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 Abstract 
 
 

Construction processes can be conceived as systems of discrete, interdependent activities. 

Discrete Event Simulation (DES) has thus evolved as an effective tool to model 

operations that compete over available resources (personnel, material, and equipment). A 

DES model has to be verified and validated to ensure that it reflects a modeler’s 

intentions, and faithfully represents a real operation. 3D visualization is an effective 

means of achieving this, and facilitating the process of communicating and accrediting 

simulation results. 

 

Visualization of simulated operations has traditionally been achieved in Virtual Reality 

(VR). In order to create convincing VR animations, detailed information about an 

operation and the environment has to be obtained. The data must describe the simulated 

processes, and provide 3D CAD models of project resources, the facility under 

construction, and the surrounding terrain (Model Engineering). As the size and 

complexity of an operation increase, such data collection becomes an arduous, 

impractical, and often impossible task. This directly translates into loss of financial and 

human resources that could otherwise be productively used. In an effort to remedy this 

situation, this dissertation proposes an alternate approach of visualizing simulated 

operations using Augmented Reality (AR) to create mixed views of real existing jobsite 

facilities and virtual CAD models of construction resources. The application of AR in 

animating simulated operations has significant potential in reducing the aforementioned 

Model Engineering and data collection tasks, and at the same time can help in creating 

visually convincing output that can be effectively communicated. 

 

This dissertation presents the design, methodology, and development of ARVISCOPE, a 

general purpose AR animation authoring language, and ROVER, a mobile computing
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hardware framework. When used together, ARVISCOPE and ROVER can create three-

dimensional AR animations of any length and complexity from the results of running 

DES models of engineering operations. ARVISCOPE takes advantage of advanced 

Global Positioning System (GPS) and orientation tracking technologies to accurately 

track a user’s spatial context, and georeferences superimposed 3D graphics in an 

augmented environment. In achieving the research objectives, major technical challenges 

such as accurate registration, automated occlusion handling, and dynamic scene 

construction and manipulation have been successfully identified and addressed.  
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Chapter 1 
 

Introduction 
 

 
The objective of this research was to find methods of accurately creating dynamic 

animations of simulated construction operations in outdoor Augmented Reality (AR). 

The dynamics of construction projects and the uncertainty involved in the corresponding 

activities of a typical construction operation are major incentives for decision makers to 

introduce and adapt Information Technology (IT) based solutions that can conveniently 

supplement traditional methods of operations planning, site layout planning, resource 

management, crew selection, and work progress monitoring [1,2,3]. Simulation has 

gained a lot of credibility over the past few years as a powerful tool to study the 

complexities of an operation and perform sensitivity analyses that highlight the 

interdependencies between the involved entities and resources [4,5,6,7]. Depending on 

the complexity of a simulated operation, the results of the simulation model have to be 

carefully reviewed, interpreted, and communicated. In order for a simulation model to be 

practically used in real life decision making, it is extremely important that the results of 

the model be understood and accepted in order to satisfy two main criteria: 1) the 

simulation model has been built right, and 2) the right simulation model has been built. 

The first condition is addressed by verification in which the computer representation is 

compared to the conceptual model to make sure that the parameters and logical structure 

used are correctly representing a modeler’s understanding of the operation. The second 

condition is fulfilled by validation of the simulation model, which determines if the 

computer model is an accurate representation of the real world operation [8].
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There are several approaches to verification and validation of a simulation model [9]. 

Among them, 3D visualization is an effective approach as it facilitates the process of 

accrediting and communicating the simulation results by providing an easily interpretable 

and understandable visual interface [8,10,11,12,13,14]. 3D visualization of simulated 

operations has traditionally been performed in Virtual Reality (VR). In order to create 

realistic VR displays of a simulated process, detailed data about the process as well as the 

environment in which it takes place has to be obtained. Such data must be able to 

describe the simulation, and 3D CAD models of the resources, the facility under 

construction, and terrain topography (Model Engineering) [15]. As the size and 

complexity of an operation increases, data collection also becomes time and resource 

consuming. This directly translates into loss of project financial and human resources that 

could otherwise be saved and used more productively. In an effort to remedy this 

situation, an AR-based approach to create dynamic animations of simulated operations 

has been developed in this research and is described in this dissertation. Following this 

approach, AR is used to create mixed views of real existing facilities on the jobsite and 

virtual CAD objects of resources involved in the construction. The application of AR in 

animating simulated construction operations has great potential in reducing the Model 

Engineering and data collection tasks, and at the same time leads to visually convincing 

animation results [16]. 

 

The primary research question that this dissertation addressed was how to create smooth, 

dynamic, and accurate animations of simulated construction operations in an AR 

environment based only on communicated discrete events occurring within Discrete 

Event Simulation (DES) models, while at the same time providing mobile users with the 

ability to study the animated operations in real time inside a mixed environment of real 

and virtual objects. This can significantly facilitate the process of user-oriented 

verification and validation of simulated operations due to the interaction between a user 

and the scene where the user can study the model from different perspectives and under 

different simulated scenarios. 
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The end result of this effort is ARVISCOPE, an acronym for Augmented Reality 

Visualization of Simulated Construction Operations. ARVISCOPE is an animation 

authoring language capable of describing a dynamic simulated construction operation in 

AR using simple yet expressive statements that are meant to be written either manually or 

by end-user programmable software such as DES tools. Instructions written in this 

language are ordered chronologically to describe the temporal and spatial characteristics 

of each activity within a simulated operation. The language and its implementation are 

also capable of animating the interactions between the user and the mixed environment as 

well as virtual-real object interactions. 

 

1.1. Importance of the Research Activity 
 

Operations planning is a critical component of managing and controlling the different 

aspects of an ongoing construction project. A comprehensive operational level work plan 

and corresponding site layout that can provide easy accessibility to different locations of 

the jobsite is a key to significant savings in project time and costs, and at the same time 

results in reduction of several unwanted resource and physical space conflicts. Working 

in a well organized operational environment with minimum amount of time spent on 

resolving conflicts and tasks not directly related to the scope of the project is an 

important factor in meeting the project schedule and budget.  

 

This is a major incentive for using computer applications to model, simulate, and 

visualize operations beforehand in order to identify any potential project related events 

that may cause unexpected delays or conflicts during the course of the real operations, 

and plan ahead of time to avoid such situations during actual construction. Amongst 

several approaches of modeling construction operations, DES has gained significant 

credibility since almost every construction operation can be effectively broken down and 

modeled as a system of discrete activities that each consumes resources (personnel, 

material, and equipment) in order to be completed [6,17]. DES models provide an 

effective means to establish logical relationships between activities within a project 

which compete over and make use of available and often scarce resources. 
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For a relatively small operation, reviewing, interpreting, verifying, and validating the 

results of a simulation model can be done manually using statistical data, flowcharts, 

flow diagrams, and other numerical tools [9]. However, as the size of the operation 

increases and with the introduction of more resources and activities within the operation, 

automating the process of communicating the results of a simulation model for 

verification and validation purposes turns into a crucial need that has to be addressed in a 

timely and effective manner. One of the effective methods of verifying and validating the 

results of a simulation model is to communicate the flow of activities in a chronologically 

and spatially accurate manner. 3D visualization is an effective means to achieve this 

objective and facilitate the process of understanding and accrediting the simulation 

results [7,8]. The application of VR in visualizing the results of simulated processes has 

been investigated by several researchers. In contrast, there have been very few studies 

conducted in AR primarily due to the fact that the successful implementation of an AR 

environment requires addressing several critical challenges and problems in order to 

produce an acceptable degree of reliability and credibility in the visual results. 

 

AR is a rapidly advancing technology that offers high potential for significant 

improvement in many scientific and engineering domains such as construction, industrial 

and mechanical engineering, medicine, aviation, and manufacturing. For example, using 

AR in construction can allow walking through an actual site and experiencing a virtual 

facility as it may be built in the future, or looking into the ground and “seeing” utility 

lines as they exist based on as-built CAD data. AR can also be applied to assembly lines, 

with the option of presenting the individual work steps to the assembler in an augmented 

visualization environment during training or actual assembly phases. AR visualizations 

can also help product manufacturers in providing required training to production line staff 

about assembling different components to enhance productivity. In aviation, aircraft 

companies such as Boeing have recently carried out trials using AR technology in the 

assembly field [18]. Flow and inventory control of raw material and final products in a 

warehouse can also be conveniently animated using AR to minimize order lead times, 

product delivery times, and maintenance request waiting times. The applications and 

potential of AR are thus vast and applicable to several engineering domains. 
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1.2. Prior State of Knowledge 
 

AR related research has been conducted in a growing number of scientific and 

engineering disciplines. Integration of AR in CAD/CAM systems helps manufacturing 

companies (e.g. automotive, airlines, etc.) to model mechanical designs, visualize stresses 

or flows calculated from previous simulations, test for interferences through digital 

preassembly, and study the manufacturability and maintainability of subsystems [19].  

 

Visualization of medical information projected onto a patient’s body is also an 

established application of AR technology. Traditional Magnetic Resonance Imaging 

(MRI) and Computed Tomography (CT) images provide physicians with information on 

a totally detached display from a patient. Using AR displays allow MRI and CT images 

to be superimposed over the patient’s anatomy which can assist in tasks such as planning 

of surgical procedures [19]. In the Division of Medical and Biological Informatics at 

ZGDV in Germany, work has been done on a project known as ARION (Augmented 

Reality for Intra-Operative Navigation), using AR for image-guided surgery [20]. 

 

The Computer Graphics Center, also at ZGDV in Germany, in partnership with several 

European businesses, has been involved in the ARCHEOGUIDE Project (Augmented 

Reality Based Cultural Heritage On-site Guide). This project seeks to create a virtual tour 

guide for individuals visiting great historical and cultural sites. ARCHEOGUIDE has 

been tested near the remaining foundation of Hera’s temple in Olympia, Greece, where it 

created an augmented view of the temple as it would have appeared in ancient Greece 

[21]. A similar real time touring application has been developed by a team at Columbia 

University. By providing wireless internet access to the mobile AR backpack, along with 

a link to the University’s campus information server, the user has their display augmented 

with information about buildings currently in their view [22]. 

 

AR has also been studied for implementation in the military sector. The Battlefield 

Augmented Reality System (BARS) was developed and tested at the Naval Research 

Laboratory as a mobile AR system to improve situational awareness between remote 
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users in the field. The purpose of this project was to analyze interaction and data 

distribution among networked users as they inspect an area [23,24]. AR is also being 

investigated in realms beyond science and engineering including the creation of first-

person, real time video game simulations. The ARQuake system, developed by 

researchers at the University of South Australia, applies AR technology to the first-

person shooter genre, allowing the user to physically roam the terrain, with the video 

game graphics and opponents projected as virtual images onto the background [25,26,27]. 

 

The application of visualization techniques for planning, analysis, and design in 

construction and civil engineering is relatively new compared to the sizeable amount of 

AR related research conducted for diverse applications in fields such as manufacturing, 

medical operations, military, and gaming. During recent years, visualization has gained 

an increasing credibility among researchers in construction and has been noted as one of 

the four main IT domains in construction [28]. Previous studies have explored the 

application of AR as a state-of-the-art visualization technique for a limited number of 

architecture and construction applications. 

 

For example, Webster et al. [29] presented a system that shows locations of columns 

behind finished walls, and rebar inside columns. They also presented an AR system to 

guide workers through the assembly of a space frame. Roberts et al. [30] used AR to 

overlay locations of subsurface utility lines onto real world views. These applications 

have been designed to demonstrate the potential of AR in helping maintenance workers 

avoid buried infrastructure and structural elements. Hammad et al. [31] augmented 

contextual information on real views of bridges to help inspectors conduct inspections 

more effectively. Kamat and El-Tawil [32] used AR to study the extent of horizontal 

displacements sustained by structural elements due to extreme loading conditions. Wang 

and Dunston [33] explored the potential of AR as an assistant viewer for computer-aided 

drawing. Behzadan and Kamat [16] studied the applicability of 4D CAD visualization in 

AR for construction [34] by performing several experiments using time tagged CAD 

models of building structures.  
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Each of the abovementioned research projects, however, was focused on developing a 

domain specific AR platform that was intended for a very specific purpose, thereby 

limiting its widespread applicability. For example, the methods developed for and 

incorporated in such platforms are not available in a form that allows them to be readily 

extended or reused for other AR applications. In addition, prior research in AR: 

• Does not incorporate arbitrary operations level complexity into AR visualizations. 

• Does not consider dynamic objects evolving in an AR scene based on the results 

of discrete-event simulation. 

• Does not afford unrestricted mobility to the observer of a dynamic AR scene. 

• Does not consider the interaction between real and virtual objects in an AR scene. 

• Does not consider problems associated with enabling AR visualization in outdoor 

unprepared environments. 

 

1.3. Research Objectives 
 

In order to address the limitations in the existing state of knowledge, the overall objective 

of this research was to investigate the requirements and develop the ability to use AR-

based visualization for animating dynamic operations modeled and simulated using DES. 

The specific objectives of this research were identified as follows: 

• Study the required parameters that can identify an observer’s global spatial 

context, and design methods to obtain and retrieve this information in real time in 

order to update the graphical contents of a running AR animation. 

• Investigate feasible methods to communicate with a running DES model in order 

to extract all necessary information that can describe the environment and the 

underlying logic of a dynamic operation. Data about the simulation resources (i.e. 

equipment, machinery, personnel, material) such as their quantity, configuration, 

interaction, and dynamic motion are examples of such required information.  

• Develop an expressive yet simple animation authoring language capable of 

describing discrete activities of a DES model in a smooth, continuous manner 

within a georeferenced, outdoor, 3D AR environment. 



 8

• Identify and effectively address issues such as incorrect visual occlusion that 

significantly affect the visual impact and credibility of an AR animation. Such 

issues arise from the fact that in an AR animation, two groups of objects (i.e. 

virtual and real) have to appear to seamlessly coexist in a single scene 

 

This dissertation presents the developed methodology and the design of AR-based 

visualization techniques, position and orientation tracking algorithms, and a powerful 

animation authoring language together with their practical implementation inside a 

mobile AR visualization tool. The designed animation language provides a convenient 

method to automatically author animations of any length and complexity at the operations 

level of detail using an external software process such as a running DES model. The 

results of the research have been validated by animating several simulated construction 

operations in outdoor AR. 

 

1.4. Research Methodology 
 

In order to effectively achieve the objectives of this research, the identified problems and 

challenges were clustered into several groups for investigation. The following is an 

abridged list of the major steps followed in this research to fulfill the requirements of a 

functional, reliable, and practical AR visualization methodology and tool that can be 

conveniently used in construction or any other engineering environment: 

• Studied the details of involved parameters in tracking an observer’s 3D position 

and head orientation in a global space without dependence on any type of 

preinstalled tracking infrastructure that might possibly limit the observer’s 

freedom of movement. 

• Designed and successfully implemented a stand-alone tracking method capable of 

communicating with positional and head tracking devices in real time and sending 

appropriate data to the AR application at each animation frame. 

• Created a basic AR visualization application to evaluate the reliability of the 

tracking data in updating the graphical context of the observer’s view based on 
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the animation scenario and the observer’s latest position and head orientation 

inside the augmented environment. 

• Studied how the existing visualization application and DES tools work to 

understand the underlying simulation data transferring algorithms that can enable 

a visualization application to create a dynamic animated scene of the 

corresponding simulated operations. 

• Designed and implemented the core ARVISCOPE language in a mobile, AR 

environment that receives, interprets, and creates visual representations of the 

communicated simulation data from a DES model using 3D CAD models of the 

entities involved in the operation. 

• Successfully tested the developed AR visualization application in several outdoor 

environments using various construction project scenarios and CAD models while 

providing full maneuvering ability to the scene observer allowing inspection of 

the animation from different perspectives. 

• Studied the requirements of and designed dynamic scene graph based methods 

that support geometric instancing to effectively construct, manage, and robustly 

manipulate large dynamic graphical databases of CAD objects inside an 

augmented environment.  

• Conducted an extensive study on the advantages and limitations of available 

methods to correctly handle visual occlusion effects in AR in order to explore 

techniques to design a self-contained automated method to correctly resolve 

occlusion cases in real time. 

• Developed and implemented a state-of-the-art method to effectively resolve visual 

occlusion cases in AR and successfully validated the designed algorithms in 

miniature indoor construction environments. 

• Successfully validated the designed algorithms, methods, and components of the 

developed AR platform in several experiments including both outdoor and indoor 

tests of simulated construction operations in augmented environments. 
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1.5. Dissertation Outline 
 

During the course of this research, the author produced and published several scientific 

manuscripts in the form of journal papers and conference articles as each identified 

challenge or research problem was successfully addressed. Each Chapter in this 

dissertation is primarily composed of material from its corresponding publications. As a 

result, each chapter serves as a stand-alone document that describes the details of 

individual scientific questions successfully addressed, major challenges involved, and 

algorithms and methods studied, adopted, developed, and implemented in achieving a 

particular research objective.  

 

Each Chapter of this dissertation has been compiled and written so that it is easily 

understandable and interpretable to a wide technically literate audience ranging from 

individuals with prior experience in computer simulation, modeling, and graphics, to 

those with only basic knowledge about construction operations and projects. Each 

Chapter concludes with an extensive list of references (books, papers, and internet URLs) 

that direct the reader to further resources related to the main topic of the chapter.  

In Chapter 2, the final product of this research, an AR animation authoring language 

called ARVISCOPE, is introduced and described. The details of the language and the 

mechanisms that enable dynamic AR animations of DES models are presented. Chapter 3 

describes the spatial tracking mechanism designed in this research and its integration into 

an existing AR application (also developed by the author) to provide real time access to 

an observer’s positional and head orientation data. In Chapter 4, an animated operation is 

studied from the perspective of its individual entities (i.e. CAD models) focusing on their 

assembly into a single scene using a hierarchical approach to create a dynamic scene 

graph of animated objects. Chapter 5 discusses the details of the occlusion handling 

mechanism developed and implemented in this research. Finally, Chapter 6 documents 

results from several validation experiments that have been conducted to evaluate the 

functionality and reliability of the individual components of the developed AR 

methodology, each of which have been individually described in Chapters 2 through 5.  
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The information presented in the Chapters of this dissertation is supplemented by 

additional implementation details provided in several Appendices. In Appendix A, the 

details of the ARVISCOPE animation authoring language statements and their syntax are 

documented. Each individual statement is discussed with the help of an example 

describing the different arguments and parameters that statement requires to perform its 

designed functionality. In Appendix B, the steps for creating a global reference point 

(introduced in Chapter 2) in order to facilitate the construction of different elements in an 

AR scene (e.g. points, routes) are discussed with the help of an example. Appendix C 

describes the process of authoring an ARVISCOPE animation trace file by instrumenting 

an external software process such as a DES model. The example presented in this 

Appendix also serves as a guide on how to automatically create an accurate ARVISCOPE 

animation trace file with a high level of detail and with minimal effort. In Appendix D, 

the implementation details of ARVISCOPE are presented in the form of a flowchart and 

several pieces of pseudo code. While the contents of this Appendix are not intended to be 

software development aids, they can be used by interested readers to gain a better 

understanding of the internal processes and data flows within the developed AR platform, 

thereby facilitating its possible reuse and/or modification for use in other application 

domains. 
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Chapter 2 
 

Automated Generation of Simulation-Based 
Augmented Reality Animations 

 

 

2.1. Introduction 
 

Operations planning is a critical component of managing and controlling the different 

aspects of an ongoing construction project. A comprehensive operational level work plan 

and corresponding site layout that provides easy accessibility to different locations of 

interest is key to significant savings in project time and costs, and at the same time results 

in reduction of several unwanted resource and physical space conflicts [1]. Working in a 

well organized operational environment with minimum amount of time spent on 

resolving conflicts and doing tasks not directly related to the scope of the project is an 

important factor in meeting the project schedule. This is a major incentive for using 

computer applications to model, simulate, and visualize operations beforehand in order to 

identify any potential project related events that may cause unexpected delays or conflicts 

during the course of the real operations, and plan ahead of time to avoid such scenarios 

during actual construction [2]. 

 

For a relatively small operation, reviewing, interpreting, verifying, and validating the 

results of a simulation model can be done manually using statistical data, flowcharts, 

flow diagrams, and other numerical tools [1]. However, as the size and complexity of the 

operation increases and with the introduction of more resources and activities within the 
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operation, communicating the results of a simulation model for verification and 

validation purposes turns into a crucial need that has to be done in a timely and efficient 

manner. One of the effective methods of verifying and validating the results of a 

simulation model is to visualize the flow of activities in a chronologically and spatially 

accurate manner. 3D visualization of simulated operations has traditionally been 

performed in Virtual Reality (VR). In order to create convincing VR animations, detailed 

data about the process and the environment has to be obtained. Such data must be able to 

describe the simulation, 3D CAD models, facility under construction, and terrain 

topography (Model Engineering). As the size and complexity of the operation increases, 

data collection becomes a time consuming task. This directly translates into loss of 

project financial and human resources which could otherwise be saved and used more 

productively. In an effort to remedy this situation, an alternate approach based on 

Augmented Reality (AR) was designed and implemented in this research to create mixed 

views of real existing facilities on the jobsite and virtual CAD objects involved in 

construction. The application of AR in animating simulated construction operations has 

great potential in reducing the Model Engineering and data collection tasks, and at the 

same time helps in creating visually convincing output [3].  

 

Several researchers have recently focused on the applications of VR in verifying and 

validating simulated operations [4, 5, 6, 7, 8, 9]. Although VR provides an environment 

in which computer generated representation of a simulated operation can be viewed and 

studied, there are a number of disadvantages to its application. The significant amount of 

time and effort invested in CAD Model Engineering (i.e. creating, rendering, and 

managing 3D CAD models of the simulation entities) is a major challenge in VR, 

especially as the size and complexity of the operation grows [10]. Furthermore, since 

there is no notion of the real world in a VR-based visualization, the observer of the VR 

scene has a relatively low level of interaction with and involvement in the scene that are 

usually defined by a limited maneuvering area (e.g. immersive VR laboratory rooms) or 

hand motions (e.g. using a pinch glove) [2,7,9]. 
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Unlike VR, the application of AR as a general purpose visualization technique in many 

scientific and engineering fields is very promising as it can potentially provide a mixed 

environment in which the observer of the scene can completely interact with both real 

and virtual objects. At the same time, the introduction of the real existing environment 

into the visualization can potentially lead to more thoughtful insights. It can also lead to a 

reduction of time and effort otherwise invested in CAD Model Engineering. However, 

AR-based visualization applications are still in their early stages of development. 

Although some disciplines (e.g. medicine, automotive industry, and military) have been 

using AR as a frontline technology to overcome visualization challenges in their domain 

[11, 12, 13, 14, 15, 16, 17, 18], work still needs to be done to develop functional and 

reliable AR-based visualization tools that can be effectively used in areas such as 

construction and other engineering disciplines.  

 

The presented research investigates and introduces the applicability of AR-based 

visualization for animating dynamic operations modeled and simulated using Discrete 

Event Simulation (DES). This Chapter presents the methodology and design of AR-based 

algorithms, and a powerful animation authoring language together with their practical 

implementation inside a mobile AR visualization tool. The designed animation language 

provides a convenient method to automatically author animations of any length and 

complexity at the operations level of detail using an external software process such as a 

running DES model. The results of the research have been validated (Chapter 6) by 

animating several simulated construction operations in outdoor AR. 

 

2.2. Prior Work in Visualization of Simulated 
Construction Operations 
 

Schematic visualization techniques such as those provided in EZStrobe [19] and ABC 

[20] can produce useful results in terms of highlighting important events that occur 

within a simulation. However, they provide no sense of realistic resource motions, nor 

can they adequately represent the processes occurring within activities. There is also no 
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notion of physical space and therefore cases dealing with spatial conflicts or congestion 

cannot be studied in such visualizations. As a result, many researchers have discussed the 

potential of 3D visualization in validating and verifying the simulation models [9, 21]. 

Smooth and continuous animation can provide more accurate representation of a 

simulated operation. It can also help overcome the inadequacies of traditional schematic 

visualization techniques. Most of these studies [4, 5, 6, 7, 8, 9], however, have been 

focused on the application of VR and virtual interactive environments. Limited research 

has been conducted to investigate the applicability of AR for such purpose.  

 

The application of visualization techniques for planning, analysis, and design in 

construction and civil engineering is relatively new compared to the sizeable amount of 

AR related research conducted for diverse applications in fields such as manufacturing, 

medical operations, military, and gaming. For example, Webster et al. [22] presented a 

system that shows locations of columns behind finished walls, and rebar inside columns. 

They also presented an AR system to guide workers through the assembly of a space 

frame. Roberts et al. [23] used AR to overlay locations of subsurface utility lines onto 

real world views. These applications have been designed to demonstrate the potential of 

AR in helping maintenance workers avoid buried infrastructure and structural elements. 

Hammad et al. [24] augmented contextual information on real views of bridges to help 

inspectors conduct inspections more effectively. Kamat and El-Tawil [25] used AR to 

study the extent of horizontal displacements sustained by structural elements due to 

extreme loading conditions. Figure 2.1 shows sample snapshots of previous work in AR 

animation in construction as presented in [22,23,25]. 

 
                       (a)                                                    (b)                                                     (c) 

Figure 2.1 – Previous Work in Application of AR Animation in Construction [22,23,25] 
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Wang and Dunston [26] have studied the potential of AR as an assistant viewer for 

computer-aided drawing. Behzadan and Kamat [21] studied the applicability of 4D CAD 

visualization in AR for construction [27] by performing several experiments using time 

tagged CAD models of building structures.  

 

A common characteristic of the existing AR related research is that, in all cases, the work 

has led to a final product designed for a specific purpose (i.e. application). Several of 

these products are only capable of handling static views or snapshots of an augmented 

scene manually created to serve as the basis for further visual analysis. A key limitation 

in existing knowledge has been the lack of an automated method to generate dynamic 

visualizations of simulated operations of arbitrary length and complexity. To the author’s 

best knowledge, none of the conducted AR related research has hitherto focused on the 

use of an external software process such as a DES model to automatically create and 

animate simulated operations in 3D outdoor AR.  

 

2.3. Main Contributions 
 

Construction operations usually include a large number of tasks involving different 

resources (i.e. equipment, labor, material) that interact in complex ways. As a result, 

illustrating the complex dynamics of a typical construction site solely based on the 

discrete information obtained from a DES model is a very challenging task. This was the 

main motivating factor in this research for designing an animation authoring language 

that would enable a running simulation model to automatically generate a syntactically 

accurate trace file representing the operations being simulated. The generated trace file 

consists of chronologically ordered tasks performed during the simulation and is used as 

the underlying script to create the AR-based animation of the operation. The primary 

contribution of the research presented in this Chapter is an AR animation authoring 

language that enables modelers to automatically create augmented reality animations 

of construction operations of arbitrary length and complexity simulated in a DES tool. 
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In order to visualize a construction operation, the required components include but are 

not limited to the facility under construction, equipment, personnel, materials, and 

temporary structures as well as their possible movements, transformations and 

interactions. All these components have to be accurately depicted within the augmented 

scene. In order to depict smooth motion, visual elements must be shown at the right 

position and orientation several times per second. Due to the amount of detail and 

precision involved, accurate visualization of construction activities at this level has 

always been a challenging prospect [28]. 

 

Furthermore, features enabling user interactivity within the augmented scene are key 

factors that have to be integrated into an AR application. In a mobile visualization 

application, the user should be given the ability to walk through an animation in real 

time, adjust, modify, or completely change the underlying operational logic of a set of 

related tasks, properties of a certain resource, or even the overall simulation scenario in 

order to study the effects of different decisions and outcomes in one experiment. What 

distinguishes the developed methods in this research from previous work is that in the 

presented methodology, the user’s position inside the 3D augmented world determines 

what parts of the animation should be displayed. This is discussed in more detail in 

Chapters 3 and 4 of this dissertation. 

 

The constantly updating augmented space displays only what is visible to a user at a 

particular location. This means that there are no previously defined viewpoints that 

restrict the location from where an animation can be observed. Instead, the user can freely 

change position, and the view direction (i.e. head orientation), while the position and/or 

orientation of the virtual contents inside the augmented space are continually updated. 

The procedure of constantly adjusting the position and orientation of the virtual objects 

overlaid on top of the real world is often referred to as registration, and has been one of 

the major challenges overcome in this research. To achieve precise registration of virtual 

objects and create augmented scenes of simulated operations, a fully functional Global 

Positioning System (GPS) based tracking mechanism has been developed. The details of 

this mechanism have been described in [29] and in Chapter 3 of this dissertation. 
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2.4. Technical Approach to Create AR Animations 
 

The application of DES tools to simulate construction processes has been widely 

investigated [30, 31]. DES is a powerful objective function evaluator that is well suited 

for the design of construction operations. It runs on the concept of separate activities 

linked together based on their resource needs and precedence logic. DES as applied to 

construction operations planning and analysis entails the creation of models that represent 

how construction operations will be performed. These models consider the different 

resources that are required to carry out the construction operations, the rules under which 

the different tasks that compose the operations are performed, the managerial decisions 

made during the operations and the stochastic nature of events. Once the models are 

created, the modeled operations can be simulated in the computer and the statistical 

measures of performance for the operations can be studied [32]. 

 

In order to create smooth animations from the results of a DES model, events that mark 

the beginning and end of discrete activities have to be interpreted and communicated to 

the visualization tool in a continuous chronological order. To achieve this objective, 

using an authoring language that automatically creates time stamped events in the form of 

sequential statements written to an animation trace file is a very viable approach [9]. The 

generated animation trace file can be then fed into the visualization application to link 

each simulation entity to a CAD object, and dynamically manipulate CAD objects based 

on the contents of the trace file. 

 

In addition, to cause objects under the control of such simulations to be aware of, and 

react to the user motions in the augmented scene, the augmented environment 

implementation must communicate bi-directionally, on a continuous basis, and at a high 

speed with location tracking devices. This communication is very critical in obtaining 

real time position and orientation as the user walks inside the animation to observe the 

scene from different perspectives. The data acquired from tracking devices are vital parts 

of the application in order to display the final animated output. The underlying 

infrastructure established and implemented in this research to communicate with and 
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extract data from tracking devices is discussed in more details in Chapter 3. Figure 2.2 

shows the approach taken in the presented research to use the result of a running DES 

model in order to generate the animation trace file of an AR animation, upload the 

required CAD objects inside the user’s augmented view, and update the contents of the 

AR scene based on the user’s latest position and orientation obtained from the tracking 

devices. 
 

 

Figure 2.2 – Relation between the DES, CAD and GPS Data, and AR Animation 

 

As shown in the schema presented in Figure 2.2, the resulting AR animation trace file is 

sequentially interpreted line by line and appropriate CAD objects are uploaded and/or 

transformed as each line of the trace file is executed.  In addition, the positional data 

coming through the tracking devices connected to the user are simultaneously extracted, 

integrated, and used to generate an augmented viewing frustum with the user’s eye at the 

center of the projection. Inside this frustum, the contents of the virtual world (i.e. CAD 

objects of construction entities) are superimposed on top of live video streams of the 

surrounding world as captured by a video camera installed in front of the user’s eye. The 

result is a dynamic augmented view of the ongoing construction operation which is fully 

responsive to position and head orientation changes of the user in 3D space [21].  
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The animation is shown to the user through a Head Mounted Display (HMD). The video 

camera, head orientation tracking device, and HMD are connected to the user’s hard hat. 

The user can walk freely on the site with minimum physical constraints and observe the 

animated scenes from different positions. The heart of the system is a laptop computer 

which is installed and secured inside a backpack. Other devices included in the backpack 

are a GPS receiver unit, and an external battery pack. A miniature keyboard and a touch 

pad are also connected to the laptop and carried by the user to provide full interaction 

capability during the course of the animation when there is no physical access to the 

laptop computer [29]. Figure 2.3 shows a profile of the user wearing the mobile backpack 

equipped with all necessary components. 
 

 

Figure 2.3 – Profile of the User with Mobile Backpack and Registration Devices 

 

2.5. ARVISCOPE Animation Authoring Language 
 

As noted earlier, an authoring language is a critical component of the AR application to 

extract simulation results from a running DES model. In this research, a powerful, self-

contained animation authoring language called ARVISCOPE (acronym for Augmented 
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Reality Visualization of Simulated Construction Operations) was designed. ARVISCOPE 

is a high-level 3D animation authoring language that can allow an external software 

process (e.g. a running DES model) to author a dynamic visualization in AR.  

 

Sequential statements written in this language can describe a smooth and continuous 

operation of arbitrary length and complexity. The communicated statements (i.e. events) 

are interpreted by the visualization engine of the AR application. Appropriate data 

structures, algorithms, and routines are then invoked (Appendix D) to manipulate CAD 

models and other 3D geometric primitives to present a smooth, accurate representation of 

the operations. Despite the fact that the ARVISCOPE authoring language is powerful 

enough to describe the complexities involved in a typical construction operation, the 

syntax of the language is not very complex.  

 

According to their functionality, ARVISCOPE language statements can be grouped into 

scene construction, dynamic, and control statements. These statements can be 

sequentially recorded into and interpreted from a text file referred to as the animation 

trace file in this dissertation. The animation trace file begins to be parsed as soon as the 

application starts, the individual statements are processed, and the graphical 

representation corresponding to the event in each line of the trace file is simultaneously 

created and depicted inside the augmented view. During this process, the user can freely 

move in the animated augmented space. Figure 2.4 shows the animation trace file 

interpretation cycle. 

 

Figure 2.4 – ARVISCOPE Animation Trace File Interpretation Cycle 
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2.5.1. Scene Construction Statements 
 

Scene construction statements are designed to set up the animation environment and 

manage the initial and dynamic creation and destruction of simulation entities. This is 

done by referencing CAD models of relevant resources (e.g. equipment) in different 

graphical formats, creating instances of specific CAD objects, creating complex CAD 

meta-objects by assembling simple CAD objects into logical geometric hierarchies, and 

specifying the initial position and orientation of objects in the desired state on the 

construction site. This group also contains statements that are used to define routes (i.e. 

3D trajectories) that entities may travel on while performing operations. Table 2.1 lists 

the scene construction statements of ARVISCOPE together with a brief explanation of 

their functionality. More detailed discussion on the syntax and functionality of each 

statement together with several examples are presented in Appendix A. 

 
Table 2.1 – List of ARVISCOPE Scene Construction Statements 

Statement Functionality 

LOADMODEL Assign a CAD file to a class of objects 
ORIENTMODEL Change a CAD file orientation 
CHANGEMODEL Change the CAD file assigned to an object 
OBJECT Create an instance of an object class 
REMOVE Remove an object from the scene 
CONNECT Create a child node to a parent node 
STICK Connect an object without changing the size 
DISCONNECT Disconnect a child from its parent node 
ROUTE Define a 3D trajectory for moving objects 
POSITION Place an object in the augmented view 
ADJUST Set properties of a group or an object  
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2.5.2. Dynamic Statements 
 

Dynamic statements constitute the core of the ARVISCOPE language. This group 

consists of several statements that can be used to dynamically manipulate instantiated 

scene objects to depict the performance of a smooth and continuous operation. 

Statements in this group describe dynamic geometric transformations of scene objects. 

These transformations change the position, orientation, and scale (i.e. size) of objects in 

the 3D augmented space to depict the accurate motion objects undergo while performing 

operations. The most important statements of this group are those describing single 

elemental motions that a construction resource undergoes during a specific operation. 

Examples of such statements are TRAVEL, ORIENT, and SIZE. A time-stamped 

sequence of an arbitrary number of such elemental motions can effectively describe a 

smooth, continuous 3D rendition of the pertinent construction operation. Table 2.2 lists 

the scene construction statements of ARVISCOPE together with a brief explanation of 

their functionality. More detailed discussion on the syntax and functionality of each 

statement together with several examples are presented in Appendix A. 

 
Table 2.2 – List of ARVISCOPE Dynamic Statements 

Statement Functionality 

HRZORIENT Change horizontal orientation 
VRTORIENT Change vertical orientation 
SIDEORIENT Change side orientation 
ORIENT Change orientation by a certain amount 
ORIENTTO Change orientation to a target value 
TRAVEL Move an object on a route for a certain duration 
TRANSFER Move an object on a route at a certain speed 
SHIFT Move an object by a certain amount 
SHIFTTO Move an object to a certain location 
SIZE Change the scale of an object 
SIZETO Change the scale to a target value 
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2.5.3. Control Statements 
 

The primary control statement in ARVISCOPE is SIMTIME. This statement keeps track 

of the simulation clock while the animation is running. Every discrete event that is 

represented by a statement inside the trace file has a preceding SIMTIME statement that 

indicates the simulation time at which the event begins to take place.  

 
Figure 2.5 shows how different ARVISCOPE statements can be used in order to 

construct a sample augmented scene and manipulate its contents. 
 

 

Figure 2.5 – Creating an Augmented Scene Using ARVISCOPE Statements 

 

2.6. Creating an AR Animation Trace File from a DES 
Model 
 

Figure 2.6 shows the Activity Cycle Diagram (ACD) of a simple earthmoving operation 

in STROBOSCOPE format. STROBOSCOPE [33] is a programmable and extensible 

simulation system designed for modeling complex construction operations in detail and 
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for the development of special purpose simulation tools [34]. The operation shown in 

Figure 2.6 consists of a simple load-haul-dump-return cycle within which different 

resources are either used (i.e. loader and hauler) or transferred (i.e. soil). Since the focus 

of this Chapter is to describe the process of visualizing modeled operations in AR and not 

the process of modeling earthmoving operations, issues such as volume of the work, 

productivity, and necessary equipment and steps to perform the operation itself are 

excluded from the discussion. 
 

 

Figure 2.6 – ACD for an Earthmoving Operation in STROBOSCOPE 

 

As noted earlier, an animation trace file is required to create augmented animations of 

simulated operations in ARVISCOPE. This file can be created either manually (for short 

animations) or automatically during a simulation run. Manual generation of an animation 

trace file is typically not practical except in the case of simple demonstrative examples of 

short animated duration. Automatic generation of a trace file is more recommended since 

it requires less time and produces more accurate results. Automatic generation of an 

ARVISCOPE animation trace file requires instrumentation of a simulation model (i.e. 

including additional code in a simulation model).  

 

For example, Figure 2.7 shows how two new lines are created inside the ARVISCOPE 

animation trace file of the simple earthmoving operation (Figure 2.6) as a result of a 

statement added to the STROBOSCOPE model of the same operation. These two lines 
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will be written to the trace file numerous times with different arguments (e.g. time tag, 

duration, object name, route name) depending on the specific instance of the activity 

taking place. The completed trace file will contain other lines of text that will be written 

out when other parts of the modeled operation take place. Thus, the time ordered 

sequence of animation statements written out by all the activities in the model during a 

simulation run constitutes the trace file required to visualize the modeled operations in 

AR. A more detailed discussion on the process of automatic generation of an 

ARVISCOPE animation trace file from a running DES model is presented in Appendix 

C. The reader is recommended to refer to this Appendix to gain a better understanding of 

the instrumentation process of an animation trace file. 

 

 
Figure 2.7 – Automated Generation of an ARVISCOPE Animation Trace File 

 

Figure 2.8 shows the algorithm used in the designed AR application to read, extract, and 

interpret the contents of an animation trace file. As shown in this Figure, once the 

animation trace file is opened and the animation clock is started, the first available 

SIMTIME statement is read and the specified time argument is extracted. This argument 

is then compared to the continuously progressing animation time.  
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Figure 2.8 – Main Processing Loop of an Animation Trace File in ARVISCOPE 

 

If the time argument is less than or equal to the current animation time, the entire block of 

statements between the current and next SIMTIME statements are read and stored in an 
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empty list. Otherwise, the application suspends the processing of the trace file until the 

above condition holds. At this point, each statement inside the list is separately processed 

and the contents of the augmented scene are accordingly updated. This process continues 

until the end of animation trace file is reached. 

 

Figure 2.9 presents a small portion of the animation trace file of the earthmoving 

operation shown in Figure 2.6 in the ARVISCOPE language. By referring to Tables 2.1 

and 2.2, the result of processing each statement in this Figure can be explained. First, a 

route called ReturnRoad is defined by specifying the beginning, ending, and two 

intermediate points in terms of global values of longitude, latitude, and altitude. The 3D 

models of a hauler and its bucket are then loaded. An instance of each of these models is 

then created and the bucket is attached to the hauler. This new meta-object, now called 

Hauler1, is then placed on the predefined route. Further processing of the trace file is 

suspended until simulation time 12 is reached. At this time, Hauler1 will start moving 

on the route ReturnRoad and this trip requires 15 units of simulation time to complete. 

During the animation, the ratio of simulated time to viewing time (also known as viewing 

ratio) is maintained at a constant value specified by the user in the beginning of the 

animation. For example, if this ratio is 3, the animation will show Hauler1 at the 

beginning of route ReturnRoad for 4 seconds and then the truck starts traveling on the 

route for 5 seconds. 

 
ROUTE ReturnRoad   (-83.728180,42.287913,260.00) 
                   (-83.727064,42.287469,260.00) 
                   (-83.726099,42.288374,260.00) 
                   (-83.726442,42.289152,260.00); 
 
LOADMODEL Hauler Truck.lwo; 
LOADMODEL Bucket Bucket.lwo; 
OBJECT Hauler1 Hauler; 
OBJECT Bucket1 Bucket; 
CONNECT Bucket1 Hauler1 (-7,2.2,0); 
POSITION Hauler1 ON ReturnRoad; 
 
SIMTIME 12; 
TRAVEL Hauler1 ReturnRoad 15; 
 

Figure 2.9 – Portion of a Sample ARVISCOPE Animation Trace File 
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2.7. ARVISCOPE Language Design Issues 
 

Several basic object handling issues in designing the syntax of the ARVISCOPE 

language had to be addressed to make it capable of describing complex construction 

scenes. Two major challenges had to be addressed during the design course of 

ARVISCOPE: 

• Converting global coordinates of an object to user’s local coordinate frame 

when updating the virtual contents of the augmented viewing frustum at 

each animation frame. 

• Converting local coordinates of an object to global coordinate frame when 

a dependent virtual object is about to be placed independently in the 

augmented scene. 

 

In this research, the global coordinate system is defined by three major axes: X which is 

parallel to the equator with its positive direction pointing towards the geographical east, 

Y which is perpendicular to the earth surface with its positive location pointing upwards, 

and Z which is parallel to the prime meridian with its positive direction pointing towards 

the geographical south. X, Y, and Z readings in the global coordinate system are used to 

determine the longitude, altitude, and latitude of the user as well as CAD objects in the 

global space. At the same time, each CAD object has its own unique local coordinate 

system. The definition of the three major axes in a local coordinate system varies 

between CAD objects and is mainly specified when the CAD model is created in a 

graphical software such as AutoCAD or 3D Studio. However, to make sure that CAD 

objects are placed in the global coordinate system with guaranteed consistency, their 

local coordinate frame should be oriented in a way that it is exactly aligned with the 

global coordinate frame (e.g. local X axis is parallel to the global X axis). 

 

While objects can be placed in the scene by defining their global coordinates (i.e. 

longitude, latitude, and altitude), all transformations (i.e. translations, and rotations) have 

to be done relative to the user. As a result, the application must be able to keep track of 

the latest local position and orientation of each CAD object inside the user’s coordinate 
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frame. As shown in Figure 2.10, although the user and all CAD objects have their global 

position determined in the global coordinate system, CAD objects still have to be placed 

relative to the user’s eyes. Therefore, for each CAD object, an additional step has to be 

executed in order to calculate the relative distance between the user and that object and 

use this distance to construct or update the transformation matrix corresponding to that 

CAD object. Only after this matrix is calculated, the CAD object can be correctly placed 

inside the user’s viewing frustum. 

 
Figure 2.10 – Switching from Global to User’s Local Coordinate Frame 

 

Since the user is assumed to be moving, all transformation calculations must be done in 

real time with the latest global position of CAD objects and the one for the user being 
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important input parameters to such calculations. Switching from local to global 

coordinate frames and vice versa and adapting appropriate conversion methods to achieve 

the expected result have been key challenges in designing ARVISCOPE language 

statements. The language statements are designed in a way that they can accept and 

handle positional values in both global and local coordinate frames as arguments when 

necessary. The following Subsections describe the details and methods followed in this 

research to design three main ARVISCOPE language statements (i.e. POSITION, 

ROUTE, and DISCONNECT) that comply with such situations by automatically switching 

between global and local coordinate frames. 

 

2.7.1. On-Site Positional Measurement Problems 
 

When the number of CAD objects increases the time required to measure the longitude, 

latitude, and altitude for each point grows dramatically. For an animation to be a precise 

representation of a simulated system, it is necessary to have contingency in measuring 

longitude, latitude, and altitude values of different points in the scene. Sometimes, it is 

practically impossible to measure these values on the site. A good example is a point far 

beyond physical access (e.g. a point on a body of water) or a number of points with 

limited distance to be accurately measured with a GPS device (e.g. two CAD objects 

located a few centimeters from each other while the GPS accuracy is on the same order). 

Another situation is the case in which a large number of CAD objects are to be placed in 

a scene and the only known pieces of data are the relative distances between them as 

opposed to their absolute longitude, latitude, and altitude values. Figure 2.11 shows some 

of such situations in which providing the global coordinate values for all the individual 

points on the augmented scene becomes a time consuming and sometimes an impossible 

task. 

 

As a common practice in drawing the site layout plans, local position of important objects 

are defined relative to the positions of a number of known surveying benchmarks. 

Sometimes the only points on the site with known longitude, latitude, and altitude values 

are benchmarks and the positional values of everything else is measured and calculated 
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relative to these points. While obtaining the global position values for every item on a 

construction site is a very time consuming and often impossible process, finding these 

values for only a few points and placing others relative to them seems to be a more 

reasonable approach. 

 

 

 
Figure 2.11 – Sample Scenarios Involving Positional Measurement Problems 

 

As described in Table 2.1, the POSITION statement is used to place a static or a moving 

object in the augmented scene by defining its global coordinates (e.g. longitude, latitude, 

and altitude values). To improve the initial design of the POSITION statement and make 

it more powerful and practical, it was further modified to also accept local point 
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coordinates relative to a reference point with known global coordinates. Hence, a 

numerical algorithm was developed and implemented in this research to calculate the 

global position of a point based on the same values of a reference point and the relative 

distance between the two points. This required establishing methods to convert local to 

global coordinate values. The initial methods to convert global coordinates to local values 

in the presented work were adapted from an algorithm originally introduced by Vincenty 

[35] in which the straight line distance between two points with known global 

coordinates is calculated [21]. The details of the original Vincenty algorithm are 

discussed in Chapter 3 of this dissertation. The calculated distance between two points on 

Earth is entirely a function of where they are located on the Earth’s surface. This is due to 

the fact that the parallels (the rings around the Earth parallel to the Equator) become 

smaller as they approach the poles and the meridians (the rings around the Earth parallel 

to the Prime Meridian) converge at the poles. As a direct result, for every one degree 

change in longitude or latitude, the equivalent displacement in meters will be larger close 

to the Equator and smaller close to the two poles. These values range between 1 to 69 

miles depending on where the location of the point is on the surface of the Earth. 

Although an average of 60 miles per degree is recommended for approximation, a more 

precise way to convert changes in degrees into displacements in meters had to be used in 

this research to be able to create exact graphical representation of a construction site. 

 

Since the initial Vincenty algorithm uses numerical methods to minimize the distance 

error margin by trial and error, there is no inverse Vincenty method available to convert 

local values to global coordinates. As a result, a new method was designed in this 

research which internally uses parts of the original Vincenty algorithm in its calculations. 

Figure 2.12 shows the difference in terms of input and output parameters between the 

original Vincenty algorithm [35] and the developed method in this research. As shown in 

this Figure, the developed method calculates how many meters of displacement in x (z) 

direction correspond to a one degree change in longitude (latitude) value. As discussed 

earlier, the answer totally depends on where the point is located on Earth. 
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Figure 2.12 – Calculation of a Global Point Coordinates in ARVISCOPE 

 

The points as defined and used in the calculations are shown in the planar view of Figure 

2.13.  In this Figure, the global position of the Reference Point and the relative distance 

between the Target Point and the reference point along the three major axes are known. 

The goal is to calculate the global position of the target point which can be a point on a 

route or a point on which a CAD object is to be placed. As shown in Figure 2.13, 

knowing the global coordinates of the reference point, a Dummy Point can be imagined 

which is exactly one unit (in longitudinal and latitudinal directions) away from the 

reference point. Based on the coordinates of the reference and dummy points, the 

developed method can calculate how many meters of displacement correspond to a one 

degree change in longitude (i.e. MIn1DegLong) as well as a one degree change in 

latitude (i.e. MIn1DegLat) by making a number of internal calls to the modified 

Vincenty algorithm [21]. With a good approximation (and assuming the reference point is 

close enough to the point of interest), the surface containing the reference and dummy 

points is assumed planar and linear interpolation (or extrapolation) is used to calculate 

longitude, latitude, and altitude values of the target point. These steps are presented as 

pseudo code in Figure 2.13. For sign compatibility, calculated values along X and Y axes 

are added to the coordinates of the reference point while the calculated value along Z axis 

is subtracted to obtain the coordinates of the object. 
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DummyPoint.long = ReferencePoint.longitude – 1.000000 

DummyPoint.lat = ReferencePoint.latitude – 1.000000 

DummyPoint.alt = ReferencePoint.altitude 
 

TargetPoint.long = ReferencePoint.long + [∆x ÷ (MIn1DegLong)] 

TargetPoint.lat = ReferencePoint.lat – [∆z ÷ (MIn1DegLat)] 

TargetPoint.alt = ReferencePoint.alt + ∆y 
 

Figure 2.13 – Definition of Reference, Dummy, and Target Points in Planar View 

 

Adding this new functionality to the original syntax of the POSITION statement, there 

are three distinctive ways to place an object in the augmented scene in ARVISCOPE: 

1) To place it on a point with known global position values, or 

2) To place it on a route with known point coordinates, or 

3) To place it relative to a reference point with known global position values. 

 

Figure 2.14 shows different syntax of POSITION and ROUTE statements in 

ARVISCOPE. As shown in this Figure, in order to distinguish between the three types of 

POSITION statement, three different keywords are used: AT, ON, REL. In addition, the 

two different types of ROUTE statements can be distinguished using the REL keyword. 
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POSITION objectname AT (longitude, latitude, altitude); 

POSITION objectname ON RouteName; 

POSITION objectname REL ReferencePoint (∆x, ∆y, ∆z);  
 

ROUTE RouteName (Long1,Lat1,Alt1)…(Longn,Latn,Altn); 

ROUTE RouteName REL ReferencePoint (∆x1,∆y1,∆z1)…(∆xn,∆yn,∆zn); 

 

Figure 2.14 – Different Syntax of the POSITION and ROUTE Statements 

  

According to the definition of major axes in ARVISCOPE, ∆x shows the relative 

distance between the object and the reference point along the longitudinal axis, ∆y shows 

the relative distance between the object and the reference point along the altitudinal axis, 

and ∆z shows the relative distance between the object and the reference point along the 

negative latitudinal axis. Recalling the animation trace file shown in Figure 2.9, the route 

HaulRoad can now be expressed in terms of its end and mid points’ coordinates defined 

relative to the coordinates of a known point (i.e. BM). The new definition is shown in 

Figure 2.15. 

 
LOADMODEL Reference BM.ac; 
OBJECT BM Reference; 
POSITION BM AT (-83.707000,42.29560,265.00); 
 
ROUTE HaulRoad REL BM (20.000,0,-5.500) 

           (112.125,0,44.100) 
           (191.675,0,-56.450) 
           (163.400,0,-142.900); 

 
. . . 
 

 

Figure 2.15 – Defining a Route Using Relative Coordinate Values 

 

A more detailed discussion on the process of automatic generation of an ARVISCOPE 

animation trace file from a running DES model is presented in Appendix C. The reader is 

recommended to refer to this Appendix to gain a better understanding of the 

instrumentation process of an animation trace file. 
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2.7.2. Disassembling a Virtual Construction Meta-Object 
 

Another major challenge in designing ARVISCOPE statements capable of independently 

handling the CAD objects in the augmented scene was to design methods to convert local 

to global coordinate values. As described in Chapter 4, a virtual CAD object in 

ARVISCOPE is represented by a graphical node in the augmented scene graph. This 

node itself can be a parent node to some other child node(s). This hierarchical approach 

of defining children and parent nodes provides a multi-level structure to the augmented 

scene in which the highest level objects are those who have been initially placed in the 

scene by defining their global coordinates (i.e. longitude, latitude, and altitude) and each 

of the lower level objects has their coordinates defined in its parent’s local coordinate 

system. More details on how a hierarchical structure of CAD objects is created, 

maintained, and updated during the course of the AR animation are presented in Chapter 

4. Figure 2.16 shows how the coordinate values of CAD objects in different layers of 

such a structure are defined. 

 
Figure 2.16 – Relation between Coordinate Frames in an AR Scene Hierarchy 

 

The objects at the highest level of the hierarchy shown in Figure 2.16 are placed in the 

scene using the PLACE statements. They can be either placed on an absolute coordinate 

(in terms of longitude, latitude, and altitude values) or relative to a predefined benchmark 

point in which case their absolute coordinate values are calculated immediately using the 
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method described in Subsection 2.7.1. They can also be placed on a route with known 

endpoint global coordinates. Other objects in the hierarchy are placed relative to their 

immediate parents using the CONNECT statement which takes coordinate values (in terms 

of x, y, and z) in the local coordinate system of the parent node. All changes in the 

parent’s node position and orientation will affect the corresponding values of its child 

objects simultaneously. The animation only keeps track of the child nodes’ local 

coordinate values as opposed to their global position. As a result, just before a child node 

has to be separated from its parent node, one additional step has to be executed in order to 

calculate the global coordinate values of the object represented by that node so that it can 

be further manipulated independently inside the augmented scene and relative to the user. 

Figure 2.17 shows an example of how a child node is moved inside the animation by 

changing the transformation values of its parent node.  

 

 
Figure 2.17 – Relation between Coordinates Frames of Different CAD Objects 

 

In Figure 2.17, a CAD meta-object of a tower crane is shown in which the highest level 

parent node is the Base node. The Tower, Boom, and Cable nodes are connected in the 

scene graph to form the complete tower crane object. This is achieved by first placing the 

Base node globally in the scene. The position of the Tower is defined inside the local 
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coordinate frame of the Base. The Boom is placed locally inside the Tower coordinate 

frame. Also, the Cable node is a child of the Boom node. As shown in this Figure, a Steel 

Section has been defined as a child object to the Cable and hence is transformed (i.e. 

picked up, rotated, and installed) in the augmented scene by manipulating the 

transformational values of its immediate parent node (i.e. Cable node). As soon as the 

steel section is in its final position and has to be separated from the cable and installed on 

the foundation, its global coordinate values have to be calculated and used to find its 

relative transformation to the user for subsequent animation frames. The problem of 

conversion from local to global coordinate values has been addressed in this research 

using the concept of “transformation chain” which is shown in Figure 2.18.  

 
Figure 2.18 – Transformation Chain between the Lowest and Highest Nodes  

 

In this Figure, to find the transformation values of the lowest level node (i.e. end gripper 

of the robotic arm) inside the coordinate frame of the highest level node (which is the 

global coordinate frame), and considering the fact that the definition of different axes in 

different levels of the hierarchy is consistent, all the transformation matrices connected to 

nodes at different layers (starting from the lowest level node to the highest level node) are 

multiplied together. The result of this matrix operation is a new transformation matrix 

describing the transformation of the child object inside the global coordinate frame. Since 

the position of the user in terms of longitude, latitude, and altitude values are also known 

in the same coordinate frame, the method previously described in Subsection 2.7.1 can be 
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applied to find the global position of the child object as well. Following this method, the 

Reference Point represents the user while the Target Point describes the position of the 

newly disconnected child node. This is shown in Figure 2.19. 

 

 
 

Object.long = User.long + [∆x ÷ (MIn1DegLong)] 

Object.lat = User.lat – [∆z ÷ (MIn1DegLat)] 

Object.alt = User.alt + ∆y 

 

Figure 2.19 – Calculating the Position of a Newly Disassembled Child Node 

 

Figure 2.20 shows the algorithm designed and implemented in this research to find the 

final transformation matrix of a child node inside the global coordinate frame. Following 

this algorithm and recalling the example presented in Figure 2.17, the global position of 

the steel section can be calculated as, 

 

cable
steel

boom
cable

tower
boom

base
tower

user
base

user
steel TTTTTT ××××=  

 

In which P
CT  denotes the transformation matrix of the C (child) node inside the local 

coordinate frame of the P (parent) node.  
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Figure 2.20 – Designed Transformation Chain Algorithm 

 

2.8. Summary and Conclusions 
 

Creating smooth and chronologically accurate animated scenes of a simulated operation 

modeled in a DES tool requires careful assignment of time tags to discrete events 

occurring during a simulation run. These time tags can then be used to generate an 

animation scenario which can be interpreted by an AR visualization application. Several 

steps need to be taken to create a logical link between a running DES model and an AR 

animation. First, an animation trace file has to be generated. The generated trace file has 
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to be interpreted by the AR visualization application and required graphical 

representations (i.e. CAD objects) have to be loaded and displayed in their appropriate 

position and orientation inside the user’s viewing frustum. Since the user of the AR 

application is given full mobility inside the animation, the contents of this frustum have 

to be completely sensitive to changes in user’s position and head orientation. This 

requires the AR application to be constantly communicating with registration devices 

(e.g. GPS and head orientation tracker) and using their output to calculate the coordinates 

and update the contents of the viewing frustum in real time. 

 

The author has successfully designed and implemented methods and algorithms to 

address the above challenges in creating AR animations of simulated construction 

operations. In this Chapter, the details of an animation authoring language called 

ARVISCOPE designed to validate the functionality and effectiveness of the methods 

described above were presented. Although the main focus of this Chapter was on 

construction processes, most of the findings of this research are generic and widely 

applicable to other fields of science and engineering where the need to animate and 

communicate simulated operations is as important as that in construction. 
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Chapter 3 
 

Continuous User 3D Spatial 
Tracking in the Augmented World 

 

 

3.1. Introduction 
 

By definition, Augmented Reality (AR) provides the user with an environment in which 

both groups of real and virtual objects coexist and possibly change position and 

orientation over time. To create the illusion for the observer of the scene that these two 

groups of objects are mixed into a single scene, they have to be precisely aligned and 

maintain their relative position and orientation to the observer at each instant of time. In 

the realm of AR, this is often referred to as object registration [1]. Registration of real 

objects is done automatically as the user moves in the scene since the human visual 

system is capable of interpreting information from visible lights to build a 3D 

representative world of the surrounding environment visible through the eyes. Figure 3.1 

shows how the registration process is performed for real objects. In this Figure, the 

observer first looks at the front view of two pieces of construction equipment (Figure 

3.1.a) and eventually starts moving in the scene in order to see the rear view of the same 

equipment (Figure 3.1.b). Although the observer is moving around and changing position 

and head orientation, the observer’s visual system continuously registers the two real 

objects in the visible view and hence objects seem to stay fixed at their location. 
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(a) (b) 

Figure 3.1 – Automatic Registration of Real Objects [2] 

 

The above process fails when it comes to registering virtual CAD objects as they are not 

actually present in the real scene. As a result, additional methods have to be applied in 

order to precisely calculate the position and orientation of CAD objects inside the visible 

augmented world. These calculations should be performed in a way that at each instant of 

time, CAD objects are perceived as authentic by the user’s mind. This is important 

because the human eye is adept at noticing minute discrepancies in objects oriented 

incorrectly in 3D space. Achieving correct registration of virtual objects requires 

continuous tracking of accurate user position and orientation as well as the user’s relative 

distance to each virtual object in the field of view when rendering and overlaying the 

virtual CAD objects at their corresponding real world locations. 

 

Figure 3.2 shows the registration process of CAD objects in more detail. In this Figure, 

there are a number of real pieces of construction equipment in the background. The 

objective of this example is to superimpose a CAD model of a virtual excavator over the 

real background at a specific location and orientation (facing north). In order to achieve 

this, the AR system must track the user’s movement and head orientation repeatedly over 

time. Using the obtained tracking data, local transformation between the user and the 

CAD object is constantly calculated and applied to the object. As a result, the composite 

augmented view is updated continuously over time with the position and orientation of 

the virtual CAD model being adjusted based on the user’s movements [1]. 
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Figure 3.2 – Precise Registration of Virtual CAD Objects in an Augmented Scene 

 

Figures 3.2.a to 3.2.d depict accurate augmented views an AR scene observer expects to 

see when looking at the scene from four different locations (a, b, c, and d) indicated on 

the plan view. In each case, the final result is a mixed view of real and virtual objects and 

is sensitive to the observer’s location and orientation. When the observer stands at point 

(a) and looks towards the north, the rear end of the virtual excavator is expected to be 

seen (Figure 3.2.a). At location (b), the observer is standing in front of the virtual 

excavator looking towards the south. In this case the observer must see the excavator 

from the front (Figure 3.2.b). When the observer is at location (c) looking west, the right 

side of the excavator must be visible (Figure 3.2.c). Finally, in location (d) when the 

observer looks east, only the left face of the virtual excavator must be visible in the 

composite AR output (Figure 3.2.d). In summary, the augmented virtual excavator must 

stay fixed to its real-world location while the AR observer navigates around it on the 

jobsite. In this research, this was achieved using Global Positioning System (GPS) and 

Three Degree-of-Freedom (3DOF) head orientation tracking to monitor the observer’s 

(user’s) position and head orientation. 

 

 

 



 56

3.2. Indoor and Outdoor User Tracking 
 

Each operational environment defines a different set of challenges for accurate user 

registration in mobile augmented reality. For indoor applications, since the dimensions of 

the environment are predefined (e.g. a laboratory room), physical restrictions on user’s 

movements and location can be conveniently determined by the AR system. In addition, 

an indoor environment can be deemed prepared by placing sensors, optical markers, or 

location tracking cameras at important locations. These fixed devices simplify the task of 

registration while also serving as reference points when incorporating virtual CAD 

objects into the scene. 

 

For example, Yuan et al. [3] proposed a registration method for AR systems based on the 

coordinates of four specified points in space (e.g. four corners of an optical marker) to 

register augmented contents on top of real views. Kaufmann and Schmalstieg [4] 

designed a mobile collaborative AR system called Construct3D for mathematics and 

geometry education. Construct3D uses optical tracking to appropriately register the 

virtual geometric shapes on top of the live background. Figure 3.3 shows snapshots of 

two indoor AR visualization tests presented in [5,6] in which virtual CAD objects were 

superimposed on the real scene views based on the visibility of optical markers. 

 

   
Figure 3.3 – Optical Marker-Based Indoor AR Visualization Tests [5, 6] 
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Unlike indoor environments, a user operating outdoors is located in a wide maneuvering 

area which provides unlimited combinations of possible viewing locations and 

orientations. This essentially means that most of the indoor positioning techniques that 

are based on preinstalled infrastructure such as trackers and markers may not be robust or 

scalable enough to accommodate all possible user situations. Similarly, the natural 

variable lighting condition present in an unprepared outdoor environment makes it 

difficult to employ optical-based tracking methods for these types of AR applications [7]. 

Therefore, mobile AR systems require methods capable of obtaining non-intrusive 

measurements of both physical position and viewpoint orientation, without imposing 

restrictions on the user’s freedom of movement [1]. 

 

The use of AR has been explored in several engineering and scientific domains. In 

addition, the idea of designing and implementing an integrated AR system with all the 

necessary components installed and secured in one platform has been introduced in a 

limited number of previous studies, each applicable to a specific field of engineering or 

scientific research [8]. However, the prototypes designed and implemented in all prior 

studies have been custom created for the respective research projects. None of them 

presents a general purpose and modular hardware and software interface in a way that can 

be readily shared and reused by researchers exploring AR in other engineering fields. 

 

Hence, the main motivation for this part of the research was to remedy this situation by 

designing a general purpose extensible and reusable mobile architecture addressing both 

hardware and software issues in the form of an AR backpack and a modular core 

software framework to perform the task of accurate registration. The designed 

architecture can be easily adapted and extended by AR application developers for use in 

any domain that requires a similar hardware configuration. The presented design takes 

advantage of the GPS and 3DOF head orientation data in order to describe a user’s real 

time location and heading. Figure 3.4 shows the latest version of an AR platform called 

UM-AR-GPS-ROVER developed in this research. The initial version of UM-AR-GPS-

ROVER which was designed to test the registration and graphics algorithms will be 

discussed in Section 3.7. The components of the initial platform were later modified 
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based on several product studies and case analyses that led to the design presented in 

Figure 3.4. The details of these studies will be presented in Sections 3.4 and 3.5. Based 

on the above discussion, this platform had to be equipped with: 

• Computing devices capable of rapid position calculation and image rendering 

including an interface for external input (i.e. both user commands and a video 

capturing the user’s environment), 

• An interface to display the final augmented view to the user, and 

• External power source for the hardware components to ensure continuous 

operation without restricting user mobility. 

 

The design also had to take into account ergonomic factors to avoid user discomfort after 

long periods of operation. 

 
Figure 3.4 – Overview of the UM-AR-GPS-ROVER Hardware Framework 

 

Another critical component in the designed mobile AR architecture was a robust software 

interface. This interface must facilitate the acquisition of positional data (i.e. longitude, 
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latitude, and altitude) from the GPS receiver as well as head orientation measurements 

(i.e. yaw, pitch, and roll angles) from a 3DOF head tracker. It must also handle captured 

video scenes of the user’s surroundings, and include a video compositor engine that 

renders virtual objects onto the scenes of the real world and displays the combined image 

to the user in real time. 

 

The presented architecture takes advantage of an Object Oriented Design (OOD) by 

assigning a separate code module (i.e. class) to each hardware component. These 

individual modules are interconnected by the core platform to work in parallel. This way, 

future replacements, modifications, and upgrades of any peripheral component will not 

affect the overall integrity of the system. Each code module is device independent as long 

as its corresponding device provides the system with output that follows a standard 

format.  

 

3.3. Main Contributions 
 

The objective of this step of the work was to design and implement a modular platform 

that is both extensible and reusable and can be conveniently adapted for any AR related 

domain. 

 

Reusability, as referred to in this dissertation, is defined as the measure of generality of 

the framework which allows potential AR application developers to use the provided 

methods of the presented framework in their own AR application with minimum level of 

effort required to modify or adjust the low level software interface. Similarly, the term 

extensibility in this dissertation describes the fact that the AR framework has been 

designed in a way that a potential AR application developer can easily disable or enable 

parts of it either temporarily or permanently depending on the specific needs of the AR 

application being developed. Not all AR applications use the same set of hardware 

components and as a result, parts of this framework may not be applicable to some 

applications. However, the extensibility feature of the framework provides an AR 

application developer with a highly flexible architecture in which plugging or unplugging 
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each hardware component does not affect the overall integrity of the framework. Since all 

mobile AR platforms must fulfill similar operational requirements, the design 

methodology outlined here can be easily modified and extended to other emerging areas 

of AR research.  

 

A mobile outdoor AR platform requires a certain minimum set of hardware components 

and the ability to programmatically interact with them. An important consideration in the 

selection of peripheral components for an AR platform is compatibility of data transfer 

protocols as well as operational control. In order to address this issue, a software library 

was also developed in this research which is capable of communicating with the 

peripheral tracking components. A user interface built based on the developed software 

library was designed to accommodate several hardware component models in which the 

input data format follows open, industry adopted standards. 

 

Hence, the primary contributions of the research presented in this Chapter are the 

designed mobile hardware apparatus, and software methods in the AR framework that 

implement the developed georeferenced registration algorithms to accurately 

superimpose virtual CAD objects into an AR animation. The hardware apparatus and 

software methods have been designed to be conveniently extended and reused by other 

AR application developers simply by importing the provided class libraries into their 

code, thereby saving significant time and effort that would otherwise be required to 

reimplement low level hardware interfacing software.  

 

3.4. Hardware Components Selection 
 
As shown in Figure 3.4, all mobile computing systems used in AR research are generally 

equipped with the same major components: 

• A Head Mounted Display (HMD), 

• User registration and tracking peripherals, and 

• A mobile computer typically a laptop, to control and facilitate system 

operation. 



 61

The following Subsections will discuss the necessary tasks a mobile outdoor AR system 

should be capable of doing together with the need for and the rationale in selecting each 

component, and their role in fulfilling the critical requirements for successful mobile 

outdoor AR operation. They will also provide analyses of various products as well as 

important technical specifications considered in the selection process. Figure 3.5 provides 

a detailed illustration of the latest hardware components of UM-AR-GPS-ROVER [9]. 

 

 
Figure 3.5 – Hardware Components of UM-AR-GPS-ROVER 

 

3.4.1. Registration Devices 
 

As discussed in Section 3.2, the problem of accurate user registration requires two 

distinct sets of data to be measured continuously during the simulation. The first critical 

record that must be maintained is the user’s global position. This measurement is taken in 
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the form of longitude, latitude, and altitude, which can be extracted using standard GPS 

equipment. The second important set of data is that of the user’s head orientation which is 

usually recorded in the form of roll, pitch, and yaw angles and can be measured with a 

3DOF orientation tracker. These six measurements together are used to calculate the 

relative distance and heading of each virtual CAD object with respect to the user, given 

its predetermined coordinates, and render it accurately in the final augmented view 

[1,10]. 

 

Several factors were considered important in the selection of a GPS receiver for this 

research. Different GPS receiver and antenna models are compatible with certain GPS 

services such as Wide Area Augmentation System (WAAS), OmniSTAR XP, and HP. 

This, in turn, provides varying levels of measurement accuracy. Since an accurate 

augmented image is necessary and slight errors in virtual object position are noticeable to 

the user, a very accurate service was desired. However, considering the fact that different 

AR applications may demand different levels of accuracy, a generic data communication 

interface was designed based on a standard data transmission protocol that could be used 

to acquire data from different GPS models. As a result, GPS data acquisition methods 

provided in this research are all based on the National Marine Electronics Association 

(NMEA) protocol, a widely accepted standard for GPS data communication [11]. 

 

Initially and for prototyping purposes, a Garmin ETrex GPS receiver was selected to 

obtain user’s global position in the AR platform. This was followed by a DeLorme 

Earthmate LT-20 receiver. These two devices mainly served as convenient means for the 

proof-of-concept phase in which the main concern was to assure that the platform can 

function properly at an acceptable integration level between all the peripheral devices. 

However, for final validation stage, and to take into account the accuracy requirements 

and equip the AR platform with a highly reliable positioning tool, a Trimble AgGPS 332 

Receiver with a Combo L1/L2 Antenna was ultimately selected. Table 3.1 summarizes 

the important technical specifications of the three GPS devices used in the development 

of the presented AR platform. 
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The GPS receiver transmits several data fields to the laptop computer over a standard RS-

232 interface using NMEA format. Under NMEA, incoming GPS data follows certain 

sentence formats with each sentence containing several information fields such as 

positioning, accuracy level, and number of satellites observed. For the purpose of this 

research, incoming sentences starting with $GPGGA were extracted to obtain longitude, 

latitude, and altitude data of the user (Subsection 3.5.1). The L1/L2 antenna allows for 

Differential GPS (DGPS) accuracy within approximately 10-20 centimeters of actual 

position, when using the OmniSTAR XP or HP subscriptions. Real Time Kinematics 

(RTK) technique can also be integrated into the framework which allows for accuracies 

up to 1 centimeter. The GPS antenna was mounted on a segment of pipe, which was 

secured to the interior of the backpack to prevent lateral movement. To take into account 

the small difference between the actual position of the user’s head and the one for the 

GPS antenna, a one-time calibration is done as soon as the AR platform starts receiving 

data. 

 

Table 3.1 – Comparison of GPS Receiver Models Used in This Research 

Model GPS 
Accuracy 

External 
Interface

Data 
Format 

Dimensions 
(inch) 

Garmin 
eTrex 

<3 m 
(WAAS) RS-232 NMEA 0183 4.4 x 2.0 x 1.2 

DeLorme 
Earthmate 

LT-20 

<3 m 
(WAAS) USB NMEA 0183 1.9 x 2.6 x 0.6 

Trimble 
AgGPS332 

<10-20 cm 
(OmniStar 

XP) 
RS-232 NMEA 0183 5.2 x 2.2 x 8.6 

 

Just as with the GPS receiver, the orientation accuracy and resolution provided by various 

head tracker models were critical factors. In order to limit restrictions imposed on the 

user’s motion, it was important to maximize the range in which accurate measurements 

could be obtained. For prototyping purposes, an Intersense InterTrax 2 orientation tracker 

was used. Although the quality of orientation data obtained from this tracker was quite 

satisfactory, it lacked an internal compass. Without this feature, it would be necessary to 

calibrate the device to due north at the start of each session. Such manual calibration 
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could introduce potential accumulating error that would affect all subsequent 

measurements during operations and diminish the accuracy of the final augmented 

images. In addition, when using inertial trackers, rapid motion or long tracking periods 

lead to drift error accumulation. It was thus decided that the orientation tracker should 

include a built-in compass which led to the selection of a TCM5 magnetic orientation 

tracker. Table 3.2 shows a comparison between the 3DOF orientation tracking modules. 

 

The TCM5 orientation tracker employs solid-state magnetic field sensors which measure 

compass heading through a full 360 degree of rotation. The tracking device was placed at 

the highest point inside the user’s helmet, directly above the top of the head, and parallel 

to the forward line of sight. This module also uses an RS-232 protocol to transmit data at 

speeds which facilitate real time position and orientation calculation. 

 

Table 3.2 – Comparison of 3DOF Head Tracking Models Used in This Research 

Angular Range 
Model Angular 

Resolution Pitch Roll Yaw 
Built-in 

Compass
Dimensions 

(mm) 

Intersense 
InterTrax 2 

o02.0  ±80º ±90º ±180º No 94 x 27 x 
27 

PNI TCM5 o01.0<  ±90º ±90º ±180º Yes 35 x 43 x 
13 

 

3.4.2. Input/Output Devices 
 

The first required interface that must be implemented exists between the computing 

system and external environment. There must be a method of obtaining continuous visual 

images of the user’s environment, which are ultimately integrated with the virtual images 

to produce the final, augmented view. Since the designed AR platform was mainly 

intended to be used for outdoor applications where simulated operations are visualized in 

a wide range operational environment such as a construction jobsite, a monoscopic visual 

system was adopted in this research. The selection of a monoscopic visual design enables 

the AR platform to display animated operations occurring in a wider range compared to a 

stereoscopic visual design which is more suitable for short range applications under 



 65

controlled conditions. Furthermore, in a stereoscopic visual design, different images must 

be generated for each eye which reduces the effective performance of the image 

generation system [12]. 

 

While a camcorder was used in the initial stages of the research [13], it was decided that a 

digital video camera could be effectively incorporated into the platform. The two most 

critical factors in the selection of a video camera were the resolution of the video images, 

and the speed with which the images are transmitted to the video compositor engine, so 

that they can be augmented and displayed to the user in real time.  

 

A Fire-i Digital Firewire camera was mounted on the front side of the HMD, directly in 

line with the user’s eyes. Firewire protocol was chosen for its relatively higher speed in 

transmitting captured images, in comparison with a serial or Universal Serial Bus (USB) 

connection. It captures video of the user’s surroundings at a 640x480 resolution, 

transmitting to the laptop at approximately 400 Mbps. This camera captures scenes from 

the landscape within a 42 degree horizontal and a 32 degree vertical view angle. 

 

In order to meet the goal of real time response to the changes in the environment, the 

augmented view must be made available to the user as soon as the video compositor 

engine operating on the laptop integrates the virtual images into the video of the 

landscape. Thus, the final component necessary for the AR platform interface is an HMD. 

HMD devices are mainly divided into two categories: Video See-Through and Optical 

See-Through. An optical see-through HMD is transparent, allowing the user to see their 

surroundings firsthand, with only the virtual images being displayed by the device. A 

video see-through HMD, however, is opaque, preventing the wearer from actually 

viewing their surroundings. Instead, they are able to see only what is being captured as 

input by the video camera. The fact that in a video see-through HMD, the captured views 

from the real environment and the virtual CAD objects can be processed and combined 

by the computer facilitates the analysis and correct alignment and coordination of the 

final composite visualized scene with respect to time [14]. Hence, the i-Glasses SVGA 

Pro video see-through HMD was selected for the AR platform in this research. This 
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HMD connects to the laptop via a standard 15-pin VGA port, providing a 800x600 video 

resolution on two separate viewing screens.  

 

3.4.3. Interaction Devices 
 

The mobile computing backpack, while being self-contained, should be capable of 

continuously obtaining both instructions from the user and information from the outdoor 

environment. During regular site operation, it may often be necessary for the user to 

change computer or component settings, or to select a new mode of operation after one 

task is complete. It is desirable to allow the user to do this without having to temporarily 

halt operation and remove the backpack to physically access the laptop. In selecting 

components to accommodate user input, the decision was made to include both a 

keyboard and a touchpad to provide full interactivity with the laptop, even though the 

user will not be physically accessing the laptop. The primary factors in the evaluation of 

these components were: 

• Ergonomics, including size, layout, and potential placement, and 

• Accessibility to the user while operating in the field. 

 

The components also needed to have an intuitive interface, so that configuration and 

operation settings can be adjusted easily without impeding operational efficiency. The 

WristPC wearable keyboard and the Cirque Smart Cat touchpad were finally selected. 

These two devices were both integrated into the mobile AR platform through a USB port, 

and together provided the necessary interface functionality to the laptop. While the 

touchpad could be clipped to the shoulder strap of the backpack, the miniature keyboard 

was worn on the user’s forearm with both components placed opposite the user’s 

dexterous hand. The necessary visual interface was then overlaid onto the augmented 

landscape being displayed to the user on the HMD screen. 
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3.4.4. External Power Source 
 

The fully integrated mobile AR platform must also be capable of uninterrupted operation 

for a reasonable period of time. While individual component batteries provided adequate 

power, each device had a different estimated battery life, and all parts must be operational 

for the platform to operate. It would be very inefficient for the user to halt their operation 

in order to replace or recharge individual components. To take this into account, an 

external power source had to be included to provide additional operation time for both the 

laptop computer and peripheral components.  However, the process of selecting an 

external power source should balance a gain in operation time with the added physical 

burden that must be borne by the user, as general purpose batteries typically increase in 

both weight and volume as the available power increases. 

 

One reasonable method to provide additional power was the use of external, component-

specific batteries, usually sold as an optional accessory by the manufacturer. The i-

Glasses SVGA Pro HMD offers a 6 oz. external Lithium Polymer battery and charger, 

which can be used exclusively by the HMD unit. When fully charged, this battery will 

power the HMD for up to 4 hours. Also, the TCM5 orientation tracker provides a case for 

3 AAA batteries, which can be stored in the backpack and plugged into the module’s 

connection cable. 

 

After studying the individual components and selecting a target time for continuous 

operation, the individual power requirements and operating times for each of the devices 

were used to estimate the necessary capability of an external power supply. Table 3.3 

displays the components that need an external power source to assure desired operation 

time. 
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Table 3.3 – Final Power Schedule of UM-AR-GPS-ROVER 

Component 
Requires 

External Power 
Power (W) 

Head-Mounted Display Yes 14.000 - 15.000 

Orientation Tracker AAA batteries 0.7000 - 01.000 

Firewire Digital Camera Yes 0.9000 – 01.000 

GPS Receiver Yes 03.500 

Keyboard No (through USB) 00.035 

Touchpad No (through USB) 02.500 

Laptop Computer Yes 68.000 
 

Several external power packs with special concern given to physical dimensions and 

power supplying capability were considered. For supplying external power to the final 

prototype, the Powerbase NiMh High-Power External Portable Power Pack was selected. 

This battery has slightly smaller dimensions than that of a typical laptop, allowing it to be 

easily stored in the backpack, adjacent to the laptop. This 12V power pack is rated at 7.5 

Amp-Hours and is able to provide approximately 4-6 hours of additional laptop 

operation. In addition, a cigarette lighter outlet was found to be convenient since it is a 

Plug and Play (P&P) device that can also be used in a car. It also simplifies the process of 

splitting the single outlet into multiple outlets to accommodate several components. Since 

the power pack offers only one cigarette lighter outlet, a splitting adaptor was added to 

provide a total of three outlets. Two of these three ports provide dedicated power to the 

Trimble GPS Receiver and the Fire-i Digital Firewire Camera, with a slot remaining free 

for the laptop computer, when necessary.  

 

3.4.5. Mobile Backpack 
 

The final issue for the AR mobile computing prototype designed in this research was the 

selection of a frame and backpack apparatus. This device is worn by the user, with the 

laptop and hardware components stored securely within. Ergonomic considerations 

played a significant role in the selection of an initial backpack model, since user comfort 

is a critical factor in the design of any outdoor mobile AR platform. Compact design, 
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component security, and proper weight distribution were all analyzed during this 

selection process. While the creation of a customized configuration was considered, it 

was determined that a Commercial-off-the-Shelf (COTS) component would be used for 

the initial design to demonstrate mobile operation, with the intent to revisit this option in 

the future. 

 

The Kensington Contour Laptop Backpack was ultimately chosen as the first generation 

backpack for the mobile computing platform. This particular model provides adequate 

internal space for the GPS receiver, laptop computer, power pack, and additional cords 

traveling between the AR components. The backpack design also provides easy access to 

the components being carried in the main compartments, allowing hardware connections 

to be quickly checked when necessary. This product is endorsed by the American 

Chiropractic Association (ACA) and equipped with an adjustable lumbar support near the 

lower back, allowing weight to be distributed down to the hips instead of the shoulders or 

back.  

 

3.5. Software Interface Design 
 
In order to communicate with the input devices throughout a core platform and provide 

appropriate augmented output to the user, an OOD approach was adopted. The software 

interface design process in this research followed a cyclic pattern shown in Figure 3.6. As 

shown in this Figure, the process started with module data structure design during which 

the structure of each individual communication module (i.e. C++ class) was designed. 

The output of this process were algorithms and pseudo code to perform specific tasks 

such as creating a communication handle to a hardware device, and extracting data via 

that handle. Based on the output of this step, the actual C++ implementation of each 

module was created. The developed C++ modules were then individually validated to 

assure proper functionality and data acquisition from the registration devices. Once the 

modules were validated, they were integrated into a prototype application. The prototype 

application was then run and the results were validated again. The overall performance of 

the system always served as an effective feedback to continuously improve the initial 
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design and optimize the functionality of individual modules. The dashed arrow in Figure 

3.6 represents possible refinements to the original module designs. 

 

 
Figure 3.6 – Steps in Software Interface Design 

 

To make the code as reusable as possible, the output of the implementation stage for each 

individual module was exported as a Dynamic Link Library (DLL) file. Having done so, 

the means and methods of each module while being organized in a class structure, can be 

later imported by potential AR users to be applied to their specific application. As 

described earlier, the two most important issues that have been taken into account in 

order to allow for such a modular design were extensibility and reusability. A very 

distinctive feature of the current software architecture which highlights the importance of 

reusability is that it uses American Standard Code for Information Interchange (ASCII) 

as well as binary data acquisition mechanisms to communicate with the positioning and 

orientation devices through serial port connections. The main advantage of having such a 

relatively low level communication interface is that the established methods are generic 

and can easily be reused and reapplied to other registration devices provided that they 

output data following a standard format. 
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Figure 3.7 shows the current class structure of the designed AR platform using OOD 

terminology [15]. In this figure, a solid line with a black circle at one end connecting two 

classes represents an “aggregation” relationship between two classes in which one class 

has an instance of the other as a member variable. Likewise, a solid line with a white 

circle at one end represents a “using” relationship between two classes in which one class 

uses methods and functions of the other to perform certain operations. All the individual 

components are pieced together in a wrapper class which provides methods and functions 

to open ports, initialize the peripheral devices, communicate with them, extract real time 

data from them, display appropriate augmented graphical output, update the output on a 

real time basis while the user is moving around freely, and finally close ports at the end 

of the operation.  

 
Figure 3.7 – Object Oriented Class Structure of the AR Framework 

 

Figure 3.8 depicts the main loop of the application in terms of events occurring at each 

frame. As shown in this Figure, at the beginning of each loop run, positional and 

orientation data are obtained from the registration devices (i.e. GPS receiver and head 

orientation tracker), checked for validity, extracted, and converted to numerical values. 

Based on these values, the coordinates of the user’s viewing frustum are updated. The 

virtual contents of the viewing frustum (i.e. CAD objects) are then refreshed by 
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recalculating the relative distance between each CAD object and the user, and 

appropriately placing each CAD object inside the viewing frustum to reflect the effect of 

the latest changes in user’s position and head orientation in the final augmented view. 

The details of this step are presented in Section 3.6 and Appendix D. The loop continues 

as long as it is not interrupted by a user exit command. The dotted arrows indicate the 

internal processes performed at each step of the main loop. 

 

 
Figure 3.8 – AR Application Main Loop 

 

3.5.1. Positional Tracking 
 

As described in Subsection 3.4.1, the incoming data from the GPS device are in the 

format of sentences starting with $GPGGA indicator which include the three main 
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position components (i.e. longitude, latitude, and altitude). After the GPS port is 

successfully opened, the incoming data sentence is acquired in real time and further 

broken into parts to extract the positional data. Figure 3.9 shows a sample data stream 

from a GPS receiver as used in this research. 
 

 
Figure 3.9 – Sample GPS Data Stream Following the NMEA Standard 

 

There were two important steps in communicating with the tracking devices: 

• Establishing a communication channel, and 

• Obtaining and extracting incoming data. 

 

To establish a communication channel, a serial port communication library called 

PortController.NET was initially used. This library provides means and methods to open 

and close a serial port, as well as to receive and send data from and to the hardware 

device connected to the serial port. The original library was substantially modified in this 

research to derive two more specific classes used for establishing port communication. 

These classes were designed and implemented in C++. 

 

Figure 3.10 shows the designed data transmission algorithm for the GPS receiver. Figure 

3.11 shows the main functionalities provided within the GPS class. As shown in this 

Figure, the GPS class uses three main functions to communicate with the GPS device. 

UMGPS::Initialize() opens the serial port to which the GPS device is connected 

and sets the communication parameters (e.g. baud rate, stop bits, and others). 

UMGPS::ReceiveData() is a function running in the background the main 
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responsibility of which is to keep track of the events happening in the GPS thread. As 

soon as it receives an EOL (End of Line) character, it realizes that a complete data line 

has been received (Figure 3.9). It then starts extracting the numerical values from the data 

stream. Just before the AR application terminates, it calls UMGPS::Shutdown() to 

end the communication with the GPS device and release the designated serial port [16]. 

 

 
Figure 3.10 – Designed GPS Data Transmission Algorithm 

 

 

__gc class UMGPS 

{ 

      public: 
 

             Initialize(); 

             Shutdown(); 

             ReceiveData();  

}; 

 

Figure 3.11 – Designed C++ GPS Communication Class 
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3.5.2. Head Orientation Tracking 
 

The incoming data from the head orientation tracker is in the format of three angles (i.e. 

yaw, pitch, and roll). After the head orientation tracker port is successfully opened, the 

incoming data is acquired in real time and further broken into parts to extract the 

orientation data. Figure 3.12 shows a sample data stream from the 3DOF head orientation 

tracking device as used in this research. 

 

 
Figure 3.12 – Sample 3DOF Head Orientation Tracking Data Stream 

 

Since the contents of each packet come in a binary format over a serial connection, it is 

very sensitive to data corruption. As a result, the main content of each packet is followed 

by a code called Cyclic Redundancy Check (CRC). In general, a CRC is a mathematical 

transformation applied to a series of bytes that produces an integer result that can be used 

for error detection. Upon receiving data from the orientation tracker, the AR application 

calculates the CRC value of the packet using its actual contents and then compares this 

value to the received CRC. If the two don’t match, the conclusion is that the actual data 

packet has been affected while being transferred and hence is not reliable for use. As a 

result, the packet is simply disregarded, and the application waits for the next incoming 

data packet. Otherwise, the data stream is error-free and will be extracted into its 

components. Again, the numerical values for each of the orientation angles (i.e. yaw, 

pitch, and roll) are obtained using a set of binary operations applied to the data packet. 

 

In the packet structure shown in Figure 3.12, the main value for each orientation angle is 

obtained by converting the content of Payload to its numerical equivalent. In order to 

determine which angle this value corresponds to, the Frame ID needs to be extracted. 
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This is because each of the individual orientation angles has their own corresponding 

Frame ID. The orientation tracker communication interface is more involved than the one 

for GPS. The main reason is that unlike the GPS device that sends out data continuously 

in the background, the tracker needs to be prompted each time to prepare a data packet 

and send it to the AR application. Also, since the data comes in a binary format, it needs 

to be validated before being used inside the AR application. Figure 3.13 shows the 

designed data transmission algorithm for the 3DOF head orientation tracker. 

 

Figure 3.14 shows the main functionalities provided within the 3DOF head orientation 

tracker class. As shown in this Figure, to open the serial port to which the tracker is 

connected and set up the connection parameters, UMTCM::Initialize()is called 

first. UMTCM::Control()gives control to the tracker to prepare a binary data packet 

and send it to the AR application. In order to obtain 3D rotation angles, this function 

needs to be called three consecutive times with three different Frame ID tags. Each time 

the function is called, it sends out a control command to the tracker which prepares the 

tracker to send out a single packet containing binary values of yaw, pitch, or roll angles. 

UMTCM::ReceiveData()is then called to receive the binary packet. This function in 

turns calls UMTCM::CRC()to check the validity of the received data by performing a 

CRC test. As soon as the data packet is marked valid, its content is extracted by 

UMTCM::ExtractData()which also stores the numerical values for the three 

orientation angles in their corresponding variables for later use inside the AR application 

[16].  
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Figure 3.13 – Designed 3DOF Head Orientation Data Transmission Algorithm 
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__gc class UMTCM 

{ 

      public: 
 

             Initialize(); 

             Shutdown(); 

             Control();              

             ReceiveData(); 

             CRC();  

             ExtractData(); 

}; 

 

Figure 3.14 – Designed C++ 3DOF Orientation Tracker Communication Class 

 

3.6. Registration of Computer-Generated Graphics 
 

As the user moves inside the AR animation, the relative distance (R) between the center 

of the viewpoint (i.e. user’s eyes) and each virtual CAD object is calculated using the 

Vincenty method [17]. This method provides a set of equations to calculate the horizontal 

distance component between two points with known latitude and longitude, and is 

accurate to 0.5 millimeters. The important characteristic to note regarding these equations 

is that the computed distance between two points is at Mean Sea Level (MSL) or more 

precisely along the “ellipsoid datum”. 

 

However, it has been shown that if the points in context are located two kilometers above 

the MSL, the distance obtained by Vincenty method will be 0.03% smaller than the actual 

distance. Thus, for the distance computation in this research, the Vincenty method was 

found to provide sufficient accuracy for obtaining relative distances between a user and 

augmented virtual models. The Vincenty method used in this research takes advantage of 

the most accurate and widely used models for the earth ellipsoid (i.e. the closest elliptical 

shape to the actual surface of the Earth in a certain region) in the North American 
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continent, the WGS-84/GRS–80. In this model, the earth ellipsoid is defined using the 

geometric parameters shown in Figure 3.15. 

 
Figure 3.15 – Basic Geometrical Parameters of the Earth Surface in WGS84 

 

In this Figure, a and b are the major and minor semi axes of the ellipsoid and f is the 

flattening ratio which is the difference in the length of the two semi axes (i.e. a-b) divided 

by the length of the major semi axis (i.e. a). The primary variables used in this method 

are presented in Figure 3.16 in the form of pseudo code. All angles are measured in 

radians. In addition, the “East” and “North” directions are assumed positive while the 

“West” and “South” are considered to be negative in sign. 
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Figure 3.16 – Primary Geometrical Parameters Used in Vincenty Method 
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The Vincenty method follows an iterative procedure to calculate the distance between 

any two given points until it reaches an acceptable level of convergence in which the 

difference between the last two calculated values of Lambda and Lambdap is less than a 

specific amount, or until a certain number of iterations have been performed, whatever 

comes first. Figure 3.17 presents the pseudo code for the iterative part of the algorithm. In 

the pseudo code of Figure 3.17, the error margin has been set at 10-12 meters. The 

maximum number of iterations that the loop should execute in trying to reach the desired 

accuracy is given by the variable count. 

 

// Iterative loop to achieve a certain level of accuracy 
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Figure 3.17 – Iterative Computation Algorithm Used in Vincenty Method 
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The final non-iterative segment of the algorithm computes the distance S (in meters) 

between the two points with known latitude and longitude values. The pseudo code for 

this segment of the algorithm is shown in Figure 3.18. 

 

// Final computations to obtain the relative distance between two given points 
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Figure 3.18 – Final Distance Computation Using Vincenty Method 

 

3.6.1. Horizontal Distance Calculations 
 
Figure 3.19 depicts the initial approach used in this research to register virtual CAD 

models in a user’s view and superimpose them in the final augmented scene. In order to 

perform the registration task, the GPS receiver obtains the user’s global position in real 

time. Knowing the same pieces of data for a virtual CAD object (either from a text file 

created manually or from the simulation scenario), the relative distance between the user 

and the virtual object (R) is calculated using the Vincenty method. As soon as the 

distance between the user and the virtual object is determined, the corresponding relative 

heading angle (based on the geographical North direction being zero) of the vector 

connecting the two points (UO) is calculated. This is depicted by the symbol α in this 

Figure. 
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Figure 3.19 – Initial Approach for Accurate Registration of Virtual CAD Objects 

 

To find α, an imaginary point C is added to the calculations. This point has the same 

longitude as the user’s longitude and its latitude is the same as the latitude of the object. 

Together with points U and O, these three points create a right triangle (Note that UC 

always points to the geographical North direction). The additional side lengths CO and 

UC of this triangle can be calculated by applying the Vincenty method on the 

corresponding vertices. Using trigonometric equations, the heading angle (α) is then 

calculated as )(1

UC
COtg − . By the end of this set of calculations, two important pieces of 

information about the objects in the user’s view are available: the relative distance, and 

the relative angle. 

 

At this stage, transformation matrices can be effectively used to manipulate registered 

CAD objects as required (Chapter 4). In order to do that, each object is first subjected to a 

translation matrix by which it is translated into the depth of view by an amount equal to 

the distance between the two points (R). Then a rotation matrix is applied to the object by 

which it is rotated about the Y axis (vertical axis) by an amount equal to the calculated 

relative angle (α). These two transformations update the virtual object’s location based on 
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the last user movement. Figure 3.20 is a schematic illustration of the transformation 

procedure applied to each virtual object inside the user’s field of view. 

 
Figure 3.20 – Transformation of a CAD Object in the Field of View 

 

3.6.2. Elevation Difference Calculations 
 

Revisiting Figure 3.19, the basic assumption in calculating the horizontal displacement 

(R) and angle (α) is that both the user and the CAD object have the same elevation (i.e. 

global altitude). Thus, in case the object is located at a higher or lower elevation than the 

user, further adjustments are needed requiring additional computation steps. In Figure 

3.21, for example, the object has a lower altitude than the user. In this case, the relative 

pitch angle between the user and the object (β) must be calculated using properties of 

triangle USO.   
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The virtual object is then rotated about the X axis by an amount equal to the calculated 

angle β. As shown in Figure 3.21, the object is moved along the SO’ curve as a result of 

this rotation. For simplicity, a good assumption can be translating the object along the 

cord SO in which case the final position of the virtual model ends up to be the point O 

instead of O’. A final adjustment may be needed to the object’s initial side roll angle to 

represent the possible ground slope (equal to β in Figure 3.21). In this study, a pure 

rotation equal to the slope is being applied to the object about its local X axis so that it 

lies completely on the ground. In other words, the ground plane is assumed to be uniform 

and parallel to line segment UO’.  

 

 
Figure 3.21 – Calculation of Elevation Difference between User and a CAD Object 

 

If a translation along SO is preferred as opposed to a rotation along SO’ a minute 

positional error may occur which can be safely neglected for the purposes of this study 

without experiencing any adverse visual artifacts. However, for wider range applications 

(e.g. objects that are to be placed far away from the user), the length of OO’ can be large 

in which case, instead of translating the object from S to O, a rotation equal to β must be 

applied to transform the object from S to O’. 

 

3.6.3. Modified Transformation Method (MTM) 
 

The initial transformation calculation method described in Subsections 3.6.1 and 3.6.2 

provided accurate and acceptable results in terms of translational and rotational values. 
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However, the implementation of this method to place a virtual CAD object inside the 

user’s field of view requires some additional steps to be executed. For example, once a 

rotation (about X, Y, or Z axes) is applied to a CAD object to place it in the correct 

position, the local orientation of the object also changes equal to the amount of the 

applied rotation. To correct this, an additional rotation matrix has to be locally applied to 

the object. Figure 3.22 shows how this local orientation change occurs when applying a 

global rotation to a virtual CAD object. 

 

 
 

Figure 3.22 – Steps to Adjust the Local Orientation of a Virtual CAD Object  
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This Figure shows the top view of an augmented scene in which the virtual CAD model 

of an excavator is to be placed 30 meters from the user with a corresponding heading 

angle of 30 degrees. Following the procedure outlined in Subsection 3.6.1, the CAD 

model is first translated 30 meters away from the user’s eye (Figure 3.22.a). A rotation 

about Y axis will then be applied to the CAD model to take into account the relative 

heading angle (Figure 3.22.b). At this stage, although the CAD model is located at the 

correct position, its local orientation has been changed by 30 degrees (equal to the 

rotation value) which needs to be further adjusted. This can be done by locally applying a 

-30 degree rotation to the CAD object (Figure 3.22.c). As a result, to place a CAD object 

at a point located on the same plane as the user’s eye is located (i.e. plane XZ), at least 

three different transformations are needed. In case there is a difference of elevation, one 

more step has to be executed in order to translate the CAD model along the Y axis. 

 

For a limited number of CAD objects, this process is found to be reasonable. However, as 

the number of CAD objects increases and considering the fact that the positional errors 

accumulated after all these steps can exceed the acceptable level of accuracy, a higher 

precision method was needed. This was achieved in this research by developing the 

MTM. The MTM, when applied on two points with known global positions, calculates 

their relative position along the three major axes in meters [1]. These values are then used 

inside a single translation matrix to position the CAD object correctly in the scene. As 

shown in Figure 3.23, the MTM yields a different set of output values compared to the 

original Vincenty method described in Subsections 3.6.1 and 3.6.2 as it calculates 

distance components between two points along the three major X, Y, and Z axes rather 

than the length of the line segment directly connecting the two points together. 
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Figure 3.23 – Comparison between the Original Vincenty Method and the MTM 

 

Using the MTM, the relative position components along the X and Z axes (CO and CU in 

Figure 3.19) together with the elevation difference along the Y axis (SO in Figure 3.21) 

are used to create a single translation for the virtual CAD object. This way, the rotational 

values between the user and the object don’t change and as a direct result, local 

orientation of the CAD object remains unaffected. Figure 3.24 shows how the application 

of the MTM changes the transformation procedure initially introduced in Figure 3.20.  

 

 
Figure 3.24 – The MTM Procedure to Place a Virtual CAD Object in the Field of View 
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In this Figure, a virtual CAD model undergoes a single step translation procedure (as 

opposed to a translation followed by a rotation shown in Figure 3.20) in order to be 

placed on the appropriate location relative to the user’s position. Note that in this Figure, 

the virtual object and the user are assumed to be on the same plane and as a result, no 

elevation difference calculation is necessary. 

 

When the AR user turns the head, the relative change in the head orientation is obtained 

using the three pieces of data coming from the 3DOF head orientation tracker. Applying 

the reverse rotation to the virtual objects leads to a final augmented view wherein the 

objects’ locations are unaffected by the user’s head movement. In addition, in cases 

where the user both moves and rotates the head at the same time, all the computation 

steps in the described procedure are continually repeated so that the final composite AR 

view remains unaffected as a user moves freely in the environment. 

 

3.7. Development of UM-AR-GPS-ROVER Mobile AR 
Platform 

 

The designed registration algorithms were implemented in a mobile AR prototype 

platform named UM-AR-GPS-ROVER that served as a proof-of-concept, and also helped 

validate the initial research results [1]. The initial design of UM-AR-GPS-ROVER 

comprised of two main components working in parallel. In addition to the software 

components of the tool, supporting hardware devices were appropriately integrated to 

provide the necessary sensing, input, and output capabilities. The connected hardware 

devices primarily consisted of a GPS receiver, a 3DOF head orientation tracker, an 

optional HMD, and a laptop computer. Figure 3.25 presents snapshots of the hardware 

setup used in the initial design of UM-AR-GPS-ROVER. Details of the initial hardware 

components used in UM-AR-GPS-ROVER are presented in Table 3.4. 
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Figure 3.25 – Initial Hardware Setup of UM-AR-GPS-ROVER 

 

Table 3.4 – Initial Hardware Components of UM-AR-GPS-ROVER 

Functionality Hardware Component 

Positional tracking Delorme Earthmate GPS device 

Head orientation tracking InterSense InterTrax2 head tracking device 

Video capturing Sony DCR-TRV33 mini-DV digital video camera recorder 

Video output Laptop screen or i-glasses SVGA Pro 3D HMD 

User input Laptop keyboard and touchpad 
 

UM-AR-GPS-ROVER was completely developed in a C++ environment using OpenGL 

functionalities. In order to communicate with the GPS receiver, a C++ library called 

GPSToolkit was used which provided methods to open the GPS port, receive data from 

the GPS unit, and extract them in form of longitude, latitude, and altitude. To establish 

communication with the 3DOF head orientation tracker, the sample code provided by the 

device manufacturer was modified and used inside the AR application. 

 

The implemented UM-AR-GPS-ROVER platform was used to place several static and 

dynamic 3D CAD models at several known locations in outdoor augmented space [18]. 

In particular, the prototype was successfully tested in many outdoor locations at the 

University of Michigan north campus using several 3D and 4D construction models (e.g. 

buildings, structural frames, pieces of equipment, etc.). The initial design of UM-AR-

GPS-ROVER supported a variety of CAD objects including those created in the Virtual 

Reality Modeling Language (VRML) format which provides several features and 



 90

functionalities to create a scene description of 3D interactive models. VRML models can 

be created in any external CAD program (e.g. 3D Studio MAX, or Auto CAD) and 

exported to other graphical applications [19]. Another useful feature of VRML is that the 

initial scale and orientation of each of the CAD models created using VRML can be 

modified when they are loaded in an external application. This feature is widely used in 

this study so that the dimensions and orientation of the loaded models comply with the 

global coordinate frame properties of the real environment. 

 

To validate the capability of the UM-AR-GPS-ROVER platform to perform accurate 

registration, global positions of CAD models were measured on site and input to the 

system via a text file. The user’s position and orientation were also tracked by a GPS 

receiver and a 3DOF head orientation tracker while moving on the site. The implemented 

MTM registration algorithm calculated real time relative distance components between 

the user and the CAD objects and the final view was updated accordingly to produce a 

realistic augmented view. Figure 3.26 presents two snapshots of structural steel frames 

registered in outdoor AR. 

 
Figure 3.26 – CAD Steel Frames Registered in AR Using UM-AR-GPS-ROVER 

 

In order to test the ability of the prototype to augment dynamically changing graphical 

models in a user’s view, a 4D CAD [20] model of a structural steel frame was registered 

at a known outdoor location. In particular, scheduled construction activities for the 

erection of the steel frame (columns, beams, girders, and connection) were graphically 
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animated with the passage of simulated project time. The simulated project time was 

introduced as an extra dimension for each augmented virtual model such that an object 

(e.g. steel beam or column) is not superimposed in the augmented view unless the 

simulation clock passes its scheduled completion time.  

 

Position data of the virtual CAD models was provided via a text file in which model ID 

numbers, and their longitude, latitude, and altitude values had been previously stored. In 

order to allow UM-AR-GPS-ROVER to identify the appropriate appearance time for 

each CAD object, time tags for all virtual models were also stored in the same text file. 

The content of a sample text file for an AR scene consisted of six virtual models 

superimposed on a real background is shown in Figure 3.27. 

 

 
Figure 3.27 – Sample Text File Containing the Properties of Virtual CAD Objects 

 

At each frame in the graphical AR visualization, the text file was searched to determine 

whether there are object(s) with a time tag smaller than the current simulation time. If an 

object falls into this category, its graphical data is read from a corresponding graphical 
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file and is displayed in the user’s view at the correct expected location. Figure 3.28 

presents snapshots of the 4D graphical AR simulation. 

 

 
 

Figure 3.28 – AR Visualization of a 4D CAD Model in UM-AR-GPS-ROVER 

 

As discussed earlier, the accuracy of the acquired positioning data from the GPS receiver 

was always a major concern. However, in the validation stage of UM-AR-GPS-ROVER 

and in order to prove the feasibility of the developed methods and algorithms in this 

research, it was decided to choose WAAS technology since it provides a free GPS signal 

correction service. Since the methods and functionalities developed in this research were 
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designed in compliance with NMEA which is a widely accepted standard for GPS data 

transmission, future upgrades to higher accuracy devices would not affect the integrity of 

the AR platform. This is mainly because the issue of accuracy is more internal to the 

incoming data streams from the GPS device and as long as these data streams follow the 

NMEA format, any future developed AR platform using the provided registration 

methods will be capable of receiving and extracting them in the form of useful position 

values. 

 

Considering all these factors, in choosing the location of the outdoor tests at this stage 

given the geographical layout of the state of Michigan, the main factor was to perform the 

tests in areas in which the southern sky horizon was clear enough and not blocked by 

either natural (e.g. trees) or human-made (e.g. buildings) objects for the WAAS satellite 

to be viewed by the GPS receiver. This in fact led to an increased level of accuracy in the 

validation stage. To be more specific, the overall accuracy level achieved in outdoor tests 

was consistently about one meter which is an acceptable range considering that the GPS 

receiver used in these tests was not a high accuracy device. 

 

3.8. Summary and Conclusions 
 

The primary advantage of graphical simulation in AR compared to that in VR is the 

significant reduction in the amount of effort required for CAD Model Engineering. AR 

superimposes graphical images of virtual objects on top of a user’s views of the real 

surrounding space thereby precluding the need to CAD model the entire simulation 

environment. In order for AR graphical simulations to be realistic and convincing, real 

objects and augmented virtual models must be properly aligned relative to each other. 

Without accurate registration, the illusion that the two coexist in AR space is 

compromised. 

 

In this research, it was found that tracking systems traditionally used for AR registration 

are intended for use in controlled indoor spaces and are unsuitable for unprepared 

outdoor environments such as those found on typical construction sites. In order to 
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address this issue in the presented research, the global outdoor position (i.e. longitude, 

latitude, altitude) and 3D orientation (i.e. yaw, pitch, and roll) of a user’s viewpoint were 

tracked using a GPS receiver and a 3DOF head orientation tracker respectively. The 

tracked information was reconciled with the known global position and orientation of 

CAD objects to be superimposed in the user’s view. Based on this computation, the 

relative translation and axial rotations between the user’s eyes and the CAD objects were 

calculated at each frame during visualization. The relative geometric transformations 

were then applied to the CAD objects to generate an augmented outdoor environment 

where superimposed CAD objects stayed fixed to their real world locations as the user 

moved freely in the animation. 

 

In order to validate the designed registration algorithms in real life situations, they were 

integrated into UM-AR-GPS-ROVER, an AR animation prototype equipped with a 

mobile computing apparatus. UM-AR-GPS-ROVER is the result of a successful 

integration of a general purpose and modular hardware and software interface that can be 

readily shared and reused by researchers exploring AR in other fields. UM-AR-GPS-

ROVER, as a reconfigurable and extensible platform, facilitates future component 

replacements and code improvement by allowing potential AR users to make modular 

modifications to necessary application components instead of exploring and developing 

an entirely new AR application in response to new technologies and scientific 

improvements. It coordinates operations of the hardware and software components, and 

interfaces with the user and their environment simultaneously, with the ultimate goal of 

seamlessly integrating virtual objects into the real world surroundings. 

 

While the author’s primary scientific domain of interest is construction, the principles 

and components described in this Chapter can be extended to developing any AR or 

location-aware application in other engineering and scientific domains. The modular 

design of this platform allows for reusability and pluggability of methods within different 

AR domains, and allows for continual modernization of equipment to incorporate new 

technologies and procedures that emerge as AR research continues. As a result, the 

algorithms and methods described in this Chapter can be conveniently reused by other 
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AR application developers simply by importing the provided class libraries into their 

code thereby saving a significant amount of time and effort that would be otherwise 

required to reimplement low level software interfaces to perform registration and data 

acquisition tasks. 
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Chapter 4 
 

Construction and Management of a 
Dynamic Augmented Scene 

 

 

4.1. Introduction 
 

An augmented scene presents a combination of virtual and real objects spatially (and 

possibly logically) arranged and linked in a single view. Real world objects are 

independent entities that occupy certain space in the 3D environment and can potentially 

change their position and orientation over time. Virtual objects, however, have to be first 

calculated and appropriately placed in the scene before they can be manipulated. There 

are two major approaches to model and place virtual objects in a graphical scene. Such 

models can be either created as a single unit or assembled from discrete components [1]. 

Modeling the scene as a single unit requires the modeler to create a static model with all 

the individual elements appropriately placed in their correct position and orientation in 

the scene. The resulting model using this approach is usually suitable for graphical 

applications in which the main purpose is to render, visualize, and examine large data sets 

ranging from individual components, to subassemblies, to entire complex layouts [1]. 

 

Another approach which is more effective for animating a graphical scene is to create the 

entire graphical contents from discrete CAD models. This provides the modeler with high 

manipulation level to individually change position, orientation, and scale of each of the 

CAD objects without affecting the integrity of the scene. Moreover, the individual scene 
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components can be created in separate modeling tools (e.g. AutoCAD, Photoshop, 

AC3D, 3D Studio). This brings significant flexibility and speed to the modeling and 

animation processes. In this research, discrete component modeling approach was 

selected as it results in more flexibility and higher manipulation control when animating a 

scene consisting of virtual and real objects. 

 

4.2. Main Contributions 
 

In order to perform a construction operation, several types of physical resources (i.e. 

equipment, personnel, material) have to be deployed on the site. As a result, for a 3D 

visualization to be a realistic representation of the complex dynamics of a typical 

construction site, it must be able to demonstrate, manipulate, and manage a significant 

amount of CAD objects included in the simulation model of the construction operation. 

The common problem arising in almost every large scale visualization system is the 

amount of data that must be loaded and rendered at each frame. As the size and 

complexity of the animated environment increases, slow rendering speed becomes the 

bottleneck for real time user interaction with the scene even if fast CPU speed and 

powerful graphic accelerator cards are used [2,3]. Overcoming the hardware limitations 

by reducing the amount of time and CPU work required to handle the CAD objects inside 

an AR animation was the main motivating factor for this part of the research. The 

primary contribution of the research presented in this Chapter is a flexible and 

dynamic methodology to facilitate the tasks of constructing and managing the contents 

of the AR animation of a simulation model by continuously loading, rendering, and 

displaying the virtual CAD models and real surrounding environment in which the 

operation takes place.  

 

The objective of this part of the research was successfully achieved by first arriving at a 

computer interpretable description of the visible space in front of the user’s eyes (i.e. 

viewing frustum). This helped in limiting the number of CAD objects necessary to be 

rendered at each animation frame. In particular, only CAD objects located inside this 

visible space need to be loaded and displayed which significantly decreases the 
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computation load on the graphics card and CPU and at the same time increases the frame 

rate. The next major step was to establish an efficient object structure to optimize the 

management of CAD objects inside the user’s viewing frustum. This was achieved by 

applying the concept of scene graphs and introducing a new Augmented Reality (AR) 

based hierarchical object structure to facilitate CAD object manipulation inside the AR 

animation. 

 

4.3. Creating an AR Perspective Viewing Frustum 
 

The very first step in creating an animated scene is to define the space in which virtual 

and real objects coexist. Without having a precise contextual definition of the 3D scene, 

real and virtual objects in the scene are not able to establish spatial and contextual links 

with each other and as a result, proper registration (as discussed in Chapter 2) cannot be 

achieved and maintained throughout the animation. In order to construct the augmented 

space, the first set of information is the location and dimensions of the visible world to 

the observer of the scene. This is achieved by defining a viewing frustum centered on the 

eyes of the user (i.e. scene observer). Since the real world is perceived by the human eyes 

in a perspective manner, the same visual basis has to be applied to the virtual contents of 

the augmented world in order to ensure proper alignment of the two worlds. As a result, a 

perspective viewing frustum has to be defined with the user’s eyes always located at the 

projection point. 

 

Figure 4.1 shows the parameters of a perspective viewing frustum used in this research. 

In this Figure, the volume of space inside the truncated pyramid confined by near plane 

(marked by points P1 through P4) and far plane (marked by points P5 through P8) is called 

the perspective viewing frustum. Objects inside this limit are visible to the user and hence 

have to be displayed and animated by the AR platform. Other objects are either culled (if 

completely located outside the frustum) or clipped (if partially located inside the frustum) 

[4]. Since the user (observer of the scene) can potentially move in the scene, the origin 

(i.e. frustum projection point) is not fixed and moves with the user. As a result, the 
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contents of the perspective viewing frustum may change over time due to the user and/or 

the objects changing position (and orientation).  

 
Figure 4.1 – Definition of a Perspective Viewing Frustum 

 

Note that relative distances of near and far planes to the user can be changed depending 

on the amount of the 3D space the user expects to observe. In addition, the extent of the 

frustum can be changed by increasing or decreasing the horizontal and/or vertical field of 

view angles as shown in Figures 4.2 and 4.3. In these Figures, the Vertical Field of View 

(VFOV) angle is set to be 45 degrees (Figure 4.2) and the Horizontal Field of View 

(HFOV) angle is set to be 60 degrees (Figure 4.3). The near and far planes in these 

Figures are also set to be 1 and 500 meters from the user respectively. A virtual object is 

visible to the user as long as it is located inside the perspective viewing frustum. The real 

world contents of the augmented scene (which are captured by the video camera) are also 

visible to the user as long as they are inside the camera perspective viewing frustum. To 

achieve best results, different parameters of the virtual and real perspective viewing 
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frustums (near plane, far plane, VFOV angle, and HFOV angle) had to be set to allow for 

proper alignment of the two worlds in one single augmented view. 

 

 
Figure 4.2 – Side View of a Perspective Viewing Frustum 

 

 
Figure 4.3 – Planar View of a Perspective Viewing Frustum 
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4.4. Developing the Augmented Scene Graph 
 

The concept of scene graphs can be effectively used to facilitate the creation and 

management of assembled scenes. In general, a scene graph is a data structure used to 

organize and manage the contents of hierarchically organized scene data [1,5]. In the 

realm of computer graphics, scene graphs are means to create and manipulate hierarchical 

organization of shapes, groups of shapes, and clusters of groups that collectively define 

the content of a scene [5]. Scene graphs address low level problems that generally arise in 

scene composition and management. In computer animation, scene graphs are widely 

used as structures that arrange the logical and spatial representation of a graphical scene 

[1,6]. Scene graphs allow the scene modeler to focus on what 3D objects to render rather 

than how to render them. It eliminates several low level programming complexities 

involved in rendering process of 3D objects in a scene [1,7]. 

 

There are several computer graphics implementations that build on the concept of scene 

graphs. Some of them (e.g. Java3D [8]) are in form of an Application Programming 

Interface (API), designed to be integrated into standard programming languages such as 

C/C++ or Java. Alternatively, scene graphs may be in the form of a text or binary file. 

Such files usually adopt an authoring (or markup) language format and are generally 

synonymous with web applications. Examples of two such implementations are the 

Virtual Reality Modeling Language (VRML) and Extensible 3D (X3D). VRML is an 

international standard similar to Hyper Text Markup Language (HTML) [9,10], whereas 

X3D works within the constructs of the Extensible Markup Language (XML) file format 

[11,12]. In order to use the advantages of scene graphs in creating graphical contents of 

the augmented scene in this research, an open source, cross platform graphics toolkit 

called OpenSceneGraph was used. Based around the concept of scene graphs, 

OpenSceneGraph provides an object oriented framework on top of OpenGL freeing the 

developer from implementing and optimizing low level graphics calls, and provides many 

additional utilities for rapid development of graphics applications [13]. 
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Each scene graph is in fact a collection of nodes in a graph structure connected together 

via child-parent relationship. A node is an object that can be part of or entirely comprise a 

scene graph. Each node is a collection of one or more fields (values) and methods that 

together perform a specific function. Each node encapsulates the semantics of what is to 

be drawn. A method applied to a parent node will affect all its child nodes. In order to 

build a larger scene graph, smaller scene subgraphs can be created separately and 

attached together via links to the highest level node called the root node [1, 6]. A link 

connecting two separate nodes describes the relationships that exist between them in a 

meaningful way. The nodes are ideally arranged in a hierarchical manner that 

corresponds spatially and semantically to the modeled scene [14]. 

 

Figure 4.4 shows a sample scene graph. In this Figure, the node Jobsite is the root 

node. Scene subgraphs are created and attached to the root node to complete the scene 

structure by encapsulating the entire jobsite. In Figure 4.4, scene subgraphs Dozer, 

Truck, and Terrain are all children of the root node. Nodes Dozer and Truck have 

also their own children nodes connected to them at the lowest level of the hierarchy. 

These lowest level nodes contain the geometrical description of the individual 

components of their parent nodes.  

 
Figure 4.4 – A Sample Scene Graph Hierarchy 
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By definition, Dozer and Truck nodes that group together a number of geometrical 

nodes are called group nodes. The low level nodes containing the geometrical description 

of the components are called leaf nodes. A single CAD file can be assigned to each leaf 

node which contains the geometric shape, properties, and dimensions of the node. The 

traditional scene graph as shown in Figure 4.4 has been previously used by researchers to 

create Virtual Reality (VR) based animations [1]. Although this type of scene graph 

correctly represents the graphical contents of an imaginary construction jobsite, there is 

still no indication of the real world and the observer of the scene as part of the real world 

for that matter. Since this research was focused on augmented reality visualization, a new 

hierarchical representation of the animated scene had to be conceptualized and developed 

in order to encapsulate both groups of real and virtual objects in one scene graph. As 

described in Chapter 3, in a mobile AR visualization system, the augmented graphics 

have to be precisely registered and displayed in accurate positions relative to the 

observer’s eyes. As a result, the developed AR-based scene graph must be able to store, 

retrieve, and display graphical data from a viewpoint that represents the observer’s eyes. 

Since the observer can constantly change position and/or head orientation in the 

animation, this viewpoint has to change accordingly which will cause the entire animated 

contents of the scene to change. In order to consider the latest changes in the observer’s 

global position and head orientation angles, a mobile root node is used in the adopted 

AR-based scene graph in this research. The designed AR-based scene graph is shown in 

Figure 4.5 in which the same imaginary jobsite is represented in the presence of the real 

world. The root node in the scene graph shown in this Figure represents a moving 

viewpoint connected to the observer’s eyes and moves as the observer changes position 

and/or head orientation in the augmented animation. 
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Figure 4.5 – The Structure of the Developed AR-based Scene Graph 

 

In this Figure, a new video node is also a part of the scene graph. This node is not a 

regular node in the AR-based scene graph as it does not store any geometrical data to 

represent a single CAD model or a group of CAD objects. Instead, it is capable of storing 

and displaying the latest video texture captured by the video camera in the background. 

The AR application combines this texture data with the original virtual world data 

through the wrapper node to construct the augmented representation of the scene. 

 

As described earlier, there is a major factor that distinguishes the two scene graphs 

presented in Figures 4.4 and 4.5. In a purely VR-based scene graph (Figure 4.4), the root 

node has a fixed position and orientation in the scene and the CAD objects connected to 

this node through the scene graph only change position and orientation when they move 

or rotate. However, in an AR-based scene graph (Figure 4.5), the root node itself moves 
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and/or rotates as a change occurs in the user’s position and head orientation. While CAD 

objects may change their position and orientation due to them being individually 

manipulated in the scene, any change in user’s position and orientation will affect the 

entire scene graph and updates the augmented view immediately [15]. 

 

There are two coordinate systems involved in creating a scene graph: world (global) 

coordinate system, and object (local) coordinate system. Since the position of the root 

node in the scene graph presented in Figure 4.4 is always fixed, objects can be placed at a 

relative distance from the root assuming the root coordinates to always be the origin of 

the global coordinate system during the animation. However, in the AR-based scene 

graph shown in Figure 4.5, the position and orientation of the root node can potentially 

change over time due to any user’s movement in the augmented scene. As a result, the 

global position of the root node (i.e. the user) has to be acquired in every frame using 

accurate tracking devices and the entire scene has to be reconstructed based on the new 

positional and orientation values of the root node [15].  

 

As described in Chapter 3, these values are mainly obtained from the tracking devices 

connected to the mobile user such as Global Positioning System (GPS) receivers, Three 

Degree-of-Freedom (3DOF) head orientation trackers, and motion sensors [16, 17]. The 

author has previously developed a reusable framework for real time communication with 

standard GPS devices and head orientation trackers [18]. The term standard device, in the 

context of this dissertation, is defined as a tracking device which complies with a certain 

data transmission protocol. For example, the framework developed in this research is 

capable of establishing real time communication with every type of GPS receivers as 

long as it outputs data streams (containing longitude, latitude, and altitude) following the 

National Marine Electronics Association (NMEA) standard [19]. In addition, and as 

described earlier in Chapter 3, the developed framework can communicate with a wide 

range of head orientation tracking devices that send binary data packets containing the 

3D head orientation angles (i.e. yaw, pitch, and roll angles). 
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The AR scene is created by appropriately placing individual CAD objects each of which 

defined by a geometrical model. Each geometrical model is created in its own local 

coordinate frame, stored as a leaf node in the AR-based scene graph, and placed at an 

appropriate position and orientation inside the coordinate frame of its parent node. This is 

accomplished using transformation nodes. As shown in Figure 4.6, transformation nodes 

allow scene graph developers to manipulate the location (translation), orientation 

(rotation), and size (scale) of different nodes. They are basically group type nodes that 

translate the local coordinates of their child nodes into the coordinates of their parent 

nodes [1,14].  

Figure 4.6 – Transformation Matrices Connected to a Scene Graph Node 

 

Transformation nodes are an implicit part of the scene graph. For example, in Figures 4.4 

and 4.5, each of the group nodes Truck, Dozer, and Terrain has an implicit 

transformation node in order to be able to be placed and oriented at desired positions 

relative to the node Jobsite. Moreover, the node Jobsite in Figure 4.5 has an 

implicit transformation node so it can be positioned and oriented relative to the mobile 
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user at each instant of time. The overall transformation of a single CAD object relative to 

the root node is obtained by multiplying the individual matrices of Figure 4.6 as follows: 
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The transformation data of the scene (model) relative to the root node (world) is stored in 

a special matrix called model view matrix. In an AR-based scene graph, as shown in 

Figure 4.5, the root node always represents the user’s eyes. Hence, there is a one to one 

correspondence between the user’s eyes and the origin of the animated scene. As a result, 

the identity matrix is often used as the initial model view matrix. In order to draw a scene 

graph, its nodes are traversed downward starting from the root node and the following 

operations are performed for each link out of the root node: 

• The current model view matrix is saved by pushing it onto the matrix 

stack. 

• The model view matrix on the right is multiplied by the transformation 

matrix associated with the link. 

• The drawing procedure is called recursively, pretending that the endpoint 

of the link is the root. 

• The original model view matrix is restored by popping it from the matrix 

stack. 

 

From the visualization point of view, the main difference between traditional VR-based 

and modified AR-based scene graphs is the mechanism through which different views of 

the scene are displayed to the observer (i.e. the user). In a purely VR environment, this is 

done by changing viewpoints which are basically a set of hidden cameras in the scene. 

The user can switch between cameras in order to view the scene from different 

perspectives. Cameras are not part of the scene graph and hence do not have a nodal 

representation. They are external mechanisms for visualizing the encapsulated data in the 

scene graph. In contrast, in an AR-based scene graph the term viewpoint has a completely 
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different definition. The scene is viewed by mobile users as they walk in the animation. 

As such, there is only one moving viewpoint attached to a user’s eyes. This means the 

only viewpoint in an AR animation which involves a mobile root node is a Six Degree-

of-Freedom (6DOF) viewpoint attached to the scene observer’s eyes. Users can change 

their global position (i.e. longitude, latitude, and altitude) while simultaneously rotating 

their head in 3D global space (i.e. yaw, pitch, and roll angles) [16]. As shown in Figure 

4.5, this single viewpoint has a nodal representation and in fact, serves as the root of the 

scene graph. 

 

4.5. Animating and Updating the Augmented Scene 
Graph 

 

Animating a scene graph is achieved by manipulating the values of the transformation 

nodes. Position, orientation, and scale of each component in the scene can be manipulated 

relative to its parent node. Updating these values at each frame leads to a dynamically 

changing scene. Since this is done continuously over time, a smooth animation is 

displayed to and viewed by the user. Figures 4.7 and 4.8 show how a virtual CAD model 

of a dozer (previously introduced in Figure 4.5) can be manipulated inside the perspective 

viewing frustum. As described earlier, the relative position of the dozer can be changed 

due to two main reasons: 

1) Dozer moves in the scene from one point to another, or 

2) User’s global position changes and new GPS data is captured by the 

application. 

 

Figure 4.7 shows the situation in which the user is looking at the augmented scene from a 

fixed position and the CAD model of the virtual dozer changes its position. In fact, this 

situation simplifies the AR-based scene graph and makes it very similar to the traditional 

VR-based scene graph of Figure 4.4 in which the root node is fixed in the global space. 

As the dozer moves 5 meters along the positive X axis, its global coordinates change as 

well. Knowing the global position of the user in terms of longitude, latitude, and altitude 
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(coming through the GPS device), the relative distance between the user and the dozer is 

calculated at each frame using the Modified Transformation Method (MTM) described in 

Chapter 3. The values of the dozer transformation node are updated based on the 

calculated relative distance and the position of the dozer is modified accordingly inside 

the user’s viewing frustum. As a result, the user views a moving dozer inside the 

augmented viewing frustum. 
 

 

 
Figure 4.7 – Animating a Moving CAD Object in an AR Scene with a Fixed User 

 

As shown in Figure 4.7 and recalling the transformation matrices assigned to each CAD 

object from Figure 4.6, the dozer’s movement along the X axis from point A to point B 

will directly affect the translation component of its transformation matrix. In this Figure, 
user

dozerT  denotes the transformation matrix of the dozer CAD model inside the local 
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coordinate frame of the user. In another situation shown in Figure 4.8, the CAD model of 

the virtual dozer is fixed and the user changes position over time.  

 

 

 
Figure 4.8 – Animating a Fixed CAD Object in an AR Scene with a Moving User 

 

As the user moves 5 meters to the left, global coordinates are continuously acquired from 

the GPS device. Again, knowing the global coordinates of the CAD object, the relative 

distance between the user and the dozer is calculated at each frame using the MTM 

described in Chapter 3. Consequently, the transformation values of the dozer node are 

updated based on the calculated relative distance and the position of the dozer is modified 

accordingly inside the user’s viewing frustum. As a result, the user movement to the left 

is interpreted as a translation of the dozer to the right. This is essentially equivalent to the 

case in which the user is fixed and the dozer moves to the right inside the viewing 



 114

frustum. As shown in Figure 4.8 and recalling the transformation matrices assigned to 

each CAD object from Figure 4.6, user’s movement along the negative X axis from point 

A to point B by 5 meters will change the translation component of the transformation 

matrix assigned to the dozer CAD model along positive X axis by 5 meters. In this 

Figure, user
dozerT  denotes the transformation matrix of the dozer CAD model inside the local 

coordinate frame of the user.  

 

A very similar procedure is applied to the case in which the user’s head orientation 

changes. Figure 4.9 shows an augmented viewing frustum in which a CAD model of a 

virtual truck is displayed to the user. As shown in this Figure and recalling the 

transformation matrices introduced in Figure 4.6, the initial orientation of the CAD object 

relative to the user’s direction of look can be expressed in form of the identity 

matrix user
truckT . 

 

 
Figure 4.9 – Initial Orientation Configuration of a CAD Object 

 

As shown in Figure 4.10, if the user’s head rotates upward by 30°, the head orientation 

tracker determines a change in the pitch angle and the new pitch angle is sent to the AR 

application. Recalling Figure 4.5, since the user’s eyes are at the root node of the 

augmented scene graph, the entire scene will be rotated 30° which results in a disoriented 

scene. 
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Figure 4.10 – Incorrectly Oriented Augmented Scene due to User’s Head Rotation 

 

This leads to a distorted and unacceptable visual output especially due to the fact that 

although the user’s view of the real world (which is captured by the video camera) has 

been completely changed, the virtual contents of the scene have remained exactly the 

same. To fix this problem, the user
truckT  transformation matrix needs to be updated. This is 

shown in Figure 4.11 in which the orientation of the virtual truck is modified by -30°. 

The new transformation matrix will be used immediately at the next scene graph traversal 

(i.e. next animation frame) to update the position and orientation of the CAD object 

inside the user’s viewing frustum. The same steps are necessary in case the user’s head 

orientation changes about the other two major axis (i.e. roll and yaw angles).  

 

 
Figure 4.11 – Correctly Oriented Augmented Scene due to User’s Head Rotation 
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The values of a transformation node can be manipulated as a result of simultaneous user 

and CAD object movements (i.e. change in position and orientation). In this case, each 

movement is handled separately using the procedures described above and the resulting 

values are combined to produce the final animated scene graph. In order to achieve a 

realistic animation, every CAD object has to move smoothly between two points rather 

than jump from one point to another. This is achieved by updating the viewing frame 

continuously at high refresh rates. 

 

The construction of an augmented scene starts with extending the hierarchical structure of 

the corresponding AR-based scene graph by sequentially uploading and placing virtual 

CAD objects in the augmented view. Figure 4.12 shows how the structure of an AR-

based scene graph is related to the actual contents of the augmented scene. Since leaf 

nodes contain geometry information, for every class of CAD objects, one leaf node has to 

be created. One or more CAD objects can then share the same leaf node if they have the 

same geometry. The scene graph of Figure 4.12 starts to take real shape as the node 

RedTruck is added to the scene graph and linked to its corresponding geometry through 

the leaf node Truck. In order to place the red concrete truck in the scene, the 

RedTruck transformation node is added to the parent node called Jobsite. The same 

procedure is applied to the scene graph again to create a new leaf node (i.e. Form), add 

an object conforming to this geometry (i.e. WoodenForm), and finally add the 

transformation node of the object to the parent node Jobsite. The last virtual object to 

be placed in the scene is a concrete bucket. Again, a geometry node (i.e. Bucket) is 

added to the scene graph. An object node (i.e. OrangeBucket) is added to the scene 

graph, and connected to the to the Jobsite node through a transformation node. In 

addition, note that the node Jobsite itself is a grandchild of the root node. 
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Figure 4.12 – Relation between the Scene Graph and the Augmented Scene 

 

Scene graphs internally calculate and use bounding volume of each leaf node to 

determine which CAD objects are visible to the viewer [14]. A bounding volume is an 



 118

imaginary simple 3D primitive (e.g. box, sphere) around a more complex 3D object [20]. 

Bounding volumes are calculated from the leaf nodes upwards to the root node. 

Following this process, the bounding volume of a parent node in a scene graph is 

obtained by merging the individual bounding volumes of its immediate child nodes. 

Having calculated and stored all the bounding volumes in a scene graph, the graphics 

pipeline can then determine which CAD objects or groups of CAD objects are partially or 

completely outside the viewing frustum of the user and hence have to be culled. The 

bounding volume of a particular node encapsulates all the geometries described by all 

nodes that descend from it. As a result, if this bounding volume is outside the viewing 

frustum the entire subgraph is disregarded (culled) from the rendering stage. In scene 

graph terminology this is often referred to as pruning [14]. 

 

4.6. Geometric Instancing 
 

Geometric instancing in the context of this dissertation is defined as the ability of the 

visualization engine to construct complex scenes potentially consisting of a large number 

of CAD objects from a limited number of virtual models and to maintain performance 

levels as the size of the operation increases [1]. The common problem arising in almost 

every large scale visualization system is the amount of data that must be loaded and 

rendered at each frame. As the size and complexity of the animated environment 

increases, slow rendering speed becomes the bottleneck for real time user interaction with 

the scene even if fast CPUs and powerful graphic accelerator cards are used [2,3]. 

 

Scene graphs support geometric instancing when constructing the graphical contents of 

an augmented scene. The application of scene graphs allow the modeler to conveniently 

create all CAD objects in the scene that use the same geometrical representation by 

making instances of a single CAD file associated with a class of objects. As a result, the 

CAD file needs to be loaded only once by the application which saves a lot of memory 

and running time and speeds up the process of scene rendering. Figure 4.13 shows the 

AR-based scene graph of a scene in which three identical dump trucks are placed in the 

augmented view. 
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Figure 4.13 – Using Geometric Instancing in the AR-Based Scene Graph 

 

Although there are four CAD objects present in the scene (i.e. one backhoe and three 

dump trucks), only two distinct CAD models need to be loaded (i.e. one for truck 

geometry and one for excavator geometry). In theory, an infinite number of identical 

dump trucks can be created and placed in the scene using the same geometrical 

representation of the truck already introduced to the scene graph as a leaf node. 

 

Using geometric instancing, even more complex scenes such as an entire steel frame 

structure consisting of hundreds of beams and columns can be depicted by loading only a 

few CAD models of steel sections, and placing them repeatedly at appropriate locations 

using multiple transformation nodes. This is due to the capability of the transformation 

nodes to position, rotate, and scale the same geometry. Figure 4.14 shows how the scene 

graph of a complex augmented scene is constructed and populated from a limited number 

of CAD models. 
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Figure 4.14 – Creating Large Number of Elements from a Few CAD Models 

 

4.7. Summary and Conclusions 
 

Developing and implementing effective CAD object management methods is a crucial 

step in order to create realistic visual output in AR animations of simulated processes. 

Virtual objects should be designed and displayed as independent entities (similar to real 

objects) in an AR scene so that their position, orientation, and size can be easily 

manipulated during the course of the animation. This is essential in creating the illusion 

that both groups of objects (real and virtual) coexist in a single scene and operate in a 

seamless manner. The high variability involved in a simulated process as dynamic as a 

construction operation requires the graphical engine of the AR application to create, load, 

and handle a large amount of 3D objects in each animation frame. As the size of the 

operation increases, CAD object manipulation becomes a memory intensive task that can 
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easily reduce the animation speed and the ability to interact with the animated process in 

real time. 

 

Establishing a hierarchical database of all CAD objects operating in an augmented scene 

is a promising approach to optimize the process of manipulation of the virtual contents of 

an AR animation. Scene graphs have proven to be effective means in organizing such 

databases and are widely supported by several industrial standards and commercial 

graphical libraries [3,4,21]. Updating and maintaining the graphical content of a scene 

graph, however, requires the development of algorithms and methods specific to the 

platform on which the AR application is based. Such algorithms must be designed taking 

several parameters into consideration.  

 

One such important parameter is geometric instancing which is defined in this 

dissertation as the ability of the visualization engine to construct complex scenes 

potentially consisting of a large number of CAD objects from a limited number of virtual 

models while maintaining performance levels. This is extremely important since most of 

the time, graphical hardware and CPU processing speed are the primary bottlenecks in 

creating and displaying animations at acceptable frame rates. Hence, an efficient 

approach is to create a complex scene consisting of a large number of virtual objects from 

as few individual CAD models as possible. Again, scene graphs are very effective tools 

to achieve this goal since all CAD objects in the scene that use the same geometrical 

representation can be conveniently created by creating instances of a single CAD file 

associated with a class of objects. As a result, the CAD file needs to be loaded only once 

by the application which saves a lot of memory and running time and speeds up the 

process of scene rendering. 
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Chapter 5 
 

Real Time Visual Occlusion Handling in an 
Augmented Reality Animated Scene 

 

 

5.1. Introduction 
 

The application of Augmented Reality (AR) in animating simulated construction 

operations has great potential in reducing the Model Engineering and data collection 

tasks, and at the same time can lead to more visually convincing output. As a tradeoff, 

however, the animation has to be capable of handling two distinct groups of objects: 

virtual and real. This is very essential in AR as the observer of the animation expects to 

see a mixed scene of seamlessly merged real and virtual objects in which both groups of 

objects operate and interact in a realistic manner. This introduces a number of challenges 

unique to creating AR animations. One of these challenges is interaction between objects. 

In a dynamic AR environment, interaction can be grouped into two main categories: 

visual and spatial. 

 

Visual interaction between real and virtual objects is the result of reflection, absorption, 

and redirection of light emitted from and incident on the objects. Such effects include 

shadows, reflections, refraction, color bleeding, and occlusion. Spatial interaction 

between real and virtual objects include kinematic constraints, collision, response to 

external forces (e.g. deflection, bending). Kinematic interaction involves constraints or 

effects created by the motion of one object (real or virtual) on the position and orientation 
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of another object. In collision detection, a number of calculations are performed to 

determine when and where an object strikes another, thus preventing them from 

occupying the same physical space. The most complex type of interaction, however, 

occurs when there is an exchange of force and momentum between real and virtual 

objects. It is important to realize that most interactions are currently one-way (i.e. real 

objects can affect virtual objects, but virtual objects cannot typically affect real ones) [1]. 

 

The primary focus of this Chapter is to address the problem of visual occlusion between 

real and virtual objects in an augmented scene. Incorrect occlusion effect occurs when a 

real object blocks the observer’s view of a virtual object. In a dynamic scene such as a 

construction operation, incorrect occlusion effect can occur very frequently and 

unexpectedly because the real and virtual resources and personnel can move freely with 

no constraints. Figure 5.1 shows a snapshot of an AR animation in which a virtual CAD 

model of an excavator is superimposed on the real scenes of the jobsite. In this Figure, 

two real objects (i.e. light pole, and the real excavator) are closer to the viewpoint and 

hence must partially block the virtual excavator at two spots (i.e. stick and shovel). 

However, the observer of the scene sees the snapshot in Figure 5.1(a) as opposed to the 

visually correct view shown in Figure 5.1(b) since occlusion cannot be automatically 

handled and corrected unless appropriate methods are designed and integrated into the 

AR application. 

 

 
(a)                                                                              (b)  

Figure 5.1 – Example of Occlusion in an AR Scene 
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The fact that in all traditional AR applications, the real world is captured and displayed in 

the background while all virtual CAD objects are displayed on the foreground causes the 

final animation to be unable to show the correct occlusion effect since the two groups of 

objects are completely separate. As a result, automated real time occlusion handling 

becomes a critical step in animating dynamic simulation models in AR. 

 

The properties of the AR display system (Subsection 3.4.2) influence the approach to 

correctly handling occlusion [2]. As shown in Table 5.1, in screen-based or projection-

based environments such as the Cave Automatic Virtual Environment (CAVE) (which 

represent a purely virtual immersive environment), handling occlusion of virtual objects 

by real objects is relatively simple and straightforward since real objects are always 

between the display surface and the observer’s eyes and therefore always occlude virtual 

objects. However, virtual objects cannot occlude real objects since virtual graphics are 

always shown on the background screens while all real objects are located between the 

observer and the virtual background. When using a Head Mounted Display (HMD) to 

observe the augmented scene (e.g. in this research), the display surface is always between 

the observer’s eyes and real objects, and the virtual objects occlude real objects by 

default. As a result, additional steps are required to handle cases in which real objects 

must occlude virtual CAD objects. 
 

Table 5.1 – Mechanisms for Handling Occlusion in Different Display Systems [1] 

Display System Virtual 
Occluding Real 

Real              
Occluding Virtual 

Screen-based or Back-projection 
(CAVE) 

Impossible Inherent 

Semi-transparent HMD Inherent 
Semi-visible 

Software solvable 

Video see-through HMD Inherent Software solvable 
 

In the presented research, depth and frame buffer manipulation techniques were used to 

develop a new automated approach for handling occlusion correctly. The presented 

approach is unique since it can be easily integrated into a mobile AR platform (such as 

UM-AR-GPS-ROVER previously introduced in Chapter 3) which allows the observer of 
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the AR animation to walk freely in the scene looking at the ongoing operations from 

different positions. The presented method is capable of automatically resolving occlusion 

effects in real time to produce a visually convincing final output.  

 

5.2. Prior Work in Occlusion Handling 
 

Several researchers have demonstrated algorithms and methods to correctly handle 

occlusion effects in AR. For example, Fortin and Hebert [3] investigated a model-based 

and a depth-based approach. While the former is only suited for a static viewpoint and 

relies on a tracked bounding volume model within which the object’s silhouette is carved, 

the latter makes it possible to change the viewpoint by exploiting a handheld stereo 

camera. There are some limitations to the depth-based approach mainly due to the 

performances of local stereo algorithms. If the texture of the object is too uniform, the 

dense stereo correspondence may not be possible or at least unreliable. In doubtful cases, 

such correspondences will be trimmed by filtering, leaving holes in the disparity map 

which can result in missing 3D information for some areas of the real objects. 

 

In another research, Breen et al. [1] presented techniques for interactively performing 

occlusion and collision detection between static real objects and dynamic virtual objects 

in AR. They used computer vision algorithms to acquire data that model aspects of the 

real world in form of geometric models and depth maps. Lepetit and Berger [4] 

introduced a semi-automatic approach to resolve occlusion in AR systems. Using their 

approach, once the occluding objects have been segmented by hand in selected views 

called key frames, the occluding boundary is computed automatically in the intermediate 

views. In order to do that, the 3D reconstruction of the occluding boundary is achieved 

from the outlined silhouettes.  

 

Fischer et al. [5] presented an algorithm based on a graphical model of static backgrounds 

in the natural surroundings, which has to be acquired beforehand. This algorithm is 

unable to deliver actual depth information for the scene. As a result, the main assumption 

was that whenever a real occluder is detected in front of the background, it is in front of 
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all virtual objects. Hence, their method is primarily suitable for interaction with the AR 

scenes using hands or pointing devices, which can mostly be assumed to be closer to the 

user than virtual objects. 

 

Feng et al. [6] designed an optical-based algorithm to realize multilayer occlusion in 

indoor areas with objects only a few meters away from the viewer. The result of their 

work, however, caused unstable scenes as the process of object extraction was very 

sensitive to the change of ambient light illumination of the environment. Wloka and 

Anderson [7] presented a video see-through AR system capable of resolving occlusion 

between real and computer generated objects. The heart of their system was an algorithm 

that assigns depth values to each pixel in a pair of stereo video images in near real time. 

However, the use of stereo cameras caused their method to have difficulties in computing 

the depth for featureless (evenly lit, non-textured, and horizontal) rectangular image 

areas. 

 

Figure 5.2 shows sample snapshots of previous work in occlusion handling in AR as 

presented in [1,3,4]. 

 

Figure 5.2 – Previous Work in Occlusion Handling in AR [1,3,4] 

 

5.3. Main Contributions 
 

Most work conducted in occlusion handling thus far, does not take into account the 

dynamics of the real world in which an AR animation takes place. While some of them 

use simplifying assumptions about the position of the real objects and the viewpoint from 
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which the scene is observed, several others use techniques that are most suitable for 

indoor controlled environments. For example, while the application of stereo cameras is 

an attractive option for real world depth acquisition, the result is largely dependent on the 

nature of the objects, their physical characteristics and appearance, and distances they are 

located from the observer of the scene. 

 

Producing correct occlusion effects in real time in an outdoor unprepared environment 

such as a construction site was the main motivation for developing an automated 

occlusion handling method in this research. The attained results had to be convincing 

enough to the observer of the scene. At the same time, no additional constraints over the 

user’s maneuvering ability as well as position and orientation of both groups of real and 

virtual groups of objects could be created in the AR application. In addition, the required 

hardware components had to be selected in a way that they do not limit the mobility of 

the AR platform due to factors such as heavy weight, dependence on ground power 

source, special care and maintenance, and user ergonomics. 

 

Considering all these parameters, the final decision was made to develop a depth-based 

occlusion handling algorithm that would use real world depth map input coming through 

a remote sensing device such as a Laser Detection and Ranging (LADAR) camera 

connected alongside the video camera mounted on the observer of the scene. As 

discussed later in this Chapter, the main advantages of flash LADAR devices are their 

light weight, high data resolution, and ability to extract depth data in almost any 

environment type including outdoor construction sites. The limitations are constant noise 

in the incoming data, and limited operational range (on average less than 10 meters). 

However, the occlusion handling method introduced in the presented research has been 

designed as generic as possible so that future products with higher levels of accuracy and 

wider operational range can be easily plugged and used in the AR platform without any 

modifications or changes necessary to the core algorithms. 

 

Thus, the main contribution of the research presented in this Chapter is a general 

purpose occlusion handling algorithm integrated into the core AR platform capable of 
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detecting and correctly resolving occlusion effects in real time. This method requires no 

additional constraints over the position of real and virtual objects in the augmented scene 

and the user can also move freely inside the animation in real time. 

 

5.4. Level of Detail in Depth Acquisition 
 

As described earlier, obtaining depth values for real and virtual objects is the most 

important step in correctly handling occlusion effects in AR. An intuitive approach to 

calculate the depth of a virtual CAD object in the scene is to extract its position in the Z 

direction (positive direction pointing straight at the user) from the corresponding 

translation matrix of its scene graph node (Chapter 4) since the transformation matrices 

(translation, rotation, and scale) always maintain the latest geometric state (position, 

orientation, and scale) of an object. In fact, the graphical engine of the AR application 

(implemented in OpenGL) automatically keeps track of the depth of CAD objects relative 

to the viewpoint (user’s eyes) and this depth value can be retrieved at any time using 

techniques that will be described later in this Section. The depth values for real objects, 

however, have to be acquired and recorded using more complex methods as they are not 

interpretably modeled in the computer. In other words, since the incoming video stream 

of the real world is captured by and displayed in a monoscopic visual system in this 

research, the computer’s knowledge of a real scene is limited to the plain video captured 

by the video camera without any depth information.  

 

The level of detail according to which the depth of real and virtual objects is determined 

depends on the characteristics of the environment the operation takes place in and also 

the nature of the objects in the scene. For a scene consisting of only a few simple 

geometrical primitives, measuring the depth values at the object level seems to provide 

satisfactory results. Based on this approach, the depth of an object is represented by the 

distance between the user’s eyes and a single (or a few points) on that object. Selecting 

the most appropriate point on each object so that the depth is calculated as accurate as 

possible is a major challenge in this approach. Under some conditions, such as that shown 

in Figure 5.3, however, finding such a point becomes impossible and as a result, more 
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than one point has to be picked for depth calculations. In this Figure, a steel erection 

operation using a virtual tower crane to construct a virtual service building (i.e. Building 

B) in front of a real residential building (i.e. Building A) is shown. Following the object 

level of detail approach described above and based on the location from which the user is 

observing the scene, there are two possible positions to pick depth representative points 

on building A (i.e. points x and y). In addition, point z can be selected to determine the 

depth of the virtual building. 

 

 
Figure 5.3 – Example of an Impossible Object Level of Detail Depth Calculation 

 

Due to the way the scene is set up, choosing only one point on the real building (either 

point x or point y) is not enough for correct depth calculations. Having selected point x as 

the depth representative point for the real building A, since this point is closer to the user 

compared to point z (depth representative point for the virtual building), building A has 

to completely block building B in user’s view of the augmented scene. If point y is 

selected to represent the depth of the real building, the virtual building will completely 

block the user’s view of the real building as point z is closer to the user’s eyes compared 
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to point y.  As shown in Figure 5.4, none of these two cases are visually correct and 

convincing enough to the user of the augmented scene. 
 

 

 
Figure 5.4 – Incorrect Occlusion Effects Using Object Level of Detail 
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For the specific case of Figure 5.3, simultaneous selection of point x and point y on the 

real building A will correctly resolve the occlusion effect. In fact, the geometry of 

building A has to be divided into two separate parts and the depth of each part has to be 

independently compared with the depth of building B in order to create a correct 

occlusion effect as shown in Figure 5.5. 

 
Figure 5.5 – Correct Occlusion Effect Using Multiple Depth Representative Points 

 

In this Figure, parts of the real building (represented by point y in Figure 5.3) are blocked 

by the virtual building while the remaining part (represented by point x in Figure 5.3) is 

not occluded in the augmented view of the scene. Table 5.2 shows how the selection of 

different depth representative points will affect the final augmented view in terms of 

convincing occlusion effects. This example shows that objects operating in a dynamic 

environment such as a construction site can form a variety of scene setups. As a result, 

the process of point selection on all such objects becomes a significantly time consuming 

task. Even if all such points are selected before the animation starts, there is no guarantee 

that the selected points can best represent the real scene and avoid further confusion in 

the depth calculation stage in cases such as that shown in Figure 5.4. 
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Table 5.2 – Effect of Depth Representative Point Selection on Occlusion 

 Real Building A Virtual Building B 

x y z 
Occlusion 

Effect 

   N/A 

●  ● Incorrect 

 ● ● Incorrect 
Po

in
ts

 S
el

ec
te

d 

● ● ● Correct 
 

Another intuitive approach in resolving occlusion is to acquire and manipulate depth 

values at the polygon level of detail. Based on this approach, objects (real and virtual) are 

separated into smaller polygons. Rasterization algorithms are then applied to each pair of 

polygons to decide which has a lesser depth value and hence has to block the other. 

However, there are several cases in which it is impossible to make an accurate 

determination on which polygon is closer to the viewpoint. Figure 5.6 shows a scenario in 

which three polygons are to be placed in an animated scene. As shown in this Figure, 

polygon A is closer to the viewpoint compared to polygon B, and polygon B is closer 

than polygon C. Based on these two observations, a default conclusion is that polygon A 

has to be closer to the viewpoint than both polygons B and C, which is clearly not the 

case as shown in Figure 5.6. 

 
Figure 5.6 – Impossible Occlusion Handling Case Using Polygon Level of Detail 

 

In order to take into account all such uncertainties in the way the real world is set up, and 

avoid any unexpected depth miscalculation and paradox, a pixel level of detail was 
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finally selected in this research. The depth acquisition and color manipulation algorithm 

designed in this research is shown in Figure 5.7.  

 
Figure 5.7 – Designed Depth Acquisition and Color Manipulation Algorithm 

 

As shown in Figure 5.7, after the depth values for all real and virtual objects are obtained, 

the last step is to make a comparison at the pixel level to decide which object is closer to 

the user’s eyes and hence has to be painted last. Following this approach, for a specific 

pixel on the screen, if the value of the real world depth is less than that of the virtual 

world, a real object is occluding a virtual object. Further steps have to be then taken in 

order to update the color scheme of that pixel so it is not painted in the color of the virtual 

object. These steps will be discussed in more detail in the next Section. 

 

Figure 5.8 shows the graphical representation of the developed depth acquisition method 

for real and virtual objects.  
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Figure 5.8 – Capturing the Depth of Real and Virtual Objects 

 

The specific pixel on the screen as shown in Figure 5.8 represents portions of a real tree 

and a virtual CAD model of an excavator. The depth of this pixel in the real world is 

captured using methods that will be described later in this Section. The depth value for 

the same pixel in virtual world can be obtained using transformation matrices and 

geometric properties of the CAD model represented by the pixel. 

 

Figure 5.9 illustrates the result of depth comparison performed at pixel level to determine 

whether or not the CAD object is occluded in the augmented view.  
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Figure 5.9 – Final AR Screen with Correct Occlusion Effect 

 

The depth acquisition and color manipulation process depicted in Figures 5.7 through 5.9 

has to be executed continuously by capturing the latest real and virtual depth values for 

all the pixels on the screen. Depth values of the real world can change if the viewpoint is 

moved (i.e. user changes position and/or head orientation) or there is a change in the 

contents of the real scene. Depth values of the virtual world can also change if CAD 

objects move in the scene. By constantly comparing these two sets of values, the depth 

effect can be included and represented in the augmented world to correctly resolve 

occlusion effects. 
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5.5. Depth Sensing Hardware Selection 
 

Producing correct occlusion effects in real time in an outdoor unprepared environment 

such as a construction site was a main design consideration in developing the automated 

occlusion handling method in this research. As described in Chapter 4, the author has 

successfully designed and implemented a mobile computing apparatus equipped with 

components necessary to perform a walk-through AR animation in real time [8]. As 

shown in Figure 5.10, the apparatus takes advantage of real time positioning data coming 

through the Global Positioning System (GPS) receiver as well as 3D head orientation 

data supplied by the head orientation tracker device (inside the hard hat) to position the 

user inside the AR animation. 

 

 
Figure 5.10 – Profile of a User Equipped with Mobile Computing Apparatus 

 

In the mobile computing apparatus shown in Figure 5.10, the main computing task is 

performed by a laptop computer secured inside the backpack. While the real scene is 

captured by a video camera in front of the user’s eyes, the rendered graphical scene is 
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displayed to the user through the HMD installed in front of the hard hat. At the same 

time, the user can interact with the system using a miniature keyboard and a touchpad. 

While the resulting AR animation has to be convincing enough to the observer of the 

scene, no additional constraint over the user’s maneuvering ability as well as position and 

orientation of both groups of real and virtual objects has to be imposed by the AR 

application. In addition, the required depth sensing hardware components to perform the 

task of occlusion handling have to be selected in a way that they do not limit the mobility 

of the AR platform due to factors such as heavy weight, dependence on ground power 

source, special care and maintenance, and user ergonomics. 

 

As noted earlier, depth acquisition at pixel level of detail has the advantage that the scene 

can be arbitrarily complex, while the processing time remains a constant time function of 

image resolution. Additionally, no geometric model of the real environment is needed 

during the animation. However, the depth map is dependent on the user’s position and 

head orientation, as well as the location of real objects in the scene. Once the user or the 

real objects change their position and/or orientation, the depth map becomes invalid [1]. 

 

In order to take into account all such variations, the process of depth acquisition and 

comparison has to be done in real time. As a result, developing methods to sense and 

prototype objects of the real world was a significant step in this research. The hardware 

component required to perform depth acquisition had to be selected in a way that it could 

be easily integrated into any existing mobile AR platform. Hence, being lightweight and 

self-powered, having a convenient interface, and supporting an acceptable pixel 

resolution were among the important factors in selecting the hardware component. There 

was certainly a tradeoff between equipment mobility and data resolution. The heavier the 

camera is, the more data sample points it can collect and the resulting image is more 

accurate. This directly translates into more processing time which was not desirable for 

the purpose of this research as all calculations had to be performed in real time. Lighter 

cameras, although providing lower resolution depth images, can operate at a faster 

processing speed and hence were better fits for the AR platform of this research. 
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Several options were studied including high resolution cameras such as 3DLS (7 to 8 kg), 

Konica Vivid 9i (15 kg), I-Site 4400 LR (14 kg), FARO LS 420 (14.5 kg), and Leica 

HDS 3000 (17 kg). Although all these cameras provide full range data (wide horizontal 

and vertical scanning angles) they cannot be mounted on mobile platforms mainly due to 

their weight and dependence on external power sources. In addition, according to most 

manufacturers, fixed tripods have to be used as mounting bases in order to achieve best 

performance. Another category of imaging cameras is light weight cameras such as flash 

LADAR devices that are typically suitable for low range applications. As discussed in 

Section 5.3, this category of cameras was finally selected for this research to perform real 

world depth acquisition as it is a promising technology providing robust and accurate 

access to depth data of the real objects, and has already proven to provide satisfactory 

results in geometric modeling of construction sites for automation and robotics 

applications [9,10,11]. Table 5.3 shows some details of three such cameras that are most 

used in relevant research projects. 

 

Table 5.3 – Manufacturer’s Properties of Different Flash LADAR Devices 

Dimension (cm) Pixel 
Resolution

Field of 
View (°) Model 

X y z H V H V 

Frame 
Rate 

Range 
(m) 

CSEM 
SR3000 5.00 6.70 4.23 176 144 39.6 47.5 50 7.5 

CSEM 
SwissRanger2 14.60 3.10 3.30 160 124 42.0 46.0 30 7.5 

PMD 
19K 

20.80 17.40 4.40 160 120 40.0 30.0 15 5.0 ~ 30.0 

 

A flash LADAR system typically consists of a device constantly casting laser beams in 

the 3D real space and receiving the resulting reflected beams. Based on the travel time for 

each beam and knowing the speed of the laser beam, the distance between the flash 

LADAR system and each real object in the scene is calculated. Once installed in front of 

the user’s eyes, these depth values reflect the distance between the viewpoint and the real 

objects. Figure 5.11 shows several flash LADAR devices studied in this research. 
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     (a) CSEM SwissRanger2          (b) CSEM SR3000                        (c) PKD 19K 

 

Figure 5.11 – Examples of Flash LADAR Devices Studied in This Research 

 

Flash LADAR data represent a scene as a matrix. Each element in this matrix contains 

the depth value of the corresponding pixel on the screen. As a result, the concept of 

screen matrix was introduced and used in this research to provide a means to store and 

retrieve depth values more efficiently inside the AR platform. By definition, a screen 

matrix is a 2D matrix with dimensions equal to the pixel resolution of the screen. Each 

element in this matrix can hold data (e.g. RGB color, depth value) about the 

corresponding pixel on the screen. 

 

Figure 5.12 shows a sample screen matrix for a 640x480 screen. As described earlier, the 

elements in this matrix can store depth values as well as color codes for their 

corresponding pixels on the screen. If the resolution of the depth data obtained from a 

flash LADAR device is less than the resolution of the actual screen, adjacent elements of 

the screen matrix can be clustered together and a single depth value (obtained from the 

flash LADAR device) can be assigned to all the elements inside a cluster. For example, if 

the incoming flash LADAR depth data has a resolution of 160x120 while the actual 

screen resolution is 640x480, four adjacent pixels (in both horizontal and vertical 

directions) can be grouped as one cluster and the same depth value can be assigned to all 

of them. Depth values for the pixels on the virtual screen are also retrieved from the 

OpenGL z-buffer. The z-buffer is in fact a memory buffer in the OpenGL graphics 

accelerator that holds the latest depth of each pixel along the Z axis. As the virtual 
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contents of the scene change over time, the values stored in the z-buffer are also updated 

to reflect the latest depth of the CAD objects relative to the viewpoint (i.e. user’s eyes). 

 

 
Figure 5.12 – Sample Screen Matrix for a 640 by 480 Screen 

 

The fundamental difference between depth values obtained from a flash LADAR camera 

for real objects and those obtained from z-buffer for virtual objects is that while real 

world depth values are retrieved and reported as real distances (in terms of meters or feet) 

to the user, depth values for the virtual CAD objects fall between a [0,1] interval. A pixel 

located on the near plane of the perspective viewing frustum will be given a depth value 

equal to zero and a pixel located on the far plane of the perspective viewing frustum will 

be given a depth value equal to one. All intermediate pixels will have depth values 

between zero and one. However, the relationship between the depth values obtained from 

the z-buffer and corresponding metric depth values is not linear. A pixel with a virtual 

depth value of 0.5 is not located halfway between the near and far planes. In fact, this 

relationship, as shown in Figure 5.13, follows a hyperbolic equation [3]. In this Figure, 

Znear and Zfar correspond to the metric distance between the user’s eyes and the near and 

far planes of the perspective viewing frustum respectively. Zbuffer is the depth value of a 

specific pixel on the screen obtained from the z-buffer and Zreal is the metric equivalent of 

this depth value for the same pixel. As shown in Figure 5.13, z-buffer has higher 
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resolution for pixels closer to the user’s eyes. For the specific case shown in Figure 5.13, 

more than 90% of all possible z-buffer values represent the depth of objects located 

within 10% of the distance between the near and far planes. This is mainly due to the fact 

that the human eyes are more sensitive to closer objects and can identify any short range 

visual discrepancies more rapidly, whereas discrepancies in objects that are farther away 

cannot be recognized as clearly as in closer objects. Depth values for the virtual objects 

are also stored in a separate screen matrix for later comparison with corresponding values 

of the real world. 

 

  
Figure 5.13 – Relation between Z-Buffer and Metric Virtual Depth Values 

 

5.6. Frame Buffer Manipulation 
 

After all depth values are obtained and stored appropriately in separate screen matrices, 

they have to be compared so that for each pixel a final decision is made on which group 

of objects (real or virtual) is closer and hence has to be displayed. Once this decision is 

made, the color of the pixel will be changed to the color of the closer object to the 



 145

viewpoint to create the impression that the pixel really represents the correct object. This 

requires an intermediate step which is obtaining the color values (in terms of RGB) for 

each individual pixel on the screen. This can be done by directly by reading OpenGL 

color buffer which stores pixel color values in real time. Two distinct readings are done 

to obtain pixel colors of the scene with and without virtual objects. Once depth and color 

readings are complete, four different matrices are provided to the AR application: 

• A = Screen matrix of real world color values (captured texture from the 

video camera as stored in OpenGL color buffer before superimposition of 

CAD models) 

• B = Screen matrix of real world depth values (LADAR camera data 

representing the depth of the raw video input coming through the video 

camera) 

• C = Screen matrix of CAD models’ color values (OpenGL color buffer 

after superimposition of CAD models) 

• D = Screen matrix of CAD models’ depth values (OpenGL depth buffer 

after superimposition of CAD models) 

 

Figure 5.14 shows how these four matrices are constructed using the contents of depth 

and color buffers as well as the incoming data through the flash LADAR device. As 

shown in this Figure, starting from the top left hand corner, after the OpenGL frame 

buffer is refreshed, the content of the video frame is updated using the raw video image 

coming through the video camera. At this time, matrix A is constructed using pixel color 

values of the raw video image and matrix B is constructed using the depth data of the real 

world coming through the flash LADAR device. Once the OpenGL frame is updated, the 

virtual contents of the scene are displayed on top of the real background. At this point, 

matrix C is constructed using the contents of the OpenGL color buffer and matrix D is 

constructed using the OpenGL z-buffer values. Note that all these operations occur at 

each animation frame to handle occlusion cases continuously and as the animation is 

running. 
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Figure 5.14 – Constructing Four Distinct Color and Depth Matrices 

 

Figure 5.15 shows the frame buffer manipulation algorithm designed in the presented 

research which uses these four matrices in order to construct a final screen matrix (i.e. 

matrix E in this Figure). Screen matrix E contains correct pixel colors after resolving all 

incorrect occlusion cases. In this Figure, for every pixel on the screen, the corresponding 

color and depth value is read from the four matrices described above (shown as a, b, c, 

and d in Figure 5.15). The real and virtual depth values are than compared. If the depth of 

the pixel in the real world is less than its depth in the virtual world, its color is changed to 

the color read from the matrix representing real world colors (i.e. matrix A). This 

represents the case in which a real object is occluding a virtual object. The other situation 

occurs when the depth of the pixel in the virtual world is less than its depth in the real 

world. This represents the case in which a virtual object is occluding a real object and 

hence its color is changed to the color read from the matrix representing virtual world 
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colors (i.e. matrix C). The correct pixel color (shown as e in Figure 5.15) is then stored in 

the screen matrix E which will be later used when the OpenGL frame buffer is updated to 

show the correct occlusion effect. 

 

 

Figure 5.15 – Designed Frame Buffer Manipulation Algorithm 

 

5.7. Summary and Conclusions 
 

3D visualization of construction projects has gained a lot of credibility over the past few 

years. Several researchers have investigated the application of Virtual Reality (VR) to 

animate simulated construction operations in order to verify and validate the results of the 
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underlying simulation model [12,13,14,15,16,17]. In order to create realistic VR displays 

of a simulated process, detailed data about the process as well as the environment in 

which it takes place has to be obtained. Such data must be able to describe the simulation, 

3D CAD models, facility under construction, and terrain topography (Model 

Engineering). As the size and complexity of the operation increases, data collection also 

becomes time and resource consuming. This directly translates into loss of project 

financial and human resources which could otherwise be saved and used more 

productively. In an effort to remedy this situation, the author has successfully introduced 

and developed an alternate approach to create dynamic animations of simulated 

operations. Following this approach, AR is used to create mixed views of real existing 

facilities on the jobsite and virtual CAD objects under construction. 

 

The application of AR in animating simulated construction operations has great potential 

in reducing the Model Engineering and data collection tasks and at the same time leads to 

a more visually convincing output. As a tradeoff, however, the animation has to be 

capable of handling two distinct groups of objects: virtual and real. This is very essential 

in AR as the observer of the animation expects to see a mixed scene in which both groups 

of objects operate and interact in a realistic manner. This introduces a number of 

challenges unique to creating AR animations. One of these challenges is occlusion 

handling. Incorrect occlusion effect occurs when a real object blocks the user’s view of a 

virtual object. In almost all AR-based animations, the real world serves as the 

background of the AR scene and it has to be “drawn” before the computer generated 

contents are added to the foreground. As a result, although a real object may be closer to 

the observer, it can be visually blocked by a CAD object that is intended to be farther 

away. The main reason for this is that there is no established method in AR to obtain the 

depth of real objects and as a result, incorrect occlusion effects cannot be automatically 

handled.  

 

In order to take into account all the complexities and uncertainties involved in a dynamic 

simulated process such as a construction operation, the method described in this Chapter 

uses depth and frame buffer manipulation techniques at the pixel level of detail to 
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automatically detect and correctly resolve visual occlusion cases in dynamic augmented 

environments. The developed approach is unique since it can be easily integrated into a 

mobile platform which allows the observer of the AR animation to walk freely in the 

scene looking at the ongoing operations from different perspectives. The presented 

method is capable of automatically resolving occlusion cases in real time to produce a 

visually convincing final output.  
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Chapter 6 
 

Validation of ARVISCOPE Animation 
Language 

 

 

6.1. Introduction 
 

The information presented in this Chapter presents the validation exercises for each of the 

research challenges described in individual Chapters of this dissertation that each focus 

on a specific aspect of the research. In addition to validating each individual aspect of the 

research during its progress, the ability of the ARVISCOPE animation authoring 

language to create smooth and continuous Augmented Reality (AR) animations of 

simulated construction processes was also validated at several stages of the work. In 

particular, the designed language and the implemented software and hardware framework 

were critically evaluated using the following criteria:  

• Geometric and spatial accuracy in animations 

• Accuracy in 3D spatial user tracking 

• Ability of the AR framework to support geometric instancing 

• Accuracy in visual occlusion handling 

 

Discrete Event Simulation (DES) models of several simulated construction operations 

were used to automatically generate ARVISCOPE animation trace files as they ran. 

Although the execution of a DES model typically takes a few seconds, the generated 

animation trace file can contain several thousand lines depending on the duration of the 
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operation, the number of activities to be performed, and the level of detail desired in 

animating each activity in ARVISCOPE. As described in Chapter 2, the resulting trace 

file is a sequence of ARVISCOPE language statements ordered by their time of 

execution. The trace files were then used to create AR animations in order to investigate 

the extent to which the simulated (and communicated) operations can be recreated in the 

3D augmented environment of the construction site. Each of the following Subsections 

describe the details of an outdoor test performed using the UM-AR-GPS-ROVER mobile 

computing apparatus (Chapter 3) and the ARVISCOPE animation authoring language 

(Chapter 2). 

 

The degree of accuracy in animations was observed to be a function of the amount of 

detail communicated by the driving process (i.e. the DES models in this research), and 

the level of precision of the tracking devices. The fact that the entire content of an 

animation trace file is created by an external process (i.e. a running DES model) enables 

animated sensitivity analysis for each case simply by manipulating the quantitative and/or 

logical simulation parameters of the driving process model. These parameters include the 

number and type of resources (e.g. number of trucks in an earthmoving operation, type of 

crane to used in a steel erection, space for temporary storage of materials), the rules under 

which the different tasks that compose the operations are performed, and random 

variables to describe the duration of individual tasks. The modified models can be 

promptly rerun to produce alternate animated scenarios that can then be processed and 

visualized in AR by ARVISCOPE for evaluation. 

 

6.2. Validation of Geometric and Spatial Accuracy in 
Animations: Offshore Concrete Delivery Operation 
 

The ARVISCOPE animation language was able to accurately describe and depict 

graphical 3D representations of the communicated operations, and superimpose them on 

top of live video streams of the surrounding environment. Each of the conducted 

validation experiments was designed carefully considering several factors such as 
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operational logic, test location, and CAD object selection and manipulation. First, a 

sketch of each test was created showing different resources used in the operation together 

with their maneuvering range and movement directions. STROBOSCOPE was then used 

to create a DES input file of the operation. STROBOSCOPE is a programmable and 

extensible simulation system designed for modeling complex construction operations in 

detail and for the development of special purpose simulation tools [1]. The equivalent 

ARVISCOPE animation trace file was generated automatically by instrumenting the DES 

model using ARVISCOPE scene construction, dynamic, and control statements (Chapter 

2 and Appendix A). The animation was created in a 640x480 resolution screen using a 

refresh rate of 30 frames per second.  

 

In order to ensure geometric and spatial accuracy in the animations of modeled 

operations, the output of ARVISCOPE at each stage was compared side by side to a 

corresponding 3D animation of the same operation generated in Virtual Reality (VR) 

using the VITASCOPE visualization system. VITASCOPE is a user extensible 3D 

animation language designed specifically for visualizing simulated construction 

operations in smooth, continuous, animated 3D virtual worlds [2]. The same 

instrumentation procedure was used to create VITASCOPE animation trace files using its 

own language statements. Each resulting trace file was then loaded and run inside the 

VITASCOPE environment and several snapshots were taken at the exact simulation time 

instants as those of ARVISCOPE snapshots. This facilitated side by side comparison of 

the two sets of animations (i.e. VR based and AR based) for each validation scenario.  

 

Figure 6.1 shows the aerial view of an outdoor experiment conducted in this research. 

The objective of this experiment was to create an animation of an offshore concrete 

delivery operation. The animation invovled two 3D virtual barges, each carrying a virtual 

concrete truck from a virtual batch plant on the shore to an offshore pier located in the 

middle of a river. Real time views of the Huron river in Ann Arbor, Michigan were used 

for the real backgound. Each barge spent a certain amount of time on the shore while its 

concrete truck was loaded at the batch plant. It then traveled to the offshore pier to unload 
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the concrete. The empty concrete truck then returned to the shore on the barge. This cycle 

was repeated several times before the concrete placement operation ended.  
 

 
Figure 6.1 – Aerial View of the Offshore Concrete Delivery Operation Experiment 

 

The global coordinates of points P1 through P6 in Figure 6.1 were carefully measured in 

terms of longitude, latitude, and altitude and used inside the corresponding animation 

trace file to define delivery and returning routes as well as the location of the offshore 

pier. The following assumptions were made to create the AR animation of this simulated 

operation: 

(1) The actual concrete loading operation of the empty concrete truck was not 

animated on the batch plant located on the shore. To account for this part of the 

process, each barge waited a certain amount of time at the batch plant station. 

(2) The actual concrete placement operation from the full concrete truck was not 

animated on the offshore location. To account for this part of the process, each 

barge waited a certain amount of time at the pier station. 

 

Figure 6.2 shows the timeline of the AR animation. Each barge waited for 5 time units at 

the batch plant station, traveled for 15 time units to the offshore pier, waited for 5 time 

units at the offshore location, and returned to the batch plant station in 10 time units. Note 

that since this is a cyclic operation, the entire process repeated every 40 time units. In this 

experiment, all durations were deterministically set.  
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Figure 6.2 – Timeline of the Offshore Concrete Delivery Operation Experiment 

 

Figure 6.3 illustrates the AR animation created in ARVISCOPE compared to the VR 

animation of the same operation created using VITASCOPE, and shows that the two 

outputs are identical in terms of geometric and spatial accuracy of the animation. 
 

 

 

Figure 6.3 – Animated Offshore Concrete Delivery in ARVISCOPE and VITASCOPE 
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6.3. Validation of Accuracy in 3D Spatial Tracking: 
Earthmoving Operation 
 

In order to validate the ability of the AR application to update the contents of the 

augmented animation based on the user’s latest position and head orientation data, the 

user was allowed to navigate in the animation, approach the CAD objects, and change the 

head orientation. The objective of this part of the validation exercise was to ascertain that 

the tracking devices are fully capable of obtaining the user’s real time position and head 

orientation, and that the application is robust enough to update the contents of the user’s 

augmented viewing frustum based on these values. Continuous communication with the 

Global Positioning System (GPS) and head orientation tracking devices to obtain real 

time Six Degree-of-Freedom (6DOF) spatial data of the user was very critical since the 

augmented viewing frustum had to be constantly reconstructed in front of the user’s eyes 

during the course of an animation. The GPS position measurements were obtained using 

the Wide Area Augmentation System (WAAS) service provided at no cost to the GPS 

users. Although the incoming GPS data inherited some error due to parameters such as 

the clarity of lines of sight to the GPS satellites, whether conditions, and existing ambient 

noise, the positional error level stayed constant and stable over the area in which the 

experiments were conducted as long as the number of visible GPS satellites was fixed. In 

order to achieve more precise GPS data, more precise technologies such as Differential 

GPS (DGPS) and Real Time Kinematics (RTK) can also be used. As discussed in 

Chapter 3, the tracking algorithms developed in this research, have been designed as 

generic as possible so that they are ready without modification to be used with DGPS, 

RTK or any other GPS data extraction technology [3,4]. 

 

Figure 6.4 shows the aerial view of an outdoor experiment conducted in this research. 

The objective of this experiment was to create an AR animated excavation operation. 

There were two virtual dump trucks and one virtual excavator involved in the AR 

animation. Real time views of a parking lot in Ann Arbor, Michigan were used for the 

real backgound. Each dump truck waited to be loaded by the excavator before it traveled 



 159

to the dumping area. After it dumped the soil, it returned to the loading area for the next 

loading cycle. The loading cycle repeated several times before the operation ended. The 

global coordinates of points P1 through P6 in Figure 6.1 were carefully measured in terms 

of longitude, latitude, and altitude and used inside the corresponding animation trace file 

to define haul and return routes as well as the location of the excavator.  

 

 
Figure 6.4 – Aerial View of the Earthmoving Operation Experiment 

 

The following assumptions were made in this experiment: 

(1) The excavator’s interaction with the soil was not modeled or visualized. Only the 

kinematic motion of the excavator was animated.  

(2) The unloading process was modeled only by the truck bucket’s upward and 

downward motion. The interaction of the soil was not modeled or animated. 

 

Figure 6.5 shows the timeline of the animation. Each truck waited for 5 time units in the 

loading area, took 15 time units to be loaded, traveled for 35 time units to the dumping 

area, maneuvered for 15 time units to get into the exact dumping position, unloaded the 

soil for 15 time units, returned to the loading area in 25 time units, and waited there for 5 

time units before being placed in the loading zone. The total truck cycle was 110 time 

units. The excavator, on the other hand, was idle for the first 5 time units, loaded one 

truck at a time for 15 time units, waited for 10 time units, returned to its initial position in 
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10 time units, and remained idle for 15 time units before the next loading cycle started. 

Note that since this was a cyclic operation, the entire process repeated every 55 time 

units. In this case also, the durations were deterministically set. 

 

 
 

Figure 6.5 – Timeline of the Earthmoving Operation Experiment 

 

Figure 6.6 shows the AR animation created using the ARVISCOPE language while the 

user was navigating inside the augmented scene. The contents of the augmented scene 

were continuously updated based on the latest global position of the user coming through 

the GPS receiver while the user was moving towards the virtual excavator. 

 
Figure 6.6 –Earthmoving Operation with Continuous Change in User’s Global Position  
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Figure 6.7 shows the same AR animation created using the ARVISCOPE language while 

the user’s head orientation was continually changing. The contents of the augmented 

scene were continuously updated based on the latest 3DOF head orientation data coming 

through the head orientation tracker while the user was observing the AR animation. 
 

 
Figure 6.7 –Earthmoving Operation with Change in User’s Head Orientation 

 

In both cases shown in Figures 6.6 and 6.7, the ARVISCOPE animation was fully 

responsive to changes in the user’s global position and head orientation, and the CAD 

objects inside the augmented viewing frustum were continuously updated based on the 

latest tracked spatial characteristics (i.e. position and orientation). 
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6.4. Validation of Ability of the AR Framework to 
Support Geometric Instancing: Structural Steel 
Erection Operation 
 

As discussed in Chapter 4, geometric instancing in the context of this research is defined 

as the ability of the AR visualization engine to construct complex scenes that potentially 

consist of a large number of CAD objects, and to maintain performance levels as the size 

of the operation increases. Recalling Figure 4.14, geometric instancing allows the 

creation of very complex scenes such as the erection of an entire structural steel frame 

consisting of several beams and columns by loading only a few CAD models of steel 

sections, and placing them repeatedly at appropriate locations using multiple 

transformation nodes in the corresponding AR-based scene graph (Chapter 4). 

 

In order to validate this aspect of the developed AR platform, a structural steel erection 

operation was selected. The AR animation of this process was created using the 

ARVISCOPE language, and a multi storey steel structure was completely modeled and 

animated in the augmented scene using CAD models of only a few steel sections. In order 

to create different section sizes from a standard steel cross section, the SIZE statement 

was used. 

 

The operation consisted of a virtual tower crane that would pick up steel sections and 

install them in their appropriate locations on the steel structure. Figure 6.8 shows the AR 

animation created using the ARVISCOPE language and compares it to the VR animation 

of the same operation created using VITASCOPE. 
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Figure 6.8 – Animated Structural Steel Erection in ARVISCOPE and VITASCOPE 
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6.5. Validation of Accuracy in Occlusion Handling: 
Miniature Scale Indoor Experiments 
 

Several proof-of-concept experiments were conducted to validate the functionality of the 

frame buffer manipulation algorithm developed in this research. Animation trace files of 

small scale construction operations were created using the ARVISCOPE language. 

Miniature models of actual construction equipment and materials were used to create the 

real background of the augmented animation. Small scale CAD models were then 

superimposed on the real background to create the final augmented view of the 

operations. In each experiment, the distance between the virtual CAD objects and the 

user was set to be greater than that of the real construction objects in order to verify that 

the developed algorithm was capable of detecting and handling incorrect occlusion cases. 

 

The objective of the experiments was to validate that the designed occlusion handling 

algorithm was capable of detecting and resolving visual occlusion cases in a real time AR 

animation, and produce visually convincing output representing the modeling operation. 

The depth data of real objects in these experiments was assumed to be available to the 

AR application, and was manually input from physical measurements taken around the 

layout of the physical objects.  

 

Figures 6.9 through 6.12 show results of four indoor proof-of-concept experiments 

conducted in this research by superimposing the CAD models of construction equipment 

and machinery on top of miniature construction environments consisting of real scaled 

construction models. In each experiment, virtual models were placed in the augmented 

scene in a way that they were completely or partially occluded by real objects. Figure 6.9 

depicts a virtual concrete truck occluded by a real brick wall. Figure 6.10 shows a virtual 

excavator occluded by a real structure. In Figure 6.11, a virtual dozer is partially 

occluded by a real tower crane. The virtual forklift in Figure 6.12 is occluded by a real 

container. All occlusion cases were successfully detected and corrected using the 

occlusion handling algorithm developed in this research (Chapter 5). 
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 Figure 6.9 – Correcting Occlusion between a Virtual Truck and a Real Brick Wall 

 

 
 

 Figure 6.10 – Correcting Occlusion between a Virtual Excavator and a Real Structure 
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 Figure 6.11 – Correcting Occlusion between a Virtual Dozer and a Real Tower Crane 

 

 
 

 Figure 6.12 – Correcting Occlusion between a Virtual Forklift and a Real Container 
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6.6. Summary and Conclusions 
 

Creating real time dynamic animations of simulated processes can help decision makers 

gain a better insight of planned or ongoing operations by examining the spatial and 

chronological details of the animated processes from different perspectives and at 

different operation times.  
 

In this Chapter, the ability of both the ARVISCOPE animation authoring language and 

the UM-AR-GPS-ROVER mobile computing apparatus to create continuous dynamic AR 

animations of simulated construction operations was successfully validated. The 

validation parameters were grouped into four main categories including geometric and 

spatial accuracy in animations, accuracy in 3D spatial user tracking, ability of the AR 

framework to support geometric instancing, and accuracy in visual occlusion handling. 

Several validation experiments were conducted in each group to evaluate the robustness 

and effectiveness of the AR platform developed in this research. 
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Chapter 7 
 

Conclusions 
 

 
3D Visualization is an effective and convenient method to verify, validate, and 

communicate the results of simulated operations. Creating visualized scenes of modeled 

processes with an appropriate level of detail can help decision makers analyze and 

evaluate different operational scenarios, and preclude potential space and resource 

conflicts that would otherwise manifest during the performance of the real operations. 

This can lead to significant savings in project time and financial resources that would 

otherwise be expended in manual data analyses or trial and error experiments.  

 

Existing visualization tools primarily used Virtual Reality (VR) environments to create 

animations from the results of a simulated process. However, as the size and complexity 

of an operation increases, and with the introduction of additional resources into a process, 

the task of collecting, managing, and manipulating graphical data to visualize the 

operation (Model Engineering) becomes time consuming, labor intensive, and often 

impractical. In an effort to remedy this situation, this research studied the shortcomings 

of existing visualization approaches and investigated possible ways to improve the 

current practice of 3D visualization of simulated engineering operations. 

 

This dissertation documented the research that led to the design and implementation of an 

innovative approach to create continuous dynamic animations of simulation models using 

Augmented Reality (AR).
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AR is a rapidly advancing technology that offers high potential for significant 

improvement in many scientific and engineering domains such as construction, industrial 

and mechanical engineering, medicine, aviation, and manufacturing. For example, using 

AR in construction can allow walking through an actual site and experiencing a virtual 

facility as it may be built in the future, or looking into the ground and “seeing” utility 

lines as they exist based on as-built CAD data. AR can also be applied to assembly lines, 

with the option of presenting the individual work steps to the assembler in an augmented 

visualization environment during training or actual assembly phases. 

 

AR visualizations can also help product manufacturers in providing required training to 

production line staff about assembling different components in order to enhance 

productivity. In aviation, aircraft manufacturers can use AR technology to aid in 

assembly operations. Flow and inventory control of raw material and final products in a 

warehouse can also be conveniently animated using AR to minimize order lead times, 

product delivery times, and maintenance request waiting times. The applications and 

potential of AR are thus vast and applicable to several engineering domains. 

 

The application of visualization techniques for planning, analysis, and design in 

construction and civil engineering is relatively new compared to the notable amount of 

AR related research conducted for diverse applications in fields such as manufacturing, 

medical operations, military, and gaming. As noted in Chapter 1, previous studies have 

also explored the application of AR as a state-of-the-art visualization technique for a 

limited number of architecture and construction applications. 

 

All prior research and applications of AR, however, have focused on developing domain 

specific platforms intended for very specific purposes, thereby limiting their widespread 

applicability and reusability. 
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In addition, as noted in Chapter 1, prior research in AR: 

• Did not incorporate arbitrary operations level complexity into AR visualizations. 

• Did not consider dynamic objects evolving in an AR scene based on the results of 

discrete-event simulation. 

• Did not afford unrestricted mobility to the observer of a dynamic AR scene. 

• Did not consider the interaction between real and virtual objects in an AR scene. 

• Did not consider problems associated with enabling AR visualization in outdoor 

unprepared environments. 

 

This research successfully addressed the abovementioned limitations. In this dissertation, 

the design and development of AR-based visualization techniques, position and 

orientation tracking algorithms, and a powerful animation authoring language together 

with their practical implementation inside a mobile AR visualization tool were discussed. 

The designed animation language provides a convenient method to automatically author 

animations of any length and complexity at the operations level of detail using an 

external software process such as a running Discrete Event Simulation (DES) model. The 

results of the research have been validated by animating several simulated construction 

operations in outdoor AR. Each Chapter in this dissertation described the details of 

individual scientific questions successfully addressed, major challenges involved, and 

algorithms and methods studied, adapted, developed, and implemented in achieving a 

particular research objective. 

 

The following list summarizes the individual research challenges successfully addressed 

and described in the preceding Chapters: 

• Visual representation of simulation models (Chapter 2): Continuously 

communicating with the simulation model of an engineering operation to extract 

required elements to describe the modeled processes with chronological and 

spatial accuracy. 

• Accurate registration (Chapter 3): Establishing and maintaining a spatial and 

logical link between the objects of the virtual world and the scenes of the real 
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environment using state-of-the-art Global Positioning System (GPS) and Three 

Degree-of-Freedom (3DOF) orientation tracking devices. 

• Augmented scene construction, management, and manipulation (Chapter 4): 

Creating a flexible CAD object hierarchy that enables fast and dynamic handling 

and manipulation of the graphical contents of an animation. 

• Resolution of visual discrepancies in real time (Chapter 5): Handling incorrect 

visual occlusion cases in which a virtual object inside the animation is partially or 

completely blocked by a real object that is intended to be closer to the observer of 

the augmented scene.  

 

In Chapter 2, the details of an animation authoring language called ARVISCOPE 

designed to visualize simulated processes in dynamic, georeferenced AR environments 

were presented. Although the main focus of this Chapter was on construction processes, 

most of the findings of this research are generic and widely applicable to other fields of 

science and engineering where the need to animate and communicate simulated 

operations is as important as that in construction. The primary contribution of the 

research presented in Chapter 2 was an AR animation authoring language that 

enables modelers to automatically create augmented reality animations of construction 

operations of arbitrary length and complexity simulated using a DES tool. 

 

In Chapter 3, the details of registration algorithms necessary to track the global position 

(i.e. longitude, latitude, altitude) and 3D orientation (i.e. yaw, pitch, and roll) of the user’s 

viewpoint were discussed. In addition, methods to reconcile the tracked information with 

the known global position and orientation of CAD objects to be superimposed in a user’s 

view were described. The results of these computations were used to calculate the relative 

translation and axial rotations between the user’s eyes and the CAD objects at each 

animation frame during an AR visualization. The relative geometric transformations were 

then applied to the CAD objects to generate an augmented outdoor environment where 

superimposed CAD objects stay fixed to their real world locations as the user moves 

freely in an animation. The primary contributions of the research presented in Chapter 

3 were the designed UM-AR-GPS-ROVER mobile hardware apparatus, and software 
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methods in the AR framework that implement the developed georeferenced registration 

algorithms to accurately superimpose virtual CAD objects into an AR animation. The 

hardware apparatus and software methods have been designed to be conveniently 

extended and reused by other AR application developers simply by importing the 

designed class libraries into their code, thereby saving significant time and effort that 

would otherwise be required to reimplement low level hardware interfacing software.  

 

In Chapter 4, a scene graph based CAD object management scheme was introduced. 

Effective CAD object management was identified as a crucial step in creating realistic 

visual output in AR animations of simulated processes. Robust CAD object manipulation 

is essential in creating the illusion that both groups of objects (real and virtual) coexist in 

a single scene and operate in a seamless manner. The high variability involved in a 

simulated process as dynamic as a construction operation requires the graphical engine of 

the AR application to create, load, and handle a large amount of 3D objects in each 

animation frame. As the size of the operation increases, CAD object manipulation 

becomes a memory intensive task that can reduce the animation speed and the ability to 

interact with the animated process in real time. The primary contribution of the research 

presented in Chapter 4 was a flexible and dynamic methodology to facilitate the tasks 

of constructing and managing the contents of the AR animation of a simulation model 

by continuously loading, rendering, and displaying the virtual CAD models and real 

surrounding environment in which the operation takes place.  

 

In Chapter 5, the design of a pixel level of detail occlusion handling algorithm was 

discussed. The presented method takes into account all the complexities and uncertainties 

involved in a dynamic simulated process such as a construction operation by 

manipulating depth and frame buffers to automatically detect and correctly resolve visual 

occlusions in dynamic augmented environments. The developed approach presented in 

this Chapter is unique since it can be easily integrated into a mobile platform which 

allows the observer of an AR animation to walk freely in the scene observing the ongoing 

operations from different perspectives. It is capable of automatically resolving incorrect 

occlusion effects in real time to produce a visually convincing final output. The primary 
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contribution of the research presented in Chapter 5 was a general purpose occlusion 

handling algorithm integrated into the core AR platform capable of detecting and 

correctly resolving occlusion effects in real time. 

 

In Chapter 6, validation exercises evaluating each of the individual research components 

described in individual Chapters of this dissertation were presented. In addition to 

validating each individual aspect of the research during its progress, the ability of the 

ARVISCOPE animation authoring language to create smooth and continuous AR 

animations of simulated construction processes was also validated at several stages of the 

work. In particular, the designed language and the implemented software and hardware 

framework were critically evaluated from the point of view of geometric and spatial 

accuracy in animations, accuracy in 3D spatial user tracking, ability of the AR framework 

to support geometric instancing, and accuracy in visual occlusion handling. 

 

In summary, this dissertation has led to two major final products: 1) the ARVISCOPE 

animation authoring language capable of graphically describing the detailed processes in 

a simulated engineering operation within a 3D AR environment; and 2) the UM-AR-

GPS-ROVER mobile computing apparatus capable of tracking the current global position 

and head orientation of the scene observer via tracking devices, and continuously 

computing and displaying the contents of the augmented animation in real time based on 

this data. When used together in an integrated AR platform, ARVISCOPE and UM-AR-

GPS-ROVER can describe, create, and display real time augmented scenes of simulated 

operations by georeferencing and registering virtual CAD objects on top of live video 

backgrounds of the real world. The user is embedded in the animation and can walk in 

the scene with minimum physical constraints to observe the ongoing augmented 

operations from different perspectives. 

 

The primary contribution of this research to the body of knowledge is that the methods 

designed in this work improve upon the current practice of verifying, validating, and 

communicating the results of simulated operations. This was achieved by providing an 

effective visual means to gain a better understanding of the underlying processes in fully 
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immersive and interactive augmented environments. Such an environment allows the 

modeler to examine the dynamics of a simulated construction operation from different 

perspectives and with different levels of detail. The resulting AR animations are realistic 

to the extent that they create the illusion that the observer is fully immersed in the 

environment and as a result, can interact with the operation more effectively while 

studying an animated scene with the highest level of graphical and operational detail. The 

designed data communication methods between the tracking devices, underlying DES 

model, and AR visualization engine are generic and extensible, and can be readily 

modified and applied to other engineering and scientific domains such as manufacturing 

and transportation that also experience a need to create visual interfaces to underlying 

domain processes. 
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Appendix A 
 

ARVISCOPE Language Statements 
 

 
In this Appendix, the basic ARVISCOPE animation authoring language statements 

together with their syntax are documented. As described in Chapter 2, there are three 

groups of statements: scene construction, dynamic, and control statements. 

 

Scene Construction Statements 
 

Syntax: LOADMODEL <GroupName> <3DFileName>; 

Example: LOADMODEL Truck CATTruck.3ds; 

 

This statement is used to assign a CAD file to a certain group of objects in the scene. The 

CAD file contains the 3D geometric data of the type of objects specified in the first 

argument. 3D CAD files can be selected from a variety of formats such as AC3D 

geometry (.ac), 3D Studio (.3ds), and Lightweight 3D Object (.lwo). Most CAD 

modeling tools can export created 3D models in various formats which facilitates their 

use in LOADMODEL statement. 
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Syntax: ORIENTMODEL <GroupName> <Axis> <Degree>; 

Example: ORIENTMODEL Truck Y 90; 

 

This statement is used to correct any misalignment between a CAD model’s local 

coordinate axes and those of the global frame. Following ARVISCOPE conventions, X 

axis is always pointing from west to east and Y axis is pointing upwards. Using the right 

hand rule for vector operations, Z axis will be always pointing from the depth of the 

augmented scene towards the user’s eyes. Figure A.1 shows how the ORIENTMODEL 

statement is used to align the local coordinate frames of a CAD model with the 

ARVISCOPE global axes. 

 

 
Figure A.1 – Aligning the Local Coordinate Frame of a CAD Model with Global Axes 

 

In this Figure, the initial local coordinate frame of the red truck (located on the hood) is 

not appropriately aligned with the ARVISCOPE global coordinate frame. As a result, a 

rotation equal to 90 degrees about the Y axis is applied to the CAD model to fix this 

misalignment after the CAD model of the truck has been loaded.  
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Syntax: CHANGEMODEL <ObjectName> <NewGroupName>; 

Example: CHANGEMODEL SteelBeam150 BlueSections; 

 

This statement is used to change the 3D model assigned to a particular object in the 

scene. This is extremely useful when the appearance of a single object has to be changed 

during the course of the animation. For example, in order to distinguish between 

completed and uncompleted work, the modeler may decide that steel beams waiting to be 

picked up should be assigned the color red and the color of those picked up and installed 

should be changed to blue. This can be done by defining two distinct groups of objects 

(i.e. red and blue steal sections) and changing the group of beams from red sections to 

blue sections after they are installed. 

 

 

Syntax: OBJECT <ObjectName> <GroupName>; 

Example: OBJECT DumpTruck Truck; 

 

This statement is used to create a single instance of a group of objects. Each call to this 

statement causes one new object to be created, which is of the type specified in 

GroupName. 

 

 

Syntax: REMOVE <ObjectName>; 

Example: REMOVE DumpTruck; 

 

This statement is used to permanently remove an object from the augmented scene. 
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Syntax: CONNECT <ChildName> <ParentName> <AtPoint>; 

Example: CONNECT Boom Tower (0,35,0); 

 

This statement is used to create a meta-object from individual CAD objects. For example, 

to create a tower crane, individual parts (e.g. foundation, tower, boom, trolley, cable, and 

hook) can be connected to each other. This will result in an articulated piece of 

equipment that can be later manipulated at different joints (i.e. internal connection 

points). Figure A.2 shows how the 3D model of a tower crane can be created using 

separate CAD models of its components. 

 

 

Syntax: STICK <ChildName> <ParentName> <AtPoint>; 

Example: STICK Hook Cable (0,-1,0); 

 

This statement is similar to the CONNECT statement. The only difference is that any 

change in the size (scale) of the parent node will not affect the size (scale) of the child 

node. For example, in the tower crane shown in Figure A.2, lowering and raising the 

cable is done through changing the size (scale) of the cable in the vertical direction. Since 

the hook is a child of the cable, connecting it to the cable using the CONNECT statement 

will result in the hook changing size as well. In order to avoid this situation, the STICK 

statement is recommended (as shown in this Figure).  
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Figure A.2 – Creating a Meta-Object from Individual CAD Models 

 

 

Syntax: DISCONNECT <ChildName> <ParentName>; 

Example: DISCONNECT SteelBeam Hook; 

 

This statement is used to separate a child object from its parent object. For example, a 

steel beam previously picked up by a tower crane has to be separated from the hook and 

placed at its appropriate location. This can be done using the DISCONNECT statement.  
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Syntax: ROUTE <RouteName> <Points_Array_XYZ>; 

Example: ROUTE TruckRoad (-83.714569,42.298058,270.00) 

                        (-83.714553,42.298092,270.00) 

                        (-83.714553,42.298136,270.00) 

                        (-83.714600,42.298186,270.00); 

 

This statement establishes a motion path by defining its beginning, intermediate, and end 

points. The coordinates of these points have to be expressed in global frame (i.e. 

longitude, latitude, and altitude). The first, second, and third coordinate values for each 

point are longitude, latitude, and altitude respectively. ARVISCOPE automatically 

constructs a route by connecting line segments defined by these points. It is also possible 

to define a route by specifying relative distances between its points and a reference point 

with known global position in terms of longitude, latitude, and altitude. This is described 

in ROUTE REL statement. 

 

 

Syntax: ROUTE REL <Reference> <RouteName> <Points_Array_XYZ>; 

Example: ROUTE REL Flag TruckRoad (+17.3997,1.00,-17.3348) 

                                 (+17.3997,1.00,-17.3348) 

                                 (+23.7191,1.00,-27.9968) 

                                 (+19.8434,1.00,-33.5500); 

  

This statement is similar to the previous statement and it also establishes a motion path 

by defining its constituent points. The difference is that the coordinates of the beginning, 

intermediate, and end points have to be expressed relative to a reference point (the 

coordinate of which has been previously defined in the global space). The required steps 

to create a reference point in ARVISCOPE are described in Appendix B. The first, 

second, and third coordinate values for each point are its relative distance along X, Y, and 

Z axes to the reference point. ARVISCOPE automatically constructs a route by 

calculating global coordinate values of each point and connecting the corresponding line 

segments. It is also possible to define a route by specifying absolute global positions of 
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its points in terms of longitude, latitude, and altitude. This is described in ROUTE 

statement. 

 

 

Syntax: POSITION <ObjectName> AT <Point_XYZ>; 

Example: POSITION DumpTruck AT (-83.714569,42.298058,270.00); 

 

This statement is used to place a CAD object in the augmented scene by defining its 

global position in terms of longitude, latitude, and altitude values. It is also possible to 

place a CAD object in the scene by specifying relative distances between the object and a 

reference point with known global position in terms of longitude, latitude, and altitude. 

This is described in POSITION REL statement. In addition, an object can be placed on a 

predefined route in the scene. This is described in POSITION ON statement. 

 

 

Syntax: POSITION <ObjectName> ON <RouteName>; 

Example: POSITION DumpTruck ON TruckRoad; 

 

This statement is used to place a CAD object on a predefined route. By default, the object 

will be placed at the beginning of the route. It is also possible to place a CAD object in 

the scene by specifying relative distances between the object and a reference point with 

known global position in terms of longitude, latitude, and altitude. This is described in 

POSITION REL statement. In addition, an object can be placed on a specific point with 

known global position in terms of longitude, latitude, and altitude. This is described in 

POSITION AT statement. 
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Syntax: POSITION <ObjectName> REL <Reference> <Point_XYZ>; 

Example: POSITION DumpTruck REL Flag (+17.40,1.00,-17.34); 

 

This statement is used to place a CAD object relative to a reference point, the coordinate 

values of which have been previously defined in global space. The required steps to 

create a reference point in ARVISCOPE are described in Appendix B. It is also possible 

to place a CAD object on a specific point with known global position in terms of 

longitude, latitude, and altitude. This is described in POSITION AT statement. In 

addition, an object can be placed on a predefined route in the scene. This is described in 

POSITION ON statement. 

 

 

Syntax: ADJUST GROUP <GroupName> RGP <Value>; 

Example: ADJUST GROUP Truck RGP 6.5; 

 

This statement is used to assign a Rear Guide Point (RGP) value to a group of objects. 

RGP is an imaginary point behind the Local Origin (LO) of a CAD object which always 

remains on the route (just as the local origin of the CAD object does) when the CAD 

object is traveling along it. Assigning RGP to a CAD object leads to a more smooth 

motion on routes as it eliminates sharp changes in the object heading when it reaches 

intermediate points on a route. Figure A.3 shows how RGP affects the motion of a truck 

at an intermediate point of a route. In this Figure, the two main points are denoted by LO 

and RGP on the CAD object. As the CAD object approaches the intersection of two 

segments (Figure A.3.a), both RGP and LO points are on the route. Since LO is in front 

of RGP, it reaches the intersection first (Figure A.3.b). While LO remains on the route as 

the CAD object turns, RGP is clamped to the route (Figure A.3.c) until RGP also reaches 

the intersection (Figure A.3.d). At this point, the turn is complete and both LO and RGP 

points will be transferred to the next route segment (Figure A.3.e). The most important 

step in this Figure is part (c) in which LO is on the next route segment and RGP is 

located on the previous segment. This, in fact, has the primary effect on smooth motion 

as any sharp turn of the CAD object may violate the rule that both these points have to 
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remain on the route at any given time instant. Since this is done continuously and for all 

the points on a route segment, the final result is a smooth turn as opposed to a sudden 

change in the CAD object heading.  

 

  
           (a)                                                                           (b) 

  
            (c)                                                                           (d) 

 
                 (e)                       

 

Figure A.3 – Using RGP to Depict Smooth Turns on a Route 
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Syntax: ADJUST GROUP <GroupName> FORCLR <Value>; 

Example: ADJUST GROUP Equipment FORCLR 3.0; 

 

This statement is used to define the fore clearance distance for a group of CAD objects. 

Fore clearance is defined as the distance between the local origin of a CAD object and the 

closest CAD object located in front of it on the same route. 

 

 

Syntax: ADJUST GROUP <GroupName> AFTCLR <Value>; 

Example: ADJUST GROUP Equipment AFTCLR 8.0; 

 

This statement is used to define the after clearance distance for a group of CAD objects. 

After clearance is defined as the distance between the local origin of a CAD object and 

the closest CAD object located behind it on the same route. Fore and after clearance 

values are important especially for safety measures on a construction site and when 

visibility is limited in certain directions. For example, dump trucks should not get too 

close to each other or they should always keep a certain clearance distance from pieces of 

excavating equipment. Figure A.4 shows the definition of fore and after clearance values 

for an excavator. 

 
Figure A.4 – Definition of Fore and After Clearance Distances 
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Syntax: ADJUST MODEL <ObjectName> RGP <Value>; 

Example: ADJUST MODEL DumpTruck RGP 6.5; 

 

This statement is used to assign a RGP value to a single CAD object. 

 

 

Syntax: ADJUST MODEL <ObjectName> FORCLR <Value>; 

Example: ADJUST MODEL Excavator FORCLR 3.0; 

 

This statement is used to define the fore clearance distance for a single CAD object. 

 

 

Syntax: ADJUST MODEL <ObjectName> AFTCLR <Value>; 

Example: ADJUST MODEL Excavator AFTCLR 8.0; 

 

This statement is used to define the after clearance distance for a single CAD object. 

 

 

Dynamic Statements 
 

Syntax: HRZORIENT <ObjectName> <YawValue>; 

Example: HRZORIENT Plane 50; 

 

This statement is used to change the local horizontal orientation (heading) of a CAD 

model in the augmented scene. This is done by specifying the amount of yaw angle in the 

second parameter. Figure A.5 shows the definition of yaw, pitch, and roll angles for the 

blade of a dozer in ARVISCOPE coordinate system. 
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Figure A.5 – Definition of Yaw, Pitch, and Roll Angles 

 

 

Syntax: VRTORIENT <ObjectName> <PitchValue>; 

Example: VRTORIENT Plane 30; 

 

This statement is used to change the local vertical orientation of a CAD model in the 

augmented scene. This is done by specifying the amount of pitch angle in the second 

parameter. 

 

Syntax: SIDEORIENT <ObjectName> <RollValue>; 

Example: SIDEORIENT Plane 10; 

 

This statement is used to change the local side orientation of a CAD model in the 

augmented scene. This is done by specifying the amount of roll angle in the second 

parameter. 
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Syntax: ORIENT <ObjectName> <Axis> <Value> <Duration>; 

Example: ORIENT Boom Y 45 15; 

 

This statement is used to change the orientation of a CAD model about a certain plane by 

a certain value in a specified duration of animation time. Using the right hand rule, all 

clockwise rotations are considered negative and all counterclockwise rotations are 

positive. 

 

 

Syntax: ORIENTTO <ObjectName> <Axis> <Value> <Duration>; 

Example: ORIENTTO Boom Y 30 15; 

 

This statement is used to change the orientation of a CAD model about a certain plane to 

a certain target value in a specified duration of animation time. This statement is similar 

to the ORIENT statement. The only difference is that the third argument provided to the 

ORIENT statement indicates the amount of change in orientation while the same 

argument in the ORIENTTO statement indicates the final target orientation value of the 

CAD object. Again, all clockwise rotations are considered negative and all 

counterclockwise rotations are positive. 

 

 

Syntax: TRAVEL <ObjectName> <RouteName> <Duration>; 

Example: TRAVEL Truck TruckRoad 60; 

 

This statement is used to move a CAD model on a predefined route in a certain number 

of animation time units. Using a constant speed formula for a moving object, the speed of 

the CAD object is determined internally by dividing the length of the route (sum of the 

lengths of all its line segments) by the specified duration. The heading (yaw) of the 

moving CAD model is continuously changed to the direction of the route so that it is 

always aligned with the moving direction. 
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Syntax: TRANSFER <ObjectName> <RouteName> <Speed>; 

Example: TRANSFER Truck TruckRoad 45; 

 

This statement is used to move a CAD model on a predefined route at a certain constant 

speed. Using a constant speed formula for a moving object, the travel duration of the 

CAD object is determined internally by dividing the length of the route (sum of the 

lengths of all its line segments) by the specified speed. The heading (yaw) of the moving 

CAD model is continuously changed to the direction of the route so that it is always 

aligned with the moving direction. 

 

 

Syntax: SHIFT <ObjectName> <Vector> <Duration>; 

Example: SHIFT Truck (10,0,5) 15; 

 

This statement is used to translate a CAD model along a certain vector in the 3D space. 

The translation value is determined in the vector provided as the second argument. Using 

a constant speed formula for a moving object, the speed of the CAD object is determined 

internally by dividing the length of the vector by the specified duration. 

 

 

Syntax: SHIFTTO <ObjectName> <Point_XYZ> <Duration>; 

Example: SHIFTTO Truck (-83.714569,42.298058,270.00) 15; 

 

This statement is used to translate a CAD model to a certain global point, the position of 

which is provided in terms of longitude, latitude, and altitude. Using a constant speed 

formula for a moving object, the speed of the CAD object is determined internally by 

dividing the distance (between the current position of the CAD model and its new 

position) by the specified duration. 
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Syntax: SIZE <ObjectName> <ScaleChange> <Duration>; 

Example: SIZE Cable (0,50,0) 15; 

 

This statement is used to change the size (scale) of a CAD model by a certain amount 

along its local axes. The ScaleChange argument consists of a vector which expresses 

the change in scale (size) of the CAD model along its local X, Y, and Z axis respectively. 

A positive value indicates expansion and a negative value indicates shrinkage in size. For 

example, if the current scale of a CAD object is (5,5,5), applying the SIZE statement 

with a scale factor of (2,2,2) will result in its final scale being (7,7,7).   

 

 

Syntax: SIZETO <ObjectName> <ScaleTarget> <Duration>; 

Example: SIZETO Cable (0,55,0) 15; 

 

This statement is used to change the size (scale) of a CAD model to a certain size (scale) 

along its local axes. The ScaleChange argument consists of a vector which expresses 

the target scale (size) of the CAD model along its local X, Y, and Z axes respectively. 

Again, a positive value indicates expansion and a negative value indicates shrinkage in 

size. This statement is similar to the SIZE statement. The only difference is that the 

second argument provided to the SIZE statement indicates the amount of change in the 

current size (scale) of the CAD model while the same argument in the SIZETO statement 

indicates the final size (scale) value of the CAD object. For example, if the current scale 

of a CAD object is (5,5,5), applying the SIZETO statement with a scale factor of 

(2,2,2) will result in its final scale being (2,2,2).  Figure A.6 shows examples of 

the SIZE and SIZETO statements.  
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Figure A.6 – Changing the Scale of a CAD Model Using Two Different Statements 

 
Control Statements 
 

Syntax: SIMTIME <TimeValue>; 

Example: SIMTIME 125; 

 

When this statement is called, further reading of the animation trace file is suspended 

until the animation time reaches the time value specified as the argument. ARVISCOPE 

then processes the statements that follow it until the next SIMTIME statement is reached. 

After verifying that the TimeValue is greater than or equal to the current animated 

time, ARVISCOPE suspends the reading of any more lines from the trace file until the 

animation time specified by the SIMTIME statement has been reached or exceeded. 

When that happens, ARVISCOPE reads and processes the next line(s) in the trace file 

until another SIMTIME statement is encountered. This procedure repeats until the end of 

the trace file is reached. Figure A.7 shows how a sample trace file clustered using the 

SIMTIME statement is read and processed by ARVISCOPE in the course of an 

animation. 
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Figure A.7 – Clustering an Animation Trace File Using the SIMTIME Statement 

 

By default, an AR animation runs at a 1:1 time ratio in ARVISCOPE. This essentially 

means that one real clock second corresponds to one simulation time unit. Thus, if a truck 

is set to move along a route for 2 minutes, its moving duration has to be set to 120 units 

inside the animation trace file. This guarantees real time user interaction with the scene 

by walking inside the animation at normal speed. A too low or too high animation speed 

keeps the user from being involved at a normal rate of walking or head rotation. The 

exception, however, is the case in which the user is only an observer of the animation 

with no real interaction with the scene. In this case, the animation speed can be set to be 

higher or lower than the normal rate to animate very slow or very fast operations 

respectively. 
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Appendix B 
 

Defining a Global Reference Point 
 

 
A global reference point is a point in the 3D augmented space with known longitude, 

latitude, and altitude values. In order to place 3D objects in the scene (POSITION 

statement) or defining points of a route (ROUTE statement) in ARVISCOPE, the first step 

is to obtain their global positions in terms of longitude, latitude, and altitude values to be 

used inside the animation trace file. This can become a very time consuming and labor 

intensive task as the size of the project and the number of points of interest increase. An 

intuitive approach to reduce the amount of site measurements for each point was to 

replace the global position of a point by its relative distances to a known global reference 

point (i.e. known benchmark). In most cases, this information is already provided to the 

modeler in the project documentation and survey maps. As discussed in Chapter 2, it is a 

common practice in drawing the site layout plans to specify local position of important 

objects relative to the positions of a number of known surveying benchmarks. Using the 

positions of these benchmarks as global reference points in creating ARVISCOPE 

animation trace files can result in significant time savings during the process of modeling 

and animating the corresponding simulated construction operation. 

 

A global reference point in ARVICOPE is defined as an object placed in a known global 

position using the POSITION statement. The geometry of this object can be selected 

arbitrarily and does not effect the overall AR animation. In order to be consistent, 3D 

models of simple primitives (e.g. small colored spheres or boxes) were used in this
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research to define a global reference point. After a global reference point is defined, it 

can be used by other statements inside the animation trace file to place more 3D objects 

in the augmented scene relative to the global reference point. As described earlier in this 

Appendix and in Chapter 2, POSITION and ROUTE are two primary ARVISCOPE 

statements that use global referencing. The details of how ARVISCOPE interprets each 

statement and calculates global position of each point or 3D object based on its relative 

distance to the global reference point is discussed in detail in Chapter 2 and Appendix D. 

Figure B.1 shows portions of an ARVISCOPE trace file. 

 
[1]  /The global reference point 
[2]  LOADMODEL Reference RedBox.ac; 
[3]  OBJECT BM Reference; 
[4]  POSITION BM AT (-83.707000,42.29560,265.00); 
[5] 

[6]  /The hauling route 
[7]  ROUTE HaulRoad REL BM (20.000,0,-5.500)  
[8]              (112.125,0,44.100) 
[9]                   (191.675,0,-56.450) 
[10]                        (163.400,0,-142.900); 
[11] /The excavator spot 
[12] LOADMODEL ExcBase ExcBase.ac; 
[13] LOADMODEL ExcCabin ExcCabin.lwo; 
[14] LOADMODEL ExcBoom ExcBoom.lwo; 
[15] LOADMODEL ExcStick ExcStick.lwo; 
[16] LOADMODEL ExcBucket ExcBucket.ac; 
[17] OBJECT ExcBase ExcBase; 
[18] OBJECT ExcCabin ExcCabin; 
[19] OBJECT Boom ExcBoom; 
[20] OBJECT Stick ExcStick; 
[21] OBJECT ExcBucket ExcBucket; 
[22] CONNECT ExcCabin ExcBase (0,0,0); 
[23] CONNECT Boom ExcCabin (3,4.48,0); 
[24] CONNECT Stick Boom (10.5,7.25,0); 
[25] CONNECT ExcBucket Stick (12.2,-9.3,0); 
[26] POSITION ExcBase REL BM (5.00,0.00,-3.00); 
 
    . . . 
 

 

Figure B.1 – Using Global Referencing in an ARVISCOPE Animation Trace File 

 

In this Figure, the 3D file of a red box is first loaded (line 2) and an instance of this 

model called BM is created as a global reference point (line 3). BM is then placed at a 
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known position in the global space (line 4). The route HaulRoad is then expressed be 

defining the coordinates of its end and mid points relative to BM (lines 7 through 10). A 

virtual model of an excavator is then created by loading and connecting individual 3D 

models for the base, cabin, boom, stick, and shovel (lines 12 through 25). The virtual 

excavator is then placed relative to BM (line 26). 
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Appendix C 
 

Guide to Create an ARVISCOPE Animation 
 

 
In this Appendix, the process of creating an ARVISCOPE animation trace file is 

discussed in more detail in order to explain how the statements inside the trace file 

describe an augmented scene and the motion of objects during the course of an 

Augmented Reality (AR) animation. In order to achieve this objective, an earthmoving 

operation (also discussed in Section 6.3) is visualized using the ARVISCOPE animation 

authoring language. This operation consists of two dump trucks and one excavator. Each 

dump truck waits to be loaded by the excavator before it travels to the dumping area. 

After it dumps the soil, it returns to the loading area for the next loading cycle. The 

loading cycle repeats several times before the operation ends. 

 

The animated earthmoving operation in this Appendix is for illustrative purposes. As a 

result, in order to maintain clarity in explaining the example and the process of creating 

an ARVISCOPE animation trace file, activity durations have been assumed to be 

deterministic and with rounded and stepped values. In addition, the travel distances have 

been assumed to be relatively small so that both the loading and dumping areas are 

simultaneously visible in the animation snapshots shown in the subsequent Figures. The 

overall process described in this Appendix can, however, be used for different simulation 

models with arbitrary stochastic parameters and levels of detail of the underlying 

processes. 
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The cycle starts with dump truck 1 being loaded by the excavator while dump truck 2 

unloads itself in the dumping area. As soon as dump truck 1 is loaded, it starts hauling to 

the dumping area while dump truck 2 returns to the loading area. The cycle continues 

with dump truck 1 dumping soil and dump truck 2 being loaded by the excavator after 

which the two dump trucks start moving towards the loading and dumping areas 

respectively. The entire dump truck cycle takes 110 animation time units. This value is 55 

time units for the excavator since it loads two dump trucks consequently. 

 

The following assumptions were made in this experiment: 

(1) The excavator’s interaction with the soil was not modeled or visualized. Only the 

kinematic motion of the excavator was animated ffdf. 

(2) The unloading process was modeled only by the truck bucket’s upward and 

downward motion. The interaction of the soil was not modeled or animated. 

 

Figure C.1 shows the layout of the jobsite where the earthmoving operation takes place. 

As shown in this Figure, two separate routes have been defined: Haul which is defined 

by points 1 through 4 and used by a loaded dump truck to haul the soil from the loading 

area to the dumping area, and Return which is defined by points 4, 5, and 1, and used 

by an empty dump truck to return from the dumping area to the loading area. The 

Excavator is also positioned in the scene such that its local origin is exactly placed on the 

global reference point BM the coordinates of which (in terms of longitude, latitude, and 

altitude) are known. 
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Figure C.1 – Layout of the Earthmoving Operations Jobsite 

 

Figure C.2 shows the beginning part of the ARVISCOPE animation trace file associated 

with the earthmoving operation illustrated above. As discussed in Chapter 2, the 

animation trace file is a list of ARVISCOPE statements from three different categories 

(scene construction, dynamic, and control statements) chronologically ordered to describe 

the scene and events that are happening in the augmented world at each animation frame.  
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[1] SIMTIME 0; 
 
[2] LOADMODEL Reference BM.ac; 
[3] OBJECT BM Reference; 
[4] POSITION BM AT (-83.707000,42.29560,265.00); 
 
[5] ROUTE Return REL BM (83.400,0.000,-100.000) 

       (57.250,0.000,-89.800)  
       (10.000,0.000,-5.500); 

[6] ROUTE Haul REL BM (10.000,0.000,-5.500)  
                     (60.000,0.000,44.100)  
                     (90.000,0.000,-40.000)  
                     (83.400,0.000,-100.000); 
 
[7] /The Trucks 
[8] LOADMODEL Truck RedMackBody.lwo; 
[9] LOADMODEL TruckBucket RedMackBucket.lwo; 
[10] ADJUST GROUP Truck AFTCLR 10; 
[11] ADJUST GROUP Truck RGP 5; 
[12] OBJECT Truck1 Truck; 
[13] OBJECT TruckBucket1 TruckBucket; 
[14] CONNECT TruckBucket1 Truck1 (-7,2.2,0); 
[15] OBJECT Truck2 Truck; 
[16] OBJECT TruckBucket2 TruckBucket; 
[17] CONNECT TruckBucket2 Truck2 (-7,2.2,0); 
[18] POSITION Truck1 ON Haul; 
[19] POSITION Truck2 ON Return; 
 
[20] /The Excavator 
[21] LOADMODEL Base ExcBase.ac; 
[22] LOADMODEL Cabin ExcCabin.lwo; 
[23] LOADMODEL Boom ExcBoom.lwo; 
[24] LOADMODEL Stick ExcStick.lwo; 
[25] LOADMODEL Bucket ExcBucket.ac; 
[26] OBJECT ExcBase Base; 
[27] OBJECT ExcCabin Cabin; 
[28] OBJECT ExcBoom Boom; 
[29] OBJECT ExcStick Stick; 
[30] OBJECT ExcBucket ExcBucket; 
[31] CONNECT ExcCabin ExcBase (0,0,0); 
[32] CONNECT ExcBoom ExcCabin (3,4.48,0); 
[33] CONNECT ExcStick ExcBoom (10.5,7.25,0); 
[34] CONNECT ExcBucket ExcStick (12.2,-9.3,0); 
[35] POSITION ExcBase REL BM (0.00,0.00,0.00); 
[36] ORIENT ExcCabin HOR -10 0.00; 

 
Figure C.2 – Contents of the ARVISCOPE Animation Trace File (Part 1) 
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In Figure C.2, the numbers inside the parentheses at the beginning of each line of the 

trace file are not parts of the trace file and they have only been added to facilitate clarity 

in the upcoming discussion. The statement group shown in Figure C.2 is preceded by the 

control statement SIMTIME with an argument 0 (line 1), which means that all the 

subsequent statements in this group are executed immediately after the animation starts. 

The first set of statements shown in this Figure (lines 2, 3, and 4) describe the layout of 

the augmented scene by defining the global reference point BM (Appendix B) and placing 

it on the scene. The two routes (Return and Haul) are then defined by providing the 

position for their beginning, intermediate, and end points along the three major axes X, 

Y, and Z relative to the reference point BM (lines 5 and 6). 

 
In lines 7 through 19 of Figure C.2, the two dump trucks are created and placed in the 

scene. Line 7 contains a comment statement and is not executable. In lines 8 and 9, CAD 

models for the dump truck chassis and bucket are loaded using the LOADMODEL 

statement. The After Clearance and Rear Guide Point (RGP) values for the dump trucks 

are then set in lines 10 and 11. As discussed in Appendix A, these two values can be 

optionally specified for a group of CAD objects or for certain individual CAD objects. 

 

An instance of the dump truck chassis called Truck1 is defined in line 12 followed by 

the definition of an instance of the dump truck bucket called TruckBucket1 in line 13. 

TruckBucket1 is then connected to Truck1 to form a complete dump truck (line 14). 

The same set of statements is repeated in lines 15, 16, and 17 to create the second dump 

truck called Truck2. Truck1 is then placed on route Haul (line 18) and Truck2 is 

placed on route Return (line 19). 

 

Line 20 contains a comment statement and is not executable. In lines 21 through 25, five 

separate CAD models for the excavator base, cabin, boom, stick, and bucket are loaded 

and stored as five distinct groups of CAD models with specified naming conventions. In 

lines 26 through 30, an instance of each of these groups is created for the excavator 

shown in Figure C.1. These instances are called ExcBase, ExcCabin, ExcBoom, 

ExcStick, and ExcBucket. In line 31, ExcCabin is connected to ExcBase as a 
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child object. ExcBoom is then connected to ExcCabin in line 32 and ExcStick is 

connected to ExcBoom is line 33. Finally, ExcBucket is connected to ExcStick 

which results in a complete excavator meta-object. In line 35, ExcBase is placed in the 

scene relative to the global reference point BM. Since the relative position vector (last 

argument in line 35) is (0,0,0) the excavator will be placed exactly on BM. In line 36, 

the initial horizontal orientation of the excavator cabin (yaw angle) is instantly changed 

by -10 degrees. 

 

By the end of the execution of this set of statements, the initial layout of the augmented 

scene is defined and all CAD objects are positioned at their planned location inside the 

animation. Figure C.3 shows a view of the scene at animation time 0 immediately after 

line 36 shown in Figure C.2 is executed. 

 
Figure C.3 – View of the AR Earthmoving Operation at Animation Time 0 

 

Figure C.4 shows the remaining part of the ARVISCOPE animation trace file associated 

with the earthmoving operation. Similar to Figure C.2, the numbers inside the 

parentheses at the beginning of each line of the animation trace file are not parts of the 

trace file and they have only been added to facilitate clarity in the upcoming discussion.  
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[37] SIMTIME 5; 
 
[38] ORIENT ExcStick VERT -20 5.00; 
[39] ORIENT ExcBucket VERT -90 5.00; 
 
[40] SIMTIME 12; 
 
[41] ORIENT ExcBoom VERT 42 5.00; 
[42] ORIENT ExcStick VERT -5 5.00; 
 
[43] SIMTIME 19; 
 
[44] ORIENT ExcCabin HOR 30 5.00; 
 
[45] SIMTIME 25; 
 
[46] ORIENT ExcBucket VERT 52 3.00; 
[47] ORIENT TruckBucket2 VERT 55 3.00; 
 
[48] SIMTIME 30; 
 
[49] ORIENT ExcBucket VERT -52 2.00; 
[50] ORIENT TruckBucket2 VERT -55 3.00; 
 
[51] SIMTIME 32; 
 
[52] ORIENT ExcCabin HOR -30 3.00; 
 
[53] SIMTIME 35; 
 
[54] ORIENT ExcBoom VERT -42 3.00; 
[55] ORIENT ExcStick VERT 25 3.00; 
[56] ORIENT ExcBucket VERT 90 3.00; 
[57] TRAVEL Truck1 Haul 20; 
[58] TRAVEL Truck2 Return 15; 
 
[59] SIMTIME 55; 
 
[60] POSITION Truck1 ON Return; 
[61] POSITION Truck2 ON Haul; 
[62] ORIENT ExcCabin HOR -10 0.00; 

 

Figure C.4 – Contents of the ARVISCOPE Animation Trace File (Part 2) 

 

Line 37 of Figure C.4 contains the control statement SIMTIME with an argument 5 

which means that all the subsequent statements up to the next SIMTIME statement are 

executed at animation time 5. These lines are numbered as 38 and 39 in Figure C.4 and 



 204

they correspond to the rotation of the excavator stick (line 38) and the attached excavator 

bucket (line 39). Each of these two orientation changes takes 5 animation time units and 

as a result, the execution of these two lines will finish at animation time 10. In line 38, 

the initial vertical orientation of ExcStick (pitch angle) is changed -20 degrees which 

causes the excavator stick to lower from its initial position. In line 39, the initial vertical 

orientation of ExcBucket (pitch angle) is changed -90 degrees which causes the 

excavator bucket to rotate inwards and dig into the soil. Figure C.5 shows a view of the 

scene at animation time 10 (i.e. at the end of the execution of line 39). 

 
Figure C.5 – View of the AR Earthmoving Operation at Animation Time 10 

 

The execution of the ARVISCOPE animation trace file continues at line 40 which 

contains the control statement SIMTIME with an argument 12 which means that all the 

subsequent statements up to the next SIMTIME statement are executed at animation time 

12. These lines are numbered as 41 and 42 in Figure C.4 and they correspond to the 

rotation of excavator boom (line 41) and excavator stick (line 42). Each of these two 

orientation changes takes 5 animation time units and as a result, the execution of these 

two lines will finish at animation time 17. In line 41, the initial vertical orientation of 
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ExcBoom (pitch angle) is changed 42 degrees which causes the excavator boom to rise 

from its initial position. In line 42, the current vertical orientation of ExcStick (pitch 

angle) is changed -5 degrees which causes the excavator stick to rotate further inward. 

Figure C.6 shows a view of the scene at animation time 17 (i.e. at the end of the 

execution of line 42). 

 
Figure C.6 – View of the AR Earthmoving Operation at Animation Time 17 

 

Line 43 of the ARVISCOPE animation trace file in Figure C.4 contains another control 

statement SIMTIME with an argument 19 which means that the following statement in 

line 44 is executed at animation time 19. The statement in line 44 is ORIENT which will 

cause the excavator cabin to change its current orientation by 30 degrees in 5 animation 

time units in order for the excavator bucket to reach to the dump truck at animation time 

24. Figure C.7 shows a view of the scene at animation time 24 and by the end of the 

execution of line 44. 
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Figure C.7 – View of the AR Earthmoving Operation at Animation Time 24 

 

In line 45, control statement SIMTIME is used again with an argument 25. As a result, 

the following lines 46 and 47 will be executed immediately at animation time 25. In line 

46, the excavator bucket is rotated vertically by 52 degrees in 3 animation time units in 

order to load the empty dump truck in the loading area. In line 47, the full dump truck, 

assumed to be located at the dumping area at the beginning of the visual simulation, starts 

unloading soil by raising its bucket by 55 degrees in 3 animation time units. Both these 

operations end at animation time 28. Figure C.8 shows a view of the scene at animation 

time 28 (i.e. at the end of the execution of line 47). 
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Figure C.8 – View of the AR Earthmoving Operation at Animation Time 28 

 

Line 48 of the ARVISCOPE animation trace file in Figure C.4 contains a control 

statement SIMTIME with an argument 30. As a result, the two subsequent lines 49 and 

50 will be executed as soon as the animation clock reaches 30. In line 49, the excavator 

bucket changes its orientation by rotating 52 degrees inwards in 2 animation time units. 

This operation ends in animation time 32. Line 50 corresponds to the dump truck in the 

dumping area which has just finished unloading the soil and is ready to lower its bucket. 

The dump truck bucket starts lowering by 55 degrees which takes 3 animation time units. 

As a result, this operation finishes at animation time 33. Figure C.9 shows a view of the 

scene at animation time 32 in which the excavator bucket has already changed its 

orientation and the dump truck bucket is in the process of being lowered.  

 

Figure C.10 shows a view of the scene at animation time 33 in which the bucket of the 

empty dump truck has been completely lowered and the dump truck is ready to leave the 

dumping area. 
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Figure C.9 – View of the AR Earthmoving Operation at Animation Time 32 

 
 

 
Figure C.10 – View of the AR Earthmoving Operation at Animation Time 33 
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In line 51 of the ARVISCOPE animation trace file of Figure C.4, another SIMTIME 

statement with an argument 32 is called. This essentially means that the statement in line 

52 will be executed at animation time 32. In line 52, the current orientation of the 

excavator cabin changes by -30 degrees which takes 3 animation time units. Figure C.11 

shows a view of the scene at animation time 35. 

 

Line 53 contains another SIMTIME statement with an argument 35. As a result, lines 54 

through 58 will be executed at animation time 35. Lines 54, 55, and 56 correspond to 

three separate orientation changes for the excavator boom, excavator stick, and excavator 

bucket. Each of these orientation changes take 3 animation time units. In line 57, the full 

dump truck is set to haul on the Haul route for 20 animation time units and in line 58, 

the empty dump truck in the dumping area is set to return to the loading area on the 

Return route in 15 time units. Figure C.12 shows a view of the scene at animation time 

38. Note that in this Figure, the dump trucks are still in the process of moving from the 

loading area to the dumping area and vice versa. 

 
Figure C.11 – View of the AR Earthmoving Operation at Animation Time 35 
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Figure C.12 – View of the AR Earthmoving Operation at Animation Time 38 

 
As shown in line 58 of Figure C.4, the returning process takes 15 animation time units. 

As a result, at animation time 50, the empty dump truck has completed its trip from the 

dumping area to the loading area and the full dump truck is still on its way to the 

dumping area since the hauling process takes 20 time units and finishes at animation time 

55 (line 57 in Figure C.4). Figure C.13 shows a view of the scene at animation time 50. 

Note that in this Figure, the empty dump truck is already at the end of the route Return 

waiting to be placed on the route Haul and loaded by the excavator, while the full dump 

truck is still in the process of moving from the loading area to the dumping area. 
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Figure C.13 – View of the AR Earthmoving Operation at Animation Time 50 

 

The last group of statements in the ARVISCOPE animation trace file shown in Figure 

C.4 starts with a SIMTIME statement with an argument 55. As a result, lines 60, 61, and 

62 will be executed at animation time 55. In line 60, the full dump truck (which has now 

completed its trip to the dumping area) is placed on route Return before it can unload 

the soil. In line 61, the empty dump truck is placed on route Haul in order to be loaded 

by the excavator. Finally, in line 62, the current orientation of the excavator cabin is 

changed by -10 degrees to get the excavator to the correct position to start a new loading 

cycle. Figure C.14 shows a view of the scene at animation time 55. Note that this view is 

identical to the view shown in Figure C.3 which corresponds to animation time 0 as the 

underlying earthmoving operation is cyclic. As a result, the entire cycle can repeat itself 

for several consecutive 55 animation time unit intervals to animate a longer earthmoving 

operation. In order to simplify the explanation of the ARVISCOPE animation language, 

the stochastic nature of the process is not considered in this example. However, if the 

underlying DES model includes uncertainties in parameters such as activity durations, 

such uncertainties can be conveniently reflected in the process of animation generation 

and taken into account in the generated ARVISCOPE animation trace file by changing 
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the duration of the individual tasks inside the AR animation trace file either manually or 

automatically (as described later in this Appendix).  

 
Figure C.14 – View of the AR Earthmoving Operation at Animation Time 55 

 

Figure C.15 shows the contents of the ARVISCOPE animation trace file if another 

earthmoving cycle is to be animated. The statements shown in this Figure are identical to 

those of Figure C.4. There are two major differences between the statements in Figures 

C.4 and C.15. First, 55 animation time units have been added to the original argument 

values of the SIMTIME statements in Figure C.4. In addition, the original numbering 

used for the two dump trucks has been reversed to reflect the fact that they have switched 

position during the first earthmoving cycle.  
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[63] SIMTIME 60; 
 
[64] ORIENT ExcStick VERT -20 5.00; 
[65] ORIENT ExcBucket VERT -90 5.00; 
 
[66] SIMTIME 67; 
 
[67] ORIENT ExcBoom VERT 42 5.00; 
[68] ORIENT ExcStick VERT -5 5.00; 
 
[69] SIMTIME 74; 
 
[70] ORIENT ExcCabin HOR 30 5.00; 
 
[71] SIMTIME 80; 
 
[72] ORIENT ExcBucket VERT 52 3.00; 
[73] ORIENT TruckBucket1 VERT 55 3.00; 
 
[74] SIMTIME 85; 
 
[75] ORIENT ExcBucket VERT -52 2.00; 
[76] ORIENT TruckBucket1 VERT -55 3.00; 
 
[77] SIMTIME 87; 
 
[78] ORIENT ExcCabin HOR -30 3.00; 
 
[79] SIMTIME 90; 
 
[80] ORIENT ExcBoom VERT -42 3.00; 
[81] ORIENT ExcStick VERT 25 3.00; 
[82] ORIENT ExcBucket VERT 90 3.00; 
[83] TRAVEL Truck2 Haul 20; 
[84] TRAVEL Truck1 Return 15; 
 
[85] SIMTIME 110; 
 
[86] POSITION Truck2 ON Return; 
[87] POSITION Truck1 ON Haul; 
[88] ORIENT ExcCabin HOR -10 0.00; 

 

Figure C.15 – Contents of the ARVISCOPE Animation Trace File (Part 3) 
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Automated Generation of the Animation Trace File 
 

As discussed in Chapter 2, an ARVISCOPE animation trace file corresponding to a 

simulation model can be automatically created during a simulation run. Manual 

generation of an animation trace file is typically not practical except in the case of simple 

demonstrative examples of short animated duration. Automatic generation of a trace file 

is the intended method since it requires less time and produces accurate results (provided 

that the underlying simulation model is in turn accurate itself). Automatic generation of 

an ARVISCOPE animation trace file requires instrumentation of a simulation model (i.e. 

including additional code in a simulation model). In this Section, STROBOSCOPE is 

used to automatically create the contents of an ARVISCOPE animation trace file as the 

DES model runs. STROBOSCOPE, as introduced in Chapter 2, is a programmable and 

extensible simulation system designed for modeling complex construction operations in 

detail and for the development of special purpose simulation tools [1]. Figure C.16 shows 

the Activity Cycle Diagram (ACD) for the earthmoving operation introduced and 

discussed earlier in this Appendix. 

 

 
Figure C.16 – ACD for an Earthmoving Operation 
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The illustrated operation in this Figure is largely self-explanatory and consists of typical 

load-haul-dump-return cycles involving the transport of soil from the loading area to the 

dumping area (Figure C.1). In Figure C.16, the excavator cycle is shown in activities 

shaded gray and the dump truck cycle is shown in activities with a white background. 

Each cycle begins with the excavator digging the soil (which is shown in the activity 

shaded black). The intention of this Section of the Appendix is to describe the process of 

visualizing modeled operations in ARVISCOPE and not to describe the process of 

modeling itself or to design earthmoving operations using DES tools. As such, the 

productivity data and the system parameters of the model, such as the volume of work, 

required productivity, available equipment, and steps required to maximize productivity, 

are excluded from the discussion. The reader is referred to the STROBOSCOPE 

documentation introduced in Chapter 2 [1] for discussion on the elements of a DES 

model. 

 

Figures C.17 through C.21 show the contents of the STROBOSCOPE file associated with 

the ACD of Figure C.16. The details of the STROBOSCOPE simulation language and the 

syntax of its statements are not described here for brevity. Readers unfamiliar with this 

language should refer to the STROBOSCOPE documentation introduced in Chapter 2 [1] 

in order to comprehend the following discussion and Figures.  

 
/Definition of characterized resources. 
 
CHARTYPE  DumpTruck   ID; 
SUBTYPE  DumpTruck DumpTruck1 1; 
SUBTYPE  DumpTruck DumpTruck2 2; 
 
/Definition of generic resources. 
 
GENTYPE  Excavator; 
 
/Statements that define the queues. 
 
QUEUE  IdleExc  Excavator; 
QUEUE  RtdTrk  DumpTruck; 
QUEUE  IdleTrk  DumpTruck; 
QUEUE  FullTrk  DumpTruck; 

 

Figure C.17 – Contents of the STROBOSCOPE Simulation Input File (Part 1) 
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/Initialize the queues. 
 
INIT IdleExc  1; 
INIT FullTrk  1 DumpTruck2; 
INIT RtdTrk  1 DumpTruck1; 
 
/Statements that define the combi activities. 
 
COMBI  DigSoil; 
COMBI  Wait2Dump; 
COMBI  Wait4Load; 
 
/Statements that define the normal activities. 
 
NORMAL Rdy2Lift; 
NORMAL LiftBoom; 
NORMAL Rdy2Swing; 
NORMAL SwingCab; 
NORMAL Rdy2Empty; 
NORMAL EmptySoil; 
NORMAL Rdy2Go; 
NORMAL LiftEmpty; 
NORMAL SwingBack; 
NORMAL Restore; 
 
NORMAL Rdy2Haul; 
NORMAL Haul; 
NORMAL LiftBucket; 
NORMAL Dump; 
NORMAL LwrBucket; 
NORMAL Rdy2Return; 
NORMAL Return; 
NORMAL Dummy; 
 

Figure C.18 – Contents of the STROBOSCOPE Simulation Input File (Part 2) 
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/Statements that define the links. 
 
LINK T1 IdleTrk DigSoil; 
LINK T2 DigSoil Rdy2Lift DumpTruck; 
LINK T3 Rdy2Lift LiftBoom DumpTruck; 
LINK T4 LiftBoom Rdy2Swing DumpTruck; 
LINK T5 Rdy2Swing SwingCab DumpTruck; 
LINK T6 SwingCab Rdy2Empty DumpTruck; 
LINK T7 Rdy2Empty EmptySoil DumpTruck; 
LINK T8 EmptySoil Rdy2Go DumpTruck; 
LINK T9 Rdy2Go LiftEmpty DumpTruck; 
LINK T10 LiftEmpty Rdy2Haul DumpTruck; 
LINK T11 Rdy2Haul Haul  DumpTruck; 
LINK T12 Haul  FullTrk; 
LINK T13 FullTrk Wait2Dump; 
LINK T14 Wait2Dump LiftBucket DumpTruck; 
LINK T15 LiftBucket Dump  DumpTruck; 
LINK T16 Dump  LwrBucket DumpTruck; 
LINK T17 LwrBucket Rdy2Return DumpTruck; 
LINK T18 Rdy2Return Return DumpTruck; 
LINK T19 Return Dummy  DumpTruck; 
LINK T20 Dummy  RtdTrk; 
LINK T21 RtdTrk Wait4Load; 
LINK T22 Wait4Load IdleTrk; 
 
LINK E1 IdleExc DigSoil; 
LINK E2 DigSoil Rdy2Lift Excavator; 
LINK E3 Rdy2Lift LiftBoom Excavator; 
LINK E4 LiftBoom Rdy2Swing Excavator; 
LINK E5 Rdy2Swing SwingCab Excavator; 
LINK E6 SwingCab Rdy2Empty Excavator; 
LINK E7 Rdy2Empty EmptySoil Excavator; 
LINK E8 EmptySoil Rdy2Go Excavator; 
LINK E9 Rdy2Go LiftEmpty Excavator; 
LINK E10 LiftEmpty SwingBack Excavator; 
LINK E11 SwingBack Restore Excavator; 
LINK E12 Restore IdleExc; 
 

Figure C.19 – Contents of the STROBOSCOPE Simulation Input File (Part 3) 
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/Set attributes of the network elements. 
 
DURATION DigSoil  '5'; 
DURATION Rdy2Lift '2'; 
DURATION LiftBoom '5'; 
DURATION Rdy2Swing '2'; 
DURATION SwingCab '5'; 
DURATION Rdy2Empty '1'; 
DURATION EmptySoil '3'; 
DURATION Rdy2Go  '2'; 
DURATION LiftEmpty '2'; 
DURATION SwingBack '3'; 
DURATION Restore  '3'; 
DURATION Rdy2Haul '3'; 
DURATION Haul  '20'; 
DURATION Wait2Dump '25'; 
DURATION LiftBucket '3'; 
DURATION Dump  '2'; 
DURATION LwrBucket '3'; 
DURATION Rdy2Return '2'; 
DURATION Return  '15'; 
DURATION Wait4Load '5'; 
DURATION Dummy  '5'; 

 
Figure C.20 – Contents of the STROBOSCOPE Simulation Input File (Part 4) 

 

 
/Simulate the operations for 2 loading cycles. 
 
SIMULATEUNTIL 'SimTime>110'; 
REPORT; 

 
Figure C.21 – Contents of the STROBOSCOPE Simulation Input File (Part 5) 
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The simulation input file shown in Figures C.17 through C.21 must be instrumented to 

generate ARVISCOPE animation commands during a simulation run. As shown in Figure 

C.22, the output file name and path for the ARVISCOPE animation trace file have to be 

determined first.  

 
/Set the output path for the animation trace file. 
 
OUTFILE ARVI "..\Trace.txt"; 

 
Figure C.22 – Instrumenting the STROBOSCOPE Simulation Input File (Part 1) 

 

The next step is to write the parts of the ARVISCOPE animation trace file that are 

independent of the activities occurring in a STROBOSCOPE simulation run. Those parts 

include the definition of the global reference point and routes, as well as statements 

required to load 3D models for the CAD objects inside the AR animation and if 

necessary, connecting them together to form meta-objects. As shown in Figure C.23, 

these statements are written exactly as they appear at the beginning of the ARVISCOPE 

animation trace file. Note that the term \059 in Figure C.23 and subsequent Figures is 

the ASCII code for “;” and will be replaced by “;” in the ARVISCOPE animation trace 

file.  

 

Finally, the lines that have to be added to the ARVISCOPE animation trace file as a 

result of each activity occurring within a simulation run are added to the 

STROBOSCOPE simulation input file. For example, the statement shown in Figure C.24, 

instructs STROBOSCOPE to add three lines of text to the ARVISCOPE animation trace 

file every time the excavator starts digging. As shown in Figure C.25, three lines will be 

added to the ARVISCOPE animation trace file as soon as the first instance of DigSoil 

occurs as a result of the statement shown in Figure C.24. If the duration of the activity in 

context is nondeterministic, each time an instance of that activity starts in the 

STROBOSCOPE simulation run, a different value for the activity duration will be used in 
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the simulation and added to the corresponding lines of the ARVISCOPE animation trace 

file. 

 
PRINT ARVI 
"SIMTIME 0.00\059 
 
/Global Reference Point 
LOADMODEL Reference BM.ac\059 
OBJECT BM Reference\059 
POSITION BM AT (-83.707000,42.29560,265.00)\059 
/The Routes 
ROUTE Return REL BM (83.400,0.000,-100.000) 

         (57.250,0.000,-89.800) 
         (10.000,0.000,-5.500)\059 

ROUTE Haul REL BM (10.000,0.000,-5.500)  
                  (60.000,0.000,44.100)  
                  (90.000,0.000,-40.000)  
                  (83.400,0.000,-100.000)\059 
/The Trucks 
LOADMODEL Truck RedMackBody.lwo\059 
LOADMODEL TruckBucket RedMackBucket.lwo\059 
ADJUST GROUP Truck AFTCLR 10\059 
ADJUST GROUP Truck RGP 5\059 
OBJECT Truck1 Truck\059 
OBJECT TruckBucket1 TruckBucket\059 
CONNECT TruckBucket1 Truck1 (-7,2.2,0)\059 
OBJECT Truck2 Truck\059 
OBJECT TruckBucket2 TruckBucket\059 
CONNECT TruckBucket2 Truck2 (-7,2.2,0)\059 
/The Excavator 
LOADMODELExcBase ExcBase.ac\059 
LOADMODELExcCabin ExcCabin.lwo\059 
LOADMODELExcBoom ExcBoom.lwo\059 
LOADMODELExcStick ExcStick.lwo\059 
LOADMODELExcBucket ExcBucket.ac; 
OBJECT ExcBase ExcBase\059 
OBJECT ExcCabin ExcCabin\059 
OBJECT ExcBoom ExcBoom\059 
OBJECT ExcStick ExcStick\059 
OBJECT ExcBucket ExcBucket\059 
CONNECT ExcCabin ExcBase (0,0,0)\059 
CONNECT ExcBoom ExcCabin (3,4.48,0)\059 
CONNECT ExcStick ExcBoom (10.5,7.25,0)\059 
CONNECT ExcBucket ExcStick (12.2,-9.3,0)\059 
POSITION ExcBase REL BM (0.00,0.00,0.00)\059 
ORIENT ExcCabin HOR -10 0.00\059\n"; 

  
Figure C.23 – Instrumenting the STROBOSCOPE Simulation Input File (Part 2) 
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ONSTART DigSoil PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT ExcStick VERT -20 %.2f\059 
ORIENT ExcBucket VERT -90 %.2f\059\n" 
SimTime DigSoil.Duration DigSoil.Duration; 

 
Figure C.24 – Instrumenting the STROBOSCOPE Simulation Input File (Part 3) 

 
 
SIMTIME 5.00; 
ORIENT ExcStick VERT -20 5.00; 
ORIENT ExcBucket VERT -90 5.00; 

 

Figure C.25 – Lines Added to the ARVISCOPE Animation Trace File for DigSoil 

 

The statement shown in Figure C.26 instructs STROBOSCOPE to add another three lines 

of text to the ARVISCOPE animation trace file every time the excavator lifts its boom. 

As shown in Figure C.27, three lines will be added to the ARVISCOPE animation trace 

file as soon as the first instance of LiftBoom occurs as a result of the statement shown 

in Figure C.26. 

 
ONSTART LiftBoom PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT ExcBoom VERT 42 %.2f\059 
ORIENT ExcStick VERT -5 %.2f\059\n" 
SimTime LiftBoom.Duration LiftBoom.Duration; 
 

Figure C.26 – Instrumenting the STROBOSCOPE Simulation Input File (Part 4) 

 
SIMTIME 12.00; 
ORIENT ExcBoom VERT 42 5.00; 
ORIENT ExcStick VERT -5 5.00; 

 

Figure C.27 – Lines Added to the ARVISCOPE Animation Trace File for LiftBoom 

 

As shown in Figures C.28 and C.29, the same process should be repeated for all other 

activities of the ACD depicted in Figure C.16. As a result, the ARVISCOPE animation 

trace file will contain other lines of text that will be written out when other parts of the 



 222

modeled operation take place. Thus, the time ordered sequence of animation statements 

written out by all the activities in the model during a simulation run constitutes the trace 

file required to visualize the modeled operations in ARVISCOPE. 

 
ONSTART SwingCab PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT ExcCabin HOR 20 %.2f\059\n" 
SimTime SwingCab.Duration;   
 
ONSTART EmptySoil PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT ExcBucket VERT 52 %.2f\059\n" 
SimTime EmptySoil.Duration;  
 
ONSTART LiftEmpty PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT ExcBucket VERT -52 %.2f\059\n" 
SimTime LiftEmpty.Duration; 
 
ONSTART SwingBack PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT ExcCabin HOR -35 %.2f\059\n" 
SimTime SwingBack.Duration; 
 
ONSTART Restore PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT ExcBoom VERT -42 %.2f\059 
ORIENT ExcStick VERT 25 %.2f\059 
ORIENT ExcBucket VERT 90 %.2f\059 
ORIENT ExcCabin HOR 5 %.2f\059\n" 
SimTime Restore.Duration Restore.Duration 
Restore.Duration Restore.Duration; 
 
ONSTART Haul PRINT ARVI 
"SIMTIME %.2f\059 
TRAVEL Truck%.0f Haul %.2f\059\n" 
SimTime Haul.DumpTruck.ID Haul.Duration; 
 
ONSTART LiftBucket PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT TruckBucket%.0f VERT 55 %.2f\059\n" 
SimTime LiftBucket.DumpTruck.ID 
LiftBucket.Duration; 
 

Figure C.28 – Instrumenting the STROBOSCOPE Simulation Input File (Part 5) 
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ONSTART LwrBucket PRINT ARVI 
"SIMTIME %.2f\059 
ORIENT TruckBucket%.0f VERT -55 %.2f\059\n" 
SimTime LwrBucket.DumpTruck.ID 
LwrBucket.Duration; 
 
ONSTART Return PRINT ARVI 
"SIMTIME %.2f\059 
TRAVEL Truck%.0f Return %.2f\059\n" 
SimTime Return.DumpTruck.ID Return.Duration; 
 
ONSTART Wait2Dump PRINT ARVI 
"SIMTIME %.2f\059 
POSITION Truck%.0f ON Return\059\n" 
SimTime Wait2Dump.DumpTruck.ID; 
 
ONSTART Wait4Load PRINT ARVI 
"SIMTIME %.2f\059 
POSITION Truck%.0f ON Haul\059\n" 
SimTime Wait4Load.DumpTruck.ID; 

 

Figure C.29 – Instrumenting the STROBOSCOPE Simulation Input File (Part 6) 

 

The size of the generated ARVISCOPE animation trace files depends on the amount of 

detail modeled and the length of the simulation. The size of typical trace files will vary 

from a few hundred lines for simple models to several thousand lines for detailed and 

complex models that simulate operations over long periods of time. For example, the 

ARVISCOPE animation trace file for visualizing 50 cycles of the earthmoving operation 

discussed in this Appendix is more than 1,780 lines long. The STROBOSCOPE model 

required only 14 animation specific commands to do this. Since there is no limit on the 

size of the ARVISCOPE animation trace files that can be processed, this is not a 

constraining issue. Figure C.30 shows a larger portion of the ARVISCOPE animation 

trace file that could be generated during a simulation run. 
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SIMTIME 60.00; 
ORIENT ExcStick VERT -20 5.00; 
ORIENT ExcBucket VERT -90 5.00; 
SIMTIME 67.00; 
ORIENT ExcBoom VERT 42 5.00; 
ORIENT ExcStick VERT -5 5.00; 
SIMTIME 74.00; 
ORIENT ExcCabin HOR 20 5.00; 
SIMTIME 80.00; 
ORIENT TruckBucket1 VERT 55 3.00; 
SIMTIME 80.00; 
ORIENT ExcBucket VERT 52 3.00; 
SIMTIME 85.00; 
ORIENT TruckBucket1 VERT -55 3.00; 
SIMTIME 85.00; 
ORIENT ExcBucket VERT -52 2.00; 
SIMTIME 87.00; 
ORIENT ExcCabin HOR -35 3.00; 
SIMTIME 90.00; 
TRAVEL Truck2 Haul 20.00; 
SIMTIME 90.00; 
ORIENT ExcBoom VERT -42 3.00; 
ORIENT ExcStick VERT 25 3.00; 
ORIENT ExcBucket VERT 90 3.00; 
ORIENT ExcCabin HOR 5 3.00; 
SIMTIME 90.00; 
TRAVEL Truck1 Return 15.00; 
SIMTIME 110.00; 
POSITION Truck2 ON Return; 
SIMTIME 110.00; 
POSITION Truck1 ON Haul; 

 

Figure C.30 – Larger Portion of the ARVISCOPE Animation Trace File 
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Appendix D 
 

Flowchart and Pseudo Code 
 

 
In this Appendix, a flowchart describing the process of visualizing an AR animation 

created in ARVISCOPE is presented. Several pieces of pseudo code are also included to 

facilitate the discussion of the flowchart and to demonstrate how animation trace files 

written in the ARVISCOPE animation authoring language are processed to create 3D 

visualizations in Augmented Reality (AR). 

 

The flowchart and pseudo code in this Appendix are not intended to be software 

development aids, and are only provided to supplement the discussion of the topics 

introduced in previous Chapters and Appendices. The presented information is also 

expected to help interested readers gain a better understanding of the internal processes 

and data flow in the developed AR platform, thus facilitating its reuse and/or 

modification for other application domains.  
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Figure D.1 – Main Loop for Visualizing an ARVISCOPE Animation 
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[1] OPEN the serial port to which the GPS receiver is connected 

[2] SET the properties of the GPS receiver 

[3] OBTAIN and INTERPRET the first set of positioning data coming 

through the GPS receiver (Figure D.3) 

[4] OPEN the serial port to which the head orientation tracker is 

connected 

[5] SET the properties of the head orientation tracker 

[6] OBTAIN and INTERPRET the first set of head orientation data 

coming through the orientation tracker (Figure D.4) 

[7] SET the view ratio of the augmented reality animation 

[8] SET the value of “next event time” variable to 0 

[9] OPEN the ARVISCOPE animation trace file 

[10] START the video camera 

 

Figure D.2 – Initializing the AR System 
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[1] CREATE an empty list of character strings 

[2] OBTAIN and STORE a complete line of incoming GPS stream in the 

list 

[3] IF the list starts with $GPGGA 

[4] EXTRACT element 3 of the list (latitude value)  

[5] EXTRACT element 4 of the list (latitude direction)  

[6] EXTRACT element 5 of the list (longitude value)  

[7] EXTRACT element 6 of the list (longitude direction)  

[8] EXTRACT element 10 of the list (altitude value) 

[9] EXTRACT element 11 of the list (altitude unit) 

[10] CONVERT extracted elements 3,5, and 10 to numbers 

[11] IF extracted element 4 is “S” 

[12] MULTIPLY element 3 by -1  

 [13] END IF 

[14] IF extracted element 6 is “W” 

[15] MULTIPLY element 5 by -1  

 [16] END IF 

[17] IF extracted element 11 is “F” 

[18] CONVERT element 10 from feet to meters 

 [19] END IF 

[20] STORE elements 3,5, and 10 in a 3D vector 

[21] OUTPUT the 3D vector 

[22] ELSE 

 [23] GOTO line [2] 

[24] END IF 

 

Figure D.3 – Obtaining Longitude, Latitude, and Altitude from a GPS Receiver 
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[1] SEND a data request to the tracker with the yaw angle ID 

[2] RECEIVE a binary data packet containing the yaw value 

[3] SEND a data request to the tracker with the pitch angle ID 

[4] RECEIVE a binary data packet containing the pitch value 

[5] SEND a data request to the tracker with the roll angle ID 

[6] RECEIVE a binary data packet containing the roll value 

[7] FOR each binary data packet received 

[8] CALCULATE CRC value of the received data 

[9] IF the calculated CRC does not match the received CRC 

[10] IGNORE the binary data packet 

[11] GOTO line [1] 

[12] ELSE 

[13] EXTRACT frame type (ID) of the received binary packet 

[14] CONVERT the binary payload to numerical value 

[15] END IF 

[16] END FOR 

[17] STORE yaw, pitch, and roll values in a 3D vector 

[18] OUTPUT the 3D vector 

 

Figure D.4 – Obtaining Yaw, Pitch, and Roll from an Orientation Tracker 
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Syntax:  LOADMODEL <GroupName> <3DFileName>; 

Example:  LOADMODEL Truck CATTruck.3ds; 
 

[1] READ all arguments following the LOADMODEL keyword  

[2] IF the number of arguments is not 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] ELSE 

[6] CREATE a new entry in the map of model names vs. CAD file 

names for argument 1 

[7] ASSIGN argument 2 to the new entry in the map of model 

names vs. CAD file names 

[8] END IF 

 

Figure D.5 – Processing of LOADMODEL Statement 
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Syntax:  ORIENTMODEL <GroupName> <Axis> <Degree>; 

Example:  ORIENTMODEL Truck Y 90; 
 

[1] READ all arguments following the ORIENTMODEL keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of model names vs. CAD 

file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 2 is not “X” OR “Y” OR “Z”  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] FIND the entry in the map of model names vs. CAD file names 

associated with argument 1  

[15] SET the local orientation of the CAD file asociated to the entry 

in the map of model names vs. CAD file names found in step [14] 

about the axis denoted in argument 2 to the value denoted by 

argument 3 

   

Figure D.6 – Processing of ORIENTMODEL Statement  
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Syntax:  CHANGEMODEL <ObjectName> <NewGroupName>; 

Example:  CHANGEMODEL SteelBeam150 BlueSections; 
 

[1] READ all arguments following the CHANGEMODEL keyword  

[2] IF the number of arguments is not 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] ELSE 

[6] FIND the entry in the map of model names vs. CAD file names 

associated with argument 1 

[7] ASSIGN argument 2 to the entry in the map of model names 

vs. CAD file names found in step [6] 

[8] END IF 

 

Figure D.7 – Processing of CHANGEMODEL Statement 
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Syntax:  OBJECT <ObjectName> <GroupName>; 

Example:  OBJECT DumpTruck Truck; 
 

[1] READ all arguments following the OBJECT keyword  

[2] IF the number of arguments is not 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] SEARCH the map of objects vs. pointers to CAD file names 

[7] IF argument 1 already exists in the map of objects vs. pointers 

to CAD file names 

[8] OUTPUT ERROR 

[9] TERMINATE 

[10] END IF 

[11] SEARCH the map of model names vs. CAD file names 

[12] IF argument 2 does not exist in the map of model names vs. CAD 

file names 

[13] OUTPUT ERROR 

[14] TERMINATE 

[15] END IF 

[16] CREATE a new entry in the map of object names vs. pointers to CAD 

file names for argument 1 

[17] ASSIGN argument 2 to the new entry in the map of object names vs. 

pointers to CAD file names 

 

Figure D.8 – Processing of OBJECT Statement 
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Syntax:  REMOVE <ObjectName>; 

Example:  REMOVE DumpTruck; 
 

[1] READ all arguments following the REMOVE keyword  

[2] IF the number of arguments is not 1 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] ELSE 

[6] FIND the node in the AR scene graph associated with the 

object denoted by argument 1 

[7] DELETE the node found in step [6] from the AR scene graph 

[8] END IF 

 

Figure D.9 – Processing of REMOVE Statement 
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Syntax:  CONNECT <ChildName> <ParentName> <AtPoint>; 

Example:  CONNECT Boom Tower (0,35,0); 
 

[1] READ all arguments following the CONNECT keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names 

  [7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 2 does not exist in the map of object names vs. 

pointers to CAD file names 

  [11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] IF argument 1 is the same as argument 2 

  [15] OUTPUT ERROR 

[16] TERMINATE 

[17] END IF 

[18] IF the child node denoted by argument 1 is already connected to 

the parent node denoted by argument 2 in the AR scene graph 

  [19] OUTPUT ERROR 

[20] TERMINATE 

[21] END IF 

 

Figure D.10 – Processing of CONNECT Statement (Part 1) 
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[22] IF the object denoted by argument 1 exists in the map of object 

names vs. object positions 

[23] REMOVE the object denoted by argument 1 from the map of 

object names vs. object positions 

[24] END IF 

[25] CREATE a child node for the object denoted by argument 1 to the 

parent node for the object denoted by argument 2 in the AR scene 

graph  

[26] UPDATE the transformation matrix of the created child node in the 

scene graph using the position vector of argument 3 

 

Figure D.11 – Processing of CONNECT Statement (Part 2) 
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Syntax:  DISCONNECT <ChildName> <ParentName>; 

Example:  DISCONNECT SteelBeam Hook; 
 

[1] READ all arguments following the DISCONNECT keyword  

[2] IF the number of arguments is not 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] SEARCH for argument 1 in the AR scene graph 

[7] IF argument 1 is a child node to te root node in the AR scene 

graph 

  [8] OUTPUT ERROR 

[9] TERMINATE 

[10] END IF 

[11] CALCULATE the relative transformation of the object denoted by 

argument 1 to the root of the AR scene graph by multiplying the 

transformation matrices from the object to its immediate parent 

node all the way up to the node whose parent is the root node of 

the AR scene graph 

[12] REMOVE the object denoted by argument 1 from the AR scene graph 

[13] CREATE a child node to the root node of the AR scene graph for 

the object denoted by argument 1 

[14] UPDATE the transformation matrix of the created child node in the 

scene graph using the calculated value of step [11] 

[15] OBTAIN the current user position from the GPS receiver 

[16] CALCULATE the global position of the object denoted by argument 1 

using the calculated relative position from step [11] and the 

user position from step [15] 

[17] CREATE a new entry in the map of object names vs. object 

positions for argument 1 

[18] ASSIGN the calculated global position to the new entry in the map 

of object names vs. object positions 

 

Figure D.12 – Processing of DISCONNECT Statement  
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Syntax:  ROUTE <RouteName> <Points_Array_XYZ>; 

      ROUTE REL <Reference> <RouteName> <Points_Array_XYZ>; 

Example:  ROUTE TruckRoad (-83.714569,42.298058,270.00) 

                        (-83.714553,42.298092,270.00) 

                        (-83.714600,42.298186,270.00); 

  ROUTE REL Flag TruckRoad (+17.3997,1.00,-17.3348) 

                                 (+17.3997,1.00,-17.3348) 

                                 (+19.8434,1.00,-33.5500); 
 

[1] READ all arguments following the ROUTE keyword  

[2] IF the number of arguments is less than 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 is “REL” 

[7] IF argument 2 does not exist in the map of object names vs. 

pointers to CAD file names 

[8] OUTPUT ERROR 

[9] TERMINATE 

[10] END IF 

[11] IF argument 3 already exists in the map of route names vs. 

lists of vectors 

[12] OUTPUT ERROR 

[13] TERMINATE 

[14] END IF 

[15] EXTRACT the current position of argument 2 from the map of 

object names vs. object positions 

[16] FOR points on the route denoted by argument 4 to the last 

argument 

[17] EXTRACT (X,Y,Z) values 

[18] CALCULATE the global position of the point in 

(Long,Lat,Alt) from the global position extracted in 

step [15] and the relative position vector extracted 

in step [17] using the MTM 

 

Figure D.13 – Processing of ROUTE Statement (Part 1) 
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[19] INSERT the calcualted global position in a 3D vector 

[20] END FOR 

[21] CREATE a new entry in the map of route names vs. lists of 

vectors for argument 2 

[22] ELSE 

[23] IF argument 1 already exists in the map of route names vs. 

lists of vectors 

[24] OUTPUT ERROR 

[25] TERMINATE 

[26] END IF 

[27] FOR points on the route denoted by argument 2 to the last 

argument 

[28] EXTRACT (Long,Lat,Alt) values 

[29] INSERT the extracted (Long,Lat,Alt) in a 3D vector 

[30] END FOR 

[31] CREATE a new entry in the map of route names vs. lists of 

vectors for argument 1 

[32] END IF 

[33] ADD all the calculated 3D vectors to a list of vectors 

[34] ASSIGN the created list of vectors to the new entry in the map of 

route names vs. lists of vectors 

[35] CALCULATE and STORE the length and orientation of all the line 

segments created by the vectors stored in the list of vectors 

 

Figure D.14 – Processing of ROUTE Statement (Part 2) 
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Syntax:  POSITION <ObjectName> AT <Point_XYZ>; 

      POSITION <ObjectName> ON <RouteName>; 

 POSITION <ObjectName> REL <Reference> <Point_XYZ>; 

Example:  POSITION DumpTruck AT (-83.714569,42.298058,270.00); 

  POSITION DumpTruck ON TruckRoad; 

  POSITION DumpTruck REL Flag (+17.40,1.00,-17.34); 
 

[1] READ all arguments following the POSITION keyword  

[2] IF the number of arguments is not 3 or 4 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names 

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] CREATE a child node to the root node of the AR scene graph for 

the object denoted by argument 1 

[11] IF argument 2 is “AT” 

[12] CREATE a new entry in the map of object names vs. object 

positions for argument 1 

[13] ASSIGN argument 3 to the new entry in the map of object 

names vs. object positions 

[14] ELSE IF argument 2 is “REL” 

[15] SEARCH FOR argument 3 in the map of object names vs. object 

positions 

[16] IF argument 3 does not exist in the map of object names vs. 

object positions 

[17] OUTPUT ERROR 

[18] TERMINATE 

[19] END IF 

[20] EXTRACT the current position of argument 3 from the map of 

object names vs. object positions 

 

Figure D.15 – Processing of POSITION Statement (Part 1) 
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[21] CALCULATE the global position of the object denoted by 

argument 1 using the global position of argument 3 and the 

relative position vector denoted by argument 4 

[22] CREATE a new entry in the map of object names vs. object 

positions for argument 1 

[23] ASSIGN the calculated global position to the new entry in 

the map of object names vs. object positions 

[24] ELSE IF argument 2 is “ON” 

[25] IF argument 3 does not exist in the map of route names vs. 

lists of vectors  

[26] OUTPUT ERROR 

[27] TERMINATE 

[28] END IF 

[29] FIND the position of the first point on the route from the 

list of vectors assigned to the route name denoted by 

argument 3  

[30] CREATE a new entry in the map of object names vs. object 

positions for argument 1 

[31] ASSIGN the global position of the first point on the route 

to the new entry in the map of object names vs. object 

positions 

[32] OBTAIN the orientation of the first line segment on the 

route denoted by argument 3 

[33] UPDATE the local orientation of the child node created in 

step [10] using the orientation values obtained in step 

[32] 

[34] CALCULATE the position of the object relative to the user using 

the MTM 

[35] UPDATE the translation field of the transformation matrix of the 

created child node created in step [10] using the calculated 

values of step [34] 

[36] END IF 

 

Figure D.16 – Processing of POSITION Statement (Part 2) 
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Syntax:  HRZORIENT <ObjectName> <YawValue>; 

Example:  HRZORIENT Plane 50; 
 

[1] READ all arguments following the HRZORIENT keyword  

[2] IF the number of arguments is not 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] SET the local orientation about Y axis of the node denoted by 

argument 1 in the scene graph equal to the value denoted by 

argument 2 

   

Figure D.17 – Processing of HRZORIENT Statement  
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Syntax:  VRTORIENT <ObjectName> <PitchValue>; 

Example:  VRTORIENT Plane 30; 
 

[1] READ all arguments following the VRTORIENT keyword  

[2] IF the number of arguments is not 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] SET the local orientation about X axis of the node denoted by 

argument 1 in the scene graph equal to the value denoted by 

argument 2 

   

Figure D.18 – Processing of VRTORIENT Statement  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 245

Syntax:  SIDEORIENT <ObjectName> <RollValue>; 

Example:  SIDEORIENT Plane 10; 
 

[1] READ all arguments following the SIDEORIENT keyword  

[2] IF the number of arguments is not 2 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] SET the local orientation about Z axis of the node denoted by 

argument 1 in the scene graph equal to the value denoted by 

argument 2 

   

Figure D.19 – Processing of SIDEORIENT Statement  
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Syntax:  ORIENT <ObjectName> <Axis> <Value> <Duration>; 

Example:  ORIENT Boom Y 45 15; 
 

[1] READ all arguments following the ORIENT keyword  

[2] IF the number of arguments is not 4 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 2 is not “X” OR “Y” OR “Z”  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] IF argument 4 is less than 0  

[15] OUTPUT ERROR 

[16] TERMINATE 

[17] END IF 

[18] CALCULATE the rotation speed of the object denoted by argument 1 

as the rotation angle denoted by argument 3 divided by the 

duration of orientation change denoted by argument 4 

[19] IF argument 2 is “X”  

[20] ADD the object name to the list of vertical rotating 

objects 

[21] ELSE IF argument 2 is “Y”  

[22] ADD the object name to the list of horizontal rotating 

objects 

[23] ELSE IF argument 2 is “Z”  

[24] ADD the object name to the list of side rotating objects 

[25] END IF 

   

Figure D.20 – Processing of ORIENT Statement  
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Syntax:  ORIENTTO <ObjectName> <Axis> <Value> <Duration>; 

Example:  ORIENTTO Boom Y 30 15; 
 

[1] READ all arguments following the ORIENTTO keyword  

[2] IF the number of arguments is not 4 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 2 is not “X” OR “Y” OR “Z”  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] IF argument 4 is less than 0  

[15] OUTPUT ERROR 

[16] TERMINATE 

[17] END IF 

[18] IF argument 2 is “X”  

[19] OBTAIN the vertical orientation of the object denoted by 

argument 1 from the rotation field of its transformation 

matrix 

[20] ELSE IF argument 2 is “Y”  

[21] OBTAIN the horizontal orientation of the object denoted by 

argument 1 from the rotation field of its transformation 

matrix 

[22] ELSE IF argument 2 is “Z”  

[23] OBTAIN the side orientation of the object denoted by 

argument 1 from the rotation field of its transformation 

matrix 

[24] END IF 

 

Figure D.21 – Processing of ORIENTTO Statement (Part 1) 
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[25] CALCULATE the rotation speed of the object denoted by argument 1 

as the difference in the target orientation denoted by argument 3 

and the orientation value obtained in steps [19] OR [21] OR [23] 

divided by the duration of orientation change denoted by argument 

4 

[26] IF argument 2 is “X”  

[27] ADD the object name to the list of vertical rotating 

objects 

[28] ELSE IF argument 2 is “Y”  

[29] ADD the object name to the list of horizontal rotating 

objects 

[30] ELSE IF argument 2 is “Z”  

[31] ADD the object name to the list of side rotating objects 

[32] END IF 

   

Figure D.22 – Processing of ORIENTTO Statement (Part 2) 
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Syntax:  TRAVEL <ObjectName> <RouteName> <Duration>; 

Example:  TRAVEL Truck TruckRoad 60; 
 

[1] READ all arguments following the TRAVEL keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

object positions  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 2 does not exist in the map of route names vs. lists 

of vectors  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] IF argument 3 is less than 0  

[15] OUTPUT ERROR 

[16] TERMINATE 

[17] END IF 

[18] IF object denoted by argument 1 is currently in the either of the 

travelling, transferring, or shifting objects lists  

[19] OUTPUT ERROR 

[20] TERMINATE 

[21] END IF 

[22] CALCULATE the total length of the route denoted by argument 2 

using the map of route names vs. lists of vectors 

[23] OBTAIN the orientation of the first line segment of the route 

denoted by argument 2 using the map of route names vs. lists of 

vectors 

 

Figure D.23 – Processing of TRAVEL Statement (Part 1) 
 

 

 

 



 250

[24] CALCULATE the speed of the object denoted by argument 1 as the 

total length of the route divided by the travel duration denoted 

by argument 3 

[25] ADD the object name to the list of travelling objects  

[26] ASSIGN the (Long,Lat,alt) of the first point on the route denoted 

by argument 2 to the entry in the map of object names vs. object 

positions associated with the object denoted by argument 1 

[27] CALCULATE the position of the object relative to the user using 

the MTM 

[28] UPDATE the translation field of the transformation matrix of the 

scene graph node denoted by argument 1 in the scene graph using 

the calculated relative position of step [27] 

[29] UPDATE the local orientation of the scene graph node denoted by 

argument 1 in the AR scene graph using the calculated orientation 

of step [23] 

 

Figure D.24 – Processing of TRAVEL Statement (Part 2) 
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Syntax:  TRANSFER <ObjectName> <RouteName> <Speed>; 

Example:  TRANSFER Truck TruckRoad 45; 
 

[1] READ all arguments following the TRANSFER keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

object positions  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 2 does not exist in the map of route names vs. lists 

of vectors  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] IF argument 3 is less than 0  

[15] OUTPUT ERROR 

[16] TERMINATE 

[17] END IF 

[18] IF object denoted by argument 1 is currently in the either of the 

travelling, transferring, or shifting objects lists  

[19] OUTPUT ERROR 

[20] TERMINATE 

[21] END IF 

[22] CALCULATE the total length of the route denoted by argument 2 

using the map of route names vs. lists of vectors 

[23] OBTAIN the orientation of the first line segment of the route 

denoted by argument 2 using the map of route names vs. lists of 

vectors 

[24] EXTRACT and STORE the speed of the object denoted by argument 1 

from the value denoted by argument 3 

 

Figure D.25 – Processing of TRANSFER Statement (Part 1) 
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[25] ADD the object name to the list of transferring objects  

[26] ASSIGN the (Long,Lat,alt) of the first point on the route denoted 

by argument 2 to the entry in the map of object names vs. object 

positions associated with the object denoted by argument 1 

[27] CALCULATE the position of the object relative to the user using 

the MTM 

[28] UPDATE the translation field of the transformation matrix of the 

scene graph node denoted by argument 1 in the scene graph using 

the calculated relative position of step [27] 

[29] UPDATE the local orientation of the scene graph node denoted by 

argument 1 in the AR scene graph using the calculated orientation 

of step [23] 

 

Figure D.26 – Processing of TRANSFER Statement (Part 2) 
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Syntax:  SHIFT <ObjectName> <Vector> <Duration>; 

Example:  SHIFT Truck (10,0,5) 15; 
 

[1] READ all arguments following the SHIFT keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

object positions  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 3 is less than 0  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] IF object denoted by argument 1 is currently in either of the 

travelling, transferring, or shifting objects lists  

[15] OUTPUT ERROR 

[16] TERMINATE 

[17] END IF 

[18] CALCULATE the total length of the vector denoted by argument 2 

[19] CALCULATE the orientation of the vector denoted by argument 2 

[20] CALCULATE the speed of the object denoted by argument 1 as the 

total length of the vector calculated in step [18] divided by the 

travel duration denoted by argument 3 

[21] ADD the object name to the list of shifting objects  

[22] UPDATE the local orientation of the scene graph node denoted by 

argument 1 in the AR scene graph using the calculated orientation 

of step [19] 

 

Figure D.27 – Processing of SHIFT Statement 
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Syntax:  SHIFTTO <ObjectName> <POINT_XYZ> <Duration>; 

Example:  SHIFTTO Truck (-83.714569,42.298058,270.00) 15; 
 

[1] READ all arguments following the SHIFTTO keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

object positions  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 3 is less than 0  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] IF object denoted by argument 1 is currently in either of the 

travelling, transferring, or shifting objects lists  

[15] OUTPUT ERROR 

[16] TERMINATE 

[17] END IF 

[18] OBTAIN the current (Long,Lat,alt) of the object denoted by 

argument 1 from the map of object names vs. object positions 

[19] CALCULATE the shift vector using the MTM between the global 

position obtained in step [18] and the global point coordinates 

denoted by argument 2 

[20] CALCULATE the orientation of the shift vector calculated in step 

[19] 

[21] CALCULATE the speed of the object denoted by argument 1 as the 

total length of the shift vector divided by the travel duration 

denoted by argument 3 

[22] ADD the object name to the list of shifting objects  

[23] UPDATE the local orientation of the scene graph node denoted by 

argument 1 in the AR scene graph using the calculated orientation 

of step [20] 

 

Figure D.28 – Processing of SHIFTTO Statement 
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Syntax:  SIZE <ObjectName> <ScaleChange> <Duration>; 

Example:  SIZE Cable (0,50,0) 15; 
 

[1] READ all arguments following the SIZE keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 3 is less than 0  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] CALCULATE the speed of size change of the object denoted by 

argument 1 as the scale vector denoted by argument 2 divided by 

the duration of size change denoted by argument 3 

[15] ADD the object name to the list of scaling objects 

   

Figure D.29 – Processing of SIZE Statement  
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Syntax:  SIZETO <ObjectName> <ScaleTarget> <Duration>; 

Example:  SIZETO Cable (0,55,0) 15; 
 

[1] READ all arguments following the SIZETO keyword  

[2] IF the number of arguments is not 3 

[3] OUTPUT ERROR 

[4] TERMINATE 

[5] END IF 

[6] IF argument 1 does not exist in the map of object names vs. 

pointers to CAD file names  

[7] OUTPUT ERROR 

[8] TERMINATE 

[9] END IF 

[10] IF argument 3 is less than 0  

[11] OUTPUT ERROR 

[12] TERMINATE 

[13] END IF 

[14] OBTAIN the current size of the object denoted by argument 1 from 

the scale field of its transformation matrix 

[15] CALCULATE the speed of size change of the object denoted by 

argument 1 as the difference between the scale vector denoted by 

argument 2 and the scale vector obtianed in step [14] divided by 

the duration of size change denoted by argument 3 

[16] ADD the object name to the list of scaling objects  

  

Figure D.30 – Processing of SIZETO Statement  
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[1] FOR all the objects in the lists of travelling and transferring 

objects 

[2] CALCULATE the elapsed travel time as the current animation 

time minus the time at which the moving object has started 

to move  

[3] CALCULATE the length of the route already covered by the 

moving object as the product of the elapsed time and object 

speed 

[4] FIND which line segment on the route the moving object is 

currently travelling on 

[5] CALCULATE the length of the line segment already covered by 

the moving object as the total covered length of the route 

minus the sum of the lengths of all previous line segments 

on the same route 

[6] CALCULATE the position of the moving object on the route by 

interpolating between the end points of the 3D vector of 

the line segment the object is moving on  

[7] CALCULATE the (Long,Lat,Alt) of the moving object 

[8] CALCULATE the position of the moving object relative to the 

user using the MTM 

[9] OBTAIN the orientation of the line segment of the route the 

moving object is currently on using the map of route names 

vs. lists of vectors 

[10] FIND the entry corresponding to the object in the map of 

moving objects vs. object positions 

[11] ASSIGN the calculated (Long,Lat,Alt) to the moving object 

denoted by argument 1 in the map of moving objects vs. 

object positions 

[12] UPDATE the translation field of the transformation matrix 

of the child node associated with the moving object in the 

AR scene graph using the calculated relative position of 

step [8] 

[13] UPDATE the local orientation of the child node associated 

with the moving object in the AR scene graph using the 

calculated orientation of step [9] 

 

Figure D.31 – Pseudo Code for the Update Process (Part 1) 
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[14] IF the moving object is at the end point of the route 

[15] DELETE the object name from the list of travelling or 

transferring objects 

[16] END IF 

[17] END FOR 

[33] FOR all the objects in the list of shifting objects 

[34] CALCULATE the elapsed travel time as the current animation 

time minus the time in which the moving object has started 

to move  

[35] CALCULATE the length of the shift vector already covered by 

the moving object as the product of shifting speed and the 

elapsed time 

[36] CALCULATE the position of the moving object on the shift 

vector by interpolating between the end points of the 3D 

shift vector the object is moving on  

[37] CALCULATE the (Long,Lat,Alt) of the moving object 

[38] CALCULATE the position of the moving object relative to the 

user using the MTM 

[39] FIND the entry in the map of moving objects vs. object 

positions 

[40] ASSIGN the calculated (Long,Lat,Alt) to the moving object 

denoted by argument 1 in the map of moving objects vs. 

object positions 

[41] UPDATE the translation field of the transformation matrix 

of the child node associated with the moving object in the 

scene graph using the calculated relative position of step 

[38] 

[42] IF the moving object is at the end point of the shift 

vector 

[43] DELETE the object name from the list of shifting 

objects 

[44] END IF 

[45] END FOR 

 

Figure D.32 – Pseudo Code for the Update Process (Part 2) 
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[46] FOR all the objects in the list of vertical rotating objects 

[47] CALCULATE the elapsed orientation change time as the 

current animation time minus the time in which the rotating 

object has started to change vertical orientation  

[48] CALCULATE the current vertical orientation of the rotating 

object as the vertical orientation change speed times the 

elapsed time 

[49] UPDATE the rotation field of the transformation matrix of 

the child node associated with the rotating object using 

the vertical orientation value calculated in step [48] 

[50] IF the vertical rotating object has reached the final 

orientation 

[51] DELETE the object name from the list of vertical 

rotating objects 

[52] END IF 

[53] END FOR 

[54] FOR all the objects in the list of horizontal rotating objects 

[55] CALCULATE the elapsed orientation change time as the 

current animation time minus the time in which the rotating 

object has started to change horizontal orientation  

[56] CALCULATE the current horizontal orientation of the 

rotating object as the horizontal orientation change speed 

times the elapsed time 

[57] UPDATE the rotation field of the transformation matrix of 

the child node associated with the rotating object using 

the horizontal orientation value calculated in step [56] 

[58] IF the horizontal rotating object has reached the final 

orientation 

[59] DELETE the object name from the list of horizontal 

rotating objects 

[60] END IF 

[61] END FOR 

 

Figure D.33 – Pseudo Code for the Update Process (Part 3) 
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[62] FOR all the objects in the list of side rotating objects 

[63] CALCULATE the elapsed orientation change time as the 

current animation time minus the time in which the rotating 

object has started to change side orientation  

[64] CALCULATE the current side orientation of the rotating 

object as the side orientation change speed times the 

elapsed time 

[65] UPDATE the rotation field of the transformation matrix of 

the child node associated with the rotating object using 

the side orientation value calculated in step [64] 

[66] IF the side rotating object has reached the final 

orientation 

[67] DELETE the object name from the list of side rotating 

objects 

[68] END IF 

[69] END FOR 

[70] FOR all the objects in the list of scaling objects 

[71] CALCULATE the elapsed size change time as the current 

animation time minus the time in which the object has 

started to change size  

[72] CALCULATE the size change vector of the scaling object as 

the product of the elapsed size change time calculated in 

step [63] and the speed of size change 

[73] CALCULATE the new size vector of the scaling object as the 

sum of the original object size vector and the calculated 

siza change vector in step [72] 

[74] UPDATE the scale field of the transformation matrix of the 

child node associated with the scaling object using the 

calculated vector in step [73] 

[75] IF the scaling object has reached the final size 

[76] DELETE the object name from the list of scaling 

objects 

[77] END IF 

[78] END FOR 

 

Figure D.34 – Pseudo Code for the Update Process (Part 4) 
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[79] OBTAIN user’s global position in (Long,Lat,Alt) (Figure D.3) 

[80] FOR all the entries in tha map of object names vs. object 

positions 

[81] EXTRACT the global position of the CAD object associated 

with the map entry 

[82] CALCULATE the relative position of the user to the CAD 

object associated with the map entry  

[83] UPDATE the translation field of the transformation matrix 

of the child node associated with the map entry using the 

calculated value in step [82] 

[84] END FOR 

[85] OBTAIN user’s head orientation vector (Figure D.4) 

[86] CALCULATE the user’s head orientation change vector as the 

orientation vector obtained in step [85] minus the previous 

user’s head orientation vector  

[87] CALCULATE the AR scene orientation change vector as the user’s 

head orientation change vector calculated in step [86] multiplied 

by -1 

[88] CALCULATE the AR scene orientation vector as the sum of the 

orientation change vector calculated in step [87] and the current 

orientation vector of the wrapper node in the AR scene graph 

[89] UPDATE the rotation field of the transformation matrix of the 

wrapper node in the AR scene graph using the orientation vector 

calculated in step [88] 

 

Figure D.35 – Pseudo Code for the Update Process (Part 5) 
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