, low frequency ECG data were filtered with the same 

slow-time filter as AE signals.  

To gauge the imaging capabilities of the AE measurement system we estimated its 

point spread function (PSF). The inherent PSF of the acoustic system was estimated from 

FWHM of the autocorrelation of the PE data as being 6.24 mm axially and 7.07 mm 

laterally (one-way). The FWHM of the PSF of the fast-time bandpass filter was 3.87 mm 
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and the FWHM of the PSF of the 2D filter was 2.45 mm. Assuming perfectly Gaussian 

envelopes the total PSF of the AE measurement was therefore 7.74 mm axially and 7.42 

mm laterally. 

A number of parameters of the ECG and AE signal envelopes were measured to 

facilitate comparison, onset latency (te), time to peak signal (tp) and the -3dB width of the 

signal envelope (w-3dB). The signal-to-noise ratio (SNR) of the AE signal was also 

measured for each data set. The envelope of the AE signal was found by choosing the 

peak magnitude of each frame as representative of the AE signal at that slow-time index. 

The envelope of the ECG signal was similarly obtained by finding the analytic signal 

along the slow-time axis.  

The timing measurements used are illustrated in Fig. 3.3. The ECG signal was 

normalized by subtracting the minimum envelope and dividing by the peak signal and the 

AE signal envelope was normalized by subtracting minimum envelope magnitude and 

dividing the result with the peak envelope. The normalized envelopes of AE and ECG 

signals were otherwise treated the same.  

Although the ECG signals were acquired on all electrodes in each acquisition, the 

AE signals were acquired on only one pair at a time. As a result of the finite time to 

complete each AE acquisition and because physiological signals are not strictly 

deterministic there were slight differences in timing between each AE acquisition which 

were reflected equally in ECG and AE signals. To calibrate, the time to peak of the ECG 

signal on electrodes 1-2 for each acquisition was measured. Any inter-acquisition delay 

was corrected by shifting all ECG and AE signals by the measured delay.  
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The onset latency (te) was defined as the delay between the stimulation (t = 0) and 

the time when the envelope first crossed 0.707 (-3dB point). The -3dB point was chosen 

instead of 0.5 because there were some AE signals with poor SNR where that point 

would not have been meaningful. The uncertainty of te, Δte, was estimated by fitting a 

line along the envelope at te and finding how much te varied with a 10% change in the 

envelope magnitude. The time to peak signal (tp) was the time between the stimulation 

and peak envelope and the -3dB width (w-3dB) was the time between the first and last time 

the envelope crossed the 0.707. The AE-SNR was measured as the ratio of the peak AE 

signal and the baseline AE signal, in dB. The baseline AE signal was the root mean 

square (RMS) value of the AE data matrix corresponding to the 20 pre-stimulus triggers. 

 
3.2.5. Displacement Estimation 

Correlation-based phase-sensitive 2-D speckle tracking [7] was used to estimate 

residual motion using PE frames. The tracking algorithm calculated the complex cross-

correlation coefficient between speckle-sized blocks in a reference frame and every other 

frame. Correlation coefficient functions were filtered to reduce tracking error. Axial and 

lateral dimensions of the correlation kernel were estimated from the FWHM of the 

magnitude of the autocorrelation function to be 3.1 mm x 5 mm(52 x 5 samples) and the 

correlation filter was chosen as 7.8 mm x 7 mm (130 x 7 samples). 

Coarse estimate of both axial and lateral displacements were computed by finding 

the peak position of the magnitude of the correlation coefficient function using a 

parabolic fit. The axial displacement was further refined by calculating the position of the 

phase zero-crossing around the peak correlation coefficient [7]. The spatial resolution of 

the displacement estimate was 8.4 mm x 7.4 mm. Due to the small displacement being 
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estimated and to the relatively large variance in lateral speckle tracking only axial 

tracking results were considered [8]. 

The choice of reference frame was derived from low frequency ECG data. The 

differential signal between the three pairs of electrodes (1-2, 2-3 and 3-4) was calculated. 

The slow-time segment corresponding to the peak of each differential signal (peak-time) 

was found. The mean peak-time of the three differential signals was used as the reference 

time. 

 
3.3. Results  

 
We report for the first time mapping of biological current in the live rabbit heart 

using ultrasound. Three UCSDI movies are associated with this Chapter--two from heart 

A (Movies 3.1 and 3.2) and one from heart B (Movie 3.3). A screen shot from Movie 3.1 

is depicted in Fig. 3.4 and explained below. The figures 3.4, 3.5, and 3.6 correspond with 

heart A. 

Figure 3.4 demonstrates the ultrasound dependence of the AE signal. A single frame 

from Movie 3.1 corresponding to slow-time=170 ms is shown in Fig. 3.4 on the left. Each 

frame is a B-mode PE image (30dB dynamic range, grayscale) superimposed on which is 

an UCSD image of current flow (hot/cold scale). An UCSD images is bipolar (signed) 

but its amplitude is logarithmically compressed such that the positive and the negative 

amplitude have 10 dB of dynamic range. The boundary of the heart in the pulse-echo 

image is depicted by the dashed white lines and the location of the acoustic window of 

the chamber is noted with a white arrow.  
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The radio frequency (RF)-traces shown on the right correspond to the vertical dotted 

white line in the image on the left. In the plot at the bottom right is the PE RF-trace and a 

black dashed line that marks the interior of the heart. The RF-traces in the top right are 

RF- traces were measured with the electrodes where the solid blue line is the AE signal, 

the black dashed line corresponds to a control where the acoustic path was blocked by a 

block of polystyrene and the red dotted line is the control where the ultrasound transducer 

was disconnected. In these plots as well as the image to the left the fast-time axis (z-axis) 

has been converted to spatial dimension. The z-axis of the AE plots was converted based 

on one-way propagation while the z-axis of the PE plots was converted based on two-way 

propagation. The peak amplitude of the blue curve is 0.71 μV while the RMS values of 

the black dashed and red dotted curves are 0.09 and 0.15 μV, respectively. If we assume 

that the controls are a good estimate of the noise, the maximum SNR is 18 and 14 dB 

after filtering, respectively. 

Figs. 3.5 and 3.6 show that the AE signal has spatial and temporal patterns consistent 

with the spreading cardiac activation wave. In Fig. 3.5 on the right is an illustration of the 

heart showing both the layout of the recording electrodes with respect to the x-axis as 

well as the location of the stimulation electrodes. On the left are measured results, where 

each column represents a pair of electrodes 1-2, 2-3 or 3-4. The bottom row presents the 

low frequency ECG traces while the images in the top row are bipolar UCSD M-mode 

images measured with the same pair of electrodes in which the magnitude of the AE 

signal is logarithmically compressed and then given the sign of the real part. The 

magnitude is symmetrically cut just above the noise level. The time scale is short (0.1-0.2 

sec) to highlight the disposition of AE signals along x axis. That is, the signal measured 
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with electrodes 1 and 2 is around x=0 mm while the signal measured with electrodes 3-4 

is at around x=7 mm with the signal measured with electrodes 2 and 3 between the two. 

The small dispersion of signals in slow-time is related to the propagation paths of the 

electrical stimulation. When the heart is stimulated from the right atrium, the activation 

signal travels along the natural pathways throughout the ventricle and the activation wave 

travels both from the apex to base as well as transmurally [9]. The long delay from the 

stimulation to the peak of the signals (0.15 sec) was due to propagation delays in the 

atrium as well as in the atrio-ventricular node [10].  

Fig. 3.6 shows that the AE signal propagated in slow-time and demonstrates the lack 

of motion during the generation of the AE signal. The geometry of the heart and the 

disposition of the electrodes are shown on the right. Note that the heart was stimulated at 

the apex as a result the delay between stimulation and the appearance of electrical signals 

was less than that when the heart was stimulated at the right atrium, as depicted in Fig. 

3.5. The top two images on the left are bipolar AE M-mode images corresponding to the 

lateral line z = 100 mm, shown as a horizontal white dotted line in Fig. 3.4. The top 

image was measured using electrode 1 and 2 while the image below it was measured with 

electrodes 2 and 3. In these images the magnitude is logarithmically compressed and 

given the sign of the real part. Notice that the image corresponding to electrodes 2-3 is 

both shifted in slow-time and space with respect to the image measured with electrodes 1 

and 2. By drawing a line through AE signal (slanted white dotted line in Fig. 3.6) we 

estimate from the slope the propagation speed along z=100mm to be 0.25±0.05 mm/ms. 

This line was chosen visually and the uncertainty reflects that this choice is not unique. 

For comparison, the velocity estimate from the three differential low frequency signals 
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captured simultaneously was 0.31±0.05 mm. The plot second to bottom shows the low 

frequency ECG signal measured concurrently with the data shown in the top two images. 

The solid blue line was measured with electrodes 1 and 2 and the green dotted line was 

measured with electrodes 2 and 3.  

The plot at the bottom is the axial displacement along line x= 0.54 mm estimated 

using speckle tracking. The peak displacement was 10 μm which demonstrates that the 

BDM has greatly reduced the motion of the heart. This plot also shows that during the 

AE signal there was little motion (<5 μm) and that the main motion occurred 160 ms after 

the stimulation. Here the reference point in the displacement curve is the positive 

displacement peak. 

The results of the timing and SNR measurements from both heart A and B are 

tabulated in table 3.1 where they are sorted by stimulation location (AT, AP) and 

electrode pairs (1-2, 2-3 and 3-4). The measured uncertainty in the onset latency of both 

AE and ECG was relatively small typically 1-3 ms while the width at -3dB, a measure of 

the uncertainty in the peak position was relatively large at 10-15 ms. The onset latency 

and the time-to-peak of AE and ECG signals are compared graphically in the scatter plots 

in Fig. 3.7. The upper and lower groups in the scatter plots correspond to measurements 

with atrial and apical stimulation, respectively. A linear fit through the data points was 

highly significant, R2=0.987 and R2=0.992 for onset latency and time-to-peak 

measurement, respectively. The unity slopes of the fitted lines tell us that te and tp of AE 

and ECG have a fixed delay between them and the intercepts, -0.8 ms for te and -1.04 ms 

for tp show that this delay is very small.  
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3.4. Discussion 

 
In this chapter we have described the first mapping of bioelectric current in a live 

rabbit heart using UCSDI. This demonstrates that UCSDI is a potentially viable cardiac 

mapping technique which could significantly improve intracardiac procedures. 

Experimental results indicate that UCSDI provides spatial and temporal patterns of 

the propagating cardiac activation wave. Moreover, measurements were repeatable, 

dependent on the presence of ultrasound, and consistent with the simultaneously-recorded 

ECG signals. The results of the control experiments in Fig. 3.4 indicate that the AE signal 

disappeared in the absence of ultrasound and was spatially localized to the correct 

anatomical location based on one-way acoustic propagation. In addition Fig 3.4 

demonstrates that the AE signal occurred within the heart wall at the side facing the 

transducer, consistent with both the electrode placement and the orientation of the heart 

illustrated in Fig. 3.1.  

The motion of the heart was suppressed with the excitation-contraction de-coupler 

BDM, as demonstrated by the plot at the bottom of Fig. 3.6, showing axial displacement. 

Not only was the maximum absolute displacement miniscule (10 μm), but it occurred 

>100 ms after the electric signals. Motion during the electric signals was very small (<5 

μm), which means that it is highly unlikely that the AE signal was a motion artifact.  

According to the timing measurements illustrated in Fig. 3.7 there was good 

correlation of the onset time and time-to-peak between AE and ECG signals. The unity 

slope and the small intercept value of the fitted lines of these plots means there was 

minimal delay between the AE and ECG. The consistent timing between the AE and 

ECG signals further supports the electrophysiological origin of UCSDI. 
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Atrial and apical stimulation result in different propagation patterns. When the heart 

is stimulated at the apex, propagation of the activation wave is mostly parallel to the long 

axis of the heart whereas when the heart is stimulated from the right atrium the wave 

propagates mostly from the endocardium outward [9]. In Fig. 3.5 the low frequency and 

AE signals occur at approximately the same slow-time yet the AE signals occur at 

different x-positions. Since the recording electrodes were arrayed in the left ventricle 

parallel to the x-axis, this is consistent with what one would expect from a wave 

propagating from the endocardium outwards.  

Since the wave was propagating parallel to the x-axis for data presented in Fig. 3.6, 

AE signals should be delayed in slow-time. Not only was there a delay between the signal 

measured with electrodes 1-2 and 2-3, but in the M-mode measured with 2-3 we see that 

the signal spreads along a line at an angle with the slow-time axis. This strongly suggests 

that the AE signal captured wave propagating along the x-axis in slow-time. The 

propagation velocity estimated from the slope of that line, 0.25±0.05 mm/ms, is 

comparable to both that measured with low frequency ECG signals as well as to what 

others have observed [11].  

The morphology of the AE signals shown in Fig. 3.5 and 3.6 are of two types: A 

signal with a single zero crossing (electrodes 1-2 in Fig. 3.5 and 3.6) or two zero-

crossings (electrodes 2-3 in Fig. 3.6 and electrodes 3-4 in Fig. 3.5). The recording lead 

fields have the highest spatial frequencies close to the electrodes and so after a 

convolution by the PSF of the AE measurement system we would expect the highest 

signal closest to the electrodes. The zero-crossings in the AE signal could be interpreted 

as the time the wave passes a single electrode. A single zero crossing signal means one 
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electrode was out of the imaging plane but a signal with two zero crossings had both 

electrodes in plane. Notice also from the signal equation (1.14) that the PSF of the 

ultrasound system will filter the signal along the slow-time axis. The extent of that 

filtering will be studied further. 

The large PSF (7mm x 7 mm) of the AE system was mainly due to the low 

frequency transducer used. As a result of this large PSF and the relative proximity of the 

electrodes (3-6 mm), the maximum mapping distance away from the electrodes was 

within the width of the PSF. For reference the lead field strength of a monopolar 

electrode goes down 12 dB per doubling of distance from the electrode. The system used 

in this proof-of-principle study is far from optimal. In future studies using transducers 

with higher center frequency, we explore techniques that provide better electronic noise 

management with enhanced spatial resolution and sensitivity. 

Another limitation of this study is that it was not possible to acquire AE signals on 

all of the electrodes simultaneously because of equipment limitations. There were subtle 

changes in the heart between acquisitions which were reflected in the small inter-

acquisition delays. However, these changes were small since the low frequency signals, 

acquired simultaneously for all acquisition, did not exhibit significant change in signal 

morphology. 

From the AE traces shown in Fig. 3.4 the sensitivity of the method can be roughly 

estimated. The blue curve shows the maximum AE signal acquired while the control 

curves are appropriate estimates of system noise. According to the signal equation (1.14) 

the AE signal is a spatial sum that depends on a number of geometric factors. Assuming 

that the current source had constant magnitude and direction and was perfectly parallel to 
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the electrode lead field within a resolution cell of the AE measurement system we can 

extract the current source from the spatial sum. The spatial sum after extraction is a 

constant representing the sensitivity and is equal to the ratio of the maximum signal 

amplitude and maximum current density. From [12, 13] and chapter 1.2.2 the current 

density of the activation wave is ~5 mA/cm2 therefore the sensitivity was 0.141 

μV/(mA/cm2). Accordingly, the noise level, or the smallest detectible signal with this 

setup, was 0.3-0.5 mA/cm2. 

We have described for the first time the detection and mapping of biological current 

using UCSDI. UCSDI has great potential advantages as a tool to map arrhythmias during 

interventional cardiac procedures in which an ultrasound array and a sparse array of 

recording electrodes are integrated into an intracardiac catheter. The spatial resolution of 

UCSDI is determined by the focusing characteristics of the ultrasound beam. Electronic 

steering of the ultrasound beam would provide real-time electrical mapping of the heart. 

As the accompanying movies demonstrate, UCSDI images are automatically registered to 

the B-mode ultrasound, which suggests the possibility of dynamic feedback of 

mechanical and electrical cardiac events during ablation procedures and pacemaker 

insertion. 
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Table 3.1 Timing characteristics measured from the envelope of the AE and ECG 
signals. The parameters are illustrated in Fig. 3.7. The acronyms are: H=Heart, SL= 
stimulation location, AT=right atrium, AP=apex, EL=electrode pair, tp = time-to-peak, 
te=onset latency, w-3dB= the -3dB with of the signal. AE= acousto-electric, ECG=low 
frequency electrocardiograms, SNR = signal-to-noise ratio. 

H SL EL 

te 
AE 

[ms] 

te 
ECG 
[ms] 

tp 
AE 

[ms] 

w-3dB 
AE 

[ms] 

tp 
ECG 
[ms] 

w-3dB 
ECG 
[ms] 

SNR-AE 
[dB] 

1-2 168.8 ± 0.7 162.4 ± 0.9 171.3 6.8 167.8 16.6 15.7 
2-3 165.4 ± 0.6 151.6 ± 2.0 169.1 9.9 160.4 19.6 13.5 AT 
3-4 145.4 ± 0.8 144.2 ± 12.0 149.1 9.2 150.2 11.0 11.1 
1-2 12.9 ± 1.1 14.4 ± 1.5 16.6 6.8 21.2 12.8 14.7 

A 

AP 
2-3 22.4 ± 1.0 30.2 ± 1.8 49.8 6.2 49.8 13.2 10.2 

1-2 157.7 ± 0.8 135.0 ± 12.0 160.8 5.5 143.6 14.6 11.9 AT 
2-3 135.5 ± 0.4 133.0 ± 0.8 137.6 6.2 137.6 12.0 10.2 
1-2 28.3 ± 0.5 18.8 ± 1.7 31.4 8.0 25.4 14.0 13.4 

B 

AP 
2-3 29.5 ± 0.8 28.3 ± 1.2 33.8 6.2 34.1 12.0 13.4 
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Figure 3.1. Experimental setup. Four tungsten stimulating electrodes (S1, S2, S3 and 
S4) and four recording electrodes (1, 2, 3 and 4) were inserted into the heart. S1 and S2 
were inserted in the apex and S3 and S4 were inserted into the right atrium. The 
recording electrodes were inserted in a line parallel to the long axis of the heart. The 
voltage on each electrode with respect to ground (G) was amplified with a low frequency 
amplifier and digitized with an oscilloscope (TDS 1002). In addition, two of the recording 
electrodes (here electrodes 1 and 2) were connected via an analog high pass filter to a 
differential amplifier. The high frequency voltage (AE) was sampled and digitized 
concurrently with the pulse-echo (PE) signal by a digital acquisition board (DAQ). A field-
programmable-gate-array (FPGA) controlled the experimental timing. It sent a trigger to 
the signal generator that paced the heart as well as the ultrasound pulser-receiver. The 
heart was paced from the apex if the signal generator was connected to electrodes S1 
and S2. If the signal generator was connected to electrodes S3 and S4, the heart was 
paced from the right atrium. 
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Figure 3.2. Experimental timing. The heart was paced by the FPGA at a 3-Hz rate. Prior 
to the heart stimulus, the ultrasound (US Trig) transducer was given 20 pre-triggers 
(Npre). After the stimulus ultrasound was triggered (Npost) 480 times at a pulse repetition 
frequency of 1600 Hz.  
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Figure 3.3. Diagram to illustrate measurement of onset latency (te), peak time (tp) and 
width of the peak at -3dB (w-3dB). The solid black line is a normalized signal envelope s(t) 
in slow-time. The onset latency corresponded to the first time the envelope crossed s(t) 
= 0.707 (-3dB). The uncertainty in te, ∆te, was estimated by fitting a line f(t) through (te, 
s(te)) and finding the ∆te such that f(te ± ∆te) = s(te) ± 0.1. The width w-3dB was defined as 
the first and last time the AE signal passed through s(t) = 0.707. 
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Figure 3.4. Example RF-traces. Left: A screen shot from Movie 3.1, representing data 
from heart A measured with electrodes 1-2 and paced at the atrium. The bipolar acousto-
electric (AE) image is superimposed on top of the B-mode pulse-echo image (dynamic 
range=30 dB) shown in grayscale. The magnitude of the AE image is logarithmically 
compressed while keeping the sign of its real part. The white horizontal dotted line is the 
image line used in the bipolar m-mode displays in Figs. 3.5 and 3.6. Right Top: Radio 
frequency (RF) traces corresponding to the dotted white vertical line (x=0.5 mm) in the 
figure on the left. The blue solid line is the AE RF trace, the black dashed line 
corresponds to the control where the ultrasound path is blocked with polystyrene. The 
red dotted line corresponds to the control where the ultrasound transducer was 
disconnected from the ultrasound pulser. Right Bottom: The PE RF trace acquired 
concurrently at the same A-line. The black dashed horizontal line marks the interior of 
the heart. 
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Figure 3.5. Top row on the left: Lateral bipolar M-mode electrical traces corresponding to 
z= 100 mm in Fig. 3.4 where each column is the signal measured by a different 
electrode pair. In these images the magnitude of the AE signal is logarithmically 
compressed and given the sign of the real part. Bottom row: The plot in each column is 
the low frequency ECG signal measured on the same pair of electrodes as the M-mode 
plot above it. The figure on the right illustrates the geometric arrangement of the 
recording electrodes (numbered red dots) and stimulation location (green diamond) in 
the heart with respect to the x-axis. Note that AE signals occur at roughly the same time 
as the low frequency signal yet they are spatially separated along the x-axis. 
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Figure 3.6. Right: An illustration of the heart showing the disposition of the recording 
electrodes (numbered red dots) and the stimulation electrode (green diamond) along the 
x-axis. Left: The top two images are AE bipolar M-mode plots corresponding to the 
lateral line z=100mm. The image at the top was measured on electrodes 1 and 2 while 
the image below it was measured with electrodes 2 and 3. In the plot second to bottom 
are the low frequency ECG plots measured concurrently on the same electrodes. The 
solid blue line was measured with electrodes 1 and 2 while the green dashed line was 
measured with electrodes 2 and 3. At the bottom are the tracking results corresponding 
to x=0.54 mm in the top M-mode image. The vertical dashed line in all of the images 
mark t= 0. While the slanted dashed white line in the figure next to top was used to 
estimate the velocity of the activation wave. 
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Figure 3.7. Plots of the timing measurements tabulated in table 3.1 demonstrating the 
relationship between the low frequency ECG signals and the AE signals. These plots 
combine measurements from hearts A and B. In the plot on the left the error bars are the 
measured uncertainty, while in the plot on the right the horizontal and vertical error bars 
are the w-3dB of the ECG and AE signals respectively.  
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Movie 3.1. This is a movie of heart A, UCSDI and ECG are measured from electrodes 1-
2 and the heart is stimulated at the right atrium. 
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Movie 3.2. This is a movie of heart A, UCSDI and ECG are measured from electrodes 1-
2 and the heart is stimulated at the apex. 
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Movie 3.3. This is a movie of heart B, UCSDI and ECG are measured from electrodes 1-
2 and the heart is stimulated at the apex. 
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CHAPTER 4 
ELECTROMECHANICAL IMAGING 

 

4.1. Introduction 

 
Advanced heart failure can lead to electromechanical delay either within each 

ventricle or between the left and right ventricle. As a result, the heart does not contract 

uniformly and its efficiency or ejection fraction is reduced. Cardiac resynchronization 

therapy (CRT) using either uni- or bi-ventricular pacing is an established procedure for 

patients not responding to drug treatment [1-3]. Clinical studies have shown, however, 

that 30% of patients do not respond to this treatment. The two primary cited reasons for 

failure are improper placement of left ventricular pacing leads and poor selection of 

patients for the treatment [3].  

The traditional selection criterion for CRT in heart failure is the presence of a wide 

QRS-complex in surface electrocardiograms (ECG). The QRS-complex is produced 

during ventricular activation; therefore, a long QRS-complex can indicate asynchronous 

spread of the activation wave throughout the ventricles [3, 4]. It has been demonstrated, 

however, that a wide QRS-complex is a poor indicator of electromechanical delay and 

mechanical asynchrony [5, 6]. As a result, echocardiographic techniques such as Tissue 

Doppler Imaging (TDI) and M-mode ultrasonography are used in conjunction with ECG 

analysis for diagnosis and patient selection [7]. 
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Given the high rate of non-responders, the electrical and mechanical nature of the 

problem and the high cost of the procedure (up to $100,000 including both device and 

procedure [2]), there is a need for an imaging technique that combines both electrical and 

mechanical imaging. Some have proposed such a modality using MRI mechanical 

imaging with epicardial electrode mapping [8], sequential electroanatomical mapping [9] 

and intracardiac ultrasound with non-contact endocardial mapping [10]. These methods 

either are time consuming or require a non-trivial registration between the mechanical 

and electrical maps. 

In this chapter, a new technique for cardiac electromechanical imaging that 

combines UCSDI and ultrasonic strain imaging is described and the first measurements 

reported. Phase sensitive ultrasonic speckle tracking is an established method for 

characterizing the contractile properties of cardiac tissue [11-14], and in Chapter 3 the 

ability of UCSDI to map cardiac activation currents was demonstrated.  

The advantage of this combined method is that both the electrical and mechanical 

images are automatically co-registered to each other. The absence of any extra 

registration step will both save time during the procedure and increase confidence in the 

electromechanical delay measurements. 

 

4.2. Methods 

 
4.2.1. Instrumentation and Experimental Procedure 

All results reported here used the same Langendorff setup presented in the previous 

chapter. In particular, the instrumentation used was described in Sections 3.2.1, 3.2.2, and 

3.2.3. The data analyzed below are the same as collected for Chapter 3. The BDM 
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excitation contraction decoupler used in this study reduced the motion considerably but 

did not eliminate it. There was sufficient contraction remaining to be detected using 

phase-sensitive speckle tracking. 

 

4.2.2. Displacement and Strain Estimation 

Correlation-based phase-sensitive 2-D speckle tracking [15] was used to estimate the 

displacement from pulse-echo (PE) images. The tracking algorithm calculated the 

complex cross-correlation coefficient between speckle-sized blocks in a reference frame 

and every other frame. The analytic (i.e., complex) representation of the recorded RF 

ultrasonic signal was used in all calculations. Correlation coefficient functions were 

filtered to reduce tracking error. Axial and lateral dimensions of the correlation kernel 

were estimated from the FWHM of the magnitude of the autocorrelation function of a PE 

image to be 3.1 mm x 5 mm (52 x 5 samples) and the correlation filter was chosen as 7.8 

mm x 7 mm (130 x 7 samples). 

Coarse axial and lateral displacements were computed by finding the peak position 

of the magnitude of the correlation coefficient function using a parabolic fit. The axial 

displacement was further refined by calculating the position of the phase zero-crossing 

around the peak correlation coefficient. The spatial resolution of the displacement 

estimate was 8.4 mm x 7.4 mm. Due to the small displacement being estimated, and to 

the relatively large variance in lateral speckle tracking, only axial tracking results were 

considered here. [16]. The axial strain was estimated as the axial spatial derivative of the 

axial displacement and was calculated by finding the slope of a sliding linear fit to the 

displacement along the length of the kernel [15, 17]. 
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The choice of reference frame was derived from low frequency ECG data. The 

differential signal between the three electrode pairs (1-2, 2-3 and 3-4) was calculated. 

The slow-time segment corresponding to the peak of each differential signal (peak-time) 

was found. The mean peak-time of the three differential signals was used as the reference 

time.  

 

4.2.3. Data Processing 

The processing and filtering of AE and PE data is described in Section 3.2.4. The 

electromechanical delay was estimated for every electrode pair (1-2, 2-3, 3-4) and 

stimulation location (right atrium, apex) for both hearts A and B. For each dataset the 

pixel which contained the largest UCSDI signal for any frame across slow-time was 

chosen as the point of comparison. To estimate the delay between UCSDI and both 

displacement and strain in the pixel, the onset latency (te) of the slow-time envelopes of 

the AE signal, the displacement and strain were measured. Strain and displacement 

envelopes were estimated by computing the analytic representation of these variables 

along the slow-time axis and taking the magnitude of the complex representation. These 

envelopes were normalized by subtracting the minimum envelope value and then 

dividing by the maximum value. For strain and displacement envelopes extending beyond 

a single cycle (333 ms), they were extended assuming periodicity.  

Although the ECG signals were acquired on all electrodes in each acquisition, the 

AE signals were acquired on only one pair at a time. As a result of the finite time needed 

to complete each UCSDI acquisition and because physiological signals are not strictly 

time-invariant there was slight difference in timing between each UCSDI acquisition, 
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reflected equally in ECG and AE signals. To calibrate, the time to peak of the ECG signal 

on electrodes 1-2 for each acquisition was measured. Any inter-acquisition delay was 

corrected by shifting all ECG, AE, displacement, and strain signals by the measured 

delay.  

The timing measurements are illustrated in Figure 4.1. The onset latency (te) was 

defined as the delay between the stimulation (t = 0) and time when the envelope first 

crossed 0.707 (-3dB point). The -3dB point was chosen instead of 0.5 because there were 

some UCSDI images with poor SNR where that point would not have been meaningful. 

The uncertainty of te, Δte, was estimated by fitting a line to the envelope at te and finding 

how much te varied with a 10% change in the envelope magnitude.  

 
4.3. Results  

 
The first localized measurements of electromechanical delay in a live heart using the 

new technique combining UCSDI and phase-sensitive ultrasonic speckle-tracking are 

shown here. 

Figures 4.2 and 4.3 show screen shots from Movie 4.1 corresponding to frames at 

170 ms and 264 ms, respectively. Each frame presents UCSD, axial displacement, and 

axial strain images (hot and cold color scale) superimposed on top of B-mode ultrasound 

(30 dB, gray color scale). The axial displacement and strain are shown on a linear scale 

while the UCSD image is bipolar, where the magnitude has been logarithmically 

compressed but the sign of the real part is retained. In these images both the UCSDI and 

the ECG signal were measured with electrodes 1-2. Finally the interior of the heart is 

delineated between the two white dashed lines. 
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Figure 4.4 shows example radio frequency (RF) AE and PE traces corresponding to 

a single A-line in Fig. 4.2 where it is depicted as a vertical dotted line. The interior of the 

heart corresponds to the extent of the horizontal black dashed line. 

Figure 4.5 shows an example M-mode images of UCSDI, displacement, and strain 

corresponding to the A-line x=0.5 mm from heart A when stimulated at the apex. Both 

UCSDI data and the ECG were measured with electrodes 1-2. The black dotted vertical 

line in the ECG plot is the slow-time index that corresponds to the reference PE frame 

used for speckle-tracking. In this figure we see that the displacement and strain are small 

and peak after the UCSDI. 

The results of the timing measurements are tabulated in table 4.1 and are graphically 

shown in Fig. 4.6. They are the first localized electromechanical measurements of 

electromechanical delay. In these plots the red dashed line corresponds to te-U = te-D and 

te-U = te-S for the plots on the left and right respectively. Subtracting that line from the 

measurement, we can estimate the mean and standard deviation of the delay between 

UCSDI and displacement as 139.7± 68.3 ms and the delay between UCSDI and strain as 

109.7 ± 70.2 ms.  

 

4.4. Discussion 

 
We have demonstrated a new method for electromechanical imaging of the heart 

which combines UCSDI and phase-sensitive ultrasonic speckle tracking. 

From the movie and the screenshots in Fig. 4.2 and 4.3 it is possible to appreciate the 

potential advantages that this method could have in guiding lead placement for 
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resynchronization therapy. Standard B-mode ultrasound is automatically registered to a 

UCSDI of the electrical activity as well as maps of displacement and strain. B-mode 

ultrasound not only provides the geometrical context for the electrical and mechanical 

measurement, but can also be used for acute evaluation of hemodynamic parameters such 

as ejection fraction to gauge the success of resynchronization [18]. In these screenshots 

we see that the motion and strain are small and are greatest at the top surface of the heart. 

The bottom surface of the heart did not move as much because it was constrained by the 

sample holder. 

It is hard to conclude much from the localized measurements of the 

electromechanical delays shown in Fig. 4.6 other than that UCSDI precedes both local 

displacement and strain. There was great variability in the measured values as reflected in 

the relatively large standard deviation in the mean delay of both strain and displacement. 

This variability can be explained by a number of factors. First, this was not a normally 

functioning heart. It was perfused with a high concentration of an excitation-contraction 

decoupler designed to disrupt the linkage between electrical and mechanical functioning 

of the heart. As a result of the BDM, the maximum displacement in the region of 

electrical activity was on the order of 10 μm and the strain less than 1%. Others have 

shown that strain SNR is small for very small strain [15]. 

Another limitation of this study is the large point spread function of the ultrasound 

system because of the low center frequency (540 kHz) of the transducer used. After 

filtering, the PSF of the AE measurement is 7-mm both axially and laterally whereas the 

PSF of the displacement and strain estimates were 8.4 mm x 7.4-mm axially and laterally. 

Given that a typical rabbit heart is approximately ovoid with long and short axis 
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dimensions of 30-mm and 20-mm respectively, it is possible that the motion within each 

resolution cell was not uniform. 

In spite of these experimental limitations, the data presented here are the first 

measurements of both the electrical and mechanical activity of the heart with a new 

method combining UCSDI and phase-sensitive speckle tracking. The main advantage of 

this approach is that electrical and mechanical measurements are automatically registered 

to each other without the use of sophisticated mathematical algorithms. This potentially 

could be a valuable tool for the cardiac electrophysiologist. 
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Table 4.1. Timing characteristics measured from the envelope of the AE signal, Strain 
and displacement. The parameters are illustrated in Fig. 4.1. The acronyms are: 
SL=stimulation location, AT=right atrium, AP=apex, EL=electrode pair, te=onset latency. 
U=UCSDI, D=displacement, S=strain. All values are in milliseconds. 

  Heart A Heart B 
 SL AT AP AT AP 
 EL 1-2 2-3 3-4 1-2 2-3 1-2 2-3 1-2 2-3 

te  167.6 165.4 144.8 12.3 23.1 157.1 135.5 27.7 27.6 
U 

∆te 0.7 0.5 0.8 1.2 1.0 1.5 0.7 0.6 0.5 
te  219.4 285.6 265.0 135.6 234.4 275.4 202.6 205.3 295.1 D 
∆te 3.6 5.9 1.7 5.6 1.5 5.0 12.5 6.3 1.4 
te  258.8 260.3 275.4 109.7 182.6 200.3 221.7 49.9 289.5 S 
∆te 8.3 8.8 5.1 42.0 3.5 6.0 14.8 6.1 2.7 
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Figure 4.1. Diagram to illustrate measurement of onset latency (te). The solid black line 
is a normalized signal envelope s(t) in slow-time. The onset latency corresponded to the 
first time the envelope crossed s(t) = 0.707 (-3dB). The uncertainty in te, ∆te, was 
estimated by fitting a line f(t) through (te ,s(te)) and finding the ∆te such that f(te ± ∆te) = 
s(te) ± 0.1.  
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Figure 4.2. A screen shot, corresponding to t=170ms, from the movie Movie 4.1, when 
heart A was stimulated from the right atrium. Bottom: For reference is shown the low 
frequency ECG signal measured with electrodes 1-2. In the images on top from left to 
right: UCSDI, axial displacement, and axial strain are superimposed on top of B-mode 
ultrasound (dynamic range=30dB, grayscale). The magnitude of the UCSD image has 
been logarithmically compressed and given the sign of the real part.  
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Figure 4.3. A screen shot, corresponding to t=264ms, from the movie Movie 4.1, when 
heart A was stimulated from the right atrium. Bottom: For reference is shown the low 
frequency ECG signal measured with electrodes 1-2. In the images on top from left to 
right: UCSDI, axial displacement, and axial strain are superimposed on top of B-mode 
ultrasound (dynamic range=30dB, grayscale). The magnitude of the UCSDI image has 
been logarithmically compressed and given the sign of the real part.  
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Figure 4.4. Example radio frequency traces corresponding to the white dotted vertical 
line in Fig. 4.2. The plot on the top is the AE trace while the plot on the bottom is the PE 
RF trace acquired concurrently at the same A-line. The black dashed horizontal line 
marks the interior of the heart.  
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Figure 4.5. The bottom three panels are M-mode images corresponding to the line x= 
0.5 mm. The dynamic range (DR) for each image is shown on the side of each image. 
Top: Conventional low frequency ECG measured with electrodes 1-2. The vertical dotted 
line corresponds to the reference frame for speckle tracking. Second to top: A bipolar 
UCSD image measured with electrodes 1-2 where the magnitude of the AE signal has 
been logarithmically compressed and given the sign of the real part. Second to bottom: 
Axial displacement estimate. Bottom: Axial strain estimate.  
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Figure 4.6. Scatter plots of the timing measurements tabulated in table 4.1. They 
combine measurements from hearts A and B. On the left, the onset time of the 
displacement (te-D) is plotted against the onset time of the UCSDI measurements (te-U). 
On the right the onset time of the displacement (te-S) is plotted against the onset time of 
the UCSDI measurements (te-U). In both plots the red dashed line represents where the 
two corresponding parameters are equal. We see that the UCSDI signal precedes both 
displacement and strain. 
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Movie 4.1. This is a movie of heart B, UCSDI and ECG are measured from electrodes 1-
2 and the heart is stimulated at the apex. 
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions and Contribution of This Work 

 
The primary goal of this dissertation was to develop a method (UCSDI) to detect and 

map cardiac currents using ultrasound through the acousto-electric effect. Existing 

methods are time consuming and produce coarse and static activation maps. The promise 

of UCSDI is that it potentially achieves high spatial resolution determined by the 

ultrasonic point spread function, fast 3D imaging with electronic beam steering, and is 

automatically registered to B-mode ultrasound. UCSDI is potentially a powerful 

diagnostic visualization technique that could combine electrical mapping with 

quantitative ultrasound volume and strain measurements. 

In Chapter 1 the theoretical basis for AE measurements and UCSDI was presented, 

the AE signal equation derived, and the sifting property of the ultrasonic beam in UCSDI 

illustrated. A validation study of UCSDI was described in Chapter 2. A two dimensional 

(2D) current distribution was generated and mapped independently with UCSDI and 

conventional methods. Both measurements were validated with a finite element 

simulation. The ability of UCSDI to significantly characterize the current source and its 

location with only a single pair of electrodes was demonstrated. By combining UCSD 

images from a number of electrodes, it was possible to reconstruct the current density and 
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locate monopolar sources to within 1 mm of their true location without making prior 

assumptions regarding the source. 

The ability of UCSDI to map biological currents was demonstrated in Chapter 3. In 

these experiments electrocardiograms (ECG) and AE signals were measured using 

tungsten electrodes embedded in the left ventricle of an isolated rabbit heart. The heart 

was perfused with an excitation contraction decoupler to reduce motion. The resulting 

UCSD images had spatial and temporal patterns consistent with the spreading activation 

wave and coincided temporally with ECG signals acquired simultaneously. With 

comparison to B-mode ultrasound images, AE signals appeared to originate in the heart 

wall. Control experiments revealed the dependence of AE signals on the presence of 

ultrasound. 

A new method for electromechanical imaging combining UCSDI and ultrasonic 

strain imaging was introduced in Chapter 4. This chapter presented the first movies of 

both UCSDI and displacement images automatically registered to B-mode ultrasound, as 

well as the first localized measurements of electromechanical delay.  

 

The main contributions of the work presented in this thesis are summarized below 

• The acousto-electric signal equation was rewritten into a more useful form for 

imaging. 

• An imaging technique, Ultrasound Current Source Density Imaging (UCSDI), 

was developed. It was tested by mapping a 2D current distribution, which was 

independently measured with other methods. 

• A method to reconstruct current densities based on UCSDI was developed. 
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• Cardiac activation currents were detected and mapped for the first time using 

UCSDI in an isolated rabbit.  

• The first electromechanical ultrasound images were formed by combining UCSDI 

and phase-sensitive speckle tracking. 

The work of Chapter 2 was presented at the 2007 SPIE Medical Imaging Conference 

and published in the IEEE Transactions on Biomedical Engineering, with citations given 

below. 

• R. Olafsson, R. S. Witte, and M. O'Donnell, "Measurement of a 2D electric 

dipole field using the acousto-electric effect - art. no. 65130S," in Medical 

Imaging 2007: Ultrasonic Imaging and Signal Processing. vol. 6513, S. Y. 

Emelianov and S. A. McAleavey, Eds., 2007, pp. S5130-S5130.  

• R Olafsson, RS Witte, S-W Huang and M. O’Donnell. “Ultrasound Current 

Density Imaging” IEEE Transactions on Biomedical Engineering, in press 

(Jul 2007). 

The work of Chapter 3 was presented at the 2006 SPIE Medical Imaging 

Conference, 2007 IEEE International Ultrasonics Symposium, and has been submitted to 

the IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 

• R. Olafsson, R. S. Witte, K. Kim, S. Ashkenazi, and M. O'Donnell, "Electric 

current mapping using the acousto-electric effect - art. no. 61470O," in 

Medical Imaging 2006: Ultrasonic Imaging and Signal Processing. vol. 

6147, S. Y. Emelianov and W. F. Walker, Eds., 2006, pp. O1470-O1470  

• R. Olafsson, C. Jia, S.-W. Huang, R. S. Witte, and M. O'Donnell, "Detection 

of Electrical Current in a Live Rabbit Heart using Ultrasound," in 2007 IEEE 

Ultrasonics Symposium, New York, NY, 2007, pp. 989-992.  

• R Olafsson, R.S. Witte, C. Jia, S-W. Huang, K. Kim and M O’Donnell, 

“Cardiac Activation Mapping Using Ultrasound Current Source Density 
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Imaging (UCSDI)”, submitted to IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control. 

 

5.2. Future Experiments  

 

5.2.1. Increase Acquisition Speed and Spatial Resolution with a Clinical 
Phased Array 

The experiments described in Chapters 3 and 4 mapped the activation currents of a 

live heart by mechanically scanning a low frequency single element transducer. That 

transducer was chosen to maximize sensitivity. For UCSDI to be competitive as a cardiac 

mapping method, spatial resolution must be improved and data acquisition must be done 

more rapidly. A way to achieve both is to use a phased array. 

To test this idea, a clinical ultrasound scanner was used to create the ultrasound 

modulation for an UCSDI experiment. In this preliminary test an artificial current 

distribution in a cadaver rabbit heart was mapped. The experimental geometry is 

illustrated in Fig. 5.1. Four electrodes were inserted into the left ventricle of a heart 

immersed in mineral oil for electrical insulation. A clinical phased array (PA4-20/20, 

Ultrasonix Medical Corporation, Richmond, BC, Canada) was aimed at the heart from 

below such that the long axis of the heart was within the imaging plane. The phased array 

was connected to a fully programmable clinical scanner (Sonix RP, Ultrasonix Medical 

Corporation, Richmond, BC, Canada). Each frame was composed of 63 A-lines with 10 

spacing. The pulse sent along each A-line was 10 cycles long with a center frequency of 

2.5 MHz. 
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A 200 Hz square wave current was injected by a signal generator (33120A, Agilent, 

Santa Clara, CA) through the outer electrodes, which were made of silver. The inner 

electrodes, made of tungsten, were connected through an analog high pass filter (-3dB 

cutoff frequency = 500kHz) to a differential amplifier (1855A, LeCroy, Chestnut Ridge, 

NY). The signal was further amplified 30 dB (5077PR, Panametrics Inc., Waltham, MA) 

and then sampled and digitized with a data acquisition (DAQ) board.  

Experimental timing was controlled by a Field-Programmable Gate Array (FPGA) 

(ezFPGA, Dallas Logic, Plano, TX) and is is illustrated in Fig. 5.2. At the center of each 

current peak, the FPGA sent out an A-line trigger to both the Sonix RP and the DAQ 

board.  

The current injected through the silver electrodes was varied from 0, 3, 8, 16, 24 

mA. The results are shown in Fig. 5.3 where AE data corresponding to different current 

levels are superimposed on top of B-mode ultrasound images. The figure shows two 

rows. In the top row are uncorrected data while the bottom row has corrected data. We 

see that for the uncorrected data, there is a detected signal without any current injection. 

This artifact is due to the so called Debye effect or separation by pressure of ions with 

equal charge, opposite polarity, and unequal mass. Since this signal does not depend on 

external current density the data can be corrected as others have shown [1] by subtracting 

the 0 mA image from the other images. After subtracting the control, we see a 

progression in the corrected UCSDI signal magnitude with the magnitude of the injected 

current.  

Although these results are preliminary, they suggest that sufficient sensitivity can be 

realized for high resolution UCSDI using a conventional diagnostic imaging system. 
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5.2.2. Measurement of UCSDI Detection Volume 

It would be desirable to gauge how far away from the electrode the activation wave 

can be detected with UCSDI. In the experiments presented in Chapter 3, the exact 

location of the electrodes within the imaging plane was not known. As a result, it is 

difficult to make a clear conclusion about this issue from that data. An experimental setup 

that could address this question is described below. 

One way to measure the position of electrodes is an electro-anatomical system based 

on electric field measurements, such as EnsiteTM (LocaLisa component) as described in 

Chapter 1 [2, 3] and depicted in Fig. 1.4. By doing a cross-calibration between the 

ultrasonic field of view and the electro-anatomic system, it is possible to know the 

location of each electrode within the imaging field.  

A schematic of a potential experimental setup is depicted in Figs. 5.4 and 5.5. The 

description of the setup will be 2D but extension to 3D is trivial. The experimental 

chamber will be rectangular of side length d with a large plate-electrode on each side. 

The sides of the chamber will be parallel to the x- and y-axis. At the bottom, there will be 

an acoustic window through which an ultrasonic phased array (PA) is pointed. If the 

chamber is filled with saline and the plate electrodes parallel to the x-axis connected to a 

voltage source V0, an electrode (red dot in Fig. 5.4) placed at coordinate (x,y) will 

measure voltage Vy. Similarly, if the voltage source is connected to the plates parallel to 

the y-axis, the electrode measures voltage Vy. In an ideal system the relationship between 

(Vx,Vy) and (x, y) is simply 
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To calibrate the coordinate system of the imaging plane of the phased array with the 

electro-anatomical system, a thin insulated wire with an exposed tip can be moved with a 

translation stage in discrete steps in a rectangular pattern encompassing the imaging field. 

The thin wire will register in the ultrasound image as a point, and the electro-anatomical 

system can track the tip of the electrode. At each node of the rectangular pattern, an 

ultrasound image is taken and an electro-anatomical measurement is acquired. In post-

processing it is possible to get a mathematical transformation between the two coordinate 

systems. A wire target allows an accurate measurement of the ultrasound point spread 

function at each point in the imaging field, further facilitating analysis.  

After calibration, an isolated heart is placed in an epicardial sock electrode array as 

depicted in Fig. 5.5. Because of the calibration, the location of each electrode in the array 

can be measured. From the measured acoustic point spread function at each point in 

space, and from the knowledge of each electrode within the imaging plane, it is possible 

to estimate how far away from the electrodes it is possible to detect the activation wave 

using UCSDI. 

 

5.2.3. Effect of Motion on UCSDI 

The UCSDI images in Chapter 3 were made in an isolated heart perfused with the 

excitation contraction decoupler BDM to significantly reduce motion. This was done to 

ensure that the detected signals were not motion artifacts. Chapter 4 demonstrated that the 

absolute maximum displacement was miniscule (0.2 mm). It has been shown that BDM 
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reduces heart contractions in a dose dependent manner and, thus, is convenient for 

gauging motion artifacts and assessing speckle tracking algorithms [4, 5]. 

The plan would be to measure UCSDI in an isolated heart perfused with 

progressively smaller doses of BDM from a maximum (15 mM) to no BDM (0 mM) and 

to see if there is any detectable change in the morphology and timing of the detected 

UCSDI signal.  

If motion artifacts are significant, it is possible to investigate possible compensation 

techniques. For example, ultrasound speckle tracking can be used to measure the timing 

of local contractions relative to other signals or potential artifacts.  

 

5.2.4. Spatial Error of UCSDI Activation Map 

A common method to evaluate the accuracy of activation wave mapping is to 

measure its spatial error that is, how well a method can locate a single pacing electrode 

[6]. The spatial error is the difference between the actual location of the electrode and the 

location estimated from the activation map.  

The setup, shown in Figs. 5.4 and 5.5 and described in Section 5.2.2., can be used to 

perform these experiments. A single electrode in the epicardial sock can be picked at 

random to stimulate and the remaining electrodes can be used to record. Both UCSDI and 

normal epicardial mapping can image the activation wave because the actual location of 

the stimulating electrode is known from the calibration step; it is possible to calculate the 

spatial error for both methods. For each heart, it is possible to repeat this experiment 

many times. 
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5.2.5. Extend Reconstruction of Current Density to Three Dimensions. 

The reconstruction algorithm introduced in Chapter 3 is only valid for 2D current 

distributions under the assumptions that for slabs, thin along the beam axis, it is possible 

to separate the beam pattern into independent lateral and axial components. This method 

could possibly be applied to 3D problems if the point spread function is assumed to be 

space-invariant. In actuality, the point spread function varies with space due to the non-

trivial 3D shape of acoustic beams [7]. This question could be addressed in simulation 

studies using a combination of the Field IITM package [8, 9] to simulate the acoustics and 

ComsolTM (Comsol AB, Stockholm, Sweden) finite element software to simulate the lead 

fields and activation wave. In Chapter 2 we used Comsol to simulate lead fields, and we 

have previously used Field IITM to simulate a simple UCSDI image [10]. 

 

5.2.6. Effect of Electrode Position on Current Source Density Reconstruction 

In Chapter 2, it was shown that UCSDI can significantly determine source geometry 

of distributed current sources using just a single pair of electrodes. A current source 

distribution could be reconstructed with a simple algorithm when using UCSDI with 

multiple electrodes. Although this reconstruction algorithm is less sensitive to 

geometrical errors than traditional inverse algorithms, it nevertheless makes some 

assumptions about the conductivity distributions in calculating the transfer matrices. The 

sensitivity of this reconstruction algorithm could be explored through the simulation 

scheme outlined in Section 5.2.5. The inverse algorithm assumes that the recording 
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electrodes are in a certain location. To test the sensitivity of the outcome of the algorithm 

to this assumption, the location of the electrodes could be varied in a simulation protocol. 

 

5.3. Potential Clinical Application  

 
In Section 5.2.1 the ability of a clinical, transthoracic phased array to generate 

UCSDI was shown. Applying a transthoracic transducer with intracardiac electrodes 

would be a straightforward extension of UCSDI. However this approach has two 

disadvantages. The first, transthoracic echocardiography offers limited views of the heart 

as compared to intracardiac ultrasound due to the presence of the ribcage [11]. Second, in 

this approach, the relative geometry of the ultrasound imaging field relative to the 

electrodes would not be known. As a result, combining measurements from multiple 

electrodes might be difficult, such as in the reconstruction algorithm presented in Section 

2.3.2, for example. In the ideal system the relative geometry between electrodes and 

transducer would be fixed and known. A practical implementation of this ideal would be 

a catheter with both a high density ultrasound array and sparse electrode array. Such a 

device has been created and reported elsewhere [12, 13]. However these devices have 

high frequency transducers that might be unsuitable for use with UCSDI, given the small 

signal size of UCSDI and because of the spatial filtering effects that can occur during the 

measurement process (see Fig. 2.5 for an example). A conceptual first generation catheter 

for use with UCSDI is depicted in Figure 5.7. In this figure, a “hockey stick” style 

ultrasound phased array catheter (center frequency < 5MHz) is encased in an inflatable 

balloon. Attached to the balloon is an array of electrodes similar to the EnsiteTM array, 

depicted in Figure 5.7 on the right [14]. Unlike the EnsiteTM array, the wires would not 
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surround the entire surface of the balloon; they would radiate, like the pedals of a flower, 

from either side of the array, leaving a gap through which the ultrasound beams could be 

less impeded. A side firing array can have a sizeable aperture at a low frequency and thus 

decent lateral resolution. The inflatable balloon array would also allow the electrodes to 

be in close proximity to the heart wall. This would increase the sensitivity of the 

electrical measurement. Even this first generation device could have a great impact in the 

clinic. An operator with this device would not only have at his disposal UCSDI images of 

the electrical activity within the ultrasonic field of view and local strain maps, he would 

also be able to see the ablation catheter or pacemaker lead in the image. Navigation of an 

ablation catheter or a pacemaker lead to an optimal position could, therefore, be made 

much simpler and intuitive. 
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Figure 5.1. Experimental geometry. A dead rabbit heart was placed in a tank of oil with 
the Ultrasonix PA4-2/20 Phase Array pointed from below. The timing was controlled by 
an FPGA which simultaneously triggered the Ultrasonix A-line trigger and a DAQ board 
that acquired AE signals.  
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Figure 5.2. Experimental timing. There were 64 beams fired per frame with 10 spacing 
from -32 to 310. Each A-line is triggered to fire at the peak of the 200 Hz square wave 
current. 
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Figure 5.3. UCSDI images of current injected into a rabbit heart, shown left to right as a 
function of the magnitude of the current. The bottom row shows the actual 
measurements while the top row show the measurement with the vibration potential 
artifact measured for 0 mA subtracted.  
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Figure 5.4. A schematic of a calibration between the imaging plane of a phased array 
and an electro-anatomical system. The calibration is accomplished by moving a 
electrode (red dot) in a rectangular grid which encompasses the imaging plane of the 
phased array. At each location (x,y) the electrode measures voltages (Vx,Vy) due to 
electric fields produced by two pairs of orthogonally placed plate electrodes with voltage 
V0. If the plates are large enough and the distance (d) between them is known it is 
possible to measure the location (x,y) from the voltages (Vx,Vy). At each point in the 
rectangular grid an ultrasound image is collected in which the wire electrode will register 
as a point. 
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Figure 5.5. An isolated heart is placed inside an epicardial sock with an array of 
electrodes (shown in upper right corner). From the calibration between the ultrasound 
imaging field and the electroanatomical system the location of every electrode in the 
sock within the ultrasound imaging field is known. With this experimental setup it is 
possible to measure how far away from the electrodes UCSDI can detect the activation 
wave. This setup can be used to gauge the ability of UCSDI imaging system to find a 
pacing location, a stand in for focal arrhythmia. The picture of the epicardial electrode 
sock is from the home page of UnEmap systems in Auckland, New Zealand [15]. 
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Figure 5.6. An sketch of a possible catheter with a high density side firing ultrasound 
array and a sparse electrode array. Surrounding the ultrasound array is an inflatable 
balloon on which are attached electrodes. The figure on top is prior to balloon inflation 
and the figure on the bottom is after inflation (UIA=ultrasound imaging arc). An example 
of an inflatable electrode array is the Ensite system depicted in the photograph on the 
right. The photograph is adapted from [14]. 
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