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CHAPTER I

Introduction

1.1 Motivation

Methods for properly simulating and testing new microarchitectural concepts have

been proposed ever since computers were first designed. Most techniques require a

large number of benchmark programs be run with many different input datasets

for an equally large number of sample configurations of the design. Unfortunately,

these requirements create a burdensome number of simulations that can significantly

increase the design time of a product. For example, if 30 benchmarks were used with

an average of five datasets per benchmark and there were 20 different configurations

to be tested, this would require a total of 3,000 individual simulation runs. With

each simulation potentially taking days or even weeks to complete, this amount of

simulation quickly becomes a serious bottleneck. Compounding this problem is the

fact that the most important and representative phases of a benchmark’s code usually

execute in the middle of the simulation and there is no easy way to execute only this

portion without additional support.

Many different methods have been proposed to help alleviate these burdens; how-

ever, these methods often lead to decreased accuracy in the simulation or require that

the simulator have additional functionality. For instance, if benchmarks or their re-
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spective datasets are shortened or removed, the new set of benchmark and dataset

combinations might no longer represent a proper workload profile for the design. In

addition, methods such as checkpointing and fast forwarding meant to enable the

simulation of only certain essential parts of the code require that the simulator have

these abilities built in. Checkpointing requires the ability to capture the state of the

system at some point in the simulation and later simulations then need the ability to

load in the state and start again at that point. Fast forwarding requires a simulator

to have a separate, faster mode of simulation that ignores many of the details of the

design being simulated while at the same time guaranteeing its functional correct-

ness. These features are not always available or may not be economical to implement

if the simulator will have limited distribution or is meant for a small amount of use.

Therefore, there is a strong need for new techniques that allow for the fast, efficient,

and representative benchmarking of future designs.

1.2 Thesis Overview

This dissertation describes two different techniques that are targeted at reduc-

ing the overall simulation time needed to test a new design while still maintaining

an acceptable level of accuracy with respect to performance estimation. The first

technique, Intrinsic Checkpointing through Binary Modification (ICBM), augments

a benchmarking program by directly inserting checkpointing code into the binary.

When the augmented benchmark later executes, it begins with the checkpointing

block of code with refreshes the system to a predetermined state, and then begins

the execution of the original binary’s code at a specific location. The second tech-

nique, InTrinsically Checkpointed assemblY (ITCY), also inserts checkpointing code

into a benchmark. However, instead of modifying the original binary, the ITCY



3

method writes an entirely new program in assembly code composed of a subset of

the static instructions from the benchmark and any necessary checkpointing and

control code needed for proper execution. When the ITCY code is re-compiled, it

will then only execute the code necessary to simulate a specific range of instructions

from the original benchmark’s dynamic instruction stream.

This dissertation makes the following contributions:

• The Intrinsic Checkpointing through Binary Modification (ICBM) technique is

presented as a methodology that dramatically decreases the amount of time

needed for simulation by analyzing and augmenting benchmark binaries to con-

tain intrinsic checkpointing data. The newly modified binaries do not require

re-compilation and allow for the rapid execution of only important portions of

code thereby removing the need for fast-forwarding or explicit checkpointing

support. In addition, the binaries have increased portability across multiple

simulation environments and the ability to easily simulate only important parts

of code in a highly parallel fashion.

• A technique for emulating the effects of system calls that are seen within an

interval of execution is presented. This method inserts system call emulation

code into a new benchmark eliminating the need of system call support for a

simulator that runs the new program. As a result, the input dataset is effectively

embedded in the new benchmark removing the need for file I/O and increasing

its portability across multiple simulation environments.

• A method for combining multiple program fragments into one benchmark is

presented. This technique can combine pieces of code from one benchmark,

or from a variety of different benchmarks, into a single program. This new
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program, if properly instrumented, can easily be moved between a variety of

simulators and it can quickly simulate a large amount of representative code in

a very short period of time.

• The InTrinsically Checkpointed assemblY (ITCY) technique is introduced as

an additional method for creating fast and portable benchmarks. It extends

on the work done with ICBM by extracting a representative portion, or por-

tions, of a benchmarking program’s assembly code and creating a new program.

It incorporates the system call emulation and interval combining methods to

create a new program that, when re-compiled, contains only a fragment of the

original binary. When executed, the code fragments within the program run

as if they were run from within their original benchmark in a fraction of the

time and can serve as a replacement for the original benchmark. Once an ITCY

benchmark is created, it does not need to be recreated if there is a change in the

underlying microarchitecture since it is based purely on the original assembly

code. In addition, the ITCY technique provides the framework for third parties

to create microbenchmarks from their own internal benchmark sources. These

microbenchmarks can then be released to the public without the concern of re-

leasing any proprietary information since this sensitive information is effectively

hidden inside the ITCY code.

1.3 Thesis Organization

This dissertation is organized as follows:

Chapter II provides background information on many different simulation tech-

niques that aim to reduce the overall simulation time needed to test a new design.

Chapter III describes the Intrinsic Checkpointing through Binary Modification
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technique along with providing an example of its use on the Alpha [13] architecture.

Chapter IV describes the InTrinsically Checkpointed assemblY technique and de-

scribes the method of system call emulation. It also presents the method for com-

bining multiple intervals of instructions into a single benchmark.

Chapter V explains the experimental framework used to test the ICBM and ITCY

techniques.

Chapter VI investigates the ICBM and ITCY techniques with respect to code

overhead, performance modeling, effects on file size, and simulation speedup.

Chapter VII concludes the dissertation with a brief overview and a discussion of

future directions.



CHAPTER II

Background

2.1 Overview

There are many different techniques that can be used to reduce the simulation

time of a new design while still maintaining an acceptable level of accuracy. They

can be broken down into three main categories: benchmark suite reduction, statistical

simulation, and instruction sampling. The first category decreases simulation time

by reducing the size of the input data to the benchmarks, by simulating a subset of

the original benchmarks, or by doing both. Since the benchmarks subsequently do

not execute as many instructions as was originally intended, the overall execution

time will be faster. The second category takes each benchmark and runs a set of

profiling routines on it to extract its makeup and behavior. Once this information

is obtained, a new, smaller benchmark binary or trace is created whose behavior

is meant to mimic that of the original benchmark. The third category involves

sampling intervals of instructions from the benchmark’s dynamic instruction stream

and then re-executing the intervals at a later time. The cumulative performance of

these samples is intended to represent the overall performance of the benchmark if

it were to be executed in its entirety.

A problem with instruction sampling, in particular, is that once the sample inter-

6
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vals of the original benchmark have been identified, they may occur at any point in

the benchmark’s dynamic instruction stream. Reaching these starting points can be

done in several different ways. The entire benchmark can be executed up until the

starting point, referred to as fast-forwarding, and then the simulation of the sam-

ple can begin. Unfortunately, this method can take a long time to complete if the

starting point occurs late in the benchmark’s execution. Alternatively, the sample

interval can use checkpointing to restore the state of the system corresponding to

the start of the interval. The data used do to this, referred to as a checkpoint, can

be used not only to refresh the architectural state of the system such as its mem-

ory and registers, but also its microarchitectural state such as its caches and branch

predictors. The procedure of refreshing the microarchitectural state is referred to as

warmup. Figure 2.1 summarizes these different techniques.

Figure 2.1: Summary of Simulation Time Reduction Techniques

This chapter is organized as follows. Section 2.2 discusses different approaches

to benchmark suite reduction. Section 2.3 presents two main types of statistical

simulation. Section 2.4 presents several different methods for instruction sampling

and section 2.5 discusses a variety of different techniques for adding checkpoint and

warmup information to the sample intervals. Finally, section 2.6 concludes with a

summary.
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2.2 Benchmark Suite Reduction

The techniques in this section reduce simulation time by altering the composition

of the original benchmark suite. Even though great care goes into the creation of

a benchmarking suite, there can still be a large amount of redundant behavior that

is exhibited by its member programs and input datasets. The techniques in this

section identify this behavior so that only those programs and input datasets that

are necessary to properly represent the benchmarking suite can be simulated.

2.2.1 Dataset Reduction

Dataset reduction reduces the amount of data that a program must process and

therefore its execution will finish quicker than if the benchmark had massive amounts

of data to handle. This method, when used to create the MinneSPEC [24] workloads,

reduces the size of the input datasets to the SPEC CPU2000 benchmarks [23]. It has

the advantage that, once the reduced workloads have been characterized, no analysis

needs to be done on the program prior to simulation. The workload selection chooses

smaller datasets through a process that systematically reduces larger workloads while

still maintaining their simulation characteristics, however, this process requires many

steps of manual tuning to avoid removing the representative nature of the datasets.

In addition, the reduced workloads, if sufficiently small, can fit entirely within a

typical cache and no longer test the functionality of the memory subsystem.

2.2.2 Benchmark Subsetting

In [48], several different approaches meant to reduce the number of benchmarks

that need to be run from a given benchmarking suite are compared. These approaches

advocate executing a reduced number of program-input pairs from the suite called a

subset based upon the similarities between the pairs. Each approach uses a different
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method to choose a subset of the suite, however, the method detailed in [36] proves

to be the best with respect to accuracy versus cost.

The method in [36] makes use of a multi-step process that first chooses a group

of microarchitectural-independent metrics with which to measure the performance

of the programs within the benchmarking suite. The programs are run and their

results for the chosen metrics are logged. Since this step in the process produces

a large number of data points, the next step applies a technique called Principal

Component Analysis (PCA) to the data points to reduce the dimensionality of the

data. After the PCA step is run, a final step, cluster analysis, is run on the data to

group program-input pairs into clusters that have similar behavior. One benchmark

is then selected from each cluster and used to represent all the benchmarks in the

cluster for subsequent runs of the suite. Their results show that from an initial set of

26 SPEC CPU2000 benchmarks, they only need to simulate 8 benchmarks to achieve

a measure for Cycles Per Instruction (CPI) that is within a 5% error of the actual

measurement for the entire suite.

In [37] and [38], the work done in [36] is extended to other benchmarking suites

including SPEC CPU2006 [29], MiBench [19], and MediaBench [26]. In [37], per-

formance counters are used to measure a set of metrics for the SPEC CPU2006

benchmarks. The standard PCA and cluster analysis in [36] is then carried out to

select a subset of the benchmarks. The analysis identifies a subset of only 6 integer

and 8 floating point benchmarks that are needed to represent most of the information

found in the 12 integer and 17 floating point benchmarks that comprise the entire

suite. In [38], an analysis similar to that proposed in [36] is done and it shows that

only 5 benchmarks from the combined set of both MiBench and MediaBench are

needed to achieve a measure for Instructions Per Cycle that is within a 5% error of
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the actual measurement when both suites are combined. Table 2.1 lists the various

subsets of benchmarks that were chosen where each is assumed to use the reference

or large datasets.

SPEC CPU2006 Benchmarks

Integer Floating Point
perlbench mcf cactusADM leslie3d
libquantum omnetpp dealII soplex
astar xalancbmk povray calculix

GemsFDTD lbm

SPEC CPU2000 Benchmarks

Integer Floating Point
gzip gcc applu equake
mcf twolf fma3d mesa

MiBench/MediaBench Benchmarks

MiBench: susan1 MiBench: susan3
MediaBench: djpeg MiBench: adpcm decode
MiBench: basicmath MiBench: qsort
MediaBench: ghostscript MiBench: sha

Table 2.1: List of Benchmark Subsets for SPEC2006, SPEC2000, and MiBench/MediaBench

2.3 Statistical Simulation

This section discusses techniques, referred to as statistical simulation, that convert

a benchmarking program into a trace or an entirely different program whose execution

profile is intended to match that of the original benchmark. This is done first by

profiling the original benchmark to ascertain its execution characteristics. These

characteristics are then input into algorithms that generate a statistically similar

trace or program that will serve as a replacement for the benchmark with an execution

time that is far less than the original.

Two types of statistical simulation are discussed below. The first, trace-based

simulation, generates a trace of instructions from the initial profile which is run on a
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specially instrumented simulator capable of interpreting the trace. The second, test-

case program synthesis, generates an actual program binary from the initial profile

that can be run on a traditional execution-based simulator.

2.3.1 Trace-Based Simulation

In [32], a basic method of trace-based simulation called HLS is proposed. It first

executes the benchmark on a pair of simulators that measure several of the program’s

execution statistics. Statistics such as basic block size and distribution, dynamic

instruction distance, instruction mix, cache performance, and branch predictor per-

formance are logged and used to generate a profile of the benchmark. This profile

is then input into a symbolic code generator that produces a sequence, or trace,

of “instructions”. Unlike regular instructions, these symbolic instructions contain

special information that dictate their functional unit requirements, expected cache

performance, and dynamic instruction distances. The instructions in the trace are

then grouped into basic blocks which are linked together into a program flow-control

graph. The basic blocks themselves are instrumented such that their branching be-

havior will produce branch prediction performance similar to that of the original

benchmark. The execution of the trace is carried out by a special statistical simula-

tor that is similar to a traditional simulator except that it interprets the statistical

information contained inside the trace’s symbolic instructions. The final simulation

of the trace produced results that were within 5-7% for the SPECint95 benchmarks.

A technique for statistical simulation that is similar to HLS, is proposed in [31].

Unlike HLS, the technique in [31] moves the generation of the instruction trace into

the statistical simulator. Therefore, the simulation takes as inputs an instruction

profile and the set of cache and branch prediction models. This gives the simulator

the flexibility to test different microarchitectural features without having to generate
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a new trace of instructions beforehand. Experiments using this technique were carried

out with varying levels of complexity with respect to the composition of the basic

blocks. The simplest basic block composition that used a global mix of instructions

per block and a limited amount of performance information, produced the fastest

simulation and results that were within 8% for the SPECint95 benchmark baseline.

The more complex basic block composition that incorporated variable basic block

sizes, cache and brach prediction miss rates, and dependencies took three times as

long to simulate as the simpler method, but produced results that were within 5%

of the baseline.

A final technique for synthetic trace generation was first proposed in [16]. Instead

of running the benchmark on a simulator to generate the program’s profile, a trace

of its execution is obtained from real hardware. This initial trace is then input into a

set of three profiling tools, two of which model microarchitecture-dependent statistics

(i.e. cache and branch performance) and the third which models microarchitecture-

independent statistics. Once these statistics are gathered, a synthetic trace is gener-

ated. The synthetic trace differs from the other methods discussed above with respect

to how it represents instruction dependencies and allocates registers within the trace.

Subsequent work done in [15] adds the ability to measure the expected power us-

age of a design by incorporating a power estimator into the statistical simulator.

Results show that this model is capable of identifying a set of energy-efficient archi-

tectures that warrant further study. Later work done in [14] and [18] has expanded

the capabilities of the method proposed in [16]. Control flow modeling is used in

[14] to generate a control flow graph during the microarchitecture-independent pro-

filing stage and improves the accuracy of the overall statistical simulation. Memory

data flow modeling is incorporated in [18] for tracking statistics such as cache miss
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correlations, load forwarding, and delayed hits. This method reduces the average

performance prediction error from 10.7% down to 2.3%.

2.3.2 Testcase Program Synthesis

As an alternate to creating a synthetic trace, statistical simulation can be per-

formed using a standalone program whose creation and execution profile are also

based on statistical analysis. This method is referred to as testcase program synthe-

sis. In [7], the HLS methodology described in section 2.3.1 is modified slightly to

include the concept of issue width and to more closely match the execution engine

of SimpleScalar [1]. Since the SimpleScalar simulator will ultimately be executing

the synthetic testcase, this modification is made to allow for more accurate modeling

of program performance. The HLS framework, now referred to as S-HLS, is used

to generate a profile of the benchmark. After the profile is generated, it is used to

synthesize a program in C-code that is composed primarily of a subset of assembly

language calls that map directly to the instructions in the basic blocks of the pro-

file. The technique unfortunately suffers from an inability to properly model branch

prediction and cache performance. This problem is reserved for future work and the

technique is tested using technical loops as a proof of concept due to their high cache

hit rates and high branch prediction rates.

Subsequent work done in [10] and [8] addresses the branch prediction and cache

modeling issues in [7]. The difficulty of branch prediction modeling is alleviated

by manipulating the branches that exit the basic blocks in the profile. By creating

code that dictates whether or not a branch is taken or not taken, the branch pre-

diction rate is able to be modeled effectively. To properly model D-cache behavior,

a more detailed memory access model is developed. In addition, I-cache perfor-

mance is more effectively predicted using a carefully tuned number of synthetic basic
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blocks. After these problems were addressed, synthetic testcases for the SPEC2000

benchmarks were successfully generated and measurements for Instructions per Cycle

(IPC) within 2.4% of the original benchmarks with similar workload characteristics

were obtained. This work was extended further in [9] to do efficient power analysis

and in [6] to do performance model validation of a PowerPC processor.

A detailed analysis was done in [5] on the source of the errors in testcase syn-

thesis. Errors in the workload characterization phase were caused by the need to

reduce the number of representative basic blocks due to size constraints and also the

loss of information by only using a subset of assembly instructions to represent all

the original instructions. In addition, small errors that still existed in the cache and

branch prediction models were discussed. Other sources of error included problems

with instruction dependencies, register assignment, and scaffolding code in the syn-

thetic testcase. A final analysis of the errors showed that, while they do contribute

to a loss of accuracy, the effects are small with respect to the performance of the

original program with similar workload characteristics. However, it is noted that

because of these errors, particularly those regarding cache and branch prediction

performance, testcase synthesis should not be used as a replacement to detailed, ap-

plication simulation. Rather, it should be used early in the design cycle to quickly

evaluate the many different design choices that are available and provide insight into

what configuration should be looked at more closely with detailed simulation.

2.4 Instruction Sampling

The methods in this section reduce simulation by using a technique called instruc-

tion sampling. These technique can achieve the highest level of accuracy with respect

to performance prediction. However, they oftentimes result in a longer simulation
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time than benchmark suite reduction and statistical simulation. The basic instruc-

tion sampling methods select intervals of instructions from the dynamic instruction

stream and then re-execute those intervals at a later time. Depending on the size

and location of the intervals, the reduction in simulation time can be quite dramatic.

2.4.1 SMARTS

The Sampling Microarchitecture Simulation framework (SMARTS) [47] is a sim-

ulation tool that provides quick and accurate results while only having to simulate

in detail a small portion of the benchmarking program. It relies on strict statistical

sampling and selects a subset of the program for detailed simulation whose results

will adhere to an expected confidence interval. The program is divided into a series

of equal length intervals each of which is further broken into a fast-forward compo-

nent that stresses speed over accuracy, a warmup component that refreshes certain

microarchitectural components such as caches and branch predictor structures that

were neglected in prior fast-forwarding segments, and finally a detailed simulation

component that runs with the most accuracy. After the user calculates, based on

methodologies explained in [47], initial input values for warmup, detailed simulation,

and overall interval lengths, SMARTS undergoes a series of tuning steps that refine

the length of the fast-forward component to a point that will result in an appropriate

amount of confidence for the benchmark being used.

After deriving all the necessary interval values, SMARTS starts the original bench-

mark binary in fast-forwarding, or functional simulation, mode and runs for an initial

number of instructions provided by the user. At this point, the first interval begins

the warmup period that updates the state of necessary components mentioned above.

After the warmup period finishes, the detailed simulation segment begins and is fol-

lowed by the fast-forwarding component that finishes the first interval. This system-
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atic sampling of warmup, detailed simulation, and then fast-forwarding repeats itself

until the benchmark completes. Figure 2.2 depicts this process graphically.

Figure 2.2: Sampleing Intervals for SMARTS

Simulations utilizing SMARTS were run on 8-way and 16-way superscalar proces-

sor models meant to represent current and future microarchitectures, respectively,

using the SPEC CPU2000 benchmarks. CPI and Energy per Instruction (EPI) can

be estimated within 3% with 99.7% confidence while measuring less than 50 million

instructions for each benchmark. An additional amount of error, empirically set to

roughly 2%, needs to be included due to unknown accuracy in the warmup routines.

For the actual simulation runs themselves, SMARTS was able to reach an average

error of only 0.64% for CPI and 0.59% for EPI with average speedups over detailed

simulation of 35 for the 8-way model and 60 for the 16-way model.

2.4.2 SimPoint

Another tool that is useful for fast and accurate instruction sampling is SimPoint

[41]. Like SMARTS, SimPoint only simulates in detail small portions of the bench-

mark leaving the rest for fast-forwarding. However, the methods it uses to decide

which portions of the program will be used for the detailed simulation significantly

differ from SMARTS. SimPoint makes use of the fact that most programs are com-

prised of repeated sections of execution referred to as phases. Since some of these

phases look very much alike, SimPoint attempts to find them and then simulates

only one of them from each set of similar phases. Results are then be extrapolated
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based on the frequencies of the different phase sets in the code.

In order to identify phases in the code, the program is executed in a fast and

functional manner where only the instructions are analyzed. In other words, it is

executed independent of the underlying microarchitecture which allows for the fi-

nal results to be carried across different microarchitectural configuration boundaries.

As the program is being executed, frequency vectors meant to track various pro-

gram structures are captured for contiguous intervals of size N. After the vectors are

obtained for each interval of execution, their dimensionality is reduced, while still

preserving commonality, by a process of random linear projection to allow for faster

analysis in later steps. The reduced vectors are then input into a k-means clustering

algorithm, using various values of k representing the number of clusters, to find a

minimum number of clusters that satisfies a “goodness of fit” value calculated us-

ing the Bayesian Information Criterion on each clustering that is produced by the

k-means algorithm. This final clustering will then contain a grouping of intervals

into phases.

Once the clustering is found, it is input into a selection algorithm that will choose a

representative interval from each cluster. To do this, the Euclidean distances between

the vectors in the cluster are calculated and used to determine the similarity of each

interval to one another. The interval that is most like the other intervals, referred

to as the centroid, is then chosen as the most representative, assigned to be the

simulation point for the cluster, and given a weight that corresponds to the overall

number of instructions that it represents in the program. After a simulation point is

found for each cluster, all simulation points from each cluster can then be simulated

in detail.

When all the simulations have finished, it is a simple matter of multiplying the



18

metrics gathered from each interval by the weight assigned to that interval. These

weighted metrics are then summed together to get the final metric used for the entire

program. As an example, if a program consisted of two intervals where the first had

a weight of .25 with a measured value of 5 and the second had a weight of .75 with

a measured value of 10, the full execution metric would be estimated at .25(5) +

.75(10) = 8.75.

Several modifications have been made to SimPoint that address some potential

shortcomings of the original implementation. The first modification attempts to

make SimPoint faster by introducing an additional variable into the simulation point

selection algorithm [35]. Instead of simply using Euclidean distance similarity for

selection, intervals are given higher priority if they occur early in the code as opposed

to ones that appear later. This early SimPoint method makes it possible for the serial

simulation to finish quicker since its points will occur earlier in the code. The second

modification removes the restriction that each interval must be of equal length [25].

This allows for a more representative sample to be obtained since the intervals are

not constrained to a specific length. Finally, additional improvements are made

in the newest release of SimPoint, version 3.0 [21]. These improvements consist of

faster and more efficient cluster identification, better clustering in general, the ability

to handle large numbers of simulation points, and the ability to output only those

clusters that account for the majority of the execution.

The results for SimPoint when run on the SPEC CPU2000 benchmarks show

that an average error rate of 2.1% is achieved for the standard SimPoint algorithm

and an average error rate of 3.5% is achieved for the early SimPoint algorithm.

As expected, the early SimPoint algorithm completed in much less time, finishing

15 times faster than the standard algorithm. If each simulation point were to be
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executed independently, the run time of the simulation would further improve and

be merely a function of the number of instructions in each interval that are executed

in detail combined with the amount of fast-forwarding needed to reach the interval.

This amount of time would be orders of magnitude smaller since a typical interval

has a length of 10 million instructions while whole programs often run into many

billions of instructions.

2.4.3 Improving Sampled Simulation

Although SMARTS and SimPoint can greatly reduce the amount of time needed to

simulate a new design, work done in [28] contributes several improvements to these

and other instruction sampling techniques. First, it is shows that the number of

instructions contained in each instruction sample can have an affect on its accuracy.

In particular, smaller and more numerous samples lead to more accuracy in general

than larger, less frequent samples when the simulation budget remains fixed. Second,

the number of instructions necessary to estimate different performance metrics within

a certain margin of error is shown to vary based on the metric. For example, if

the only requirement for a simulation is to show the expected speedup of a design

change, then 9X less instructions need to be sampled in order to remain within the

same margin of error that would be required when estimating CPI instead. Finally,

for techniques such as SMARTS that require several tuning runs of the benchmark

in order to reach a certain confidence interval, it is shown that these tuning runs

are no longer necessary when a proposed dynamic stopping technique is used in

conjunction with online transactional processing benchmarks due to their unique

execution patterns.
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2.5 Techniques for Checkpointing and Warmup

After sample intervals are identified by methods such as those in section 2.4, they

can be executed in a variety of ways. The first, and simplest, method simply runs

the benchmark through a functional simulator that only updates the essential state

of the system until it reaches the beginning of the interval. Then the interval’s

execution can begin in detail. Unfortunately, this technique, referred to as fast-

forwarding, can take an incredible amount of time if the benchmark occurs late in

the dynamic instruction stream of the benchmark. Alternatively, through a process

called checkpointing, a copy of the system state, called a checkpoint, is gathered

immediately prior to the execution of the interval. Then, instead of fast-forwarding

to the start of the benchmark, this checkpoint data can be loaded into the simulator

and the interval can immediately begin its execution.

Checkpoint data can be composed of many different elements meant to refresh

the state of not only the architectural components of the system, but also its mi-

croarchitectural components. At the simplest level, the checkpoint must at least

refresh the architectural state (i.e. the main memory and registers) used in the in-

terval. However, if the sampled interval is to be completely simulated in detail on the

microarchitectural level, there must be more detailed information contained in the

checkpoint to refresh such components as the caches and branch predictor. The pro-

cess of using this detailed information to update the microarchitectural state of the

system is referred to as warmup. This section will describe several different methods

of checkpointing and warmup in detail.
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2.5.1 Direct Execution Checkpointing

The techniques in this section obtain checkpoint and warmup data by directly

executing the benchmark on real hardware. This can rapidly provide data, however,

a system to directly execute the benchmark may not always be readily available.

For systems that are in the early stages of development, a hardware implementation

may not even exist. Regardless, they provide a very rapid methodology for obtaining

checkpoint and warmup data.

The SimSnap tool [42] is a checkpointing approach that places the location where

checkpoint data needs to be obtained directly in the source code of the program. The

user has to modify the original source code of the benchmark to include checkpointing

routines and also has to supply, on a function level, a location for where the code

should be checkpointed. After the benchmark is compiled, it is run and at the

predefined location in the code it will output checkpointing data to a separate file.

Subsequent runs of the benchmark, when executed in a restore mode, will read in

the data from the checkpoint file and resume operation where the benchmark left off.

Because of the fact that SimSnap relies heavily on the compiler and has to check-

point not only the data required for the proper execution of the simulation interval,

but the entire system state, it has several drawbacks. The first is that the check-

pointing files can be quite large since they contain the entire state of the system. A

second drawback is that SimSnap not only requires the user to make changes to the

source code, but also that the source code itself be available. For benchmarks that

do not supply source code, this will prevent them from utilizing the checkpointing

features of SimSnap. A final drawback is that SimSnap will only work if the bench-

mark’s native programming language is supported by a compiler. If the program was

written in a propriety language or one that is no longer heavily used, then SimSnap
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would not be able to generate checkpoint code.

In [34] and [40], direct execution is used to obtain instructions from within an

instruction interval. In [34], the Pin [27] tool, which relies on direct execution,

produces a benchmark profile that is input into SimPoint to identify representative

instruction intervals. Once these intervals are identified, they are compared against

the original benchmark using Pin and a set of PinPoints is generated. The Pin-

Points can then either be used as an instruction trace of the interval or to dictate

to an execution-driven simulator when it should switch between fast-forwarding and

detailed execution modes. In [40], a completely new program is generated. When

combined with a pre-loaded memory image, the program executes a set of instruc-

tions that represent the original interval of interest.

The Direct SMARTS technique described in [12], uses direct execution to progress

the original benchmark between its intervals of detailed simulation. The checkpoint

and warmup data that is generated by Direct SMARTS is fed directly into the sim-

ulator during the period of direct execution and is not stored for later use. This

ability is made possible by running the benchmark inside of the RSIM simulator [33]

which has the ability to switch back and forth between modes of direct execution

and detailed simulation.

In [30], the Pin tool is again used to directly execute a benchmark. However, the

importance of Pin in this technique is that it is modified to capture system effects.

These effects are stored in a system effect log and are later used during architecture

simulations. This type of checkpointing is different than previous methods since it

removes the need for a simulator to support system calls. This is important since

popular simulators such as SimpleScalar must emulate the effects of system calls

and many applications, particularly applications running in Linux, require system
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calls that may not be emulated. Therefore, since the system calls have effectively

been checkpointed, SimpleScalar can execute a broad range of applications that it

previously could not support.

2.5.2 Simulator-Derived Checkpointing

Work done in [43] directly addresses checkpointing and warmup in SimPoint. It

proposes two techniques, the touched memory image (TMI) and the memory hierar-

chy state (MHS), to refresh the system state prior to the execution of the simulation

interval. TMI creates a list of memory addresses and data values that are used to

refresh the architectural state of the system. TMI only contains stores to memory lo-

cations that are needed within the simulation interval and is, therefore, much smaller

than a full system checkpoint. In addition, it uses several data packing strategies to

reduce its overall size. MHS stores a cache state that is collected during a simulation

of the memory hierarchy prior to the execution of the interval. Later, when the

interval is simulated in detail, the microarchitectural information stored by MHS is

loaded and used to refresh the state of the cache or any cache with a smaller size or

associativity.

Similar to the work done in [43], [44] and [45] propose techniques that are tar-

geted at the rapid checkpointing and warmup of SMARTS. Again, state is only stored

for the instructions that will be executed in each SMARTS interval, and since the

size of each SMARTS interval is much smaller than the interval size in SimPoint,

roughly 1000 instructions, the amount of checkpointing data needed per interval is

very small. Unlike [43], however, caches are not the only microarchitectural element

that are warmed up. The branch predictor is also warmed by storing a variety of

configurations worth of checkpointing data for different branch predictor organiza-

tions in the checkpoint. The combination of the checkpoint and warmup data with
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the interval of execution is referred to as a live-point and a library of live-points

meant to checkpoint the entire SPEC2000 benchmarking suite occupies 12 GB of

file space. Since each live-point is an individual simulation element, the live-points

that comprise a full benchmark can be executed in parallel and in any order. In

addition, if the live-points are randomly executed, then the confidence interval of

the simulation can be tracked over time and when it reaches an acceptable level, the

simulation can be terminated early. This addition of warmup and checkpointing data

and the ability to leave a simulation early makes the live-points technique a fast and

accurate simulation technique. Later work done in [46] extends live-points to cover

multiprocessor server workloads and creates a very powerful simulation environment

for future workloads.

In [4], [3], and [2], several additional methods are described that create checkpoint

data that is similar to that generated in [43] and [45]. [4] presents a software structure

called a memory timestamp record (MTR) that stores memory access patterns that

can be used to refresh the state of a variety of cache configurations in a multiprocessor

system. [3] presents a technique called branch predictor based compression (BPC)

that creates a highly compressed representation of many different branch predictor

configurations that can be used to warmup a variety of different branch predictors.

Since MTR and BPC are both microarchitecture-independent methods, they offer a

great deal of flexibility when warming up the state of a system.

2.5.3 Reuse Latency Warmup

Two techniques that offer very different warmup strategies than those described

in the previous sections are MRRL [22] and BLRL [17]. Both techniques are based

on what are referred to as reuse latencies, the distance in the dynamic instruction

stream between two accesses to the same memory location. By analyzing these dis-
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tances during an initial functional simulation, MRRL and BLRL identify a starting

point in the benchmark that occurs prior to the beginning of a sampled instruction

interval. This starting point is where execution should begin in order to effectively

warmup the state of the system by the time the interval starts. This starting point

identification is different than the previously discussed techniques since it does not

require the discovery, storage, and loading of any checkpoint data and it is completely

microarchitecture-independent. It simply tells the simulator to start executing the

benchmark a certain number of instructions before the interval and then begin gath-

ering statistics once the interval is reached. Since the introduction of MRRL preceded

BLRL by several years, BLRL was able to improve upon the work in MRRL and

decrease the size of the warmup interval by half over MRRL. Regardless, both are

very useful methods for simply and effectively warming a system’s state prior to the

execution of a simulation interval.

2.6 Summary

This chapter presented a variety of techniques targeted at reducing the simulation

time of a benchmarking program while still maintaining accuracy. Benchmark suite

reduction locates redundancies in benchmarking suites and attempts to find the min-

imum subset of benchmarks and input datasets that are necessary to represent the

entire benchmarking suite. Statistical simulation generates a profile of the original

benchmark and then uses this to create a synthetic trace or program that can be

used early in the design cycle to quickly sort out viable design choices that should

be evaluated in more detail. Instruction sampling can be used to study a benchmark

in much more detail by choosing representative intervals of instructions and using

only those intervals for simulation. Checkpointing can be used to further decrease
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the amount of simulation time needed to run intervals of instructions by allowing

their immediate execution after checkpoint data has been handled. Finally, warmup

can help to guarantee that the intervals’ results will be as accurate as possible by

refreshing the state of not only the system’s architecture, but its microarchitecture

as well. Table 2.2 compares several of the more popular techniques by contrasting

their reported speedup, accuracy with respect to full detailed simulation, represen-

tativeness, microarchitecture dependence, storage space requirements, and flexibility

with respect to the subsequent simulation environment.

Execution CPI Representa- Micro- Storage Flexi-
Technique Time per Prediction tiveness architecture Req’s bility

B-mark Accuracy Dependent

B-mark Suite
Reduction Variable Variable Low No N/A High
[24]
Statistical approx.
(Trace) 1000x 2.3% Low Yes negligible Low
[18] speedup
Statistical approx.
(Testcase) 1000x 2.4% Low Yes negligible High
[10] speedup
SMARTS [47] 5 hrs 0.64% High No N/A Medium
SimPoint [41] 2.8 hrs 3.7% High No N/A Medium
SimPoint 14 mins 4 GB
Startup [43] (serial) 1.2% High Yes for 20 Low

1 min SPEC2K
(parallel) b-marks

LivePoints 12 GB
[45] 91 secs 1.6% High Yes compressed Low

all SPEC2K
b-marks

Table 2.2: Comparison of Several Popular Simulation Time Reduction Techniques



CHAPTER III

Intrinsic Checkpointing with Binary Modification

3.1 Overview

This chapter will present a technique called Intrinsic Checkpointing through Bi-

nary Modification (ICBM), first published in [39], which modifies a benchmark binary

so that it will only execute a certain part of its code. This is done by first analyz-

ing the code within a provided interval of execution and then generating a set of

checkpointing and warmup instructions. These instructions, when inserted into the

original binary, effectively recreate the system environment that the interval would

see at its start had the binary been executed normally. The original binary must

then be modified to start its execution at the beginning of these checkpointing in-

structions and then transfer control to the start of the interval instructions. Figure

3.1 represents these phases pictorially.

Figure 3.1: ICBM Process Flow Diagram

This technique creates a form of intrinsic checkpointing that removes the require-

27
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ments of checkpointing and fast forwarding from the simulator and places it into

the program itself. When combined with tools such as SimPoint [41] and BLRL

[17], it becomes possible to properly benchmark a system in a fraction of the time

compared to using the original benchmarking binary. For simulators such as RTL

models where checkpointing and fast forwarding may be very difficult to implement,

this technique allows for the simulation of benchmarks that in the past were severely

hindered by their execution times. Figure 3.2 gives a graphical overview of how the

various fast-forwarding, warmup, and detailed simulation intervals are combined into

individual ICBM binaries.

Figure 3.2: ICBM Interval Selection and Creation

This chapter is organized as follows. Sections 3.2, 3.3, and 3.4 will discuss how

the register file, memory, and system calls are checkpointed, respectively. Section

3.5 with describe how the checkpointing code is inserted into the original benchmark

through the binary modification process. Section 3.6 will describe how it is possible

for the interval to exit its execution after the appropriate number of instructions and

section 3.7 will list several implementation issues that are associated with ICBM.

Section 3.8 will describe how the ICBM technique is verified and section 3.9 will

illustrate the basic ICBM method with an example. Finally, section 3.10 will conclude

with a summary.
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3.2 Register Checkpointing

In order to create the necessary code to bring the simulation interval up to date,

an analysis of the benchmark must be done to find out what system state needs to

be restored for the proper execution of the simulation interval. The register file is

by far the simplest component whose usage must tracked and restored since it only

contains a limited number of architectural elements. To do this, a simple snapshot

of the register file is taken immediately before the first instruction in the simulation

interval and its current values are noted. These values are then restored with simple

load instructions in the checkpoint code to bring the register file up to date.

3.3 Memory Checkpointing

Memory, unlike the register file, proves to be a much more troublesome compo-

nent to intrinsically checkpoint, especially if there are many instructions within the

simulation interval that depend on values in memory that were modified before the

interval began. To track these modifications, a copy of the initial memory, INIT-

MEM, is created when the program first begins its execution and the program is

then allowed to fast-forward up to the simulation point in question. At that point,

a copy of memory, CHECKMEM, is saved to hold any changes to the memory from

the pre-interval code. Next, as the simulation interval progresses, each time a load is

encountered within the simulation interval, if the value in INITMEM differs from the

value in the current memory, CURRENTMEM, then it is known that some instruc-

tion in the pre-interval code stored a value to that memory location. Consequently,

the memory location and its value from CHECKMEM are logged so that later it can

be turned into a store in the checkpoint code. The memory location in INITMEM

is then updated with the value from CURRENTMEM so that this situation will
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not occur again. In the case of a store to memory within the simulation interval,

the value is simply stored to both CURRENTMEM and INITMEM since this store

effectively overwrites any loads that occurred in the pre-interval code.

3.4 System Call Checkpointing

System calls (syscalls) also create a rather difficult problem when handling the

instructions prior to the interval’s execution. File output syscalls are ignored since,

unless the output file is used later in the interval as input, they won’t affect the results

of the program. File input, however, modifies file pointers in the program and the

usage of all input files is logged so that all relevant pointers can be updated in the

checkpoint code. This is done by noting the work that occurs in the simulation for

file handling and keeping track of the various values that control file manipulation.

Other system calls, such as those that change directories, modify file permissions,

or open/close files also have these types of methods that track their usage. Code is

inserted into the system call handlers of the simulator to have their requisite input

values loaded using analysis similar to the register and memory analysis discussed

above. Then, the actual system call is run from within the checkpoint code. Since

there are only a few syscalls that can actually affect the system environment, the

generated code for syscall checkpointing is small. The remainder of the syscalls that

occur prior to the interval are either ignored or, if they modify memory or register

state, the normal simulation interval analysis discovers these changes and generates

the corresponding checkpoint code.

3.5 Interval Execution

Once the checkpointing data has been created and saved to a “pseudo-assembly”

program, it must be converted into the appropriate machine instructions and inserted
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into the original benchmark binary. To do this, the ICBM technique uses a Perl

script that converts the pseudo-assembly into machine code, finds a place in the

binary to insert the code, and then rewrites the binary. During insertion, it is

important that the restoration of the registers occur at the end of the checkpointing

code since the operations for restoring the memory need to make use of the registers.

After the insertion, the new binary has its starting point set to the beginning of

the checkpointing code. Next, at the end of the checkpointing code a final jump is

inserted that will move the execution to the beginning of the simulation interval.

Depending on the instructions available, this can be done with either an explicit

jump to a PC provided in the instruction, or a jump to a PC value that is stored in

a register. If a register is needed, as is the case with ICBM, then it will have to be

one that is going to be overwritten before it is used inside the interval so that proper

execution will be guaranteed. Figure 3.3 shows the instructions in a typical, pseudo-

assembly checkpoint file prior to being converted into machine code and inserted

into the binary. First, any syscalls that must be run prior to the interval are output,

followed by the section to restore the memory, and then register restoration occurs.

Finally, the jump to the start of the simulation interval is executed.

3.6 Exit Handling

A final issue that will need to be dealt with is the method by which the simulation

ends following the execution of the interval. In a typical simulator, the preferable

method is to simply tell the simulation when to stop by providing a count for the

number of cycles to simulate. This, however, requires that the simulator have the

ability to track the number of instructions on a per instruction basis from within

the simulation. In addition, if the goal of creating a set of microbenchmarks is to
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Figure 3.3: Pseudo-Assembly Template for ICBM code

be able to move them to native hardware, the hardware may not have the ability to

track an instruction count. Thus, it will become necessary to insert a halt operation

at a logical point in the code that will allow only the interval and its respective

checkpointing code to be executed. Unfortunately, it is not as simple as replacing the

instruction corresponding to the end of the interval with a halt instruction, because

this instruction may be encountered prior to the interval’s end due to things such

as looping code. Therefore, there will need to be an additional level of analysis that

occurs during the checkpoint code generation phase that identifies an instruction

that can be replaced with a halt that will still preserve the most of the interval’s

behavior as possible. Figure 3.4 depicts a general view of an ICBM binary once it

has been created.

3.7 Implementation Issues

There are several things that need to be explored before ICBM can be considered

effective. The first of which is whether ICBM will be applicable across different

benchmark suites. For example, memory intensive benchmarks such as large database
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Figure 3.4: Anatomy of an ICBM Binary

transactions could work with an enormous amount of data that would need to be

loaded into the memory before the simulation interval could be run. However, the

worst penalty, measured in the number of loads necessary to bring the memory up-

to-date, would be equal to a small multiple of the instructions in the interval since

the instructions in the interval can only reference a finite amount of memory. This

overhead, especially if the interval occurred late in the benchmark, would still be

much less than the original method of fast-forwarding through all the pre-interval

code. This same logic could be applied to the presence of large amounts of file

manipulation or changes to the overall state of the system. Since there is only a

limited amount of work being done in the interval, there should only be a limited

amount of pre-interval work to be done.

Another point to consider is the importance of warming up the various microar-

chitectural elements before the detailed simulation interval can occur. This problem
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is addressed in both SMARTS and SimPoint, and there are many different methods

that can be used. A paper on SimPoint published in SIGMETRICS [20] summarized

the various techniques including assuming all first accesses to important structures

were hits, calculating the working set of the important structures in the interval and

executing all instructions before the interval that will satisfy this working set [22]

[17], or keeping certain structures “warm” during the fast-forwarding stage by up-

dating only important parts [47]. For many benchmarks, the method that assumes

hits on first accesses is fairly accurate, but the two other techniques provide the most

accurate results. The technique that keeps the structures warm is obviously not a

good candidate for ICBM since it requires the entire fast forwarding segment to be

run. However, the technique that does a working set analysis on the structures, i.e.

MRRL and BLRL, is very promising since the code to warm the structures can be

built into the pre-interval code and not included in the statistics.

A final issue involves the simulation of multiple instruction intervals from one

benchmark. Since the current ICBM technique can only handle one instruction in-

terval at a time, the ICBM routines will have to be called repeatedly if a benchmark

requires the execution of multiple intervals. If the user’s goal is to create a large

number of individual benchmark intervals that can be executed in parallel, then this

is not an issue. However, it would be convenient if the intervals could be combined

into a single benchmark. While it is possible to address this shortcoming by string-

ing multiple intrinsic checkpointing intervals together and jumping back and forth

between checkpointing and interval code, it would involve large amounts of binary

analysis and modification. Therefore, this is best solved another way and will be

addressed later in chapter IV with the introduction of SuiteSpots.



35

3.8 Validation

Due to the nature of ICBM, if the intrinsically checkpointed benchmark begins its

execution with the proper checkpoint data, it will generate the exact same simulation

results as the instruction interval from the original binary, assuming no warmup

has occurred in either case. This follows from the fact that all the code from the

original binary remains intact throughout the checkpointing process and the only

modification made to the binary occurs when the checkpointing data is inserted.

For validation purposes, the simulation intervals for both the original binaries and

the intrinsically checkpointed binaries for 19 of the SPEC2000 [23] benchmarks were

simulated in detail and statistics were recorded for comparison. For each of the

benchmarks, the measured IPC did not vary between the original benchmark and

its intrinsically checkpointed counterpart. In addition to checking statistics, cycle-

level register file comparisons were made between the ICBM binary and the original

binary for several benchmarks to further validate the ICBM technique. Therefore, it

can be concluded that each of the intervals were properly checkpointed.

3.9 Alpha Example

As an example of ICBM, the following section will present an analysis of the eon

benchmark from SPEC2000. The SimpleScalar [1] simulator targeted at the Alpha

ISA [13] was modified to do the analysis described in this chapter and to output a

pseudo-assembly file that contains the essential syscalls, stores for memory restora-

tion, and loads for register restoration all of which will comprise the checkpointing

code that will need to be inserted into the original binary. Figure 3.5 lists a small

part of the pseuso-assembly that was generated for syscall handling and figure 3.6

gives a sample of the loads and stores for memory and register restorations. For each
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syscall, only the registers and memory that the syscall will use are restored prior to

its execution. A good example of this is the write syscall where the data to write to

the file is loaded into memory prior to being written to memory with the syscall.

Figure 3.5: Pseudo-Assembly for Pre-Interval Syscall Checkpointing

Figure 3.6: Pseudo-Assembly for Register and Memory Restoration

As figure 3.6 shows, the pseudo-assembly consists of only one instruction for each

memory location restoration. However, this pseudo-assembly cannot be directly
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translated into Alpha machine language since the Alpha ISA only has 32-bit instruc-

tions. Therefore, the 64-bit addresses and data will need to be broken up into a series

of optimized machine instructions that can produce the same effect. For example, all

the 64-bit addresses and data that are needed in the checkpointing code for memory

restoration could be written into a section of the binary set aside for data. A register

could then hold the starting address of this section of the code and offsets could be

used in conjunction with the register to load data into registers whose values could

then be stored into the appropriate location in memory. Figure 3.7 gives an example

of converting several 64-bit address/data stores into a series of machine instructions.

As the figure shows, it is possible to convert one checkpoint store that requires both

a 64-bit address and 64-bit data into a series of instructions that could take at most

7, or as little as 2, machine instructions depending on each store’s address values.

For register restoration, the same process could be used to restore a register in at

most 5, or as little as 1, machine instruction.

3.10 Summary

This chapter has presented ICBM, a methodology that dramatically decreases

the simulation time of a benchmarking binary by removing the need to fast forward

through a large number of instructions without relying on the simulator to explicitly

checkpoint the code. By analyzing the code of a desired simulation interval, ICBM

generates a portion of checkpointing code meant to replicate the outcome of the

instructions that were executed prior to the interval. This checkpointing code is

then inserted at the start of the original binary. When the checkpoint code finishes

its execution, control is transferred to the beginning of the simulation interval and

execution can continue until the end of the interval.
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Figure 3.7: Converting Pseudo-Assembly to Alpha Machine Instructions



CHAPTER IV

Intrinsically Checkpointed Assembly Code

4.1 Overview

The methodology presented in this chapter consists of three distinct phases that

transform a large benchmarking binary into one or more intrinsically checkpointed

binaries. The first phase selects representative intervals of the original benchmark’s

dynamic instruction stream using a tool such as SimPoint or SMARTS. The second

phase converts these intervals into InTrinsically Checkpointed assemblY (ITCY) code

by running the original benchmark through a modified functional simulator. Finally,

the third phase compiles the ITCY code into either a set of SuiteSpecks, indepen-

dent code segments that can be executed in parallel, or a SuiteSpot, a grouping of

ITCY code segments linked together by branches. Figure 4.1 represents these phases

pictorially.

Figure 4.1: ITCY Code Generation Diagram

39
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4.2 Simulation Interval Selection

During this phase, the original benchmark is analyzed to select regions of its

dynamic instruction stream that can be used for detailed analysis. As tools such

as SimPoint and SMARTS have shown, the entire dynamic instruction stream of a

benchmark’s execution does not need to be executed in order to properly simulate the

behavior of the benchmark. In fact, they have shown that only a very small subset

of a program needs to be simulated in detail in order to obtain a representative

sample of the overall behavior of the benchmark. The remainder of the program can

quickly be simulated on a functional level. However, this functional simulation can

still take many hours to complete and the ITCY methodology removes the need for

this functional simulation altogether.

4.3 ITCY Code Generation

4.3.1 Overview

The ITCY code generation phase takes the selected dynamic instruction intervals

and converts them into ITCY code using an augmented functional simulator from the

SimpleScalar toolset targeting the Alpha 21264 ISA. This ITCY code consists of three

main parts: Intrinsic Checkpointing (IC) code meant to recreate the environment

of the original benchmark, the original static instructions from the interval being

converted, and special control code that is needed to handle various situations that

will be described below.

This conversion process must address several issues in order for the new code to

execute properly. First, it must ensure that the initial state of the original interval

when executed in the new binary effectively matches the state that it possessed when

it began its execution in the original benchmark. Second, it must set up the new
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binary such that any memory accesses that it contains will reference valid locations

in its allocated memory space. Third, it must guarantee that the new dynamic

instruction stream occurs in the same order as when it was first executed. Fourth, it

must recreate the static instruction footprint in such a manner that the cache access

patterns of the new binary mimic those of the original binary. Finally, the new

code must exit after the correct number of dynamic instructions from the original

interval have occurred. In addition to the five issues mentioned above, system calls

(syscalls) encountered inside each simulation interval will be emulated using code

similar to that used to checkpoint the interval itself. Each of these issues, along with

the details of how system calls are emulated, require a number of modifications to the

original simulation interval and will be discussed in further detail below. Figure 4.2

gives a graphical overview of how the various fast-forwarding, warmup, and detailed

simulation intervals are combined, along with a depiction of how the above issues

appear in the intervals, into either a SuiteSpot or a set of SuiteSpecks.

Figure 4.2: ITCY Interval Selection and the Creation of a SuiteSpot or SuiteSpecks
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4.3.2 Initial State Intrinsic Checkpointing

In order for the new ITCY code to begin its execution properly, its initial state

must be restored to that which was seen when it was first executed inside of the

original benchmark. The methods used to accomplish this are based on the tech-

niques outlined in [39] with several modifications made to the way that memory is

checkpointed. The intrinsic checkpointing of the register file remains unchanged.

In [39], several copies of the memory state were maintained: one from the start of

the benchmark, one from the start of the interval, and one from the current point of

execution. The memory from the start of the benchmark was compared against the

current memory each time a load was encountered inside the simulation interval. If

the values did not match, then an IC store was generated using the data from the

memory at the start of the interval and placed at the beginning of the new interval.

The ITCY methods do not make use of multiple copies of memory and instead

mark memory usage prior to the interval’s execution using flags. Any stores encoun-

tered prior to the execution of the interval mark each byte of the memory locations

that they modify indicating that the locations have changed their values before the

interval began. In addition, any memory locations changed due to syscalls are simi-

larly flagged. Then, whenever a load occurs inside the interval, the simulator checks

the flags on all the bytes that will be read. If any of the bytes have been modified,

a temporary IC byte store is generated for that byte using the value in the current

memory. The memory location’s flag is then cleared so that it will not generate any

more IC stores later in the interval. In addition, any stores that occur inside the

interval clear their associated memory flags since they will still execute in the new

binary. After the interval’s analysis is complete, the simulator attempts to compact

any adjacent byte stores in this temporary list into larger multi-byte stores in order
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to compress the size, and reduce the execution time, of the final ITCY code.

In addition to the modifications of how IC store instructions are generated, the

ITCY technique changes the methods that manipulate the data used for the intrinsic

checkpointing of memory. In [39], memory was checkpointed using values that were

stored in the .data section of the new binary. These values were stored into their

respective addresses using a series of static load/store instructions that generated

their addresses inline. Unfortunately, as the size of the interval grew, the number

of these static instructions reached unwieldy proportions. To address this problem,

the ITCY technique converts the static instructions into a loop that iterates over all

the values in the .data section. This does, however, require the storage of not only

the data values needed to checkpoint memory, but also the addresses themselves.

This does require extra space in the .data section of the new binary, but it is offset

by the fact that the new .text section no longer requires the large number of static

instructions.

4.3.3 Ensuring Valid Memory Accesses

In order to allow the potential combination of multiple simulation intervals into

a single, new benchmark, the location of the ITCY .text section can no longer be

located in the same memory space as the original benchmark. Previous intrinsic

checkpointing work did not suffer from this requirement since all modifications were

done to the original binary which retained its initial location in memory. However,

this prevented the creation of a new benchmark that contained code from different

intervals in the same benchmark or different benchmarks altogether. To allow for

this flexibility, the ITCY technique reorders the sections of the new binary such that

new segments of code can easily be added.

The default memory layout for an Alpha binary places the .text section in a
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memory region that precedes the .data section. The stack then starts at the beginning

of the .text section and grows toward lower addresses. The heap, on the other hand,

starts at the end of the .data section and grows toward higher addresses updating the

value of the ld brk point (i.e. the top of the heap) whenever more space is needed.

The ITCY technique leverages this information when creating the new ITCY binary

and uses it to determine where in the new address space the sections of the code

should be located. In addition, since the new binary utilizes the original binary’s

stack and heap locations for the execution of the interval code, it has no need for a

stack or heap of its own. It simply requires a .data section with a predetermined size

for storing IC data and a .text section which contains IC code that will not need a

stack.

To ensure that the ITCY binary will have access to all the memory locations

from the original interval’s memory space, its .data section is placed in the addresses

directly below the original stack and its .text section directly above the original heap.

Then, immediately upon entering the initial IC code in the new binary, the IC code

makes a single system call that sets the value of the ld brk point to be the maximum

address that was accessed in the original heap. This sets the range of valid data

addresses to begin at the start of the new .data section and end at the top of the

original heap. In essence, the entire address space used by the original interval now

comprises the heap of the new binary. This guarantees that all memory accesses to

the original .text and .data sections will be valid. Figure 4.3 depicts these memory

layouts.

4.3.4 Preserving Dynamic Instruction Stream Execution Order

Since ITCY code contains the static, and not dynamic, instructions of the original

interval, special care must be taken to ensure that the execution of the ITCY code



45

Figure 4.3: Original and New Binary Memory Layouts

follows the same execution order that was seen in its corresponding interval’s exe-

cution. This is especially the case when branches are executed within the interval’s

code. Since the ITCY code will no longer occupy the same PC addresses within the

memory’s address space, branches need to be handled by either replacing the original

branch target with the PC address of the new target or by using special control code.

For conditional branches, the original branch target can simply be replaced with the

new target. Calculating these targets is done by giving every target instruction in

the ITCY code a unique label that contains the original PC value. The compiler

then automatically re-targets each branch when it is run. Figure 4.4 shows how this

translation occurs.

Figure 4.4: Retargeting Direct Branches to Maintain Proper Execution Order
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In addition to handling the target of a branch, if a branch saved its return address

to a register prior to its execution in the original interval, then this register must be

explicitly loaded with the original return address prior to the execution of the new

branch. The new branch must also be modified so that the return address assignment

does not occur in the new binary since it would overwrite the work that was just

done using the old return address. Figure 4.5 shows how this can be done in Alpha

assembly code.

Figure 4.5: Explicitly Setting a Branch’s Old Return Address Register

Indirect branches, however, are more difficult. Since the execution of the original

interval’s instructions inside the ITCY code will generate the exact same register

values that were seen in the original benchmark, using a register with its original

value to supply an indirect branch target will cause the program to transfer control

into the old address space. This will violate the proper execution order of the new

benchmark since the program no longer resides in the old address space. Therefore,

indirect branches must be handled using a special block of control code.

The method for handling these problematic indirect branches first finds all the

PC addresses of the new indirect branch targets using their target PC labels. It

then writes these values into locations in the original address space during the pre-

interval intrinsic checkpointing section of the ITCY code. The locations where these

targets are written are not arbitrary, however. Each new target PC address must be
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written to the address that corresponds to where the old target instruction resided

in the original address space. Then, prior to the execution of the indirect branch

in the ITCY code, the special block of control code uses the value in the register

that contains the original target address as a memory location to read in the new

branch target address into a temporary register. This temporary register is then used

by the indirect branch in the ITCY code for the new target PC value. Figure 4.6

shows this basic method for handling an indirect branch and its target using some

Alpha-derived pseudo-code.

Figure 4.6: Using the Original Memory Location of an Indirect Branch to Store its New Target

However, since the Alpha ISA is used to implement these methods, one further

situation must be accounted for in order for indirect branches to properly execute

in all situations. The Alpha ISA has a 64-bit address space and instructions that

are only 32-bits in length. Therefore, when a new indirect branch target’s 64-bit PC

value is written into the location of the original 32-bit branch target instruction, it

essentially overwrites the contents of two Alpha instructions. A problem occurs when

there are two indirect branch target instructions adjacent to each other in the old

address space. If both new targets attempt to write their corresponding PC values
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into these adjacent locations, then one of the branch target PC values will write over

half of the other. Therefore, a different block of control code must be written to

address this Alpha-specific situation.

This new block of special control code is only created for those indirect branches

whose target PC values will be overwritten within the old address space by adjacent

branch targets. If this situation is detected, one of the indirect branches will be

selected for special handling and all of its targets will be stored in a special table

in the .data section of the new binary. This indirect branch target table (IBTT)

effectively contains a dynamic branch target trace of all indirect branches that require

this special handling. Prior to one of these special branches executing, the IBTT

is accessed using a special pointer stored in a reserved location in memory. The

ITCY code generation process determines this memory location and guarantees that

it will not be overwritten by any of the code in the new binary. The IBTT itself is

dynamically generated when the ITCY code first begins its execution since it needs

to make use of the target PC labels that were discussed earlier in this section. Figure

4.1 indicates the location of this pointer in the new memory layout and Figure 4.7

depicts how the IBTT is used to handle these special indirect branches using some

Alpha-derived pseudo-code.

4.3.5 Preserving Cache Access Patterns

Not only must the ITCY code perform functionally correct, but it must also

maintain a certain level of accuracy with respect to the underlying microarchitecture.

Cache performance typifies this requirement since the cache performance of the ITCY

code can be drastically different than the original benchmark depending on how the

ITCY code is created. Since only those static instructions that are executed in the

original interval are output into the ITCY code, any code that was not executed is
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Figure 4.7: Using the IBTT to Handle Special Indirect Branch Targets

omitted from the new binary. If this omitted code separated basic blocks that were

spaced far apart in the original memory space, the exclusion of this code would cause

the basic blocks to appear next to each other in the memory space of the new binary

if they needed to be included. When applied to the interval as a whole, the resultant

binary would contain a greatly reduced memory footprint. Therefore, the I-cache

of the test system would perform much better when executing the ITCY code than

when it was executing the original benchmark. Unfortunately, this would remove

much of the representative nature of the ITCY code and, therefore, the ITCY code

must be created such that its subsequent I-cache performance mimics that of the

original benchmark.

To help the ITCY code maintain as much representative cache behavior as possi-

ble, “pads” of no-op instructions are incorporated in between basic blocks that have

had their original separating code removed. These pads do not need to be as large

as the original gap between the basic blocks. They simply need to be large enough
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to place the basic blocks onto different cache lines (assuming that they were at least

that far apart initially). A default cache line of 256-bytes is used as an upper limit.

In addition, the ITCYgen routine attempts to place the instructions themselves on

their appropriate cache line offsets so that their future performance behaves more

realistically. Since the PC values of all the original static instructions are known,

this method is relatively straightforward except when large amounts of control code

are inserted within the ITCY code. If this occurs and the control code causes the

instruction offsets to stray from their original values, the next basic block pair that

was split will re-align all the instructions automatically. Figure 4.8 shows this use of

instruction pads to recreate the original memory footprint in the new ITCY binary.

Figure 4.8: Using Instruction Pads to Recreate the Original Interval’s Memory Footprint

4.3.6 Exit Handling

When the ITCY code finishes its execution of a simulation interval, it needs to

be able to exit the interval code since it does not contain any code from the original

binary beyond what was seen in the interval. Two different methods are proposed to

handle this situation. The first technique logs the value of the PC that corresponds
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to the last instruction of the interval in addition to the number of times that it

is executed. SimPoints uses a similar technique to determine when to transfer to

detailed simulation after fast-forwarding through a benchmark. Once the PC and

count are known, special annotative instructions are added to the IC code that load

the value of this exit PC along with its execution count into two predefined registers.

In addition, to handle the transfer of control to additional intervals when creating a

SuiteSpot, the starting address of the next interval is logged and loaded into a third

register. A special signal instruction is then added to the IC code that will alert the

simulator to process the three registers.

When the ITCY code is later executed and the simulator encounters the signal

instruction, it reads the values of the exit PC, the occurrence count, and the starting

address of the next interval from the three registers and stores them into its internal

state. If the address for the next interval is equal to zero, this indicates that the

final interval has been reached in a SuiteSpot or that a single SuiteSpeck is being

simulated. As the detailed execution of the current interval proceeds, every time the

simulator encounters the exit PC, it increments the current execution count until

it matches the initial count. At this point, if the next interval address is equal to

zero, the execution terminates. If the address is not equal to zero, then the simulator

moves to the start of the next interval.

If it is not possible to add this tracking functionality to the simulator, a second

technique must be used whereby a termination routine is inserted into the binary it-

self. This was briefly mentioned in section 3.6. Since the ITCY code will be executing

static instructions from the original interval, if a termination routine is to be added,

it will need to insert one or more instructions into the set of static instructions at

the exact location that the last instruction in the interval was executed. If this last
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instruction is only executed once, it can simply be replaced with an exit system call

or a branch to the next interval. If, however, the static instruction that corresponds

to the last dynamic instruction is executed more than once, then it must be handled

differently.

Initially, the code generator looks for a singly-executed instruction that is within a

certain dynamic instruction distance from the final instruction. This instruction can

occur before or after the original final instruction as long as its distance to the last

instruction in the dynamic instruction stream falls within a given threshold provided

by the user. If this instruction is found, then the code generator replaces it with an

exit syscall or a branch to the next interval. If it is not found, then a special section

of control code is added in front of the original last instruction that will execute a

specific number of times before branching to an exit syscall or a branch to the next

interval. This is made possible by maintaining an exit counter in a special memory

location adjacent to the pointer to the IBTT. Each time the control code executes,

it checks the value of the exit counter and if it is equal to zero, it branches to the

exit of the interval. If it is not equal to zero, the code decrements the counter and

executes the original instruction. A sample of this special control code can be seen

in Figure 4.9. This technique can, however, have an undesirable effect on the overall

representativeness of the ITCY code if the exit routine is executed many times inside

of a loop. Therefore, the first technique discussed above where the occurrence count

and PC addresses are stored in the IC code is the preferable method.

4.3.7 System Call Emulation

The final step of the code generation process involves the removal of system calls

(syscalls) from the final ITCY code. Using methods similar to intrinsic checkpointing,

a system call can be replaced with a branch to a special section of code that emulates
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Figure 4.9: Special Exit Handling Control Code

the effects of the original system call. The actual checkpointing data that the code

section must load into the system is determined by the system call handling routines

built into SimpleScalar. These routines essentially mimic the execution of the system

calls using the native system call handlers of the host system running SimpleScalar.

Just like with IC, not all of the work done by a system call must be emulated.

Instead, only those data values that are used by loads later in the ITCY code must

be written to memory. In addition, if a store that needs to be emulated for the syscall

references a memory location that was not used prior to the syscall’s execution in the

interval, then the store is moved back to the initial IC code block. This minimizes

the effects of the syscall emulation’s execution on the final detailed simulation. When

these values are written to memory, their memory flags are cleared just like a normal

write inside of the ITCY code. Finally, any changes to the register file will still occur

whether they are used or not.

If a static system call executes more than once inside the interval, it will not

produce the exact same results each time it is called. Therefore, its emulation code
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must be unique each time that it is executed. This is accomplished by using a

technique similar to the Indirect Branch Target Table discussed in section 4.3.4.

When the ITCY code first begins executing, it creates a System Call Emulation

Table (SCET) in the .data section of the binary that holds the addresses from the

.text section of each system call emulation block. These emulation block starting

addresses are again obtained through the use of assembly instruction labels. Since

the execution of each emulation block will occur in a predetermined order, their code

can be stored in the .text section in chronological order and their corresponding

starting addresses can be similarly loaded into the .data section. Figure 4.10 depicts

how the SCET can be used to store the addresses of system call emulation blocks

and Figure 4.11 provides a specific example of how an emulation block is reached

from inside the ITCY code.

Figure 4.10: Using the SCET to Store the Starting Addresses of System Call Emulation Blocks

4.4 ITCY Code Compilation

The final phase of converting a benchmark compiles the ITCY code into either a

set of SuiteSpecks or a single SuiteSpot. As was mentioned previously, a SuiteSpot

combines multiple simulation intervals into one single binary. Each interval is linked

to the next interval by using branch instructions in the place of an exit syscall.

An advantage of using a SimPoint over multiple SuiteSpecks is that later intervals

inside a SimPoint may not need to intrinsically checkpoint as much of their state

as a SuiteSpeck. Since the state of the simulation is affected by the execution of
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Figure 4.11: System Call Emulation Code Sample

each of its intervals, later intervals can take advantage of the fact that some of the

system state has already been checkpointed by earlier intervals. Therefore, these

intervals may not need to generate as much intrinsic checkpointing code as their

earlier counterparts.

SuiteSpecks, on the other hand, must rely entirely on intrinsic checkpointing to

bring the state of the system up to date. This state is still drastically smaller than

traditional checkpointing methods, however. The main advantage of SuiteSpecks

over SuiteSpots is that they can all be executed in parallel and will provide results

much faster. However, this requires more simulation resources.

The compilation of ITCY code into SuiteSpecks or a single SuiteSpote proceeds

in a very straightforward fashion. The code generation phase in section 4.3 auto-
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matically generates a Makefile that can be used to compile the code. The Makefile

must be created in order to tell the compiler where it should place the .data and

.text sections of the new ITCY code as was described in section 4.3.3. Figure 4.12

depicts a general view of an ITCY binary once it has been created.

Figure 4.12: Anatomy of an ITCY Binary

4.5 ITCY Code Execution

After the ITCY code is compiled, it can be executed just like any other benchmark.

As an additional benefit, input datasets are no longer needed since all system calls are

now emulated inside the benchmark and any file input that the original benchmark

needed is checkpointed within the state of the ITCY code. On concern that needs to

be addressed, however, is the handling of interval weights. Since each interval may

not represent an equal amount of the original benchmark’s execution profile, the

performance metrics for an interval may need to be offset to reflect this discrepancy.
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If SuiteSpecks are used, their performance metrics simply need to be multiplied by

their respective weights before they are summed together. However, if a SuiteSpot is

used to represent many different intervals each with a different weight, then special

handling is required.

This special SuiteSpot handling can done in two different ways. The first, and

simplest, method adds signal instructions into the ITCY code that have the ability

to reset and print the current set of statistics for the simulator. At the boundary

of an interval’s intrinsic checkpointing and SimPoint interval code, an instruction is

inserted to signal the simulator that it needs to reset all of its statistics. Then, at the

end of the detailed interval a similar instruction is used to tell the simulator to print

its current statistics. This print signal is only inserted if the exit handling technique

that uses special termination code is being used. If the technique that counts the

exit PC is being used, then at the point when the exit count reaches its appropriate

value, the simulator will need to output the current set of statistics prior to moving

to the new interval. The multiplication and summation of the SuiteSpot statistics

then proceeds as usual.

The second method for handling differently weighted intervals within a SuiteSpot

builds upon the first method and actually inserts the functionality directly into the

new benchmark, completely removing the need for post-simulation weight handling.

Using a procedure identical to that used to load the exit PC of an interval, the weight

of the interval can also be loaded into the internal state of the simulator. When the

end of the detailed interval is reached, this weight can be accessed and applied to all

the current statistics. These internally weighted statistics are then set aside within

the simulator for later summation. The procedure of resetting the statistics prior

to entering the detailed portion of the interval remains the same. When the final
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SuiteSpot interval finishes its execution, its weighted statistics are then added to

all the previous interval’s statistics to produce a final set of properly weighted and

combined statistics. Incidentally, this method of incorporating the weight into the

interval can also be used with SuiteSpecks and would remove the need of multiplying

the performance metrics by their weight prior to their summation.

4.6 Validation

To verify that the ITCY code is executing the proper instructions from the original

SimPoint interval, a trace of the register file can be maintained on a cycle level

basis. This trace can then be compared to a similar trace that was created when

the ITCY code was first generated. If the traces match, it can be assumed that

the code is executing the proper instructions in the proper order. Due to the large

amount of file overhead that this technique produces, it was only run on relatively

small intervals to stress test the correctness of the ITCY technique. Another more

rapid, but slightly less accurate, technique for testing whether an interval executes

properly loads a special exit code into the input argument register of the exit syscall

just prior to its execution at the end of the benchmark. If the exit syscall is reached,

this exit code will be output to the screen. This code can then be combined with

the number of executed instructions to verify that the interval executed the expected

number of instructions. This technique ensures that the execution of the benchmark

follows the correct path to its exit, however, it cannot guarantee that the exact same

instructions are executed. Regardless, it does serve as an indicator that the program

at least reached its exit properly and since this execution path greatly depends on the

proper execution of the interval’s instructions, it can be assumed that the benchmark

executed the correct instructions.
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4.7 Additional Features

The ITCY technique presented in this chapter provides the groundwork for the

creation of a variety of different benchmarks that can incorporate many useful fea-

tures. Many of these features that pertain directly to the ITCY method have already

been discussed. However, there are additional features that the technique can pro-

vide. These will be discussed in this section.

4.7.1 Intrinsic Warmup

Microarchitectural warmup, as was discussed in section 2.5, is an essential com-

ponent of any checkpointing methodology. Many techniques require the creation of

special data structures that hold large amounts of this warmup information. This

large amount of information is needed because different warmup data is needed for

different microarchitectural configurations. In addition, simulators must be modified

in order to load this information into their microarchitectural components. With

the ITCY technique, just like with ICBM, warmup is a straightforward application

of MRRL or any other similar technique such as BLRL. Since these reuse latency

techniques provide a specific number of instructions that need to be executed prior

to the detailed interval, the instructions can simply be included in the ITCY code

to effectively warmup the simulator’s microarchitectural state provided that statis-

tics gathering is not enabled until after the warmup interval has occurred. There-

fore, special warmup data structures are not needed, the simulator or system that

runs the benchmark does not need to be modified, and each ITCY benchmark is

microarchitecture-independent.
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4.7.2 Multi-suite Benchmarks

Another advantage of the ITCY technique is that proprietary benchmarks can

easily be distributed by corporations that do not want to release the full version of

their software to the public. ITCY benchmarks can be created using these “in-house”

programs without the fear of releasing too much information while still providing a

useful and representative benchmark. In addition, entire suites of programs could

be combined to create single, multi-benchmark binaries that could simulate a large

number of applications at once. The procedure for creating a SuiteSpot is general

enough that, as long as the state of the machine is restored properly, entire bench-

marks can be combined into one SuiteSpot. There are certain limitations when using

this approach; however, the ability exists to accomplish this goal.

4.7.3 Fine-grained Statistics Control

A final feature of the ITCY technique makes it possible to insert any number of

special purpose instructions into the simulation interval. As an example, fine-grain

statistics control instructions can be added to start and stop the logging of statistics.

When placed around ITCY checkpointing and control code, these instructions can

allow the simulator to control whether or not the ITCY instructions will affect the

statistics of the simulation. These are not an all-purpose solution to controlling

the effects of the ITCY code on the performance of the original benchmark, and

as Chapter VI will show, they are not really necessary. However, they serve as

an example of a feature that can easily be added to ITCY code to increase its

functionality.
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4.8 Summary

This chapter has presented the InTrinsically Checkpointed assemblY (ITCY) tech-

nique, a methodology for the creation of fast and flexible benchmarks. While similar

to ICBM code in some aspects, ITCY code has several added benefits. The code

is highly portable to a variety of simulators and it is microarchitecture-independent

with respect to both the simulation interval that it executes and also any warmup

that it requires. System calls are removed from the original simulation interval, so

the new binary no longer requires a simulator that supports them and, therefore,

all input data is embedded within the benchmark. In addition, multiple simulation

intervals can be combined into a single benchmark whose performance can represent

that of all its component intervals.



CHAPTER V

Experimental Framework

5.1 Target Architecture

The ICBM and ITCY techniques were both tested using the Alpha [13] architec-

ture as a reference. The sim-safe functional simulator from the SimpleScalar version

3.0d [1] simulation infrastructure was modified to do the analysis and code generation

for both techniques. Other simple modifications were made to SimpleScalar simula-

tors to allow for the execution of the special control instructions that were created

for certain configurations of ITCY code. In particular, special handling needed to

be added to allow the simulator to do the following: read the occurrence count and

PC address of each interval’s exit instruction and exit or transfer control to the next

interval when necessary, read the starting addresses of subsequent intervals inside a

SuiteSpot and transfer control accordingly, and finally handle any statistics control

instructions including the printing and resetting of statistics. Most of these modifi-

cations are not necessary if the new ITCY binary handles interval exits by inserting

special exit handling code. However, as was discussed previously in section 4.3.6,

this exit handling code can have an undesirable impact on the accuracy of the ITCY

code if it is executed many times. Therefore, modifying the final detailed simulator

to handle annotated ITCY code is the preferred method.
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5.2 Code Compilation

The compilation of the generated code from each technique varied. For ICBM

code, a special Perl script was written that was given the pseudo-assembly file con-

taining all the intrinsic checkpointing instructions and also the original binary. The

original binary was then opened and analyzed to find a location to instert the check-

pointing code. Once this location was found, the pseudo-assembly code was parsed,

optimized, converted into a set of 32-bit machine instructions, and placed into a .text

section of the original binary. In addition, any values needed for memory restoration

were written into a .data section. For ITCY code, the majority of this work was

already done in the code generation phase, so its Makefile simply needs to be run

to produce the new binary or binaries. The actual compilation occurred on a native

Alpha compiler since no cross-compiler is easily obtainable that will output binaries

for SimpleScalar. This, unfortunately, created a large bottleneck in the entire process

since each new ITCY binary needed to be compiled serially on a relatively old and

slow machine.

5.3 Benchmarks Used

The benchmarks used for this dissertation were taken from the SPEC CPU2000

benchmarking suite [23]. The ICBM techniques were tested using 19 of the bench-

marks with the reference inputs. The actual benchmarks used can be seen in chapter

VI. For the ITCY method, all 26 benchmarks with reference inputs were used in-

cluding a variety of different input data sets. This resulted in a total of 41 different

benchmark/dataset pairs.
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5.4 SimPoint Intervals

Since the techniques discussed in this dissertation are best used in conjunction

with an instruction sampling technique, SimPoint was used to provide the sample

intervals since it does well at identifying phases inside a program. For ICBM, a

SimPoint interval of 100 million instructions was used for each benchmark since

it is only able to handle a single instruction interval at a time. For ITCY, the

majority of the results that are presented use thirty, 10 million instruction intervals

per benchmark since work done in [28] indicates that smaller and more frequent

intervals produce more accurate results. Other studies were done with a variety of

different interval sizes to test different aspects of the ITCY technique. These will be

described in more detail in chapter VI.



CHAPTER VI

Results and Analysis

This chapter presents the results when testing both the ICBM and ITCY check-

pointing methodologies. The results can be broken down into a set of four broad

categories: code overhead, performance modeling, effects on file size, and simulation

speedup. The ICBM results were first published in [39] and will be expanded upon.

The ITCY method will be explored in detail paying particular attention to its effects

on code overhead and performance modeling.

6.1 Intrinsic Checkpointing with Binary Modification

This section presents results for the ICBM method when used on 19 of the SPEC

CPU2000 benchmarks targeted at the Alpha ISA using the reference input datasets.

The exact benchmarks used can be seen in Table 6.1. The simulation interval used

was obtained using SimPoint with a specified interval length of 100 million instruc-

tions. Since the current ICBM method only creates code for a single interval, Sim-

Point was limited to only choosing one interval that would attempt to represent the

entire benchmark. The processor configuration used for the detailed sim-outorder

simulator from the SimpleScalar toolset can be seen in Table 6.2.
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Benchmark Name Input Dataset Type

ammp ref FP
applu ref FP
apsi ref FP
art ref: 110 FP
bzip2 ref: source INT
eon ref: cook INT
equake ref FP
fma3d ref FP
galgel ref FP
gap ref INT
gcc ref: 166 INT
gzip ref: graphic INT
lucas ref FP
mcf ref INT
mesa ref FP
mgrid ref FP
parser ref INT
twolf ref INT
wupwise ref FP

Table 6.1: Benchmarks used for ICBM Results

6.1.1 Code Overhead

Code overhead generated when using the ICBM method can be described in sev-

eral different ways. The first simply analyzes the generated pseudo-assembly in-

structions upon their creation and breaks them down into several different categories

based on their utility for the upcoming interval. Alternatively, the pseudo-assembly

instructions can be converted into their subsequent Alpha instructions and analyzed

in a simulator. Both of these methods of analysis will be presented below. The

amount of increase in the number of instructions will also be presented since the

conversion of the pseudo-assembly will result in a larger number of Alpha instruc-

tions.

Pseudo-Assembly Code Overhead

One way of analyzing the code overhead of the ICBM method divides the initial

pseudo-assembly intrinsic checkpointing code into four different categories: syscall
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Simulator Parameter Parameter Value

Instruction Fetch Queue Size 4 instructions
Issue/Decode/Commit Width 4 instructions
Branch Predictor Bimodal, 2048 entries
Return Address Stack Size 8 instructions
Branch Target Buffer 512 sets, 4-way associativity
Out-of-Order Execution Enabled
Wrong-path Execution Enabled
Branch Mis-prediction Latency 3 cycles
Register Update Unit Size 16
Load/Store Queue Size 8
L1 I-Cache 512 sets, 32-byte blocks, Direct Mapped
L1 D-Cache 128 sets, 32-byte blocks, 4-way associativity, LRU
L2 Unified Cache 1024 sets, 64-byte blocks, 4-way associativity, LRU
L1 I-Cache Hit Latency 1 cycle
L1 D-Cache Hit Latency 1 cycle
L2 Unified Cache Hit Latency 6 cycles
I-TLB 16 sets, 4096-byte blocks, 4-way associativity, LRU
D-TLB 32 sets, 4096-byte blocks, 4-way associativity, LRU
I/D-TLB Miss Latency 30 cycles
Main Memory Access Latency 18 cycles first chunk, 2 cycles inter-chunk
Memory Access Bus Width 8 bytes
Functional Units 4 integer ALUs, 1 integer multiplier

4 floating point ALUs, 1 floating point multiplier
Memory System Ports 2

Table 6.2: Baseline Configuration for ICBM Results

SpecInt Avg SpecFP Avg Spec2K Avg
dowrites nowrites dowrites nowrites dowrites nowrites

syscall loads 2,035 884 16,400 9,974 10,351 6,146
syscall stores 37,565 57 6,998 49 19,868 52
interval loads 68 68 68 68 68 68
interval stores 485,417 485,417 1,792,717 1,792,717 1,242,275 1,242,275

Table 6.3: Breakdown of ICBM Pseudo-Assembly Checkpointing Instructions

loads for syscall register restoration, syscall stores for syscall memory restoration,

interval loads for main register restoration, and interval stores for main memory

restoration. The details of these categories can be found in sections 3.2 through 3.4.

The results are further broken down into whether or not the possibly unnecessary

file output syscalls encountered prior to the simulation interval are included in the

ICBM code, referred to as “dowrites” if file output is included and “nowrites” if not.

The syscall data corresponds to the number of loads and stores that must be run
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in order for the essential, pre-interval syscalls to provide proper program behavior.

The interval data lists how many loads and stores are required to checkpoint the

simulation interval. Note the number of loads needed for register restoration of the

simulation interval is always constant since there are only a finite number of registers

needing restoration. Table 6.3 shows the breakdown with the results averaged for

integer, floating point, and all SPEC2000 benchmarks. As the table shows, regis-

ter restoration for the interval is inconsequential compared to the remainder of the

checkpointing code. Syscalls play a larger part in the checkpoint code if file output is

included; however, they still only comprise 2.4% of the total checkpointing code on

average. In addition, the results for the integer benchmarks have much less check-

pointing code due to the fact that they are less focused on memory activities and

will, therefore, require less code to restore it.

Alpha Machine Code Overhead

An alternative method for analyzing the ICBM code overheard involves convert-

ing the pseudo-assembly into Alpha instructions and then running the code on a

simulator. The next set of results displays how many Alpha instructions the ICBM

code needs to execute compared to the number of instructions that would need to be

executed in both the original simulation interval, and also the fast-forwarding sec-

tion prior to the interval, if intrinsic checkpointing were not available. As before, the

results are broken into whether or not file output is included in the syscall statistics.

As Figures 6.1 and 6.2 show, the checkpointing code represents only a small part,

roughly 2% on average, of the executed interval code and an extremely small part,

less than 0.005%, of the fast-forwarding interval. Therefore, it is expected that the

execution of the code with checkpointing included will be much faster than having

to fast-forward to the simulation interval itself.
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Figure 6.1: Overhead of ICBM Checkpointing Code Compared to Simulation Interval

The conversion of pseudo-assembly into Alpha machine instructions does come

at a cost, however. Figure 6.3 shows the increase in the number of instructions

when the conversion takes place. As section 3.9 mentioned, anywhere from 1 to 7

Alpha instructions may be needed to represent a single pseudo-assembly instruction,

therefore, the number of instructions is expected to increase. However, as the figure

shows, there is only a 180% increase on average in the number of instructions which

shows that the worst case of 7x instructions rarely occurs and the average conversion

takes less than 3 instructions.

6.1.2 Performance Modeling

Since the ICBM technique directly modifies the benchmarking binary to insert its

checkpointing code and then executes the original interval of instructions, it does not

effect the performance modeling of the new binary with respect to the technique that
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Figure 6.2: Overhead of ICBM Checkpointing Code Compared to Fast-Forward Interval

chooses the simulation interval. All of the original instructions execute in the same

order and with the same behavior as if they were reached through fast-forwarding

prior to the binary’s modification. This was verified by simulating the corresponding

instruction intervals from the original binaries and the ICBM binaries in detail and

noting that there was no variation in the IPC and similar metrics. Therefore, ICBM

binaries are purely at the mercy of the accuracy of the simulation interval selection

technique. For the case of a single, 100 million instruction SimPoint interval with

no warmup, it was shown that the average percent error for SimPoint was 2.12%.

Therefore, it can be expected that this average percent error will also apply to an

ICBM benchmark that does not include any warmup code.
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Figure 6.3: Increase in Number of Instructions when Converting to Alpha Code

Initial Benchmark dowrites nowrites
SpecInt Avg 1,120,256 8,551,333 8,075,642
SpecFP Avg 1,506,583 26,719,511 26,502,684
Spec2K Avg 1,343,919 19,069,751 18,743,930

Table 6.4: Increase in ICBM File Size (measured in bytes) for INT, FP, and SPEC2000

6.1.3 Effects on File Size

Table 6.4 and Figure 6.4 show the increase in size measured in bytes of the bench-

marking binary when the ICBM code is inserted. Due to the fact that the memory

restoration requires 64-bit data both for the values and addresses, it is expected

that there will be a fairly significant increase in size since 64-bit values and 64-bit

addresses that are not close to each other in the address space must each occupy

8 bytes of code in the data section. In addition, highly data intensive benchmarks

such as the scientific computation based floating point benchmarks of SPEC2000 will

show a much larger increase in code size, approximately 25 megabytes on average,
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Figure 6.4: Increase in ICBM File Size (measured in bytes) Overall

since it will take more to set up the memory that they will be using for their compu-

tations. However, for the integer benchmarks, the increase in size is rather modest,

roughly 7 megabytes on average, when compared to other forms of checkpointing

that checkpoint the entire system state. In addition, it is always possible to further

decrease the final code size by decreasing the size of the simulation interval.

6.1.4 Simulation Speedup

To measure the decrease in simulation time, the original code and the ICBM code

were both fast-forwarded to the start of the simulation interval and then the interval

was simulated in detail using the default configuration of the SimpleScalar sim-

outorder simulator described above. In the case of the original binary, a considerable

amount of time was needed for fast-forwarding, whereas for the ICBM binary little

time was needed. The performance of the underlying simulator can have an effect,
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Figure 6.5: Speedup of ICBM Code over Initial Benchmark

however, on the overall speedup of both the ICBM and ITCY speedup results. If

the simulator that does the initial fast-forwarding is slow, then the speedup results

could be unnecessarily inflated. The SimpleScalar simulator used in this study has

a fast-forwarding rate of roughly 4.5 million instructions per second when run on

a modern, 3 GHz desktop computer with 1 GB of RAM. A comparable simulator

to SimpleScalar that targets the Alpha ISA, M5 [11], has a fast-forwarding rate

of approximately 3.5 million instructions. Therefore, it is safe to assume that the

SimpleScalar simulator is not incorrectly representing the speedup potential of the

ICBM and ITCY techniques. If the simulator being used does not support fast-

forwarding, such as with a Verilog or a generic RTL model, the overall speedup

would be orders of magnitude better since, as was demonstrated in Figure 6.2, an

ICBM binary has drastically fewer instructions to execute prior to the interval.

Figure 6.5 shows the speedup in runtime of the ICBM binary, which includes
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pre-interval syscall writes, over the initial binary when run on a Pentium4 2.4GHz+

processor with 1 GB of RAM. The speedup ranges from roughly 5x for gcc up to

nearly 180x for fma3d with an average of roughly 60x. The relatively small speedup

of gcc is due to the fact that the fast-forwarding interval prior to its simulation

interval contains less than 5 billion instructions whereas for fma3d it contains 184

billion instructions. In terms of wall clock time, gcc took 3.7 minutes when using

ICBM and 14.5 minutes when not and fma3d took 3 minutes when using it and

8.9 hours when not. On average, the runtime of an ICBM binary was 3 minutes as

opposed to 3.13 hours when not. To measure the potential speedup if fast-forwarding

is not available, the runtime of each ICBM binary is used as a rough estimate for

the amount of time it would take the simulator to simulate in detail 100 million

instructions of the benchmark. If this were the case, then the non-ICBM versions of

gcc and fma3d would take 2.7 hours and 2.7 days, respectively, to finish the execution

of the SimPoint interval. The average time to finish the SimPoint interval for a

benchmark if fast-forwarding is not available is 1.5 days and the twolf benchmark

would take a maximum of 5.9 days.

6.2 Intrinsically Checkpointed Assembly Code

This section presents results for the ITCY method when used on all 26 of the

SPEC CPU2000 benchmarks targeted at the Alpha ISA using the reference input

datasets. Several benchmarks contain multiple reference datasets and are treated as

separate benchmarks. The combination of benchmarks and the various input datasets

resulted in 41 unique benchmark/dataset pairs. The exact benchmarks used can be

seen in Table 6.5.

For the majority of the experiments, 30 SimPoint intervals per benchmark were
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obtained each with an interval length of 10 million instructions and an associated

weight. These intervals were then converted into a set of thirty SuiteSpecks for each

benchmark. Next, individual benchmark results were calculated as the weighted

average over the 30 SimPoint intervals. Each SuiteSpeck handles its exiting by

utilizing the the exit PC counting method described in section 4.3.6 and the simulator

fast-forwards through the intrinsic checkpointing code that occurs prior to the start of

the interval. The processor configuration used for the detailed sim-outorder simulator

from the SimpleScalar toolset was obtained from the SimPoint website and can be

seen in Table 6.6. Any changes made to the number of intervals, benchmark set,

simulation method, and/or processor configuration will be explicitly noted where

appropriate.

Benchmark Name Input Dataset Type

ammp ref FP
applu ref FP
apsi ref FP
art ref: 110 and 470 FP
bzip2 ref: graphic, program, and source INT
crafty ref INT
eon ref: cook, kajiya, and rushmeier INT
equake ref FP
facerec ref FP
fma3d ref FP
galgel ref FP
gap ref INT
gcc ref: 166, 200, expr, integrate, and scilab INT
gzip ref: graphic, log, program, random, and source INT
lucas ref FP
mcf ref INT
mesa ref FP
mgrid ref FP
parser ref INT
perlbmk ref: perfect INT
sixtrack ref FP
swim ref FP
twolf ref INT
vortex ref: one, two, and three INT
vpr ref: route INT
wupwise ref FP

Table 6.5: Benchmarks used for ITCY Results
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Simulator Parameter Parameter Value

Instruction Fetch Queue Size 32 instructions
Issue/Decode/Commit Width 8 instructions
Branch Predictor Combined, 8192 entry meta-table

Bimodal Part: 8192 entries
2-Level Part: 8192 l1/l2 table entries, 13-bit history

Branch Pred. Speculative Update Occurs in Instruction Decode
Return Address Stack Size 64 instructions
Branch Target Buffer 512 sets, 4-way associativity
Out-of-Order Execution Enabled
Wrong-path Execution Enabled
Branch Mis-prediction Latency 14 cycles
Register Update Unit Size 128
Load/Store Queue Size 32
L1 I-Cache 128 sets, 32-byte blocks, 2-way associativity, LRU
L1 D-Cache 128 sets, 32-byte blocks, 4-way associativity, LRU
L2 Unified Cache 4096 sets, 64-byte blocks, 4-way associativity, LRU
L1 I-Cache Hit Latency 2 cycles
L1 D-Cache Hit Latency 2 cycles
L2 Unified Cache Hit Latency 20 cycles
I-TLB 32 sets, 4096-byte blocks, 8-way associativity, LRU
D-TLB 32 sets, 4096-byte blocks, 8-way associativity, LRU
I/D-TLB Miss Latency 30 cycles
Main Memory Access Latency 151 cycles first chunk, 2 cycles inter-chunk
Memory Access Bus Width 2 bytes
Functional Units 8 integer ALUs, 2 integer multiplier

2 floating point ALUs, 2 floating point multiplier
Memory System Ports 4

Table 6.6: Baseline Configuration for ITCY Results

6.2.1 Code Overhead

The code overhead for the ITCY method, unlike for ICBM, can be much larger

due to the nature of the technique. Since each simulation interval is removed from

the original benchmark and converted into intrinsically checkpointed and annotated

assembly code, it will need special instructions inserted into the interval to handle

indirect branching and exit handling. In addition, in order to remove system calls

from the interval, system call emulation code will also need to be inserted into the new

binary. The instructions that are inserted into the new binary consist of those that

occur prior to the start of the interval, referred to as pre-interval instructions, and

those that occur within the interval itself, referred to as intra-interval instructions.
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All of this new code will add to both the overhead and size of the new benchmark,

however, it allows for a greater deal of flexibility and portability for the new binary.

This was discussed previously in sections 4.3 and 4.7.

6.2.2 Required Pre-Interval Instructions

For the instructions that occur prior to the interval, they primarily consist of

those needed to checkpoint the memory used by the interval’s instructions and the

register file. The remainder of the pre-interval instructions set up the .data section

for indirect branch and syscall handling as described in sections 4.3.4 and 4.3.7, set

up the exit handling PC counting procedure described in section 4.3.6, and handle

any other miscellaneous tasks described in chapter IV.

SpecInt Avg SpecFP Avg Spec2K Avg

Mem/Reg Checkpointing 574,751 4,524,063 2,019,621
Indbr/Syscall/Exit Handling 1,418 168 960
Total Pre-Interval Dynamic Insts 576,169 4,524,231 2,020,582

Total Pre-Interval Static Insts 271 459 340

Table 6.7: Breakdown of ITCY Pre-Interval Instructions

Table 6.7 shows the dynamic instruction counts for the integer (INT), float-

ing point (FP), and all SPEC2000 benchmarks separated out into memory/register

checkpointing and the remainder of the pre-interval instructions for 10 million in-

struction intervals. It also shows the total number of static instructions in the pre-

interval code. From the results, it is clear that more than 99% of the pre-interval

dynamic instructions are devoted to memory/register checkpointing and that those

instuctions come from a very small number of static instructions. This indicates that

a great deal of looping is occuring inside the code to checkpoint the memory as was

described in the latter part of section 4.3.2. In addition, the table shows that there is

almost an order of magnitude difference in the number of dynamic memory/register

checkpointing instructions needed for the floating point benchmarks. This is due
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Figure 6.6: Overhead of ITCY Pre-Interval Code Compared to Simulation Interval: INT

to the fact that floating point benchmarks traditionally make much greater use of

memory and, therefore, require a great deal more checkpointing. This result is also

reflected in Figures 6.6 and 6.7 where it is shown that the floating point benchmarks

increase the number of dynamic instructions in the new binary by an average of 40%

and the integer benchmarks by only 5%. The overhead for the integer benchmarks

would be even lower if not for the inclusion of mcf which increases the overall integer

average by over 1%.

When contrasting Figures 6.6 and 6.7 with 6.1, the results for the ITCY technique

show a greater number of instructions devoted to pre-interval intrinsic checkpoint-

ing. This is expected since the interval size for the ITCY simulations was only 10

million instructions whereas for ICBM it was 100 million. Since a longer interval

will need less checkpointing for the instructions that occur later in its execution, the

amount of checkpointing overhead compared to the overall interval size will decrease
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Figure 6.7: Overhead of ITCY Pre-Interval Code Compared to Simulation Interval: FP

as the interval size increases. The particularly large difference in the floating point

benchmarks can also be attributed in part to the addition of the swim benchmark

which increases the floating point average by over 5%.

Required Data Entries

SpecInt Avg SpecFP Avg Spec2K Avg
Required .data quads 165,444 1,292,521 577,789

Table 6.8: 8-byte .data Entries Needed for ITCY Code

Not only do the floating point benchmarks require a larger number of pre-interval

IC instructions, but they also need more entries in the .data section of the new binary.

This is reflected in Table 6.8 where the floating point benchmarks again need nearly

an order of magnitude more 8-byte .data entries than the integer benchmarks. This

size is related to the larger number of IC instructions since these instructions use

the values in the .data section to checkpoint the memory of the interval prior to its
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execution.

Number of Indirect Branches

SpecInt Avg SpecFP Avg Spec2K Avg

Syscalls 1.1 10.7 4.6
Indirect Branches 124,101 29,417 89,460
Unconditional Branches 286,475 73,551 208,576

Table 6.9: Number of Syscalls and Indirect Branches Seen in ITCY Interval

Another interesting result observed in Table 6.7 is the higher number of “other”

instructions that are required for the integer benchmarks compared to the floating

point benchmarks. Since the memory checkpointing instructions occur in a loop,

they only contribute a constant number of static instructions to the pre-interval code.

However, the instructions that handle indirect branch targets and syscall emulation

are entirely static and increase in amount whenever the number of indirect branches

or syscalls increase. As Table 6.9 shows, the number of syscalls that need emulation

will have little effect in this case, however, the integer benchmarks have over 4 times

as many indirect branches as the floating point benchmarks on average and, therefore,

require a larger amount of static instructions in the pre-interval code.

6.2.3 Required Intra-Interval Instructions

The instructions that occur in the pre-interval code can be fast-forwarded through

at the start of the simulation and ignored. However, the instructions that occur

within the interval must be executed during the detailed simulation, unless the sim-

ulator is instrumented to turn stats on and off at the instruction level as mentioned

in section 4.7.3. These intra-interval instructions can negatively affect the results of

the simulation if they are too numerous and must be carefully handled to minimize

this risk as was discussed in sections 4.3.4, 4.3.6, and 4.3.7.
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Indirect and Unconditional Branch Handling Overhead

Benchmark Store Load Integer Benchmark Store Load Integer

bzip2 graphic 0 64,671 64,671 ammp 0 16,211 16,253
bzip2 program 0 56,928 56,928 applu 0 956 1,131
bzip2 source 0 62,020 62,020 apsi 0 8,593 8,593
crafty 0 122,580 122,583 art 110 0 11,223 21,513
eon cook 0 263,910 474,443 art 470 0 1,454 1,459
eon kajiya 0 264,948 481,414 equake 0 96,366 99,282
eon rushmeier 0 267,290 477,865 facerec 0 38,454 38,473
gap 0 261,221 641,047 fma3d 0.17 59,124 61,161
gcc 166 1,914 32,440 33,858 galgel 0 272 272
gcc 200 1,977 76,095 78,421 lucas 0 7,790 7,791
gcc expr 2,690 82,366 85,930 mesa 0.20 156,901 215,603
gcc integrate 1,661 49,885 51,459 mgrid 0 158 158
gcc scilab 1,799 65,327 68,907 sixtrack 0 12,374 12,498
gzip graphic 0 64,937 65,012 swim 0 156 156
gzip log 0 25,977 25,996 wupwise 0 31,233 31,233
gzip program 0 30,073 30,164 FP Avg 0.02 29,418 34,372
gzip random 0 59,092 59,098
gzip source 0 33,250 33,278
mcf 0 142,343 144,311
parser 73 194,317 194,340
perlbmk perfect 65 325,465 669,244
twolf 2,559 81,694 83,686
vortex one 0 179,677 180,837
vortex two 0 191,888 192,957
vortex three 0 177,267 178,159
vpr route 6 75,953 76,051
Int Avg 490 125,062 178,180

Table 6.10: Intra-Interval Indirect Branch ITCY Code Overhead Breakdown

Indirect and unconditional branch handling contributes the largest amount of

intra-interval code overhead since these branches occur quite frequently in the inter-

val as was seen in Table 6.9. However, the table only gave information about the

number of branches that were in the interval and not the effects of the code that

handles their proper execution. Table 6.10 shows the breakdown of the intra-interval

indirect branch handling code into the number of store, load, and integer instruc-

tions necessary to implement the techniques discussed in section 4.3.4. The majority

of the benchmarks do not require any stores since stores are only necessary if spe-

cial indirect branch handling is needed that makes use of the current pointer into
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Benchmark Integer Benchmark Integer

bzip2 graphic 194,013 ammp 49,147
bzip2 program 170,784 applu 2,555
bzip2 source 186,062 apsi 25,779
crafty 310,841 art 110 13,087
eon cook 522,282 art 470 4,348
eon kajiya 510,332 equake 283,969
eon rushmeier 541,464 facerec 94,126
gap 130,649 fma3d 206,395
gcc 166 66,976 galgel 716
gcc 200 171,978 lucas 23,369
gcc expr 179,235 mesa 279,431
gcc integrate 110,131 mgrid 309
gcc scilab 148,287 sixtrack 25,990
gzip graphic 194,663 swim 356
gzip log 77,893 wupwise 93,696
gzip program 90,037 FP Avg 73,551
gzip random 177,264
gzip source 99,695
mcf 422,111
parser 631,623
perlbmk perfect 211,040
twolf 245,773
vortex one 600,121
vortex two 625,546
vortex three 596,532
vpr route 233,030
Int Avg 286,475

Table 6.11: Intra-Interval Unconditional Branch ITCY Code Overhead

the IBTT. In addition, benchmarks that have roughly the same number of integer

and load instructions correspond to those indirect branches that do not write the

old return address into a register prior to the execution of the branch. An indirect

branch that stores its return address into a register prior to its execution needs to

make use of a number of integer instructions in order to load the return register with

the expected return address from the old interval. Unconditional branches also must

makes use of integer instructions to store their old return addresses into a register

when necessary. The number of these instructions can be seen in Table 6.11.

On average, indirect branch handling increases the length of an integer benchmark

interval by 3% and a floating point benchmark interval by 0.6%. Unconditional
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branch handling increases the length of an integer benchmark interval by 2.8% and

a floating point benchmark interval by 0.7%. The smaller increase for floating point

benchmarks is likely due to the fact that they traditionally spend a great deal of time

inside of looping code where conditional branches, not indirect branches, control the

flow of the program. In terms of individual dynamic indirect branches, only 2.4 and

2.2 extra instructions are needed to handle the average integer and floating point

indirect branch, respectively. The small number of instructions needed per branch

indicates that the method of loading in the new target PC by using the old target PC

location to hold the address is an effective strategy that leads to a minimal number

of instructions being inserted into the interval code.

System Call Emulation Overhead

System call handling, unlike indirect branch handling, contributes very little to the

intra-interval code overhead. Since Table 6.9 showed an average of only 4.6 syscalls

per benchmark interval, it is expected that there will be little handling code needed.

This is indeed the case as can be seen in Figures 6.8 and 6.9. Several benchmarks

do exhibit a great deal more syscall handling code than the average, however. This

is likely due to an interval containing a large amount of file input which would

result in a substantial amount of checkpointing code being introduced to emulate

the input. This is particularly the case for mcf, twolf, art 110, and fma3d. However,

on average, syscall emulation only increases the length of an integer benchmark

interval by 0.001% and a floating point benchmark interval by 0.03% due to the very

small number of syscalls seen in each interval. In terms of the amount of code needed

per syscall, Table 6.12 shows the average number of instructions needed to emulate

a single syscall for both the integer and floating point benchmarks. Overall, an

average floating point syscall requires more than double the number of instructions
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as an integer syscall. This is consistent with the behaviour seen in section 6.2.2 that

showed floating point benchmarks require much more checkpointing information due

to the nature of the data that they use.
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Figure 6.8: Overhead of ITCY Intra-Interval Syscall Emulation Code: INT benchmarks

Figure 6.9: Overhead of ITCY Intra-Interval Syscall Emulation Code: FP benchmarks
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Benchmark Size Benchmark Size

bzip2 graphic 0 ammp 3,663
bzip2 program 0 applu 18
bzip2 source 0 apsi 0
crafty 11 art 110 15,694
eon cook 0 art 470 0
eon kajiya 11 equake 5,607
eon rushmeier 11 facerec 922
gap 0 fma3d 5,941
gcc 166 54 galgel 0
gcc 200 39 lucas 13
gcc expr 33 mesa 12
gcc integrate 58 mgrid 10
gcc scilab 36 sixtrack 28
gzip graphic 0 swim 11
gzip log 0 wupwise 10
gzip program 0 FP Avg 297
gzip random 0
gzip source 13
mcf 1,754
parser 11
perlbmk perfect 432
twolf 3,310
vortex one 12
vortex two 13
vortex three 0
vpr route 13
Int Avg 120

Table 6.12: Average Syscall Emulation Block Size (in Instructions)

Exit Handling Overhead

Since the current ITCY code experiments use the exit PC counting strategy,

they don’t contribute any intra-interval code overheard. They do contribute a small

amount of pre-interval code, as was described in section 4.3.6. However, once the

interval is entered, the simulator is responsible for tracking the exit PC, counting its

occurrences, and then exiting when the occurrence count reaches the value that was

read at the end of the pre-interval code.
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Figure 6.10: Overhead of ITCY Intra-Interval Code Compared to Simulation Interval: INT

Overall Intra-interval Code Overhead

The overall increase in the number of dynamic instructions in the simulation

interval due to intra-interval code can be seen in Figures 6.10 and 6.11. As expected,

the floating point benchmarks require less code with an average interval size increase

of only 1.4%. The integer benchmarks, however, due to their increased number of

branches require more intra-interval code and their average interval size increases by

roughly 6%.

Intra-interval Instruction Pads

SpecInt Avg SpecFP Avg Spec2K Avg
Required Inst Pads 11,086 3,174 8,191

Table 6.13: Instruction Pads Needed for ITCY Code

A final source of intra-interval code overhead comes from the insertion of static
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Figure 6.11: Overhead of ITCY Intra-Interval Code Compared to Simulation Interval: FP

instruction pads into the ITCY binary based on the methods described in section

4.3.5. These pads separate blocks of code taken from the original benchmark that

were originally not located next to each other in the binary’s address space. Depend-

ing on the dynamic execution of the interval, the blocks that were originally far apart

may end up adjacent to each other when they are inserted into the new ITCY binary

since only executed static instructions are output to the ITCY code. Fortunately,

the code inside of these instruction pads is never executed because it surrounds basic

blocks that transfer control away from a pad prior to reaching it. Table 6.13 lists the

average number of instruction pads needed for the integer, floating point, and overall

SPEC2000 benchmarks. The floating point benchmarks use less than a third of the

number of pads that the integer benchmarks do. Since floating point benchmarks

traditionally consist of a large amount of looping code, their static code footprint

within an interval may be smaller. Thus, they will use less instruction padding to
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separate out basic blocks that do not belong next to each other in the new ITCY

binary. Since Alpha instructions are 4 bytes in length, the insertion of instruction

pads increases an integer benchmark’s size by roughly 44 KB on average and a float-

ing point benchmark’s size by 12 KB on average. Compared to the file size increases

seen in sections 6.1.3 and 6.2.8, these numbers are quite small.

6.2.4 Cache Performance Modeling

Performance modeling using ITCY code, unlike with ICBM, can suffer from the

effects of the intra-interval code insertion. In addition, the relocation of the original

interval into a new location in memory and the use of only those static instructions

that are executed from the original benchmark can also have an effect as was dis-

cussed in sections 4.3.3 and 4.3.5. This section will detail the effects that ITCY code

can have on various microarchitectural metrics, namely cache performance, branch

prediction accuracy, and CPI.

I-Cache Effects

The effects of ITCY code on I-cache performance are expected to be the most

severe due to the usage of only those static instructions seen within the interval for

the new ITCY binary. The previously discussed technique of inserting instruction

pads into the interval to simulate the spacial separation of basic blocks addresses

this problem to a certain extent. However, since the number of misses with respect

to the overall number of I-cache accesses can be very small, extra misses can greatly

effect the relative error rate of the overall miss rate. These effects are reflected in

Tables 6.14 and 6.15 especially for the benchmarks bzip2 source, ammp, facerec, and

wupwise. It should be noted that prior to the addition of instruction pads into the

new ITCY binary, the relative error rates for I-cache misses were orders of magnitude
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greater since nearly all the ITCY instructions fit inside the I-cache. This lead to a

very small number of misses for all benchmarks. Therefore, the instruction pads are

an effective method for ensuring more realistic I-cache performance, however, certain

situations can still result in high relative error rates.
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Benchmark I-Cache Miss Rate Percent
ITCY Baseline Relative Error

bzip2 graphic 0.000 0.000 5.38%
bzip2 program 0.000 0.000 4.38%
bzip2 source 0.000 0.000 595.10%
crafty 0.052 0.051 2.07%
eon cook 0.032 0.031 3.83%
eon kajiya 0.026 0.026 0.03%
eon rushmeier 0.026 0.024 7.51%
gap 0.016 0.018 13.69%
gcc 166 0.008 0.007 10.41%
gcc 200 0.018 0.018 4.83%
gcc expr 0.022 0.020 7.84%
gcc integrate 0.014 0.013 7.90%
gcc scilab 0.024 0.023 5.62%
gzip graphic 0.000 0.000 5.50%
gzip log 0.000 0.000 4.04%
gzip program 0.000 0.000 6.00%
gzip random 0.000 0.000 7.07%
gzip source 0.000 0.000 2.86%
mcf 0.000 0.000 44.01%
parser 0.003 0.005 40.57%
perlbmk perfect 0.002 0.007 67.85%
twolf 0.016 0.017 1.21%
vortex one 0.036 0.026 39.54%
vortex three 0.038 0.026 47.70%
vortex two 0.040 0.032 22.83%
vpr route 0.000 0.000 16.54%
Int Avg 37.47%
Int Avg (w/o bzip2 source) 15.17%

ammp 0.000 0.000 93.65%
applu 0.008 0.008 0.00%
apsi 0.029 0.029 0.31%
art 110 0.000 0.000 0.85%
art 470 0.000 0.000 2.03%
equake 0.001 0.001 18.92%
facerec 0.000 0.000 128.16%
fma3d 0.058 0.059 1.84%
galgel 0.000 0.000 94.84%
lucas 0.000 0.000 4.29%
mesa 0.033 0.024 39.52%
mgrid 0.011 0.007 45.74%
sixtrack 0.008 0.008 7.61%
swim 0.001 0.001 9.02%
wupwise 0.006 0.002 235.48%
FP Avg 45.49%
FP Avg (w/o wupwise) 31.91%

Table 6.14: I-Cache Miss Rate Performance of ITCY Code Compared to Baseline
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Benchmark I-Cache Accesses I-Cache Misses
ITCY Baseline % RelError ITCY Baseline % RelError

bzip2 graphic 16,532,783 16,034,716 3.11% 72 66 8.65%
bzip2 program 18,037,513 17,483,965 3.17% 82 76 7.69%
bzip2 source 19,245,317 18,552,882 3.73% 646 90 621.04%
crafty 16,331,032 15,611,439 4.61% 845,976 792,276 6.78%
eon cook 16,474,037 14,947,079 10.22% 531,829 464,723 14.44%
eon kajiya 21,548,352 19,407,674 11.03% 556,218 501,124 10.99%
eon rushmeier 19,275,712 17,470,313 10.33% 494,885 417,191 18.62%
gap 19,581,036 18,344,298 6.74% 310,545 337,071 7.87%
gcc 166 11,745,036 11,564,597 1.56% 97,220 86,698 12.14%
gcc 200 15,280,134 14,627,103 4.46% 280,535 256,162 9.52%
gcc expr 14,424,118 13,993,886 3.07% 317,697 285,809 11.16%
gcc integrate 13,047,768 12,708,024 2.67% 178,855 161,446 10.78%
gcc scilab 15,207,028 14,581,659 4.29% 364,922 331,284 10.15%
gzip graphic 19,058,912 18,297,197 4.16% 514 468 9.89%
gzip log 16,277,334 16,379,361 0.62% 325 341 4.64%
gzip program 18,658,446 18,856,409 1.05% 276 263 4.89%
gzip random 17,175,312 16,407,557 4.68% 348 311 12.08%
gzip source 18,579,310 18,780,793 1.07% 282 277 1.75%
mcf 22,246,846 21,082,706 5.52% 6,547 4,308 51.96%
parser 20,064,486 18,469,452 8.64% 54,547 84,486 35.44%
perlbmk perfect 26,856,371 19,394,387 38.47% 59,604 133,878 55.48%
twolf 20,280,900 19,089,435 6.24% 334,014 318,254 4.95%
vortex one 11,755,339 10,650,926 10.37% 427,240 277,404 54.01%
vortex two 12,075,299 10,861,731 11.17% 481,056 352,279 36.56%
vortex three 11,763,010 10,636,655 10.59% 450,550 275,827 63.35%
vpr route 15,518,110 14,980,535 3.59% 4,349 3,602 20.72%
Int Avg 6.74% 42.52%

ammp 12,753,883 12,717,078 0.29% 376 5,903 93.63%
applu 11,106,712 11,106,088 0.01% 93,745 93,735 0.01%
apsi 10,615,232 10,567,809 0.45% 307,664 307,252 0.13%
art 110 11,962,854 12,017,730 0.46% 378 377 0.39%
art 470 12,058,421 12,065,938 0.06% 410 402 1.97%
equake 10,829,118 10,352,651 4.60% 11,402 9,166 24.40%
facerec 11,144,164 10,969,937 1.59% 5,471 2,360 131.78%
fma3d 11,345,901 11,040,351 2.77% 654,297 648,601 0.88%
galgel 10,147,794 10,146,161 0.02% 437 224 94.87%
lucas 10,013,683 10,003,102 0.11% 51 49 4.40%
mesa 12,815,195 11,895,370 7.73% 422,364 280,994 50.31%
mgrid 14,946,643 14,604,747 2.34% 158,158 106,040 49.15%
sixtrack 10,412,433 10,391,348 0.20% 78,190 84,458 7.42%
swim 11,030,151 11,027,323 0.03% 7,889 8,669 9.00%
wupwise 10,885,351 11,081,405 1.77% 67,315 20,426 229.55%
FP Avg 1.49% 46.53%

Table 6.15: I-Cache Accesses and Misses of ITCY Code Compared to Baseline
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D-Cache Effects

D-cache effects are much smaller than those seen with the I-cache. Since the

same memory locations will be accessed at roughly the same points in time as the

original interval, the D-cache performance will only be affected by those intra-interval

instructions that access memory. The majority of these instructions do not do so,

however, the instructions that are inserted to handle indirect branch targets access

the original interval’s address space in order to load in the new targets. Since these

accesses are to locations in memory that were never used in the initial binary except

to store the program code, they will effect the D-cache performance of the ITCY

code. As can be seen in Figures 6.12 and 6.13, their effects are minimal in most

situations. For those situations were there is a high relative error for the D-cache

miss rate, this is attributable, based on the results seen in Table 6.10, to the increased

number of indirect branch handling instructions from the intra-interval code. The

integer benchmarks, especially eon and perlbmk, clearly show this sensitivity to the

number of inserted instructions.
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Figure 6.12: L1 D-Cache Miss Rate of ITCY Code - Integer Benchmarks

Figure 6.13: L1 D-Cache Miss Rate of ITCY Code - Floating Point Benchmarks
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L2 Cache Effects

The effects of the ITCY code on the L2-cache can be seen in Figures 6.14 and

6.15. The effects on the integer benchmarks, with the exception of perlbmk, are

quite small. Incidentally, if perlbmk were removed from the average, the average

relative error for the L2-cache performance on the integer benchmarks would drop

from 16.7% to 6%. The poor relative error rate for perlbmk is attributable to the

combination of the ITCY code’s effects on both the I-cache and the D-cache where

perlbmk performs quite poorly for both. The floating point benchmarks, again with

a few exceptions, also show a low average relative error, however, it is greater than its

average error for D-cache performance. This is due to the effects of its high average

error rate with respect to the I-cache.
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Figure 6.14: L2 Cache Miss Rate of ITCY Code - Integer Benchmarks

Figure 6.15: L2 Cache Miss Rate of ITCY Code - Floating Point Benchmarks
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6.2.5 Branch Prediction Performance Modeling

Unlike the effects on cache performance, branch prediction performance for ITCY

benchmarks remains nearly unchanged. This is due to the fact that all branches

are guaranteed to follow their prescribed paths from the original interval since the

register values used for conditional branching are the same. In addition, the proper

performance of various branch prediction structures such as the Return Address Stack

is ensured by outputting all the original branch assembly opcodes and not replacing

them with different opcodes. Figures 6.16 through 6.19 show that, for both the

direction and the address prediction rates, there is a change of less than a 1% for all

benchmarks and 0.2% on average. This indicates that the branch prediction behavior

of the ITCY code is nearly identical to that of the original interval.
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Figure 6.16: Branch Direction Prediction Rate of ITCY Code - Integer Benchmarks

Figure 6.17: Branch Direction Prediction Rate of ITCY Code - Floating Point Benchmarks
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Figure 6.18: Branch Address Prediction Rate of ITCY Code - Integer Benchmarks

Figure 6.19: Branch Address Prediction Rate of ITCY Code - Floating Point Benchmarks



100

6.2.6 CPI and IPC Performance Modeling

The next measurement of the ITCY methods’s ability to model the performance

of the original benchmark is done by quantifying its effects on CPI. Since CPI is

affected by many different microarchitectural elements, the accuracy of its predic-

tion serves as a good indicator of whether the ITCY method is a useful tool for

predicting the performance of a system. From the different studies done above, it

is expected that the effects of the D-cache will have the most significant impact on

the performance estimates of CPI since the branch prediction was nearly unchanged

and the I-cache performance did not include enough misses to dramatically affect

the overall performance of the system. Other factors that can contribute to the per-

formance of the system such as functional unit usage, should remain unchanged due

to the fact that the vast majority of the instructions that comprise ITCY code are

those that originate from the initial interval. Figures 6.20 and 6.21 confirm these

expectations and show that the average CPI for all benchmarks is within 5% relative

error. The integer benchmarks do show a slightly increased relative error and this is

more that likely attributable to their increase relative error with respect to D-cache

performance.
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Figure 6.20: CPI of ITCY Code - Integer Benchmarks

Figure 6.21: CPI of ITCY Code - Floating Point Benchmarks
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A final measurement of the effects of ITCY code is done on by comparing against

the IPC of a full detailed simulation of the SPEC2000 benchmarks. The IPC results

were taken from the SimPoint website and were done using the exact same baseline

configuration. Based on the results in figures 6.22 and 6.23, it is clear that the ITCY

code still has a reasonable average error rate with respect to the IPC of a full detailed

simulation. The integer benchmarks are within 7.5% average relative error and the

floating point benchmarks within 6%.
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Figure 6.22: IPC of ITCY Code Compared to Detailed Simulation - Integer Benchmarks

Figure 6.23: IPC of ITCY Code Compared to Detailed Simulation - Floating Point Benchmarks
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6.2.7 Tracking Design Changes

Although the ITCY technique does have the ability to predict performance quite

well on average, it did not predict the CPI for several benchmarks very well. For

those benchmarks where ITCY fails to properly predict absolute performance, it

can still prove useful when predicting the change in performance when a change is

made to the underlying microarchitecture. For instance, if the user wanted to see

the effects on performance of increasing the size of the I-cache, the relative change

in performance from the original configuration to the new configuration is a more

important metric than the absolute performance accuracy. If the original benchmark

showed a decrease in CPI of a certain value and the ITCY benchmark showed roughly

the same change, even though the ITCY binary did not predict the same absolute

performance, the results will still be useful. This type of change tracking study

was done in [10] and showed that while a technique may not predict the absolute

performance of a benchmark properly, it can still be effective when used to measure

the effects of changing an underlying microarchitectural component.

To test the usefulness of using ITCY binaries to do change tracking analysis,

the two worst performing benchmarks were selected from both the integer and the

floating point benchmarks. Changes were then made to the cache sizes and pipeline

widths of the baseline configuration to measure the relative change in CPI. Both

the I-cache and the D-cache had their sizes increased and decreased by a factor of

two and the issue/commit/decode (ICD) widths of the pipeline were also increased

and decreased by two. As Figure 6.24 shows, the ITCY binaries were able to track

the change in performance even though they did not accurately predict the absolute

performance. In fact, mesa, which showed a 26% relative error when predicting CPI

in section 6.2.6, was still able to effectively predict the change in CPI when the
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various design changes were made. Therefore, even though some ITCY binaries may

not be useful for predicting the absolute performance of every benchmark, they are

still able to predict the change in performance when a modification is made to the

overall design.

Figure 6.24: Tracking Design Changes using Delta CPI - ITCY versus Baseline

6.2.8 Effects on File Size

The increase in the file size when a benchmark interval has been converted into

ITCY code can vary greatly based upon the size of the interval chosen, the amount

of intrinsic checkpointing code needed, and the amount of code that must be inserted

into the interval. Unlike binaries produced using the ICBM method, ITCY code has

the potential to be smaller in size if the interval chosen is small and does not require a

significant amount of checkpointing. However, if larger intervals are chosen, then the

file size will eventually become greater than ICBM code due to the increased amounts
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of intra-interval code necessary. Since the intervals for the ITCY study contain only

10 million instructions and those for the ICBM study contain 100 million, the average

SuiteSpeck is expected to be smaller than the average ICBM benchmark. This is

the case in both Figures 6.25 and 6.26. Alternatively, if you include the file size for

all 30 intervals, the ITCY code is larger than the ICBM code as in Figure 6.27 and

6.28. For the floating point benchmarks, this is more apparent than for the integer

benchmarks. However, since the ITCY code for each benchmark actually consists

of 300 million instructions, a proper comparison with ICBM should divide the sum

of the 30 intervals by three to get a rough comparison of the amount of ITCY code

needed for a 100 million instruction interval. For the integer benchmarks, this results

in roughly a 15 MB ITCY file compared to an 8 MB ICBM file and for the floating

point benchmarks a 93 MB ITCY file compared to a 27 MB ICBM file. A final

summation of all the ITCY benchmarks is shown in Figure 6.29 indicating that a

full set of replacement binaries for the SPEC2000 benchmarking suite would require

5.3 GB of storage.
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Figure 6.25: File Size of ITCY Code (per Interval Average) - Integer Benchmarks

Figure 6.26: File Size of ITCY Code (per Interval Average) - Floating Point Benchmarks
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Figure 6.27: File Size of ITCY Code (all Intervals Totaled) - Integer Benchmarks

Figure 6.28: File Size of ITCY Code (all Intervals Totaled) - Floating Point Benchmarks
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Figure 6.29: File Size of ITCY Code - All Benchmarks Totaled

6.2.9 Simulation Speedup

To measure the speedup in simulation time of the ITCY code compared to the

original benchmark, an analysis was done similar to that done in section 6.5 for the

ICBM code. However, since each benchmark of the ITCY code is broken into 30

pieces, the results are presented not only for the situation when the intervals would

be executed serially for each benchmark in Figure 6.30, but also if they were all done

in parallel in Figure 6.31. The serial case provides a rough estimate for how long a

SuiteSpot would take to complete since it would essentially be executing the same

amount of code as the 30 SuiteSpecks. From the results, it can be seen that there

is an incredible amount of speedup achievable when using ITCY code. The serial

speedup is nearly identical to the ICBM speedup at 60x since both are executing

roughly the same number of instructions. The greatest speedup can be seen in the
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parallel speedup with an average of nearly 1000x speedup for the entire SPEC2000

suite and a maximum speedup of over 5500x for sixtrack. It should be noted that

the parallel speedup is not simply 30 times faster than the serial speedup since some

intervals take longer to run than other. However, a parallel speedup of 1000x clearly

shows the potential of using ITCY code to rapidly and efficiently simulate the entire

SPEC2000 benchmarking suite. One final important note to remember is that the

speedup numbers presented here are with respect to fast-forwarding to the simulation

interval. If the execution times of the ITCY code were compared to a full detailed

simulation of each benchmark, the speedup would be orders of magnitude greater.
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Figure 6.30: Speedup of ITCY Code Executed Serially

Figure 6.31: Speedup of ITCY Code Executed in Parallel
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6.3 Discussion

The results presented in this chapter have shown the great potential of the ICBM

and ITCY techniques for dramatically reducing the simulation time of future de-

signs while still maintaining a high degree of accuracy. However, there are several

trade-offs and differences between the two techniques, and other current simulation

time reduction methods, that need to be discussed. To aid in the discussion, Table

6.16 adds the ICBM and ITCY techniques to Table 2.2 that was seen in section 2.6.

It should be noted that the CPI prediction accuracy is with respect to full detailed

simulation and not the simulation intervals used to generate the ICBM and ITCY

binaries. Since these binaries use a simulation interval selection technique that pro-

duces its own share of relative error, their performance prediction accuracy is partly

due to the selection technique used.

One major difference between the two techniques is with respect to the accuracy

of their results. Since the ICBM technique uses the original binary to execute the

chosen interval, the interval’s execution profile will be exactly the same as when it

was first run from within the original binary. Unfortunately, this binary reuse does

not allow the ICBM technique to easily incorporate multiple intervals of instructions

without requiring the creation of multiple new benchmarks. The only way to increase

the prediction accuracy is to create more ICBM binaries to represent more intervals

of execution. The ITCY technique, however, relocates the static instructions from

the original binary into a new location in memory and then creates an entirely

new binary by recompiling the interval code along with its intrinsic checkpointing

and special control code. This allows the ITCY technique to, among other things,

combine multiple simulation intervals into a single benchmark and remove syscall
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Execution CPI Representa- Micro- Storage Flexi-
Technique Time per Prediction tiveness architecture Req’s bility

B-mark Accuracy Dependent

B-mark Suite
Reduction Variable Variable Low No N/A High
[24]
Statistical approx.
(Trace) 1000x 2.3% Low Yes negligible Low
[18] speedup
Statistical approx.
(Testcase) 1000x 2.4% Low Yes negligible High
[10] speedup
SMARTS [47] 5 hrs 0.64% High No N/A Medium
SimPoint [41] 2.8 hrs 3.7% High No N/A Medium
SimPoint 14 mins 4 GB
Startup [43] (serial) 1.2% High Yes for 20 Low

1 min SPEC2K
(parallel) b-marks

LivePoints 12 GB
[45] 91 secs 1.6% High Yes compressed Low

all SPEC2K
b-marks

ICBM 365 MB
(Single, 3 mins 2.12% High No for 19 Medium
100M inst SPEC2K
interval) b-marks
ITCY 16 mins 5.3 GB
(Thirty, (serial) 7% High No for all High
10M inst 32 secs SPEC2K
intervals) (parallel) b-marks

Table 6.16: Comparing ICBM and ITCY to Several Popular Simulation Time Reduction Techniques

calls from the code. While this affords a great deal of flexibility when creating multi-

purpose benchmarks, the relocation of the interval instructions and the insertion

of control code can adversely affect certain performance metrics of the new binary.

Benchmarks that contain a great deal of indirect and unconditional branching can

require large amounts of extra code to ensure their proper execution and the effects of

this additional code can affect the accuracy of the new binary’s results. In addition,

benchmarks that have a very low I-cache miss rate can result in inaccurate results

when only a few additional I-cache misses are introduced into the simulation. Many

of these inaccuracies can be addressed by a judicious selection of instruction intervals
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that limits the occurrence of these situations. However, if the interval selection is

unavoidable or the accuracy of the new binary is the most important feature required,

then the ICBM technique will need to be used.

Another difference between the proposed techniques and other simulation time re-

duction techniques pertains to their dependence on an underlying microarchitecture.

Other checkpointing techniques, in order to refresh the microarchitectural state of

the system, must store multiple sets of data that can be applied to a variety of differ-

ent target microarchitectures. This can lead to a large amount of data being stored

for each benchmark. The ICBM and ITCY techniques, however, require no such

storage of microarchitectural information and simply require the execution of some

pre-interval, warmup code identified using a reuse latency technique such as BLRL.

In addition, since this extra information does not need to be stored, the resultant size

of an ICBM or ITYC benchmarking set can be smaller. For example, a live-points

library [45] for the SPEC2000 benchmarking suite requires 12 GB of storage whereas

the ITCY technique requires only 5.3 GB. The live-points technique does produce a

smaller average error rate, however, as was previously mentioned, the ICBM tech-

nique can be used if accuracy is most important. In addition, the live-points method

requires simulator support to load in the checkpointing and warmup data thereby

limiting its flexibility, whereas the ICBM and ITCY techniques do not.



CHAPTER VII

Conclusion

7.1 Thesis Summary

This dissertation presents two techniques that dramatically reduce the simulation

time of a benchmarking program by allowing the rapid execution of only represen-

tative portions of code. Both techniques create highly portable benchmarks that

can be moved between many different simulation environments. The first technique,

Intrinsic Checkpointing through Binary Modification (ICBM), augments a bench-

marking program by directly inserting checkpointing code into the binary. The new

program does not need to be recompiled and is able to rapidly execute a fragment

of the original program without requiring any special checkpointing or rapid simu-

lation support on the part of the simulation environment. The second technique,

InTrinsically Checkpointed assemblY (ITCY), also inserts checkpointing code into

a benchmark. Unlike ICBM, the ITCY technique creates an entirely new assem-

bly program comprised of the static instructions from one, or many, locations from

within the original benchmark. The ITCY methods also remove system calls from

the original program and convert their effects into emulation code that are inserted

into the assembly of the new benchmark. A method is also proposed that allows

for the combining of multiple ITCY code segments into a single benchmark. This

115
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flexibility provides the framework for third parties to create microbenchmarks from

their own internal benchmark sources. These microbenchmarks can then be released

to the public without the concern of releasing any proprietary information since this

sensitive information is effectively hidden inside the ITCY code. The end result of

both techniques is the creation of a set of programs that facilitate the fast, efficient,

and representative benchmarking of future designs without the need for a complex

simulation environment.

7.2 Future Directions

There are many different directions that the techniques in this dissertation can

explore. Some of them are detailed below:

• Emerging Workloads : The applications focused on in this dissertation were those

typically found in a standard computing environment. However, many differ-

ent benchmarking suites exist for a variety of different and unique computing

applications. Database workloads, online transactions, and JAVA applications

are a few of the many different types of benchmarking applications that could

be used in conjunction with the proposed techniques. Further study is needed

to decide which suites would benefit more than others.

• Embedded Applications : Embedded applications often suffer from a limited

amount of memory and running useful benchmarks can often be a problem. The

techniques in the dissertation could be applied to large benchmarking workloads

to create applications that would be easier to use with an embedded device and

would allow the rapid simulation of complex benchmarks in a fraction of the

time. In addition, the lack of a need for system call handling could be used to

an advantage if the embedded device did not have such functionality.



117

• Multiprocessor Workloads: Multiprocessor workloads and designs are quickly

becoming a part of the mainstream. However, little work has been done to

move simulation time reduction techniques over to the multiprocessor domain.

While it may be difficult to intrinsically checkpoint per-processor architectural

features, it would be possible to easily checkpoint the main memory of a multi-

processor system using the proposed techniques. If the simulator had the ability

to interpret processor-specific signal instructions and only update certain pro-

cessors with data contained within a piece of ITCY code, then this could be

used to update the state of individual processors as well.

• SuiteMarks : As was previously discussed, ITCY code has the ability to com-

bine multiple intervals of code from different benchmarking applications into a

new, single benchmark. The basic technique was used on intervals within the

same benchmark to create SuiteSpots, however, it was not used with intervals

from different benchmarks altogether. This method, if used properly, could po-

tentially create individual benchmarks meant to represent the execution of an

entire benchmarking suite. This is particularly the case for benchmarking suites

that represent a large amount of redundant information. These “SuiteMarks”

could then be gathered together to create one large repository of benchmarking

suites that could rapidly and accurately simulate a vast quantity of benchmarks

in a very short period of time.

• ArchMarks: A final area of future work could leverage the ability of the ITCY

technique to pull out specific pieces of assembly code from a given benchmark

and create new benchmarks that are meant to stress particular parts of an

underlying architecture. For example, intervals of code that stress a certain
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part of the pipeline could be isolated and re-compiled into a benchmark that

would focus only on that part of the architecture. Alternatively, benchmarks

could be created that execute a specific region of code that uses a greater than

normal amount of power and then the design could focus on reducing the power

usage of the processor with the benchmark representing a worst case scenario.
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