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ABSTRACT

Efficient Integral Equation Algorithms and

Their Application to RFID Installation

by

Joseph Daniel Brunett

Co-Chairs: Valdis V. Liepa and Dipak L. Sengupta

This research reduces the expense of solving multiscale frequency domain surface

integral equation problems by application of an efficient hierarchical geometry de-

scription and an alternative approach to matrix conditioning. The cost of preparing

a structure for simulation is minimized by multilevel retention of facet translation

and rotation data. Overlapping sub-domain bases are then simultaneously applied

via a new iterative procedure that ascertains the common sub-basis solution to the

overdetermined system. This approach is highly convergent and provides accurate so-

lutions without degradation to existing O(N) fast algorithms. New sheet impedance

forms are introduced ensuring proper material representation. These methods are

then applied in the optimization of low frequency Tire Pressure Monitoring Sensor

placement on a metallic vehicle rim. Test methods required for accurate measurement

of low frequency magnetic fields are discussed and measurements of an automobile

wheel under like stimuli match simulated results.

ix



CHAPTER 1

Introduction

1.1 Motivation

Radio Frequency Identification (RFID) devices have come a long way in the past

sixty years. The concept first originated during World War II as a method of identify-

ing aircraft returning to base. After the war, development centered on governmental

tracking of nuclear material, but it was not until the 1970’s that the first commercial

patents were granted for their use [1]. Today these devices abound thanks to ad-

vancements in both their production and the development of commercial standards.

Applicable to both the public marketplace and private sectors, these devices are rev-

olutionizing the way we track goods, perform transactions, and organize our world.

RFID devices are used in such a diverse range of applications as supply chain man-

agement, electronic payment, livestock tracking, passport interrogation, patient care,

medical training, vehicle safety, and theft deterrence [2–10]. Just as diverse as their

applications, the frequencies at which these devices operate range from from the low

frequency (LF) portion of the radio spectrum to microwave frequencies. They are

designed to take advantage of inductive coupling, capacitive coupling, reflected, and

transmitted power. They may be active (battery powered) or more preferably pas-

sive (radio frequency field powered) devices. And yet, despite their abundance, it is
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as true now as it was 60 years ago that a great deal of research and development

is still needed [11]. Thankfully, the advancing computational power of the personal

computer (PC) makes it possible to model the local electrical characteristics of these

devices and suggests that full-wave electromagnetic modeling of the environment may

now be possible. Such software could help to select RFID tag placement, interrogator

shape and distance, and predict overall system limitations important in real world

designs. Motivated by the potential of such a simulator, this thesis delves into the im-

plementation of a full-wave software package with primary application to simulating

low frequency environments.

1.2 Discussion

Motivated to implement and utilize such a software package, this section classifies

RFID devices and discusses the challenges currently faced in numerical simulation of

electrically small structures.

1.2.1 Radio Frequency Identification (RFID)

Radio Frequency Identification is a method of automatically identifying an object

from locally stored data via radio frequency interrogation. Placed on or as an integral

part of the object is an RFID tag, also called a transponder, that stores this informa-

tion and makes it available to the interrogator. While it is conceivable that almost

any radio frequency device communicating data might be labeled an RFID tag, at

present these devices typically fall into one of the following two main classifications.

The first class includes those devices that operate on the principle of magnetic

flux coupling; primarily Low Frequency Identification (LFID) and High Frequency

Identification (HFID) devices operating in the quasi-static regime. For these devices

the open-circuit voltage available to drive a load is proportional to the frequency

2



(time-rate of change) of the magnetic flux passing through a loop of finite area.

These flux-coupled devices are preferred because increased sensitivity is achieved by

increasing the antenna quality factor, either through greater numbers of turns or by

loading with inexpensive low loss magnetic material. (Such materials are available

with relative permeabilities on the order of 2, 000 to 10, 000 in this frequency range.)

In contrast, electric dipole sources require very high voltages to achieve similar sen-

sitivity. Not only are such voltages dangerous, but they are also voltage breakdown

limited.

LFIDs typically operate at 125 kHz or 134 kHz and the associated tags, inter-

rogators, and environments into which they are placed are all electrically small. LF

transponders require a significant number of wire turns about a ferromagnetic core

to provide adequate voltage to an embedded microprocessor. Alternatively, HFIDs

operate in the 13.56 MHz Industrial Scientific & Medical (ISM) band [12] and re-

quire far fewer loop turns due to increased frequency. Since fewer turns are necessary,

these devices can be manufactured using lithographic techniques at reduced cost.

However, they are more sensitive to changes in their environment. Passive versions

of these devices respond by modulating the flux coupled through the loop, and this

flux modulation is detected by the interrogator.

The second class of RFID transponders relies on capacitive coupling or reflected

power communications and typically operates in the UHF or microwave spectrum.

Because these devices represent a far larger fraction of a wavelength they achieve

acceptable performance using linear antenna elements, compact antennas, or mean-

der lines. Some of these devices store received energy or modulate their scattering

cross section while others use internal batteries to transmit information back to the

interrogator.

In many applications the principles associated with both classifications are in-

termingled, including transponders interrogated at LF frequencies that respond by

3



battery power at UHF frequencies. Such devices require software capable of sim-

ulation across the entire spectrum, and the work presented in this thesis is wholly

applicable. For the reasons discussed in the next two sections, the development of

both numerical and test and measurement methods for the quasi-static regime are

emphasized in this work.

1.2.2 Computational Electromagnetics

The development of computational electromagnetics (CEM) software has been

ongoing for many years and recent advances allow full-wave simulation of a number

of RFID structures.

For devices representing a significant fraction of a wavelength (such as UHF

or microwave RFIDs), existing fast algorithms hybridized with the method of mo-

ments [13–15], the finite element boundary integral method [14], and finite difference

methods [15], are implemented in a number of commercial packages [16–19]. Fur-

thermore, the environments into which these devices are placed is typically many if

not hundreds of wavelengths in dimension. Numerical methods for simulating these

electrically large environments have been actively researched for over four decades.

Alternatively, the simulation of electrically small devices (such as LFID and HFID

transponders and their environments) is known to encounter difficulties that are only

more recently addressed. Some of these issues include:

1. The number of unknowns required in the volumetric discretization of an RFID

tag is manageable. However, a volumetric mesh encompassing large scale “envi-

ronmental” structures requires far too many unknowns, particularly for surfaces

exhibiting fast radius of curvature. Surface integral equation (SIE) formulations

become necessary, but even for an O(N) surface based approach the number

of unknowns is bound by finite computer memory. For cartesian array type

structures redundancy minimization algorithms (RMA’s) that rely on struc-
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tural regularity at high frequencies [20–22] help to rein in overhead, but are less

applicable to arbitrary geometries and must be modified for use on electrically

small structures.

2. The widespread surface based electric field integral equation (EFIE) employ-

ing Rao-Wilton-Glisson (RWG) expansion functions [23] fails to properly cap-

ture the Helmholtz/Hodge decomposition of the magnetic and electric fields

at low frequencies (or fine mesh discritization). A diverse range of alternative

expansion functions and advanced weighting procedures have been developed

to remedy this situation[24–26]. However, these expansions result in slowly

converging systems of equations, requiring specialized preconditioning of the

iterative method. Recent works improve system conditioning by transforming

non-solenoidal expansions into bases with greater spectral resolution [26–29].

3. Efficient fast algorithms used to compress electrically distant interactions fail

when applied to small distances where evanescent modes dominate. While some

algorithms are kernel independent [30, 31], the more efficient diagonalized ver-

sions of the Multilevel Fast Multipole Method [32, 33] require reformulation.

The un-diagonalized Low Frequency Multilevel Fast Multipole Algorithm (LF-

MLFMA) [34] and more recent broadband diagonalized versions [35, 36] em-

ploying evanescent wave expansions provide O(N) performance due to scale

invariance at low frequencies.

4. Due to low frequency field penetration, it is necessary that material character-

istics be included in the numerical solver. Assuming an SIE approach, surface

equivalent or multi-body equivalence forms [34] are desirable. However, if high

contrast exists between different materials, multi-body formulations can result

in excessive numbers of unknowns due to highly oscillatory kernels within slow

wave materials. Thus, formulations for surface integral equation methods that
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include analytical approximations for slow wave material characteristics are

more applicable, limiting the number of unknowns to that required to properly

represent the surface radius of curvature.

1.3 Thesis Overview

This work takes into account the above concerns and extends the work of many

of the preceding authors. Analytical, numerical, and experimental techniques are

introduced as follows.

Chapter 2 The formulation of the surface electric field integral equation (EFIE) is

outlined. New analytical sheet impedance forms are provided for the inclusion of high

contrast materials. Proper discritization of the EFIE is discussed and its limitations

are outlined. The chapter concludes with a discussion of matrix compression methods

(fast algorithms).

Chapter 3 A new form of redundancy minimization algorithm, a Multilevel Geom-

etry Description (MLGD), is defined. Facet interactions are tracked using translation

vectors and rotation matrices, ensuring only non-redundant operations are performed.

Because of this multilevel approach, advanced hierarchial methods of forming bases

that ensure current continuity between disjoint surfaces are introduced.

Chapter 4 The aforementioned incomplete Helmholtz decomposition is more effi-

ciently defined via a mixed potential set of Current-Charge (CQ) sub-bases. Use of

these sub-bases is shown to permit development of a new approach to matrix condi-

tioning, termed the Multibasis (MB) method. The chapter concludes with an outline

of the overall numerical implementation.

6



Chapter 5 The design and implementation of low frequency loop antennas, includ-

ing discussions on electric field sensitivity and limitations on their use as sensors near

complex media are included. Test and measurement issues specific to low frequency

field measurements are also discussed and remedies are proposed.

Chapter 6 The numerical implementation of Chapters 2 through 4 is verified by

theory and measurement. Efficiency, accuracy, and applicability of the simulation

tool are demonstrated by comparison with measured data. Finally, selection of an

improved LF tag placement location is made from simulated data, and computed field

strength values are verified by measurement.

Chapter 7 The contributions of this work are reviewed and future research is dis-

cussed.
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CHAPTER 2

Integral Equations and Fast Algorithms

The purpose of this chapter is to outline the path taken from Maxwell’s equations

to the formulation of an efficient integral equation solver for electrically small struc-

tures. In the following sections, volume equivalence forms are applied in contrast to

the more common surface equivalence principle in derivation of the surface electric

field integral equation (EFIE). Taking advantage of this approach, a set of equivalent

sheet impedance approximate boundary conditions are derived and their application

within the EFIE is outlined. Additional considerations particular to low frequency

problems and the EFIE are then discussed and discritization of the integral equa-

tion is performed. Finally, existing matrix compression algorithms for accelerating

iterative solution are discussed and adopted.

2.1 Time-Harmonic Electromagnetic Fields

The frequency response of electrically small structures is a smooth function. Thus,

few frequency domain data points are needed to interpolate the response of these

structures over many octaves of bandwidth. A transient response over this same

bandwidth can be computed directly via a Fourier transform at minimal cost. For

this reason, this work employs time-harmonic forms in the solution of such systems
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at discrete frequencies. An exponential time harmonic dependence ejωt is assumed

and suppressed throughout.

2.1.1 Maxwell’s Equations and The Wave Equation

Governing all macroscopic electromagnetic phenomena discussed in this work, the

time-harmonic Maxwell’s equations in a homogeneous, isotropic region are [37, 38]

∇∇∇×××E = −jωµH− M (2.1)

∇∇∇×××H = jωǫE + J (2.2)

∇∇∇ ·E =
ρev

ǫ
(2.3)

∇∇∇ ·H =
ρmv

µ
. (2.4)

These coupled differential equations relate the vector electric and magnetic fields E

and H to the volumetric quantities of electric current density J, electric charge density

ρev, magnetic current density M, and magnetic charge density ρmv. Both magnetic

current and charge densities are fictitious quantities included to make the equations

symmetric. Furthermore, frequency dependence is in the form of the radian frequency

component ω = 2πf , with f being the frequency of the time-harmonic fields and

currents. The complex constitutive quantities µ and ǫ define the material permeability

and permittivity, respectively. Both relations are decomposed into real and lossy

(imaginary) components as µ = µ′ − jµ′′ = µ0µr − jµ′′ and ǫ = ǫ′ − jǫ′′ = ǫrǫ0 − j σe

ω
.

µ0 is the permeability of free space, ǫ0 is the permittivity of free space, and σe is the

electric conductivity of the medium. When these equations are combined with the
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electric and magnetic field boundary (or jump) conditions [37]

n̂×××(E2 −E1) = Ms (2.5)

n̂×××(H2 −H1) = Js (2.6)

n̂ ·(ǫ2E2 − ǫ1E1) = ρes (2.7)

n̂ ·(µ2H2 − µ1H1) = ρms, (2.8)

solutions for the fields, currents, and charges in a piecewise inhomogeneous environ-

ment can be determined through solution of the resulting differential forms. (Above,

the associated current and charge values along the boundary are surface densities,

thus the s subscript.)

Separate equations for the electric and magnetic fields scattered by equivalent or

impressed volumetric sources can be formed by substitution within (2.1), resulting

in [37, 38]

∇∇∇×××∇∇∇××× ES − k2ES = −jωµJi −∇∇∇×××Mi (2.9)

∇∇∇×××∇∇∇××× HS − k2HS = −jωǫMi +∇∇∇××× Ji, (2.10)

where k = 2π/λ = ω
√

µǫ is the wavenumer in the medium and Ji and Mi are

impressed volumetric electric and magnetic current stimuli forcing these differential

forms.

2.1.2 Volume Equivalence

Before these equations are applied, it is first necessary to discuss the approach

taken to include material parameters in the numerical method.

Consider a material (defined by its constitutive relations µ, ǫ) in the presence of

an impressed electric current Ji. The total fields ET and HT within the medium must
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satisfy

∇∇∇×××ET = −jωµHT (2.11)

∇∇∇×××HT = jωǫET + Ji. (2.12)

If the same source is to radiate in the absence of this material, i.e. µ = µ0, ǫ = ǫ0,

then by superposition only the background (incident) fields Einc,Hinc are present and

satisfy

∇∇∇×××Einc = −jωµ0H
inc (2.13)

∇∇∇×××Hinc = jωǫ0E
inc + Ji. (2.14)

Subtracting (2.13) from (2.11), and substituting

Es = ET − Einc (2.15)

Hs = HT − Hinc, (2.16)

a set of coupled differential equations for the scattered fields Es,Hs is developed

∇∇∇××× Es = −jωµ0H
s − jω(µ − µ0) HT = −jωµ0H

s − Meq (2.17)

∇∇∇××× Hs = jωǫ0E
s + jω(ǫ − ǫ0) ET = jωǫ0E

s + Jeq. (2.18)

Therein, volumetric equivalent currents

Meq = jω(µ − µ0) HT (2.19)

Jeq = jω(ǫ − ǫ0)ET (2.20)

are defined, acting as equivalent polarization currents radiating in free space that
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produce the same scattered fields as the original material (even for the case of a

medium of finite extent) [37, 38]. As an extension of the forms above, if we look

back at (2.19) and substitute (2.11), the curl of the magnetic equivalent current

source within a homogeneous medium can be related directly to the electric equivalent

current source

∇∇∇×××Meq = jω(µ − µ0)∇∇∇××× HT =(jω)2 ǫ(µ − µ0) ET

= jωǫ
µ − µ0

ǫ − ǫ0

Jeq. (2.21)

Since this source radiates in free space it can be treated as the forcing function in the

wave equation (2.9)

∇∇∇×××∇∇∇×××Es − k2
0E

s = −jωµ0Jeq −∇∇∇×××Meq

= −jωµ0

(

1 +
−jωǫ

−jωµ0

µ − µ0

ǫ − ǫ0

)

Jeq

= −jωµ0J
′
eq, (2.22)

with modified equivalent current

J′
eq =

(

1 +
−jωǫ

−jωµ0

µ − µ0

ǫ − ǫ0

)

Jeq

=

(

1 +
ǫ

µ0

µ − µ0

ǫ − ǫ0

)

jω(ǫ − ǫ0) ET

= jωǫ

(

µ

µ0

− ǫ0

ǫ

)

ET . (2.23)

It is evident that the introduction of a material medium is equivalent to the intro-

duction of a set of currents radiating in free space whose value is dependent on the

total field within the material.
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2.1.3 Impedance Sheet Boundary Conditions

This work centers on the simulation of structures that are electrically thin at the

frequency of interest, at least in terms of free-space wavelength. By application of

the equivalent sources and boundary conditions above, a number of alternative sheet

impedance boundary conditions are now derived for including such materials.

Thin Slab Average Boundary

The case of the one dimensional material slab is shown in figure 2.1(a) in the pres-

ence of an incident plane wave Einc and scattering forward and backward propagating

waves, EsB and EsF, respectively. If this slab is assumed to be thin in terms of mate-

rial wavelength, the average volumetric current distribution can be quite accurately

represented via a sheet current Js = dJV avg [39], where d is the thickness of the slab,

and JV avg is the average volumetric current within the slab (assumed to vary only as

a function of depth). By application of the modified equivalent current (2.23), the

average current in a thin slab is

JV avg =
1

d

∫ d

0

JV (z)dz

= jωǫ

(

µ
µ0

− ǫ0

ǫ

)

1

d

∫ d

0

ET (z)dz

= jωǫ

(

µ

µ0
− ǫ0

ǫ

)

Eavg. (2.24)

The average electric field in the medium, Eavg, to the tangential electric field at the

first surface boundary, E(0), then we have a relation between the sheet current and

the tangential field at the boundary. This relationship can be formed in terms of a

zeroth order equivalent sheet impedance Z0
sh,

E(0) = Z0
sh Js = Z0

shJVavg
d, (2.25)
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Figure 2.1: Homogeneous slab and sheet current boundary. (a) Homogeneous slab in
a propagating wave. (b) Sheet current in a propagating wave.

where

Z0
sh =

E(0)

JVavg
d

=
1

jωǫ
(

µ
µ0

− ǫ0
ǫ

)

d
=

η2

jγ2

(

µ
µ0

− ǫ0
ǫ

)

d
. (2.26)

If we assume µ = µ0, then this form is equivalent to that derived using the vol-

ume equivalent current (2.19). Furthermore, for a highly conductive non-magnetic

material with ǫ′′ >> ǫ′ this form is equal to that of a resistive sheet impedance,

Zsh = 1/(σe d) [40].

Thick Slab Average Boundary

Above it was assumed that the electrical thickness of the slab in terms of material

wavelengths was negligible. While this is the case for a number of thin dielectric

materials, it is not the case of most metallic and magnetic media. For these materials

14



interior moding must be considered in the derivation of an impedance boundary

equivalent form.

However, it is first necessary to discuss the notions of incident and scattered

wave impedances, ηinc and ηs, for a material interface at low frequencies. When

solving for the electric field coefficients interior and exterior to an impedance slab, it

is assumed that the ratio between the electric and magnetic fields in a given medium

are related only to the constituent quantities of each medium. However, the ratio

between these fields in the near field region depends not only on the constitutive

relations but also on the distance from the source to the observation point and the

source current distribution [41]. The ratio of incident tangential electric to magnetic

field, ηinc = Einc(0)/H inc(0) 6= η0 can be computed along with the excitation (so

long as both electric and magnetic field excitation values are known). However, the

ratio between the tangential electric and magnetic backward and forward scattered

fields, ηs = EsB(0)/HsB(0) = EsF(0)/HsF(0), is not known a-priori. In the following

derivations it is assumed that the scattered wave impedance is equal to that of the

incident wave impedance at the interface, ηs = ηinc.

Even for the near field case, fields impressed at the slab boundaries shown in

figure 2.1 will be linearly related though they cannot be regarded as a translation of a

transverse electromagnetic (TEM) wave. This relation is Einc(d) = CEinc(0), where

C is the complex ratio between the advancing incident field at the primary interface,

Einc(0), and the same field at the secondary interface, Einc(d). Furthermore, for an

electrically thick material slab (in terms of its complex wavenumber γ = j ω
√

µǫ) a

superposition of forward and backward traveling plane waves is assumed for the field

distribution within the slab [39],

E(z) = E+e−γz + E−eγz. (2.27)

15



By application of the tangential field boundary conditions and the field impedance

ratios for the incident, scattered, and interior fields, the interior and scattered field

coefficients are related via the algebraic matrix equation [42]



















Einc(0)

Einc(0)

CEinc(0)

CEinc(0)



















=



















1 1 −1 0

Z12 −Z12 1 0

T T−1 0 −1

Z12T −Z12T
−1 0 −1





































E+

E−

Es(0)

Es(d)



















. (2.28)

Solving this system gives the interior field coefficients

E+ =
(1 + Γ)

1 − Γ2 T 2
Einc(0) (2.29)

E− = −(1 + Γ) T 2Γ

1 − Γ2 T 2
Einc(0) (2.30)

and relative scattered parameters

S11 =
EsB

Einc(0)
=

(1 − T 2) Γ

1 − Γ2 T 2
(2.31)

S21 − 1 =
EsF

Einc(0)
=

C(T 2Γ2 − 1) + T (1 − Γ2)

1 − Γ2 T 2
(2.32)

in terms of the incident field at the primary interface. The first surface reflection

coefficient is defined as

Γ =
ηm − ηinc

ηm + ηinc

, (2.33)

with impedance of the material layer ηm =
√

µ/ǫ, and the phase variation within that

layer T = e−γd. Z12 = ηm/ηinc is the relative material impedance, d is the thickness

of the material layer and EsB is the magnitude of the backward scattered field at the

z = 0 interface. EsF is the magnitude of the forward scattered field at the z = d

interface. It is important to note that assuming a forward propagating incident field
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implies the backward scattered field EsB and the fields interior to the slab, E+ and

E−, are not influenced by variation in the field value at the backside of the interface,

CEinc(0).

To determine an average thick sheet boundary condition, the electric field as a

function of depth within the slab is first formulated

E(z) =
(1 + Γ)(e−γz − Γ T 2eγz)

1 − Γ2 T 2
Einc(0); 0 < z < d. (2.34)

Next, the incident field at the primary interface, Einc(0), is related to the total field

at the primary boundary, E(0), via

E(0) = Einc(0) + EsB =
(1 + Γ)(1 − T 2Γ)

1 − Γ2 T 2
Einc(0), (2.35)

resulting in

E(z) =
(1 + Γ)(e−γz − Γ T 2eγz)

1 − Γ2 T 2

1 − Γ2 T 2

(1 + Γ)(1 − T 2Γ)
E(0)

=
(e−γz − Γ T 2eγ2z)

(1 − T 2Γ)
E(0); 0 < z < d, (2.36)

an expression for the field within the medium in terms of the total field at the primary

interface. Following the same procedure used for the thin sheet, the average electric

field in the slab becomes

Eavg =
1

d

∫ d

0

E(z)dz =
E(0)(1 − T )

γd

(1 − Γ T )

(1 − T 2Γ)
(2.37)
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and the average first order equivalent sheet Z1
sh impedance

Z1
sh =

E(0)

JVavg
d

= Z0
sh

(γd)(1 − T 2Γ)

(1 − Γ T )(1 − T )

=
η

j
(

µ
µ0

− ǫ0
ǫ

)

(1 − T 2Γ)

(1 − Γ T )(1 − T )
, (2.38)

where choosing µ = µ0 again gives the standard volume equivalent form.

Thick Slab Equivalent Boundary

While the preceding formulations have relied on the application of an average

boundary condition, the following derivation takes a different approach. For an in-

finite electric sheet current Js residing in free space (as in figure 2.1(b)), the sheet

impedance boundary relation [40]

Einc(0) + EsB + Einc(0) + EsF = 2ZshJs, (2.39)

can be used to solve for the scattered field coefficients in terms of the scattering

parameters

S11 =
EsB

Einc(0)
=

−ηinc

2Zsh + ηinc

(2.40)

S21 − 1 =
EsF

Einc(0)
=

−ηinc

2Zsh + ηinc
(2.41)

where ηs = ηinc is assumed. Solving for the equivalent sheet impedance values in

terms of these material scattering parameter gives

ZB
sh =

−ηinc

2

1 + S11

S11
(2.42)

ZF
sh =

ηinc

2

S21

1 − S21
, (2.43)
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where ZB
sh is the equivalent sheet impedance to produce the proper backward scattered

field and ZF
sh is the equivalent sheet impedance necessary to produce the proper

forward scattered field.

Now consider the existing system as two disjoint problems. First, if there are no

other scattering objects to the right of the boundary, a scattering object to the left of

this sheet interacts only with the backscattered field, and thus the equivalent sheet

impedance ZB
sh as shown in figure 2.2(a). Second, any scattering object to the right

of such a sheet (figure. 2.2(b)) would have impressed upon it a superposition of the

forward scattered field EsF and the incident field Einc. However, as before, mutual

interaction between the sheet and the scattering object occurs in terms of ZB
sh. For

these two disjoint problems to merge into a single, generally applicable open surface

equivalent sheet impedance, like that of figure 2.2(c), the backscattered and forward

scattered sheet impedances should be equivalent.

Propagating Equivalent Boundary Condition If we assume that the material

slab is sufficiently thin such that C ∼ 1, then applying the scattering parameters

of (2.49) to the forward and backward scattering sheet impedances of (2.40) gives

ZB
sh =

η

2

(1 + Γ)(T 2Γ − 1)

Γ(1 − T 2)
=

η

2

(1 + Γ)(T 2Γ − 1)

(1 − T ) Γ(1 + T )
(2.44)

ZF
sh =

η

2

T (1 − Γ2)

(1 − T ) (1 + TΓ2)
=

η

2

(1 + Γ) T (1 − Γ)

(1 − T ) (1 + TΓ2)
. (2.45)

Non-propagating Equivalent Boundary Condition The derivation in the pre-

ceding paragraph assumes that the material medium is excited by a propagating

wave. At very low frequencies the assumption that the impressed field is propagating

is not necessarily correct. The near-field excitation might alternatively be better rep-

resented as the superposition of two waves traveling in opposite directions as depicted

in figure 2.3.
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Figure 2.2: Forward and backward sheet equivalent problems. (a) Backward equiv-
alent interaction. (b) Forward equivalent interaction. (c) Open surface
equivalent, valid when ZB

sh = ZF
sh.
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Figure 2.3: Diagram of a thick slab immersed in a standing wave.

This system requires the solution of the matrix equation



















Einc(0)
2

+ Einc(0)
2

Einc(0)
2

− Einc(0)
2

(

CEinc(0)
2

+ Einc(0)
2

)

(

Einc(0)
2

− CEinc(0)
2

)



















=



















1 1 −1 0

Z12 −Z12 1 0

T T−1 0 −1

Z12T −Z12T
−1 0 −1





































E+

E−

Es(0)

Es(d)



















, (2.46)

where Einc1 = Einc2 = Einc is assumed. The resulting interior field coefficients are

E+ =
(1 + Γ)(1 − CTΓ)

2(1 − Γ2 T 2)
Einc(0) (2.47)

E− =
T (1 + Γ)(C − TΓ)

2(1 − Γ2 T 2)
Einc(0), (2.48)
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and the reflected and transmitted scattering parameters are

S11 =
Es(0)

Einc(0)
=

(Γ − 1)(1 − T (C + CΓ − TΓ))

2(1 − Γ2 T 2)
(2.49)

S21 − 1 =
Es(d)

Einc(0)
=

(T − 1)(1 + T Γ2 − C Γ(1 + T ))

2(1 − Γ2 T 2)
. (2.50)

If the material is electrically thin in terms of the exterior wavelength such that the

magnitude of the impressed standing wave is nearly equivalent on both sides of the

slab, then C ∼ 1 and the scattering parameters become

S11 =
(1 − T )(Γ − 1)

2(1 + TΓ)
(2.51)

S21 =
(1 + T )(1 + Γ)

2(1 + TΓ)
. (2.52)

Applying the sheet current boundary conditions just described, the equivalent forward

and backward scattering impedances are

ZB
sh =

−ηinc

2

1 + S11

S11
=

ηinc

2

(1 + T )(1 + Γ)

(1 − T )(1 − Γ)
(2.53)

ZF
sh =

ηinc

2

S21

1 − S21

=
ηinc

2

(1 + T )(1 + Γ)

(1 − T )(1 − Γ)
. (2.54)

or equivalently

ZNP
sh = ZB,F

sh =
ηm

2

(1 + T )

(1 − T )
. (2.55)

Thus, the forward and backward scattering sheet impedances for a material slab

placed in a standing wave are equal and are independent of the wave impedance of

the incident (or scattered) field. A material whose interior electrical length causes

T → 1, has a sheet impedance ZNP
sh → ∞ and the material becomes transparent.

Alternatively, for a thick lossy material T → 0 and ZNP
sh → ηm/2.
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2.2 Integral Equation Discritization

As discussed in the introduction, the use of a differential equation based numer-

ical solver would require a volumetric discritization of the 3D structures of interest.

Alternatively, to reduce the dimensionality of the problem, decrease numerical error,

and improve stability, an integral equation formulation based on equivalent surface

currents can be adopted. This section outlines just such an alternative formulation

and discusses its application to solving the problems at hand.

2.2.1 Volume & Surface Integral Equations

The integral equation equivalent of the differential electric field wave equation

in (2.9) is derived by application of the second vector dyadic Green’s theorem

∫

V

[

P · ∇∇∇×××∇∇∇××× Q −(∇∇∇×××∇∇∇×××P) · Q
]

dv

= −
∮

S

[

P×××∇∇∇××× Q +(∇∇∇×××P)××× Q
]

· ds, (2.56)

given knowledge of the Dyadic Green’s function,

G(r′, r) =

(

I +
∇∇∇∇∇∇
k2

)

g(r′, r) , (2.57)

that satisfies the corresponding Helmholtz wave equation

∇∇∇×××∇∇∇××× G(r′, r) − k2G(r′, r) = Iδ(r − r′) . (2.58)

By substituting P = Es(r) and Q = G(r′, r) into (2.22), and applying (2.58) in

conjunction with a number of tensor identities [43], we arrive at the following integral
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form

Es(r′) − jωµ

∫

V

J′
eq(r′) · G(r′, r) dv

= −
∮

S

[

E(r)×××∇∇∇×××G(r′, r) +(∇∇∇××× E(r))××× G(r′, r)
]

· ds. (2.59)

As discussed in the previous section, all media is to be replaced by equivalent sources

in this implementation. The closed surface integral in this equation applies to the

surface at infinity which, via the radiation condition [38, 42], has zero contribution.

Unlike formulations representing homogeneous materials in terms of equivalent surface

currents via Huygen’s principle [37], this work employs approximations to the volume

equivalence of thin materials.

The total field in space, after application of the chain rule [44] and recognition

that the currents in question do not flow normal to the surface, takes the form

ET (r) = Einc(r) − jωµ0

∫

S

G(r′, r) · J′
eq(r′)ds′

= Einc(r) − j
η

k

[

k2

∫

S

J′
eq(r′)g(r′, r) ds′ −

∫

S

∇∇∇′∇∇∇g(r′, r) · Jeq(r′)ds′
]

= Einc(r) − j
η

k

[

k2

∫

S

Jeq(r′)g(r′, r) ds′ −
∫

S

(∇∇∇′ ·Jeq(r′))∇∇∇g(r′, r) ds′
]

.

(2.60)

Therein, different materials are introduced through application of the sheet impedance

forms outlined earlier. While this approach may not be desirable for electrically

thick dielectric or low loss materials, it is very much applicable to the solution of

general problems when material thicknesses are significantly smaller than the free

space wavelength.
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2.2.2 Integral Equation Discretization

When subjected to electromagnetic excitation, unique distributions of fields, cur-

rents, and charges result within and surrounding an object. Quantitative analysis of

these distributions allows the engineer to simplify the complex system so that it can

be manipulated to serve a given purpose.

Unfortunately, many objects do not lend themselves to analytical solution of the

above integral forms, and a numerical approach becomes necessary. In the numerical

method, the unknown distributions are approximated by expansion functions, their

interactions are computed over these domains, and finally the boundary conditions are

enforced. In this work such is performed by application of the Galerkin (or weighted

residual) method using the inner product

〈Λm,Λn〉 =

∫

Sm

Λ′
m · Λn ds′, (2.61)

where Λn is the vector expansion function and Λm is an identical test function. This

product is applied to the integral equation

j
k

η

∫

Sm

Λm · EBds = j
k

η

∫

Sm

Λm ·Eincds −
∫

Sm

∫

Sn

(

k2Λm · Jsg(r′, r)
)

dsds

+

∫

Sm

∫

Sn

[∇∇∇′ ·Js](Λm · ∇∇∇g(r′, r)) dsds

= j
k

η

∫

Sm

Λm ·Eincds −
∫

Sm

∫

Sn

(

k2Λm · Jsg(r′, r)
)

dsds

+

∫

Sm

∫

Sn

(∇∇∇′ ·Js) g(r′, r)(∇∇∇ ·Λm) dsds′ (2.62)

where the gradient is passed from the Green’s function to the testing function via [45].

EB is ET evaluated at the boundary where the inner product enforces tangential
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equivalence. Next, J′
eq is expanded in terms of subdomain basis functions Λn

J′
eq =

∑

n

InΛn. (2.63)

The final discretized form of the integral equation becomes

−j
k

η

∑

m

∫

Sm

Λm ·Einc + j
k

η

∑

m

∫

Sm

Λm · EB

= k2
∑

m

∑

n

[
∫

Sm

∫

Sn

(Λm · Λn) g(r′, r) ds ds

]

In

−
∑

m

∑

n

[
∫

Sm

∫

Sn

(∇∇∇′ ·Λn) g(r′, r)(∇∇∇ ·Λm) ds ds

]

In, (2.64)

or

− j
k

η
Vinc

m = −j
k

η
ZshIn +

[

k2Z
A

mn − Z
φ

mn

]

In = ZmnIn (2.65)

in matrix notation. Therein Vinc
m is the potential due to the incident field, Zsh is

the matrix relating the sheet impedance boundary condition, Z
A

mn is the matrix of

magnetic vector potential interactions, Z
φ

mn is the matrix of scalar potential interac-

tions, and In the vector of unknown current amplitudes. Since the singularity of the

integrand has been passed to the testing and basis functions, this system of equations

now demonstrates only a 1/R singularity and can easily be evaluated. In the present

work the singularity subtraction and analytical treatment of [46] is applied.

Issues with the EFIE

The EFIE formulated above suffers from two well known drawbacks.

The first drawback is the problem of interior resonance, where the EFIE kernel

has a nontrivial solution at the eigenvalues of a given interior problem [34, 47]. When

simulating a closed cavity at the frequencies corresponding to resonant modes, more

than a single solution may exist that satisfies the boundary conditions. When this
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occurs the matrix equation becomes singular as the solution sought is non-unique.

The structures of interest in this work are not only generally open (i.e. do not have

significant interior dimension), but for those instances where cavities do exist the

structures are excited at frequencies well below the first resonant mode. Thus, the

problem of interior resonance breakdown of the EFIE is not of particular concern in

this work.

The second well known drawback to the use of the electric field integral equation

occurs when using a high mesh granularity relative to the simulation wavelength.

This breakdown (which is not limited to low frequencies) arises due to the limitations

of numerical precision [26, 34]. For a very fine mesh, or any mesh in a very low

frequency field, contribution from the magnetic vector potential terms, Z
A

, are much

smaller than the electric scalar potential contributions, Z
φ
. The resulting magnetic

vector potential contributions are less accurate (or may be lost altogether) and the

remaining scalar potential contributions relate only to ∇∇∇s · J, via the Lorentz gauge.

Since the divergence of a vector field is not sufficient to determine the field in its

entirety (per Helmholtz’s Theorem [48]), the numerical method can diverge or arrive

at an incorrect solution. For multi-scale problems whose geometric features range over

orders of magnitude, the issue manifests itself by increasing the condition number of

the system [34].

To remedy the situation, it is necessary to scale the solenoidal and irrotational

subspaces separately. This is implemented through application of separate curl and

divergence conforming expansion functions that approximate a Helmholtz decompo-

sition.

Expansion Functions

In this work a triangular surface discritization is employed. The most popular

and quite possibly best understood vector expansion functions for such are the RWG
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bases. While these bases are sometimes employed in this work, it is advantageous

to begin with a more rudimentary function set. From this set, solenoidal and quasi-

irrotational expansions can be simply introduced through sparse mappings at minimal

cost.

Single Patch Expansion Functions The lowest level set of expansion functions

used in this work are divergence conforming single patch (SP) expansions, denoted

here by Λp
e. p denotes the patch index and e denotes the edge index. When applied

to a triangular patch discritization, the vector surface current Jp is defined to be

Jp =
3
∑

e=1

Λp
eIe. (2.66)

and the total charge on the patch is related to the divergence of the surface current

∇∇∇ ·Jp = ∇∇∇ ·Λp
eIe. (2.67)

Therein, the SP expansion set and its divergence are defined to be

Λp
e(r′) =











ρρρp
e(r′)
2 A

r′ ∈ Tp

0 r′ /∈ Tp

(2.68)

∇∇∇ ·Λp
e(r′) =

1

2 A
. (2.69)

where A is the area of the patch, and ρρρe is a radial vector from the eth node toward

the eth edge. The set of three single patch expansions that exist on any given triangle

are shown in figure 2.4(a). These expansions are equivalent to 1/2 of the well known

RWG expansion functions [23] without inclusion of edge length. The interaction

between two patches is also shown to require 10 values in figure 2.4(b), one scalar

term for the divergence of the expansion and 9 vector terms, one for each pair of
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Figure 2.4: Single Patch (SP) expansion function. (a) Definition. (b) Interaction.

vector expansions.

Non-Solenoidal (Divergence Conforming) Bases While coefficients applied to

the SP bases above can properly represent a complete current distribution, the SP

expansions do not enforce patch current continuity. One option to ensure continuity

is to employ pairs of SP expansions at common edges, resulting in RWG rooftop bases

in figure 2.5(a), defined as

ΛRWG
n =











Λa
ea

, r, p = 1

−Λb
eb

, r, p = 2,
(2.70)

where ea and eb are local patch indices corresponding to the nth mesh edge. When

employed, the number of non-boundary edges (NBe’s) is equal to the degrees of

freedom (DOF) in the discretized system.

As mentioned, the EFIE requires that curl-conforming (loop) bases be employed

and scaling be applied for a fine granularity mesh. In a system where the excita-

tion is not entirely solenoidal, charge can accumulate and it is necessary to employ
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Figure 2.5: Divergence conforming expansion functions. (a) RWG basis formed from
two SP bases. (b) Star basis formed from SP and RWG bases. (c) RWG,
Tree, and Star bases on a surface discritization.

both solenoidal and non-solenoidal expansions. The divergence conforming expan-

sions used are typically Tree and Star expansions. Tree expansions are a subset of

the RWG expansions chosen not to form circulating currents. Alternative Star bases

are equivalent to the summation of all RWG bases exiting a given triangle, as shown

in figure 2.5(b) and may also be mapped via the superposition of a set of SP bases.

To maintain a consistent number of DOF, the number of star and tree functions is

one fewer than the number of patches (triangles) on the surface. Tree and star bases

are always used in conjunction with the Loop bases, forming Loop-Tree (LT) and

Loop-Star (LS) expansions of the surface current.

Solenoidal (Curl Conforming) Bases While complete divergence conforming

expansion sets (e.g. RWG bases) work well at higher frequencies, fine meshes require

the inclusion of curl-conforming expansions. By taking the difference between SP
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bases on a given patch an alternative curl-conforming SP expansion is formed (see

figure 2.6(a)). This curl conforming SP set is still incomplete (as it cannot enforce

current continuity between patches). To enforce continuity, curl-conforming Loop

1

2

3

+ + +

+ +

=

1

2

3

=

=

=

Boundary Nodes

Associated Loop Bases

(a)

(b)

(c)

Figure 2.6: Curl conforming expansion functions. (a) Difference between two SP
bases combine to form a single curl conforming expansion. (b) Loop
expansion formed from an RWG expansion. (c) Partial loop bases along
a boundary edge.

bases are formed as in figure 2.6(b). These expansions may be formed from sets of

SP curl-conforming bases, or via superposition of RWG bases traversing the edges

attached to a common non-boundary vertex. (Complete loop bases have zero diver-

gence and a finite curl, thus they are termed curl-conforming.) Incomplete loop bases

are also formed at each boundary vertex (Bv) as shown in figure 2.6(c), and are used

in the following chapters. For a simple surface, the number of complete loop basis

functions is equal to the number of non-boundary vertices (NBv). In the case of a
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surface that contains multiple bounding edges (i.e. has holes or handles) a solenoidal

current forms along the bounding edge due to the flux passing through the opening

(Faraday’s Law) and an additional loop basis must be introduced to represent this

current [25]). Thankfully, these loops are simply formed as the summation of all

incomplete loops belonging to the boundary vertices.

2.3 Fast Algorithms

The direct solution of a linear system of N equations through Gaussian elimination

requires O(N2) storage and O(N3) flop count [49], both of which are impractical for

large problems. Alternatively, systems that arise from boundary element integral

forms are relatively well conditioned and can be solved by a number of iterative

procedures, most popular of which are the Krylov subspace schemes [49].

Such methods attain a solution of acceptable precision by applying the system

matrix to a sequence of approximate solutions. Each new guess is improved until the

boundary conditions are met to within a desired tolerance. Since these methods rely

on repeated application of the matrix-vector product (MVP), the dominant costs are

the O(N2) time and memory spent constructing and storing the matrix and O(MN2)

flops to perform M iterations.

To decrease storage and compute time, both the number of iterations and the flop

count of each iteration must be reduced. Improved convergence arises through the

application of pre-conditioning methods and will be addressed in Chapter 4. However,

reducing the O(N2) dense matrix cost is the topic of this section on fast algorithms.

2.3.1 Matrix Compression

The purpose of a fast algorithm is to achieve some form of matrix compression,

whereby fewer terms must be applied to perform the MVP [50]. Some methods achieve
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this by mapping existing unknowns onto regular grids (or existing grid structures)

then applying Fourier transforms or algebraic techniques. Such methods include the

adaptive integral method (AIM) [20], the array decomposition method (ADM) [21],

and the multilevel matrix decomposition algorithm (MLMDA) [22]. Alternative ap-

proaches concentrate less on regularizing the underlying structure and more on devel-

oping low rank equivalent forms for distant interactions. Such include QR and SVD

based methods [30, 31]. The most efficient techniques take the approach of applying

equivalent series expansions to model the underlying interaction. The most popular

of these expansion methods is the Fast Multipole Method (FMM) [33, 51–53], with

lower cost diagonalized forms [32, 54].

In this work two fast algorithms are employed.

SVD Matrix Compression

The first compression method employed operates on pre-computed matrix blocks

resulting in efficient low-rank equivalent forms at the expense of increased setup time.

The singular value decomposition (SVD) is used for rank-deficient matrix compression

as discussed in [30]. While Gram-Schmidt Orthogonalization (QR) would exhibit

reduced overhead with equivalent performance, the straightforward nature of the

SVD approach is employed for simplicity. Low Rank equivalent forms are computed

from the SVD

A = UΣV
∗

(2.71)

by extracting only the ith dominant eigenvalues i|λi/λmax > ǫ relative to the desired

numerical precision ǫ. The Left and Right low rank equivalent forms are

L(:, i) = U(:, i) (2.72)

R(i, :) = Σ(i, i)V
∗
(i, :). (2.73)
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If applied to the complete matrix, this technique would result in an O(N1.5) interac-

tion at the expense of O(N3) setup. However, because of the unique implementation

outlined in the next chapter, this method is only employed to mid-range unique facet

interactions over which the non-oscillatory nature of the kernel results in significant

rank reduction. Distant interactions are performed by application of the low frequency

multilevel fast multipole method outlined below.

Low Frequency Multilevel Fast Multipole

Multilevel Fast Multipole Overview The multilevel fast multipole method em-

ploys a tree structure to organize interactions between groups (clusters) of basis func-

tions. Starting with a complete basis set, successively smaller clusters are formed.

By employing approximate series expansions, the interaction between distant clus-

ters is performed at reduced cost because the number of expansion terms needed to

represent distant fields is lower than the number of basis functions generating these

fields. Making the technique multilevel, outgoing expansions for lower level clusters

are used to form like expansions of larger and larger groupings. Similarly, incoming

expansions are filtered down from higher level to lower level clusters. The efficiency

of the multilevel fast multipole method comes from aggregating outgoing expansions

by passing them up the tree structure, translating the expansions between sufficiently

distant clusters at all levels, and then disaggregating the incoming expansions down

the tree to determine the resulting potentials across all bases.

LF-MLFMA As discussed in the introduction, issues arise when applying the well

known dynamic multilevel fast multipole algorithm, valid at mid-range frequencies,

to the evanescent regime. In particular, the complex component of the second order

Hankel function used in the diagonalized translation matrix is divergent (at a rate

proportional to the function order) as the argument approaches zero. However, even
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if proper scaling is applied it becomes apparent that the plane wave expansion is not

capable of properly representing evanescent interactions [36].

However, the un-diagonalized LF-MLFMA [34], formed in terms of only multipole

expansions, does achieve matrix compression at low frequencies if properly scaled [34].

As the interaction distance becomes significant (> λ/3), the number of multipoles re-

quired approaches the number of bases being represented, and the interaction is no

longer low rank. Over the range of frequency and structural dimension employed in

this work, the scaled LF-MLFMA first published in [55] can provide a significant re-

duction in memory overhead. Unlike the alternative diagonalized versions that employ

evanescent wave expansions, frame of reference rotation is a straightforward operation

and is beneficial in the structural definition of the next chapter. Because the number

of spherical harmonic terms needed to represent a set of bases to a given accuracy

is the same at all levels (it is scale invariant) the LF-MLFMA is asymptotically an

O(N) procedure. One significant downside to using this approach is that its numer-

ical accuracy scales as (0.75)p [56], where p the number of multipoles needed in the

scalar expansion. To achieve a minimum four digit accuracy, 36 multipoles are needed

and, in the case of vector interactions, the near term interaction list is expanded to

include second-nearest neighbors in order to maintain the accuracy desired.

LF-MLFMA Formulation The LF-MLFMA normalized translation equation ex-

pressed in its compact matrix form is

ααα(rij) = βββ(rjJ)ααα(rJI)βββ(rIi) (2.74)

where rij = rjJ + rJI + rIi. Thanks to the use of multipole expansions throughout,

no modified filtering algorithms such as those used in [32, 54] are necessary to pass

expansions between tree levels. The translation matrices representing outgoing and
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incomming spherical harmonic expansions are defined as

ααα(r, k0)L′,L =
∑

L′′

jℓ′′(k0 r) Yℓ′′,m−m′(θr, φr) ΥL,L′,L′′ (2.75)

βββ(r, k0)L′,L =
∑

L′′

h
(2)
ℓ′′ (k0 r) Yℓ′′,m−m′(θr, φr) ΥL,L′,L′′ . (2.76)

Here, jℓ′′(k0 r′′) is the zeroth order spherical bessel function of ℓ′′ order, h
(2)
ℓ′′ (k0 r′′)

is a second order spherical hankel function of ℓ′′ order, and Yℓ′′,m−m′(θ′′, φ′′) is the

spherical harmonic function. Furthermore,

ΥL,L′,L′′ = 4π(−j)ℓ′+ℓ′′−ℓ AL,L′,L′′, (2.77)

where AL,L′,L′′ is the Gaunt coefficient in terms of the Wigner 3-j symbol. The indices

are further expanded as L = (ℓ, m), L′ = (ℓ′, m′) and L′′ = (ℓ′′, m′′). The translation

equation is related to the scalar Green’s function via

g(rj, ri) = −j k0 α0,0(rij, k0) . (2.78)

Direct formation of the LF-MLFMA matrices in terms of sparse component ma-

trices is implemented utilizing the linear indices

L(′),(′′) = m(′),(′′) + ℓ(′),(′′)2 + ℓ(′),(′′) + 1 (2.79)
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and matrices defined as

SHSHSH(L′′ , ℓ′′ + 1) = Yℓ′′,m′′

(

θ̃r, φ̃r

)

(2.80)

JVJVJV (ℓ′′, 1) = jℓ′′(rk) (2.81)

Y VY VY V (ℓ′′, 1) = yℓ′′(rk) (2.82)

AMAMAM(L′ , (L − 1)(ℓ′′max + 1)
2

+ L′′) = 4π(−j)ℓ′+ℓ′′−ℓ A(L, L′, L′′) . (2.83)

Note that the matrix AMAMAM is structurally independent so it can be formed as a sparse

matrix and stored for large ranges of L, L′, and L′′ without need for repeated com-

putation. The desired translator matrices are then

βββ(r k) = AMAMAM bdiag
(

SHSHSH JVJVJV ,(ℓmax + 1)2) (2.84)

ααα(r k) = βββ(r k) − jAMAMAM bdiag
(

SHSHSH Y VY VY V ,(ℓmax + 1)2) . (2.85)

where bdiag(A, n) forms a block diagonal matrix with n entries of the matrix A.

Multipole Alignment The number of multipole terms needed to interact a pair

of clusters can be reduced by aligning their expansions such that the vector between

the clusters is along the z-axis [34, 57, 58]. This results in a highly sparse translation

matrix (due to the symmetry of the spherical harmonics) and results in a translation

that is only distance dependent. While this approach is employed in the current work,

a minor modification to the spherical harmonic rotation of [34] is also employed.

Standard spherical harmonic alignment [57, 58] employs only two rotation angles

as the transmitting and receiving clusters are assumed to exist in the same coordi-

nate frame. However, as outlined in the next chapter, this implementation employs

localized coordinate frames for every cluster. In that case, rotations must be applied

not only to to align the multipole expansions in the global coordinate frame (via the

global angles θ, φ), but must be rotated into the global frame via the euler angles
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α, β, γ. A generic multipole rotation takes the form

T(r1) = R
∗
T(r2)R. (2.86)

In this implementaiton the rotation matrices (R) employed are formed as

S = D(0, π/2, 0)D(π/2, 0, 0) (2.87)

REU = D(0, 0, γ)
(

S
∗
D(0, β, 0) S

)∗

D(α, 0, 0)∗ (2.88)

Rz =
(

S
∗
D(0, θ, 0) S

)

D(φ, 0, 0) , (2.89)

where the spherical harmonic rotation matrix D(α, β, γ) is defined in [34]. When

implemented into the multilevel form of (2.74) the translation matrices including

local to global harmonic rotations are formed as

ααα(rglobal, k) = Rz
∗
ααα(zglobal, k) Rz (2.90)

βββ(rglobal, k) = Rtx
EU βββ(rlocal, k) (2.91)

βββ(rlocal, k) = Rrx
EU

∗
βββ(rglobal, k) . (2.92)

The inclusion of the REU multipole rotation matrices does significantly effect nu-

merical accuracy [34] or the cost of aligning the multipole expansions for a scalar

interaction. For a given interaction the sparse euler rotations can be joined with the

global frame rotation, Rz, without increasing the number of rotation terms, as shown

in figure 2.7. For vector interactions, local to global rotation implies that vector ex-

pansions be coordinate rotated to ensure proper expansion function interaction (EU

in figure 2.7).

Implementation with Incomplete Helmholtz Decomposition When LF-MLFMA

is used in conjunction with the incomplete Helmoholtz decomposition, it is necessary
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Figure 2.7: Multipole alignment including local coordinate frames.

to employ separate multipole trees for the scaled solenoidal and non-solenoidal cur-

rents. Thus, two vector multipole traversals are performed with each iteration [59]

unless some form of common sub-basis is applied [34]. Furthermore, large holes or

handles within a surface can limit the minimum multipole cluster size as loop bases

circumventing handles have large domains. Both of these issues are addressed in

Chapter 4.

39



CHAPTER 3

Multilevel Geometry Description

Many existing numerical approaches compute near-term basis interactions by

brute force, that is they do not employ a method of eliminating redundant com-

putations. In this chapter a general purpose redundancy minimization algorithm for

both array and arbitrary surface based structures is outlined. By eliminating unnec-

essary operations, the number of floating point operations (flops) and memory use

can be decoupled from the total number of unknowns in the structure. This is par-

ticularly important were the overhead required in solving large systems of equations

becomes bound by finite computer resources. In these cases, redundancy minimiza-

tion can enable the solution of a far greater number of unknowns in the same resource

space. For problems where proper conditioning results in highly convergent iterative

methods, the number of floating point operations employed to setup the system of

equations can dominate over the time necessary to solve the system of equations.

This is the situation that occurs in many low frequency simulations.

Well known approaches to redundancy minimization rely primarily on the imple-

mentation of fast iterative solvers, reducing the O(N2) cost of computing all matrix

entries down to O(N) near term interactions and O(N) or O(NLogN) multipole ex-

pansions (as detailed in the preceding chapter). Further methods take advantage of

redundancy in cartesian array type structures [20, 21] or limit overhead during solu-
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tion by compartmentalizing the numerical solver using domain decomposition [60–64].

As an alternative, this implementation enforces a new form of structural definition

via what is coined a Multi-level Geometry Description (MLGD). Not only does the

MLGD permit automated tracking and identification of local and global redundancy

in array type structures, but it is equally applicable to the simulation of arbitrary en-

gineered surfaces. By implementing this model the number of unique mesh elements,

expansion functions, and their interactions is decoupled from the DOF in the system,

significantly reducing the use of computing system resources, extending the upper

bound on the size of the solvable system, and reducing the total time to solution.

In the MLGD, surface based structures are constructed via a tiered assembly of

unique facets with associated translation vectors and rotation matrices. Using this

description, LF-MLFMA is applied in absence of an oct-tree decomposition [34] and

identification of a unique minimal set of both near and distant interactions is straight-

forward. This chapter discusses the geometric operations necessary to assemble an

arbitrary surface from a facet subset and resolves implementation challenges involved

in the construction of such. Included are details on proper basis formation, bridging

disjoint and multiply connected facets, and detecting handles (holes) in the surface

structure (an active area of research in its own right).

3.1 Facet Based Geometry

At the geometry description level it is common practice to form a structure from

assembled subsurfaces. A surface is replicated, translated, and rotated into a new

position and joined as a new part of the existing structure. Minor errors in numerical

precision are eliminated by translational correction. However, information about

facet symmetry and likeness is lost when a surface meshing algorithm is employed.

As an alternative, it is proposed that a basic surface be represented in terms of
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a set of elementary facets with a list of translation vectors and rotation matrices.

Furthermore, just as an arbitrary surface can be composed of a set of facets, any

facet may in turn be composed from other facets. A surface geometry can be defined

as a hierarchy of nested surfaces, each included in the one above it through rotation

and translation. In the MLGD, a completed surface geometry is simply the highest

level facet definition.

To form an MLGD, we begin with a small set of pre-meshed protofacets with com-

patible mesh granularity along their bounding edges. (If mesh independent bases [34]

were used, this limitation could be eliminated.) A new surface structure is formed by

joining translated and/or rotated protofacets, or other higher-level surfaces already

constructed, as in figure 3.1 As each new surface is joined to the existing struc-
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Figure 3.1: Forming an MLGD structure from an existing library.
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ture, surface linking information is used to track physical bounding edges and ensure

proper basis formation. Following this procedure, the resulting geometry description

becomes an oriented graph structure, as depicted in figure 3.2. The nodes of the

surface

level 0

(protofacet)

surface

 level  0

(protofacet)
surface

 level 0
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surface
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surface
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surface
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Figure 3.2: Diagram of the MLGD oriented graph structure.

graph represent physical surfaces in local coordinate frames. The edges of the graph

represent translation and rotation vectors applied to lower level nodes to form the

higher level nodes (surfaces). The the structure mesh is stored only in the finite set

of facets at the leaves of the graph, and an extension of the surface geometry incurs

only the cost of storing additional translation and rotation information. Furthermore,

information about redundancy (facets with identical shape or identical interactions)

remains within the structural definition and can be used to great advantage in the

43



numerical method. It is now necessary to define the construction of the nodes and

edges of this oriented graph.

3.1.1 Protofacets

The first type of graph node is the “protofacet”. This node contains rudimentary

mesh information, and there is at least one of these structures at bottom of every

MLGD. While it would be possible to start an MLGD definition for a single triangular

patch or small rectangle, it is not practical from a design point of view to build a

substantial structure by hand from such a rudimentary shape. Thus, protofacet nodes

are imported as small meshed surfaces. Each protofacet includes vertex coordinates

(in a local frame of reference), relations between the vertices and the edges, and

relations between the mesh patches and one or both of the previous components

(i.e. all the standard components defining a surface mesh). To ensure and simplify

proper connectivity within the structure, the edges and vertices of each protofacet

are defined using a counter-clockwise patch-vertex-edge ordering such that surface

normals computed as the cross product of the patch edges are consistent. It is not

necessary that vertices interior to a protofacet be indexed in a counter-clockwise

fashion, but the boundary vertices and edges are ordered to facilitate an efficient

implementation.

Mesh Definition

The rudimentary building blocks of a mesh are the vertices, each of which is a

point in the local coordinate frame represented by three cartesian values. Within a

protofacet, the set of all vertices is gathered together into a matrix V, where the jth

vertex is defined by the entries in the jth column of the matrix. In addition, in order

to ensure efficient indexing, the vertices about the bounding edge of the protofacet

are counterclockwise indexed and represent the leading columns of the vertex matrix.
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The next component of the mesh is the edge element definition that depicts con-

nectivity between the vertices. Rather than a simple look-up table, a sparse mapping

is employed, where a +1 entry defines a “tail” connection to a vertex, and a −1 entry

defines a “head” connection to a vertex. This results in a vertex-edge sparse mapping

Mve with vertex row indices j and edge indices k along the columns.

Mve(j, k) =







+1, {j | j = tail}
−1, {j | j = head}

(3.1)

For example, the kth edge of the mapping with a tail at the 3rd vertex and a head at

the 5th vertex is

ek = Mve(:, k) =





















0
0

+1
0
−1
0
...





















. (3.2)

The kth edges corresponding to mesh boundary edges are counterclockwise indexed

about the protofacet and represent the first group of ordered columns in this mapping.

Next, in order to maintain a consistent orientation the following edge-patch map-

ping is formed. Applying counter-clockwise ordering, the sparse edge-patch mapping,

Mep, is formed with +1 entries at the indices of correctly oriented row edge elements

(to form the patch in the counterclockwise direction) and a −1 for those that are

clockwise oriented.

Mep(j, ℓ) =







+1, {(j, ℓ) | j ∈ ti ∧ CCW}
−1, {(j, ℓ) | j ∈ ti ∧ CW}

. (3.3)

Here the patch index ℓ has three values ℓ = 3(ti − 1) + ℓL, corresponding to the first,

second, and third local edge ℓL = [1, 2, 3] in a right handed orientation about the tthi
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patch. For example, a single patch to edge mapping is

pℓ = Mep(:, ℓ) =

















0 0 −1
+1 0 0
0 0 0
0 0 0
0 +1 0
... ... ...

















. (3.4)

By filtering and transforming the mappings above, key characteristics of the mesh

are extracted. The next mapping of interest describes the set of Boundary Elements

(BE), e.g. those elements along the boundary of the current mesh. Such are the set

of elements that belong to only a single patch, defined as

BE = {j | colsum{|Mep(j, :) |} = 1}, (3.5)

and represented in the sparse mapping

MeBe(j, be) = +1, {(j, be) | j ∈ BE}. (3.6)

Care is taken to ensure each of the beth boundary edges follow a counterclockwise

indexing about the facet. The dual mapping for the non-boundary edges is

MeNBe(j, nbe) = +1, {(j, nbe) | j /∈ BE}, (3.7)

where the order of the non-boundary elements, nbe, is not particular.

Physical Vertices and Edges

To enable efficient mesh interconnectivity at higher levels of the nested structure,

“physical” vertices and “physical” boundary edges are tracked in the oriented graph

structure. These edges and vertices are what make up the geometry description of
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the facet boundary prior to meshing. Each group of boundary edges making up a

given physical edge (as provided by the surface meshing algorithm) is organized into

the physical edge set,

PE(pe) = {j | j ∈ pe edge}. (3.8)

This information is then used to form the protofacet edge-physical edge mapping

MePe. In this mapping, +1 is entered at row indices for mesh edges that belong to a

given physical edge.

MePe(j, pe) = +1, {(j, pe) | j ∈ PE(pe)}. (3.9)

For example, a the peth physical edge formed by joining mesh boundary edges 3, 5,

and 6,

MePe(:, pe) =





















0
0

+1
0

+1
+1
...





















. (3.10)

Again, because of proper ordering the boundary edges are all counterclockwise indexed

and only positive entries are necessary. A physical vertex mapping for the same facet

is also formed as

MvPv(i, j) = +1, {(i, j) |
[

Mve MePe
]

(i, j) = −1}. (3.11)

Further mappings are formed through multiplication and filtering. For example, in

order to find the mapping between the physical vertices and a physical edge, pe,

I compute MPvPe = Mve MePe. Therein, only physical vertices remain because

interior vertices are the head of one edge and the tail of another (+1+−1 = 0), while

vertices at the ends of the physical edge are only head or tail (+1 or −1). Mappings

47



to the interior vertices on a physical edge are formed as

MivPe(i, pe) = +1, {(i, pe) |
[

|Mve|MePe
]

(i, pe) = 2}, (3.12)

where the absolute value ensures that common vertices do not cancel, (|+1|+ |−1| =

2), as those that are used twice make up the desired set.

By adopting sparse mappings to relate mesh connectivity sets, information used

in the numerical method relating to edge and vertex connectivity can be simply

extracted via matrix operations.

3.1.2 Graph Nodes

The goal of using an MLGD is to minimize the information used to define facet in-

terconnectivity at higher levels while at the same time providing a method to properly

interconnect subsurface edges and vertices as the structure is defined.

However, before detailing the method of forming this hierarchy, it is first necessary

to discuss a method of applying facet rotation and translation, termed “ghosting”. A

ghost of a facet, or “ghostfacet” does not include any mesh information, but simply

contains the relative location vectors and orientation angles (via a Euler rotation

matrix [65]), along with a pointer to its protofacet (or graph node) definition. An

assembly of ghostfacets is a graph node.

Facet Translation and Rotation

In order to form a ghost, i.e. a translation vector and rotation matrix, it is

necessary to define local-to-global and global-to-local coordinate transforms. I first

discuss the act of rotating the facet at P about a unit vector ξ̂ that passes through the

points Q and N , as shown in figure 3.4. The facet at point P with local coordinate

system (x̂′, ŷ′, ẑ′) is related to the global origin O with global coordinate system
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Figure 3.3: Translation and rotation of a facet about a line through a point.

(x̂, ŷ, ẑ) through the vector PO = P − O. The component of PO in the direction of

ξ̂ is defined as the vector NO. The unit vector ξ̂ is related to the global coordinate

system via

ξ̂ =
ξxx̂ + ξyŷ + ξzẑ
√

ξ2
x + ξ2

y + ξ2
z

. (3.13)
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The facet at point P is rotated in the right hand sense about the unit vector ξ̂.

Thus, we treat ξ̂ as the ẑ′′ component of a standard cartesian frame with PN falling

along the x̂′′ direction, and our rotation angle defined by φ′′. The coordinate frame

denoted by (x̂′′, ŷ′′, ẑ′′) is the local coordinate system for ξ̂. In doing so, the point

P is translated (in the global coordinate frame) to the location P2. First P2 must

be found, then the global rotation must be mapped into the euler rotation [65] with

respect to the global frame.

Translation If ξ̂ relates to some ẑ′′, and PN relates to some x̂′′, then

P2N = EUξ

T









cos(φ′′) − sin(φ′′) 0

sin(φ′′) cos(φ′′) 0

0 0 1









PN = EUξ

T
TP2/P PN. (3.14)

EUξ is the Euler rotation matrix relating (x̂′′, ŷ′′, ẑ′′) to the global system (x̂, ŷ, ẑ).

Now, the point P2 is

P2 O = Q O + N Q + P2 N. (3.15)

Substituting (3.14) into (3.15) results in

P2 = Q + NQ + EUξ

T
TP2/P

(

P − Q − NQ
)

. (3.16)

Next, NQ is the projection of PQ along the direction ξ̂, so NQ = ξ̂
(

PQ · ξ̂
)

, and

N = NQ + Q. The translation vector becomes

Vt = P2P = NQ − PQ + EUξ

T
TP2/P

(

PQ− NQ
)

. (3.17)

It is important to note in the current implementation that translations are defined

relative to the center of mass of the surface as it is constructed (to aid in the proper

formation of clusters in fast multipole implementation). These translations are up-
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dated as each new subsurface is added to the current working graph node.

Rotation With translation determined, the Euler rotation matrix can now be

found. To perform this rotation the original facet is transformed as follows:

1. Convert the local coordinate system of the facet to the global system using

EUo

T
, where EUo is the facets original Euler rotation matrix.

2. Convert the global coordinate system to the system local to ξ̂ using EUξ.

3. Perform the rotation of TP2/P .

4. Convert back to the global coordinate system using EUξ

T
.

5. Transpose the entire operation to obtain the final Euler rotation matrix.

Mathematically this results in the following modified Euler rotation matrix for the

rotated facet,

EUnew =

[

EUξ

T
TP2/P EUξ EUo

T
]T

. (3.18)

Using a non-linear least squares algorithm [66], the euler rotation angles (α, β, γ) are

determined from EUnew and included in the ghostfacet definition for application to

the multipole rotations in the preceding chapter.

Building Nodes

As depicted in figure 3.1, each node in the oriented graph definition is a surface

in its own right. When first forming a graph node, the node takes on the physical

parameters of the its first ghost. The ghost definition (i.e. rotation and translation)

is added into the node subsurface matrix GSSn (therein n superscript indicates that

it belongs to the node). The transformed physical vertices of the ghost are placed

in the node vertex matrix V n, and the physical vertex-edge mapping of the ghost is

adopted by the node Mven = MPvPe.
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Is this the first 

ghost being added?

Make ghost definition first entry of 

ghostfacet list

Transform Physical verticies and store in node

Form diagonal sparse mappings between node 
physical definition and ghostfacet definition 

Yes

Transform ghost physical vertices into 

node coordinate frame

Compare physical vertices to node verticies

No

Determine common boundary and non-
boundary edges from vertex information

and sparse mappings

Update Node definitions to include 

new vertices and edges resulting from 

the addition of the ghost

Translate & Rotate

Update mappings between node vertices and 

edges and subsurface physical vertices and 

edges

Add ghost definition to ghostfacet list

Current Graph Node

Ghostfacet List

: vertex matrix

 : vertex to edge mapping 

: Interlevel physical vertex mapping

: Interlevel physical edge mapping

Graph Node

V n

Mven

Mvvn
S

Meen
S

n

Figure 3.4: Diagram outlining the procedure for construction of an MLGD node.

In the last section an expanded patch indexing, ℓ, was used in mapping protofacet

patches to the their edge matrices via Mep. Similarly, physical edges can be treated

as local edges of a facet that is a subsurface of a higher level facet. In order to

traverse the relationship between the subsurface and supersurface node definitions,

sparse mappings between physical parameters of the node and its subsurfaces are

created. Like the relationship between triangles and edges in the protofacet, these new

interlevel mappings use extended indexing. The node vertex to subsurface physical

vertex mapping is formed by comparing existing node vertices to those of the ghost

being added

Mvvn
S(i, ℓv) = +1, {(i, ℓv) | i == ℓv}. (3.19)
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Therein, ℓv is a linear index to the physical vertex of the current ghost. Similarly, the

graph node edge to subsurface physical edge mapping is defined as

Meen
S(j, ℓe) =



















+1, {(j, ℓe) | j ⇉ ℓe}
−1, {(j, ℓe) | j ⇄ ℓe}

0, otherwise

, (3.20)

with ℓe being the linear index to the physical edge of the current ghost, ⇉ depicting

edges oriented in the same direction, and ⇄ depicting edges oriented in opposing

directions. When first formed, both of these interlevel mappings are sparse identity

matrices. As each additional ghost is added to a node, the ghost’s transformed

physical vertices are compared to the node’s vertex matrix (see figure 3.1) and the set

of unique vertices and edges that make up the updated node description are merged

into Vn and Mven. The sparse mappings Mvvn
S and Meen

S are updated to include

each new subsurface. Like a protofacet, each higher level node of the graph contains

sparse mappings relating its subsurfaces to physical edges and vertices.

3.1.3 Recursing the Graph

In order to determine the set of unique interactions and to clearly plot the under-

lying MLGD structure it is necessary recurse the multilevel description. Beginning at

the top of the graph, the location and orientation of each branch is successively mod-

ified as the recursion traverses down to the leaf level. The location and orientation

of each higher level node is passed down to the current node via

ℓℓℓ
>

= EU
T

>
ℓℓℓ

<
+ ℓℓℓ

>
(3.21)

EU
>

= EU
<
EU

>
. (3.22)
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Figure 3.5: Recursion tree of the MLGD structure. Arrows indicate unique interac-
tions. Linear indexing of the tree structure is also shown.

ℓℓℓ> is the translation from above and ℓℓℓ
<

is the translation at the current level, EU
>

is

the rotation passed down and EU
<

the the rotation at the current level. At the leaf

level of the MLGD, each local coordinate vertex vi in the global frame is transformed

as

vi = ℓℓℓ
>

+ EU
T

>
vi. (3.23)

To properly employ the interaction search algorithm in the following section, it is

necessary to maintain a linear index of the MLGD tree structure during recursion.

Starting with 1 as the index of the top level surface, each subsurface in the expanded

tree is assigned an incremental index based on the progression of the recursion, as

depicted in figure 3.5.

Integrity of the Meshed Structure Successive rotation of a nested protofacet

can accumulate location and orientation error. The final location and orientation
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of the facet can be altered due to floating point errors in applying successive Euler

matrix rotations and translations in finite precision arithmetic. Thankfully, MLGD

vertices are defined in local coordinate frames and dilation does not occur.

However, to ensure proper mesh interconnectivity, translational and/or rotational

error is removed during construction by applying corrections to ghostfacet definition

before it is saved in the nodes ghostfacet list. This way latter recursions into the

structure are error free to machine precision.

These corrections are performed by using a snap geometry. When the physical

vertices along of a new ghostfacet are compared to those of the existing node, vertices

within a given tolerance are assumed to be the same. Next, relative errors for multiple

snapped vertices (i.e. those on a common edge) are compared. If the errors are of

nearly equal magnitude in the node’s frame of reference, then simple translational

correction is all that is required, and it is included into the ghost translation vector.

If the error between the points is such to that it suggests the need for rotational

correction, the angle of the rotation in the global coordinate frame is determined

from the vertex error magnitudes, and a correction is applied to the Euler rotation.

As these errors begin at the level of machine precision and accumulate as the geom-

etry is constructed, they are slow growing and, in most cases translational correction

is sufficient throughout most of a structural definition.

3.2 Interactions and Interconnectivity

With the basic form of the MLGD definition outlined, it is now possible to intro-

duce algorithms that benefit the numerical method by using the information stored

in the MLGD.
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3.2.1 Minimum Interaction Set

As can be seen from the the MLGD structure, local “likeness” information about

the surface structure is now available to the numerical solver. Using this informa-

tion within the numerical method allows a reduction in the number of redundant

computations performed for both near and distant interactions. In turn, both direct

and multipole pre-computation and storage are reduced. However, to take advantage

of this structure the set of unique interactions must be determined by comparing

interactions forming an interaction list.

Comparing Interactions

Consider the ith interaction pair separated by a distance di in the global coordinate

frame. The separation vectors in relation to the receiving and transmitting facets (in

the global coordinate frame) are computed as Vi
rx = EU

i

rx (−di) and Vi
tx = EU

i

tx di,

respectively. Therein EUrx and EUtx are the Euler rotation matrices relating the

local to global coordinate frames for the receiving and transmitting facets in the pair.

For a pair of interactions i and j with known type, their relative separations are

compared in terms of an acceptable error criterion ǫ.

‖Vi
rx − Vj

rx ‖2 + ‖Vi
tx − Vj

tx ‖2 ≤ ǫ 7→ same (3.24)

‖Vi
rx − Vj

tx ‖2 + ‖Vi
tx − Vj

rx ‖2 ≤ ǫ 7→ transpose. (3.25)

If either of the the above inequalities are true, identical, and transposed interactions

are identified. If they are both false, then the interaction is a “new” interaction.

Searching the MLGD

Two options exist for implementing an interaction search algorithm. The method

most transparent to the end user is to compare the set of interactions that result as
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each new ghost is added to an MLGD node (keeping the number of interactions to

search at a minimum and building on the information gathered as the geometry is

constructed). However, such an approach requires that multipole cluster separation

and other fast algorithm criteria be determined before the structure dimensions and

number of MLGD levels are known. A more flexible approach is to search the MLGD

graph once the structural definition is complete, using fast algorithm oct-tree criteria

to determine near and distant interactions.

The search algorithm proceeds as follows:

Starting at the top of the MLGD oriented graph, the recursion algorithm discussed

above is applied to recurse into the structure. By augmenting the ghost definitions

in each node with a measure of subsurface dimension, interactions between the sub-

surfaces are compared by separation distance.

First, every pair of subsurface interactions on the current node is compared to the

set of interactions already traversed (using (3.24)). If an interaction is found to match

one already documented, then the linear indices (see figure 3.5) of two subsurfaces

are added to the interaction along with the match criteria.

Since distant interactions are computed using the MLFMA, they are not further

recursed. Also, interactions (near or far) already included in the interaction list

have known interaction indexing patterns and need not be recursed again. Thus,

only unrecorded near-term interactions are recursed and compared directly to the

interaction list.

3.2.2 Expansion Function Connectivity

In the case of electrostatic formulations, pulse basis functions are adopted with

high accuracy and excellent conditioning. Since pulse basis domains exist only over

individual patches, interaction between disjoint surfaces requires no further consider-

ation. However, simulation of surface currents requires continuity between patches be
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enforced, and thus the use of vector bases with multi-patch domains. In the case of

the MLGD, since the structure is assembled from a subset of protofacet elements, it

is necessary to ensure bridging [21] bases are introduced to enforce continuity in the

structure. The basic building blocks for these bridge bases are formed as the MLGD

structure is assembled, and are stored in the MLGD nodes.

Divergence Conforming Bridges As detailed in the second chapter, the diver-

gence conforming bases thus far discussed include RWG, Tree, and Star expansions.

RWG bases are edge based elements with domains traversing only two patches. In

the MLGD, an interior physical edge at vertex n maps (via Meen
s ) to the sets of

boundary edges shared by a pair of its subsurfaces. If this mapping is traversed down

to the protofacet level, and all facets have maintained a consistent indexing, it is

straightforward to introduce one additional RWG basis for each abutted protofacet

edge element, as shown in figure 3.6(a). Similarly, tree function mappings must be

included across the interior edges of nodes in the MLGD. However, care must be taken

to ensure that the overall tree expansion set does not loop back on itself (such that it

supports a strongly solenoidal current). In order to ensure this, the same algorithm

applied to determine the tree edges of the protofacet Tree expansion are applied to

determine the interior edges of the current, as in figure 3.6(d). This approach is re-

peated up from the protofacet level, and a single RWG expansion function along each

required edge is selected (figure 3.6(b)) and stored in each node.

Like the tree bases, star basis bridging would contribute one new basis for each

subsurface added to a node (figure 3.6(c)). However, unlike the tree bases, a complete

star basis set would require that missing arms of subsurface stars along shared edges

be reinserted when bridging subsurfaces and one additional star be included in all

but one of the leaf facets. This is not practical for an efficient MLGD definition, as

it is preferred that all subsurface expansions be complete at their own level. For this
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Figure 3.6: Divergence conforming bridge bases. (a) RWG bridge bases. (b) Tree
bridge basis. (c) Star bridge bases. (d) Hierarchical selection of edges
onto which tree bridge bases are applied.

reason, star bases are not applied in the current implementation of MLGD.

Curl Conforming Bridges For curl conforming (loop) bases, the approaches taken

for both the RWG and Tree expansions above comes into play. Much like RWG bases,

all interior edges of a given graph node require that Loop bases be introduced for

shared sublevel vertices (see figure 3.7(a)). In the case where non-boundary vertices

or handles are formed in a graph node, loops as shown in figure 3.7(b) and figure 3.7(c)

are introduced. By applying the non-boundary edge and vertex indices of a node to

the physical edge and vertex mappings, Meen
s and Mvvn

s , a recursion is used to

descend the MLGD and return sets of loop mappings associated with the edges and

vertices of the lower level definitions. Because of the consistent ordering employed

throughout, properly gathering these sets of bases is trivial. If the edge is a non-

boundary edge, then mappings for each lower level vertex are joined to form sets of
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Figure 3.7: Curl conforming bridge bases. (a) Interior node based loop bridges. (b)
Large loop bases representing current flowing about handle. (c) Hierar-
chical selection of edges and vertices from which loop bridges are formed.

interior bridge loops. If an edge is a boundary edge, then the mappings are summed

into a single expansion representing a loop current segment along that edge. Following

the same procedure for boundary and non-boundary vertices allows construction of

the all curl conforming bases, and these bases are then stored in the current level

node. A clear advantage of this method is that it readily deals with the elimination

of handles due to inclusion of additional facets when forming higher level nodes and

automates the formation of loop bases necessary to represent surface structures that

include handles.
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3.3 Cost Analysis

As mentioned at the beginning of this chapter, the purpose of introducing the

MLGD description was to reduce the cost of computing and storing redundant inter-

actions. Lets now consider the overhead associated with preparing an MLGD system

for solution relative to that of a non MLGD structure.

3.3.1 Structure Storage

For a non-MLGD mesh, where all surfaces are discretized via dissimilar patches,

the total memory required to store the mesh is O(P ) ∝ O(N), where P is the total

number of patches on the surface and N is the number of DOF in the system. (For

a surface based implementation using first order vector expansion functions this is

equal to the number of non-boundary edges, NBe, in the mesh.)

Alternatively, for an MLGD oriented graph with M upper level nodes and E edges

that employs protofacets with an average of savg mesh patches, the total number of

patches that can be represented by the graph structure scales as N =(E/M)M s. At

the same time, storing this mesh comes at a cost of C1savg + C2E , where C1 the

number of protofacets and C2 is the expense of storing each edge. By substitution,

the total mesh storage cost scales as O(M logM(N/s)) which is a very slow growing

O(log N) algorithm.

3.3.2 Determining the Minimum Interaction Set

As described in the previous section, the minimum interaction set it determined by

traversing the MLGD tree structure and comparing the interactions encountered. In

the event an interaction is considered distant, based on the separation requirements

of the LF-MLFMA, no further recursion into that interaction is necessary. If an

interaction has already been included in the interaction list, it similarly does not need
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to be recursed. By efficiently categorizing interactions by their node level, protofacet

types and separation distances the search algorithm can be very efficiently performed

and does not contribute significantly to simulation overhead.

3.3.3 Near and Distant Interactions

For the set of Inear unique near-term interactions, the mesh structure stored within

one of the two associated protofacets is transformed into the global frame to perform

the near-term integration. Each transform is applied only to the vertices, adding 9 vi

operations to the O(1 + 9 p2
i ) cost of computing patch interactions via the SP bases.

Here, vi and pi are the number of vertices and patches in the ith protofacet. The total

cost of computing Inear interactions and their related storage is thus

Inear
∑

i

(

9 vi + 1 + 9 p2
i

)

< O(Inear 10 pavg(1 + pavg)) ∼ O(Inear p2
avg). (3.26)

Leaf level signature expansions (βββ) must be formed. One benefit of the MLGD is

that these expansions are formed in the local coordinate frame and thus only one is

necessary for each protofacet. For an MLGD definition with P protofacets, the cost

of preparing and storing the 3 vector and 1 scalar local expansions via L multipoles

is
P
∑

i

O(L 4 pi) ∼ O(P L pavg). (3.27)

Like the near term interactions above, this set of expansions is reduced into a current-

charge subset at minor additional cost.

Next, it is necessary to form the aggregation and disaggregation expansions (βββ

inter-level filters) for passing up and down between graph levels. Unlike the signature

expansions, these must account for vector and coordinate frame rotations. However,

the MLGD again allows for a reduced number of these expansions because they relate

to the edges of the oriented graph structure rather than the edges of a oct-tree struc-
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ture. For an MLGD graph with G graph edges, the cost of preparing these inter-level

filters is
G
∑

i

9 + O(L2) = O(G
(

9 + L2
)

). (3.28)

The coordinate rotation accounts for 9 additional entries of the vector Euler rotation.

The Ifar unique multipole translations (ααα) are computed and stored at a cost of

Ifar
∑

i

9 + O(L2) ∼ O(Ifar L
2) (3.29)

operations.

Since the total number of patches associated with the set of protofacets is generally

greater than the number of unique interactions or the number of multipoles, the most

expensive component of the above analysis is the O(Inear p2
avg) cost of computing the

near term interactions. It is clear that the benefit of the MLGD arises from its

compression of the multilevel oct-tree into an oriented graph.

3.3.4 Overall Picture

Incorporation of the MLGD description into the numerical method can now be

compared with the direct approach by observing the equivalent matrix-vector product

representation. Figure 3.8(a) shows the original matrix-vector product and the asso-

ciated redundant submatrices. In the equivalent MLGD form of figure 3.8(b), only

the unique near-term interactions, unique aggregation and disaggregation expansions,

and unique translations are pre-computed. In performing the matrix-vector product,

the set of unknowns is applied, via the indexed unique interaction list, to the near-

term matrices and the multilevel tree.

For the case of a geometry that contains a reasonable amount of redundancy, as

most engineered geometric forms do, the MLGD allows for the simulation of larger

systems in the same resource space with improved setup cost.
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Figure 3.8: Original and equivalent Matrix-Vector Product (MVP). (a) Original
MVP. (b) MVP after application of the MLGD and MLFMA.
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CHAPTER 4

CQ Bases and the Multibasis Method

This chapter outlines the efficient assembly and fast iterative solution of the system

of equations in Chapter 2 after application of the MLGD structural decomposition.

However, before the system is assembled and a solution is sought, two important

modifications are made to the numerical approach. First, a more efficient expansion

function decomposition is defined where solenoidal and quasi-irrotational bases are

mapped to a current-charge (CQ) sub-basis set. Second, the CQ sub-bases are alter-

natively applied in solving an overdetermined system employing multiple sets of bases.

This alternative method is shown to significantly improve numerical convergence and,

to the author’s knowledge, represents a new approach to such problems.

4.1 Current-Charge (CQ) Expansion

The interaction matrix formed when solenoidal and quasi-irrotational bases are

applied to the discretized integral equation is represented by the following linear

system of equations [26]







VL

VC






=







ZLL ZLC

ZCL ZCC













IL

IC






, (4.1)
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denoted henceforth as

VT = ZT IT . (4.2)

In this form, left subscripts L and C imply testing via solenoidal (loop) and non-

solenoidal expansions, respectively. Similar right subscripts imply like unknown ex-

pansions. When this form is applied to a structure with handles, loop expansion

functions with large domains can result. This limits the smallest cluster size that

formed within the MLFMA expansion and limits its efficiency.

A well known solution to this problem relies on forming the desired expansion

functions by sparse transformation with an RWG sub-basis set [34, 67]. Here, ZT is

modified as

ZT =







T
t

C

T
t

L













Z
A

RWG + Z
φ

RWG Z
A

RWG

Z
A

RWG Z
A

RWG







[

TC TL

]

. (4.3)

TC and TL are sparse transforms for the tree and loop expansion functions, re-

spectively. Z
φ

RWG includes only the scalar potential interactions in triplicate for the

divergence of the RWG basis and Z
A

RWG includes only the vector potential interactions

for the sub-basis RWG expansion. If LF-MLFMA is applied to the RWG sub-bases

(which have small domains) the interior MVP does not run into a cluster size limita-

tion. However, both solenoidal and non-solenoidal interactions are vector operations

and two vector LF-MLFMA trees must be implemented. In the next section it is

shown that alternative transforms resulting in long chains of quasi-irrotational bases

are desirable for improved convergence and to permit DC simulation. This form

suffers from numerical inaccuracies in these cases as the scalar and vector potential

components of the non-solenoidal interaction matrix are lumped together.

In this work the following alternative form is developed

ZT = TM
t
ZQCC TM, (4.4)
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where

ZQCC =













Z
φ

PP 0 0

0 Z
A

RWG Z
A

RWG

0 Z
A

RWG Z
A

RWG













(4.5)

and

TM =













TQ 0

TCC
0

0 TCL













. (4.6)

The first column sparse mappings TQ and TCC
together represent divergence con-

forming bases. In the case of an RWG or tree basis, the associated column of TQ

maps positive (+1) and negative (−1) surface charges and the same column of TCC

maps one properly oriented RWG vector potential sub-basis. Since solenoidal bases

have no associated charge, the TCL
sparse transform maps only groups of RWG vector

potential sub-bases. Solenoidal basis scaling is applied to the mapping TCL
= TCL

/k.

Scalar interactions are performed via Patch-Patch collocation Z
φ

PP , equivalent to that

used in solving the electrostatic problem. Vector potential interactions are applied

through the same Z
A

RWG for both solenoidal and quasi-irrotational currents, which for

solenoidal bases is equivalent to that used in eddy-current simulation. Using this in-

terior product it is possible to simulate both electrostatic and eddy-current problems.

Through observation of ZQCC , the MVP can be simplified. First, the sub-basis

unknowns are defined

IQCC =













Q

IQIR

ISOL













, (4.7)

with Q being surface charge coefficients, IQIR being quasi-irrotational current coeffi-
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cients, and ISOL being solenoidal current coefficients. Next, sub-basis potentials

VQCC =













VQ

VQIR

VSOL













, (4.8)

are defined with similar relations. These two components relate to the interior sub-

basis interaction as

VQCC = ZQCC IQCC , (4.9)

and are related to the higher level bases via the sparse transforms

IQCC = TMIT (4.10)

VT = TM
t
VQCC . (4.11)

By taking advantage of the symmetry in the matrix ZQCC, only a single application

of the vector and scalar potential interactions is required in performing the matrix-

vector product of (4.9),

VQ = Z
φ

PP Q (4.12)

VQIR = Z
A

RWG (IQIR + ISOL) (4.13)

VSOL = VQIR. (4.14)

This sub-basis interaction is clearly that of a current-charge (CQ) expansion. The

scalar and vector components of the interactions are fully decoupled and the vector

potential product is the same for both the solenoidal and quasi-irrotational currents.

The matrix-vector product is performed using one vector and one scalar LF-MLFMA

tree, and only a single vector disaggregation is employed.

Other mixed potential approaches employing current-charge expansions in the
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solution of the EFIE have been proposed [68, 69], but the direct relationship between

this implementation and the standard RWG and loop-tree formulations makes this

approach simpler to implement.

4.2 Preconditioning Methods

The application of an incomplete Helmholtz decomposition by a change of bases

suffices to eliminate the “low frequency” breakdown of the EFIE formulation. How-

ever, the matrices that arise for solenoidal bases are generally very well conditioned,

the non-solenoidal (quasi-irrotational) expansion results in an ill-conditioned system

of equations. The LT decomposition makes the solution of a highly discretized prob-

lem possible, it does not make its solution by application of an iterative solver prac-

ticable for large structures. To improve the convergence of such systems a number of

preconditioning methods have been proposed, and are outlined below. These methods

can be expensive and are not entirely compatible with the MLGD approach. Here, a

new method for the solution of these types of systems is introduced, the Multibasis

(MB) method.

4.2.1 Diagonal Preconditioning

Diagonal preconditioning (DP) is a self-term method. Similar to other near-

neighbor conditioning methods, DP helps to reduce the condition number of the

matrix by acting to equalize strong contributions from self-terms and to model the

localized interactions of strong evanescent modes [34]. DP is beneficial in LT forms

as it properly weights the matrix coefficients and is simply formed as

PD = diag
(

ZT

)−1
(4.15)
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and applied to the MVP

VT = PD TM
t
VQQS. (4.16)

However, DP and other near-neighbor preconditioners do not model strong off di-

agonal coupling and thus fail to aid on structures where such occur. Furthermore

DP does not influence spectral resolution [28] and cannot remedy bases that fail to

efficiently represent eigenvectors in eigenvalue decomposition of the interaction [70].

Both of these issues arise when using Loop-Tree expansions.

4.2.2 Tree Basis Rearrangement

One method of improving the quasi-irrotational conditioning is known as tree basis

rearrangement (TBR) [26]. In TBR, transforms are applied to the tree expansion in

the loop-tree form, resulting in a change of basis for the non-solenoidal expansion

terms. The new TBR bases are long chains of tree bases organized such that they all

have a common root (starting patch) [71], as shown in figure 4.1(a). In these chains, all

self term scalar contributions cancel except for those at the ends of the chain. (These

bases can be thought of as meandering lines of current, where charge accumulates

only at the ends of each segment.) As mentioned in discussing the second form of the

sub-basis interaction in the last section, when the Z
φ

RWG entries are added to those

of the Z
A

RWG matrix in the upper left component of the RWG interaction, scalar

contributions in the middle of the chain cannot cancel completely due to numerical

precision. This basis rearrangement was first proposed [26] by application of the

sparse transformation but can be more easily assembled as shown in figure 4.1 using

the CQ sub-basis expansion and associated sparse mappings.

The benefits of the TBR are as follows. At DC, only the scalar contributions at

the ends of the chains remain, and since all share a common root, the TBR is capable

of representing a static charge distribution on the surface. Furthermore, the TBR
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(a)

(b)

facet 1 facet 2

Figure 4.1: Tree-Basis Rearrangement (TBR) equivalent bases. (a) TBR CQ compo-
sition. (b) TBR bases bridging adjacent facets.

has dynamic spectral resolution because of its varying spatial resolution (some TBR

bases are nearly entire domain functions, while others only traverse a small subset

of patches). As discussed in the next section, dynamic spatial and thus spectral

resolution provides improved convergence.

Sadly, TBR bases are impractical in an MLGD setting. Mappings involving dis-

joint sub-basis sets on different facets are possible, but since the resulting bases tra-

verse multiple facets, application of the MLGD does not decrease storage or overhead

for basis transforms. The resulting basis function mappings are proportional to the

number of tree bases in the entire system, which is O(N), but each transformation

requires the superposition of large numbers of sub-bases twice per iteration.

71



4.2.3 Multiresolution (MR) Method

A more recent advancement in non-solenoidal conditioning is the implementation

of Multiresolution (MR) schemes [27–29]. In this approach, bases are organized into

levels with increasing spatial resolution. Higher level bases (with lower spatial resolu-

tion) are linear combinations of lower level (with higher spatial resolution) expansion

functions. The set of bases at each resolution is complete and allows for a solution of

the integral equation at any level. Some methods compress all levels into a single MR

basis definition via sparse transforms (mappings) used to interrelate the higher and

lower level bases [29]. Since the resulting MR bases contain a large range of spatial

resolution (like TBR) the diagonal values of the resulting matrix closely resemble the

eigenvalues of the matrix equation [28, 70] (after diagonal preconditioning). Since the

MR expansion bases more closely represents the eigenvectors of the system, a highly

convergent matrix equation results. This approach results in solution times that are

better than the TBR form, but are not necessarily applicable in the electrostatic case.

Like TBR, MR bases are formed as a assembly of large numbers of expansion

functions at the lowest level of the MR structure. However, unlike TBR the cost of

performing this mapping is O(N log N) [29] because of the hierarchial structure used.

In addition, depending on the implementation, fine meshes that increase the number

of unknowns well beyond that necessary for a given geometric representation have

frequently been used as a method of forming the hierarchy [29]. Recent modifications

to this method form higher level bases by linear combination of RWG bases at the

mesh level [27], doing away with the need for a multilevel (multigrid) mesh. However,

just like the TBR, MR based on RWG sub-bases may incur numerical inaccuracy at

low frequencies if the scalar potential components of the self term interactions are

added to those of the vector potential prior to application of the transform, so care

must be taken in this regard.
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4.3 The Multibasis (MB) Method

In an effort to find a preconditioner that is more compatible with the MLGD (i.e.

one that relies entirely on bases with small domains) and is less expensive than the

methods discussed above, the Multibasis (MB) method is now developed. Unlike the

previous approaches, the MB method does not require the formation of a linearly

independent set of expansion functions with diverse spatial resolution in order to

improve convergence. Instead, improved convergence comes from the solution of an

over determined system utilizing multiple sets of overlapping bases with similar spatial

(and thus spectral) resolution.

Premise of the MB Method

Consider the current distribution found on a dense mesh discretizing a PEC ob-

ject and illuminated by an exterior impressed field. First, choose to determine the

mesh currents by solution of the linear system formed by LT expansion and Galerkin

testing. It is assumed that this implementation is capable of representing the solution

and that the cost of solving the system is acceptable. Next, an equivalent current

distribution (to within the tolerance of the chosen iterative solver) may be determined

if LTBR (Loop-Tree Basis Rearrangement) is applied under the same criteria. Given

the option, one generally chooses to apply the higher level bases that result in mini-

mum total solution time. However, let’s consider these mesh current distributions in

terms of the CQ subset of partial expansion functions.

Both the LT and LTBR solutions above will have identical current and charge on

the mesh surface and there exists a set of CQ coefficients that minimize the residual

of both LT and LTBR forms. Essentially, the solution to the linear system in terms

of the CQ subset will be a minima for all higher level sets built from the CQ subset.

It is not the LT or LTBR coefficients that are sought, but the CQ coefficients that

minimize both the LT and LTBR residuals. This is the premise of the MB method,
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to apply multiple upper level expansions in finding the sub-basis coefficients that

minimize the upper level error.

The MB method is not limited to LT and LTBR, but is applicable for any group

of higher level expansions, including sets with similar spatial resolution. While some

expansions can support a correct answer, they do not converge or converge an incor-

rect answer (e.g. RWG bases at low frequencies). Others are convergent, but only

reach the solution only after a large number of iterations (e.g. LT/LS bases). In

both cases, these basis sets share a common CQ solution set, and by computing their

common residuals and properly updating the associated CQ unknowns, the collective

subspace is better behaved than that of the individual expansions.

Failure of the Direct Approach

The goal of the MB method is to apply multiple sets of bases to the same surface,

resulting in a single system of equations. However, direct formulation will result

in an over determined system of equations. For example, consider the higher level

interaction matrix resulting from application of an RWG set TMRWG in conjunction

with a loop-tree basis set TMLT

TMRWG =













TQ

TCC

0













, TMLT =













TQi
0

TCCi 0

0 TCL













, (4.17)
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where the ith charge and vector potential mappings in the LT transform are a subset

of those in the RWG mapping. The resulting expanded matrix is

ZT =
[

TMRWGTMLT

]t
ZQCC

[

TMRWGTMLT

]

=







TM
t

RWGZQCCTMRWG TM
t

RWGZQCCTMLT

TM
t

LTZQCCTMRWG TM
t

LTZQCCTMLT






(4.18)

with the upper left system
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and the upper right system










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0 T
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

. (4.20)

Here the ith bases are identical and the off diagonal entries in the upper right system

are equal to the ith entries along the matrix diagonal,

T
t

QZ
φ

PPTQ(:, i) = T
t

QZ
φ

PPTQi
(4.21)

T
t

CC
Z

A

RWGTCC
(:, i) = T

t

CC
Z

A

RWGTCCi
. (4.22)

With large equivalent entries introduced off diagonal, zero eigenvalues arises in the

system of equations implying a rank deficient over determined set of equations.

In order to apply multiple sets of overlapping bases to the same surface, a depar-

ture from the standard approach to the application of the matrix-vector product in
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the iterative solver is necessary.

Matrix Vector Product Redefined

By transferring the interaction to the common subset of CQ expansions, the over

determined system can be efficiently solved. Note that the set of unknown CQ coef-

ficients, IQCC, is mapped from the upper level expansion coefficients IT via TM and

the sub-basis potentials, VQCC , map to the set of upper level potentials VT via TM
t
.

Futhermore, the interaction at the sub-basis level is not over determined since each

CQ basis is only interacted once. The following procedure works in solving the over

determined system (see figure 4.2).

Yes

No

VQCC = ZQCC IQCC

IQCC = TMIT

IT

eQCC = Vinc
QCC −VQCC

rT = TM
t
eQCC

Initial Guess

Transform to Sub-bases

Compute New Potentials

Sub-basis Error Vector

Top Level Residual Vector

Krylov

Convergence
Solution Vector

IQCC

IT

rT

Figure 4.2: Multibasis (MB) iterative procedure. Applying top level residuals to de-
termine a sub-basis solution set.
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1. The potentials representing the proper solution Vinc
QCC are computed at the

sub-basis level.

2. An initial guess for the top level expansion coefficient vector, IT , is formed

3. IT is passed down to the sub-basis IQCC via TM.

4. The matrix vector product is performed to determine the resulting sub-basis

potentials VQCC = ZQCC IQCC.

5. The difference between VQCC and Vinc
QCC is the sub-basis error vector

eQCC = Vinc
QCC −VQCC. (4.23)

6. This error is mapped to the upper level to form the residual vector at the top

level

rT = TM
t
eQCC (4.24)

and convergence is met when ‖rT‖2 ≤ ǫ.

If the error is within the desired tolerance, ǫ, for all higher level bases, then the

iterative procedure ends. Otherwise, the residual is used to form a new guess at IT ,

and the procedure is repeated from 3). It is important to note that TM is not 1-to-1

unitary or invertible, and thus this method of passing down unknowns and passing

up potentials is direction specific.

If the transformation matrix includes more than a single set of top level expansion

functions, TM =
[

TMRWG TMLT

]

for example, the resulting sub-basis current dis-

tribution is a proper solution to both of these expansions. Furthermore, since multiple

sets of bases are used in computing the residual for each iterate, the search space to

be traversed is improved since the collective solution spaces all share a single common

minima. Put differently, the disjoint sets help to refine the direction of steepest de-
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cent and the common minima shared between the bases is exploited leading to faster

convergence of the iterative method.

Unlike TBR or MR expansions, which employ dynamic spatial and thus spectral

resolution via basis transformation, the MB does not diversify resolution to better

represent the search space, rather it alters the search space itself. Also, as the cost

of including additional transforms is O(N), application of this method does not alter

the low frequency O(N) methods used in performing the MVP.

Two other key advantages are gained with this procedure. The first is increased

confidence in the solution. Not only is the solution a minima for those expansions

employed during iteration, but if a particular top-level expansion was not used, its

residual can simply be evaluated from final error vector eQCC in low O(N) time.

The second key advantage of this method is that it can result in a more robust

implementation. For example, if one or more of the top level basis sets is incomplete

(eg. Loop basis formation missed a handle), the existence of the other expansions

may rain in the iterative method and the solution can still be correct.

Further Items of Note It is not possible to inexpensively change expansions ac-

tively during iteration. For example consider the cost of equating the subbases un-

known vector IQCC computed using TM1 to an identical subbases resulting from a

different mapping TM2;

IQCC = TM1 IT1
= TM2 IT2

(4.25)

Solving this equation in terms of the top level set IT2
, we arrive at

IT2
=
(

TM2

t
TM2

)−1

TM1 IT1
(4.26)
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after multiplying through by TM2
t
. While the matrix (TM2

t
TM2) is well condi-

tioned its inverse is full rank, making a change of basis an O(N2) operation.

Also, the application of a diagonal preconditioner is necessary to efficiently weight

the expansion. The diagonal preconditioner,

P = diag
(

TM
t
ZQQS TM

)−1

(4.27)

may be included in the basis compression step

VT = PTM
t
VQQS. (4.28)

Alternatively, since only the diagonal of
(

TM
t
ZQQS TM

)

is needed, it can be more

efficiently formed via

diag
(

TM
t
ZQQS TM

)−1

= diag
(

TM
t · TM

)−1

diag
(

ZQQS

)−1
. (4.29)

4.4 Cost Analysis

In this chapter the preferred use of a CQ sub-basis expansion was outlined and

and applied in the formation of the more MLGD friendly MB iterative approach. It

is important that the cost of implementing both these sub-bases and the iterative

procedure be examined. The diagram of figure 4.3 shows the overall numerical proce-

dure used in setting up and solving the linear system of equations for a given surface

structure.

4.4.1 Sub-basis Matrix Assembly and Storage

Assembly of the CQ sub-basis interactions, Z
φ

PP and Z
A

RWG, and their multipole

signature function counterparts comes at a reduced cost relative to the use of an
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Form the MLGD structure

Compute the excitation for CQ sub-bases

Choose a Set of Expansion functions to minimize using MB

Compute Unique near-term interactions

Apply the SVD to unique near-term interactions with low rank

Pre-compute unique protofacet signature functions and 

multipole interaction matrices

Determine the set of unique interactions

Apply MB Iterative method

Compare CQ solution to different Expansions

Post-process current distribution

Figure 4.3: Numerical method overview.

RWG sub-basis interaction (when both are transformed from the single-patch SP

interactions of the second chapter). RWG expansions are the superposition of both

the scalar and vector interactions between pairs of SP bases (2.70), requiring mappings

with 2NBe + 2P entries. Alternatively, the CQ sub-bases require superposition of

only vector potential SP interaction pairs, thus requiring a mapping with only 2 NBe

entries (the Z
φ

PP interaction is used as is). The resulting near-term interactions of

CQ bases require less storage because the number of patches is always less than the

number of non-boundary edges.

4.4.2 Applying Basis Transformations

When the CQ basis subset is applied, the number of transformation matrix entries

required to map curl-conforming loop bases is the same as that necessay when and

RWG subset is applied. However, divergence conforming bases require additional

entries to include the positive and negative charges at their ends. Applying a mapping
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between the CQ subset and a divergence conforming superset requires 2 additional

operations per expansion.

Within the iterative procedure, basis transformations are applied twice, first to

pass down the current distribution and then to pass up the resulting potential error

vector. The added cost of the CQ transformation relative to that of an RWG sub-

basis expansion is 4N added operations per iterate. If more than a single upper level

expansion is applied to improve convergence, then the number of additional operations

scales at O(K4N), where K is the number of complete upper level expansion sets.
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CHAPTER 5

Test and Measurement

The preceding chapters outlined the formulation and implementation of an efficient

integral equation solver. However, the goal of this work is not only the implementa-

tion of such a tool but also its verification and application. To ensure that simulations

correlate with real world phenomena, it is necessary to compare simulated results to

measured data. However, making such measurements requires an advanced under-

standing of low frequency electromagnetic field behavior, the design and limitations

of measurement probes, and most importantly the measurement setup that must be

used. This chapter discusses these issues and outlines what is required to ensure

reliable measurements are obtained.

5.1 Field Behavior

The low frequency electromagnetic fields generated by a solitary loop antenna

are equivalent to those of an infinitesimal magnetic (or Fitzgerald) dipole [37] when

observed at 5 or more radii from the source [72]. The dividing line between radiating

and non-radiating field regions occurs at r = λ0/2π, where r is the radial distance

from the antenna and λ0 is the free-space wavelength. Interior to this boundary the

1/r3 inductive terms are dominant and result in a rate of field decay on the order of
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60 dB/decade. Beyond this boundary the 1/r radiative terms dominate.

In the case of a 125 kHz LFID initiating coil (λ0 = 2400 m), the free-space near-

field to far-field dividing line occurs at 382 meters from the source. Coupling between

tags and interrogators in this frequency range occurs entirely within the inductive

field region. Thus, it is the effect of materials placed within this region that must

be investigated. Detailed analysis of these effects for arbitrarily shaped objects will

require application of the aforementioned numerical method. However, the magnetic

field of a loop source near a PEC wall, formulated by standard Image Theory [37],

provides adequate insight into field behavior in this region. In figure 5.1, the magnetic
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Figure 5.1: Change in magnetic field near a PEC wall. H-field for TE (transverse
electric) and TM (transverse magnetic) loop source polarization.

field in the presence of a PEC wall relative to that in free space is plotted. When

the loop is oriented with its axis normal to the wall (transverse electric) the currents

formed on the wall generate fields in opposition to the excitation and the total normal

magnetic field decays exponentially approaching the interface. Alternatively, when

the loop axis is tangential (transverse magnetic), wall currents produce additive fields

and double the total magnetic field at the interface.
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5.2 Loop Antennas

It is evident that the field of interest will be highly variable. In order to measure

fields and operate LFID systems under these conditions it is necessary to optimize

tag (or sensor) sensitivity as well as obtain a clear understanding of coupling between

receiving loops, their images, and an interrogating source.

5.2.1 Magnetic Field Coupling

Initiating (transmitting) coils used in RFID systems are typically installed in the

absence of the tags to which they communicate and are driven using a fixed voltage

source. Because of near-field coupling, the current in the transmitting coil will change

as tags couple to it. It is necessary to determine received voltage at the tag including

this variation because the current in the transmitting coil is not re-measured as each

tag is included.

To determine this value a number of assumptions can be made. The coupling

between the transmitting and receiving coils can be represented by a reactive mutual-

impedance

Zij ∼ j ω Lij , (5.1)

where the mutual resistance and capacitance values are assumed to be negligible. The

loop mutual inductance is

Lij =
Φij

Ijj
, (5.2)

where Ijj is the current in the jth loop and Φij the flux passing through loop i

generated by loop j. The self-impedance (Zij | i=j) of a small loop is dominated

by its reactive self-inductance and ac resistance, with radiation losses playing an

insignificant role. Via Faraday’s Law, the open circuit voltage at the receiving antenna

84



in the presence of N other loops can be approximated by

VLi =
Vii

ZiD
ZLi, (5.3)

where higher order coupling between secondary loops is neglected. The first order

driving impedance of the ith loop in terms of j other loops is

ZiD = Zii + ZLi −
N
∑

j 6= i

Zij
2

Zjj + ZLj
, (5.4)

and the initial open circuit voltage induced in the loop is

Vii = −j ω
N
∑

j 6= i

 LijI
orig
jj . (5.5)

Iorig
jj is the jth transmitting coil current prior to introduction of the receiving coil, i.

In the case of a single transmitting and receiving pair

VL1 =
ZL1

Z11 + ZL1 −
(

Z2
12

Z22+ZL2

) V11. (5.6)

If (Z11 + ZL1) (Z22 + ZL2) ≫ Z12
2 the received voltage is independent of the self im-

pedance of the transmitting loop. This is generally the case for RFID systems and

the received voltage via

VLi = Vii
ZLi

Zii + ZLi
(5.7)

is commonly assumed. While these equations are derived for an antenna pair, they

are equally applicable in the case of coupling between a loop and any set of currents

formed in a nearby material.
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5.2.2 Receiving Loop Sensitivity

The goal of designing any antenna is optimizing its sensitivity across the neces-

sary operating bandwidth. Sensitivity can be defined in terms of either voltage or

power. In a situation where the load impedance is fixed, then the voltage sensitivity

of the antenna is a sufficient figure of merit. However, if the load impedance can

be adjusted then it is beneficial to employ power sensitivity in selecting the proper

loading mechanism.

Magnetic field power sensitivity is equal to the ratio between the power delivered

to the load and the field density at the sensor location. When the voltage divider

of (5.7) is an appropriate approximation, then coil power sensitivity is

Sm =
PL

(A/m)2 =

∣

∣

∣

∣

∣

(VL)2

ZL H2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

V 2
emf ZL

H2(Z11 + ZL)2

∣

∣

∣

∣

=(ωµAN)2 ZL

(Z11 + ZL)2 . (5.8)

The leading terms of this form, ω, µ, A, and N are the radian frequency, the loading

permeability, the loop area, and the number of loop turns, all of which are physical

parameters relating to the selection of the proper coil. Only the latter terms serve in

selecting the proper load impedance for the sensor.

It is first assumed that the antenna is not operated at its own self resonance, but

that the impedance of the coil is dominated by its self inductance and resistive loss

Z11 = Ra + jω La. If the antenna were operated at self resonance then minor changes

in its environment could significantly shift the resonant point. Unlike a coil that is

resonated out by means of a lumped element capacitor, a coil that is self-resonant

relies on the capacitance between its windings to set the resonant frequency. If this

sensor is placed near a dielectric object its capacitance will change and the resonant

frequency will drift. This makes the coil less reliable as both a measurement device

and an LFID tag.
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Broadband Detection If it is desirable that the antenna operate with a large

bandwidth, then a resistive loading is selected. This also reduces the coupling between

the coil and any other current, and raises the critical frequency of the output voltage

divider (causing the loop sensor to remain proportional to the derivative of the average

magnetic field passing through the loop). Such a load linearly degrades the sensitivity

of the sensor

SB
m =

(ωµAN)2

RL

(5.9)

proportional to the magnitude of the load impedance selected (assuming RL >> Ra).

Narrow-Band Detection For narrow-band applications, strong coupling and greater

sensitivity are found by conjugate matching the antenna at the operating frequency.

For a resonated receiving coil the voltage available to drive the load is equal to the

open circuit voltage multiplied by the unloaded resonator quality factor Q [73]. This

results in a sensitivity of

SN
m =(ωµAN Qunloaded)2 ZL

(Ra + ZL)2 . (5.10)

While (5.10) is maximized if both the load and the coil loss/radiation resistance are

less than unity, this is not a generally achievable condition for loops with multiple

turns or magnetic material loading. Despite this limitation clear improvement is ob-

served. Even if the load impedance is significantly larger than the antenna resistance,

Sm =
(ωµAN Qunloaded)2

ZL
, (5.11)

and the sensitivity is improved relative to (5.9) by the square of the unloaded antenna

quality factor. Relating the quality factor to bandwidth, a resonant coil operating
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in half the bandwidth of a similar coil has the potential to be 6 dB or 4 times more

sensitive.

5.2.3 Transmitting Loops

When designing a transmitting loop (initiator), it is generally desirable to make

the antenna as efficient as possible, maximizing the flux coupled to the LFID tag or

for field measurement sensor. This is performed by resonating the coil for narrow

band operation and matching its ac resistance to the generator used.

5.3 Magnetic Field Measurements

The choice of employing a resonated or broadband probe in making magnetic field

strength measurements comes down to a trade off between sensitivity, measurement

accuracy, and required operating bandwidth.

If employing a resonated probe, greater sensitivity is achieved but care must be

taken when measuring fields in the close vicinity of conducting media. Near to the sur-

face, the mutual coupling between the sensor and its image can result in measurement

error due to the change in the loop driving impedance, (5.4). Alternatively, a large

resistive load will minimize this influence but significantly decrease coil sensitivity.

While these problems cannot be alleviated, the effect of resonant probe mutual

coupling can be detected. The change in loop driving impedance that results from

strong image coupling is linked to a probe resonant frequency shift. If the transmitting

coil is broadband and frequency swept, while the receiver employs a resonated coil

and a swept detector, then the frequency at which maximum coupling occurs will

shift if the probe experiences significant image coupling. Using this approach it is

possible to detect when the measurements made could be in error.
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5.3.1 Shield Currents and Shielded Loops

One remaining challenge when making low level LF measurements of inductive

fields is the formation of unintended common mode currents along probe cabling, as

depicted in figure 5.2(a). If a sensor approaches an object with ground reference, then

the capacitance between the probe and the object, Ccg (center to ground capacitance)

and Csg (shield to ground capacitance), can result in a current imbalance at the sensing

coil. The equivalent circuit model for this situation is outlined in figure 5.2(b). If
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Figure 5.2: Low frequency shield currents. (a) Measurement scenario. (b) Equivalent
circuit model.

the capacitances Ccg and Csg are significantly imbalanced or Ccg becomes quite large,

then the impressed common mode current Ic will contribute in driving the receiver

impedance.

To maintain a balance between Ccg and Csg at low frequencies, shielded loops
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are employed as shown in figure 5.3(a). It should also be noted that the typical
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Figure 5.3: Shielded loop and measurement setup. (a) Capacitance balancing by a
shielded loop. (b) Shielded loop sensitivity to non-solenoidal electric field.
(c) Test setup used to eliminate common mode currents.

method of constructing a shielded loop antenna leaves the probe sensitive to strong

non-solenoidal electric fields that are asymmetric with respect to the shield gap and

feed (see figure 5.3(b)). These can occur when attempting measure the magnetic field

of electric dipole sources, but for the LF magnetic fields in question the electric field

contribution is very small and entirely solenoidal.

Shielded loops are generally broadband, non-resonant probes. When greater sensi-

tivity is required then a resonated coil may alternatively be used if a choke is employed

along the probe line, increasing the return path inductance and eliminating the com-

mon mode current along the probe cables. In the case where a vector network analyzer

(VNA) is employed for characterization of field decay, then a differential mode choke
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between the transmit and receive channels helps to eliminate common mode shield

currents, as shown in figure 5.3(c).

5.4 Review

The goal of this chapter was to discuss the highly variable fields, antenna sensi-

tivity limitations, and measurement concerns that arise for systems in the induction

region of a current loop source. Considerations for optimizing receiving loop sensi-

tivity were made and modified test and measurement procedures were introduced to

help alleviate concerns about probe image coupling and shield current imbalance.
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CHAPTER 6

Software Validation and System Optimization

In this chapter the efficiency of the numerical implementation is first analyzed.

The benefits of the MLGD technique are demonstrated and an optimal MB expansion

set is selected. Solution accuracy is verified by comparison of field strength data

computed from simulation and that measured using the techniques of Chapter 5.

In these comparisons the sheet impedance forms of Chapter 2 are also evaluated.

Finally, applicability of the numerical method is demonstrated as simulations and

measurements, performed on actual LFID systems, are used to predict tag placement.

6.1 Efficiency

The efficiency of this numerical implementation stems from introduction of the

MLGD and the improved convergence of employing the Multibasis iterative proce-

dure. The reduced flop count and memory overhead of the MLGD is first examined

and convergence for different bases are compared.

6.1.1 Setup Time and Memory Overhead

The primary goal of implementing the MLGD is to reduce the overhead in prepar-

ing a system of equations for solution. As a demonstration of the benefits of imple-
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menting this method, figure 6.1 shows the memory requirements when the MLGD

is applied to a PEC square plate and a set of circularly symmetric PEC cans. For
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Figure 6.1: Memory overhead vs. the number of RWG unknowns. MLGD employing
4 subfacets/superfacet at 125 kHz. LF-MLFMA with L = 5 > 5, 000
RWG Unknowns.

structures with significant numbers of redundant interactions, the memory overhead

required to store near-term and scale invariant multipole expansions is significantly

reduced. When the MLGD is used in the absence of matrix compressions techniques,

improvement depends on the regularity of the structure in question. For example,

constant storage is achieved in figure 6.1 for a set of PEC cans because of the toeplitz

nature in which they are constructed. For an arbitrarily assembled PEC plate there

exists a greater number of unique near-term interactions and slow storage growth

continues. When used in conjunction with multilevel matrix compression techniques

the overall storage requirements decrease from from O(N) to low O(logN).

Directly correlated to the storage cost is the time (and corresponding flop count)

required to pre-compute these interactions, as shown in figure 6.2. By implementing

the MLGD in conjunction with fast iterative methods such as an MLFMM, the setup
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time and storage requirements of solving engineered structures can be significantly

decreased.

6.1.2 Basis Selection and Solution

While the MLGD method of describing the structure is beneficial in reducing

memory overhead and setup time, it does not have a significant effect on the cost of

solving the system of equations. In this work solution time is improved by application

of the Multibasis method in conjunction with matrix compression techniques. This

section examines the rate of convergence for different multibasis expansion sets. The

best multibasis set is then applied to the solution of systems with increasing numbers

of unknowns.
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Convergence

Since the MB method employs simultaneous application of multiple higher level

expansions it is necessary to examine the convergence of the method for different

higher level groupings. Typically, information detailing the matrix condition number

and eigenspectra would be provided when discussing iterative method convergence.

However, the MB method matrix is an an over determined set of equations (when

directly formed), and it is not a straightforward task to compare its condition number

or eigenspectra to predict convergence. Instead, this work employs a Monte Carlo

approach by examining iteration count for a range of higher level expansions on a

PEC spherical shell and a PEC disk over a range of frequencies.

The results obtained when simulating a PEC sphere illuminated by a plane-wave

and solved using the Conjugate Gradient Squared (CGS) algorithm [49] in conjunction

with the MB method are depicted in figure 6.3.
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Figure 6.3: MB method convergence for PEC sphere. Simulation of a = 1 m radius
sphere with 3240 RWG unknowns. Convergence at ǫtol = 1 × 10−6 via
CGS.

The solitary RWG expansion set is shown to converge with accurate results in
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100 to 300 iterates for mesh granularity in the range of λ/50 to λ/10. For fine

discritization the system is ill-conditioned (failing to account for solenoidal currents)

and the iterative solver fails to converge in fewer than 500 iterates (the selected upper

bound in this experiment). The Loop-Tree (LT) expansion by contrast consistently

converges in 300 to 400 iterates for fine mesh but falters for granularity greater than

λ/50. When Loop-Tree Basis Rearrangement (LTBR) is applied, the number of

iterates on a fine mesh is significantly reduced relative to LT , but it continues to

exhibit ill-conditioning above λ/50.

Alternatively, for the RWG+LT multibasis expansion (where both the RWG and

Loop-Tree expansions are included in the MB transforms) convergence is clearly su-

perior, reaching the solution in as few as 16 iterates for fine mesh and outperforming

RWG at coarse granularity. Now, since the Tree expansion is simply a subset of the

RWG expansion, an examination of the RWG+L MB expansion seems appropriate.

Since the solution space is the same as that of the RWG+LT expansion (but requires

fewer error terms be minimized), the RWG+L expansion demonstrates slightly im-

proved converge relative to RWG+LT across the spectrum. The final MB expansion

reported is the RWG+LTBR set. While there is a distinct improvement relative to

the LTBR alone, the solution spaces of these two expansions do not compare with

the improved performance of the RWG+L set.

Clearly, the MB method can significantly improve convergence on the smooth

surface sphere above. To ensure that the performance is not particular to the surface

previously employed and that it properly converges for structures with significant

edge current, further examination is performed. Figure 6.4(a) shows the number of

iterations required a when employing the RWG+L expansion in relation to the other

common expansions, this time including the Loop-Star bases, on a PEC disk under

plane wave illumination. As with the sphere, significant improvement is evident for

plane wave incidence on the open surface object. However, for the low frequency
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RFID simulations motivating this work the excitation will not be a plane wave, but

will arise primarily from loop sources. This situation is considered in Figure 6.4(b)

where the number of iterations is compared for a disk illuminated by a small coaxial
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loop source at one radius elevation. In the case of purely solenoidal excitation the fine

mesh (low frequency) performance of all expansions that include the curl conforming

loop bases are improved. Since the excitation is purely solenoidal the resulting current

distribution is also solenoidal and the loop expansion dominates the solution. The

loop basis expansion is well conditioned and thus all of the methods perform well.

However, at higher frequencies (coarse granularity) the excitation at the disk surface

is no longer purely solenoidal and the RWG+L expansion is clearly the best choice.

Solving the Linear System

Now that the MB method with RWG+L expansion has been clearly shown as

the best performing approach across a wide range of mesh granularity and for open

and closed surfaces, the cost RWG+L application in conjunction with the MLGD

and matrix compression is examined. Figure 6.5 shows the time required by the
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current MATLAB [74] implementation to correctly solve a set of structures at 125

kHz with increasing numbers of unknowns. For unknown count the driving factor

for solver compute time is the number of LF-MLFMA levels and cluster sizes. Since

the current simulator does not employ an adaptive multilevel FMM algorithm, the

numbers of unknowns employed at the protofacet level dictate the cluster size and

must be chosen judiciously to achieve an acceptable solution time. Furthermore,

the accuracy of the LF-MLFMA expansion requires that next-nearest neighbors be

included in the near term interaction list, and this in turn pushes the corner for O(N)

performance to much larger simulations.

6.2 Accuracy

In order to ensure that the software implementation described in the preceding

chapters is accurate, both theoretical and experimental verification need to be em-

ployed.

6.2.1 PEC Sphere

The exact solution for a closed spherical shell of perfect electric conductivity is

described by its Mei series solution [38]. To compare with the theoretical current

distribution, a PEC spherical shell of a = 1 meter radius under plane wave illumina-

tion is simulated at ka = 0.0026 and ka = 1.000. Theoretical and simulated surface

current distributions are shown in figure 6.6, and clearly show the accuracy of the

implementation.

While typically this type of validation is performed by computing the bistatic

radar cross section (RCS) of such an object, rather than its current distribution, such

solutions are not sufficiently unique for electrically small structures. When a highly

conductive and electrically small object is illuminated by a plane wave, circulating
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eddy currents in opposition to illuminating magnetic field dominate. However, these

circulating currents do not contribute to the far-field scattering cross section [44] and

their accuracy could not be verified by comparing RCS data.

6.2.2 Scattering by Finite Material Disk

With simulator performance verified for a PEC structure, it is now desirable to

examine its performance for non-PEC objects. This is performed through simulation

and measurement of a set of metallic disks excited by a current loop. Measurements,

made taking into account the probe, source, and setup considerations of Chapter 5,

are compared to simulated data.

In the case of conductive materials with impressed solenoidal electric fields, Eddy

currents form at every point on the metallic surface in opposition to the induced

magnetic flux (Lenz’s Law [48]). For high conductivity metals, adjacent current

loops current cancel until they reach a bounding edge. These currents traverse along

the edges of surface and follow circulating paths. However, as the sheet impedance
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value of a material increases (e.g. the metal is thinned or is of lower conductivity),

adjacent currents no longer cancel efficiently and edge currents move away from the

disk edge and decrease in magnitude, as shown in figure 6.7. Here it is evident that

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.001 Ohm/sq

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.010 Ohm/sq

0.005 0.01 0.015 0.02 0.025

0.100 Ohm/sq

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0 Ohm/sq

(a) (b)

(c) (d)

Figure 6.7: Material disk LF current distribution. Radius = 6.5 cm, N = 1580, f =
125 kHz. (a) 0.1 Ω/sq resistive disk (27 Iters), (b) 0.01 Ω/sq resistive disk
(26 Iters), (c) 0.001 Ω/sq resistive disk (14 Iters), (d) PEC disk (9 Iters).

the influence of low contrast materials on electric and magnetic fields in the LF band

is minimal. Alternatively, high contrast metallic materials have a significant effect

and must be considered.

Before delving into the simulation and measurement results, I first examine the
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sheet impedance values computed for a representative set of non-magnetic conducting

materials, including lead, aluminum, and copper, as shown in Table 6.1.

Table 6.1: Non-magnetic thin metal sheet impedance values. Lead, Aluminum, and
Copper. Zsh reported in Ω/� at 125 kHz. Incident wave impedance ηinc =
1Ω is assumed.

Material Lead Aluminum Copper
ηm(Ω) 3.1E-4(1+j) 1.1E-4 (1+j) 9.3E-5 (1+j)

Thickness 0.0078 mil 0.001 mil 0.00066 mil
Z0

sh 1.0 1.0 1.0
Z1

sh 1.0 + j 1.6E-7 1.0 + j 2.1E-8 1.0 + j 1.4E-8
ZB

sh 1.0 + j 4.6E-7 1.0 + j 6.1E-8 1.0 + j 4.0E-8
ZF

sh 1.0 - j 4.3E-7 1.0 - j 5.7E-8 1.0 - j 3.8E-8
ZNP

sh 1.0 +j 1.6E-8 1.0 + j 2.1E-9 1.0 + j 1.4E-9

Thickness 0.4 mil 0.65 mil 0.01 mil
Z0

sh 2.0E-2 1.6E-3 6.8E-2
Z1

sh 2.0E-2 + j 3.4E-6 1.6E-3 + j 5.4E-6 6.8E-2 + j 9.2E-8
ZB

sh 2.0E-2 + j 3.5E-6 1.6E-3 + j 5.5E-6 6.8E-2 + j 1.0E-7
ZF

sh 2.0E-2 - j 1.9E-6 1.6E-3 - j 2.7E-6 6.8E-2 - j 6.0E-8
ZNP

sh 2.0E-2 +j 8.4E-7 1.6E-3 + j 1.4E-6 6.8E-2 + j 2.1E-8

Thickness 100 mil 2 mil 20 mil
Z0

sh 7.9E-5 5.2E-4 3.4E-5
Z1

sh 3.1E-4 + j 3.1E-4 5.2E-4 + j 1.7E-5 9.2E-5 + j 9.4E-5
ZB

sh 3.1E-4 + j 3.1E-4 5.2E-4 + j 1.7E-5 9.2E-5 + j 9.4E-5
ZF

sh -1.6E-5 + j 1.0E-6 5.2E-4 - j 8.4E-6 -6.0E-6 - j 1.6E-5
ZNP

sh 1.5E-4 +j 1.6E-4 5.2E-4 + j 4.2E-6 4.3E-5 + j 3.9E-5

As mentioned in Chapter 2, the forward and backward scattering sheet impe-

dance values, ZB
sh and ZF

sh are particularly useful as a figure of merit when using sheet

impedance equivalent boundary conditions. If the backward and forward sheet impe-

dances are equal (or nearly equal) then the material can be accurately modeled via

an electric sheet impedance boundary. When the medium is thin in terms of exterior

wavelength then the average first and second order forms, Z0
sh and Z1

sh, are useful for

low and high contrast media, respectively. The equivalent forms ZB
sh and ZNP

sh can

similarly be applied in the case of propagating and non-propagating field regions.

For the metals in table 6.1, the first set of rows depicts the thickness at which
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the sheet impedance equivalent forms are all approximately 1 Ω/�. At this level of

resistivity the materials are essentially transparent to 125 kHz LF fields. The other

end of the spectrum is depicted by the bottom set of sheet impedance values. Here,

the material thickness is such that the forward and backward scattering impedances

are not equivalent, but the overall equivalent resistivity is so low that the material

can be considered a PEC surface.

To verify that these sheet representations can accurately predict physical phe-

nomena for LFID systems at 125 kHz, the total normal magnetic field in the shadow

region of a set of 6.5 cm radius metallic disks is simulated and measured. Each disk is

illuminated by a near-field current loop and the shadow region field is measured along

the disk axis, as depicted in figure 6.8(a). For the non-magnetic materials shown in
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Figure 6.8: Material disk H-field shielding: coaxial. (a) Measurement setup, a = 6.5
cm, c = 8.5 cm. (b) Measured and simulated results.

figure 6.8(b), the different sheet boundary forms are all equivalent. Results for the

20 mil copper disk are essentially that of a PEC plate, showing how the magnetic

moment of the eddy currents acts to cancel the incident field near the disk center.
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However, with thin aluminum and lead samples disc current decreases and the mag-

netic moment of the disk no longer cancels the incident field on the shadow side.

Clearly, comparison of the simulated and measured data shows that the sheet impe-

dance forms for the non-magnetic materials tested properly depict the transparency

of the disk. However, included in the same figure are the results for simulation and

measurement of some high permeability metal disks that must be discussed.

Included in figure 6.8(b) are the measurement and simulation results for both

a 20 mil mild steel plate and a 4 mil CO-NETIC metal. Co-NETIC is a Nickel-

Iron-Molybdenum composite high Mu metal, with relative permeability of 30, 000

and a conductivity of 1.86 ××× 106 S/m [75]. The relevant sheet impedance forms for

these two materials in addition to an intermediate mu-metal (Netic) are included in

table 6.2. For these high permeability metals, the different sheet impedance forms

exhibit greater variation depending on the material thickness. In the case where these

metals are very thin (the first set of rows in table 6.2) the forward, backward, and non-

propagating sheet impedances are equivalent while the zeroth and first order average

approximations continue to predict PEC behavior. Since the forward, backward, and

non-propagating forms are based on the equivalent current formulation rather than

the average approach, they are expected to be more accurate.

For the case of thicker magnetic metals (in the second set of rows in table 6.2) it

becomes clear that the forward and backward sheet impedances are not equivalent. In

these cases the material cannot be accurately represented solely via the electric sheet

impedance formulations presented. As expected the simulator is unable to properly

capture the rate of field decay on the backside of the disk in figure 6.8 for the 4

mil thick CO-NETIC material. One exception to this rule occurs for the case of a

vanishing forward sheet impedance. When no forward scattered field exists, then the

material is entirely non-transparent, and (when electrically small) it can be accurately

modeled by a PEC surface.
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Table 6.2: Magnetic thin metal sheet impedance values. CO-NETIC, NETIC, and
Steel. Zsh reported in Ω/� at 125 kHz. Incident wave impedance ηinc = 1Ω
is assumed.

Material CO-NETIC AA NETIC Steel
ηm(Ω) 8.9E-2(1+j) 3.3E-3 (1+j) 2.2E-2 (1+j)

Thickness 0.021 mil 0.043 mil 0.019 mil
Z0

sh 3.4E-5-1.3E-16 5.0E-3-3.9E-15 5.2E-4-1.8E-15
Z1

sh 3.4E-5 + j 4.4E-7 5.0E-3 + j 9.1E-8 5.2E-4 + j 4.1E-7
ZB

sh 1.0 + j 3.7E-2 1.0 + j 5.1E-5 1.0 + j 2.3E-3
ZF

sh 1.0 - j 3.5E-2 1.0 - j 4.7E-5 1.0 - j 2.2E-3
ZNP

sh 1.0 +j 1.3E-3 1.0 + j 1.8E-6 1.0 + j 7.9E-5

Thickness 4 mil 4 mil 4 mil
Z0

sh 1.8E-7-j 6.6e-19 5.4E-6-j 4.2E-18 2.5E-6-8.5E-18
Z1

sh 2.9E-6 + j 2.9E-6 1.6E-5 + j 1.7E-5 1.1E-5 + j 1.1E-5
ZB

sh 8.6E-2 + j 1.1E-1 3.3E-3 + j 3.5E-3 2.2E-2 + j 2.3E-2
ZF

sh -8.7E-9 + j 5.1E-9 -2.8E-4- j 3.5E-4 -5.3E-4 + j 3.9E-4
ZNP

sh 4.5E-2 +j 4.5E-2 1.5E-3 + j 1.5E-3 1.1E-2 + j 1.1E-2

Thickness 20 mil 20 mil 20 mil
Z0

sh 3.5E-8-j 1.3e-19 1.1E-6-j 8.4E-19 4.9E-7-1.7E-18
Z1

sh 2.9E-6 + j 2.9E-6 1.7E-5 + j 1.7E-5 1.1E-5 + j 1.1E-5
ZB

sh 8.8E-2 + j 1.1E-1 3.3E-3 + j 3.3E-3 2.2E-2 + j 2.3E-2
ZF

sh -2.1E-38 - j 4.7E-38 -5.5E-10 - j 2.4E-9 -9.3E-12 - j 1.5E-12
ZNP

sh 4.5E-2 +j 4.5E-2 1.7E-3 + j 1.7E-3 1.1E-2 + j 1.1E-2

This is the case for the material thickness shown in the bottom data set of table 6.2.

For these samples the forward scattering impedance is vanishing, and they can be

modeled as PEC surfaces without significant error. Such is the case for the 20 mil

thick mild steel plate measured in figure 6.8, which has a shadow region field similar

to that of a highly conductive non-magnetic plate.

To further investigate material and disk effects in the case of a coplanar excitation,

the loop is placed in the plane of the material disk, as in figure 6.9. In this scenario

the induced current rotates in the same direction as the source, and the resulting

scattered field adds in phase to the incident field. For high conductivity materials,

edge currents predominate and the singularity effect increases the total magnetic field

measured near the disk edge. Again, simulation and measurement match well.
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6.3 Applicability

Now that the decreased overhead of the MLGD has been verified, an optimal MB

expansion was selected, and the limitations of simulating relevant material media

were examined, all that remains is to demonstrate the applicability of this work to

low frequency RFID system optimization.

6.3.1 Tire Tag Placement

In the year 2000, the United States Congress passed the Transportation Recall

Enhancement, Accountability, and Documentation (TREAD) Act [76]. Following

from the requirements of this act, the Department of Transportation mandated that

Tire Pressure Monitoring Systems (TPMS) be phased into all new motor vehicles

with a gross vehicle weight of less than 10, 000 pounds. Over the course of the
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next few years, these TPM systems will be placed into the majority of consumer

vehicles to alert the driver when a tire is under-inflated. Direct versions of these

systems utilize active tire pressure transponders in each tire cavity. These devices are

small, battery operated UHF transmitters that send tire pressure and temperature

data to an onboard receiver when interrogated by an LF excitation. Each tire is

interrogated separately so that the receiver can correlate pressure and temperature

with a particular tire, even if the user rotates them regularly.

In order to interrogate an active TPM sensor mounted on a wheel rim, LF initiator

coils are placed above or to the side of the tire (along the stone guard in the fender

of the vehicle) as depicted in figure 6.10(a). Within the wheel, the TPM sensor is

Tire Stem Toward Vehicle

Fender

Ground

Initiator coil

(a) (b)

Figure 6.10: Diagram of TPM sensor and initiator pair with tire cross-section. (a)
Diagram showing the LF initiator and TPM sensor placement in a vehicle
wheel well. (b) A cross-section of a tire. Number 12 is the radial-ply
while numbers 14 and 16 are bias-plies (Source: From [77]).

frequently affixed to the valve stem or strapped to the rim via a metal band. Wheel

rims are made of either steel or aluminum alloys, ranging in thickness from 100 to 600

mils (2.5 to 15 mm). Placed over the rim is a steel-belted radial tire that includes a

webbing of steel wires and fiber strands as depicted in figure 6.10(b). However, these

wires do not form closed conducting loops within the tire and measurements confirm

that the tire has no measurable effect on LF coupling to the TPM sensor.

A key concern with interrogation of TPM sensors in a rotating tire is the prob-
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ability of a communication failure or interrogation of an unintended recipient. For

example, if the LF field at the sensor location varies dramatically for different tire

rotation angles, then initiator coil current must be increased to ensure that the likeli-

hood of a read failure is minimized. However, a higher current initiator is more likely

to actuate an unintended TPM sensor in another wheel well or adjacent vehicle.

In order to investigate the coupling phenomena between an initiator and TPM

sensor, a steel rim with 120 mil minimum thickness is simulated. Because of its

thickness, the rim can be treated as a PEC surface. It is excited by an LF initiating

coil with a magnetic moment of m = A ω µ0 I = 0.007 A-m at a distance of 47 cm

from rim center, as depicted in figure 6.11(a). The resulting current distribution in

d

(a)

(b) (c)

A

B

d

Initiator

Figure 6.11: Setup and simulation of wheel rim with LF coil excitation. (a) Sim-
ulation setup, d = 47 cm, 9940 RWG unknowns. (b) Field strength
measurement locations A and B. (c) Current distribution on the rim.

figure 6.11(c) shows that, much like a flat metallic plate, eddy currents on the the
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rim move to the outer edges and circulate in an additive fashion with the excitation.

To investigate sensor placement optimization, two locations are selected on the rim

as shown in figure 6.11(b). Magnetic field strength is computed from the simulated

current distribution, and measurements are made at the same location on a rotating

rim utilizing a network analyzer setup as depicted in Chapter 5, figure 5.3. The

resulting simulated and measured field strength data normalized to the highest power

measured at sensor location B are plotted in figure 6.12. The resulting magnetic field
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Figure 6.12: Magnetic field strength vs. tire rotation angle. Measurement and data
shown for test locations A and B, as well as measurements with and
without steel belted radial tire.

variation for the two sensor placement locations correlates well between simulation

and measurement. For the case of a sensor with coil near the valve stem of the rim

(location B), a variation of 23 dB in magnetic field strength is observed as the tire

rotates. Alternatively, a coil placed closer to the rim edge (location A) demonstrating
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only a 14 dB front to backside ratio as it benefits from the singularity of the eddy

current in the shadow region, but is less optimally coupled to the initiator coil on the

front side due to its normal proximity to the lip of the rim.

Thus, simulation indicates that shadow side improvement can be expected if the

coil is placed on or near the outermost edges where the eddy currents flow.
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CHAPTER 7

Conclusions and Future Work

7.1 Summary

Motivated by a desire to accurately simulate electromagnetic phenomena associ-

ated with low frequency RFID installations, this work has detailed the formulation,

implementation, and validation of an advanced surface EFIE based simulator.

The first chapter of this dissertation discussed the history and practical application

of RFID systems and the motivation for this work. Emphasis was placed on the chal-

lenges of simulating electrically small environments and on the limitations of currently

available commercial software packages. Chapter 2 outlined the formulation of the

numerical method in progression from Maxwell’s equations to the discretized surface

based EFIE employed. Along the way, a range of new sheet impedance approxima-

tions, including forward, backward, and non-propagating versions, were introduced.

Additional considerations were made for the use of matrix compression techniques and

the efficient implementation of curl and divergence conforming expansion functions.

In Chapter 3 a new approach to minimizing redundant computations was described

in the form of a Multilevel Geometry Description (MLGD). The MLGD compres-

sion algorithm was shown to enable efficient tracking of unique surface interactions

and thus minimize the setup cost when solving a properly discretized system. Be-
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cause of this multilevel approach, advanced hierarchial methods for forming bridge

bases to ensure current continuity were introduced. Chapter 4 began by modifying

the underlying set of sub-bases used into a more efficient current-charge (CQ) sub-

basis group. Next, the expense of employing existing preconditioning methods to the

MLGD structure was outlined and motivated the development of an entirely new it-

erative procedure. The resulting Multibasis (MB) method solves the overdetermined

system of equations resulting from simultaneous application of multiple higher level

expansions with accelerated convergence. The MB method was shown to be an O(N)

procedure, maintaining the asymptotic performance of the overall implementation.

Chapter 5 departed from numerical methods to discuss the practicality of loop an-

tenna design and the realities of the electromagnetic environment at low frequencies.

Included were discussions of issues that arise when making LF field strength mea-

surements and a pair of modified test methods were presented to help overcome these

issues. Chapter 6 validated the numerical implementation through comparison with

both theoretical and measured data. The overall efficiency of the simulator was ex-

amined and the optimal RWG+L MB expansion set was identified. The simulation

tool was accurately applied in computing the field in the shadow region of different

material disks. Finally, the applicability of the numerical implementation to the sim-

ulation and optimization of an LFID installation was demonstrated through accurate

computation of the magnetic field on a vehicle rim in the presence of a low frequency

TPMS initiator coil.

7.2 Future Work

While the numerical method detailed in this dissertation has many advantages

over existing implementations, it is still a work in progress.

One limitation of the current work is the need for hands on assembly of the MLGD
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structure by the design engineer. To facilitate a hands-off approach for pre-drawn

structures, efforts employing tiling algorithms, particle packing methods, and most

promisingly Oct-tree surface re-meshing need to be explored. Further improvements

to the MLGD approach would include the use of local planes of symmetry and toeplitz

indexing of protofacet meshes. Curvilinear meshing and mesh independent expansion

functions, as well as adaptive mesh refinement through application of facet scaling

are also of interest.

A second limitation resides in the use of the non-adaptive, non-diagonalized, LF-

MLFMA algorithm. Inclusion of more recent broadband diagonalized approach and

adaptive refinement at the protofacet level would extend the MLGD advantages to

electrically large problems while at the same time reducing overall solution time.

Additional improvements to the current implementation could include the exten-

sion of the MLGD to the computation of scattered field values about the structure, the

inclusion of the magnetic field integral equation kernel and magnetic surface currents

(for simulations where tangential E-field boundary conditions are not applicable), and

application of the Multibasis method in conjunction with preconditioning approaches

such as Multiresolution.
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