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ABSTRACT

Phenomenology of Hidden Sector Physics

by

Yanou Cui

Chair: James D. Wells

The existence of a hidden sector, composed of Standard Model (SM) singlets and

the interactions between them, is well-motivated by many beyond-the-SM theories,

such as GUT theories, string-inspired models and supersymmetry-breaking models.

In addition to sharing weak gravity-induced interactions with the visible sector, such

SM singlets can couple to the SM fields in various other ways. One well motivated

hidden sector scenario is that associated with a beyond-the-SM gauge symmetry

which is broken via the Higgs mechanism. Although the collider phenomenology of

such models is rich and well-documented, few obvious cosmological signatures for

them are known. The physics of cosmic strings provides a promising cosmological

probe of such hidden sectors, applicable for a general class of symmetry breaking

patterns in the hidden sector. This thesis discusses the phenomenology of hidden

sectors, including LHC signatures of a hidden sector Higgs boson, the physics of

cosmic strings from supersymmetric flat-directions, and dark matter production from

a general cosmic string network. We conclude that there are viable prospects for

seeing signals of a hidden sector both at the LHC and in cosmological observations.

xii



CHAPTER 1

Motivation for Hidden Sector

1.1 What is Hidden Sector? Why do we care about it?

The Standard Model (SM), as the benchmark theory for particle physics, has given

a precise description for the interactions and matter content of the visible world, based

on the gauge symmetry group GSM = SU(3)C × SU(2)L × U(1)Y and the breaking

of the electro-weak subgroup through the Higgs mechanism. However, the SM has

received challenges both from experimental observations (e.g. lack of prediction of

tiny neutrino mass, dark matter, etc.), as well as the criteria for a self-consistent,

‘ultimate’ theory. In this introduction I am going to focus on the theoretical chal-

lenges for the SM, and demonstrate how the efforts to solve these problems motivate

a hidden sector (in addition to the SM—-the visible sector). Before moving on, let

us provide a concrete definition of hidden sector first. A hidden sector consists of

singlets under GSM, i.e. fields that do not feel the strong and electro-weak forces that

the fields of the SM do. Therefore, we cannot easily ‘visualize’ them, i.e. see their

influence on visible sector via interactions mediated by the SM gauge bosons. This

is why they are called ‘hidden’.

In this sense, the hidden sector appears to be almost irrelevant to our visible world.

However, this is a naive impression. The majority of this thesis will demonstrate how

hidden sector can influence the phenomenology of the visible sector in nontrivial

1
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ways, and how they can produce interesting signatures at collider experiments and

for cosmology1. As a quick preview, here are three examples as to why a hidden

sector can be nontrivial:

1. The hidden sector itself can have rich structure of physics, e.g. global or gauge

symmetries Ghid, as an extension of the symmetries we have seen in the SM.

2. The hidden sector can interact with the visible sector in more significant ways

than the pessimistically weak gravitational effect. For example, it can interact

with the SM through loop effects or non-renormalizable interactions mediated

by some messenger sector field with charges under both GSM and Ghid. Most

interestingly, there can be renormalizable tree-level coupling between the two

sectors through U(1) kinetic mixing if the hidden sector possesses a U(1)′ gauge

symmetry, or through Higgs mixing terms like |ΦSM|2|Φhid|2 if the hidden sector

has a broken gauge symmetry (either Abelian or non-abelian). In Chapter 2 I

will talk about my work on the effect of this quartic Higgs mixing.

3. One very interesting possibility is, although hidden sector fields are singlets

under the GSM, SM fields may be charged under Ghid. This means, there can

be some ‘fifth’ force acting on the visible world which we are familiar with. We

will see some examples of this in section 2.1, where we discuss the Z ′ gauge

boson coupling to SM fields via neutral currents or covariant derivative inter-

actions. The reason we have not seen the effects of this force can be: the force

is very short-ranged, or equivalently the gauge boson mediating this force is

1Here it is worth clarifying that, in some earlier references, hidden sector can be referred to SM

singlets that only talk with the SM fields through very weak gravitational effects. In this sense,

the sector is almost irrelevant for low energy experiments and are truly ‘hidden’. However, as will

be demonstrated in this thesis, SM singlets are in fact very interesting as they can have various

non-gravitational channels to influence the SM phenomenology.
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rather heavy, so that we have not found such resonance at previous collider

experiments—but we may expect to detect it in the LHC era.

Let us now return to the practical motivation for hidden sector from theoretical

concerns. A big dream of theorists is to find a unified description for the four known

fundamental interactions in nature: the weak and electromagnetic forces (already

unified at the weak scale) and the strong (color) strong forces of the SM, and gravity

which is well described by general relativity. Grand Unified Theories (GUTs) have

been trying to embed the GSM into a single, larger, simple Lie group, or to unify the

the three non-gravitational forces. These theories typically introduce extended gauge

structure, including SM singlets charged under some additional gauge group–this is

a type of hidden sector. To be more ambitious, people have been searching for a

framework to give a unified description for all the SM forces and gravity. One of

the most promising frameworks at present is superstring theory. It has been found

that many string models which successfully include the SM at low scale also bring

in a set of particles which are singlets under GSM but transform non-trivially under

additional ‘shadow’ sector group[4]– this is again a good motivation for a hidden sec-

tor. A more detailed explanation for the generality of hidden sectors in GUT/string

inspired models will be given in section 1.2.

Another significant barrier for a self-consistent understanding of both electro-

weak scale physics and gravity is the gauge hierarchy problem, i.e. why there is such

a big hierarchy between the weak scale ∼ 100GeV and the reduced Planck scale

Mp = (8πGNewton)
−1/2 = 2.4 × 1018GeV, where the quantum gravitational effects be-

come non-negligible. The gauge hierarchy problem is always accompanied by another

technical hierarchy problem, i.e. how to stabilize the hierarchy between the weak scale

and Planck scale–this is especially relevant in theories involving a Higgs-like field or
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fields, where in the absence of fine-tuning, quantum corrections will drive the Higgs

mass up to Planck scale, even if a weak scale mass is generated at tree level. Various

approaches in the spirit of dynamical symmetry breaking can solve the two related

hierarchy problems simultaneously; these typically involve extended gauge structure

and SM singlets–hidden sector, e.g. technicolor models, little Higgs models, etc. For

alternative theories which involve a perturbative Higgs, like supersymmetry (SUSY)

models, at first sight there seems to be no motivation for extended gauge structure.

However, SUSY itself only solves the technical hierarchy problem by introducing

SUSY partners of SM fields to cancel quadratic divergence to the Higgs mass. But

in order to provide a natural explanation for why the electroweak (EW) or (related)

SUSY breaking scale is much lower than Mp, or to solve the gauge hierarchy problem,

a hidden sector which breaks SUSY dynamically and transfers the effect to the SM

via certain messengers is necessary. Further explanation on this point will be given

in section 1.2.1.

1.2 Examples for Hidden Sector Motivation

By now we have seen how generically the need for a hidden sector arises in various

extensions of the SM. As outlined earlier, in this section, I will briefly review some

more concrete examples of this general phenomenon.

1.2.1 The Need for a hidden Supersymmetry-Breaking Sector

Let’s start with a general, renormalizable, supersymmetric, gauge invariant theory

and motivate a hidden sector as needed for generating a SUSY-breaking mass spec-

trum which is consistent with experimental observations. We assume the matter fields

are in the chiral superfield representation of supersymmetry algebra (i labels different

species)

Φi = φi(x) +
√

2θψi(x) + θθFi(x) (1.1)
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and the gauge fields are in the vector superfield representation. In Wess-Zumino

gauge:

V =
[

−θσµθ̄Aa
µ(x) − iθ̄θ̄θλa(x) + iθθθ̄λ̄a(x) +

1

2
θθθ̄θ̄(Da(x) + i∂µA

aµ(x))
]

T a (1.2)

where the component fields φ, ψ, Aµ and λ are scalar, matter fermion, gauge boson

and gaugino respectively. F and D fields are auxiliary fields necessary to ensure

off-shell closure of supersymmetry transformations. T a are the generators for the

non-abelian gauge group (for the abelian case, T a is replaced by the hypercharge

Y/2).

We can thereby write down the supersymmetric gauge-invariant Lagrangian as:

L =
1

16κg2
Tr
(∫

dθ2WαWα + h.c.
)

+
∫

dθ4Φ+
i e

2gV Φi +
(∫

dθ2W (Φi) + h.c.
)

= −1

4
F a

µνF
aµν − iλ†aσ̄µDµλ

a −Dµφ∗iDµφi − iψ†iσ̄µDµψi −
√

2g(φ∗
iT

aψi)λ
a

−
√

2gλ†a(ψ†T aφ) − 1

2

(

W ijψiψj +W ∗
ijψ

†iψ†j
)

−W ∗
i W

i − 1

2

∑

a

g2(φ∗
iT

aφi)
2

where g is the gauge coupling. Dµ is gauge covariant derivative. TrT aT b = κδab

defines the Dynkin index κ. Wα = D̄D̄e−2gVDαe
2gV is the SUSY generalization of

the field strength, with D̄α, Dα as the supersymmetric covariant derivative2. W is

a general superpotential, W i = −F ∗
i

δW
δφi

, W ij = δ2

δφiδφj
W . As we will see soon, from

non-kinetic terms in eq.(1.3) we can extract the tree-level mass matrices for compo-

nent fields after SUSY breaking .

In order to get close to the observed phenomenology, we need to move on and see

how supersymmetry is broken spontaneously and what the resulting mass spectrum

looks like. We first need to briefly review the standard lore about vacuum structure

for global SUSY theory.

2For more details of the conventions used here, please refer to [1, 184]
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Let Qα, Q
†
α̇ be supersymmetry generators, and |0〉 indicates the vacuum state.

When supersymmmetry is broken, |0〉 is not invariant under SUSY transformation,

i.e. Qα 6= 0 and Q†
α̇ 6= 0. For global SUSY, due to the SUSY algebra relation

{Qα, Q
†
β̇
} = 2σµ

αβ̇
Pµ, the Hamiltonian is directly related to the SUSY generators as:

H = P 0 =
1

4
(Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2)

Based on the above relation, we find that the vacuum energy in SUSY breaking phase

must be positive since

〈0|H|0〉 =
1

4

(

‖Q†
1|0〉‖2 + ‖Q1|0〉‖2 + ‖Q†

2|0〉‖2 + ‖Q2|0〉‖2
)

> 0 (1.3)

When spacetime-dependent effects and fermion condensates are neglected, 〈0|H|0〉 =

〈0|V |0〉 where V is the scalar potential which can be easily extracted from eq.(1.3):

V (φ, φ∗) = F ∗iFi +
1

2

∑

a

DaDa = W ∗
i W

i +
1

2

∑

a

g2(φ∗
iT

aφi)
2 (1.4)

We therefore see that in order to spontaneously break supersymmetry, Fi and/or Da,

or more explicitly, 〈φ〉, 〈W i〉 etc. should be non-vanishing in the ground state. Now

based on eq.(1.3) we are ready to write down the squared mass matrices for scalar,

fermion and vector component fields:

Scalar in the (φ∗i, φi) basis:

m2
S =









W ∗
ijW

ik + g2[(T aφ)j(φ
∗T a)i + T ai

j D
a] W ∗

ijkW
k + g2(T aφ)i(φ

∗T a)j

W ijkW ∗
k + g2(T aφ)i(φ∗T a)j W ∗

ikW
jk + g2[(T aφ)i(φ

∗T a)j + T aj
i Da]









(1.5)

Fermion in (λa, ψi) basis:

m†
FmF =









2g2(φ∗T a)i(T
bφ)i

√
2g(T bφ)kW

ik

√
2g(φ∗T a)kW

∗
ik W ∗

jkW
ik + 2g2(T aφ)i(φ

∗T a)i









(1.6)

vector boson in (Aa, Ab) basis:

m2
V = g2(φ∗

i {T a, T b}φi) (1.7)



7

From eqs. (1.5-1.7), we get the sum over the squared-mass eigenvalues respectively

as:

Tr(m2
S) = 2W ∗

ikW
ik + 2g2[C(i)φ∗iφi + Tr(T a)Da] (1.8)

Tr(m†
FmF ) = W ∗

ikW
ik + 4g2C(i)φ∗iφi (1.9)

Tr(m2
V ) = 2g2C(i)φ∗iφi (1.10)

where Ci are quadratic Casimir gauge group invariant of matter specie i. Now we come

to an important relation. The supertrace of the tree-level squared-mass eigenvalues

defined as a weighted sum over all particles with spin j

STr(m2) ≡
∑

j

(−1)j(2j + 1)Tr(m2
j) (1.11)

satisfying the sum rule

STr(m2) = Tr(m2
S) − 2Tr(m†

FmF ) + 3Tr(m2
V ) = 2g2Tr(T a)Da = 0 (1.12)

The last equality is valid for any non-anomalous gauge symmetry.

When applied to phenomenological models like minimal supersymmetric standard

model (MSSM) (where three different gauge groups are involved), the tree-level sum

rule eq.(1.12) has an important implication. Without flavor mixing3, the sum rule

for a certain superpartner pair decouples from others, and we have, for example

m2
ẽ1

+m2
ẽ2

= 2m2
e (1.13)

This conflicts with the fact that the experimental bound has pushed the selectron

masses to be much larger than electron mass. In fact, besides the lesson from the

sum rules, another reason that vetoes generating MSSM soft masses at tree level is:

3The sum rules can be evaded by introducing flavor-violating mixings, but it is very difficult

to make a viable model in this way, since it typically results in large flavor-changing effect above

experimental bounds.
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in general it is hard to give masses to gauginos. This is easy to see if we look at

eq.(1.3)–there is no (scalar)-(gaugino)-(gaugino) couplings that can generate gaugino

mass.

Based on the above reasons, we expect that the MSSM soft terms arise from non-

renormalizable coupling or loop effects, rather than from tree-level renormalizable

couplings to SUSY-breaking order parameters (F , D). Therefore a viable realistic

model in general requires a hidden sector with no or very small direct couplings

to the visible sector as in the MSSM. SUSY breaking evidently occurs in such a

hidden sector, and then transfers the effects to visible sector mediated by the shared

interaction between these two sectors (such shared interaction can be gravitational or

a gauge interaction). By now it is clear how generically a hidden sector is motivated

by realistic SUSY breaking models.

1.2.2 The Need for hidden sector from GUT/String-Inspired Models

Now let’s start a brief look at how hidden sector, especially extended gauge structure

is motivated by GUT/string models. The focus will be additional U(1)′ gauge sym-

metry since it is probably the best motivated one.

For GUT models, one general reason for getting additional U(1)′ after symmetry

breaking is due to the fact that it is more difficult to reduce the rank of the GUT group

(i.e. to break the abelian generators) than it is to break the non-abelian factors[3].

Take a gauge group G = SU(N) as a toy example. It has rank N − 1, i.e. N − 1

diagonal generators, among the total N 2−1 generators. One way to break G is to give

a non-zero vacuum expectation value (VEV) to a real adjoint Higgs representation

Φ, which can be represented by a traceless Hermitian N ×N matrix

Φ =
N2−1
∑

i=1

φiLi (1.14)
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where φi are real components of Φ and Li are the N ×N fundamental representation

matrices. When Φ acquires a VEV 〈Φ〉, the SU(N) is broken to a subgroup generated

by those generators that commutes with Φ. Without loss of generality, 〈Φ〉 can be

diagonalized by an SU(N) transformation, so that the N − 1 diagonal generators

remain unbroken, and therefore a U(1)N survives. In special cases when K (K < N)

diagonal elements of 〈Φ〉 are equal, some of the unbroken generators can be embedded

in unbroken SU(K) subgroups. But the subgroups always contains at least U(1)N .

In practice, in GUT theories larger than original SU(5) model, such as SO(10) or E6

models, they could break to GSM × U(1)′n, n ≥ 1 [3].

String models which attempt to reproduce the 4-dimensional SM after compactifi-

cation also motivate extended gauge structures. For heterotic string models based on

the E8 ×E8 or SO(32) group at string scale, the story is similar to that of the GUT

theories, since they need to break those larger groups to GSM after compactification.

E8 × E8 is in particular interesting, since it is natural to embed GSM into one of the

E8, while reserving the second E8 as a ‘hidden sector’ which may serve as the SUSY

breaking sector required by phenomenology (referred to the earlier discussion in sec-

tion 1.2.1). In another recently developed class of string models based on intersecting

D-branes, there are two reasons to introduce ‘hidden’ sector. First, a stack of N D-

branes on top of each other initially realizes a U(N) gauge symmetry, which needs to

be reduced to SU(N) to reproduce the gauge groups for the SM. This process results

in an extra U(1) in addition to the desired SU(N). The second motivation for hidden

sector in D-brane models is due to the necessity to cancel tadpole4 divergence–hidden

branes are needed in addition to the brane where the SM lives in[4].

4In string theory, tadpole corresponds to a closed string appearing from or disappearing into the

vacuum. It typically results in IR divergence because of the zero-momentum massless propagator.



CHAPTER 2

Interplay Between Hidden Sector and Higgs

Physics–Signatures at the LHC

2.1 A Brief Review of the U(1)′ sector and its coupling to the

SM

As we have seen from the Introduction, an additional U(1)′ gauge symmetry is a well-

motivated hidden sector scenario. The current chapter and the next are dedicated

to certain aspects of U(1)′ phenomenology, at the LHC and in cosmology, respec-

tively. There have been extensive studies of U(1)′ physics, especially the associated

Z ′ gauge boson ([3, 5] and references therein). Here I will first give a brief review on

these works as background.

Breaking? Breaking scale?

The first thing we are curious about is whether the U(1)′ sector is broken and what

the breaking scale is if it is broken, since mass scales of the exotic particles are crucial

for their detectability and influence on the SM/cosmology. If this U(1)′ is unbroken,

then the associated Z ′ would be massless. This implies an unacceptable long range

force unless its coupling to ordinary matter is incredibly small, e.g. communicated

by higher-dimensional operators or through very small kinetic mixing to the photon

(we will come to this soon). For these reasons, we are generally interested in a broken

U(1)′. In a non-supersymmetric context, there is no particular expectation for this

breaking scale. But in both string theories and SUSY GUT theories both U(1)′ and

10
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the SM electroweak SU(2)L×U(1)Y breaking scales are generically related to the soft

SUSY breaking scale. Therefore, if SUSY is observed at the LHC, we can be opti-

mistic about the observation of a string or GUT induced U(1)′ also. An exception to

this is: potentials in supersymmetric theories typically have flat-directions which can

be slightly lifted only when SUSY is broken because of the SUSY non-renormalization

theorem. When the U(1)′ is broken along the (almost) flat direction, the Z ′ boson

can get an intermediate scale mass ∼
√
mM where m is the soft SUSY breaking

mass scale, which we expect to be at TeV scale, and M is the GUT or string scale.

In chapter 3 of this thesis, I will discuss my work on the cosmological implication

of flat-direction U(1)′ breaking. Another very interesting aspect of the broken U(1)′

scenario is that the symmetry breaking would require an extended Higgs sector, which

can have significant consequences for phenomenology. In section 2 of this chapter, I

will present my work on the phenomenology of such hidden sector Higgs at the LHC

through its mixing with the SM Higgs.

Couplings to the SM

Both the Z ′ gauge boson and the associated Higgs can have tree-level renormalizable

mixing with the SM fields. This in general can have significant influence on the SM

phenomenology, even though they are called ‘hidden’. The Higgs mixing and its con-

sequences will be discussed in detail in the next section. Here, I will briefly review

the story for the Z ′ gauge boson.

If some of the SM fermions have non-trivial charge under U(1)′ (we have men-

tioned this interesting ‘fifth force’ possibility in the introduction), Z ′ can have direct

couplings to the SM fermions via neutral current. In the SM, the neutral current
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interaction of the fermions are described by the Lagrangian in gauge basis1

−LSM
NC = gJµ

3W3µ + g′Jµ
YBµ (2.1)

where g, g′ are SU(2) and U(1)Y gauge couplings, W3µ is gauge boson associated

with diagonal generator of SU(2), Bµ is the U(1)Y gauge boson. The currents in this

gauge basis are given by

Jµ
3 =

∑

i

f̄iγ
µ[t3iLPL + t3iRPR]fi (2.2)

Jµ
Y =

∑

i

f̄iγ
µ[yiLPL + yiRPR]fi

fi is the ith fermion, t3i, yi are their 3rd component of weak isospin and hypercharge.

For the known fermions, t3uL
= t3νL

= 1/2, t3dL
= t3eL

= −1/2, t3iR = 0

Observations require the spontaneous breaking of SU(2)×U(1)Y to the subgroup

electroweak U(1)EM. We can rotate by θW = arctan(g′/g) from the gauge eigenstates

to mass eigenstates of photon field Aµ and Zµ. Currents coupling to Aµ must repro-

duce the non-chiral electroweak coupling with the correct electric charge assigned to

fermions. The neutral current interaction now becomes

LSM
NC = eJµ

emAµ + g1J
µ
1Z

0
1µ (2.3)

where e = g sin θW , g
2
1 = g2 + g′2. The currents in this new basis are

Jµ
em =

∑

i

qif̄iγ
µfi (2.4)

Jµ
1 =

∑

i

f̄i[ε
1
L(i)PL + ε1R(i)PR]fi

with chiral couplings

ε1L(i) = t3iL − sin2 θW qi, ε1R(i) = t3iR − sin2 θW qi (2.5)

1I basically follow the conventions in [3]
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electric charges are given by qi = t3iL + yiL = t3iR + yiR.

When the SM electroweak group is extended by adding U(1)′n, n ≥ 1, neutral

current interaction eq.(2.3) is generalized as

−LNC = Jµ
emAµ +

n+1
∑

α=1

gαJ
µ
αZ

0
αµ (2.6)

where quantities labelled by 1 in the sum are the SM contribution. The currents are

given by

Jµ
α =

∑

i

f̄i[ε
α
L(i)PL + εαR(i)PR]fi (2.7)

where the chiral couplings εαL,R are model-dependent.

If the SM Higgs is charged under U(1)α with charge Qαi, Z
′ can couple to Higgs

φi via covariant derivative:

Dµφi =

(

∂µ + ieqiAµ + i
n+1
∑

α=1

gαQαiZ
0
αµ

)

φi (2.8)

Eq.(2.8) has an important implication on the SM Z mass since it introduces mass

mixings between different Zs:

Lmass
Z =

1

2
M2

αβZ
0
αµZ

0µ
β (2.9)

with

M2
αβ = 2gαgβ

∑

i

QαiQβi|〈φi〉|2 (2.10)

M11 ≡M2
Z0 = 1

2
g2
1

∑

i |〈φi〉|2 = 1
4
g2
1v

2 is the tree-level Z mass in the SM limit when all

the Z ′ are decoupled, where v2 = (
√

2GF )−1 ∼ (246 GeV)2. To get a concrete idea

of what the mass mixing looks like, let us take n = 1, i.e. add one Z ′ only.The mass

matrix would be:

M2
Z−Z′ =









2g2
1

∑

i t
2
3i|〈φi〉|2 2g1g2

∑

i t3iQi|〈φi〉|2

2g1g2
∑

i t3iQi|〈φi〉|2 2g2
2

∑

iQ
2
i |〈φi〉|2









≡









M2
Z0 ∆2

∆2 M2
Z′









(2.11)
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The mass eigenvalues can be obtained by diagonalizing the mass matrix:

M2
1,2 =

1

2

[

M2
Z0 +M2

Z′ ∓
√

(M2
Z0 −M2

Z′)2 + 4∆4

]

(2.12)

Obviously the mixing with Z ′ can shift the SM prediction for Z boson mass at tree-

level. Therefore the Z ′ sector parameters are constrained by precision electroweak

measurements[5].

Even though the U(1)′ is unbroken or the SM fields are singlets under the U(1)′,

there is still a way of mixing Z ′ with the SM Z gauge boson and therefore coupling it

to other SM fields–through kinetic mixing. It is worth mentioning that such mixing

is unique for abelian groups, where the field strength tensor Fµν is gauge invariant

and therefore allowed. Consider the most general kinetic energy term for two gauge

bosons Z0
αµ and Z0

βµ in the gauge basis:

Lkin = −cα
4
F 0µν

α F 0
αµν −

cβ
4
F 0µν

β F 0
βµν −

cαβ

2
F 0µν

α F 0
βµν (2.13)

By rescaling, one can always transform the coefficients in eq.(2.13) into the canonical

form cα = 1, cβ = 1, cαβ = sinχ. The canonical diagonal kinetic energy terms can be

obtained with another non-unitary rotation V :









Z0
1µ

Z0
2µ









=









1 − tanχ

0 1/ cosχ

















Ẑ0
1µ

Ẑ0
2µ









≡ V









Ẑ0
1µ

Ẑ0
2µ









(2.14)

With this additional kinetic mixing, the mass matrix derived from mass mixing

(eq.(2.11)) becomes V TM2
Z−Z′V ′, which needs to be diagonalized by an orthogonal

rotation. But in order to see the essential feature of kinetic mixing, we can turn off

pure mass mixing, i.e. set ∆ = 0 in eq.(2.11). We have

V TM2
Z−Z′V =









M2
Z0 −M2

Z0 tanχ

−M2
Z0 tanχ M2

Z0 tan2 χ+M2
Z′/ cosχ









(2.15)
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We can see that in the limit M 2
Z0 = 0 there is a zero mass eigenvalue even for large

mixing χ, i.e. the shift in the lighter mass induced by kinetic mixing is proportional

to the lighter mass and therefore small. To be more concrete, for |M 2
Z0 �M2

Z′ |,∆ =

0, χ� 1, one gets M 2
1 ∼M2

Z0 −M4
Z0χ2/M2

Z′, which is a negligible shift.

2.2 Phenomenology of Hidden Sector Higgs and its LHC Sig-

nals

The phenomenology of Z ′ gauge boson induced by the mass mixing and kinetic mixing

as we discussed in the previous section has been well studied[5]. In our work presented

in [6] we focused on the phenomenology of the other ‘portal’ coupling between the

SM and a symmetry-breaking hidden sector which applies to more general hidden

gauge structure (not just Abelian groups): the renormalizable interaction of the SM

Higgs with the hidden sector Higgs boson. There are few ways that the SM fields can

interact with the hidden sector or phantom sector fields, and the Higgs boson, which

can form a gauge-invariant dimension-2 operator all on its own, is a prime candidate

to pursue this connection [8, 9, 10, 11, 12].

Concretely, the analysis in this work is based on the model presented in [8], where

the SM Higgs ΦSM couples to a hidden scalar ΦH through the renormalizable term

|ΦSM |2|ΦH |2. We also assume that the hidden sector has a rich gauge theory structure

which is at least partly broken by 〈ΦH〉 6= 0. A nontrivial vev of ΦH is necessary for

the mass mixing between the SM Higgs and ΦH , which results in two mass eigenstates,

h, H. It is this mixing that brings in the two possible distinct signatures at the LHC

which are of primary interest in this work: a narrow width trans-TeV Higgs boson

and the observable H → hh decay.

Here is the outline of what follows. In section 2.2.1, we give a brief review of the

model we will analyze. In section 2.2.2, we study the bounds on Higgs masses for this

model, based on the considerations of perturbative unitarity, triviality and precision
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electroweak measurements. We find that the canonical constraints on the upper limit

of the Higgs mass do not apply for the heavier Higgs boson H because of the mixing

effect. Based on the results of the earlier sections, we propose two possible intriguing

features to be probed at future colliders: narrow trans-TeV Higgs boson and H → hh

decay width. In section 2.2.3, we study the LHC implications of those two signatures

in detail and demonstrate that they can be distinguishable and therefore shed new

light on beyond SM physics.

2.2.1 Model Review

To be self-contained, we first briefly review the model in [8], which sets the frame-

work and notation for what we analyze here. We assume that there is a hidden U(1)

gauge symmetry which is broken by a vacuum expectation value (vev) of the Higgs

boson ΦH . We denote the U(1)hid gauge boson as V , which gets a mass mV after the

breaking of U(1)hid. In this model, the hidden sector Higgs boson ΦH mixes with the

SM Higgs ΦSM through a renormalizable interaction |ΦSM |2|ΦH |2. The Higgs boson

Lagrangian2 under consideration is

LHiggs = |DµΦSM |2+|DµΦH |2+m2
ΦSM

|ΦSM |2+m2
ΦH

|ΦH |2−λ|ΦSM |4−ρ|ΦH |4−η|ΦSM |2|ΦH |2

(2.16)

The component fields are written as

ΦSM =
1√
2









φSM + v + iG0

G±









, ΦH =
1√
2
(φH + ξ + iG′) (2.17)

where v(' 246 GeV) and ξ are vevs around which the ΦSM and ΦH are expanded.

The G fields are Goldstone bosons, which can be removed from actual calculation by

imposing the unitary gauge. After diagonalizing the mass matrix, we rotate from the

2Although we do not discuss it specifically in this work, there is an analogous supersymmetric

construction where the two Higgs fields interact via a D-term from a shared U(1) symmetry [8].
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gauge eigenstates φSM , φH to mass eigenstates h,H.

φSM = cosωh+ sinωH (2.18)

φH = − sinωh+ cosωH (2.19)

the mixing angle ω and the mass eigenvalues are given by

tanω =
ηvξ

(−λv2 + ρξ2) +
√

(λv2 − ρξ2)2 + η2v2ξ2
(2.20)

m2
h,H = (λv2 + ρξ2) ±

√

(λv2 − ρξ2)2 + η2v2ξ2

For simplicity in writing subsequent formula, we assume that mh < mH and write

cω ≡ cosω, sω ≡ sinω.

If mH > 2mh, the signature of interest, H → hh decay, is allowed kinematically.

The partial width of this decay is

Γ(H → hh) =
|µ|2

8πmH

√

√

√

√1 − 4m2
h

m2
H

(2.21)

where µ is the coupling of the relevant mixing operator in the Lagrangian 4Lmix =

µh2H.

µ = −η
2
(ξc3ω + vs3

ω) + (η − 3λ)vc2ωsω + (η − 3ρ)ξcωs
2
ω (2.22)

Before going to the discussion of the Higgs mass bounds, it is helpful to do a pa-

rameter space analysis for this model. There are a total of 7 input parameters relevant

for most of our later discussion: g, λ, v, η, ρ, ξ, gV , where g is the SU(2)L gauge cou-

pling, gV is defined to be the gauge coupling constant of U(1)hid. gV in general would

appear in the scattering amplitude of the graphs involving the U(1)hid gauge boson

V , and therefore play a role in the discussion of perturbative unitarity (however, in

section 3.1, we will make a reasonable assumption that results in gV effectively disap-

pearing in all the relevant formulae). Other possible input parameters that describe

the details of the matter content of the hidden sector itself are uncertain and we do

not include them here (in our work, they are only relevant to the RGE of ρ, where
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we just introduce two representative parameters E and E ′). g, v are already fixed by

collider experiments, with the values v = 246GeV, g = 0.65. In order to study the

phenomenology of the model, we construct some output parameters from these in-

put parameters which are of more physical interest: mW , GF , mh, sω, mV , G
′

F , mH , µ,

where we define G
′

F as the Fermi coupling for the U(1)hid defined in the same way

as GF in the SM. We will see in section 3.1 that G
′

F plays an important role in the

unitarity bounds. The relevant transformations in addition to eqs. (2.20)-(2.22) are:

mW =
1

2
gv, mV =

1

2
gV ξ, GF =

1√
2v2

, G
′

F =
1√
2ξ2

. (2.23)

Now we have determined that the 4 most important unknown input parameters are

{λ, ρ, η, ξ}. The inverse transformation from {m2
h, m

2
H , sω, µ} to {λ, ρ, η, ξ} are

λ =
M2

11

2v2
(2.24)

ρ =
M2

22

2v2s2
ω

[

c3ωM
2
12 + 3c2ωsωM

2
11 − 2cωs

2
ωM

2
12 + 2µv

−2c2ωM
2
12 + 3cωsωM2

22 + s2
ωM

2
12

]2

(2.25)

η = −M2
12

sωv2

[

c3ωM
2
12 + 3c2ωsωM

2
11 − 2cωs

2
ωM

2
12 + 2µv

−2c2ωM
2
12 + 3cωsωM2

22 + s2
ωM

2
12

]

(2.26)

ξ = sωv

[

−2c2ωM
2
12 + 3cωsωM

2
22 + s2

ωM
2
12

−cw3M2
12 − 3c2ωsωM

2
11 + 2cωs2

ωM
2
12 − 2µv

]

(2.27)

where

M2
11 = c2ωm

2
h + s2

ωm
2
H (2.28)

M2
12 = cωsω(m2

H −m2
h) (2.29)

M2
22 = s2

ωm
2
h + c2ωm

2
H (2.30)

In Tables 2.1 and 2.2 we provide 6 benchmark points in the parameter space, some of

which will be used in section 4 for collider physics analysis. They all can satisfy the

theoretical bounds as we shall see in section 3. We list them in Table 2.1 and Table 2.2.

Γ(H → hh) for points 1, 2, 3 are obtained based on the assumption that the
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Point A Point B Point C
s2

ω 0.40 0.31 0.1
mh (GeV) 143 115 120
mH (GeV) 1100 1140 1100

Γ(H → hh) (GeV) 14.6 4.9 10
BR(H → hh) 0.036 0.015 0.095

Table 2.1. Points illustrating parameters of trans-TeV mass Higgs boson. Point C is studied in
detail in section 4.

Point 1 Point 2 Point 3
s2

ω 0.5 0.5 0.5
mh (GeV) 115 175 225
mH (GeV) 300 500 500

Γ(H → hh) (GeV) 2.1 17 17
BR(H → hh) 0.33 0.33 0.33

Table 2.2. Points illustrating parameters that allow large branching fractions of H → hh. Each of
these points are studied in detail in section 4.

branching ratio BR(H → hh) = 1/3 where BR= Γ(H→hh)
Γ(H→hh)+s2

ωΓSM(mH )
. ΓSM(mH) is

the well-known SM result, which can be obtained from the HDECAY program [13].

2.2.2 Theoretical Bounds on Higgs Masses of the Model

Perturbative Unitarity Constraints

The possibility of a strongly interacting WW sector or Higgs sector above the

TeV scale is an interesting alternative to a perturbative, light Higgs boson. However,

this possibility implies the unreliability of perturbation theory. Although this is not

a fundamental concern, it would imply a challenge to the successful perturbative

description of precision electroweak data and would have major implications to LHC

results. In order for the perturbative description of all electroweak interactions to

be valid up to a high scale, the perturbative unitarity constraint would need to be

satisfied. This issue has been carefully studied for the SM Higgs sector[14]. They

obtained an upper bound on the Higgs mass by imposing the partial-wave unitarity
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condition on the tree-level amplitudes of all the relevant scattering processes in the

limit s → ∞, where s is the center of mass energy. The result is m2
φSM

≤ 4π
√

2
3GF

'

(700 GeV)2. To get this result, we apply a more restrictive condition as in [15]:

|ReaJ | ≤ 1
2
, where aJ is the J th partial wave amplitude. This is also the condition

we will apply for our model.

We derive the unitarity constraints for our model by methods analogous to ref. [14].

The addition of one more Higgs and the mixing effects introduce more relevant pro-

cesses and more complex expressions. We impose the unitarity constraints on both

the SM sector and the U(1)hid sector. The analysis for the diagrams involving V is

very similar to those involving the Z boson. For simplicity, we assume that in the

hidden sector, mV � mH , as an analogy to the case in the SM, where mW � mH .

With this approximation, gV will not appear in the scattering amplitude, only G′
F

is relevant. We list the set of 15 inequalities in the Appendix, and their correspond-

ing processes. For simplicity, we did not transform them to purely input or output

parameter basis, but kept them in a mixing form as they were derived for compact

expressions. Unlike the situation in the SM, it would be hard to solve this complex

set of inequalities analytically to get the Higgs mass bounds. Instead using the Monte

Carlo method, we generated 604 ∼ 107 points in the input parameter space with basis

{λ, η, ρ, ξ}. In order to be consistent with our discussion of perturbative TeV physics,

we liberally set the allowed regions of these input parameters to be:

λ ∈ [0, 4π], ρ ∈ [0, 4π], η ∈ [−4π, 4π], ξ ∈ [0, 5 TeV] (2.31)

Then we pick out the points that satisfy all 15 inequalities, and make mH − mh

plots for certain narrow ranges of the mixing angle s2
ω which is an important output

parameter for collider physics study. The allowed region can be read from the shape

of these plots (obviously, for this multi-dimension parameter space, the bounds on

Higgs mass are dependent on the mixing angle).

Fig. 2.1 combines the plots for 3 typical mixing regions – small mixing, medium
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Figure 2.1. Scatter plot of solutions in the mH vs. mh plane that satisfies perturbative unitarity
constraints. Separate colors are used depending on what range s2

ω falls within.

mixing and large mixing for comparison. We can tell that for the lighter physical

Higgs boson mass, the upper bound always stays the same as the well-known SM

case—around 700 GeV. However, for the heavier Higgs boson in the spectrum, the

bound is loosened: for small mixing it can be as high as 15 TeV given our parameter

ranges (in Fig. 2.1, we cut the upper limit at 2 TeV to reduce the size of the graph as

well as improve the presentability of the graph), for medium mixing can be above 1

TeV — both are well above the canonical upper limit of the Higgs boson mass based

on unitarity considerations. For large mixing limit, the canonical 700 GeV bound

applies for both of the physical Higgs. These observations agree with our intuition.

The intermediate mixing region is of significant phenomenological interest, since it

can not only generate a heavy Higgs boson — especially a trans-TeV Higgs which

is not well anticipated by the experiments, yet may be worth attention — but also

can produce the heavy Higgs boson at a considerable production rate at colliders (we

know that the coupling of H to SM particles is proportional to sω). That is why we

amplify the plot for the medium mixing region in Fig. 2.2 to demonstrate the bound
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shape more clearly. Meanwhile, the small mixing region can also be interesting, since

as sω decreases, the decay width narrows down which is good for detection, although

the production rate gets lower.

Based on the considerations described above, we choose 3 typical points from

those that are allowed by all the perturbative unitarity bounds and that can generate

a trans-TeV Higgs: points A, B and C, as we listed in Table 1 at the end of section

2. They are labelled by the output parameter basis {s2
ω, mh, mH ,Γ(H → hh)}. Point

A and B are from medium mixing region (s2
ω = 0.40 for point A is actually the

maximum mixing angle that can allow a mH larger than 1.1 TeV among all the

points that satisfy unitarity constraints), point C is from the small mixing region.

We will make precision electroweak analysis for these 3 points in section 3.3 and study

the collider physics of trans-TeV Higgs bosons in section 4.1.

Triviality bounds and Vacuum Stability Bounds

Besides perturbative unitarity, triviality and vacuum stability are two additional con-

cerns which impose theoretical constraints on the Higgs mass. Now we want to see

if they would put more stringent bounds on the Higgs mass than those given by

unitarity. In the SM, both of them are actually relevant to the properties of the

parameter λ at the high scale, which are analyzed using the RG equation of λ. The

triviality bound is given based on the requirement that the Landau pole of λ from

the low-scale theory perspective is above the scale of new physics. The vacuum sta-

bility bound is given based on the requirement that λ remains positive up to the

scale of new physics. Now we already can see that the bounds derived from these

two considerations are not definite, as they depend on the scale of new physics. In

the SM, the bounds for the value of λ at the electroweak scale are equivalent to the

upper and lower limits for the Higgs boson because of the simple proportion relation

m2
ΦSM

= 2λv2, where v ' 246 GeV. As reviewed in [16], for a 1 TeV new physics

scale, 160 GeV < mH < 750 GeV. (This is actually a rough estimation based on
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1-loop RGE and without taking into threshold corrections. More accurate analysis

would be subtle.) However, it is easy to tell that these constraints do not apply for

our model where the physical Higgs spectra are determined by four input parameters

λ, η, ρ, ξ, not just λ. Therefore, we need to first derive the RG equations for all these

four parameters and see what we can say for the Higgs mass bounds based on them.

Here we give the 1-loop results. For convenience, we suppose that the RGEs run

above the EWSB scale, so that all the masses are zero and we can safely work with

gauge eigenstates. (Actually, as is well known, the RGEs of dimensionless couplings

are independent of mass parameters, which supports the validity of our assumption.)

1-loop RGE for λ in the SM can be found in [15]. The addition of the hidden

sector Higgs boson contributes another term to the RGE, which results from the

mixing term in the Lagrangian 1
4
ηφ2

Hφ
2
SM (φH runs in the loop). The full result is:

d

dt
λ =

1

16π2

{

1

2
η2 + 12λ2 + 6λy2

t − 3y4
t −

3

2
λ(3g2 + g2

1) +
3

16
[2g4 + (g2 + g2

1)
2]
}

(2.32)

where g1 is the gauge coupling of U(1)Y , yt is the top Yukawa coupling. The first

term comes from the interaction between φH and φSM .

For ρ, there is also a 1-loop contribution from the graph where φSM runs in the

loop. The other terms in the RGE of ρ come from the self-interactions in the hidden

sector, e.g. the coupling between φH and the hidden sector matter—we denote all

these terms by E. The result is

d

dt
ρ =

1

16π2
(η2 + 10ρ2 + E) (2.33)

The RGE of η involves only two graphs: with φSM or φH running in the loop. We

eventually get:

d

dt
η =

1

16π2
η
[

6λ+ 4ρ+ 2η + 3y2
t −

3

4
(3g2 + g2

1) + E ′
]

(2.34)

We can see from eqs.(2.32)-(2.34) that the perturbative properties of λ, ρ and η

can be nice although they are model dependent. However, we can hardly draw any
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quantitative conclusions regarding, especially, the Higgs masses bounds – they depend

on four unknown parameters, the detailed content of hidden sector matter represented

by parameters E and E ′ (analogous to the definition forE, E ′ comes from the coupling

between φh and other matter fields in the hidden sector), threshold corrections, etc.

All of these uncertainties make the prediction for the triviality and stability bounds

quite model dependent. Meanwhile, such large freedom allows us to reasonably expect

that the points that satisfy the unitarity conditions are also allowed by triviality and

stability constraints in a large region of full parameter space (with parameters for

hidden sector itself included). A practical application of this observation is that now

we can reasonably assume that the points from section 3.1 can also pass the test of

triviality and vacuum stability.

Contraints from Precision Electroweak Measurements

Precision electroweak measurements also give indirect bounds on the Higgs boson

mass based on the fact that the virtual excitations of the Higgs boson can contribute

to physical observables, e.g. W boson mass, considered in precision tests of the SM.

For the one doublet Higgs boson in the SM, precision EW analysis puts a 200 GeV

upper limit at 95% C.L [17]. Here we do not plan to make a full analysis to derive

the mass bounds in a general way. Alternatively, we focus on the point A, B and C,

of which we have made an S − T analysis to see if they can satisfy the constraints

from experiments. This is actually a way to check for our model the ‘existence’ of

the points allowed by precision EW measurements.

The relevant calculations are analogous to those for the SM Higgs boson. We just

need to double the number of involved graphs, since there are two Higgs bosons now,

and put sω or cω on some vertices. The resulting values for S and T for points A, B



25

and C are consistent with [17]:

A : (S, T ) = (0.05,−0.10), B : (S, T ) = (0.02,−0.06), C : (S, T ) = (−0.01,−0.01)

(2.35)

and

1 : (S, T ) = (0.01,−0.03), 2 : (S, T ) = (0.05,−0.07), 3 : (S, T ) = (0.06,−0.09)

(2.36)

where we have chosen mH = 150 GeV as the SM reference point where (S, T ) = (0, 0).

We compare these results with the S − T contour in [17] which gives the constraints

on (S, T ) from the most recent precision electroweak measurements. Point C is on the

boundary of the allowed region, and therefore satisfies the precision EW constraints.

Points 1-3, A and B seem to be mildly out of the 68% C.L. allowed region. According

to the direction of their shifts relative to the center of the contour, they have the

same effects as a heavy Higgs in the SM. However, contributions from the unspecified

elements of the model – in particular the Z ′ contributions – can compensate the effect

of a heavy Higgs by pulling the (S, T ) back towards the center[18]. It is easy to tell

that such a solution could also apply to our model by the Z ′ from its U(1)hid hidden

sector gauge symmetry.

Therefore, now we can come to the conclusion that all the three interesting points

can satisfy all the known theoretical bounds on Higgs mass under a few reasonable

assumptions. The next step is to send them to the collider physics analysis so that

we can tell whether we can discover such interesting phenomenology in future exper-

iments.

2.2.3 Large Hadron Collider Studies

In this section, we consider phenomenological implications for new physics searches

at the LHC. In our framework, we have two Higgs bosons that are in general mixtures

of a SM Higgs boson and a Higgs boson that carries no charges under the SM gauge
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groups. Thus, no state is precisely a SM Higgs boson and no state is precisely of

a singlet nature. More importantly, by construction, neither H nor h have full SM

Higgs couplings to any state in the SM. Production rates are therefore always reduced

for h or H compared to the SM Higgs.

Reduced production cross-sections present a challenge for LHC discovery and

study. Depending on the mass of the SM Higgs boson, there are already significant

difficulties for discovery without the additional worry of reduced couplings. Never-

theless, opportunities present themselves as well. For one, the reduced production

cross-section also correlates with a more narrow-width scalar state. The width of the

SM Higgs boson grows so rapidly with its mass (by cubic power) that by the time

its mass is above ∼ 800 GeV the Higgs boson width is so large that it begins to lose

meaning as a particle. Reduced couplings, and therefore a reduced width, of a heavy

Higgs boson can bring it into the fold of familiar, narrow-width particles. We study

this point below to demonstrate that even a Higgs boson with mass greater than

1 TeV (i.e., a trans-TeV Higgs boson) can be searched for and found at the LHC in

this scenario.

Another attempt at turning a negative feature into a new angle for searching, is

to accept that two heavily mixed Higgs states could exist, and search for the decay of

the heavier one to the lighter. These H → hh decays could be copious enough that

the first discovery of the Higgs boson would be through the simultaneous discovery

of H and h via H production followed by H → hh. We studied this possibility at the

LHC and find that indeed this may be possible.

To begin the discussion, we first stated some of the choices we made to simulate

LHC physics. We have used Madgraph [19] to generate all matrix elements. We

then use MadEvent [20], with the CTEQ6 [21] PDF set, to generate both signal

and background event samples for all the studies in this work. Renormalization and

factorization scales are set to mH for calculating signal cross-sections.
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To partially simulate detector and showering effects, parton energies are smeared

by a gaussian function of width σ/E = 0.68/
√
E⊕ 0.044 (E is in units of GeV), from

Table 9-1 in [22]. Photon and lepton energies are not smeared. We assume a b-tagging

efficiency of 50% and mistag rates for c,g, and uds partons of 10%, 1.5%, and 0.5%,

respectively. All jets are required to have pT > 30 GeV and |η| < 4.5, where η here

refers to the pseudo-rapidity (η = − ln tan(θ/2) with θ being the polar angle with

respect to the beam). Leptons and photons are required to be separated from jets by

∆R>0.4 and from one another by ∆R>0.2, where ∆R =
√

(∆η)2 + (∆φ)2 (φ is the

azimuthal angle). Jets must be separated from each other by ∆R>0.7, or they are

merged. We do not apply any triggering or reconstruction efficiencies.

Narrow Trans-TeV Higgs boson

Earlier we showed that a very heavy Higgs boson can be compatible with all known

constraints. Its couplings will necessarily be less than those of the SM Higgs boson,

but if it is mixed with the SM Higgs boson, the mass eigenstate H can be searched

for and discovered even if its mass is above 1 TeV. We show here that a very narrow

resonance, which is implied by the reduced couplings, may enable background nor-

malizations to be determined using sideband techniques which are not possible with

the very large widths for heavy SM Higgs bosons.

As we do not consider decays to new particles, the final state topologies are the

same as the searches investigated for 1 TeV Higgs bosons (see [23]), though the cross-

sections and width are both reduced by sin2ω compared to a SM Higgs of the same

mass. We set sin2ω = 0.1 and MH = 1.1 TeV (see point C of Table 2.1). This leads

to a width ΓH=95 GeV and NLO cross-section σH= 7.1 fb for vector boson fusion.

The comparison to SM values, which we augment to compute our decay widths and

cross-section, are obtained from HDECAY [13] and [24].

We begin with a study of qqH production through vector boson fusion followed

by H → WW → `νjj. The significant difference between previous SM studies [23]
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and our study is that the reduced Higgs width allows for reducing systematic uncer-

tainties in the measurement of background rates. We do not do a complete set of

background calculations, but instead argue, based on the simulations we have done,

that the normalizations for all backgrounds can be determined from mass reconstruc-

tion distributions.

We require one lepton (e,µ) with pT > 100 GeV, |η| <2.0 and missing energy

transverse to the beam ET/ > 100 GeV. We also require two “tagging” jets with |η| >

2.0. Finally, we require the two highest pT jets to have pT > 100 GeV and reconstruct

to within 20 GeV of the W mass. We relax the separation cut between these two jets

to ∆R>0.3. (Reconstructing highly-boosted, hadronic W bosons has been studied

[25].)

The WWjj background is calculated with µF=µR=MW . The W+4j background

has not been simulated, but is not expected to have a kinematic shape which would

complicate determining its normalization from data. The tt̄jj background is calcu-

lated with both scales set to Mtop. We simulate tt̄jj such that the two jets from the

production stage are explicitly the two tagging jets used in the analysis. While this is

not a complete description of the tt̄+n jet background, we wish only to make the point

that there are no kinematic features that would complicate deriving its normalization

from data. A more complete background analysis implies that full reconstruction and

showering will not overwhelm the signal, as shown in ref. [23].

Fig. 2.3 shows the differential cross-section as a function of the invariant mass of

the lepton, ET/ and two highest pT jets. Below 900 GeV, the distribution is almost

entirely background, allowing for an extraction of the W and tt̄ normalizations. As

the figure demonstrates, one can rather easily distinguish the trans-TeV Higgs boson

from the background after all the cuts once there is enough data for the distribution

to be filled. As expected, luminosity is critical. In this case, after all cuts, the integral

of the signal from 1.0 TeV < Mlνjj < 1.3 TeV yields 12.8 events in 100 fb−1, while
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the total background amounts to 7.7 events. For a more assured discovery and more

accuracy on the Higgs boson mass, one would need more data. Nevertheless, this

signal channel alone demonstrates the plausibility of discovering a Higgs boson in the

trans-TeV mass region. Analysis of more decay channels, if these tantalizing results

emerged, would further increase the significance and accuracy of discovery.

For example, a heavy Higgs boson that decays to WW with a sizeable branching

fraction will also decay to ZZ, which can be used to increase the significance of the

discovery and test the self-consistency of the theory. In this case we look at decays

to two Z bosons which then decay to either ``jj or ``νν. A mass reconstruction for

the first case would yield a distribution similar in shape to Fig. 2.3, so we instead

plot the transverse mass distribution for ``νν. This final state has the virtue of only

one significant background (ZZjj) which is under better theoretical control than the

Z+≥4j background. Still, ZZ → ``jj has a larger rate, though a potentially large

background from ZZ+≥4j production, and should be considered as well.

We require same-flavor, opposite-sign leptons, each with pT > 100 GeV and |η| <

2.0 which reconstruct to within 5 GeV of the Z mass. We also require two tag-

ging jets with |η| > 2.0 and ET/ >100 GeV. The only significant SM background is

from ZZjj production. We calculate this background at LO using factorization and

renormalization scales set to MZ .

Fig. 2.4 shows the differential cross-section as a function of the transverse mass

MT , where M2
T = 2 |pT``

||ET/ | (1− cosφ) and φ is the angle between the reconstructed

leptonic Z and the ET/ in the transverse plane. The production cross-section and

branching ratios are small enough in this model that this channel is not as important

without large amounts of data, but the relatively small backgrounds and distinctive

shape imply that it could be important for other models.

Fig. 2.4 demonstrates that the transverse mass variable is a good discriminator

of signal to background as long as enough integrated luminosity is obtained at the
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collider. The combination of this channel (and several others similar to it) with

the H → WW results of the previous section increases the significance of discovery.

In this particular example final state, there are 3.9 signal events compared to 1.4

background events in the transverse mass region 0.8 TeV < MT < 1.4 TeV with

500 fb−1. Discovering hidden sector Higgs theories with reasonable significance by

adding up all possible channels3 will come first at lower luminosity, but the results

above indicate that careful checks of various final states and self-consistency are

possible, albeit at a much higher luminosity stage of the collider. This would give us

the opportunity to study the precise nature of the trans-TeV Higgs boson through

its various branching fractions.

H → hh Signal

We now examine Higgs-to-Higgs decays, and consider whether these decays might be

the first evidence for either the H or h boson [26] at the LHC. Although it might

be possible to effectively search for both Higgs bosons when the heavier one is in

the trans-TeV mass range, we focus on somewhat lighter Higgs boson masses in this

section which clearly show the feasibility of this kind of search over much of parameter

space.

We normalize gg → H production to the NNLO rates [27] of 10.3 pb and 5.7

pb for 300 GeV and 500 GeV SM Higgs bosons, respectively. VBF production is

normalized to the NLO rates [28] of 1.3 pb and 0.54 pb for 300 GeV and 500 GeV

SM Higgs bosons, respectively. Both cross-sections are then multiplied by sin2θ=0.5

to obtain the production rates for H and h.

To begin with, let us suppose that the heavy and light Higgs mass eigenstates

are mH = 300 GeV and mh = 115 GeV, respectively (see point 1 of Table 2.2).

3There are many more channels to exploit, potentially including the ZZ channel arising from

gg → H production. This could be a productive channel since tagging jets are not needed to reduce

the tt̄X background.
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Even if the 115 GeV mass eigenstate had full-strength SM couplings, its discovery

is by no means easy. A SM Higgs with mass around 115 GeV relies principally on

the tt̄h → tt̄bb̄ production channel as well as direct production gg → h → γγ. If

signal production is reduced by half (i.e., sin2 ω = 1/2) and/or background rates are

greater than calculated, or systematic uncertainties prove larger than anticipated, the

discovery of this lighter Higgs boson will require significantly more data. We consider

the possibility that the lighter Higgs boson may be discovered instead through H →

hh → γγbb̄ decays. In our example point, as with all example points in this section,

the branching ratio of H → hh is 1/3.

To determine the viability for discovery, we first calculate the background pro-

cesses that could contribute to γγbb̄ events in the SM. The factorization and renor-

malization scales (µF and µR) used for computing this background are set to the

leading pT jet in the event. The signal observable we define requires two photons

and two jets, with at least one jet tagged as containing a b quark. We furthermore

require |mh −mγγ | < 2 GeV, |mh −mj1j2| < 20 GeV, and |mH −mγγj1j2| < 20 GeV.

Fig. 2.5 shows the reconstructed invariant mass of the two photons and two jets with

one b-tag.

The general strategy to extract the signal over SM background is the same as for

the supersymmetric H → hh → γγbb̄ search channel [29]. We argue here that this

signature is important for a broad range of models. Although it is only considered

important for supersymmetry scenarios with small tan β, this decay channel looks to

be important for a wide range of parameter space for Higgs-mixing scenarios because

of its relatively high rate of triggering and narrow mass reconstruction.

As the numbers in Table 2.3 indicate, we find that signal-to-background ratios

for both the single and double tag samples are sufficient for discovery. Even after

detector triggering and reconstruction efficiencies are applied, there should still be

enough events for a discovery in the first few years of data taking at the LHC. We thus
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Channel 1 tag 2 tags
H → hh 24 12

γγbb 0.4 0.2
γγbc 0.15 0.01
γγbj 1 0.009
γγcc 1.2 0.069
γγcj 3.6 0.042
γγjj 1.8 0.007

Total background 8.2 0.34

Table 2.3. Numbers of “γγbb̄” (defined in the text) events for 30 fb−1 after applying all cuts with
1 or 2 b-tags required. Summation of charge conjugation is implied (e.g. b=b+b̄) and j=u, d, s. The
Higgs boson properties are those of point 1 in Table 2.

argue that, for this model, the light Higgs boson might be discovered through these

H → hh → γγbb̄ decays before appearing in the more conventional tt̄h, qq → qqh,

or gg → h searches, especially if the systematics for those channels prove to be more

challenging than expected.

If the lighter Higgs boson is above the 2mW threshold, qualitatively new features

of the signal develop that we explore now. For example, let us suppose that the lighter

Higgs boson is 175 GeV and that the heavier Higgs boson mass is mH = 500 GeV,

which allows H → hh decays with 1/3 branching fraction (see point 2 of Table 2.2).

For this point we again have a reduction of 1/2 in the cross-section due to s2
ω = 1/2.

In this case, the most common final state for H → hh decays will be four W

bosons. This signature has been studied in the context of dihiggs production [30]

but SM dihiggs production is on the order of 10-30fb [31]. In Higgs-mixing scenarios,

H → hh production is generically an order of magnitude or two larger.

We divide the study up into two searches by the number of leptons in the final

state. First, we require three leptons, where the opposite-sign pairs must have oppo-

site flavor (OSOF). This follows the strategy in [30] for reducing the large Z/γW ±

background. We also look at events with four leptons and demand that opposite-sign,

same-flavor lepton pairs not reconstruct to within 5 GeV of MZ . One could also use
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Channel σ (fb) OSOF 3`
H → hh→WWWW 920 56

W±W±W∓ 109 5
tt̄Z 580 1
tt̄W± 740 15

Table 2.4. Numbers of 3` OSOF events for 30 fb−1. The Higgs boson properties are those of point
2 in Table 2.

same-sign (SS) dilepton searches, but the backgrounds are significantly larger and

more difficult to predict so we do not explore this here.

W±W±W∓ samples are all generated at µF = µR = MW . The tt̄Z and tt̄W sam-

ples are generated with µF = µR = Mtop = 175 GeV. All backgrounds are generated

at LO and no K-factors are applied. A ET/ > 50 GeV cut has been applied to all

searches. Leptons that do not satisfy pT > 20 GeV and |η| < 2.0, or are not isolated

from other leptons or jets, are considered lost. Z/γW± with Z/γ → τ τ̄ has been

investigated for the OSOF 3` and found to be small.

Table 2.4 shows the number of OSOF 3` events expected for 30 fb−1. The dom-

inant tt̄W background may have large NLO corrections, but applying a b-jet veto

would further reduce it by approximately 64%, while reducing the signal by only a

few percent. Additionally, there are 8 four-lepton events which could be used.

For comparison, in this model we expect 9 H → ZZ → 4` events for 30 fb−1

satisfying the lepton cuts described above, with each opposite-sign, same-flavor pair

reconstructing to within 5 GeV of MZ , and satisfying |MH −m4`| < ΓH , where

ΓH=51 GeV. For the same cuts, the irreducible pp→ ZZ background yields 8 events,

using µF = µR = MZ and applying no K-factors.

Based on the numbers in Table 2.4, we argue that, for this model, the heavier

Higgs boson can be discovered through the H → hh→ OSOF 3 ` channel in the first

few years at the LHC. Furthermore, this channel may compete with more conventional

searches, such as H → ZZ →4` for an early discovery.
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Finally, we comment on the situation of point 3 in Table 2.2 where the lighter

Higgs is heavier than 2MZ. In this case, the branching ratios to WWZZ and ZZZZ

can be significant. For example, using the same parameters as above, if the mass of

the lighter Higgs is raised to 225 GeV, the cross-sections for H → hh → WWZZ

and H → hh → ZZZZ are 425 fb and 87 fb. The WWWW final state is still the

largest branching ratio, but other searches involving Z boson final states would aid

discovery.
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Figure 2.2. Scatter plot of solutions in the mH vs. mh plane that satisfies perturbative unitarity
constraints. This plot is only for points that fall within 0.3 < s2

ω < 0.4.

Figure 2.3. Differential cross-section as a function of the invariant mass of the `, ET/ and two jets
reconstructing to the W mass for H → WW → `νjj (solid), WWjj (dashed), and tt̄jj (dotted).
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Figure 2.4. Differential cross-section as a function of transverse mass of the Z and ET/ for H →
ZZ → ``νν (solid) and the ZZjj background (dashed).

Figure 2.5. Differential cross-section as a function of invariant mass of γγbb̄ for H → hh → γγb̄b
(solid) and the sum of the backgrounds (dashed) requiring one b-tag.



CHAPTER 3

Hidden Sector with Supersymmetric Flat

Directions–Signatures in Cosmology

3.1 Introduction: Cosmic String, SUSY Flat Directions

Besides the possibility to reveal itself in collider experiments as presented in chap-

ter 2, the hidden sector can also leave fingerprints in cosmology, which provide both

interesting signals for discovery and constraints on its existence. As we have seen by

now, in well motivated scenarios, the hidden sector has a spontaneously broken gauge

symmetry. Of particular interest in cosmology is the theoretical expectation that at

high temperature or early universe, symmetries that are broken today were restored.

Consequently, phase transitions are expected when the symmetries are broken as the

universe cooled down. The vacuum structure in many spontaneously broken gauge

theories is very rich: topologically stable configurations of gauge and Higgs fields

exist as domain walls, cosmic strings, monopoles etc. These topological defects can

form in early universe when the associated phase transition occurred. Among these,

for the reasons we will see soon, cosmic strings are the most popular objects to study

as probes for extended gauge group structure through cosmological observations.

Cosmic strings are one-dimensional topological defects that can be formed in

the early universe [167, 168, 169] according to theoretical predictions. Although

no confirmed observation has been made yet, due to their generic motivation and

37



38

potential interesting signals, they are still worthy of serious studies. Cosmic strings

can be created if there is a phase transition in which the remaining vacuum manifold is

not simply-connected, i.e. there is unshrinkable loop. In terms of topology, this means

the first homotopy group of the vacuum manifold is nontrivial. One simple example

is when a U(1) group is completely broken. Cosmic strings are stable because they

carry a conserved topological charge. This charge is integer-valued, corresponding to

Π1(U(1)) = Z, and is related to the number of times the phase of the U(1) breaking

field winds at spatial infinity [170].

Unlike other types of topological defects, such as monopoles and domain walls,

cosmic strings can be formed at a wide range of energy scales after inflation without

severely contradicting the observed cosmology. The generic problem with topological

defects is that, on account of their stability, they can easily come to dominate the en-

ergy density of the universe [169]. For cosmic strings there is an important loophole.

Topological stability only applies to infinitely long strings. Cosmic string loops do

not carry a net topological charge, and they can decay into particle or gravitational

radiation. Such loops are formed when string segments intersect and exchange ends,

or reconnect (or sometimes called intercommute). This allows a network of long cos-

mic strings to regulate its energy by chopping itself up into loops which radiate away.

Indeed, for a wide range of initial string densities, analytic and numerical studies

find that the competing processes of string stretching (from the cosmic expansion)

and loop formation come to balance each other out. The network evolves towards

a universal scaling solution whose properties are almost fully characterized by the

cosmic string tension [177, 178, 179, 180, 181], independent of the initial conditions.

The vast majority of work on cosmic strings has focused on the abelian Higgs

model, in which a U(1) gauge symmetry is spontaneously broken by the condensation

of a charged scalar field. In this model, the vacuum expectation value (VEV) of the

complex scalar field determines the mass of the gauge field, mV , and the physical
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scalar Higgs field, mS, through the relations

mV ' g v, mS '
√
λ v, (3.1)

where g is the gauge coupling, λ is the scalar quartic self-coupling, and v is the VEV

of the scalar. The relative size of mV and mS determines how the strings interact. For

mV < mS, parallel strings tend to repel at large distances while anti-parallel strings

attract [169]. These strings are said to be Type-II, in analogy with superconductors.

When mV > mS , the strings attract for any relative orientation, and they are said to

be Type-I. The attractive force between parallel Type-I strings allows them to form

stable higher-winding modes.

In most field theories, including the abelian Higgs model, the masses mV and mS

are naturally of the same order. Much of the previous work on cosmic strings has

therefore dealt with Type-II or weakly Type-I strings. In the present work, we will

instead investigate the behavior of very strongly Type-I cosmic strings, corresponding

to mV � mS. Our motivation to consider the extreme Type-I limit comes from

supersymmetry [184]. As we will show below, there exist supersymmetric field theories

in which mV � mS arises in a natural way when a U(1) gauge symmetry is broken

along a flat-direction of the scalar potential. Supersymmetry is essential because it

ensures that quantum corrections do not lift the flat direction.

The key ingredients in our construction, supersymmetry and a new U(1) gauge

symmetry, are each well-motivated in their own right independently of cosmic strings.

Low-energy supersymmetry is one of the most elegant ways to explain the large

hierarchy between the electroweak scale and the Planck scale [184]. It can also provide

a candidate for the dark matter in the lightest superpartner particle (LSP), and in its

minimal form, leads to an excellent unification of gauge couplings. Supersymmetry

also plays an important role in superstring theories of gravity. Additional local U(1)

symmetries arise in many models of new physics such as grand unified models and

D-brane constructions [42]. In supersymmetric models, such symmetries can also
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help to solve the µ problem [172].

A common feature of supersymmetric theories is the existence of directions in the

scalar potential that are almost flat. To be precise, an almost flat direction is one

for which the curvature of the potential near the minimum is much smaller than the

scale of the (symmetry-breaking) VEV at that minimum. Typically, these directions

in field space are completely flat at tree-level, when only renormalizable operators are

included in the potential, but they are lifted by higher-dimensional operators, quan-

tum effects, and supersymmetry breaking. As long as the supersymmetry breaking

effects are both soft and small, the residual approximate supersymmetry prevents

quantum corrections from destroying the flatness of the potential. When a U(1) gauge

symmetry is broken along an almost-flat direction, the scalar excitation around the

VEV along the flat direction is much lighter than the corresponding massive gauge

boson. We will show that the cosmic strings associated with this pattern of gauge

symmetry breaking are of the strongly Type-I sort [44, 45, 46, 47, 48, 50, 51].1

The interactions and cosmological consequences of strongly Type-I strings can be

qualitatively different from those of Type-II and weakly Type-I strings [56, 57, 58].

When Type-I or Type-II cosmic strings intersect, they can reconnect or pass through

each other. There is a third possible outcome when a pair of strongly Type-I strings

intersect. Due to their mutual attraction, two strong Type-I strings with topological

charges N1 and N2 can combine to form a single stable string with topological charge

Nzip = (N1 + N2) or Nzip = |N1 − N2|. At the point of intersection, the incident

strings can coalesce into a single higher-winding string, which may then proceed to

grow like a zipper [57]. If this growth continues indefinitely, the outcome will be a

single higher-winding mode string of horizon length. For Type-II and weakly Type-I

1Let us also emphasize that the cosmic strings arising in general (approximately) supersymmetric

theories need not be associated with a flat direction, and can also be of the Type-II variety. For

examples, see Refs. [52, 53, 54, 55].
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strings, previous calculations and simulations predict that the outcome of a string

intersection is reconnection with a probability close to unity, Pr ' 1 [60, 61, 62, 63].

Since reconnection is essential to the formation of string loops, which in turn are

essential for the strings to be cosmologically viable, deviations away from Pr ' 1 can

significantly alter the picture of cosmic strings in the early universe. In particular,

if string zippering is common, there can exist a stable population of higher winding

mode strings as well [64, 65, 66, 67].

Many of the exotic properties exhibited by the strongly Type-I cosmic strings

arising from supersymmetric flat directions are also found in the (p, q) cosmic strings

emerging from superstring theory [68, 69, 70, 71, 72, 73, 74, 75], consisting of p

fundamental F -strings and q D-strings. These cosmic superstrings can merge to form

the equivalent of higher winding modes. In many cases they also have reconnection

probabilities much less than unity, Pr . 1. However, flat-direction strings differ

greatly from these (p, q) strings in their microscopic properties. This is borne out

in the relationship between the (effective) topological charge and the string tension,

as well as in the selection rules for string zippering. It may therefore be possible

to distinguish (p, q) strings from flat-direction strings with the observation of several

string lensing events, each with a different apparent relative value for the string

tension.

In the present work [211] we study the properties and implications of cosmic strings

derived from the breakdown of a U(1) gauge symmetry along a supersymmetric flat

direction. We begin in Section 3.2 by studying the internal structure of flat-direction

strings. Here, we present a simple toy model for the flat direction breaking, and

we investigate approximate solutions to the equations of motion and study the string

tensions using variational methods. In Section 3.3 we discuss the interactions between

cosmic strings. We apply these results in Section 3.4, where we study the formation

and evolution of flat-direction string networks in the early universe. The observational
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signatures produced by these networks will be the subject of Section 3.5.

Several earlier papers have investigated cosmic strings associated with flat-directions [44,

45, 46, 47, 48, 50, 51]. These studies have predominantly focused on the lowest

(N = 1) winding mode. We expand on these studies by exhibiting an explicit and

natural field theory model for the strings, and by discussing the new features that

arise from the existence of stable higher (N > 1) winding modes. These modes

significantly alter the cosmological picture of the strings.

3.2 String Profiles and Tensions

To begin, we introduce a simple class of models for a supersymmetric flat direction

that could arise if there exists a U(1) gauge group in addition to those contained in

the MSSM. Within these models, we study the cosmic string solutions they support.

In particular, we find approximate solutions to the classical equations of motion

subject to the boundary conditions appropriate to a cosmic string, and we use these

solutions to motivate a variational estimate of the string tension. Even though we

focus on a particular class of models in the present section, we expect that many

of the qualitative features that we find are also applicable to other cosmic string

solutions associated with flat directions.

3.2.1 (a, b) Flat Directions

As a prototypical model for U(1) symmetry breaking along a supersymmetric flat

direction, we consider the (a, b) model discussed in Ref. [76]. The model consists of

a supersymmetric U(1) gauge theory containing chiral superfields Φa and Φ−b with

integer charges a and −b respectively. Except for the special case a = b = 1 [77], we

will assume that a and b are relatively prime with a + b > 3. Aside from the (1, 1)

model, other charged fields must be present in the theory for anomaly cancellation.

However, these will decouple from the present discussion as long as they do not
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develop VEVs.

When the charges a and b are relatively prime, the leading superpotential operator

built from Φa and Φ−b is

W ⊃ λ

Ma+b−3
∗

Φb
aΦ

a
−b, (3.2)

where M∗ is a large mass scale above which our effective theory breaks down. We

also include the soft supersymmetry breaking operators

Vsoft ⊃ −m2
a|ϕa|2 −m2

b |ϕ−b|2 −
(

A

Ma+b−3
∗

ϕb
aϕ

a
−b + h.c.

)

, (3.3)

where ϕa and ϕ−b are the scalar component fields of Φa and Φ−b, and A is a dimension-

one coupling on the order of the soft supersymmetry breaking scale, A ∼
√

|m2
a| ∼

√

|m2
b |.2 In writing this expression, we have implicitly redefined the scalar components

of Φa and Φ−b such that A is real and positive. We have also taken the soft masses

for ϕa and ϕ−b to be tachyonic.

The leading contributions to the scalar potential in the model are therefore

VF =
|λ|2

M2a+2b−6
∗

(

|b ϕb−1
a ϕa

−b|2 + |aϕb
a ϕ

a−1
−b |2

)

, (3.4)

VD =
g2

2

(

a|ϕa|2 − b|ϕ−b|2
)2
, (3.5)

Vsoft = −m2
a|ϕa|2 −m2

b |ϕ−b|2 −
(

A

Ma+b−3
∗

ϕb
aϕ

a
−b + h.c.

)

. (3.6)

With A real and positive, there will be a global minimum of the potential with both

ϕa and ϕ−b real and positive. This minimum is unique up to gauge rotations.

If a+ b > 3 the potential will be almost flat along the D-flat direction defined by

a|ϕa|2 = b|ϕ−b|2. (3.7)

Along this direction, the potential is destabilized at the origin by Vsoft, and is only

restabilized at large field values by the higher dimensional F term operators. Near the

2A simple spurion analysis indicates that other, non-holomorphic supersymmetry breaking terms

from insertions in the Kähler potential are subleading [76].
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minimum, the excitation along the flat direction is much lighter than the excitations

orthogonal to it as well as the gauge bosons. This allows us to integrate out the heavy

modes and obtain an effective potential for the light excitation.

Let us restrict ourselves to the flat direction by setting

ϕa = v cosα, ϕ−b = v sinα, (3.8)

where

cosα =

√

b

a + b
, sinα =

√

a

a + b
. (3.9)

The scalar potential for v becomes

V (v) = −P v2 −
(

2Q

a + b

)

(v2)(a+b)/2 +
(

R

a+ b− 1

)

(v2)a+b−1, (3.10)

with

P =
bm2

a + am2
b

a+ b
,

Q =
A

Ma+b−3
∗

[

aabb

(a+ b)a+b−2

]1/2

, (3.11)

R =
|λ|2

M2a+2b−6
∗

[

aabb

(a + b)a+b−2

]

(a + b− 1).

In terms of these variables, the minimum is given by

v =
[

1

2R

(

Q+
√

Q2 + 4P R
)]1/(a+b−2)

. (3.12)

Parametrically, this is on the order of

v ∼
(

mMa+b−3
∗

)1/(a+b−2)
, (3.13)

where m is the generic soft mass. Thus, we expect m� v �M∗. The true minimum

of the potential does not lie precisely along the flat direction if m2
a 6= m2

b . However,

the deviation is very small, and can be expanded in powers of (m2
a −m2

b)/g
2v2 � 1.

We will discuss this further below.
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For the special (1, 1) case with field charges ±1, we disallow the bilinear term as

in Ref. [77]e.g. by a string selection rule and only include the next-to-leading order

term in the superpotential,

W(1,1) =
λ

M∗
Φ2

1Φ
2
−1. (3.14)

The various terms in the potential are therefore

VF =
4|λ|2
M2

∗

(

|ϕ1ϕ
2
−1|2 + |ϕ2

1ϕ−1|2
)

, (3.15)

VD =
g2

2

(

|ϕ1|2 − |ϕ−1|2
)2
, (3.16)

Vsoft = −m2
1|ϕ1|2 −m2

−1|ϕ−1|2 −
(

A

M∗
ϕ2

1ϕ
2
−1 + h.c.

)

. (3.17)

In the following sections we will analyze in detail the equations of motion resulting

from this scenario.

3.2.2 Equations of Motion and Approximate Solutions

The equations of motion for the system are

0 = DµDµ ϕi +
∂V

∂ϕ∗
i

, (3.18)

0 = ∂νF
ν
µ + i g

∑

i

Qi (ϕ
∗
i

↔
Dµ ϕi) , (3.19)

where Dµ = ∂µ + i g QAµ is the gauge-covariant derivative.

To obtain an approximate solution to these equations that describes a cosmic

string, it is convenient to introduce an Ansatz for the vector and scalar fields. Our

Ansatz for a string with winding number N is

ϕa = v (1 + ε) cosα eiNaφ fa(r),

ϕ−b = v (1 − ε) sinα e−iNbφ fb(r), (3.20)

Aφ =
N

gr
ã(r).

In these expressions, r and φ are the radial and angular cylindrical coordinates relative

to the string axis, v is the vacuum expectation value, and cosα and sinα are defined in
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Eq. (3.9). The dimensionless parameter ε characterizes the deviation from D-flatness

at the absolute minimum, and will be treated as a small number. The functions fa(r),

fb(r), and ã(r) are undetermined string profiles. They are subject to the boundary

conditions

fa, fb, ã→ 0 as r → 0, fa, fb, ã→ 1 as r → ∞. (3.21)

The relative winding numbers of ϕa and ϕ−b allow for both Dφϕa and Dφϕ−b to fall

off more quickly than 1/r as r → ∞. This is a necessary condition for the string

tension to be finite.

Inserting the profile functions into the equations of motion, we obtain

0 = f ′′
a +

1

r
f ′

a −
N2a2

r2
(1 − ã) fa − a

(

ab

a + b

)

[

(1 + ε)2f 2
a − (1 − ε)2f 2

b

]

fa(3.22)

− 1

v(1 + ε) cα

1

g2v2
e−iNaφ ∂Ṽ

∂ϕ∗
a

,

0 = f ′′
b +

1

r
f ′

b −
N2b2

r2
(1 − ã) fb + b

(

ab

a + b

)

[

(1 + ε)2f 2
a − (1 − ε)2f 2

b

]

fb(3.23)

− 1

v(1 − ε) sα

1

g2v2
eiNbφ ∂Ṽ

∂ϕ∗
−b

,

0 = ã′′ − 1

r
ã′ +

(

2ab

a+ b

)

[

a (1 + ε)2 f 2
a + b (1 − ε)2 f 2

b

]

(1 − ã). (3.24)

In these expressions we have separated out the D-term part of the potential by

defining Ṽ = (V − VD). We have also written the cylindrical radial coordinate r

in units of (gv)−1. Thus, when we discuss the value of r in absolute terms, it will

always be relative to the scale (gv)−1. The equations of motion are complicated and

non-linear, but we can obtain approximate solutions in the three regions r � 1,

1 � r � gv/m, and r � gv/m. We consider each of these regions in turn.

Region I: r � 1

For r � 1, we expect fa, fb, and ã to all be small. Expanding the equations of
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motion to linear order in the profiles, we find

fa ∼ r|Na|, (3.25)

fb ∼ r|Nb|, (r � 1) (3.26)

ã ∼ r2, (3.27)

This behavior agrees with the expectation from Refs. [168, 169]

Region II: 1 � r � gv/m

In the intermediate region 1 � r � gv/m, we expect fa, fb, and ã to all be on

the order of unity. As we will discuss below, in this region it is also self-consistent to

neglect the contribution of Ṽ = (V −VD) to the equation of motion and to set ε = 0.

The equations of motion for fa and fb simplify if we rewrite them in terms of f+(r)

and f−(r), defined by















f+ = 1
2
(fa + fb)

f− = (fa − fb)
⇔















fa = f+ + 1
2
f−

fb = f+ − 1
2
f−

. (3.28)

The equations of motion for fa and fb then imply

0 ' f ′′
− +

1

r
f ′
− −

(

2ab

a+ b

)

[

(a+ b)f+ +
1

2
(a− b)f−

]

f+f−, (3.29)

0 ' f ′′
+ +

1

r
f ′

+ − 1

2

(

2ab

a + b

)

[

(a− b)f+ +
1

2
(a+ b)f−

]

f+f−, (3.30)

As r grows larger than unity, the boundary conditions imply f+ → 1 and f− → 0. If

f+ is slowly varying in this region, the approximate solution for f− is

f− ∼ K0(
√

2abf+r) ∼
√

1

r
e−

√
2ab f+ r. (3.31)

Thus, f− falls off quickly, corresponding to the damping of the scalar excitation

orthogonal to the flat direction. With f− very small, the equation for f+ reduces to

0 ' f ′′
+ +

1

r
f ′

+. (3.32)
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The corresponding solution is

f+ = f0 ln
(

r

r0

)

, (3.33)

for some constants f0 and r0. Our approximate result is self-consistent because f+ is

indeed a slowly-varying function of r.

We can also use this expression for f+ to check the range of r over which we can

safely neglect the effects of the Ṽ term in the equation of motion (eqs.3.22-3.24). For

f− � 1, f+ ∼ 1, this term is on the order of (m2/g2v2) f+, where m is the scale of

the soft supersymmetry breaking terms. The necessary condition for ignoring the Ṽ

contribution to the equation of motion to the level of approximation we are working

to is

f ′′
+,

1

r
f ′

+ �
(

m2

g2v2

)

f+ ⇒ r � g v

m
. (3.34)

To track the evolution of the gauge profile it helps to define δã = 1 − ã. The

corresponding equation of motion is

0 ' δã′′ − 1

r
δã′ − ab f 2

+δã, (3.35)

where we have made use of the fact that f− is expected to damp out quickly and that

ε� 1. The solution is

δã ∝ rK1

(√
2abf+r

)

∼
√
r e−

√
2abf+r. (3.36)

Therefore, δã is damped out exponentially as well, and ã quickly approaches unity.

Let us point out that the physical gauge boson mass is
√

2ab g v. Thus, this mass

controls the width of the gauge field profile (remembering that r is expressed in units

of 1/gv here), as well as the width of the profile of f−(r).

Region III: r � gv/m

In the very large field region, r � gv/m, the flat potential Ṽ and the deviation

of ε from zero become relevant to the evolution of f+ and f−. For these large values
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of r, it is convenient to write

δf+ = 1 − f+, (3.37)

since we expect |δf+| � 1. Consider first the effect of Ṽ and ε 6= 0 on the evolution

of f−. The equation of motion to linear order in f− and δf+ becomes

0 = f ′′
− +

1

r
f ′
− − [2ab + O(ε)] f− − 4 ab ε+

(

m2
a −m2

b

g2v2

)

. (3.38)

To be able to impose f− → 0, we must choose

ε =
1

4 ab

(

m2
a −m2

b

g2v2

)

. (3.39)

This is consistent with our previous assumption that ε� 1.

Inserting this value of ε into the linearized equation of motion for δf+, we find

0 = δf ′′
+ +

1

r
δf ′

+ −m2
Sδf+, (3.40)

where m2
S is a positive constant on the order of m2/g2v2. In the units we are using,

this is of the same size as the mass of the light excitation about the almost-flat

direction. A possible constant term in Eq. (3.40) vanishes through the minimization

condition for v given in Eq. (3.12). The solution for δf+ in the very large r region is

therefore

δf+ ∝ K0(mS r) '
√

π

2mS r
e−mS r. (3.41)

Again, this is consistent with the results of Refs. [168, 169].

3.2.3 String Tensions

Having obtained approximate expressions for the string profiles, we estimate the

tension of cosmic strings in the (a, b) model for various values of the winding number

N . Using the Ansatz of Eq. (3.20), the contributions to the tension of a string in the



50

(a, b) model are

µrad/π v
2 = 2

∫ ∞

0
dr r

[(

b

a+ b

)

(f ′
a)

2 +
(

a

a+ b

)

(f ′
b)

2

]

, (3.42)

µang/π v
2 = 2N2 ab

∫ ∞

0
dr

1

r

[

(

a

a + b

)

f 2
a +

(

b

a + b

)

f 2
b

]

(1 − ã)2,

µmag/π v
2 = N2

∫ ∞

0
dr

1

r
(ã′)2,

µpot/π v
2 =

∫ ∞

0
dr r

1

g2v4
V (fa, fb).

Except near the origin, and certainly whenever the potential V given in eqs.(3.6)

is relevant, it is a very good approximation to set fa = fb = f+. In this limit, the

potential can be written in the form

1

g2v2
V (f) ' −δ1 (f 2

+−1)−
(

2

a + b

)

δ2 (f a+b
+ −1)+

(

δ2 + δ1
a+ b− 1

)

(f 2a+2b−2
+ −1). (3.43)

Here, we have implicitly assumed that a+ b ≥ 4. The dimensionless constants δ1 and

δ2 are given by

δ1 =
1

a+ b

(

bm2
a + am2

b

g2v2

)

, (3.44)

δ2 =
1

g2v2

A

Ma+b−3
∗

[

aabb

(a+ b)a+b−2

]1/2

va+b−2.

Using the parametric value of the VEV given in Eq. (3.13), these constants are of

size

δ1,2 ∼
(

m

M∗

)2(a+b−3)/(a+b−2)

. (3.45)

For M∗ ∼ MPl and m ∼ TeV, we find 10−30 . δ1,2 . 10−15. Although the expres-

sions presented above were formulated for strings in the (a, b) theory, they can also

be applied to (1, 1) theory cosmic strings. The correct formulae for the (1, 1) case

are obtained by setting a = b = 1 in the radial and angular components of the ten-

sion (µrad and µang in Eq. (3.42)), but a + b = 4 in the expression for the potential

(Eq. (3.43)). This adjustment accounts for our inclusion of terms beyond the leading

order for (1, 1) strings.
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To estimate the string tensions, we have used variational methods as in Ref. [44].

Our trial profile functions are inspired by the approximate solutions found above.

They are

fa(r) =































p1(r/r1)
|Na| r ≤ r1

p5 + p3 ln
(

r
r1

)

r1 < r < r2

1 − p4 e
−(r−r2)/r3 r ≥ r2

fb(r) =































p2(r/r1)
|Nb| r ≤ r1

p5 + p3 ln
(

r
r1

)

r1 < r < r2

1 − p4 e
−(r−r2)/r3 r ≥ r2

(3.46)

ã(r) =















a0

[

3
(

r
ra

)2 − 2
(

r
ra

)3
]

r ≤ ra

1 r > ra

.

The undetermined parameters are {r1, r2, r3, ra, p1, p2, p3, p4, p5}. We fix four of

them, p1, p2, p3, and p4, by requiring continuity at r = r1 and r2, and differentiability

at r2 (where the solution is expected to be slowly varying) but not at r1.

For a (1, 1) model string with winding number N = 1 and δ1 = δ2 = 1 × 10−20,

our variational estimate of the tension is

µrad/πv
2 = 0.09093,

µang/πv
2 = 0.00247,

µmag/πv
2 = 0.00228, (3.47)

µpot/πv
2 = 0.00228,

µtot/πv
2 = 0.09796.
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Figure 3.1. Profile function of the scalar field f(r) for N = 1 strings in (1, 1) model, where r is in
unit of 1/gv

The corresponding values of the variational parameters are

r1 = 14.01,

r2 ' r3 = 3.112 × 109, (3.48)

ra = 36.26,

p5 = 0.04713.

Recall that we express all dimensionful quantities in units of 1/gv. We plot the profile

functions for (1, 1) model with N = 1 in Fig.3.1,3.2.

As expected, the gauge profile is much narrower than the scalar profiles (i.e.,

ra � r2), which have substantial support out to r ∼ 1/
√

δ1,2. The small r power-law

form of the scalar profiles extends out about as far as the gauge profile (i.e., r1 ' ra),

after which it continues to grow logarithmically slowly until the profile reaches unity.

We also find that the total string tension is dominated by the radial contribution.

To a very good approximation, the shape of the profiles and the value of the string
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Figure 3.2. Profile function of the gauge field a(r)for N = 1 strings in (1, 1) model,where r is in
unit of 1/gv

tension do not depend on δ1 and δ2 independently, but rather on the combination

∆ = δ1 + δ2/2. (3.49)

This can be seen explicitly by evaluating µpot using the Ansatz profiles of Eq. (3.46)

and keeping only the leading terms in the expansion in 1/ ln(δ1,2) � 1.

We have investigated a number of other sets of profile functions as well. As long

as the trial scalar profile increases sufficiently (logarithmically) slowly in the region

1 � r � 1/
√
δ and drops rapidly for larger r, we find that the resulting estimates

for the string tension are very similar. This gives us confidence that our estimates

are close to the exact values. 3

3Exact solutions to the equations of motions for profile functions are unknown, since they are

coupled to each other and non-linear. This is even true for the simpler Abelian-Higgs model (ex-

cept for the ‘critical coupling’ case where mA = mφ[169]). The approach we employed here is a

generation of the one well applied for the Abelian Higgs model[44]–one solves the equations explic-

itly at asymptotic regions and then makes proper smooth connections in between–which is a good

analytical parametrization.
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Figure 3.3. Tensions of N = 1 strings as a function of the potential parameters δ1 = δ2 for various
(a, b) theories.

Fig. 3.3 shows the dependence of the string tension in the (1, 1), (1, 3), (2, 3),

(2, 5), and (3, 4) models on the value of δ1 = δ2 = 2∆/3 for a winding number N = 1.

Even for very small values of δ1,2, corresponding to extremely flat potentials, the

string tension is within about an order of magnitude of v2. Thus, while the string is

very wide in units of 1/g v, the VEV still sets the size of the tension. The tensions

are also very similar for different values of (a, b). This is not very surprising given

that the radial portion of the string tension appears to be the dominant one. In the

r � 1 region, we expect fa ' fb so that the expression for the radial contribution

to the tension in Eq. (3.42) does not depend explicitly on (a, b). The dependence

on (a, b) only then comes about through the size of the terms in the potential. In

generating Fig. 3.3, we neglected this dependence by specifying the value of δ1 = δ2

explicitly. Our results also suggest that the detailed form of the (non-D) potential

does not play a significant role in determining the string tension or the string profiles

other than to set the scale at which the scalar profiles are cut off.
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Figure 3.4. String tensions as a function of the winding number N for the potential parameters
δ1 = δ2 = 1 × 10−20 in various (a, b) theories. Note that the tension of the N = 2 string is much
smaller than twice the tension of the N = 1 string, thereby allowing stable N = 2 strings.

In Fig. 3.4 we illustrate the variation of the tension for strings in the (1, 1), (1, 3),

(2, 3), (2, 5), and (3, 4) models with the winding number N for δ1 = δ2 = 1 × 10−20.

These tensions increase very slowly with N , approximately logarithmically. As the

winding number increases, the widths of the vector field profile and the inner portion

of the scalar profile do too. This allows the angular and magnetic contributions to

the string tension to increase much more slowly than N 2. The increase of the profile

radii r1 and ra with the winding number N is shown in Fig. 3.5 for a (1, 1) model

string with δ1 = δ2 = 1× 10−20. For both r1 and ra, the increase with N is very close

to linear. The corresponding plots for the other values of (a, b) discussed above are

nearly identical. Unlike r1 and ra, varying N has very little effect on r2.

We can combine the results presented above into a simple approximate parametriza-

tion of the string tensions. The string tension increases close to logarithmically

with the winding number N , but has a more complicated dependence on δ1 and

δ2, primarily through the combination ∆ = δ1 + δ2/2. In the range 1 < N < 100,
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Figure 3.5. Dependence of the inner scalar profile width (r1) and vector profile width (ra) on the
winding number number N for a (1, 1) model string with δ1 = δ2 = 1 × 10−20.

10−30 < ∆ < 10−15, and δ1 and δ2 within an order of magnitude from each other,

the tension of a (1, 1) string is reproduced to an accuracy of a few percent by the

empirical formula

µ/π v2 '
[

4.2

ln(1/∆)
+

14

ln2(1/∆)

] (

1 +

[

2.6

ln(1/∆)
+

57

ln2(1/∆)

]

lnN

)

. (3.50)

Since the tension of an (a, b) theory string is very similar to that of a (1, 1) theory

string for a given set of values of δ1 and δ2, this formula also provides a reasonable

approximation to the tension of strings in these more general theories.

In summary, we find that the cosmic strings that arise from breaking a U(1) gauge

symmetry along an almost flat direction within the (a, b) models are very strongly of

the Type-I variety. The qualitative features of these strings can be characterized by

two scales: the VEV v; and the scale of the curvature near the minimum m, which

in the present case is set by the soft supersymmetry breaking scale m ∼
√

|ma|2 ∼
√

|mb|2 ∼ A. It is the hierarchy m � v that makes the potential flat. The tension

of flat-direction strings is about µ ∼ 0.1πv2, while their total thickness is w ∼ m−1.
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The internal structure of the strings consists of a thin vector field core, of width close

to v−1, surrounded by a much broader scalar profile of radius m−1. Flat-direction

cosmic strings also have stable higher modes. The tension of these modes grows very

slowly with the winding number N , increasing as lnN with a small coefficient.

These features are much different from those of ordinary cosmic strings derived

from the abelian Higgs model, for which the relevant scales are all on the order

of the VEV v. On the other hand, the qualitative structure and the tensions of

strings derived from the (a, b) model presented above are in agreement with other

studies of flat-direction cosmic strings [44, 45, 46, 48]. Within the (a, b) models, we

find that the form of the string profile away from the central core and the tension

can be described well from a knowledge of m and v alone, without reference to the

precise form of the potential (or a and b). This suggests that many of the results of

the following sections, where we investigate the phenomenological features of (a, b)-

theory flat-direction cosmic strings, will apply to flat-direction strings derived from

other theories as well.

3.3 String Interactions

When a pair of Type-II or weakly Type-I abelian strings with the same winding

number intersect, there are effectively two possible outcomes. They can simply pass

through each other, or they can exchange partners and reconnect (intercommute).

When a pair of strongly Type-I N = 1 strings collide, there is a third possibility [57].

Studies of Type-I strings in the abelian Higgs model suggest that the force between

string segments is attractive. Thus, the segments can pull together near the inter-

section point to form a length of N = 2 string, which is stable and lower in energy

than a pair of N = 1 segments. Under favorable conditions this segment will grow,

effectively zippering the pair of N = 1 strings into a single N = 2 string. When

even higher-winding modes of strongly Type-I strings are stable as well, we can also
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consider the outcome of the intersection of two strings with general winding numbers

N1 and N2. Besides passing through each other, the topology of the configuration

permits the formation of zippers with winding numbers |N1 +N2| and |N1 −N2|.

Reconnection plays an essential role in the cosmological evolution of a cosmic

string network. It allows the network to modulate its energy by forming string loops,

which can decay away. Without reconnection and loop formation, the energy density

in the string network could come to dominant the universe [168, 169]. Analytic esti-

mates and numerical simulations of Type-II and weakly Type-I strings in the abelian

Higgs model suggest that the probability that a pair of strings will reconnect after

they intersect is close to one, Pr ' 1 [61, 62, 63]. However, this result need not apply

to very strongly Type-I strings. These strings can form zippers, and therefore the

probability of reconnection in a string collision may differ from unity. This can have

important consequences for the evolution of a string network in the early universe.

In this section we investigate how flat-direction cosmic strings interact with each

other. We begin by discussing the forces between a pair of string segments. Next,

we study the reconnection and zippering of strings when they intersect. Zippering

can reduce the probability of reconnection, and it can also lead to qualitatively new

string structures that cannot be formed by Type-II strings. We investigate how these

features alter the formation of string loops. The results of this section are applied in

the sections to follow.

3.3.1 Inter-String Forces

We found in Section 3.2 above that the tension of an N = 2 flat-direction cosmic

string is considerably lower than twice the tension of an N = 1 string. Therefore

bringing a pair of N = 1 strings together (adiabatically) from infinity to form an

N = 2 segment will lower the total energy of the system. As a result, we expect the

(non-gravitational) force between a pair of parallel flat-direction cosmic strings to be
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attractive. More generally, we expect the interstring force to be attractive for any

other relative orientation as well.

Our expectation is supported by both analytic estimates of the interstring forces in

the abelian Higgs model [78, 79, 80],4 as well as in numerical investigations [81, 82, 83].

It is argued in these works that the contributions to the interstring force from the

vector profile are attractive only for anti-parallel strings and repulsive otherwise,

while the scalar profile contributions are always attractive. For Type-I strings, the

scalar profile is wider than the vector profile and its contribution to the force has a

longer range and is always dominant. The vector profile has a larger range for Type-

II strings explaining why the force between parallel strings is repulsive. The scalar

profile in flat-direction strings is much wider than the vector profile, so the results

obtained in the abelian Higgs model suggest that the force between these strongly

Type-I strings is attractive as well.

An alternative possibility, consistent with the energetics, is that the interstring

force between flat-direction strings is repulsive at distances larger than the string

width, and only becomes attractive when the strings overlap significantly. Even if

this were true, it would likely not have a large effect on how these strings interact in

the early universe. Since the strings we are studying are local (gauged), the interstring

force has a very short range, falling off exponentially outside the string core. When

a pair of strings approaches an intersection, the interstring forces will be non-trivial

only in the small region near the intersection point, and hence the interaction energy

will be finite. We expect the energy required to overcome this barrier, if it is present,

to be much smaller than the initial kinetic energy carried by the incident string

segments.

4However, when attempting to reproduce the argument of [79] we found an opposite sign in the

scalar term at large string separations. Thus, we are not sure that argument is definitive.
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3.3.2 String Reconnection and Zippering

A pair of strings with the same winding number is said to reconnect (or intercommute)

if they exchange ends upon intersection. The result of this process is illustrated

in Fig. 3.6, following Ref. [57]. The initial state consists of two infinite straight

strings, each with speed ν and a relative angle α, approaching each other along

the z-axis. After exchanging ends, causality implies that the segments of the strings

very far (spacelike-separated) from the intersection point continue along their original

trajectories. Connecting these asymptotic segments are new segments moving in the

±y directions. The labels 1 and 2 in the figure indicate which incident string the

corresponding asymptotic string segment came from. The total length of string in

the final configuration is clearly less than in the initial. Energy is conserved because

the newly-formed segments carry a velocity ν ′ in the ±y-directions.

Over distances that are large compared to the string width but small compared

to the horizon size, the motion of cosmic strings should be well-described by treating

them as ideal Nambu-Goto (NG) strings propagating in a flat spacetime background.

Therefore a necessary condition for string reconnection is that the initial and final

configurations be kinematically allowed in the NG approximation. It is not hard to

check that for any initial relative velocity ν and for any relative angle α (as defined

in Fig. 3.6), this is the case [57].

The existence of a classical string solution for reconnection does not imply that

it actually occurs whenever a pair of strings intersect. The precise outcome depends

on the internal structure of the strings, which is highly non-linear and very difficult

to treat analytically. Much of the work on this topic has therefore consisted of lattice

simulations of the corresponding classical field configurations in the abelian Higgs

model for Type-II or weakly Type-I strings. These simulations generally find that

the probability of reconnection in a string intersection is close to unity except for very

large initial velocities, ν & 0.9 [61, 62, 63]. Early attempts to study this question
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Figure 3.6. Pictorial representation of string reconnection in the xy and xz planes following
Ref. [57]. The initial state consists of string 1 and string 2 approaching each other along the z-axis,
each with speed ν. In the xz plane, we show only the lower string portion. The labels 1 and 2
indicate which of the incident strings the corresponding segment was derived from.

analytically, by comparing the interaction time of the fields in the string core to the

time it takes for the pair of strings to pass through each other, find much the same

result [60].

In addition to reconnecting or simply passing through each other, when a pair of

strongly Type-I strings intersect they can also zipper into a segment with a higher

(or lower) winding number [56, 57, 58]. This is illustrated in Fig. 3.7, following

Ref. [57], where the initial state consists of two strings with the same winding number

N1 = N2 = N approaching each other along the z-axis, each with initial speed ν.

When the strings intersect, a new segment of winding number Nzip = 2N is formed

along the x-axis. This is the zipper. When kinematically allowed (we will discuss this

in detail later in this subsection (3.3.2)) it can proceed to grow along the x-axis at

the speed νzip. The string segments far from the intersection point (labelled by 1 and

2 in Fig. 3.7) continue along their initial trajectories on account of causality.

Zippering has received much less attention than reconnection, and we know of

only a handful of simulations that have studied it [56, 58, 84]. If string zippering



62

νzip

νzip x

y
1 2

2 1

α νzip

νzip
x

z

2

1

2

1
ν

ν ν

ν

Figure 3.7. Pictorial representation of string zippering in the xy and xz planes following Ref. [57].
The initial state consists of string 1 and string 2 approaching each other along the z-axis, each with
speed ν. In the xz plane, we show only the lower string portion. The labels 1 and 2 indicate which
of the incident strings the corresponding segment was derived from.

is efficient, it will reduce the probability of reconnection. Given the importance of

reconnection for the evolution of cosmic strings in the early universe, this is a crucial

issue to be resolved.

As for reconnection, a necessary condition for string zippering is that it be clas-

sically allowed in the NG approximation. Again, this condition is only a necessary

one, and the existence of a classical zippering solution does not imply that it actually

takes place. Classical zippering solutions have been constructed in Refs. [57, 85]. Un-

like for reconnection, there exist significant kinematic constraints on zippering due to

energy conservation. For a pair of strings with identical winding numbers N , initial

speeds ν, and a relative angle α, the kinematic constraint on forming a zipper with

Nzip = 2N is found to be [57]

√
1 − ν2 cosα >

µ2N

2µN

, (3.51)

where µN is the tension of the incident segments and µ2N is the tension of the zipper.

The total length of the zippered configuration is greater than the initial state. Thus,

a zipper can form only if it tends to lower the energy of the configuration due to

the string tension, which requires µ2N < 2µN .5 On the other hand, zippering does

5The total energy of the configuration is conserved because parts of the interacting string seg-
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not occur if the incident strings collide with too great a velocity ν, or if the relative

opening angle between strings with the same winding orientation is too large.

In Fig. 3.8 we show the kinematic constraints on the zippering of a pair of N = 1

strings, in terms of the incident relative velocity ν and the relative angle α, defined in

Fig. 3.7. The region where zippering is kinematically allowed lies below the curves.

The dashed line for weakly Type-I strings was obtained assuming µ2/µ1 = 1.9. The

solid line corresponding to the kinematic constraint on a strongly Type-I flat-direction

string was obtained using the tensions from Eq. (3.50), and found to be µ2/µ1 ' 1.06.

As we will discuss below, the typical relative velocity of a pair of strings in the early

universe is expected to be less than about ν . 0.7. Thus, zippering of flat-direction

strings in the early universe is kinematically allowed for a wide range of relative angles.

In the weakly Type-I case, zippering is only possible for small relative velocities and

angles making it much less likely to occur. This is why flat-direction strings can have

a qualitatively different behavior in the early universe from the strings in the abelian

Higgs model. Recall that there are no kinematic constraints on reconnection.

More generally, zippering can occur between Type-I strings with different tensions.

Incident strings with winding numbers N1 and N2 can zipper into segments with

Nzip = (N1 +N2) or Nzip = |N1 − N2| [56]. The corresponding kinematic constraint

for the zippering of strings with unequal tensions was deduced in Ref. [85]. Zippering

is only possible when the tension of the zippered segment is less than the sum of

the tensions of the incident segments. Even when this condition is met, zippering is

only allowed for a limited range of relative incident velocities ν and relative angles

α (as defined in Fig. 3.7). We illustrate these kinematic constraints in Fig. 3.9 for

the incident string pairs N1 = 1 and N2 = 2, N1 = 1 and N2 = 100, and N1 = 100

and N2 = 101. The tensions of these strings were computed using Eq. (3.50) with

∆ = 10−20, which applies to flat-direction strings in the (a, b) theory described in

ments gain kinetic energy.
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Figure 3.8. Kinematic constraints on zippering of two N = 1 strings to form an N = 2 string, in
terms of the angle α indicated in Fig. 3.7 and the relative velocity ν. The allowed regions lie below
the curves. The dashed line corresponds to weakly Type-I strings, with µ2/µ1 = 1.9. The solid line
corresponds to strongly Type-I strings associated with a flat direction potential, with ∆ = 10−20,
and tensions computed according to Eq. (3.50), which gives µ2/µ1 ' 1.06.

Section 3.2. As before, the regions in which zippering is kinematically allowed lie

below the curves. The kinematic constraints on flat-direction strings are not overly

restrictive, and zippering of various sorts is possible over a wide range of relative

velocities ν and relative angles α (as defined in Fig. 3.7).

When a pair of strings with winding numbers N1 and N2 intersect, they can pass

through each other, or they can form a zipper with Nzip = (N1 + N2) or |N1 − N2|.

If N1 = N2, these strings can also reconnect.6 There is no kinematic restriction

on reconnection, and the kinematic constraints on zippering (into one of |N1 ± N2|)

are fairly mild. Having determined the possible outcomes, it is a much more difficult

task to determine which of them actually occurs. The answer depends on complicated

6In fact, string reconnection can be treated as the formation of a zipper with Nzip = 0. The

classical NG zippering solution reduces to the reconnection solution in this limit. The absence of a

kinematic constraint on reconnection can be seen by setting µzip = 0 in Eq. (3.51).
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Figure 3.9. Kinematic constraints on zippering of strongly Type-I strings, for some examples
involving higher winding numbers. The allowed regions lie below the curves. We have taken ∆ =
10−20, and tensions computed according to Eq. (3.50).

non-linear field dynamics within the string cores, and would appear to be tractable

only through numerical simulation. Unfortunately, even this approach is further

complicated by the large disparity in scales between the sizes of the vector and scalar

profiles within the strings. Such a simulation is beyond the scope of this work.

However, our assumption that zippering is realized when kinematically allowed is

compatible with several simulations we know of that treat the zippering of Type-

I (abelian Higgs) strings [56, 58] and cosmic superstrings[59]. In these analyses,

zippering appears to be a generic outcome of a low-speed string intersection. In

Ref. [58], the strings are found to grow until they reach the size of the box used for

the simulation, after which they pull apart. This appears to be the result of the

boundary conditions applied to the box. We expect that in the applications of our

assumptions about string zippering and reconnection, our qualitative results will still

hold true provided the zippering and reconnection probabilities are of order unity.

To proceed, we will assume that zippering or reconnection are likely to occur when
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they are kinematically allowed. Given the high probability of reconnection of abelian

Higgs strings, this assumption does not seem overly optimistic. When both zippering

and reconnection are possible, or when more than one kind of zippering is allowed,

we will make use of the fact that the net force between a pair of strings is expected

to be attractive. This suggests that, near the intersection point, the strings will pull

together in whichever way is easiest. Thus, for a pair of strings with winding numbers

N1 and N2, we will assume that a zipper with Nzip = N1 + N2 forms when α < 45o

(provided it is kinematically allowed), and that Nzip = |N1 −N2| results for α > 45o.

We identify the case N1 −N2 = 0 with reconnection.

We end this section with a brief comment of comparison regarding (p, q) cosmic

strings arising from superstring theory. Like the flat-direction gauge-theory cosmic

strings under consideration, (p, q) strings are also able to reconnect and form zip-

pers [68]. Even so, there are several important differences between the inter-string

interactions within these two classes of cosmic strings. The reconnection of (p, q)

strings is a quantum mechanical process that can be related to amplitudes in super-

string theory [69, 70, 71, 72, 73, 74, 75]. In this sense, it is more tractable than the

non-linear classical calculation required for field theory strings. It is found that the re-

connection probability for (p, q) strings can be much smaller than unity, Pr ∼ 10−3−1,

depending on the underlying microscopic details. The rules for zippering are also dif-

ferent for (p, q) strings. An initial state consisting of the modes (p, q) and (p′, q′) can

form a zippered state with (|p ± p′|, q ± q′), which is similar to the topological rule

for Type-I field theoretic strings presented above. However, a (p, q) cosmic string

is stable only if p and q are relatively prime integers, and thus the resulting zipper

may sometimes decay into lower string modes. A recent numerical simulation of a

toy-model for (p, q) cosmic superstrings has found that long-lived zippered states are

formed provided the forces between the strings are short-ranged [84].
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3.3.3 Loop Formation

Reconnection plays a crucial role in the evolution of a cosmic string network because it

is the means by which string loops form. String loops are not topologically stable, and

their decays transfer energy out of the string network. When cosmic strings are also

able to form zippers there are new ways for string loops to form and interact. In the

present section we enumerate some of these additional possibilities. We will discuss

the resulting effects on the cosmological evolution of a string network in Sections 3.4

and 3.5.

In Fig. 3.10 we illustrate the two ways in which a loop can form when a string

intersects itself. The first possibility produces a free loop through the reconnection of

the intersecting segments. This can occur for both Type-I and Type-II strings, and is

the standard mechanism for loop formation. The loop produced is free from the parent

string. The second possibility for loop formation through self-intersection involves

zippering of the connecting segments. The loop formed in this way remains bound to

the parent string by a zippered segment of winding number Nzip = 2N1, where N1 is

the winding number of the parent. We expect the zippered segment formed in this

way to grow until the opening angle at the junction approaches the kinematic bound

given in Eq. (3.51). Subsequently, provided there are no disturbances on the string

large enough to rip the zipper apart, the bound string loop will remain attached to

the parent string as it radiates and shrinks to naught.

String loops can also be formed by the double intersection of a pair of curved

strings. Suppose the incident strings have winding numbersN1 andN2. The topologically-

allowed loops that can form in this way are illustrated in Fig. 3.11. At each inter-

section, there are two ways for the strings to interact with each other by zippering;

they can form segments of winding number Nzip = N1 + N2 or Nzip = N1 − N2.

(Here and only here, the sign of Ni should be understood as specifying the relative

orientation of the string segment.) Possibility 1, in which both intersections pro-
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Figure 3.10. Two possible ways to form a loop from the self-intersection of a string segment.
Possibility 1, in which a free loop is formed by string reconnection, can occur for both Type-I and
Type-II strings. Possibility 2, in which the loop remains connected to the parent string by a zippered
segment of a higher winding mode string, is only possible for Type-I strings.

duce segments of winding Nzip = N1+2 = N1 + N2 corresponds to the usual Type-II

outcome when N1 = −N2. Possibility 2 has both zippered segments with windings

Nzip = N1−2 = N1 − N2. It reduces to the standard Type-II case for N1 = N2.

Possibility 3 has zippered segments with winding N1 + N2 and N1 − N2. It is not

immediately obvious how these configurations will evolve, but we speculate that the

loops will shrink, either through zipper growth or loop radiation, until only a single

zippered segment remains. The multiple outcomes shown in Fig. 3.11 also illustrate

some of the many new qualitative features of a string network consisting of strongly

Type-I strings.

3.4 Cosmic String Formation and Evolution

Cosmic strings are much less strongly constrained by cosmology than most other

types of topological defects [168, 169]. The reason for this is that a network of cosmic

strings is able to regulate its energy density by forming loops, which radiate away.

Without loop formation, the energy density in a cosmic string network would scale
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Figure 3.11. Three ways to form a loop from the overlapping intersection of a pair of Type-I
cosmic strings with winding numbers N1 and N2. In the figure, we have labelled the net winding
number of each string segment.

as a−2, redshifting more slowly than both matter (a−3) or radiation (a−4), and could

come to dominate the universe. Instead, when strings are able to form unstable loops,

numerical and analytic simulations suggest that the energy density of a string network

tracks the dominant background matter or radiation density [177, 178, 179, 180, 181].

This behavior is called scaling. In the scaling regime, the energy density of the string

network makes up a fixed proportion of about Gµ of the total energy density, and

this proportion is nearly independent of the initial string density. As long as Gµ is

not too large, Gµ . 3 × 10−7 [95, 96, 97, 98, 99, 100], cosmic strings are generally

consistent with existing cosmological bounds.

The behavior described above was deduced from the study of Type-II abelian

Higgs string networks containing only a single string species [168, 169]. Strongly

Type-I strings associated with supersymmetric flat directions can modify this picture

in a couple of important ways. First, flat-direction strings have stable higher winding
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modes. Even if modes with N > 1 are not formed initially, they can be produced as

the network evolves by the zippering of lower string modes. This opens the possibility

that flat-direction strings form a multi-tension string network consisting of many

different species. The second reason why the evolution of flat-direction strings in

the early universe is likely to be different than for ordinary strings is the flatness

of the scalar potential. If the U(1) gauge symmetry corresponding to the strings is

restored after (or near the end of) primordial inflation, it is likely that there will be

a second, later period of thermal inflation [86, 88]. Flat-direction strings would be

formed at the end of thermal inflation, and hence their initial evolution is expected

to be significantly different from that of abelian Higgs strings.

3.4.1 Thermal Inflation and String Formation

Thermal inflation occurs due to the sensitivity of flat potentials to thermal correc-

tions [86, 87, 88]. This flatness can be quantified by the large disparity between the

size of the curvature scale m ∼ 102−3 GeV and the size of the VEV, v ≥ 1011 GeV. At

the symmetry-preserving origin of the field space, there are additional light degrees

of freedom. These induce significant corrections to the effective potential near the

origin, making it stably concave at high temperatures, with a curvature scale on the

order of the temperature T . For m � T � v, a second lower minimum can develop

far from the origin, close to the T = 0 vacuum. If the system begins in the symmetry

preserving phase, thermal corrections will trap it at the origin until the temperature

falls down to T ∼ m [89, 46]. While the system is trapped at the origin, it has an

excess vacuum energy on the order of m2v2. Once the temperature of the universe

falls below
√
mv, the false vacuum energy can become dominant and drive a period

of inflation.

Thermal inflation lasts only until T falls down to m. The number of e-foldings of
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expansion is therefore less than [88]

Ni '
1

2
ln (v/m) ' 10 +

1

2
ln

[

(

v

1014 GeV

)

(

103 GeV

m

)]

. (3.52)

This is not enough expansion to replace primordial inflation. At the end of thermal

inflation the system evolves to the true minimum of the potential. In this regime

the constituent fields Φa and Φ−b both condense, and the theory can be described in

terms of a light chiral supermultiplet corresponding to the flat direction along with

a heavy massive vector supermultiplet [76]. The scalar component of the light chiral

multiplet rolls down the potential to the true minimum and begins to oscillate. The

false vacuum energy is transferred to the energy of the oscillations, which redshifts

like matter, and dominates until the scalar field decays into radiation and reheats the

universe.

The reheating process can be described by the system of Boltzmann equations

ρ̇φ = −3H ρφ − Γφ ρφ, (3.53)

ρ̇r = −4H ρr + Γφ ρφ, (3.54)

where ρφ is the energy density of the scalar field oscillations, ρr is the energy density

in radiation, Γφ is the scalar field decay rate, and the Hubble constant H is given by

H =
ȧ

a
=

√

8πG

3
ρtot. (3.55)

Here, ρtot is the total energy density in the universe. During reheating, ρtot is dom-

inated by ρr and ρφ. The initial values for these evolution equations are ρr ' m4,

ρφ ' m2v2, and ti ∼ 10H−1
i ∼ 10MPl/mv. The generic value of the flat-direction

decay rate is [88]

Γφ = γ
m3

v2
, (3.56)

with γ a constant less than or of order unity. Once the scalars decay at about the time

tRH = Γ−1
φ , the universe becomes radiation dominated with a reheating temperature
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of

TRH ' g∗
−1/4(MPlΓ)1/2 (3.57)

' 100 MeV
(

g∗
10

)−1/4 ( γ

0.1

)1/2
(

1014 GeV

v

)

(

m

103 GeV

)3/2

,

where g∗ is the number of relativistic degrees of freedom at temperature TRH and

MPl = 1/
√

8π G ' 2.4×1018 GeV is the reduced Planck mass. The reheating temper-

ature must exceed about 5 MeV to preserve the predictions of nucleosynthesis [90, 91].

With m = 103 GeV and γ = 1, this puts an upper bound on v . 1016 GeV, while for

m = 200 GeV and γ = 0.1, the upper bound is strengthened to v . 1014 GeV. We

will mostly focus on values of the VEV less than v ≤ 1014 GeV for the rest of the

work.

If flat-direction strings are to form, the corresponding U(1) gauge symmetry must

be restored at or near the end of primordial inflation. Thus, if flat-direction strings

are present in the universe today, they were most likely formed after a period of

thermal inflation. The initial densities and properties of the strings depend on the

details of the phase transition ending thermal inflation, when the flat-direction field

overcomes the thermal barrier and starts to roll down to the true minimum. The

nature of this transition has been studied in Refs. [89, 46]. These authors find the

tunnelling rate through the thermal barrier to be negligibly small until T ∼ m. Below

this temperature the tunnelling suppression is not parametrically large, and bubbles

nucleate rapidly. Of particular importance to string formation is the radius of the

bubbles of true vacuum when they coalesce, ξ. The initial size and separation between

string segments are approximately equal to ξ. Since the phase transition proceeds

quickly once the temperature falls below m, we expect ξ to be within a few orders of

magnitude of m−1.

The mechanism for string formation in the (a, b) model of flat-direction strings

can be most easily understood in terms of flux-trapping. The winding number of a
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cosmic string is directly proportional to the net magnetic flux it carries in its core.

In the broken phase, the magnetic flux is shielded. As a result, random fluctuations

of the gauge field in the unbroken phase can be trapped between bubbles of broken

phase. The scalar fields surrounding tubes of trapped flux then orient themselves to

form a cosmic string with the appropriate flux quantum number. If ξ is the typical

bubble size at coalescence, the mean winding number of the strings formed in this

way is [92, 93]

N ∼ g

2π

√

ξ Tf , (3.58)

where Tf is the temperature at formation. Since the phase transition proceeds quickly

once T falls below m, we expect that ξ will not be too much larger than T−1
f ∼

m−1 [46]. Therefore only the lowest winding modes will be significantly populated at

the beginning. Let us also point out that the net magnetic flux of the configuration

of Eq. (3.20) is N , independent of a and b.

3.4.2 String Network Evolution

Once cosmic strings are formed, their density evolves under the influence of the

spacetime expansion, as well as the processes of reconnection and zippering. String

reconnection is particularly important because it allows the string network to form

loops and thereby transfer its energy into radiation. In the case of ordinary (abelian

Higgs model) cosmic strings, the processes of string growth and loop production are

found to balance each other, leading to a scaling solution. Flat-direction strings

can also interact by zippering. This permits the formation of higher winding modes

starting from an initial population consisting only of the lowest few modes.

Cosmic string evolution has been studied extensively through numerical simula-

tions [168, 169, 177, 178]. However, there has been no attempt that we know of to

simulate a multi-tension string network including string zippering. In the absence

of such simulations, we turn to analytic models of string evolution for guidance. A
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number of simple models have been constructed, and they give a good reproduction

of the behavior of the long (horizon-length) string structure seen in simulations of the

abelian Higgs model. To investigate the evolution of long flat-direction strings, we

will make use of the model of Tye, Wyman, and Wasserman (TWW) [64], which gen-

eralizes the formulation of Ref. [179]. The TWW model was constructed to study the

behavior of long superstring cosmic strings, which also exhibit stable higher-winding

modes and zippering, but with different rules for the outcome of string zippering.

In the TWW model, long cosmic strings are characterized by a mean velocity ν, a

typical correlation length along the strings L, and a mean string number density na,

where a labels the winding number of the string (i.e. N = a). The number density

of the string species a is defined through its relation to the energy density according

to

ρa =
µa na√
1 − ν2

, (3.59)

where µa is the tension of the species. All string species are assumed to be described

by the same ν and L. This is a reasonable simplification for two reasons. First,

the tension of different strings is a slowly varying function of the winding number,

so in the absence of interactions with other string species, each string type should

evolve in much the same way. Second, higher winding modes are mainly formed by

the zippering of lower winding modes. Thus it is feasible that the speed and the

fluctuation size of different string varieties should be roughly similar.

The evolution equations for ν and L in the TWW model are taken to be

dL

dt
= HL(1 + ν2) + c1ν, (3.60)

dν

dt
= (1 − ν2)

[

c2
L

− ν (2H)
]

. (3.61)

These equations are based on the model of Ref. [179], where they are derived from

the averaged equations of motion for a string evolving in an expanding Friedmann-
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Robertson-Walker background spacetime.7

The TWW model generalizes Ref. [179] by adding an independent density variable

na for each species. The value of na is taken to evolve according to a Boltzmann-like

equation

ṅa = −2H na −
c2 na ν

L
− Pa n

2
a ν L (3.62)

+ F ν L
∑

b,c

[

1

2
Pabc nbnc (1 + δbc) − Pbca ncna (1 + δac)

]

.

Here, Pa is proportional to the probability of self-reconnection for a string of variety

a, Pabc is the interaction probability for the process b + c → a, and F is an overall

non-self-interaction factor. Once the time dependence of H is specified, Eqs. (3.60,

3.61, 3.62) form a closed system describing the evolution of the long string component

of a multi-tension string network.

The values of the constants appearing in Eqs. (3.60, 3.61, 3.62) can be fixed by

comparing the scaling solution for a single (non-interacting) string to values obtained

in string simulations. Ref. [64] reports that such an agreement is obtained with

c1 = 0.21, c2 = 0.18, and P1 = 0.28. We use the same values for c1 and c2, which are

related to the efficiency of loop formation and the amount of small-scale structure

on the strings, respectively. For Pa and F , we set them to Pa = F = 0.28/2 = 0.14.

Since Pa is proportional to the probability of reconnection, this accounts for our

assumption that a pair of strings is just as likely to zipper as to reconnect when both

outcomes are kinematically allowed. We also set the coefficients Pabc to

Pabc =















1; a = |b± c|, ν < νthresh,

0; otherwise.
(3.63)

These values are in accord with our assumptions about zippering. Motivated by the

7Ref. [179] also considers frictional forces acting on cosmic strings. As in the TWW model,

we do not include frictional effects in our analysis. We have checked that they are negligible for

v >
√

m MPl, which is expected for the flat-directions strings under consideration.
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results of Section 3.3, we set the velocity threshold for zippering to νthresh = 0.85 in

our numerical analysis.

To evaluate Eqs. (3.60, 3.61, 3.62) describing the evolution of the string network,

we must also specify the evolution of the Hubble parameter H appearing in these

equations. We do this by solving for the scale factor a(t) using Eq. (3.55). After

thermal inflation, the two dominant sources of energy density are ρφ, from the oscil-

lations of the light scalar field, and ρr for radiation. We begin the evolution at the

time ti = 10MPl/mv, as would be expected after thermal inflation. The initial radi-

ation density is taken to be ρr(ti) = m4, while the initial scalar field energy density

is set to ρφ(ti) = m2 v2. After time ti, ρφ and ρr evolve according to Eq. (3.53). Since

we are interested in running the string evolution equations all the way to the present

time, we also add a very small matter density at the end of thermal inflation, at

tRH = Γ−1
φ . The initial matter density is chosen such that it becomes the dominant

form of energy at the approximate equality time teq = 3×1036 GeV−1. For reference,

the present time is about t0 ' 6.6× 1041 GeV−1. With m = 103 GeV, v = 1013 GeV,

and γ = 0.1, the initial matter density is ρm(tRH) = (8.0 × 10−3 GeV)4. At later

times, this dilutes according to dρm/dt = −3H ρm. Throughout the evolution of H,

we self-consistently assume that the energy density due to the string network plays a

negligible role8.

We appeal to our expectations from thermal inflation to set the initial values of

the variables ν, L, and na. The symmetry breaking phase transition after thermal

inflation occurs quickly once the temperature falls below T = m. The mean bubble

radius ξ when they coalesce should be therefore not much larger than the nucleation

radius, which is close to m−1 [46]. Thus, we set L(ti) = 5m−1 and n1(ti) = 1/(5m−1)2

as reasonable starting values. The initial densities of the higher winding modes, a > 1,

are set to zero. We also choose ν(ti) = 0.9. While there is considerable arbitrariness

8This is because in general Ωstring ∼ Gµ and observations constrain Gµ . 10−6.
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in these choices of initial conditions, we find that our results at late times are largely

independent of them.

In Figs. 3.12 and 3.13 we show the numerical solutions of the string network

equations for the model parameter values m = 103 GeV, v = 1013 GeV, and γ = 0.1.

For comparison with Section 3.2, this choice corresponds to a value of ∆ = g2m2/v2 '

10−20. Fig. 3.12 depicts the evolution of the densities of the five lowest winding modes

in terms of the quantities

Ω̃a =
µ1

µa
Ωa =

µ1 na

ρc

√
1 − ν2

, (3.64)

where Ωa is the ratio of the energy density of string species a relative to the critical

density ρc = 3H2/8π G, and µa is the tension of string species a. Normalizing by

the tension makes Ω̃a proportional to na times a quantity that is independent of the

winding number. In Fig. 3.13 we show the evolution of the universal length scale L

and universal string velocity ν.

Figs. 3.12 and 3.13 show that (within the TWW model) the string energy densities

approach a scaling solution at late times as evidenced by HL, ν, and Ω̃a all flowing

to constant values. The scaling length, velocity, and densities are largely independent

of the initial state of the string network. At late times, the string densities make up

a nearly fixed fraction of the total energy density of the universe. We also find that

the early era of oscillation dominance during reheating does not alter the final string

densities in an appreciable way. These features are very similar to what is found

in simulations of ordinary (abelian Higgs) string networks with only a single string

species [177, 178].

The interesting new feature in the evolution of flat-direction cosmic strings is that

nearly all string species flow towards very similar scaling values. This is the result of

string zippering, which allows the formation of higher winding modes from lower ones.

Note that the formation of these higher modes does not begin immediately. With the

initial values specified above, the initial string length scale L is much smaller than its
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Figure 3.12. Evolution of cosmic string densities after thermal inflation with v = 1013 GeV,
m = 103 GeV, and γ = 0.1. We have also set Nmax = 50 in generating this plot.

scaling value, which is close to the horizon scale. This has the effect of rapidly driving

the string speed to its maximal value, ν → 1, at the outset, as can be seen in Fig. 3.13,

which effectively shuts off string zippering. Once L and ν settle down to near their

scaling values, zippering begins and the higher winding-mode densities quickly flow

towards their scaling values. This scaling behavior is quite robust. Changing the

values of F and νthresh does not alter the qualitative string densities provided νthresh

is larger than the mean string velocity in the scaling regime.

The fact that many string species flow towards equal scaling values complicates

the numerical analysis, since numerical limitations allow us to include only a finite

number of winding modes up to an unphysical maximal value Nmax. In making

Figs. 3.12 and 3.13 we have set Nmax = 50. We also find that the final, nearly

universal scaling density of the strings depends on the artificial value of Nmax. This

feature is illustrated in Fig. 3.14. To a good approximation, the near-universal string
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Figure 3.13. Evolution of cosmic string speed and length scales after thermal inflation with v =
1013 GeV, m = 103 GeV, and γ = 0.1. We have also set Nmax = 50 in generating this plot.

scaling density goes like

Ω̃a ∝ 1

Nmax
, (3.65)

as illustrated by the dotted line in Fig. 3.14. (For each specie a, approximately there

is another ln a factor to characterize the mild dependence on winding number.)There

is a mild specie a dependence. Evidently, the string energy density gets spread out

among the many string types. There is also the question of how to handle the

zippering of strings whose winding numbers sum to greater than Nmax. In principle,

these strings can zipper into modes with N > Nmax which are not included in the

simulation. In Figs. 3.12 and 3.13 and in the analyses to follow, we simply disallow all

such zippering processes. This leads to slight increase in the scaling density of modes

with N & Nmax/2. However, we have also studied other prescriptions for handling

these zippering events, and for the examples we looked at, we find qualitatively similar

results for the modes with N � Nmax.
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Figure 3.14. Dependence of the scaling-regime string density on the total number of string species
included in the simulation, Nmax. The dotted line shows a fit to Ω̃1 ∝ 1/Nmax.

The dependence of the scaling densities on Nmax is clearly unphysical. We would

like to take Nmax → ∞, but this has its own problems. Since the energy density at

large N goes like ln a (from the logarithmic dependence of the tension on the winding

number), if all string species flow towards a universal scaling density proportional to

Nmax the total network energy density goes like

ρtot ∝
1

Nmax

Nmax
∑

a=1

ln a ' lnNmax. (3.66)

This diverges logarithmically as Nmax → ∞. In practice, however, this divergence is

not realized. The initial string spectrum consists almost entirely of the lowest modes,

the density of higher modes is built up from the lower modes by zippering, and these

higher modes take longer to reach their scaling values. At any given time, only a

finite number of strings have developed their scaling density.9 Let us define Neq(t) as

9In this sense, our use of the term scaling for flat strings is somewhat more general than its

meaning for ordinary cosmic strings because the string densities are not completely static, but very

slowly varying.
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the highest mode that has reached scaling by time t. Modes with N > Neq(t) all have

densities well below their equilibrium scaling values. Thus, at time t, we effectively

have Nmax = Neq(t), and the total energy contained in the string network goes like

lnNeq(t).

In Fig. 3.15 we show the time evolution of Neq(t) for several values of Nmax. All

other parameters are the same as in Figs. 3.12. The curves for different values of

Nmax match up for N . Nmax/3, but start to deviate from each other as the winding

number N approaches Nmax. Focusing on the apparently universal portion of these

curves, the rate of increase of Neq(t) with time goes like t0.22. If we can extrapolate

this dependence to much larger winding numbers, the value of Neq at the present

time t0 will be

Neq(t0) <
(

t0
ti

)0.22

' 108, (3.67)

where we have used ti ' 10MPl/mv ' 2.4 × 103 GeV−1 and t0 ' 6.6 × 1041 GeV−1.

This is a very large number, but it is not so large so as to be problematic. Recall

that the string tension, given in Eq. (3.50), increases logarithmically with the winding

number. The tension of a string with N = 108 is merely

µN < 3µ1, (3.68)

for m = 103 GeV and v = 1013 GeV, corresponding to ∆ ' 10−20 in Eq. (3.50).

Moreover, the total string energy density in the network is less than about lnNeq(t0) .

20 times the energy density of a network containing a single type of string with the

same tension as the lowest mode. These values for the maximal tension and the

total string density are not much larger than for an ordinary cosmic string, and they

present no obvious cosmological difficulties.

In our analysis of flat-direction string network evolution described above we have

used a very simple analytic model of string network evolution; we have made spe-

cific assumptions about the details of the string interactions; and, we have made
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Figure 3.15. The number of string species that have reached scaling, Neq , as a function of time
in the aftermath of thermal inflation for different values of Nmax, with the parameter values v =
1013 GeV and m = 103 GeV. The dotted line indicates an approximate fit to Neq(t) ∝ t0.22 in the
region where the curves appear to be universal.

extrapolations into regions well beyond what we are able to probe analytically and

numerically. Nevertheless, a simple picture for the evolution of a flat-direction string

network emerges from our results, and is likely to be genuine, even if some of the

underlying assumptions are not necessarily rigorous and the model used to study the

network evolution is overly simple. In this picture, a very large number of string

species reach similar scaling densities by the present time. The total energy of the

network is within an order of magnitude or two of the energy density that a single

abelian Higgs string species would have for the same value of the string tension. How-

ever, instead of being concentrated within a single species, the string energy density is

nearly uniformly distributed among all the string species that have attained scaling.

Thus, the flat-direction string network consists of a near continuum of string species,

but with global properties that closely resemble those of a single species network.
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Our argument for this picture is based on the very slow dependence of the flat-

direction string tensions on the winding number. On account of this slow variation,

the macroscopic properties of the many species that have attained scaling are very

similar to each other. For example, Fig. 3.4 shows that the tension of a mode with

N = 100 is only about 1.4 times that of the N = 1 mode for ∆ ' 10−20. From this

feature, as long as the zippering is reasonably efficient and the lowest mode is able

to attain a scaling value for its density, we expect the densities of the string modes

to be very similar to one another up to large values of the winding number N � 1.

One curious aspect of this picture from TWW model is that the total energy

density in the network corresponds to less than a few hundred individual strings of

horizon length. It is therefore curious that the TWW model applied to flat-direction

strings predicts that there are many more string species than this in the scaling

regime at the present time, each with a characteristic length scale of horizon size.

We suggest that the scaling densities predicted by the TWW model for flat-direction

strings should be interpreted as time-averaged values. At any given epoch in the

scaling regime, there exist many fewer long strings than Neq(t). However, these

strings are continually zippering into other string species, and averaged over time,

many more string species are populated (with a lower density per string) than are

present at any one time. It is also possible that this issue of discreteness leads to a

value of Neq(t) that is smaller than what is predicted by the TWW model.

A definite confirmation of this picture of flat-direction string evolution would

appear to require a full numerical simulation of the network (as well as lattice sim-

ulations to determine the zippering probabilities). This task is complicated by the

need to include many different string species in the simulation and by the fact that

with only, ∼ 100 strings stochastic effects could be important. Such full simulation

is beyond the scope of this work. We have, however, examined the effect of changing

some of our assumptions about string zippering encoded in the coefficients Pabc, de-
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fined in Eq. (3.63). For example, we find that reducing the probability for zippering

into a = (b + c) relative to a = |b − c| does not significantly alter the final scaling

densities. We have also looked into modifying the interaction terms in Eq. (3.62), as

suggested in Ref. [67], and we again find the same qualitative picture of string network

evolution. These results suggest that the picture of flat string evolution presented

here is robust.

Before moving on, let us briefly compare our near-continuum picture of flat-

direction cosmic strings to the cosmological picture of (p, q) surperstring cosmic

strings derived in Ref. [64]. These quasi-fundamental strings can be labelled by pairs

of integers (p, q) with p ≥ 0. A string state is stable only if p and q are relatively

prime. States with (p, q) not relatively prime can be formed but are only marginally

stable. They are expected to decay into lower, stable modes after they are created.

In the analysis of Ref. [64], this additional dissipative channel led to a rapid decrease

in the relative population of higher-tension modes. That superstring cosmic strings

do not form a near-continuum scaling network is also not surprising given that the

tensions of these strings increase fairly rapidly with the mode numbers [64],

µ(p,q) ∝
√

g2
s p

2 + q2, (3.69)

where gs is the superstring coupling.10 Hence, even though flat-direction cosmic

strings and (p, q) strings can both form stable winding modes through zippering, these

two varieties of cosmic strings interact and evolve in significantly different ways.

3.5 String Signatures

If cosmic strings are present in the early universe they can give rise to a number of

observable signatures. No evidence for cosmic strings has been found in the tem-

perature power spectrum of the cosmic microwave background or in large-scale sky

10This formula applies in ten-dimensional flat space. It may receive corrections in other back-

grounds [94].
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surveys. This implies the constraint Gµ . 3 × 10−7, fairly independently of the un-

derlying string model [95, 96, 97, 98, 99]. Beyond these limits, the most promising

signatures for ordinary (abelian Higgs) cosmic strings are gravitational lensing and

gravitational radiation [168, 169]. We find that these signals can be modified for flat-

direction cosmic strings. Flat-direction cosmic strings are also more likely to radiate

into their constituent particles than ordinary cosmic strings, leading to new classes

of potential signatures. By combining observations of several different phenomena,

it may be possible to distinguish flat-direction cosmic strings from ordinary cosmic

strings as well as (p, q) cosmic superstrings.

3.5.1 Gravitational and Particle Radiation from Loops

Cosmic strings emit gravitational radiation primarily through the oscillations of string

loops. For both ordinary and flat-direction cosmic strings, a single loop is expected

to emit gravitational radiation with power

Pgw = ΓGµ2, (3.70)

where Γ = 10−100 is a dimensionless constant whose precise value depends on how

the loop is oscillating [189, 192, 195, 194, 196]. This rate is independent of the length

of the loop, `. The radiation frequencies do depend on ` and are

fn =
2n

`
, n = 1, 2, 3, . . . (3.71)

with the relative power going into mode n decreasing at least as quickly as n−4/3 for

simple string loop solutions [192, 195, 194, 196].

To compute the gravitational wave background from a cosmic string network, one

must convolute the power emitted by individual loops with the loop density distribu-

tion. Unfortunately, even for ordinary cosmic strings, the loop density distribution is

not fully understood. The main uncertainty is the size of loops when they are formed.
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It is standard to parametrize the typical initial loop length according to

`i = α t, (3.72)

where t is the time of loop formation, and estimates for α range between the string

width [180], to (ΓGµ)χ with χ ≥ 1 [201, 202, 203], all the way up to α = 0.1 [198].

We will consider different values of α below.

Cosmic string loops can also radiate directly into particles [187, 111, 112]. This

can arise both through the direct emission of particles from smooth strings [187,

111, 112], as well as from cusp annihilation [190]. For the string loops present in

the early universe, cusp annihilation is usually the more important source of particle

emission [190].11 A cusp is a point on a string that reaches the speed of light at

some instant during its (Nambu-Goto) evolution. Cusps are a generic feature of

many simple solutions for the motion of a string loop, where they are found to occur

about once per oscillation period [192, 169]. In the region near the cusp, the string

segments fold back upon themselves such that the separation between the adjacent

segments becomes smaller than the string width. This allows these string segments

to annihilate each other. Cusps should not be confused with string kinks, which are

points on a string where the tangent vector changes substantially over a very short

distance, on the order of the string width [196]. Unlike at a cusp, there need not

be any significant annihilation of the string segments in the vicinity of a kink, and

kinks can persist for many loop oscillations [197]. Kinks can be created from string

reconnection and zippering.

The effective length of the overlap region between the adjacent string segments

11This conclusion can change if there exist light (superstring) moduli fields with masses much

smaller than w−1, where w is the width of the string [111, 112]. For flat direction strings, both the

string width and the typical moduli mass are set by the scale of supersymmetry breaking m. As

a result, the rate of moduli emission by flat-direction strings is suppressed, and the corresponding

bounds [114] are not relevant.
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near a string cusp on a loop of length ` is about

`c =
√
w `, (3.73)

where w is the string width [193]. The overlapping string segments near the cusp

are expected to annihilate, transferring most of the string energy within the overlap

region to the constituent particles making up the string. The total average power

released into particles through this process by a single string loop is [193]

Pcusp ' µ `c

(

c

`

)

. (3.74)

Here, c/` is the cusp rate, where 1/` corresponds to the period of a loop oscillation,

and c is the probability per period for a cusp to occur. We expect c ∼ 1, although

it has been argued that the presence of kinks on strings could push it to smaller

values [196]. This is yet another uncertainty associated with the structure of cosmic

strings on small scales.

For a given tension, flat-direction strings are much wider than ordinary cosmic

strings; w ∼ m−1 � v−1 compared to w ∼ v−1 ∼ µ−1/2. The amount of string

annihilated in a cusp is therefore greatly enhanced. The total particle radiation

power from cusp annihilation by a flat-direction string loop is

Pcusp '
c µ√
m`

. (3.75)

Relative to the gravitational radiation power, Eq. (3.70), we see that cusp annihilation

dominates for sufficiently small loop sizes. The loop size at which the two powers

become equal is

`= ' m−1

(

c

ΓGµ

)2

. (3.76)

Recall that the loop size at formation is `i = α t. For `i . `= the loops will decay

primarily through particle emission, and not gravitational radiation. On the other

hand, when `i � `=, most of the loop energy will go into gravity waves, except for a

small burst of particles towards the end of the loop’s existence.
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Thus, the emission of particles by flat-direction cosmic strings through cusp anni-

hilation is greatly enhanced relative to ordinary cosmic strings. If cusp annihilation

dominates over gravitational radiation, many of the gravitational radiation signals will

be suppressed compared to ordinary cosmic strings. In order to compare the relative

signals from gravitational radiation and particle emission, it is helpful to concentrate

on three particular epochs in the early universe: the reheating time tRH ; the time at

which `i = `= = α t=; and the earliest time tf at which a given gravitational wave

frequency mode f can form.

We found in Section 3.4 that reheating after thermal inflation occurs when t '

tRH := Γ−1
φ , where Γφ = γ m3/v2 is the decay rate of the light flat-direction scalar

field. This yields

tRH '
(

0.1

γ

)

(

v

1014 GeV

)2
(

103 GeV

m

)3

(10−4sec) (3.77)

Recall that if the process of reheating after thermal inflation is to avoid disturbing

the predictions of nucleosynthesis, we must have v . 1016 GeV for m = 1000 GeV

and γ = 1, and v . 1014 GeV for m = 200 GeV and γ = 0.1.

The second moment of interest, the time after which newly-formed loops lose

most of their energy in the form of gravity waves, occurs when `i = `= = α t=. This

corresponds to the time

t= = α−1

(

c

ΓGµ

)2

m−1 (3.78)

' α−1 c2
(

50

Γ

)2
(

2 × 10−11

Gµ

)2 (
103 GeV

m

)

(10−9sec).

We have expressed t= in terms of Gµ rather than the VEV v because it is this dimen-

sionless combination that appears frequently in the estimates below. An approximate

conversion between Gµ and v is (see Fig. 3.3)

Gµ '
(

v

1014 GeV

)2

(2 × 10−11). (3.79)
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Given the upper bound on v from reheating after thermal inflation, we will mostly

focus on v . 1014 GeV.

The third time of interest is tf , the earliest moment at which a given gravitational

wave frequency as low as f can be emitted. Recall that loops formed at time ti

have the initial size `(ti) = α ti, and subsequently shrink and radiate into frequencies

f ≥ 2/`. For a mode observed at the present time with frequency f = f(t0) emitted

at time t̃, the initial frequency was

f(t̃) =
a(t0)

a(t̃)
f. (3.80)

Combining these facts, the earliest time tf at which a mode with present frequency

f could have been emitted is

tf =
2

α f

a(tf)

a(t0)
(3.81)

'































α−3
(

10−7Hz
f

)3
(6.5 × 1010 GeV−1) tf > teq

α−2
(

10−7Hz
f

)2
(2.5 × 1019 GeV−1) tRH < tf < teq

α−3
(

10−7Hz
f

)3 (
1014 GeV−1

tRH

)1/2
(1.2 × 1022 GeV−1) tf < tRH

.

Both t= and tf depend on the parameter α that characterizes the typical size of

a string loop when it is formed, `i = αti. The dynamics of loop formation are not

completely understood, and as a result, estimates for α vary widely. Some recent

simulations find that a significant portion of the loops formed are quite large, with

α ' 0.001 [199, 200] or α ' 0.1 [198]. Other simulations find that the typical initial

loop size approaches their resolution limits [180]. In this case, it is thought that

gravitational radiation will smooth out very small fluctuations, and impose a lower

limit on α [169]. The scale over which this smoothing occurs is also under ongoing

investigation. Early estimates suggested α = ΓGµ [169], but more recent analyses

have found even smaller values of α. In Ref. [201] the authors obtain α = (ΓGµ)χ with

χ = 1.5 during the radiation era and χ = 2.5 during matter dominance. The authors

of Ref. [202] find α ' 0.6 Γ (Gµ)χ with χ = 1.2 in the radiation era and χ = 1.5 in
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the matter era. Furthermore, in Ref. [203] it is suggested that the simulation results

of Ref. [198] should be interpreted as predicting a network with 10-20% of the loop

energy density in the form of large loops with α ' 0.1 and the remainder in the form

of very small loops with α ' Γ(Gµ)χ with χ > 1. On account of the rapidly evolving

state of the field, we will consider both large and small values of α below.

Fig. 3.16 shows tRH , t=, and tf in GeV−1 units as functions of the VEV v for large

loops with α = 0.1. The model parameters were set to m = 103 GeV, c = 1, γ = 0.1,

Γ = 50. In this plot we also indicate the present time t0 ' 6.6 × 1041 GeV and the

matter-radiation equality time teq ' 3.5 × 1036 GeV with dotted lines. The value of

tf is shown for two values of the frequency, f = 10−7Hz and f = 102Hz. These

values span most of the range relevant for gravitational wave searches. For these

large loops, t= is always much less than teq, and all loops formed after t= will decay

predominantly into gravitational radiation. At the lower frequency f = 10−7Hz, tf

lies below teq but above tRH , and is never much less than t=. This suggests that

the gravitational wave signal at this frequency will not be attenuated much by the

enhanced rate of particle emission by the loops. On the other hand, the value of tf

for f = 102Hz lies well below both tRH and t=, indicating that the high-frequency

gravitational wave signal will be reduced.

The values of tRH , t=, and tf for very small loops, α = 0.6 Γ (Gµ)1.5, are shown

in Fig. 3.17 as a function of the VEV v. This value of α corresponds to the estimate

of Ref. [202] for loops emitted in the matter era. Even smaller values of α are

suggested in Ref. [201]. As before, the other model parameters were taken to be

m = 103 GeV, c = 1, γ = 0.1, and Γ = 50, and the dotted lines denote the present

time t0 ' 6.6×1041 GeV and the matter-radiation equality time teq ' 3.5×1036 GeV.

This figure indicates that the prospects for gravitational radiation from small flat-

direction string loops are much less promising than for large loops. Indeed, t= is

larger than the present time t0 for v . 2 × 1012 GeV. Such small loops will decay
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Figure 3.16. Dependence of the times of interest tRH , t=, and tf on the VEV v for α = 0.1. The
black dotted lines indicate the present time t0 ' 6.6×1041 GeV−1 and the matter-radiation equality
time teq ' 3.5 × 1036 GeV−1.

almost entirely to particles instead of gravitational radiation. Even when t= is less

than t0, the curves for tf show that the gravitational wave signal is very suppressed

relative to the signal from large loops. At low frequencies f ' 10−7Hz there is no

signal at all since tf exceeds the present time t0; the loops are simply too small to

radiate into this frequency range. Even for frequencies near f = 102Hz, there will

be a gravitational wave signal only for v & 3 × 1012 GeV. Despite the reduction in

the gravitational wave signal, small loops may be observable through their copious

emission of particles.

In summary, we find that the large width of flat-direction cosmic strings greatly

enhances the rate at which they decay into their constituent particles through cusp

annihilation. With this enhancement, our preliminary analysis indicates that string

loops that are initially large (α ' 0.1) decay predominantly into gravitational waves,
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Figure 3.17. Dependence of the times of interest tRH , t=, and tf on the VEV v for the representa-
tive small initial loop size parameter α = 0.6 Γ (Gµ)1.5. The black dotted lines indicate the present
time t0 ' 6.6 × 1041 GeV−1 and the matter-radiation equality time teq ' 3.5 × 1036 GeV−1.

while very small loops (α � ΓGµ) decay primarily into particles. The typical size

of string loops when they are formed is an unresolved problem, and well-motivated

arguments in favor of large loops, very small loops, or possibly both at once, can be

found in the literature. In the face of this uncertainty, we will focus on two particular

choices of the loop size parameter α to estimate the observational signatures from flat-

direction cosmic strings. To compute the gravitational wave signals we will set α = 0.1

for all loops, as suggested in Ref. [198]. Our results can be rescaled appropriately

when only a fraction of the loops are large. To estimate the signals from particle

emission due to cusp annihilation, we will instead assume that α is sufficiently small

that all loops decay mostly into particles. This is plausible for flat-direction strings

for which the rate of particle emission by cusp annihilation is enhanced. Again, it is

straightforward to modify our results to accommodate larger values of α.
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Finally, let us also mention that the picture of loop formation by flat-direction

strings might be different from that of ordinary cosmic strings. For example, the

enhanced rate of particle emission by cusp annihilation could potentially smooth out

small fluctuations over scales larger than the (näıve) gravitational radiation scale

ΓGµ t. String loops can also remain bound to the parent string, as illustrated in

Fig. 3.10. This could modify the distribution of initial string loop sizes. The rate of

cusp formation on these bound loops may also be different from that on free loops.

3.5.2 Gravitational Wave Signatures

Cosmic strings can give rise to two types of gravitational wave signals. The com-

bination of many string loop decays produces a smooth stochastic background of

gravitational radiation [189]. On top of this background, individual cusps can pro-

duce intense bursts of gravity waves [119]. Gravitational wave detectors are sensitive

to both types of signals. For the string tensions of interest, Gµ . 10−10, the stochas-

tic background is the more promising one [120, 121, 122] and we will focus on it. To

estimate this gravitational wave background due to flat-direction cosmic strings we

will assume that all string loops are large when they are formed, with α ' 0.1 [198].

If only a fraction of the loops produced are large, as advocated in Ref. [203], our

results can be rescaled by this fraction.

We compute the gravitational radiation density due to cosmic string decays fol-

lowing Ref. [194]. Consider radiation in the frequency range (f, f+df) observed today

that was emitted at time t̃. Keeping track of only the lowest mode,12 this radiation

was emitted by loops of size (˜̀− d˜̀, ˜̀), where

˜̀=
2

f

a(t̃)

a(t0)
, d˜̀=

2

f 2

a(t̃)

a(t0)
df. (3.82)

12In Ref. [123] this was shown to be a good approximation for computing the stochastic back-

ground.
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Loops of this size at time t̃ were formed at the earlier time ti given by

ti =

(

1

α + ΓGµ

)

[

˜̀+ ΓGµt̃
]

, (3.83)

over the time range

dti =

(

1

α+ ΓGµ

)

2

f 2

a(t̃)

a(t0)
df. (3.84)

These relations follow from the loop evolution equation `(t) = α ti−ΓGµ(t−ti), valid

for t ≥ ti and `(t) ≥ `=.

The rate at which loops are formed during the string scaling regime can be esti-

mated using the results of numerical simulations or from simple analytic models like

the one presented in Section 3.4. These predict a net energy flux into loops of

dρloop

dt
' ρ∞

t
, (3.85)

where

ρ∞ ' ζµ t−2, (3.86)

with ζ ' 10, and ρ∞ being the scaling energy density of long strings. This result can

be obtained by summing Eq. (3.62) over all string species that have equilibrated. It

follows that the rate per unit volume that loops of initial size α t are formed is

dn

dt
' ζ

α
t−4. (3.87)

Applying this result to loops formed in the time range (ti − dti, ti), the number

density of loops radiating into the frequency range of interest at time t̃ is

dn(t̃) ' ζ

α
t−4
i dti

[

a(ti)

a(t̃)

]3

. (3.88)

The redshift factor in this expression accounts for the dilution of the loops as they

evolve from ti to t̃. Given that each loop radiates gravity waves with a power ΓGµ2,

we can combine everything and sum over t̃ to find the signal. The total gravitational
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wave density at the present frequency f is

ΩGW (f) :=
f

ρc

dρGW

df

=
1

ρc

∫ t0

t̄f

dt̃ Θ(˜̀− `=) ΓGµ2 f
dn(t̃)

df

[

a(t̃)

a(t0)

]4

(3.89)

' 2

f

ΓGµ2

ρc

ζ

α(α+ ΓGµ)

∫ t0

t̄f

dt̃ Θ(˜̀− `=)

[

a(t̃)

a(t0)

]5 [
a(ti)

a(t̃)

]3

t−4
i .

Here, ρc is the critical density, and ti and ˜̀ are functions of t̃ defined by Eqs. (3.82)

and (3.83). The integration limits range between t̄f := max(tf , 105 GeV−1) and t0,

where tf is given in Eq. (3.81).13 Noting that a ∝ t2/3 during the matter era (t < tRH

and t > teq) and a ∝ t1/2 during the radiation era (tRH < t < teq), this equation

can be integrated straightforwardly. Relative to the treatment of Ref. [194], we have

included a cutoff of ˜̀ > `= = α t= through a step function. This accounts for the

loops only being able to radiate efficiently into gravity waves if their length is greater

than `=. It is this cutoff, along with the additional redshifting that occurs during

reheating after thermal inflation, that suppresses the gravitational wave signal from

flat-direction strings compared to ordinary strings.

In Fig. 3.18 we show the stochastic gravitational wave signal from initially large

cosmic string loops as a function of frequency. We have used the parameter values

α = 0.1, Γ = 50, m = 103 GeV, and γ = 0.1 in making this plot. The solid lines show

the gravitational wave density from flat-direction cosmic strings, including the cutoff

˜̀> `= and the additional redshifting during reheating after thermal inflation. The

dashed lines indicate what the signal would be for ordinary cosmic strings, without

the cutoff ˜̀ > `= or reheating effects. At lower frequencies the relevant loops are

13Normally the lower limit would simply be tf , but in the present case the flat-direction string

network only reaches scaling at t ' 105 GeV−1. Numerically, we find that this additional cutoff

has no visible effect because the gravity waves emitted shortly after the end of thermal inflation are

diluted away during the subsequent reheating. Gravity waves from the phase transition [124] will

also be diluted by thermal inflation.
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Figure 3.18. Gravitational wave density for flat-direction cosmic strings as a function of frequency
for four different values of the VEV v. The solid lines include the cutoff ˜̀ > `= due to cusp
annihilation. The dashed lines show what the gravitational wave density would be without this
cutoff.

formed later on, at times greater than tRH and t=, and there is no change to the

signal. At higher frequencies, the cutoff on the loop size and the additional dilution

during reheating both suppress the gravitational wave signals. As can be seen in

Fig. 3.16, the cutoff ` > `= = α t= is more important for lower values of v (and Gµ),

while the reheating dilution is more significant at larger values of v since tRH is larger.

This is why the shape of the high frequency cutoff changes as we increase v.

The attenuation of high frequency gravitational wave signals is relevant to LIGO

and Advanced LIGO, which can potentially probe down to ΩGW (f) ' 10−9 at frequen-

cies around f = 102Hz [125]. Fig. 3.18 indicates that LIGO is not expected to be able

to find evidence for flat-direction cosmic strings. On the other hand, the prospects

for discovery at LISA and from measurements of pulsar timing are promising. The

LISA probe is expected to cover portions of the range 10−4Hz . f . 10−2Hz down
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to ΩGW (f) ' 10−11 [126]. Since the gravitational wave signal from large flat-direction

string loops is mostly unmodified in this frequency range, LISA will be able to probe

a sizeable portion of the model parameter space. Limits from pulsar timing are cur-

rently ΩGW (f) . 3×10−8 in the frequency range 10−7−10−8Hz [127], which is again

low enough that the gravitational wave signal from flat-direction cosmic strings is un-

suppressed. From this bound we obtain the constraint v . 1014 GeV. It is expected

that this limit will be improved to ΩGW (f) . 10−10 by upcoming experiments [127].

Note that flat-direction cosmic strings offer the interesting possibility that LISA and

pulsar timing experiments could detect a stochastic gravitational wave background

with ΩGW (f) & 10−9, while (Advanced) LIGO sees nothing even though it is sensi-

tive to signals at this level. This would be a suggestive hint for flat-direction cosmic

strings.

Here it may also be helpful to compare the gravitational wave (GW) signatures

from cosmic string network and from other astronomical sources[128, 129]. The GW

sources that may be detected at current and incoming laser interferometer experi-

ments (e.g. LIGO and LISA) fall into two major categories: those individual events

that occur at certain space-time points in the universe, and those that contribute to

the stochastic background. Sources for individual events include: mergers of binaries,

massive star collapse (supernovae and hypernovae), rapidly rotating neutron stars,

the inspiral and merger of supermassive blackholes etc. These sources typically give

strong signals and can be distinguished according to their different frequency bands

and different time evolution of their waveforms. But the discovery of an individual

event partly depends on ‘luck’, although many of them are estimated to occur at an

optimistic rate. It is also speculated that some of the ‘violent’ events are accompa-

nied by gamma ray bursts, which makes them easier to be distinguished from other

sources. The possible sources of stochastic GW background include: processes in the
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early universe, e.g. vacuum fluctuations predicted by inflationary models, also some

other postulated mechanisms string GW with horizon-size wavelength, e.g. 1st order

phase transition in early universe, Goldstone modes that arise in SUSY and string

theories. As we have mentioned before, GW from cosmic string network can produce

both individual bursts from cusps or kinks and stochastic background from normal

vibrations. In this sense, it is possible to distinguish GW signals from a cosmic string

network and those from other sources by their differences in waveforms evolution and

density–frequency distribution.

3.5.3 Particle Emission Signatures: Dark Matter

Having studied the gravitational wave signatures of string loops that are large when

they are formed, let us now consider the possibility that the typical initial loop size

is very small, α � ΓGµ, as suggested in Refs. [201, 202]. If α is sufficiently small,

nearly all the energy of a loop is released as particle excitations of the fields making

up the string. This is plausible for flat-direction cosmic strings due to their enhanced

rate of particle emission by cusp annihilation relative to ordinary cosmic strings. In

the (a, b) models of flat-direction strings presented in Section 3.2, the fields making

up the string consist of two chiral supermultiplets and one massless vector (gauge)

supermultiplet. When the chiral supermultiplets develop VEVs, it is more convenient

to describe the theory in terms of a heavy massive vector supermultiplet, with mass on

the order of gv, as well as a light supermultiplet with mass on the order ofm [76]. This

light multiplet is light on account of the flatness of the potential. Cusp annihilation

will produce both the heavy and the light states making up the string. These particles

will subsequently decay, and can be a potential source of dark matter and high energy

cosmic rays. We consider both of these possible signatures in turn, assuming that all

string loops are very small and decay entirely into particles rather than gravitational

waves.
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To compute the dark matter density from decaying string loops we again make

use of Eq. (3.85) that specifies the rate at which the scaling string network transfers

its energy into loops. Contributions to the dark matter density from loops produced

before the network attains scaling are diluted away by the subsequent reheating pro-

cess after the thermal inflation period.14 If a fraction ε1 of the energy emitted by the

cusp annihilations of loops eventually becomes dark matter (such as a neutralino or

gravitino LSP), the total dark matter density at the present time from the strings is

ρstrings
DM ' ε1

∫ t0

tfo

dt ζ
µ

t3

[

a(t)

a0

]3

, (3.90)

where t0 is the present time and tfo is the time at which the DM particles freeze out of

equilibrium. The factor of [a(t)/a0]
3 accounts for the additional dilution of the dark

matter (or the constituent string fields) after they are produced. It is convenient to

split the integration into three pieces: teq < t, tRH < t < teq, and tfo < t < tRH .

These integrations are straightforward and yield

Ωstrings
DM ' 6πε1ζ Gµ

[

ln

(

t0
teq

)

+
(

teq
tRH

)1/2

+ ln

(

tRH

tfo

)

(

teq
tRH

)1/2
]

(3.91)

. 30 ε1

(

γ

0.1

)1/2
(

ζ

10

)

(

v

1014 GeV

)(

m

103 GeV

)3/2

,

where γ is the prefactor appearing in Eq. (3.56). Numerically, the largest contri-

bution comes from the third term, from the integration range tfo < t < tRH . We

have bounded the logarithm in this term from above in making this estimate. For

reasonable values of the model parameters, the amount of dark matter produced by

decaying loops is safely small, although smaller values of v are preferred. This differs

from the much stronger constraints on regular cosmic strings that are able to decay

into dark matter [173], which is due to the dilution from reheating after thermal

inflation.

There is an additional contribution to the DM density from the out-of-equilibrium

decays of the oscillating flat-direction fields during reheating. If a small fraction ε2
14We have verified this using the result of Section 3.4.
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of these decays ends up as dark matter, the present contribution to the DM energy

density will be

ρφ
DM '

∫ tRH

tfo

dt ε2 Γφ ρφ

[

a(t)

a0

]3

. (3.92)

Parametrizing ρφ(t) ' T 4
RH [a(tRH)/a(t)]3 and using tRHΓφ ' 1, we find

Ωφ
DM ' 107 ε2

(

TRH

GeV

)

. (3.93)

Thus, the branching fraction ε2 into DM particles must be very small. Note that ε1

and ε2 can be very different from each other. The particles emitted from a cusp anni-

hilation can include some of the heavier component fields making up the string. On

the other hand, the decays of the flat-direction fields after thermal inflation involve

only the light modes. The decays of these states into superpartners (such as a neu-

tralino or heavier gravitino LSP) can therefore be highly suppressed or kinematically

inaccessible, allowing for ε2 � ε1.

3.5.4 Particle Emission Signatures: Visible Matter

In addition to dark matter, the decays of very small string loops can produce hadrons,

leptons, and photons. This particle injection will be spread out over time as the

scaling string network continually rids itself of excess energy by forming loops. Visible

particles created by loop decays can imprint themselves upon the early universe in

a number of ways. The energetic products from loop decays at temperatures below

5 MeV can disrupt the predictions of big-bang nucleosynthesis (BBN). At later times,

energetic photons from loop decays can modify the blackbody spectrum of the cosmic

microwave background (CMB). Some of the decay products from string loops can also

be highly energetic, producing ultra-high-energy cosmic rays and contributing to the

extragalactic diffuse gamma-ray background. We consider the possible signatures

from cosmic strings from each of these effects. As for our dark matter estimates, we

assume that all loops are so small that they decay entirely into particles.
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To estimate the effects of decaying string loops on BBN we make use of the results

of Ref. [131]. In this work the authors used the successful predictions of BBN to place

limits on the combination mXYX for a long-lived particle X of mass mX , relic density

(per unit entropy) YX , and lifetime τX , decaying at time t ' τX . In contrast to a

long-lived relic particle whose decays can be treated as being instantaneous, cosmic

string loops are produced and decay continuously. These decays therefore have a

cumulative effect on the light element abundances. To obtain a limit for decaying

string loops we interpret the bounds from Ref. [131] as limits on the total energy

injected within a comoving volume, mXYX = ∆E/S, where S is the total entropy

within the volume a3.

The total energy injected into the comoving volume a3 by string loops that decay

during the time interval (ta, tb) is

∆E

S
=

1

S

∫ tb

ta
dt µ ζ t−3 a3(t) (3.94)

' (10−11 GeV)
(

1s

ta

)1/2
(

ζ

10

)

(

Gµ

2 × 10−11

)

.

In writing this expression, we have implicitly assumed that ta and tb both lie within

the era of radiation dominance, as is relevant for BBN. The strongest limits on energy

injection from BBN come from the relative fractions of deuterium and lithium-6

relative to hydrogen. Both of these are formed at times later than t & 100 s. Since

the visible decay products from the loops thermalize quickly relative to the Hubble

time, we set ta = 100 s to find the bounds due to the deuterium and lithium-6

abundances [131]. Assuming a hadronic branching fraction of order unity, the total

energy injection per unit entropy must be less than ∆E/S . 10−14 GeV.15 This

bound is satisfied provided v . 1013 GeV.

Late-time energy injection is also constrained by the the nearly perfect blackbody

spectrum of the CMB observed by COBE/FIRAS [132]. Photons produced by the

15The bound is fairly independent of the mass of the decaying particle.
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decays of string loops that occur after the time tdC ' 1031 GeV−1 can distort this

spectrum. Before tdC , double Compton scattering (e + γ → e + γ + γ) efficiently

thermalizes any additional photons that are created. The precise form of the spectral

distortions created after tdC depends on the time at which the photons were injected.

However, the net constraint from the non-observation of such distortions can be

reduced to a constraint on the total photon energy created after tdC , ∆ργ/ργ .

7 × 10−5 [133, 134, 135]. The net photon injection from decaying string loops can

be estimated using the rate of energy deposition by the network. If all the energy

injected is in the form of photons (possibly after cascading), the total injection is

∆ργ

ργ
(t0) ' 1

ργ0

∫ t0

tdC

dt
∂ρ

∂t

[

a(t)

a(t0)

]4

(3.95)

' 6π ζ Gµ

[

ln
(

teq
tdC

)

+
1

Ωγ0

]

' (8 × 10−5)

(

ζ

10

)

(

Gµ

2 × 10−11

)

.

Numerically, the dominant contribution to the injected photon energy comes from

the most recent era, t > teq, leading to a non-zero value for the Compton y parame-

ter [134, 136] which quantifies deviations away from the black body spectrum. It is

expected that the constraints on photon injection will be improved in the future by

the ARCADE experiment [137].

Decaying cosmic string loops can also generate cosmic rays. The corresponding

energy spectrum depends on the energies of the particles emitted in the loop de-

cays. Recall that the fields making up the flat-direction strings consist of a light

chiral supermultiplet and a heavy massive vector supermultiplet. In each cusp an-

nihilation, both the heavy and the light states can be produced. The decays of the

heavy states, with masses on the order of g v, can generate ultra-high-energy cosmic

rays (UHECR) [138]. Decays of the light states, with masses on the order of m� v,

contribute to the extragalactic diffuse gamma-ray background (EDGRB) [139]. To

determine the relevant bounds and prospects, we will assume that the energy released
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in each cusp annihilation goes initially into a fraction Fl of the light states (with soft

energy) and a fraction Fh to the heavy states. We expect Fl ∼ 1, with Fh possibly

smaller.

The contribution of decaying string loops to the EDGRB was studied in Ref. [139].

Data from the EGRET experiment [140] constrains the rate of energy emission into

the light scalar states with masses on the order of 1000 GeV (that decay into lower-

energy gamma rays) at the present time to ∂ρloop/∂t0 . 4.5 × 10−23 eV cm−3 s−1 =

2.3×10−97 GeV5. Equating this bound with Eq. (3.85) evaluated at the present time,

we obtain the bound [139]

Fl

(

ζ

10

)

(

Gµ

2 × 10−11

)

. 1. (3.96)

This does not represent a significant constraint beyond those found above. The heavy

component states making up the string can also contribute to the EDGRB through

the photons they produce in cascade decays. The limit in this case is about the same

as from the decays of the light states given in Eq.(3.96), but with Fl replaced by

Fh. These constraints from the gamma-ray background on decaying cosmic string

loops will be strengthened by the upcoming GLAST experiment [141]. However, the

range of the model that can be probed may ultimately be limited by astrophysical

background contributions to the gamma-ray flux.

Ultra-high-energy cosmic rays can be produced by cusp annihilation if some of the

heavier states making up the string are created. When the heavy states decay, their

products are highly energetic, making them a source of high-energy neutrinos and

UHECRs. Estimates of the UHECR flux for strings that decay into particles were

made in Ref. [142] and are directly applicable to flat-direction cosmic strings. These

authors find that for energies greater than about 6×109 GeV, the only relevant cosmic

ray flux consists of neutrinos. The fluxes of highly energetic protons and photons are

very suppressed because they are attenuated by their interactions with the cosmic

background. Extrapolating the predictions of Ref. [142], the neutrino signal from
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decaying strings can be probed directly at Ice Cube [143] down to Gµ . 10−12/Fh

in the energy range 105 GeV-108 GeV. The Auger project is sensitive to UHECR

showers induced by energetic neutrinos in the energy range 109 GeV-1011 GeV [144].

The Auger measurements imply the constraint

Gµ . (3 × 10−13)/Fh. (3.97)

For Fh = 1, this corresponds to v . 1013 GeV.

Our analysis indicates that the visible matter signatures from decays of flat-

direction string loops are consistent with observations provided Gµ is small enough.

However, there is another visible matter signature that is challenging to reproduce

in models of flat-direction strings, namely the baryon asymmetry of the universe.

Flat-direction strings are formed following a period of thermal inflation. The typ-

ically low reheating temperature after thermal inflation, Eq. (3.57), combined with

the large amount of dilution from the inflationary expansion and reheating imply

that baryogenesis mechanisms that operate at or above the electroweak scale will

no longer work. Instead, the baryon asymmetry must be produced at very late

times. This can arise from the strings themselves [145, 146, 147], from the non-

thermal production of particles during reheating that have baryon-number violating

decays [89, 148, 149, 150, 151], or by the Affleck-Dine mechanism [152].

3.5.5 String Loops and Zero Modes

In our discussion of radiation from cosmic string loops, we implicitly assumed that

there do not exist any zero mode excitations along the strings. Zero modes are

fermionic or bosonic field fluctuations with vanishing energy that are localized on the

string. The existence of zero modes on cosmic strings can alter the picture of loop

radiation in important ways [153, 154, 155, 156].

These undamped, particle-like excitations can be excited when a string loop is

formed. As the loop radiates and shrinks, the number density of the zero modes builds
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up. Eventually the angular momentum of the zero modes balances the tendency of

the loop to shrink, and a quasi-stable loop remnant, or vorton, is left over. If such

vortons are sufficiently long-lived and numerous, they behave like quasi-stable matter

and can further modify the predictions of BBN or create too much dark matter. The

presence of vortons typically leads to extremely strong constraints on the underlying

field theory [156].

For the flat-direction strings we are studying, fermionic zero modes [157, 153] are

of particular relevance. It was shown in Ref. [52, 53] that such modes are a generic

feature of supersymmetric cosmic string solutions. In the present case, we also have

supersymmetry breaking operators present in the Lagrangian. We find that adding

a supersymmetry breaking gaugino mass destroys all the fermionic zero modes. A

recent study also suggests that more generally, even for supersymmety case fermionic

zero modes do not form on closed string loops at all [158]. The existence of bosonic

zero modes depends on the other fields in the theory and their couplings, and are less

generic [153]. We do not consider them here.

Zero modes, either bosonic or fermionic, are also unlikely to stabilize flat-direction

cosmic strings simply because these strings are relatively wide. For the phase transi-

tion leading to flat-direction cosmic strings, we expect that the radius at which the

zero modes would stabilize a string loop, if they were to exist, is usually much smaller

than the width of the string [50]. As discussed above for cusp annihilation, when the

separation between a pair of antiparallel string segments approaches the string width

these segments will annihilate into their constituent fields, and the loop will decay

before stabilizing as a vorton.

3.5.6 Lensing by Cosmic Strings

While an indirect gamma ray or gravitational wave signal from cosmic strings would

be exciting, ideally one would like a direct observation to confirm their existence.
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This can be achieved by observing gravitational lensing by a string. The primary

gravitational effect of the large mass density contained within a cosmic string is to

modify the surrounding spacetime such that it is flat, but with a deficit angle of ∆θ =

8π Gµ [159]. When light from a galaxy passes by a (non-relativistic) cosmic string,

the deficit angle produces a distinctive double image with an angular separation

of [169, 159]

∆α = 8π Gµ
Dls

Dos

sin φ, (3.98)

where Dls is the distance from the lensing string to the source galaxy, Dos is the

distance from the observer to the source, and sinφ is the angle between the string

axis and the line-of-sight. From a single lensing event it is possible to determine ∆α

directly, as well as Dos by measuring the redshift of the source. Given that a single

string lensing event is found, it is likely that the same string will also lens the images

of other galaxies that are nearby on the sky [160]. By observing several galaxies

lensed by the same string, the tension of that string can be determined [161].

The gravitational lensing signatures from flat-direction strings are even richer than

those of ordinary strings because of the stability of higher winding modes. If many

lensed images from different strings are observed, it may be possible to measure ten-

sions of several strings and obtain clues about the mass spectrum of the higher winding

modes. In this respect, flat-direction cosmic strings are similar to (p, q) cosmic super-

strings. Both types of cosmic strings also have junctions connecting different winding

modes. These can produce triple images, in addition to the double images produced

by a lone string [162]. Since the spectrum of tensions of flat-direction strings is very

different from that of (p, q) strings, the observation of many gravitational lensing

events might allow one to distinguish between them. Unfortunately, the probability

of observing a lensed image from a flat-direction string is very small due the indirect

bounds on the tension, Gµ . 10−11. This is smaller than the expected sensitivity of

Gµ ' 10−8 from upcoming optical surveys [163], and Gµ ' 10−9 from the SKA [164],
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radio survey [165]. The results of Ref. [161] also suggest that it will be difficult to

determine the string tension accurately enough to distinguish between flat-direction

string winding modes with similar values of the winding number N .



CHAPTER 4

Hidden Sector and Non-thermal Dark Matter

Production–Constraint from Cosmology

4.1 Introduction

In chapter 3 we have seen much interesting phenomenology of cosmic strings from

supersymmetric flat directions, which reflects features of certain symmetry breaking

in a hidden sector of SUSY. Meanwhile, for more general hidden sector scenario with

gauge symmetry broken via the Higgs mechanism (including non-SUSY and SUSY

without flat-direction), cosmic strings are a very promising cosmological probes or

tests. In another work [166] we study the non-thermal dark matter production from

cosmic string network on general grounds and try to find constraints on the related

hidden sector models.

To be self-consistent, let me briefly review some relevant facts on cosmic string

network evolution, although we have discussed this in more detail in chapter 3. The

evolution of cosmic string networks in the early universe has been studied extensively.

It is found that the long strings in the network stretch with the Hubble expansion,

as well as form closed string loops by the process of reconnection when they intersect

themselves and each other. After an initial transient, these two processes balance

each other such that the string network reaches a scaling regime, in which the total

energy density of the network makes up a small, constant fraction of the dominant

108
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matter or radiation energy density of the universe [176, 177, 178, 179, 180, 181]. This

string energy fraction is largely independent of the initial conditions, and is about

Gµ relative to the critical density, where G = 1/(8πM 2
Pl) is Newton’s constant and µ

is the string tension. In terms of the scale of spontaneous symmetry breaking η from

which the strings arise, the tension is on the order of

µ ' η2. (4.1)

Cosmic string scaling can be modified if the strings have significant interactions with

the thermal background. Such interactions include various scattering processes be-

tween the string and the particles in the plasma which are charged under the extended

gauge group, and lead to an effective frictional force on the strings. Whether such

interactions are present depends on the details of the model and the process we are

considering.

A possible decay product of the string loops formed by a scaling cosmic network

is dark matter (DM). Indirect evidence for cold dark matter has been obtained from

a number of sources. Together, they indicate a dark matter density of [183]

ΩDMh
2 = 0.1048 ± 0.0008 (4.2)

This dark matter density can be explained by the existence of a new stable particle

with a mass on the order of the electroweak scale. Such particles are common in

extensions of the SM that stabilize the electroweak scale against quantum corrections

such as supersymmetry [184], universal extra dimensions [185], and little Higgs models

with T -parity [186].

String loops can produce DM (and other particles) in a number of ways. For local

cosmic strings, corresponding to the spontaneous breakdown of a gauge symmetry,

the direct emission of particles by the strings is thought to be suppressed [187].1

Instead, loops lose most of their energy by oscillating and emitting gravitational

1However, see Refs. [180, 188] for arguments to the contrary.
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radiation [189]. However, when the loop radius shrinks down to the order of the

string it will self-annihilate into its constituent fields [173]. The subsequent decays

of these states can produce dark matter. An even larger source of string annihilation

and particle production by closed loops is the formation of cusps [190]. As we have

introduced in chapter 3, these are points on the loop where the string segment folds

back on itself and briefly approaches the speed of light [191, 192]. In the vicinity of

a cusp, a small portion of the string will self-annihilate creating particles and dark

matter [190, 193]. In many simple solutions for the motion of a string loop, a cusp is

found to occur about once per loop oscillation period [191, 192, 194, 196, 197].

The amount of dark matter created by a cosmic string network mainly depends on

two factors. First is the symmetry breaking scale η, which is a common determinant

for the power of various loop decay channel as we will see. The other essential factor

is the size of the string loops that are formed by the network, which is a determinant

for the initial density of the loops. Unfortunately, while the evolution of the long

(horizon length) strings is well understood, the details of loop formation are less clear.

These details are closely related to the spectrum of small fluctuations on long strings.

Significant advances have been made recently in this direction, both in numerical

simulations [198, 199, 200], as well as in analytic models Ref. [201, 202, 203, 204, 205,

206]. In the present work we will mostly adopt the results of Refs. [202, 203, 204, 205]

to characterize the initial loop size spectrum.

In the picture of loop formation that emerges from Refs. [202, 203, 204, 205],

fluctuations on long strings are created near the horizon scale dH ∼ t, which is

also the scale that charaterizes the long string network in the scaling regime. After

they are formed these fluctuations grow less quickly than the horizon, and thereby

shrink relative to the characteristic scale of the long string network. The fluctuation

spectrum that emerges is a power law in the fluctuation size that increases going

to smaller scales. This power law is eventually cut off well below the horizon by
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gravitiational radiation damping, which erases very small fluctuations. The cut-off

occurs when the fluctuation size falls below the gravitational radiation scale [202]

lGW = Γ (Gµ)1+2 χ (4.3)

where Γ ' 50 is a constant and χ = 0.10 during radiation and 0.25 during the matter

era. The small fluctuation spectrum on long strings is therefore peaked near lGW . This

peak implies that lGW sets the typical initial loop size `i as well [202, 203, 204, 205],

`i ' lGW . (4.4)

Both the number and energy densities of the loops formed are dominated by loops of

this initial size. However, recent simulations (and the analytic model of Ref. [206]) also

point toward a significant loop population near the horizon scale, with `i ' (0.1) ti.

We will therefore consider larger loops as well in our analysis.

The primary goal of this work is to compute the dark matter density generated

by a network of cosmic strings in the scaling regime. We also calculate the dark

matter generated when frictional interactions with the background plasma modify

the evolution of the network2. A necessary condition for the viability of a cosmic

string network is that the dark matter density it generates not exceed the WMAP

bound. Our results therefore provide a constraint on theories of new physics that

lead to the formation of cosmic strings, such as models containing new U(1) gauge

groups [171, 172]. This chapter is organized as follows. In Section 4.2 we derive

a general formula for the production of dark matter by cosmic string loops. In

Section 4.3, we apply this formula to compute the amount of dark matter produced

2We studied a special case of non-thermal dark matter production from loop decays in chapter

3. But there we only focused on the situation when the loop formation size is very small and the

loops decay entirely into particles. This can be a valid situation for flat direction strings, since for

them the cusp annihilation has a large chance to dominate over gravitational radiation due to the

large string width. In this chapter we study the DM production on much more general grounds.
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by string loops formed in the scaling regime. In Section 4.4 we extend our results

to compute the dark matter density from cosmic strings loops when friction plays an

important role in the evolution of the string network.

Before proceeding, let us point out that the production of dark matter by the

decays of cosmic string loops was considered previously in Ref. [173]. We update and

extend this work in a number of ways. Most importantly, we make use of the recent

results on the size distribution of string loops when they are formed from Refs. [202,

203, 204, 205]. We also consider the evolution of cosmic string networks both with and

without friction. When friction is relevant, we extend Ref. [173] by using the analytic

model of Ref. [179] to describe the long string network. Furthermore, we concentrate

on cusping as the primary source of particle production by cosmic strings.

4.2 A Formula for Dark Matter from Cosmic Strings

Let us denote the initial invariant length of a string loop formed at cosmic time ti

by `i. The invariant length ` of a loop is defined in relation to its energy in the

cosmological frame by

Eloop = µ `. (4.5)

If the loop is boosted with speed ν, the invariant length ` will exceed the proper

length of the loop in its rest frame by a factor of γ = 1/
√

1 − ν2.

The key quantity characterizing loop formation is

r(`i, ti) d`i dti, (4.6)

the number density of string loops formed in the time interval (ti, ti +dti) with initial

length in the range (`i, `i+d`i). The form of the function r(`i, ti) is constrained by the

evolution of the long string network. In particular, the total rate at which energy is

transferred from the long string network to loops is typically a known quantity [179].
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We can use this fact to impose the constraint

dρloop

dti
=
∫

d`i µ `i r(`i, ti), (4.7)

where dρloop/dt is the rate of energy transfer into loops from the long string network.

Consider the evolution of a loop of initial size `i formed at time ti. The length of

this loop is described by the function

`(t; `i, ti) (4.8)

which is the solution to the equation

µ
d`

dt
= −Ptot, with `(ti; `i, ti) = `i, (4.9)

where Ptot is the total rate of energy loss from the loop. We will assume that Ptot is

positive so that ` is monotonically decreasing in time. Under this assumption, the

loop will eventually decay away completely at the time tco(`i, ti), defined implicitly

by

0 = `(tco; `i, ti). (4.10)

While the loop is decaying, it will emit a fraction of its energy in the form of (cold)

dark matter. We will write this fraction as PDM ≤ Ptot.

To find the total rate of dark matter production by the collection of string loops,

consider loops with initial size in the range (`i, `i + d`i) formed in the time interval

(ti, ti + dti). There are r(`i, ti)d`idti such loops per unit volume initially. As time

goes on, this collection of loops is diluted by the cosmic expansion by a factor of a−3.

This is the only modification of their density until they decay away completely at

time tco(`i, ti). At time t̃, this collection of loops will produce dark matter at the rate

PDM . This dark matter will thermalize if it is produced before the freeze-out time

t̃ < tfo, and redshift as a−3 after this time. Thus, we have

∆ρDM =
∫

d`i

∫ t0

tη
dti

∫ t̄co(`i,ti)

tfo

dt̃ r(`i, ti)

[

a(ti)

a(t̃)

]3

PDM

[

a(t̃)

a(t0)

]3

Θ(tco− tfo). (4.11)
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The integral over ti runs between the string network formation time tη and the present

time t0 ' 4 × 1041 GeV−1. Typically, tη is on the order of

tη ' MPl

η2
, (4.12)

where η is the scale of spontaneous symmetry breaking. The integration over the

decay time t̃ runs from the freeze-out time tfo to either tco or t0, whichever is smaller.

Thus, we have defined t̄co(`i, ti) by

t̄co(`i, ti) =















tco(`i, ti) : tco < t0

t0 : tco ≥ t0

. (4.13)

Any restriction on the integration limits of `i are encoded in the support of the

function r(`i, ti).

It is often the case that PDM and Ptot depend on t̃ only through ˜̀= `(t̃; `i, ti). If

so, it is convenient to change the integration variable from t̃ to ˜̀. The corresponding

Jacobian is simply (∂ ˜̀/∂t̃)−1 = −µ/Ptot, where Ptot is the total power released by a

loop of length ˜̀. It follows that

∆ρDM =
∫

d`i

∫ t0

tη
dti

∫ ¯̀
fo(`i,ti)

`x(`i,ti)
d˜̀r(`i, ti)

[

a(ti)

a(t0)

]3

µ
PDM

Ptot
(4.14)

The limits on the ˜̀ integration depend on the functions

¯̀
fo(`i, ti) =















`(tfo; `i, ti) : ti < tfo

`i : ti > tfo

, (4.15)

as well as

`x(`i, ti) =















0 : tco(`i, ti) < t0

`(t0; `i, ti) : tco(`i, ti) > t0

. (4.16)

Eqs. (4.11) and (4.14) are our main results. We will apply them to a couple of

interesting special cases below.
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4.3 Dark Matter Production from a Scaling Network

As a first application of our main result, Eq. (4.11), we compute the dark matter

density produced by a network of cosmic strings in the scaling regime due to the

cusping of closed string loops. To simplify the analysis, we focus on monochromatic

loop formation distributions with

`i = α ti. (4.17)

This relation implies r(`i, ti) ∝ δ(`i−αti). More general distributions can be obtained

by introducing a weight function and summing the final result over different values

of α.

In the string scaling regime, the rate at which the long string network transfers

energy into loops is [179]

dρloop

dti
= ζ µ t−3

i , (4.18)

with ζ ' 10 a constant characterizing the mean properties of the long string network.

Imposing the constraint of Eq. (4.7) on the loop formation rate r(`i, ti), we obtain

r(`i, ti) =
ζ

α
t−4
i δ(`i − α ti). (4.19)

All that remains to do is to specify the evolution of the loop length and the power

emitted as dark matter, and apply Eq. (4.11).

Cosmic string loops lose energy to gravitational radiation as well as cusping, and

shrink as a result. The rate of energy emission into gravity waves is [169]

Pgrav = ΓGµ2, (4.20)

where µ is the string tension, G = 1/(8πM 2
Pl), and Γ ' 50 is a dimensionless constant.

Loops also lose energy when they form cusps, which are points on the loops that

briefly fold back upon themselves and approach the speed of light. Near the apex
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of a cusp, a portion of the string overlaps and self-annihilates. Summing over many

cusps, the net rate at which a loop loses energy to cusping is given by [193]

Pcusp = µ pc

√

w

`
, (4.21)

where pc is the probability for a cusp to form per period of loop oscillation. Several

studies suggest pc ' 1 [192, 194, 195, 196]. Comparing the cusp power of Eq. (4.21)

to the gravitational wave power of Eq. (4.20), we see that cusping is the dominant

energy-loss mechanism by loops when they are shorter than ` < `= with

`= = w

(

pc

ΓGµ

)2

. (4.22)

The particles produced by cusping can decay into dark matter. Provided pc & ΓGµ,

we expect cusping to be the dominant source of dark matter from cosmic strings.

If loops can lose energy to gravitational radiation and cusping, the loop length

evolves according to

µ
d`

dt
= Ptot = −ΓGµ2 − µ pc

√

w

`
. (4.23)

The solution of this equation subject to the initial condition `(ti) = `i is given im-

plicitly by
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 . (4.24)

Suppose that a fraction εcusp of the energy emitted by a string loop cusp (eventu-

ally) takes the form of cold dark matter. It follows that

PDM = εcusp Pcusp. (4.25)

Putting this into Eq. (4.14) and making use of Eq. (4.19), we find the dark matter

density due to cusping to be

∆ρDM =
∫ ∞

0
d`i

∫ t0

tη
dti

∫ `fo(`i,ti)

`x(`i,ti)
d˜̀r(`i, ti)

(

ai

a0

)3

µ
εcuspPcusp(˜̀)

Ptot(˜̀)
(4.26)

=
∫ t0

tη
dti

ζ

α
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i
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¯̀
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The Θ functions in this expression account for the fact that only those loops that

decay after tfo and before t0 can contribute to the dark matter density. Numerically,

we find that the integrand of Eq. (4.26) is peaked around the earliest value of ti for

which loops formed at that time decay after tfo. Thus, the dominant contribution to

the dark matter density will come from loops decaying shortly after tfo.

To be concrete, we evaluate Eq. (4.26) assuming a weakly-interacting massive dark

matter particle with a freeze-out time of tfo = 2 × 1016 GeV−1. This corresponds

approximately to a freeze-out temperature of 5 GeV, which is in the range expected

for a stable, weakly-interacting particle with a mass on the order of 100 GeV. We

also set the loop network parameter to ζ = 10, the cusping probability to pc = 1, and

the branching fraction into dark matter equal to unity, εcusp = 1. In realistic models

we expect that εcusp could be much smaller than unity. Our results can therefore be

interpreted as providing an upper bound on εcusp within the underlying gauge theory

model.

In Fig. 4.1 we show the dark matter relic density due to cusping as a function of

the initial loop size parameter α, normalized to ΓGµ, with the other parameter values

as described above. We normalize α to ΓGµ because, in the absence of cusping, a loop

is long-lived relative to the Hubble time at formation (∼ ti) provided α/ΓGµ > 1,

and short-lived otherwise. From this plot, we see that increasing the initial loop size

α well above ΓGµ increases the final dark matter density. The reason for this is that

the integration over ti in Eq. (4.26) is dominated by the earliest times for which loops

produced at ti decay after tfo. Since larger loops are longer-lived, loops contributing

to the dark matter density can be formed at earlier times, when the integrand of

Eq. (4.26) is larger. As α/ΓGµ decreases, the dark matter density curves flatten out

for lower values of the VEV η. In these flat regions, cusping dominates the evolution

of the loops contributing to the dark matter, and these loops are short-lived even

though α/ΓGµ > 1. When the VEV is larger η & 1013 GeV, gravitational radiation
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becomes more important than cusping. Loops then become short-lived only when

α/ΓGµ < 1. When α becomes very small, cusping again takes over and the curves

flatten out. In Fig. 4.2 we show the dependence of the dark matter density due to

string cusping as a function of the symmetry breaking VEV η. The other string

model parameters are as described above. This plot shows a general increase in the

dark matter density up to large values of η, and then a fall-off. Short-lived loops,

with α ≤ ΓGµ, and smaller values of η decay mostly through cusping at time tfo.

Using Eq. (4.14), it is possible to show that ΩDM increases as η2 in this case. As η

is increased further, gravitational radiation becomes more important than cusping,

and loops lose most of their energy to gravity waves instead of dark matter. Thus,

the dark matter density falls for these very large values of η, with ΩDM ∝ (α η)−1/2

in this regime. The precise value of η at which the cross-over occurs depends on

the value of α, with smaller initial loops being more prone to cusping. For very

large initial loops, α = 0.1, a similar cross-over occurs. For our estimates of the

dark matter density created by scaling cosmic strings to be trustworthy, the string

network must have attained scaling by the time the loops relevant to dark matter were

formed. Furthermore, loops formed in the phase transition at time tη, and while the

string network was evolving towards scaling, must have decayed away before tfo. The

approach of a string network to scaling depends on the details of the phase transition,

and a study of it is beyond the scope of the present work. However, we can derive a

consistency condition based on the requirement that loops formed in the initial phase

transition at time tη have decayed away before tfo. This leads to

η & p−2/5
c

(

α

0.1

)3/5

2 × 103 GeV. (4.27)

Thus, our analysis can potentially be consistent with the phenomenogically interesting

case of strings obtained from the breakdown of a new U(1) gauge symmetry only

slightly above the electroweak scale provided pc is not too small and α is not too

large.
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Together, our results show that the density of dark matter generated by string

loops from cusping with pc = 1 in the scaling regime is safely small for η . 1011 GeV.

For values of the symmetry-breaking VEV larger than this, the string-induced dark

matter density depends on the initial loop size. Loops of initial size α = Γ (Gµ)1.2,

motivated by the results of Refs. [202, 203, 204, 205] appear to generate a safely

small dark matter density. Larger loops, with α ∼ 0.1, can lead to a much larger

dark matter density. If such large loops are typical, the branching fraction into

dark matter εcusp must be significantly less than unity if the cosmic strings are to

avoid overproducing dark matter. Let us also point out that for models with a new

U(1) gauge symmetry broken only slightly above the electroweak scale, the dark

matter produced by the corresponding cosmic string network in the scaling regime is

acceptably sparse.

Before moving on, let us mention that we have treated the loops as having no

net motion relative to the thermal background, even though it is found in Refs. [202,

203, 204, 205] that small loops (α < ΓGµ) are highly boosted. The most important

effect of this boost is to increase the cusping power Pcusp by a factor of γ1/2 (for short-

lived loops), where γ is the boost factor. The decay products will also be boosted.

Numerically, we do not expect that the boost factor will change our results for the

dark matter density by more than about an order of magnitude.

4.4 Dark Matter Production with Friction

The evolution of a cosmic string network can be modified if the strings have sig-

nificant interactions with the thermal background. As we will discuss below, the

relevance of these interactions to the string network depends on the details of the

symmetry breaking from which the cosmic strings arose. Such interactions, when

present, tend to slow the motion of the strings by creating an effective frictional force

on them [207, 208, 179]. This in turn changes the density and rate of growth of the
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network. The frictional forces on strings decrease as the universe cools, and even-

tually become unimportant relevant to the Hubble damping from the expansion of

spacetime. Frictional effects also change the way cosmic string loops form and decay.

In this section we apply the result of Eq. (4.11) to compute the density of dark matter

created by a cosmic string network evolving under the influence of frictional forces.

For local (gauge) cosmic strings, the dominant interaction between the strings

and the thermal background comes from Aharonov-Bohm scattering [209]. This re-

sults from the phase change experienced by the charged particle as it is transported

around the string. The effective frictional force induced by this scattering can be

characterized by a friction length `f given by [207, 179]

`f =
µ

β T 3
, (4.28)

where the dimensionless quantity β is [207]

β =
2 ζ(3)

π2

∑

a

ba sin2(πνa), (4.29)

with the sum running over relativistic degrees of freedom, νa is the phase change of a

particle transported around the string, and ba = 1 (3/4) for bosons (fermions). If the

underlying U(1) gauge symmetry (subgroup) is broken by the condensation of a single

field of charge Q, νa is equal to Qa/Q, where Qa is the symmetry charge of the light

particle species a. Therefore, we expect β to be of order unity when a non-integer

value ofQα/Q is realized by the model, i.e. there is a residual symmetry, and to vanish

otherwise. In the case where Aharonov-Bohm scattering is irrelevant, friction can be

induced by Everett scattering[210], which is in general sub-leading when Aharonov-

Bohm effect is present. It originates from the normal coupling between the component

fields of the strings and the charged particles in the plasma. However, friction can

be irrelevant if the processes we consider occurs at late enough time t > t∗ (t∗ is

defined in the next paragraph), or when the particles charged under the extended
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gauge group all freeze out. Thus, it is sensible to consider cosmic strings both with

and without friction.

Frictional effects on the long string network become unimportant when the friction

length grows larger than the Hubble length. This occurs at the time t∗ defined by

the relation

H(t∗) = 1/`f(t∗). (4.30)

Friction is only relevant for the long string network when t < t∗. For β = O(1) and

radiation domination, t∗ has the parametric size3

t∗ '
M3

Pl

η4
, (4.31)

where η denotes the symmetry breaking VEV. This is parametrically larger than the

typical (radiation-era) formation time tη ∼MPl/η
2. For the most part, we will focus

on strings with η > 105 GeV for which t∗ < teq, the matter-radiation equality time.

The evolution of a cosmic string network in the presence of friction was studied

in Ref. [179]. In their analytic model, the long string network is characterized by

an effective correlation length L and a mean velocity ν. The energy density of the

network is given in terms of these variables as

ρ∞ =
µ

L2
. (4.32)

If the initial string density is larger than the scaling density, as would be expected

if the symmetry breaking phase transition is second-order or weakly first-order, the

string network evolves very quickly to the Kibble regime [168, 179]. In this regime,

with the universe assumed to be radiation dominated, the string network variables L

3Due to the many uncertainties involved in this description of cosmic strings within the friction-

dominated regime, we only list and use here the leading parametric dependences of the string network

parameters.
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and ν have the parametric dependences [179]

L(t) '
(

t

t∗

)1/4

t (4.33)

ν(t) '
(

t

t∗

)1/4

. (4.34)

There is a similar Kibble regime while the universe is matter dominated with expo-

nents for L and ν of 1/2 instead of 1/4. The Kibble regime only lasts while t < t∗.

From Eqs. (4.28) and (4.31) we see that the friction length grows as

`f '
(

t

t∗

)1/2

t. (4.35)

As t approaches t∗, the friction length catches up to the long string length L as well

as the horizon, and the string network transitions into the usual scaling regime with

L ∝ t and ν ∼ 1.

During the friction-dominated Kibble regime, the rate at which energy is trans-

ferred from the long string network to loops is on the order of

dρloop

dti
' µ

(

t∗
ti

)1/2

t−3
i , ti < t∗. (4.36)

This is parametrically larger than during the scaling regime, as can be seen by com-

paring with Eq. (4.18). Once a loop is formed, its subsequent evolution in the Kibble

regime is also considerably different than during scaling. In particular, the typical

initial loop size as well as the subsequent loop evolution are both strongly modified.

Based on Eq. (4.11), it is clear that the amount of dark matter in the presence of

friction will be significantly altered.

4.4.1 Loop Production and Evolution with Friction

The evolution of linear perturbations on long strings and closed string loops in the

presence of friction was studied in Refs. [207, 208]. In Ref. [208] it was found that

linear fluctuations on a long string of wavelength larger than `f are overdamped and

stretched. For wavelengths smaller than `f , the damping time is on the order of `f ,
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which is much longer than the typical period of oscillation but much shorter than

the Hubble time. Hence these small fluctuations oscillate and lose energy to friction

very quickly relative to the Hubble time. Given these results and the picture of loop

formation of Ref. [205], we expect that the typical initial loop size during friction

is on the order of `f .
4 Fluctuations smaller than `f are damped out quickly, while

those larger than `f grow more slowly than the long string correlation length L, and

therefore shrink relative to L. Thus, we expect that fluctuations build up near `f ,

which in turn sets the typical size of a loop when it is formed. Even so, given the

many uncertainties in this estimate, we will also consider loops of size close to the

long string scale L. The correct answer will lie between these two extremes.

To model the evolution of string loops during friction, we will take the results of

Ref. [208] for the evolution of a circular loop to be representative of the evolution of

general loops. (Indeed, friction tends to make the loops more circular.) Ref. [208]

finds that loops smaller than `f oscillate freely and lose their energy to the thermal

background according to

µ
d`

dt

∣

∣

∣

∣

∣

friction

' −µ `

`f
. (4.37)

Therefore such loops lose energy over the time scale `f , much less than the Hubble

time in the friction regime. We do not expect these interactions between the strings

and the thermal background to be a significant source of dark matter.

The motion of loops larger than `f is overdamped. They evolve according to

RṘ ' − `f
2a

(4.38)

where R is the comoving coordinate radius of the loop (and aR corresponds to the

physical loop radius). The solution of Eqn. (4.38) implies that loops of initial size

smaller than the long string scale L shrink down to size `f in less than about a Hubble

4We emphasize however that the picture of loop formation obtained in Ref. [205] was developed

under the assumption of long string scaling, and did not take friction into account.
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time. Once they do, the overdamping approximation of Eq. (4.38) breaks down, and

the loops begin to oscillate and decay away.

In summary, loops are formed in the friction regime with a typical initial length

between `f and L. For initial loops of length `f(ti), the loop formation rate per unit

volume per unit length is

r(`i, ti) '
(

t∗
ti

)

t−4
i δ(`i − `f (ti)), ti < t∗. (4.39)

The rate is effectively reduced by a factor of (ti/t∗)
1/4 if the initial loop size is L(ti)

instead of `f . These loops shrink down to length `f in less than about a Hubble time.

Once a loop becomes smaller than `f it starts to execute underdamped oscillations,

transferring its energy to the thermal background and decaying away over the time

scale `f . The loop length ` then evolves according to

d`

dt
= − `

`f
− ΓGµ− pc

√

w

`
. (4.40)

Here, the first term comes from friction, the second from gravitational radiation, and

the third from cusping.

Before going on to compute the dark matter density generated by the decaying

loops, let us make note of the fact that at the end of the friction-dominated Kibble

regime, the long string network is smoothed out nearly all the way up to the Hubble

scale. In the loop formation picture of Ref. [202, 203, 204, 205], small fluctuations

on long strings giving rise to loops originate from fluctuations of Hubble size that

have slowly shrunk. Thus it will take some time for small scale structure to build up

on the long strings, and the typical initial loop size will be initially larger than the

gravitational damping length lGW . We follow Ref. [179] and model this transitional

period by writing the initial typical loop size parameter as

αeff(t) =
1 + α(t/t∗)

ξ

1 + (t/t∗)ξ
, t > t∗, (4.41)

with the exponent ξ ' 1. A näıve application of the results of Refs. [202, 203, 204, 205]

suggests that ξ = 0.9 in the radiation era. We will study a range of values of ξ.
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4.4.2 Dark Matter with Friction

The discussion above provides all the ingredients needed to evaluate the dark matter

density in the presence of friction using Eq. (4.11). We do so here under the as-

sumption that loop cusping is the dominant source of dark matter from the strings.

Our results are presented in Fig. 4.3, where we show the dark matter density due to

cosmic strings as a function of the symmetry breaking VEV η. In making this plot,

we have also set ζ = 10, pc = 1, εcusp = 1, and we have again taken the freeze-out

time to be tfo = 2×1016 GeV−1. We have also fixed an overall prefactor in Eq. (4.39)

(equal to ζ/2) to ensure that the loop formation rate is continous as ti crosses t∗.

The different curves in Fig. 4.3 correspond to different values of the (scaling regime)

loop size parameter α and the exponent ξ appearing in Eq. (4.41).

The dark matter density curves in Fig. 4.3 show three distinct regions, with the

transitions between them occurring around η = 108 GeV and 1012 GeV. For values

of η well above 1012 GeV, the curves coincide with those obtained in the absence of

friction. Such large values of η imply a value of t∗ that is much smaller than the

freeze-out time tfo, so that all loops generated while friction is relevant decay away

before tfo. On the other hand, when η lies below 1012 GeV, the most important

contribution to the dark matter comes from loops formed while friction dominates

the network evolution, ti < t∗.

In the region 108 GeV . η . 1012 GeV most of the DM is produced by loops that

are formed in the friction era, with ti < t∗. This is why the dark matter density is

independent of the scaling value of α for this range of η. The largest contribution

to the DM in this region comes from loops that are also long-lived, with ti < tfo.

This enhances the amount of dark matter formed because, with the loop distribution

function of Eq. (4.39), the integrand of the ti integral in Eq. (4.11) is a rapidly

decreasing function of ti. Increasing η in this region leads to larger initial loop sizes

that further extend the loop lifetime. However, the minimal value of ti for which
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loops decay after tfo decreases more slowly with increasing η than t∗. The sharp

transition near η = 1012 GeV occurs when these two quantities become equal. When

this happens, increasing η further decreases the initial loop size (see Eq. (4.41)) for

the dominant DM loops, and these loops go quickly from being long-lived to being

short-lived, with the dominant loops being formed near ti = tfo < t∗. The transition

becomes more gradual when the exponent ξ in Eq. (4.41) becomes less than ξ = 1.0,

which can be seen by comparing with the curve for ξ = 0.7.

When η falls below η . 108 GeV, the initial loop size (equal to `f) becomes small

enough that the loops are short-lived, decaying away within a Hubble time. Thus,

the majority of the dark matter produced for these smaller values of η comes from

loops formed near the freeze-out time, ti ' tfo, with initial size close to `f(tfo). As η

decreases below 108 GeV, we find that a larger fraction of the energy of each loop is

lost to cusping, thereby increasing the dark matter density.

As a summary of this chapter, we have investigated the non-thermal dark matter

produced by the decays of cosmic string loops, for a general loop formation distribu-

tion. We focus on the production channel where the component fields of the strings

are released during cusp annihilation and then decay to DM candidates. We have cal-

culated the amount of non-thermal dark matter generated when the string network is

in the scaling regime, and when its evolution is dominated by friction forces. In both

cases, we found that the density of DM can be dangerous if the associated symmetry

breaking scale η is higher than 1010GeV, while safely small when η is lower than that

value.
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Figure 4.1. Dark matter density due to loop cusping for εcusp = 1, pc = 1, ζ = 10, and tfo =
2 × 1016 GeV as a function of the initial loop size parameter α. The various lines correspond to
different values of the symmetry breaking VEV η.

106 107
108 109 1010 1011 1012 1013 1014

1015

η (GeV)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

Ω
D

M

ΓGµ

10-10 ΓGµ

(ΓGµ)1.2

0.1
0.001

Figure 4.2. Dark matter density due to loop cusping for εcusp = 1, ζ = 10, pc = 1, and tfo =
2 × 1016 GeV as a function of the symmetry breaking VEV η. The various lines correspond to
different values of the initial loop size parameter α.
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Figure 4.3. Dark matter density due to loop cusping for εcusp = 1, pc = 1, and tfo = 2×1016 GeV as
a function of the symmetry breaking VEV η in the presence of friction. The various lines correspond
to different values of the initial loop size parameter α.



CHAPTER 5

Conclusions

A Hidden sector, which is composed of SM singlet fields and the interactions be-

tween them, is an extension beyond the visible world composed of the known particles

and the four familiar fundamental forces acting on them. Although without direct

practical motivation for solving any particular, known problem, a hidden sector seems

an inevitable by-product in those theories seeking solutions to significant problems

such as the unification of fundamental forces and the gauge hierarchy problem. As

we have seen, such a sector is well-motivated in the contexts of GUT theories, string-

inspired models, SUSY breaking models, etc. More interestingly, although called

‘hidden’, the SM singlets can in fact couple to the SM fields in significant ways, such

as tree-level mixing with the SM gauge bosons or Higgs boson. We can thus ex-

pect that these singlets may have an important influence on ‘visible’ sector physics.

The study of the phenomenological implications of a hidden sector is therefore a

worthwhile field to pursue. One generically-motivated hidden sector scenario is that

associated with a beyond-the-SM gauge symmetry which is broken via the Higgs

mechanism. In chapters 2-4, I have reviewed three pieces of my work related to this

scenario, which discuss its LHC phenomenology and cosmological implications. In

this conclusion chapter, I would like to begin by summarizing the work presented in

the previous chapters.

1. Signatures of Hidden Higgs at the LHC The Large Hadron Collider holds

much promise for discovering new particles and interactions. Many ideas of

129
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physics beyond the SM that explain electroweak symmetry breaking involve

states that are coupled directly to the Standard Model gauge bosons. For ex-

ample, supersymmetry, technicolor and extra dimensions all have exotic states

that are direct participants in the electroweak story. However, there are states

that do not couple to the SM gauge bosons that may contribute to understand-

ing the full picture of EWSB (e.g., singlet states that get vevs to produce the

µ term in supersymmetry) or help solve other problems not directly connected

to electroweak physics (e.g., singlets breaking exotic gauge groups in string-

inspired theories).

In this work, we have investigated a renormalizable interaction between the SM

Higgs boson and a Higgs boson of a hidden sector. This gives us one of the

most incisive methods to probe the existence of states that have no SM gauge

charges. The phenomenological challenge to this scenario is that all couplings

of the mixed Higgs bosons are less than the would-be SM couplings for a SM

Higgs boson of the same mass. However, small compensating advantages were

exploited here: a reduced coupling means a reduced width, which turns a trans-

TeV Higgs boson into a definable narrow-width state to search for, and the

existence of two Higgs bosons enables us to search for decays of the heavier

Higgs boson to the lighter one. In both cases, we were able to study examples

from the parameter space of discovery. We therefore like to emphasize the

importance of searching for a Higgs boson in standard channels well into the

trans-TeV mass region. We also like to reemphasize, from the point of view of

these hidden sector ideas, that there is a potential opportunity to discover both

a heavy Higgs boson and a light Higgs boson through H → hh decays. This

is an especially attractive channel to exploit in the circumstance that a light h

boson is particularly hard to find due to reduced production cross-section which
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is generically predicted in these theories.

2. Cosmic Strings from SUSY Flat Directions

Cosmic strings can be formed in a generic way during cosmological phase transi-

tion associated with the breaking of certain hidden sector gauge symmetry, e.g.

when a U(1)′ is completely broken. We study the theory and phenomenology

of cosmic strings in a particular but well-motivated setup: when the strings are

formed when the symmetry is broken along SUSY flat-direction. We find that

such cosmic strings behave in ways that are qualitatively different from both

ordinary (abelian Higgs) cosmic strings as well as (p, q) cosmic superstrings.

These differences in behavior may be distinguishable through probes of the

early universe.

• Abelian gauge symmetry breaking along a flat direction can give rise to

strongly Type-I cosmic strings with tension µ ' 0.1πv2, gauge profile width

of v−1 and scalar profile width w ∼ m−1, where m � v characterizes the

flatness of the potential. These flat-direction strings are likely to be formed

after thermal inflation through flux-trapping.

• The tension of the strings increases very slowly with their winding num-

ber N . Thus, higher-winding mode strings N = 2, 3, . . . are energetically

stable. This enables strings to be attracted to one another and zipper,

creating stable formations with winding number N1 + N2 or |N1 − N2|,

where N1 and N2 are the original string winding numbers.

• Zippering affects the evolution of the resulting string network. Applying

a simple network evolution model to flat-direction strings suggests that a

large number of string modes develop roughly equal densities in the early

universe. The total energy density is about the same as for a single string,
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but it is distributed among many species.

• Flat-direction strings radiate gravitationally. However, in contrast to ordi-

nary cosmic strings, they also may be able to radiate copiously into matter.

The strings are expected to fully radiate away, as there is no vorton ob-

struction for the supersymmetric flat-direction strings under consideration.

• In contrast to GUT strings, flat-direction strings are generically compatible

with current direct observational constraints, Gµ . 3 × 10−7 [95, 96, 97,

98, 99]. If the typical initial loop length is close to the horizon scale,

LISA and upcoming millipulsar timing probes may be able to detect the

gravitational wave signal from these strings. However, the gravity wave

signal at higher frequencies is suppressed for flat-direction strings, making

their detection at LIGO extremely challenging.

• Particle emission from cusp annihilation is likely to be the dominant loop

decay mechanism if the loop length is always much smaller than the hori-

zon. This intriguing prospect for flat-direction cosmic strings entertains

the possibility that ultra-high-energy cosmic rays or nonthermal dark mat-

ter originate from their particle emission. If all loops decay entirely into

particles, the constraints from BBN, the CMB blackbody, and UHECRs

imply the bound v . 1013 GeV, corresponding to Gµ . 10−13.

• The multi-tension network of flat-direction strings formed in the early

universe is in contrast to the standard single-tension string networks, but

similar to (p, q) cosmic superstring networks, and thus may mimic the

latter by giving rise to multiple lensing events. However, the spectrum

of tensions of flat-direction strings is constrained by indirect bounds, and

may be too low to be observed in the near future.

3. Non-thermal Dark Matter from Cosmic String Decays
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For those hidden sector models that can produce cosmic strings, consideration

on the dark matter relic density from string loop decays can put constraints on

the parameters or structure of the models, e.g. the symmetry breaking scale.

In the work presented in chapter 4, we have studied the dark matter density

created by the decays of loops of (local) cosmic strings. Dark matter is produced

by the string loops when they form cusps. At a cusp, a small portion of the

string loop annihilates into its constituent fields, which can then cascade down

to lighter states such as dark matter particles. Our results provide constraints

on extensions of the gauge symmetry group of the standard model that give

rise to cosmic strings in the early universe.

The string loops that give decay to dark matter are themselves created continu-

ally by the network of long, horizon-length strings. We have studied the amount

of dark matter generated when this network is in the scaling regime, and when

when its evolution is dominated by frictional forces. Both cases are physically

relevant as the presence or absence of significant frictional interactions depends

on the details of the symmetry breaking from which the strings arose.

For a string network in the scaling regime (in the absence of friction) the in-

duced dark matter density can be dangerously large when the symmetry break-

ing VEV η exceeds 1010 GeV. The amount of dark matter is also enhanced

when the initial loop size approaches a significant fraction of the cosmological

horizon, although much smaller initial loop sizes can also generate dangerously

large amounts of dark matter. Therefore if loops are formed with near-horizon
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size, to be consistent with the observed dark matter relic density, the branching

fraction into dark matter from cusp annihilation must be considerably less than

unity in some parameter regions.

String networks that are strongly influenced by friction can also generate a

dangerously large dark matter density. This occurs for values of the symme-

try breaking scale greater than about 1011 GeV. For very large values of the

symmetry breaking scale, above about 1013 GeV, the frictional effects decouple

well before the dark matter is created.

More Comments on Hidden Sector

At the end of this thesis, I would like to make some more comments, which are

outside the main scope of the thesis, but are important for us to get a more complete

understanding of hidden sector. The work I have done focuses on one well-motivated

hidden sector scenario wherein an extended gauge symmetry is broken perturbatively

via the Higgs mechanism. Meanwhile, there is another class of hidden sector models

which is almost equally well-motivated——those where supersymmetry or extended

gauge symmetry is broken by strong dynamics, or even more interestingly those in

a confining phase. As mentioned in the introduction, the only known way in four

dimensional theories of generating, not just stabilizing a hierarchy of mass scale is di-

mensional transmutation enabled by strong dynamics. In particular, a hidden sector

with strong dynamics is almost ubiquitous in SUSY breaking models. Generally in

these models, there seems no obvious counterparts of tree-level renormalizable mixing

between hidden sector and SM gauge boson or Higgs. Therefore in these models the

interaction between the visible sector and hidden sector is in general mediated by

higher dimensional operators due to some messenger sector. However, recent works

have revealed that even in these scenarios, the hidden sector may still have non-
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negligible visible effects—for example, it could play an important role in determining

soft SUSY breaking parameters in visible sectors [212, 213, 214, 215]. Recent, inter-

esting studies also exist concerning the collider phenomenology of such hidden sectors

known as ‘hidden valley’ models [216, 217, 218, 219]. In a nutshell, whether it involves

a perturbative Higgs mechanism or strong dynamics, hidden sectors have proved to

be a rewarding subject to study both for understanding the visible SM world and for

exploring possible new matter and forces beyond our current knowledge.



APPENDIX

136



Appendix

Unitarity Inequalities

The 15 relevant processes that give non-vanishing constant amplitudes when s→ ∞

(with mW , mV � mH , mh) are

1. W+
L W

−
L →W+

L W
−
L (s-, t-channels)

2. ZLZL → ZLZL (s-, t-, u-channels)

3. ZLZL → W+
L W

−
L (only the s-channel Higgs exchange is relevant)

4. HH → HH (only contact graphs are relevant), in mass eigenstates, including:

(4.1) hh→ hh

(4.2) hh→ hH

(4.2) hh→ HH

(4.4) HH → hH

(4.5) HH → HH

5. HH → W+
L W

−
L /ZLZL (t-,u- channel gauge boson exchange and s-channel

Higgs exchange are all relevant), including:

(5.1) hh→ W+
L W

−
L /ZLZL

(5.2) hH →W+
L W

−
L /ZLZL

(5.3) HH →W+
L W

−
L /ZLZL
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6. VLVL → VLVL (s-, t-, u-channels)

7. HH → VLVL (t-,u- channel gauge boson exchange and s-channel Higgs ex-

change are all relevant), including:

(7.1) hh→ VLVL

(7.2) hH → VLVL

(7.3) HH → VLVL

The corresponding conditions derived from those 15 processes are listed below in

order:
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