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ABSTRACT 

 
THE FUNCTIONAL SIGNIFICANCE OF G PROTEIN-COUPLED RECEPTOR 

DIMERIZATION 
 

by 
 

Matthew R. Whorton 
 
 
 

Chair: Roger K. Sunahara  
 
 

G protein-coupled receptors (GPCRs) are seven transmembrane domain proteins 

that transduce a diverse array extracellular signals across the plasma membrane and 

couple to the heterotrimeric family of G proteins.  Like most intrinsic membrane proteins, 

GPCRs are capable of oligomerization and this has led to speculation that GPCR dimers 

may be required for receptor function and efficient activation of G proteins.  One 

challenge in understanding the function of oligomers relates to the inability to separate 

monomeric and oligomeric receptor complexes in membrane environments using 

traditional biochemical approaches.  In this thesis, I use a novel reconstitution technique 

based on high density lipoproteins (HDL) to circumvent this limitation.  HDL particles 

are 10 nm diameter phospholipid bilayer discs surrounded by a dimer of the amphipathic 

protein apolipoprotein A-I.  I first demonstrate that a prototypical GPCR, the 

β2 adrenergic receptor (β2AR), can be incorporated into the phospholipid bilayer of a 

reconstituted HDL (rHDL) particle together with the stimulatory heterotrimeric G 

 xi



protein, Gs.  Single-molecule fluorescence imaging and fluorescence resonance energy 

transfer (FRET) analyses demonstrate that a single β2AR is incorporated per rHDL 

particle.  The monomeric β2AR efficiently activates Gs and displays GTPγS-sensitive 

allosteric ligand-binding properties.  I also demonstrate that another prototypical GPCR, 

rhodopsin, is monomeric and functional when incorporated into rHDL particles.  The 

photoreceptor, rhodopsin, has been shown to exist as arrays of dimers in native tissues 

and thus provides an ideal system for directly comparing the function of monomers and 

oligomers.  Monomeric rhodopsin•rHDL maintains the appropriate spectral properties 

with respect to photoactivation and formation of the active form, metarhodopsin II. 

Additionally, the kinetics of metarhodopsin II decay is similar between oligomeric 

rhodopsin in native membranes and monomeric rhodopsin in rHDL particles.  

Furthermore, photoactivation of monomeric rhodopsin•rHDL also results in the rapid 

activation of transducin, at a rate that is comparable to that found in native rod outer 

segments and 20-fold faster than rhodopsin in detergent micelles. Together, these data 

suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit 

necessary for signaling, and that oligomerization is not an absolute requirement for this 

process. 
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CHAPTER 1 

INTRODUCTION 

 

G Protein-Coupled Receptor Biology 

G protein-coupled receptors (GPCRs) are seven transmembrane-spanning 

receptors that reside on the surface of cells and are responsible for detecting a variety of 

substances and then transmitting this information inside the cell.  These substances range 

from endogenous compounds such as adrenaline, dopamine, chemokines, and glutamate 

to exogenous ligands including morphine and tetrahydrocannabinol, as well as sensory 

stimuli like odors, tastes, and light.  The GPCR superfamily is the third largest member of 

the human genome, consisting of approximately 1000 genes, and because of their vast 

and varied roles in regulating the body, it is estimated that they are the targets of 30-50% 

of all medications [1]. 

GPCRs relay extracellular information into cells by interacting with intracellular 

G proteins, through a process known as signal transduction.  G proteins are a diverse 

class of heterotrimeric proteins comprised of three subunits: α, β, and γ. There are at least 

20 α, 7 β and 12 γ subtypes in humans.  The alpha subunits bind guanine nucleotides and 

are divided into several families: αs (stimulates adenylyl cyclase (AC)), αi/o (inhibits AC), 

αq (stimulates phospholipase C (PLC)), and α12/13 (stimulates guanine nucleotide 

exchange factors) [2].  There also several specialized alpha subunits: αt, the alpha subunit 
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of transducin which is activated by the photoreceptor, rhodopsin, and αolf which interacts 

with olfactory receptors.  The β and γ subunits are obligate dimers and can also interact 

with downstream effectors, such as phospholipase A or the G protein-coupled inwardly-

rectifying potassium channel (GIRK).  G proteins are also lipid-modified, via the α and γ 

subunits, which keeps them associated with the plasma membrane and facilitates their 

interactions with receptors [3, 4]. 

αβγ 

GPCR signaling 
 

“The ternary complex”

GDP

GPCR

GTP 

 

Figure 1-1.  The GPCR signaling pathway.  Extracellular ligands (yellow triangle) bind to and activate the 
transmembrane GPCR which then activates a coupled heterotrimeric G protein by stimulating the release of 
GDP.  The subsequent binding of GTP to the α subunit causes the G protein to dissociate into the α and βγ 
subunits which go on to activate downstream effectors.  Hydrolysis of the bound GTP promotes re-
association of the two subunits and the cycle can repeat. 
 
 

In their basal state, G proteins are bound to guanosine diphosphate (GDP).  When 

an agonist binds and activates a receptor, this induces a conformation change in a bound, 

GDP

Pi 

α βγ βγ α Adenylyl cyclase
Phospholipase 
Ion channels GTP

Effectors 
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or coupled, G protein (Fig. 1-1).  This conformational change activates the G protein by 

stimulating the release of GDP and allowing guanosine triphosphate (GTP) to bind, a 

process driven by the high millimolar concentration of intracellular GTP.  An active G 

protein functionally dissociates into its constituent α and βγ subunits allowing each 

subunit to activate downstream effectors.  G protein signaling is eventually terminated by 

the hydrolysis of GTP to GDP.  Hydrolysis is achieved through the intrinsic GTPase 

activity of the α subunit and may be accelerated through an interaction with accessory 

proteins like RGS (Regulators of G protein Signaling).   This drives the re-association of 

the α and βγ subunits and the GDP-bound G protein can then rebind a receptor to 

complete the cycle.  Receptors can also be desensitized through the action of G protein-

coupled receptor kinases (GRKs).  Receptor phosphorylation leads to the binding of 

arrestin proteins that can block G protein signaling or promote receptor internalization.  

GRK2 and GRK3, like RGS molecules, contain a conserved 120 amino acid motif that is 

responsible for binding G protein alpha subunits.  Larger roles for RGS molecules, other 

than GTPase acceleration, have been identified, suggesting that this family of proteins 

may also be viewed as effectors [5].  

The multiple-protein transfer of information, from receptor to G protein to 

effector, achieves significant signal amplification because activation of one protein at 

each step may subsequently activate multiple downstream molecules.  For instance, in 

some GPCR systems, a single activated receptor can activate hundreds of G proteins [6], 

and a single activated Gαs protein can activate adenylyl cyclase and stimulate the 

synthesis of hundreds of cyclic adenosine monophosphate (cAMP) molecules.  cAMP 
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then activates protein kinase A, which in turn may phosphorylate and modulate the 

activities of several downstream targets.  

Another important aspect of many GPCRs is that they are allosteric proteins.  

Agonist binding to GPCRs projects an allosteric influence on the G protein to promote 

nucleotide exchange.  In a thermodynamically-coupled fashion, agonist binding is 

positively cooperative for G protein binding.  For instance, the presence of a bound G 

protein on a receptor can dramatically increase its affinity for a ligand by up to two orders 

of magnitude [7].  Uncoupling the G protein from the receptor with GTP or non-

hydrolyzable GTP analogues disrupts the allosteric effect.  This feature, along with the 

signal amplification discussed above, makes the GPCR signaling pathway remarkably 

sensitive. 

GPCRs are classified into 6 families based on sequence homology and functional 

similarity: Class A (Rhodopsin-like), Class B (Secretin-like), Class C (Metabotropic 

glutamate, pheromone and taste receptors), Class D (Fungal pheromone), Class E (cAMP 

receptors), and the Frizzled/Smoothened class.  The Class A family is by far the largest, 

recognizing a diverse array of ligands, including catecholamines, photons, nucleotides, 

phospholipids, and peptides.  My work has focused on two prototypical Class A receptor 

systems: rhodopsin and the β2 adrenergic receptor (β2AR).  These are among the earliest 

GPCRs to be identified, purified, and cloned and thus have been extensively studied. 

Rhodopsin is the receptor in rod cells in the retina that is responsible for scotopic, 

or low light, vision.  It is capable of detecting and responding to a single photon which 

causes the isomerization of its covalently bound ligand, 11-cis-retinal [8].  The 

photoisomerization event induces a conformational change in the receptor, similar to 
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agonist binding in hormone receptors and leads to the activation of the retina-specific G 

protein, transducin (Gαtβ1γ1).   Activated Gαt binds to and activates the γ-subunit of 

cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6), causing a decrease 

in cellular cGMP levels.  This decreases the probability of  cyclic nucleotide gated (CNG) 

channel opening and promotes hyperpolarization of the cell, a process that is eventually 

interpreted as a signal [9].  One unique characteristic of rhodopsin is that it is highly 

organized within the rod cell.  It is compartmentalized into special disc-shaped 

phospholipid sacks near the tip of the cell, called an outer segment.  The rod outer 

segment (ROS) is densely packed, and comprised of over 90 % rhodopsin (Fig. 1-2).  

This highly specialized design gives rod cells the sensitivity to detect single photons. 

 

38Å 

Figure 1-2.  Atomic force microscopy of rod outer segment discs from mouse retina.  Paracrystalline arrays 
of rows of dimers of rhodopsin are clearly visible.  Within each dimer, the rhodopsin molecules are 38 Å 
apart, implying that they must be forming physical interactions.  Image adapted from Fotiadis et al. [10] 
with permission. 
 

The β2AR has several roles in the body, including the regulation of smooth 

muscle relaxation (such as vasodilation and bronchodilation) as well as other processes 
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such as glycogenolysis and lipolysis.  Its physiological importance makes the β2AR a 

target for many drugs, including those used in the treatment of asthma and hypertension.  

The primary signaling pathway for the β2AR is the activation by endogenous epinephrine, 

which causes the activation of the stimulatory G protein, Gs.  GTP-bound Gαs binds 

directly to and activates adenylyl cyclase (Gβγ may also regulate adenylyl cyclase but in 

an isoform-specific manner) causing an increase in cAMP levels and activation of protein 

kinase A (PKA).  PKA mediates various downstream effects. For instance, PKA 

regulates smooth muscle tone by phosphorylating myosin light chain kinase (MLCK) and 

impairing its ability to activate myosin.  PKA can also regulate the transcription of many 

genes through activating the transcription factor CREB (cAMP response element binding 

protein).   

In addition, recent work has shown that the β2AR (as well as other receptors) can 

signal through a G protein-independent pathway, namely through arrestins [11].  

Although arrestin was originally recognized for its involvement in receptor 

desensitization, this new paradigm gives arrestin a role as a scaffold to activate 

alternative signaling pathways such as the mitogen-activated protein (MAP) kinase 

cascade and Src kinase.   Hormone activation of GPCRs can therefore regulate both G 

protein-dependent and G protein-independent pathways.  Another interesting and 

provocative development is the concept of biased agonism and biased signaling.  Ligands 

may serve as an agonist for a G protein pathway but serve as an antagonist for the arrestin 

pathway, or vice versa [12].  A striking example is ICI-118551, an inverse agonist for the 

G protein-dependent arm of β2AR signaling but a potent activator of the MAP kinase 

pathway [13]. 
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GPCR Oligomerization 

Classically, GPCRs have always been considered to act as monomers.  That is, the 

canonical ternary complex where one ligand activates a single receptor which then 

activates a G protein.  However, research as far back as the 1970s has suggested 

otherwise.  For instance, saturation isotherms and competition binding assays yielded 

data that could not be modeled as a single binding site/receptor, but may be interpreted as 

a more complex interaction between two receptors within a dimer or oligomer [14, 15].  

More direct evidence from target size analysis of the α and β2 adrenergic receptors [16, 

17], as well as cross-linking experiments also suggested that these GPCRs existed as 

oligomers [18].  

Renewed interest in the concept of GPCR dimerization emerged in the 1990s with 

the advent of complementation experiments initiated by Maggio et al. [19].  They 

demonstrated that co-expression of M3/α2, α2/M3 chimeric receptors could restore 

binding to the respective receptor types where the individual receptor chimeras lacked 

binding capacity for any ligand.  Other groups have also showed complementation of 

selectively inactivated mutant receptors.  Thus, co-expression of a receptor lacking the 

ability to bind ligand with one defective in G protein coupling – can restore receptor 

function [20, 21].  The rationale for these experiments is that the inactive receptor parts 

are forming functional receptor complexes through dimerization.  However, these 

experiments have been criticized, as the results may only be true for these specific 

mutants or the result of a recombinant in cyto cell system where receptors are highly-

overexpressed [22]. 
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It has also been reported that GPCR oligomers may be observed when resolved by 

SDS polyacrylamide gel electrophoresis (SDS-PAGE).  Multiple receptor species were 

identified by SDS-PAGE with molecular weights consistent with monomers and higher 

order (dimer and tetramers) arrangements.  The proportion of SDS-resistant species could 

be altered with agonist pre-treatment, or decreased by incubation with a transmembrane-

mimetic peptide [23].   GPCR homo- or heterodimers have also been identified by co-

immunoprecipitation from cells [24].  However, these techniques have been criticized for 

their potentially confounding choice of buffer conditions (e.g. detergent and salt).  For 

instance, many of the co-IP assays were done by solubilizing the cell membranes with 

weak non-ionic detergents such as Triton X-100, a detergent known for its capacity to 

preserve large protein-lipid complexes such as lipid rafts [25].  Caution should be used 

when referring to the co-IP of a receptor-lipid-receptor complex as a GPCR hetero- or 

homodimer.   

It was not until the development of the biophysical techniques Bioluminescence-, 

and Fluorescence- Resonance Energy Transfer (BRET and FRET) that the concept of 

GPCR dimerization started to gain wider acceptance [22, 26, 27].  In the case of FRET 

either fluorescent donor and acceptor proteins or probes (Cyan Fluorescent Protein, CFP 

and Yellow Fluorescent Protein, YFP, respectively) are fused to proteins of interest (Fig. 

1-3).  Excitation and the subsequent emission of the donor fluorophore will result in the 

excitation of a neighboring acceptor fluorophore, provided that it is within in a relatively 

short distance. This distance, the Förster distance (50-100 Å) is defined as the distance at 

which the energy transfer between two fluorophores is fifty-percent efficient [28].  This 

has proved to be a powerful technique for looking at GPCR oligomerization since two 
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receptors must form a physical interaction in order to be within the Förster distance and 

yield a significant RET signal. 

 

 Ste2 Ste2 

YFP CFP 

 

Figure 1-3.  Illustration of a typical FRET experimental setup.  CFP or YFP are fused to the receptor via 
the C-terminus.  Excitation of CFP will transfer energy to the YFP if the Ste2 receptors are brought close 
enough through dimerization. 

 

The Bouvier and Blumer groups are credited with first adapting the BRET and 

FRET techniques towards studying GPCR dimerization.  Bouvier’s group used BRET to 

show that the β2AR existed as homodimers when transiently transfected into HEK 293 

cells [27], while the Blumer group used FRET to show that the yeast pheromone receptor, 

Ste2, was a dimer in S. cerevisiae [26].  Since then, BRET and FRET have emerged as 

the premier techniques for demonstrating that GPCRs can form dimers in cells with over 

30 receptors having been shown to dimerize using these methods [22]. 

Other indirect evidence of GPCR dimerization has also recently emerged.  

Perhaps the most physiologically relevant example is that of the GABAB receptor.  
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Several groups demonstrated that the minimal functional signaling unit of this receptor is 

a dimer, comprised of GABABR1 and GABABR2 protomers [29-31].  The R1 receptor 

can bind ligand but cannot efficiently traffic to the plasma membrane due to an exposed 

endoplasmic reticulum retention signal.   The R2 subunit, on the other hand, efficiently 

traffics to the membrane but binds ligands very poorly.  Coexpression of the two subunits 

restores ligand-dependent effector activation in whole cells, implying that the restoration 

of plasma membrane trafficking and ligand binding was afforded by the heterodimer.  A 

similar scenario has also been demonstrated with the α1D adrenergic receptor.  When the 

α1D receptor is heterologously expressed, it does not traffic to the membrane.  However, 

coexpression with the α1B adrenergic receptor brings a functional α1D to the membrane 

[32]. 

Perhaps the most striking evidence of GPCR dimerization comes from imaging 

studies using Atomic Force Microscopy (AFM) of discs from ROS isolated from mouse 

retina [10].  In this work, it was observed that rhodopsin exists in ordered arrays of 

receptor dimers.  Furthermore, the close proximity between receptors (38 Å – roughly 

equal to the diameter of a receptor) implies the formation of meaningful receptor-receptor 

contacts (Fig. 1-2).  This provocative finding was highly significant because these 

observations were made in native tissue and were the first, and to date only, 

demonstration that GPCR oligomers exist in vivo.  However, this was also a controversial 

finding as some have claimed that the results are due to sample preparation artifacts and 

that the images defy earlier data claiming that rhodopsin is freely diffusible and 

monomeric in the retina [33]. 
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The overwhelming evidence that GPCRs exist as oligomers begs the question as 

to their functional relevance.  Moreover, many investigators in the field have even 

suggested that the dimeric receptor must be the minimal functional unit and that a 

pentameric complex of a receptor dimer and one heterotrimeric G protein is the true 

signaling unit [34, 35].  It has also been suggested that the allosteric effect of agonists 

may actually be explained by receptor-receptor cooperativity (which may be modulated 

by G proteins), rather than by receptor-G protein cooperativity as has generally been 

assumed [36].  

Needless to say, this has recently emerged as a controversial topic and has been 

the subject of intense research as the consequences of GPCR oligomerization may have 

significant functional relevance.  Because GPCRs are such important drug targets, 

modulation of the dimer interface and potential receptor-receptor crosstalk represent 

further avenues for drug development.  Also, the concept of receptor heterodimerization 

introduces a whole new set of druggable targets and would potentially open the door to 

increasing the specificity of current drugs. 

 

High Density Lipoproteins as a system for studying membrane proteins 

The goal of my thesis work was to determine the functional significance of GPCR 

dimerization.  To solve this problem, I took a reductionist approach – that is, to isolate a 

monomeric receptor in a defined biochemical system and compare its function to 

receptors in native tissue preparations where it has been previously shown to exist as 

oligomers.  Unfortunately, the major obstacle in this endeavor was the difficulty in 
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accurately comparing monomeric and oligomeric receptor systems using the current state 

of the art of membrane protein biochemistry. 

The major problem lies in the fact that GPCRs reside in the cell membrane and in 

order to purify them, they must first be extracted from the membrane.  Although 

detergents are relatively efficient at removing membrane proteins such as GPCRs from 

cell membranes, they are not adequate substitutes for phospholipids.  It has been shown 

that detergents have deleterious functional effects on a variety of membrane proteins 

including GPCRs [37-39].  For instance, the detergent dodecyl maltoside impairs the 

kinetics of photointermediates of rhodopsin and inhibits transducin activation [38]. 

The traditional route to overcome the deleterious effects of detergent is to 

reconstitute a purified, detergent-solubilized receptor into phospholipid vesicles.  

However, this approach presents several drawbacks that were not suitable for our goals.  

The reconstitution of membrane proteins into phospholipid vesicles is naturally 

heterogeneous.  Typically, a random mixture of vesicles of varying sizes (50-500 nm 

diameter) is obtained containing between 1 and 1000 receptors [40].  Furthermore, it is 

exceedingly difficult to control the orientation of the reconstituted receptors, as it has 

been reported in the literature that receptors can reconstitute in both parallel and anti-

parallel fashion [41-43].  Most important is the fact that even if one could reconstitute a 

small number of receptors into a vesicle, recent work has shown that rhodopsin, in 

particular, will self-associate into oligomeric complexes [44]. 

To solve these problems, we adopted a novel reconstitution system originally 

developed by the Sligar lab that relies on High Density Lipoproteins (HDL). They had 

adopted this system for studying membrane proteins like P450s [45, 46] and 
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bacteriorhodopsin [47].   We anticipated that this approach could be used to circumvent 

the problems we faced in studying GPCR oligomerization. 

100 nm
 

Figure 1-4.  High density lipoproteins (HDL).  Negative staining electron microscopy shows that HDL is 
comprised of ~ 10 nm discs (left panel).  A molecular model illustrates the quaternary structure of HDL: a 
phospholipid bilayer wrapped by a dimer of apolipoprotein A-I (cyan and teal) (right panel).  
 

HDL is a protein-lipid complex that is part of the reverse cholesterol transport 

pathway in the body [48].  It serves to sequester and transport excess cholesterol from the 

vasculature to the liver for excretion.  The most remarkable property about HDL is that 

nascent HDL is comprised of a 10 nm-diameter phospholipid bilayer that is surrounded 

and stabilized by a belt made of a dimer of apolipoprotein A-I (apoAI) [49] (Fig. 1-4).  

This bilayer is essentially a cell membrane mimetic and the whole complex can be easily 

reconstituted in vitro by adding defined lipids to purified apoAI, and I refer to these as 

reconstituted HDL particles (rHDL) [50].   Incorporation of membrane proteins, like 

GPCRs, into the rHDL phospholipid bilayer is as simple as including purified receptor 

into the reconstitution mix [47]. 

The advantages of using the HDL system versus phospholipid vesicles are many 

and they allow us to address a central question regarding the role of receptor 
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oligomerization:  What is the minimal functional signaling unit required to activate a G 

protein?  The physical properties of HDL particles (their uniformity in size and 

monodispersion) and their accessibility to G proteins on both sides of the bilayer provide 

an appropriate system to investigate this question.  In this thesis, I will demonstrate that 

the efficiency of incorporation of GPCRs into HDL is extremely high compared to the 

relatively poor efficiency observed with phospholipid vesicle reconstitution systems [51].  

Due to the relatively small diameter of the HDL particles, there is a theoretical limit on 

the number of receptors that one may incorporate into the HDL bilayers.  As such, I will 

demonstrate that the incorporated receptors are indeed monomeric [51, 52].  Finally, I 

will demonstrate that the reconstituted monomeric receptor is fully capable of interacting 

with and activating a G protein.    
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CHAPTER 2 

A MONOMERIC G PROTEIN COUPLED RECEPTOR EFFICIENTLY COUPLES TO 

ITS G PROTEIN 

 

Introduction 

Oligomerization appears as a common theme for numerous integral membrane 

proteins.  While the role of protein oligomerization is clear for some proteins such as ion 

channels [53-55] and receptor tyrosine kinases [56], the contribution of oligomerization 

to G protein-coupled receptor function has become a topic of debate [57-59].  The most 

compelling case exists for the GABAB receptor [29-31], where heterodimerization is 

required for both plasma membrane targeting and G protein activation. Although plasma 

membrane targeting has been attributed to oligomerization for some Class A GPCRs [60, 

61], a more comprehensive functional significance has yet to be discovered. Considering 

that many GPCRs form physical oligomeric interactions [62-64], including the 

provocative demonstration that rhodopsin exists as arrays of dimers [57, 65], it seems 

plausible that GPCRs may function optimally as oligomers.  Functional studies on the 

GABAB receptor [29-31] as well as biophysical and biochemical evidence from Class A 

receptors, including rhodopsin [58, 66] and the leukotriene B4 receptor [67], suggest that 

a pentameric complex, consisting of a GPCR dimer and a G protein heterotrimer, is 

required for efficient G protein activation. 
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However, the fundamental question as to whether a monomeric GPCR is capable 

of coupling efficiently to a G protein in a membrane environment arises from these 

studies.  Efficient coupling should be reflected by receptor-mediated allosteric changes in 

the G protein structure that result in nucleotide exchange and mutual G protein-dependent 

effects on receptor affinity for agonists. To address this, we rely on a unique approach for 

isolating GPCR monomers within high-density lipoproteins (HDL).  HDL, comprised of 

a dimer of apolipoprotein A-I (apoA-I) surrounding a planar bilayer of approximately 160 

phospholipids, is easily reconstituted in vitro (rHDL) [49, 50]. Electron microscopy of 

these rHDL particles highlight the disc-shaped structure of approximately 10-12 nm in 

diameter and thickness of approximately 40 Å, the same thickness of a plasma membrane 

(Fig. 2-1a-c).  This reconstitution system has been used by the Sligar laboratory to 

incorporate various membrane proteins into the phospholipid bilayer, including 

bacteriorhodopsin [47], cytochrome P450 [68] and the β2-adrenergic receptor [69].  In 

this report we utilize the HDL-based reconstitution system to incorporate purified β2AR 

and its cognate G protein, Gs.  We unambiguously demonstrate that β2AR reconstituted 

in HDL (β2AR•rHDL) is monomeric.  We also show that monomeric β2AR•rHDL is fully 

functional by virtue of its capacity to support both high-affinity agonist binding and rapid 

agonist-mediated nucleotide exchange. 

 

Results 

Reconstitution of β2AR into HDL.  A variety of conditions were examined for 

incorporating purified cyan fluorescent protein fused-β2AR fusion protein (CFP-β2AR) or 

wild-type-β2AR (β2AR) into HDL disks.  By reconstituting CFP-β2AR into a mixture of  

 16



 

 

Figure 2-1.  Depiction of rHDL particles. (a) Transmission electron micrograph of negatively stained 
rHDL. Well-defined 10-nm rHDL particles are clearly visible. (Scale bar, 100 nm) (b) Molecular model 
illustrating rHDL composed of a dimer of apoA-I proteins wrapped around a phospholipid bilayer 
composed of 160 POPC molecules (24). Each apoA-I protein (cyan and green) is depicted as a ribbon 
diagram. (c) Molecular model of a GPCR (bovine rhodopsin, Protein Data Bank ID code 1F88) 
reconstituted into rHDL. Images were generated by using UCSF Chimera Package from the Resource for 
Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by 
National Institutes of Health Grant P41 RR-01081) (44). Coordinates for the HDL model, from Segrest et 
al. (24), are used with permission from Stephen Harvey, Georgia Institute of Technology, Atlanta, GA. 
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lipids (POPC and POPG) and apoA-I we obtained greater than 98% recovery of 

[3H]DHAP binding activity (Fig. 2-2a). CFP-β2AR•rHDL exhibits binding affinities for 

antagonists and agonists with Ki values that are more consistent with those observed for 

β2AR in biological membranes rather than in detergent micelles as is demonstrated in Fig. 

2-2b and Fig. 2-7b,c.  Disks containing β2AR and fluorophore-labeled receptors (see 

below) exhibit similar properties (data not shown).  

β2AR in rHDL is monomeric by single molecule spectroscopy.  The inner 

diameter of an HDL particle is estimated to be approximately 85 Å [70]; therefore, we 

predict that a maximum of two receptors can possibly fit within an rHDL (the receptor 

diameter is ~ 40 Å, as determined from the rhodopsin crystal structure [71]).  Moreover 

the conditions used for the initial stage of the β2AR reconstitution (i.e. vast excess of 

apoA-I:receptor, ratio 100:1, or HDL:receptor of 50:1) favor the incorporation of a single 

receptor per rHDL.   

To make a more definitive assessment of the β2AR:rHDL stoichiometry, we 

employed total internal reflection fluorescence (TIRF) microscopy to image single 

molecules of fluorescently-tagged β2AR•rHDL (Cy3 or Cy5).  The degree of Cy3 and 

Cy5 label colocalization is related to the fraction of rHDL particles containing two or 

more receptors, and the fraction of monomeric receptors. 

We have determined labeling conditions such that greater than 99 % of β2ARs are 

labeled with either Cy3 or Cy5 in detergent micelles (Fig. 2-3).  In addition, to confirm 

that the receptor preparations are not oligomeric in detergent micelles prior to labeling 

and reconstitution, we utilized a crosslinking approach with bifunctional amine-reactive 

 18



 

Figure 2-2.  Functional reconstitution of beta2AR into rHDL. (a) β2AR requires apoA-I and lipids to 
survive detergent removal with high efficiency. Equal amounts of DDM-solubilized β2AR were included in 
the rHDL reconstitution assay with or without apoA-I and lipid (POPC/palmitoyl-oleoyl-
phosphatidylglycerol at 3:2) as described in Materials and Methods and assayed for [3H]DHAP binding (at 
20 nM). For comparison, equal amounts of receptor were also assessed for binding activity in the presence 
of 25 mM cholate ("chol") or 1 % DDM. Data shown are specific binding. (b) Saturation-binding assays 
were performed on β2AR in HighFive cell membranes (open squares), in DDM micelles (pink filled circles), 
or in rHDL lipid bilayers (blue filled squares). (c) Cy3-β2AR·rHDL elutes as a single peak by SEC 
(Superdex 200; GE Healthcare) as monitored by UV absorbance (blue), [3H]DHAP binding (green), and 
fluorescence (red). Bracketed area (with asterisk) represents the fractions analyzed for functional and 
fluorescence studies. (Inset) Preparations of Cy5-β2AR·rHDL (red) or (Cy3-β2AR +Cy5-β2AR)·rHDL 
(black) elute similarly Cy3-β2AR·rHDL (blue), with a Stokes diameter of ≈ 11 nm. 
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reagents (Fig. 2-4).  Although extensive crosslinking occurred when Cy3-β2AR was 

reconstituted in phospholipid vesicles very little crosslinking was observed in detergent 

micelles, implying that receptors are not proximate enough (using either 12Å or 24Å 

crosslinkers) to be crosslinked in detergent micelles.  The homogeneity and 

monodispersion are important properties of these preparations that are relevant to TIRF  

 

 

Figure 2-3. Labeling efficiency of β2AR estimated by TIRF imaging and photobleach-step counting. (a) 
The percentage of receptors containing one, two, or three fluorescent labels was determined by manually 
counting the number of photobleach steps in the intensity time trace for at least 400 individual receptors or 
rHDL particles. In each case it was impossible to count photobleach steps for a fraction of molecules due to 
either low signal-to-noise or fluorophore blinking. (b) Illustrative time traces for molecules counted as 
containing one, two, or three fluorescent labels. To achieve quantitative labeling, preparations of β2AR 
were labeled with cysteine-reactive derivatives of Cy3 or Cy5 at a stoichiometry of 20 fluorophores to one 
receptor molecule. From absorption spectra we estimate that between 1.6 and 2.5 mol of fluorophore were 
incorporated per mole of β2AR under these conditions. Over 35% of Cy3-and Cy5-β2AR molecules were 
observed to contain multiple fluorophores, as determined by counting the number of photobleaching events 
for individual receptors imaged by TIRF (e.g., Cy3-β2AR, 28% double-labeled, 9% triple-labeled; Cy5-
β2AR, 37% double-labeled, 5% triple-labeled). To estimate the fraction of unlabeled β2AR in such a 
sample, we simulated the labeling kinetics of the three most reactive cysteines using a mathematical model 
(see Materials and Methods). This model was able to accurately reproduce the observed fractions of 
double-and triple-labeling. Based on our most conservative estimate from this model, a maximum of 0.4% 
of β2AR remains. 
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imaging and FRET analysis below.   

Preparations of Cy3- and Cy5-β2AR were reconstituted into rHDL and resolved 

by size exclusion chromatography.  Both Cy3- and Cy5-β2AR•rHDL elute as a uniform 

absorbance peak (Fig. 2-2c) with a Stokes’ diameter of 11 nm (as determined by protein 

standards), slightly larger than the diameter for empty discs alone (~10.5 nm, not shown). 

This small difference, likely due to the extra-membrane loops and termini of the receptor, 

 

 

Figure 2-4.  Purified β2ΑR in DDM micelles is monomeric before reconstitution in vesicles. To ensure that 
the Cy3-or Cy5-labeled β2ΑR is not oligomeric before rHDL reconstitution (i.e., in detergent micelles), 
cross-linking analysis with BS3 (11.4-Å spacer; Pierce) was performed. Although considerable 
intramolecular cross-linking (band spreading) was observed, no detectable intermolecular cross-linking was 
observed in Cy3 β2Α R in detergent micelles. These data suggest that there are insignificant levels of 
oligomeric receptor complexes in detergent micelles. In contrast, incubation of phospholipid vesicle-
reconstituted β2AR with BS3 resulted in the concentration-dependent appearance of higher-order species, 
including dimers, and what appear to be aggregates near the top portion of the separating gel. Cy3-labeled 
β2ΑR (1 μM) in detergent micelles (0.1% DDM) or reconstituted in phospholipid vesicles was incubated in 
the absence or presence of increasing concentrations of BS3 for 60 min on ice. The reaction was terminated 
with 20 mM Tris-HCl, pH 8.0. Samples were resolved by SDS-PAGE and imaged on a UV gel 
documentation station (FluorChem 8800, Alpha Innotech) using rhodamine/Texas red filters. Similar 
results were obtained using an amine cross-linker with a longer linker, Bis(NHS)PEO5 (21.7-Å pegylated 
spacer; Pierce, data not shown). Phospholipid reconstitution into DOPC:cholesterol vesicles was performed 
as described in the Materials and Methods. 
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demonstrates that incorporation of β2AR does not perturb the structure or stability of the 

rHDL particle.  Fractions representing the chromatogram peak were isolated and used for 

TIRF and fluorescence resonance energy transfer (FRET) analysis (marked with an 

asterisk Fig. 2-2c and inset).  These fractions represent both the peak in fluorescence 

intensity and also [3H]DHAP binding activity (illustrated for Cy3-β2AR•rHDL). 

TIRF imaging of either Cy3-β2AR•rHDL (Fig. 2-5a) or Cy5-β2AR•rHDL (Fig. 2-

5b) reveals discrete, monodisperse fluorescent particles.  Subtle variability in intensity is 

due to incorporation of multiple fluorophores per molecule of β2AR (See step 

photobleaching in the Fig. 2-3b).  When equal amounts of Cy3-β2AR•rHDL and Cy5-

β2AR•rHDL were mixed together and imaged, only 1.8 ± 0.6% displayed colocalization 

(average ± s.e.m. of 10 images, total of 1916 molecules, Fig. 2-5c&f.  Strikingly, when 

equal amounts of Cy3-β2AR and Cy5-β2AR receptors were mixed prior to reconstitution 

in HDL, only 2.3 ± 0.6% of Cy3 and Cy5 labeled receptors colocalized (10 images 

containing a total of 2022 receptors, Fig. 2-5d&f.  The degree of colocalization of these 

fluorophores is not different than mixtures of Cy3-β2AR•rHDL and Cy5-β2AR•rHDL 

(Fig. 2-5f) nor different than TIRF imaging of Cy3-β2AR or Cy5-β2AR in detergent 

micelles (data not shown).  Both percentages are highly statistically different from a 

positive control for colocalization (double-labeled Cy3-Cy5-β2AR, 44 ± 2% of which 

were colabeled, i.e. fluoresced in both the Cy3 and Cy5 channels, Figs. 2-3e, 2-4a).  

These data strongly support the notion that under the conditions used for reconstitution, 

each HDL particle contains only a single, monomeric β2AR molecule. 

Single-molecule experiments were confirmed by ensemble fluorescence 

resonance energy transfer (FRET) measurements to assess the relative physical distance 
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between Cy3- and Cy5-labeled receptors incorporated into rHDL.  Since the inner 

diameter of rHDL (~85 Å) is close to the Förster distance for Cy3 and Cy5 (~60 Å), 

FRET should only occur from Cy3- to Cy5-labeled receptors within the same rHDL 

particle.  However, no FRET was observed from rHDL particles formed from a mixture 

of Cy3-β2AR and Cy5-β2AR under conditions described above (Fig. 2-6b).  In fact, the 

emission scan of this preparation remained unchanged when resolubilized in 1% DDM, 

and was comparable to emission spectra of Cy3-β2AR and Cy5-β2AR mixed together in 

detergent micelles (Fig. 2-6c).  

 

 

 

Figure 2-5.  TIRF of Cy3- and Cy5-labeled β2AR in rHDL reveals that the vast majority of β2AR are 
monomeric. Conditions for the reconstitutions illustrated are: (a) Cy3-β2AR·rHDL and (b) Cy5-
β2AR·rHDL particles alone, or (c) Cy3-β2AR·rHDL and Cy5-β2AR·rHDL mixed together at equal 
concentrations, (d) Cy3-β2AR and Cy5-β2AR mixed together at equal concentrations before reconstitution 
(Cy3-β2AR + Cy5-β2AR)·rHDL, (e) β2AR colabeled with Cy3 and Cy5 in 0.1% DDM, and (f) bar graph 
summarizing TIRF data in c–e. Cy3- and/or Cy5-labeled receptors were reconstituted in rHDL at a 
β2AR:ApoA-I ratio of 1:100 (β2AR:rHDL ratio of 1:50) in the presence of POPC/POPG and resolved by 
SEC. Receptor concentrations were maintained at 1 µM. Fractions were analyzed by TIRF as described in 
Materials and Methods. 
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In contrast, FRET was observed when Cy3-β2AR and Cy5-β2AR were 

reconstituted in phospholipid vesicles (i.e., in the absence of apoA-I, Fig. 2-6a), 

suggesting that these receptors are oligomeric. The addition of 1% DDM to the 

 

 

Figure 2-6.  FRET measurements confirm monomeric β2AR in rHDL. Cy3- and Cy5-labeled β2AR 
preparations were reconstituted under different conditions, and normalized spectra were analyzed for the 
presence of FRET, as indicated by increased acceptor (Cy5) emission (at 670 nm) and the concomitant 
decrease in donor (Cy3) emission (at 575 nm). (a) Equal amounts of Cy3-β2AR and Cy5-β2AR were mixed 
and reconstituted into phospholipid vesicles (rVesicles). (Cy3-β2AR + Cy5-β2AR)·rVesicles display FRET, 
which is reduced on exposure to 1% DDM (red), a detergent concentration that disrupts and resolubilizes 
the vesicles. (b) In contrast, no significant FRET is observed in (Cy3-β2AR + Cy5-β2AR)·rHDL in the 
absence (black) or presence (red) of 1% DDM. These spectra are identical to spectra obtained from equal 
mixtures of Cy3-β2AR·rHDL and Cy5-β2AR·rHDL (blue). (c) Normalized spectra are also identical to 
mixtures of Cy3-β2AR and Cy5-β2AR in DDM micelles at 0.1% DDM (black) or at 1% (red). 
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vesicles markedly reduced the FRET due to oligomerization (Fig 6a).  As mentioned 

earlier, oligomerization in vesicles was also detected by crosslinking studies with 

bifunctional amine crosslinkers (Fig. 2-4).  Taken together these data demonstrate that 

rHDL particles represent a unique experimental system for studying monomeric GPCRs 

in a phospholipid environment. 

Monomeric β2AR in rHDL functionally couples to G proteins.  Monomeric 

β2ARs in rHDL couple efficiently to the purified stimulatory heterotrimeric G protein Gs, 

as shown in Fig. 2-7.  Isoproterenol promotes rapid guanine nucleotide exchange on Gs 

reconstituted into CFP-β2AR•rHDL particles (50 fmol receptor, Fig. 2-7a).  [35S]GTPγS 

binding appears biphasic with a Bmax of ~60 ± 10 fmol.  In contrast, [35S]GTPγS binding 

in the presence of timolol (an inverse agonist) occurred in a slow but saturable manner 

within 15 min and with an estimated Bmax of 33.5 fmol.  The difference between these 

binding conditions yields the isoproterenol-β2AR-specific [35S]GTPγS binding 

component of 26.5 fmol and represents approximately 45 ± 7% of the total [35S]GTPγS 

binding.  The isoproterenol-specific stimulated [35S]GTPγS binding yields a final R:G 

ratio of 50 fmol:26.5 fmol or approximately 1:0.53.  These data suggest that up to 53% of 

the β2AR•rHDL particles may contain a single G protein.  There is a possibility that 

multiple G proteins may be reconstituted per receptor-containing particle, however, steric 

crowding owing to the physical dimensions of the Gsαβγ heterotrimer (>80 Å from tip to 

tip) suggests that this is unlikely to occur. 
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Figure 2-7.  Monomeric β2AR incorporated in rHDL particles couples efficiently to G proteins. (a) ISO-
induced [35S]GTPγS binding to monomeric-β2AR·Gs·rHDL particles.  β2AR·Gs·rHDL particles were 
preincubated with either 1 µM ISO (magenta) or 10 µM timolol (black) in the presence of 100 nM 
[35S]GTPγS and 2 mM MgCl2 to stimulate [35S]GTPγS binding (Inset). Aliquots (at times indicated) were 
removed, and binding was terminated with a quench buffer. Agonist-specific [35S]GTPγS binding to 
β2AR·Gs·rHDL particles (blue) represents the difference between ISO-stimulated and timolol-bound data 
(Inset). (b) Propranolol inhibition of ISO-stimulated [35S]GTPγS binding. β2AR·Gs·rHDL particles were 
preincubated with either 1 µM ISO or 1 µM ISO plus 3 mM propranolol and then assayed for [35S]GTPγS 
(2 min at 30°C), as above. (c) High-affinity ISO inhibition of [3H]DHAP binding to monomeric β2AR in 
rHDL occurs in the presence of G proteins (blue) but is abolished by coincubation of 10 µM GTPγS (black). 
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The Khigh (8.0 ± 2.4 nM) and Klow (360 ± 110 nM) sites represent 56% and 44% of total binding, 
respectively.  Purified Gs was added to preformed β2AR·rHDL particles at a final R:G ratio of 1:0.53, as 
determined by [35S]GTPγS binding and described in Materials and Methods. (d) Increasing the 
concentration of Gs and thus the R:G ratio (e.g., R:G of 1:200) increases the proportion of high-affinity 
agonist sites to > 90%. Note that the 1:200 represents the initial R:G ratio and not the final functional R:G 
(see text). Coincubation with 10 µM GTPγS to the 1:200 reconstitution condition completely abolishes the 
high-affinity ISO binding (open circles), yielding a Ki similar to the Klow. These data were fit with a 
nonlinear regression (c and d) or two-phase exponential fit using Prism 4.0 (a) (GraphPad). 

 

When fit to a two-phase exponential association curve, [35S]GTPγS binding data 

also reveal an initial rapid burst of binding with a halftime of < 10 s, followed by a 

slower rate with a halftime of 4.3 ± 1.3 min.  The initial burst, not observed in the 

presence of timolol, is consistent with [35S]GTPγS binding to empty Gs (devoid of GDP) 

and represents a pre-coupled G protein-receptor complex [72-74].  The slower phase is 

likely due to the inability of inverse agonists to completely inhibit basal receptor 

activation [75].   The inability of the inverse agonist to completely reduce the basal 

receptor may slightly underestimate the isoproterenol-stimulated component of 

[35S]GTPγS binding.  It should also be noted that although high amounts of G protein are 

required in the initial reconstitution (R:G ratio of 1:50), very low amounts of G protein 

actually incorporate into the receptor containing particles.  The vast majority of G 

proteins aggregate and precipitate due to the absence of detergent, a requirement to keep 

the acylated (Gsα) and prenylated (Gγ) subunits of the heterotrimeric G protein in 

solution. 

Monomeric β2AR also undergoes allosteric modulation of agonist binding by G 

proteins.  Analysis of isoproterenol inhibition of [3H]DHAP binding to these preparations 

reveals a classic biphasic competition curve with an observed Khigh of 8.0 ± 2.4 nM and a 

Klow of 0.36 ± 0.11 μM (n=5) (Fig. 2-7b), in good agreement with previously reported 

 27



values [76]. The functional uncoupling of Gs by GTPγS yielded a monophasic inhibition 

curve with a Ki of 0.13 ± 0.09 μM (n=2), very similar to the Klow value.  The high-affinity 

isoproterenol sites (Khigh) represented 57 ± 4% (n=5) of the total [3H]DHAP binding, 

remarkably close to the proportion of receptors that contain G proteins (53% from 

[35S]GTPγS binding).  The fraction of high-affinity isoproterenol sites increases in a G 

protein concentration-dependent manner to levels approaching 90% when the final R:G 

ratio is approximately 1:2 (Fig. 2-7c).   This ratio was estimated from the fractional 

survival of Gsαβγ remaining following the deleterious reduction in detergent 

concentration to levels well below the CMC during the reconstitution procedure (as 

described earlier) and the amount of β2AR in the assay (50 fmol).  

 

Discussion 

Although GPCRs may exist as oligomers, as evident in imaging studies from 

native membranes [10], modeling studies, and FRET/BRET experiments [62-64], our 

study shows that the minimal functional unit is unequivocally a monomer.  Agonist 

activation of monomeric receptors induces rapid guanine-nucleotide exchange in G 

proteins.  G proteins directly induce the monomeric receptor to adopt a conformation that 

binds agonist with high affinity (nM) compared to conditions where G proteins are absent 

or uncoupled (μM).  These data resolve a highly controversial question at the core of 

GPCR signal transduction.  While the β2AR is only one of several hundred GPCRs in the 

genome, it is likely that the observations reported here can be generalized to at least the 

class A, or rhodopsin-like receptors.  Members of this family encompass most of the 

hormone receptors that are targeted by clinically useful therapeutics.  Thus, elucidating 
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their minimal functional oligomeric state is critical for understanding their mechanism of 

action.  

One of the earliest reports providing evidence that GPCRs may exist as dimers in 

the plasma membrane was published in 1996 [23] and was met with some criticism by 

investigators in the field. However, since that study, which used the β2AR as a model 

system, there have been a growing number of reports documenting both homo- and 

heterodimerization of GPCRs using a variety of techniques [10, 26, 27, 77-79]. 

Consequently, the existence of GPCR dimers is now widely accepted. Studies 

documenting the requirement for heterodimerization in GABAB receptor signaling as 

well as studies providing evidence that dimerization is required for efficient export of 

GPCRs from the endoplasmic reticulum have led to speculation that a dimer is likely to 

be the functional unit for GPCR signal transduction [78]. However, rigorous analysis of 

the role of dimers in G protein activation has previously not been possible because of the 

inability to physically isolate and characterize the function of a monomeric GPCR 

embedded in its membrane milieu. 

In this study, we incorporate purified β2AR into rHDL particles along with 

purified Gs heterotrimer. We demonstrate that the detergent-solubilized and purified 

β2AR is monomeric before reconstitution, and that the rHDL particles contain only a 

single β2AR. Our study shows that the minimal functional unit is a monomer by virtue of 

the fact that agonist treatment induces rapid guanine-nucleotide exchange in G proteins. 

Moreover, G proteins directly induce the monomeric receptor to adopt a conformation 

that binds agonists with high affinity (nanomolar) compared with conditions where G 

proteins are absent or uncoupled (micromolar). By increasing the proportion of β2AR 
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occupied by G proteins, we observe an increase in the proportion of high-affinity agonist-

binding sites. These data represent direct support of the original "ternary complex" 

coined by DeLean et al. approximately 30 years ago [7] and refutes the contributions of 

receptor oligomers toward high-affinity agonist binding. 

The data presented here do not refute that receptors exist as oligomers in 

membranes, but rather the data suggest that oligomerization may play a minor role in G 

protein activation. In fact, the data remain consistent with a pentameric receptor–G 

protein complex model (R:R:Gα:Gβ:Gγ), as has been proposed for the GABAB receptor, 

mGluR, and rhodopsin [34, 58, 80]. In this model, only one of the two receptors within 

the dimer is capable of coupling to the G proteins. 

Cumulatively, these data resolve a highly controversial question at the core of 

GPCR signal transduction. Although the β2AR is only one of several hundred GPCRs in 

the genome, it is likely that the observations reported here can be generalized to at least 

the class A or rhodopsin-like receptors. Members of this family encompass most of the 

hormone receptors that are targeted by clinically useful therapeutics. Thus, elucidating 

their minimal functional oligomeric state is critical for understanding their mechanism of 

action. 

 

Materials and Methods 

Materials.  G protein baculoviruses encoding Gαs, his6-Gβ1 and Gγ2 were 

generously provided by Dr. Alfred G. Gilman (UT Southwestern).  Expired human serum 

was generously donated by Dr. Bert La Du (University of Michigan).  All lipids were 

purchased from Avanti Polar Lipids (Alabaster, AL).  DDM was obtained from Dojindo 
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Molecular Technologies (Gaithersburg, MD).  Sodium cholate was purchased from 

Sigma.  (±)-alprenolol, S(-)-timolol, (±)-propranolol, and (-)-isoproterenol were obtained 

from Sigma (St. Louis, MO).  [3H]Dihydroalprenolol and [35S]GTPγS were obtained 

from Perkin Elmer (Foster City, CA).  Cy3 and Cy5 maleimide were purchased from GE 

Healthcare (Piscataway, NJ).  All other reagents were of analytical grade.   

 Buffers.  Buffer A: 50 mM Tris-HCl pH 8, 50 mM NaCl, protease inhibitors (PIs: 

34 mg/ml each of L-tosylamido-2-phenylethyl chloromethyl ketone, 1-chloro-3-

tosylamido-7-amino-2-heptanone and phenylmethylsulfonyl fluoride, and 3 mg/ml each 

of leupeptin and lima bean trypsin inhibitor).  Buffer B: 50 mM Tris-HCl pH 8, 50 mM 

NaCl, PIs.  Buffer C: 20 mM Hepes pH 8, 1 mM EDTA, 0.1% DDM, PIs.  Buffer D: 50 

mM Tris-HCl pH 8, 1 mM CaCl2, 3 M NaCl, 5 μM EDTA.  Buffer E: 20 mM Tris-HCl 

pH 8, 1 mM CaCl2, 5 μM EDTA, 0.1% Triton X 100.  Buffer F: 25 mM K-acetate pH 5, 

1 mM EDTA, 0.1% Triton X-100.  Buffer G: 20 mM Hepes pH 8, 100 mM NaCl, 1 mM 

EDTA.  Buffer H: 20 mM Hepes pH 7.5, 100 mM NaCl.  Buffer I: 100 mM NaCl, 20 

mM Hepes pH 7.5, 0.1% dodecylmaltoside (Anatrace).  Buffer J: Buffer I and 1 mM 

EDTA.  Buffer K: Buffer I with 300 μM alprenolol (Sigma) and 1 mM CaCl2.  Buffer L: 

Buffer I with 1 mM CaCl2.  Buffer M: Buffer I with 0.01% cholesterol hemisuccinate. 

Receptor purification and labeling. β2AR (WT or CFP-fused) was expressed in 

Sf9 cells and solubilized using methods previously described [81].  For CFP-β2AR: 

DDM-solubilized extract was applied to a metal-chelate affinity column (Talon, 

Clontech). Samples were washed with Buffer B + 0.1% DDM with 2.5 mM imidazole 

and then subsequently eluted with Buffer B with 100 mM imidazole, 0.1% DDM. Peak 

fractions were applied to a 1 ml Source Q anion exchange column (GE Healthcare) in 
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Buffer C. CFP-β2AR was eluted with a 15 ml 0-40% linear gradient with Buffer C + 1 M 

NaCl. Peak fractions were pooled and resolved on a Superdex 200 size exclusion column 

in Buffer C + 50 mM NaCl to resolve the CFP-β2AR from the clipped CFP. The resultant 

CFP-β2AR is greater than 95% pure and stored on ice until use. For wt-β2AR: CaCl2 was 

added to the DDM-solubilized extract to a final concentration of 1 mM and the detergent 

solubilized β2AR was purified by M1-Flag affinity chromatography (Sigma). The 

receptor was eluted from the M1-Flag resin in Buffer J. The concentration of functional, 

purified receptor was determined using a saturating concentration (10 nM) of 

[3H]dihydroalprenolol as previously described [81]. Flag-purified receptor was then 

purified by alprenolol-Sepharose chromatography as described [81]. The receptor was 

eluted from alprenolol-Sepharose with Buffer K and loaded directly onto M1-Flag resin. 

The M1-Flag resin was washed with Buffer I to remove free alprenolol and eluted with 

Buffer J. Two liters of Sf9 cells typically yield 500 μl of a 5 μM solution of β2AR. 

Purification of human apoA-I: WT human apoA-I was purified from human 

serum by a protocol adapted from Gan et al. [82]; all procedures were performed at room 

temperature (RT) unless noted. Frozen serum (-20°C in 10 mM CaCl2) was thawed at 

37°C, strained through cheesecloth, and then centrifuged at 5,000 x g for 10 min to pellet 

any debris. This clarified serum was then made up to the following buffer condition: 

Buffer D. This solution was combined with equal serum volume of blue agarose resin 

(Cibacron blue F3GA-agarose, Sigma) equilibrated in Buffer D, and stirred for 30 min. 

Resin was then washed by filtering through a Whatman #1 filter in a Büchner funnel. The 

resin cake was then resuspended in 3 x resin volume Buffer D and then re-filtered. The 

resin was washed (3-4 times), until absorbance at 280 nm of the filtrate was less than 
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0.025.  The resin was washed twice more in the same manner with Buffer D without 3 M 

NaCl. After the last wash, the cake was resuspended in an equal volume of the same 

buffer and loaded onto an empty column. The remaining bound proteins were then eluted 

with the same buffer + 5 mM cholate. ApoA-I was typically 80-90% pure at this stage. 

To delipidate the apoA-I, fractions were pooled and concentrated using an Amicon stirred 

ultrafiltration cell affixed with a 10,000 MWCO filter (Millipore) and then diluted 1:1 in 

25 mM Tris-HCl pH 8, 1 mM CaCl2, 5 mM EDTA, 0.2% Triton X-100. This was then 

applied to a 70 ml Q Sepharose (Amersham Pharmacia) column equilibrated in Buffer E 

and eluted with a shallow linear gradient with Buffer E + 1 M NaCl, apoA-I usually 

eluted around 10-15%. The remaining contaminants were removed using a SP Sepharose 

(Amersham Pharmacia) column (70 ml) equilibrated in Buffer F and eluted with a linear 

gradient against Buffer F + 1 M NaCl. To exchange the Triton X-100 for cholate, SP 

Sepharose fractions were applied to a Superdex 200 size exclusion column (Amersham 

Pharmacia) in Buffer G + 20 mM cholate, at 4°C. ApoA-I fractions were pooled and 

concentrated to at least 10 mg/ml, then dialyzed at 4°C against Buffer G + 5 mM cholate 

and stored at -80°C until further use. 

In vitro reconstitution of rHDL.  High-density lipoproteins were reconstituted in 

vitro according to a protocol adapted from Jonas [50].  Briefly, DMPC and POPC, were 

used alone, or as a mixture of POPC and POPG in combination (3:2 molar ratio), to 

mimic the zwitterionic environment of a cell membrane [40].  A typical rHDL 

reconstitution consisted of the following components: 24 mM detergent (cholate or 

DDM), 8 mM lipids, and 100 μM apoA-I.  Lipids were solubilized with a solution of 20 

mM Hepes pH 8, 100 mM NaCl, 1 mM EDTA + 50 mM detergent.  To reconstitute 
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receptors, purified apoA-I was added to at least 10-fold excess ([apoA-I]:[receptor]) to 

receptor preparations diluted in solubilized lipids.  Following an incubation of 1-2 hrs at 

the Tm of the lipid combination, samples were added to an equal volume of hydrated 

BioBeads (BioRad) for an additional 1-2 hrs to remove detergents, resulting in the 

formation of rHDL particles.  Samples were stored on ice until used.  If necessary, 

β2AR•rHDL particles were separated from receptor-free rHDL by M1-anti-FLAG 

immunoaffinity chromatography.  Purified β2AR•rHDL particles were eluted with EDTA 

(10 mM) and stored on ice until further use. 

Negative staining and transmission electron microscopy of rHDL particles.  

rHDL samples were placed on a carbon-coated copper grid and stained with 1 % 

phosphotungstic acid, pH 6.5.  Samples were imaged in a Philips CM-100 transmission 

electron microscope operating at 60 kV.   

Analytical size exclusion chromatography. Analytical size exclusion 

chromatography was performed on a HR10/30 column (Amersham) Superdex 200 

(Amersham) using the BioLogic DuoFlow system (BioRad) at 4º C.  Fractions from the 

column (200 μL) were collected in a 96-well plate for further analysis.  Cy3 fluorescence 

(λex=544 nm, λem=595 nm) was analyzed in a Victor2 ™ fluorescence plate reader (Perkin 

Elmer).  The column was calibrated with thyroglobulin [669 kDa, Stokes diameter (Sd) = 

17.2 nm], apoferritin (432 kDa, Sd = 12.2 nm), alcohol dehydrogenase (150 kDa, Sd = 

9.1 nm), BSA (66 kDa, Sd = 7.2 nm), carbonic anhydrase (29 kDa, Sd = 4 nm). 

Cy3 and Cy5 labeling of β2AR.   Purified β2AR (5 μM) was labeled with 

cysteine-reactive Cy3-maleimide (100 μM) or Cy5-maleimide (100 μM, GE Healthcare) 

for 60 min at 25 °C in Buffer H + 0.1% DDM in the presence of Tris(2-carboxyethyl) 
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phosphine hydrochloride (200 μM). The β2AR samples were incubated with 

iodoacetamide (2 mM) for 30 min to alkylate unlabeled cysteines and to prevent the 

formation of disulfide-linked oligomers in detergent solution. The conjugation reactions 

were quenched by cysteine (2 mM). Labeled protein (Cy3-β2AR or Cy5-β2AR) was 

separated from free dye and iodoacetamide by gel filtration (Sephadex G-50 Fine). The 

efficiency of labeling (stoichiometry) was estimated from UV-Vis absorption spectra, 

using the following extinction coefficients [44]: ε554, Cy3 = 150,000 M-1 cm-1, ε652, 

Cy5 = 250,000 M-1 cm -1, and ε280, β2AR = 116 mM-1 cm -1. The receptor extinction 

coefficient at 280 nm was estimated from a standard dilution curve of purified β2AR for 

which the concentration was determined by saturation radioligand binding. The 

contribution of fluorophore absorbance at 280 nm was subtracted (8% of the absorbance 

at 554 nm for Cy3, and 5% of the absorbance at 652 nm for Cy5, CyDye mono-reactive 

(NHS esters handbook, GE Healthcare)). To prepare the dual-labeled positive control for 

colocalization, a portion of Cy3-β2AR (2 μM) was labeled by incubation with the amine 

reactive dye Cy5-mono-NHS-ester (400 μM, GE Healthcare) for 3 h at 25 °C. Labeled 

protein (Cy3-Cy5−β2AR) was separated from free dye by gel filtration. 

Single-molecule imaging.  Single-molecule imaging was performed on an in-

house, custom-designed total internal reflection fluorescence (TIRF) microscope based 

on a Nikon TE2000-U inverted microscope using a standard through-the-objective 

configuration [83].  A 532 nm green diode-pumped, frequency-doubled Nd:YAG laser 

(for Cy3 excitation, Compass 215M, Coherent, Santa Clara, CA) and a 638 nm red diode 

laser (for Cy5 excitation, RCL-638-025, Crystalaser, Reno, NV) were used as the 

excitation sources. Lab-Tek II chambered coverglasses (Nalgene Nunc International, 
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Rochester, NY) were used to contain and image all samples. To image a sample, 500 μL 

of ~10 pM β2AR•rHDL was added to the chamber to allow nonspecific adsorption to the 

glass surface.  After a 5 min incubation, the protein solution was pipetted off and 

immediately replaced by 500 μL PBS (Gibco) to stop adsorption of additional molecules 

from solution.  Images of Cy5 and Cy3 were acquired sequentially, with WinView 

(Roper Scientific), by switching the excitation laser and the emission band pass filter. 

The excitation power density was 48.8 W/cm2 for the green laser and 22.4 W/cm2 for the 

red laser. The integration time of the CCD camera was 0.4 sec per frame. To avoid the 

possible masking of Cy3 fluorescence due to energy transfer from Cy3 to Cy5, 200 

frames were acquired in the Cy5 channel before acquisition of the Cy3 image to ensure 

that all Cy5 molecules are photobleached.   

Images were analyzed with an in-house, custom-designed program.  In a 

fluorescent image, each local maximum exceeding a certain height threshold was fitted 

with a two-dimensional Gaussian function in a 7 pixel x 7 pixel area around it. A 

fluorescent molecule was identified if the fitted results satisfied both the height and width 

criteria. The fluorescence time trace of a molecule is obtained by identifying the molecule 

in the first frame of an image stack and then fitting each subsequent frame with a two-

dimensional Gaussian function.  The fraction of colocalized molecules was calculated as: 

2*(no. colocalized spots) / (no. Cy3 spots + no. Cy5 spots) where a Cy3 or Cy5 spot is 

classified as any fluorescent molecule as described above, and assuming that a 

colocalized spot contains two receptors.  The fraction of colabeled molecules for the 

dual-labeled Cy3-Cy5-β2AR sample was calculated as: (no. colocalized spots) / (no. Cy3 

spots + no. Cy5 spots – no. colocalized spots). 
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Ensemble FRET spectra.  Steady-state FRET measurements were determined on 

a Spex FluoroMax-3 spectrofluorometer (Horiba Jobin Yvon, Inc.) with photon-counting 

mode at 25º C.  Spectra were collected as follows: Cy3 emission (λex=525 nm, λem=535 

to 751 nm), Cy5 emission (λex=625 nm, λem=635 to 751 nm). 

Saturation radioligand-binding assays.  Binding reactions were prepared in 100 

μl volumes in 96-well plates. Samples were incubated with various concentrations of 

β2AR antagonist [3H]dihydroalprenolol ([3H]DHAP) (0.1-46 nM) in 50 mM Tris-HCl pH 

8, 150 mM NaCl (TBS) [or TBS with 1% detergent (DDM or cholate) for detergent-

solubilized binding]. Nonspecific binding was determined in the presence of 20 mM 

propranolol. Membrane samples were incubated for 90 min at RT. Detergent-solubilized, 

purified samples were incubated for 60 min at 30°C for saturation isotherms, or for 30 

min at 30°C for single point saturation binding. For separating free [3H]DHAP from 

bound, membrane samples were filtered on glass fiber filter plates and detergent 

solubilized samples were filtered on gel filtration columns. For the rHDL samples, both 

methods were used successfully, although the glass fiber plates retained only about 80% 

of the binding seen on the gel filtration columns. 

For glass fiber filtering, GF/B 96-well filter plates (Whatman) were used in 

conjunction with a vacuum manifold. Wells were prewet with TBS. Samples were 

applied and washed 3x with 200 ml of TBS. Scintillation mixture was added (Microscint 

0, Packard) and plates were counted on a TopCount scintillation counter (Packard). For 

gel filtration, samples were applied to Sephadex G-50 columns equilibrated in TBS (or 

TBS + 0.05% DDM or 0.5% cholate). Scintillation mixture (Cytoscint, MP Biomedicals) 

was added to the flowthrough fractions (containing the bound receptor) and counted on a 
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Beckman LS5000. Specific binding was determined by subtracting nonspecific binding 

from total binding. 

G protein reconstitution: Purified Gs [84] (stored in 11 mM CHAPS) was 

reconstituted into preformed impure β2AR•rHDL particles (containing excess empty 

rHDL particles) at an initial R:G ratio of 1:50. Concentrated Gs stocks were added such 

that the CHAPS was diluted at least 700-fold to reduce the CHAPS concentration to well 

below the CMC (6-10 mM). This had no effect on the integrity of the particles, as 

assessed by size exclusion chromatography (data not shown). Treatment of Gs-

reconstituted samples with BioBeads, to remove trace amounts of CHAPS, before gel 

filtration chromatography had no effect on the results. 

Agonist competition assays: Agonist competition assays were performed on G 

protein-reconstituted samples under similar conditions as used in the saturation binding 

assays except that a fixed concentration of [3H]DHAP (2 nM) was competed with various 

concentrations of isoproterenol (1x10-12 – 1x10-4 M), with or without the addition of 10 

mM GTPγS. Binding reactions contained 0.02% ascorbic acid to prevent oxidation of the 

isoproterenol. Samples were incubated for 30 min at 30°C and then filtered on glass fiber 

plates as above. Normalized data were fit to a two-site competition binding model using 

Prism (GraphPad). 

GTPγS-binding assay: G protein reconstitution was performed as above. 

Agonist-stimulated [35S]GTPγS-binding assays were performed essentially as described 

by Asano et al. [85]. Receptor samples were combined with either 1 mM isoproterenol, 

10 mM timolol, or 1 mM isoproterenol plus 3 mM propranolol in buffer comprised of 

Buffer H plus 2 mM MgCl2 and 0.02% ascorbic acid. These were allowed to preincubate 
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at 30°C for 5 min before being combined with 100 nM isotopically diluted [35S]GTPγS. 

Fifty-microliter aliquots were removed at specific times and added to 100 ml of quench 

buffer (Buffer G + 10 mM MgCl2, 100 mM GTPγS, 100 mM timolol) on ice. Samples 

were filtered on GF/B 96-well plates as above, except that filters were washed five times 

with ice-cold 20 mM Tris-HCl pH 8, 100 mM NaCl, 10 mM MgCl2. The glass-fiber 

filtration method was selected over the more traditional nitrocellulose filter method 

(including detergent, Lubrol) to be consistent with the conditions selected for the 

radioligand-binding assays. In addition, to avoid disrupting the rHDL particles, we 

excluded detergent (Lubrol) from our binding and filtration steps, the inclusion of which 

could enhance the recovery of [35S]GTPγS binding to G proteins on nitrocellulose filters 

by as much as 50%. 

To quantitate total G protein in the reconstitution capable of binding [35S]GTPγS, 

we did, however, use more traditional methods. Total [35S]GTPγS binding was assessed 

in Buffer H plus 50 mM MgCl2, 10 mM [35S]GTPγS, 0.05% Lubrol. After incubating for 

30 min at 30°C, samples were rapidly filtered through BA-85 nitrocellulose filters 

(Whatman) and washed 4 x 2 ml with ice-cold 20 mM Tris-HCl pH 8, 100 mM NaCl, 10 

mM MgCl2. Using nitrocellulose filtration and inclusion of detergent (Lubrol) to 

determine the total [35S]GTPγS binding to G protein, we obtain data that are consistent 

with our observations using glass-fiber filtration. Our data suggest that 20% of the 

[35S]GTPγS-binding activity survives the reconstitution step, only a portion of which (29 

+/- 5% of the 20% [35S]GTPγS binding, or 5.8% of the G protein added to the 

reconstitution) copurifies with the β2AR•rHDL on an anti-FLAG resin (the β2AR is 

FLAG-tagged). No binding was observed in the column flowthrough or wash fractions. 
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Thus, the remaining two-thirds appears to remain on the anti-FLAG column, presumably 

in the form of an aggregate that is capable of binding [35S]GTPγS. The remaining 14% of 

the total G protein will be present in the assay, but as an aggregate and unlikely to be 

accessible to the β2AR in rHDL. 

On the surface, the presence of the aggregates that are capable of binding 

[35S]GTPγS could confound the results and interpretation of the data in Fig. 2-7a. 

However, the conditions used in Fig. 2-7a (100 nM [35S]GTPγS, 2 mM MgCl2) are 

dramatically different from those used to measure total [35S]GTPγS binding (10 mM 

[35S]GTPγS and 50 mM MgCl2). Such conditions of low nucleotide concentrations, such 

as those used in Fig. 2-7a, should display a preference for detection of receptor-

stimulated G protein binding. 

 Cross-linking of Cy3-β2AR.  The bifunctional amine-reactive cross-linkers 

bis(sulfosuccinimidyl) suberate (BS3, 11.4 Å spacer arm) or bis N-

succinimidyl[pentaethylene glycol] ester (Bis(NHS)PEO5, 21.7-Å spacer arm) were 

purchased from Pierce Biotechnology (Rockford, IL). BS3 stock solutions of 100 mM 

were prepared from solid reagent in Buffer H + 0.1% DDM or dimethyl sulfoxide 

immediately before each use. Cross-linking reactions of Cy3-β2ΑR in detergent micelles 

were performed in Buffer H plus 0.1% DDM at a final receptor concentration of 2 μM. 

Cross-linking reactions of Cy3-β2ΑR reconstituted in lipid vesicles were performed in 

Buffer H at a final receptor concentration of ≈250 nM. The final concentrations of either 

Bis(NHS)PEO 5 or BS3 used in each case were 0, 0.25, 0.5, 1.0, 2.5, and 5.0 mM. After 

addition of cross-linker stock solution, the samples were mixed by inverting and 

incubated for 2 h on ice. The reaction was quenched by addition of 20 mM Tris. The 
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cross-linked samples were then analyzed by SDS-PAGE (10% gels) with ≈0.5 μg of 

protein loaded in each well. Cy3 fluorescence was directly visualized using a FluorChem 

8800 (Alpha Innotech) imaging system. 

Photobleach step analysis. To assess the labeling stoichiometry of fluorescent 

receptors, the number of photobleaching steps was counted manually from the time traces 

of at least 400 molecules of each Cy3-β2AR, Cy5-β2AR, Cy3-β2AR•rHDL, and Cy5-

β2AR•rHDL. The number of photobleaching steps represents the number of detectable 

fluorophores bound to a receptor at the time of imaging. Receptors were classified as 

being single-, double-, or triple-labeled based on the observed number of photobleaching 

steps. In some cases, the precise number of photobleaching steps could not be discerned 

from the time trace (usually due to low signal-to-noise or fluorophore blinking). Such 

molecules were classified as "not countable". We used the most conservative estimate of 

the labeling efficiency, by assuming that all molecules in the "not countable" category are 

actually single-labeled. 

To estimate the fraction of unlabeled receptor in each sample, we simulated the 

labeling kinetics of the three most reactive cysteines of the β2AR using a mathematical 

model. For WT β2AR, cysteine-265 is ≈10 times more reactive than the next most 

reactive cysteine. Given the reactivity of cysteine-265, it is intuitive that the vast majority 

of receptors should become singly-labeled before an appreciable fraction becomes 

multiply-labeled. The model confirmed this suspicion, and was able to accurately 

reproduce the observed fractions of double-and triple-labeling with fluorophore. The 

model consists of the following reactions that are equally valid for Cy3 or Cy5. 
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The model is described by a set of coupled differential equations: 

 

[1] 

We assumed that each reaction is irreversible and that only cysteine-265 can react with 

the first fluorophore (Eq. 1). The equations were solved numerically with Mathematica 

(Wolfram Research, Inc., Champaign, IL) using the following parameters: kCys-265 = 

0.8 s-1 μM-1, k2 = 0.08 s-1 μM-1, initial [β2AR] = 5 μM. The rate constants are based on 

the reactivity of WT and C265A β2AR as measured by fluorescein maleimide labeling as 

previously described [86].  The total concentration of Cy3 incorporated was arbitrarily 

chosen as 7.2 μM, because this value accurately reproduces the fractions of single-, 

double-and triple-labeling as measured by photobleach step counting (model results 64% 

single-labeled, 28% double-labeled, 8% triple-labeled, and 0.4% unlabeled at steady-state, 
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assuming all "not countable" molecules are actually singly-labeled). This [Cy3] 

corresponds to a labeling efficiency of 1.4 mol fluorophore per mol of β2AR, in good 

agreement with our absorbance measurements (1.6-2.5 fluorophores per protein; see text). 
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CHAPTER 3 

EFFICIENT COUPLING OF TRANSDUCIN TO MONOMERIC RHODOPSIN IN A 

PHOSPHOLIPID BILAYER 

 

Introduction 

G protein-coupled receptors (GPCRs) are an important class of cell surface 

receptors representing the third largest gene family in the human genome [87]. They 

recognize a wide variety of extracellular stimuli (e.g. light, tastes, odors, hormones, 

neurotransmitters, and cytokines, etc.) leading to direct activation of intracellular and 

membrane-associated G proteins, that in turn regulate various downstream effectors (e.g. 

adenylyl cyclase, phospholipase Cβ and ion channels, etc.) [2]. This diversity highlights 

nature’s ability to generate specificity in signal detection and propagation and thus make 

GPCRs optimal therapeutic targets. 

To complicate the pharmacology of these targets, GPCRs associate as oligomers 

of two or more receptors in cellular membranes [88]. The growing list of GPCRs that 

form either hetero- or homomeric complexes implies that oligomerization is important. 

However, an essential role of oligomerization for GPCR family function has not been 

established. 

Evidence that an isolated, monomeric GPCR in a biological membrane is fully 

capable of stimulating nucleotide exchange by G proteins has been difficult to 
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demonstrate. Intuitively, detergent solubilization and monodispersion of membrane 

proteins into micelles should represent a suitable substitute for a phospholipid bilayer. 

However, mounting evidence suggests otherwise, as detergents can have profound 

deleterious effects on the structure and function of membrane proteins [37-39]. 

Here we employ high density lipoprotein (HDL), a nanometer-scale 

apolipoprotein A-I (apoA-I)-wrapped phospholipid bilayer that is naturally involved in 

the reverse cholesterol transport pathway [48], to reconstitute the photoreceptor GPCR, 

rhodopsin (Fig. 1). A similar membrane protein reconstitution system has been developed 

by the Sligar laboratory for numerous proteins including the proton pump 

bacteriorhodopsin [47], cytochrome P-450 [46], the β2-adrenergic receptor [89] and, 

more recently, rhodopsin [90]. The HDL platform represents a dramatic improvement 

over detergent micelles for maintaining GPCRs in a monomeric and monodispersed state. 

Here we report the isolation of bovine rhodopsin, a prototypical GPCR [9, 91], in 

reconstituted HDL (rHDL) particles (Fig. 3-1). We take advantage of the unique spectral 

qualities of rhodopsin to demonstrate that it exists as a monomer in rHDL and to follow 

its activity and behavior compared to rhodopsin in native membranes isolated from rod 

outer segments (ROS). We find that the rates of formation and decay of metarhodopsin II 

(Meta II), the active form of the receptor, for monomeric rhodopsin are identical to those 

observed in ROS. We also show that monomeric rhodopsin is capable of stimulating 

rapid nucleotide exchange on Gt transducin, a photoreceptor-specific G protein at rates 

comparable to those observed in ROS. These data show that monomeric rhodopsin is 

fully functional with regard to G protein activation and suggest that receptor 

oligomerization does not play an essential role in this process. 
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Figure 3-1.  Illustration of reconstituted HDL particles. a and b, molecular models illustrating a dimer of 
apoA-I proteins wrapped around a phospholipid bilayer consisting of 160 POPC molecules. Each apoA-I 
protein (blue) is depicted as a ribbon diagram. c, electron micrograph of rHDL particles reveal  
monodisperse and homogeneous rHDL particles. Images in a and b were produced using PyMol (DeLano 
Scientific LLC, Palo Alto, CA). Coordinates for the HDL model from Segrest et al. [70] were obtained on 
line and used with permission from Dr. Stephen Harvey. 

 

Results 

Reconstitution of rhodopsin in HDL.  Photoactivation of rhodopsin results in 

the isomerization of its covalently-bound ligand 11-cis-retinal (absorbance maximum, 

λ=500 nm) to all-trans-retinal, creating Meta II (λ=380 nm), a spectroscopically distinct 
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form [8]. Because rhodopsin requires a particular lipid environment (lipids that have 16 

carbons or greater and are unsaturated) in order to transition to the active Meta II state 

[92], a mixture of POPC:POPG (3:2) was utilized for the lipid component of the rHDL. 

POPC alone was also used successfully (data not shown).  

Incorporation of rhodopsin into rHDL, in the presence of excess rHDL yielded 

particles with Stokes diameters of 10.5 nm based on detection at λ=280 nm as assessed 

by size exclusion chromatography (SEC) whereas the peak at absorbance at λ=500 nm 

eluted with an estimated diameter of 11 nm (Fig. 3-2a). Analysis of the peak SEC 

fraction by spectroscopy indicates that rhodopsin in rHDL is functional as it 

photoisomerized to the active Meta II state (Fig. 3-2b).  

 

 

Figure 3-2.  Rhodopsin incorporated in rHDL and resolved by size exclusion chromatography is 
photoactivatable. a, purified bovine rhodopsin incorporated into rHDL particles was resolved on a 
Superdex 200 size exclusion column; fractions (200 µl) were collected and analyzed for λ = 280 nm (blue) 
and λ = 500 nm (red) absorbance. b, peak fraction from the gel filtration run was adjusted to pH 6.5, and 
UV-visible spectra were measured before and after photoactivation. 
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It is important to note that removal of the detergent in the absence of lipid and/or 

apoA-I, severely alters the integrity of rhodopsin. If either component is excluded, most 

of the rhodopsin precipitates and pellets after a brief sedimentation (16,000g for 2 min) in 

a microcentrifuge. Any rhodopsin that seemed not to sediment migrated in the void 

volume of the size exclusion column, suggesting that it formed large protein aggregates 

or was contained in proteoliposomes (data not shown). When both components were 

included, we routinely observed reconstitution efficiencies of 70-90%, based on 

absorbance at λ=500 nm. 

 

 

Figure 3-3.  Rhodopsin·rHDL particles were resolved on a size exclusion column and then purified on a 
ConA-Sepharose column. The load, flow-through, and three serial elutions from the ConA-Sepharose 
column were assayed for absorbance at λ = 280 nm and λ = 500 nm. ConA-Sepharose column eluates were 
pooled and re-resolved on a size exclusion column in order to confirm that the size of the rhodopsin·rHDL 
particles remained the same before and after processing by the ConA-Sepharose column. The average 
A280:A500 ratios of all fractions across the peak were calculated as described under "Experimental 
Procedures." 

 

Rhodopsin:rHDL stoichiometry.  To determine the rhodopsin:rHDL 

stoichiometry, we utilized the known extinction coefficients for both, rhodopsin (at 
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λ=280 and λ=500 nm) and apoA-I (at λ=280 nm), to calculate the molar ratio of 

[rhodopsin]:[apoA-I] in purified rhodopsin•rHDL preparations. Rhodopsin•rHDL was 

purified by either Con A Sepharose (taking advantage of the glycosylated rhodopsin) 

(Fig. 3-3) or by immunoaffinity chromatography (1D4 antibody against rhodopsin) (data 

not shown) and then resolved by SEC (Fig. 3-4a).  

The average [rhodopsin]:[apoA-I] molar ratio of the SEC peak fractions was 

determined to be 0.47 ± 0.05 (Fig. 3-3 and Fig. 3-4a). Taking into consideration that 

there are two apoA-I proteins per rHDL particle [50, 93], these data suggest that only one 

rhodopsin molecule is reconstituted per rHDL. The purified rhodopsin•rHDL complexes 

also had a Stokes diameter of 11 nm based on their elution volume from the SEC column 

(Fig. 3-4a). This rules out the possibility that larger rHDL particles were formed (i.e. 2 

rhodopsins to 4 molecules of apoA-I, still in a 0.5:1 ratio). Moreover, TEM of the 1D4-

immunopurified rhodopsin•rHDL complexes shows a monodisperse and homogeneous 

rhodopsin•rHDL particle morphology with an estimated diameter of 13.7 +/- 1.4 nm 

(n=105, Fig. 3-b). We attribute the slightly larger diameter compared with those 

estimated by SEC and the previously reported HDL sizes [94] to a commonly observed 

flattening artifact of particles by surface tension during drying of the stain [95, 96]. 

Atomic force microscopy confirms that these particles are discoidal with a thickness of 

about 43 +/- 4.7 Å, similar to that of a single phospholipid bilayer [97] (data not shown). 

Functional comparison of monomeric and oligomeric rhodopsin.  To assess 

the function of rhodopsin incorporated into rHDL, we performed UV/Vis absorbance 

scans of these reconstitutions before and after photoactivation (Fig. 3-5a). Exposure to 

light resulted in a rapid and almost complete conversion of the absorbance spectra of 
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Figure 3-4.  Rhodopsin exists as a monomer in rHDL particles. a, rhodopsin incorporated into rHDL 
particles was purified on a ConA-Sepharose column and subsequently resolved on a size exclusion column. 
Eluates were assayed for absorbance at λ = 280 nm (blue) and λ = 500 nm (red), and the rhodopsin: apoA-I 
ratio (green) was calculated as described under "Experimental Procedures." b, TEM of negatively stained 
purified rhodopsin·rHDL particles showing their homogeneous discoidal shapes and monodispersed 
distribution. 

 

rhodopsin•rHDL from λ=500 nm (rhodopsin) to λ=380 nm (Meta II). Over a time course 

of 30 min, Meta II slowly decayed to both free all-trans-retinal (as observed in the slight 

red-shift of the λ=380 nm peak) and Meta III (as observed in the increase of the λ=465 

nm peak). This sequence is identical to that observed for rhodopsin in native ROS 

membranes [8] as well as for rhodopsin reconstituted in long-chain, unsaturated lipid 

vesicles [92, 98]. Using the method of Farrens and Khorana [99], we determined that the 

time constant, τ, for the Meta II decay for rhodopsin in rHDL was 19.2 +/- 0.8 min (Fig. 

3-5c), nearly identical to the decay rate of rhodopsin from ROS (20 +/- 2.4 min) (Fig. 3-

5b) and similar to previously observed values [100].  
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Figure 3-5.  Meta II formation and decay. UV-visible spectra were measured from a rhodopsin·rHDL 
preparation before (red), and at 0 (orange), 5 (olive), 15 (green), and 30 min (blue) after photoactivation at 
pH 6.5 (a) or pH 8.0 (b). The rate of meta II decay was measured by exciting 10 nM rhodopsin in ROS 
membranes (c) or rHDL (Rho·rHDL) (d) at λ = 295 nm and measuring emission at λ = 330 nm emission 
following a 15-s photoactivation using the methods of Farrens and Khorana (20). The relaxation times (τ) 
shown were calculated from three independent experiments. 

 

Unlike other members of the heterotrimeric G protein family, transducin (Gt) can 

be suspended in solution in the absence of detergent [101]. Transducin activation may be 

accomplished by simply adding the heterotrimer to rhodopsin preparations, whether in 

ROS membranes or as a purified protein.  Figure 3-6a illustrates that activation of 

transducin by photoactivated rhodopsin from ROS membranes, at 9:1 Gt:rhodopsin ratio,  
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Figure 3-6.  Activation of transducin by monomeric rhodopsin in rHDL. Photoactivated oligomeric 
rhodopsin in ROS membranes (a) or monomeric rhodopsin in rHDL (b) activates transducin at identical 
rates. Transducin was added to pre-activated photoactivated rhodopsin in rHDL or in ROS membranes at a 
9:1 ratio as described under "Experimental Procedures." Transducin activation was measured by 
monitoring the tryptophan fluorescence (λem = 345 nm) of the Gtα subunit.  Initial rates based on the least 
squares fit of the data to an exponential activation are illustrated in the lower corner of each panel and were 
calculated from three independent experiments. c, elevating the Gt:rhodopsin ratio increased the rate of Gt 
activation (initial rate, s-1) in rhodopsin·rHDL particles (Rho·rHDL). The effect of increasing Gt:rhodopsin 
ratios appears to be a titration of the observed rates. The maximal rate was achieved at a Gt:rhodopsin ratio 
of 12:1. 

 

occurred with a rate constant of approximately 1.7 × 10-2 s-1, comparable to previously 

reported values [100, 102]. Strikingly however, activation of monomeric rhodopsin in 
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rHDL occurred at an identical rate (Fig. 3-6b). These data differ markedly from 

previously reported rates of activation of transducin by detergent-solubilized rhodopsin in 

different oligomeric states where rhodopsin oligomers were 3 times faster than monomers 

in activating transducin [103]. Titration with increasing Gt: rhodopsin•rHDL ratios raised 

the rate of activation to a maximal rate of approximately 2.6 × 10-2 s-1 (Fig. 3-6c). 

Maximal rates were obtained at Gt: rhodopsin•rHDL ratios of approximately 12:1. 

 

Discussion 

Receptor oligomerization has become the subject of considerable attention in the 

GPCR field.  A plethora of studies using elegant approaches have provided descriptive 

evidence of receptor homo- and/or heterodimerization of visual receptors and many 

hormone receptors [58, 104]. Comparatively fewer contributions, however, have 

provided evidence for functional roles of oligomerization. Targeting roles of receptor 

hetero-oligomers have been suggested for the GABAB1 and GABAB2 receptors [97, 105] 

or with the  α1B- and α1D-adrenergic receptors [32].  Biophysical and biochemical 

approaches have also suggested receptor-receptor cooperativity of homo-oligomers of the 

metabotropic glutamate receptors [80] or leukotriene B4 receptors [34].  In addition, a 

growing body of evidence suggests that most GPCRs exist as oligomers in cellular 

membranes, complexes that are found in the endoplasmic reticulum and Golgi apparatus 

and thus occur during receptor maturation (reviewed by Bulenger et al. [106]). Previously 

reported imaging data of native retinal disc membranes also suggest that certain receptor 

types, such as rhodopsin, are capable of organizing into higher-order oligomers [10, 107]. 
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However, the question as to whether G protein activation is dependent on oligomerization 

has yet to be elucidated.  

Data presented here suggest that a monomeric GPCR is as effective as an 

oligomeric receptor in activating a G protein. Transducin activation by rhodopsin in 

rHDL behaves in a manner that is kinetically indistinguishable from that of oligomeric 

rhodopsin found in ROS membranes. Moreover, the monomeric rhodopsin data are 

consistent with early studies addressing single photon responses of rod cells, 

demonstrating that one activated rhodopsin per cell triggers phototransduction [108]. Our 

ability to observe faster rates of transducin activation by monomeric rhodopsin in rHDL 

particles compared to rhodopsin in detergent likely reflects the combined effects of lipids 

on rhodopsin structure and on G protein incorporation. The heterotrimeric G protein 

transducin is lipid-modified on both the amino-terminus of Gtα (myristoylation) and the 

carboxy-terminus of Gγ1 (isoprenylation) subunits and both these modifications have 

been shown to contribute to G protein interaction with rhodopsin [3, 4]. Although many 

studies suggest that monomeric rhodopsin in detergent micelles represents the minimal 

functional unit (reviewed in [57]), few of them report the isolation and characterization of 

monomeric rhodopsin in a membrane environment. Reconstitution of monomeric 

rhodopsin into a phospholipid bilayer such as rHDL therefore represents a significant 

advance in our understanding of the contributions of homo-oligomerization of this 

photoreceptor and perhaps most GPCRs. A recent report by Bayburt et al. used a similar 

approach to incorporate both monomers and dimers of rhodopsin in rHDL-like particles 

termed nanodiscs [90]. In that study, however, the dimeric form was found to be only half 

as effective in activating transducin as the monomeric form but it still operated at rates 
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considerably faster than those observed in detergent micelles. Such data apparently 

contrast to our findings with native ROS membranes where the rates of transducin 

activation of monomeric and oligomeric forms are identical. A plausible explanation is 

the possibility that “antiparallel” dimers (i.e., N-termini located on opposite sides of the 

phospholipid bilayer) may have incorporated into the nanodiscs. Transducin coupling to 

antiparallel dimers may not be optimal under these conditions.  

Our monomeric Gt•rhodopsin•rHDL data strongly suggest that whereas 

oligomerization occurs with rhodopsin, and perhaps most GPCRs, the minimal G protein 

signaling unit is likely a monomer. Our data contradict a previously suggested 

interpretation that rates of activation of transducin depend on rhodopsin oligomeric states 

[103]. The simplest explanation for this discrepancy could be that the presence of 

phospholipids surrounding a rhodopsin molecule is critical for efficient precoupling and 

fast Gt activation.  The model of the rhodopsin monomer as a G protein signaling unit is 

still consistent with the implication that the smallest organized unit, a homodimer, may 

contain only one photoreceptor that participates in G protein activation (illustrated in Fig. 

3-7).  Such a pentameric, rhodopsin-G protein complex was previously proposed by 

Filipek and colleagues [35], a model that has also been proposed for the GABAB receptor 

[78, 109], mGlu receptor [80], LtB4 receptor [67] and α1B/α1D adrenergic receptor [32].  

In summary, our data show that a reconstituted monomeric GPCR is capable of 

activating a G protein as efficiently as its native receptor oligomer. Similar rates of 

transducin activation by rhodopsin•rHDL compared to ROS membranes suggest that 

oligomerization is not essential for G protein activation. Rather, GPCR oligomerization 

may contribute toward fine tuning of photoreceptor responses, receptor stabilization, 
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targeting and desensitization. Indeed, the ‘double chalice’ structure of arrestins infers that 

its interaction may be significantly enhanced by receptor oligomerization [110-112]. The 

recruitment of arrestin to GPCRs and therefore the recruitment of various kinases (e.g., 

 

Figure 3-7.  Only one receptor in a receptor dimer is necessary to activate G proteins. a, molecular model 
of a rhodopsin monomer in a rHDL (cross-section, side view). b, model illustrating monomeric rhodopsin 
in comparison to oligomeric (dimeric) rhodopsin coupling to a single G protein heterotrimer. The activated 
form of rhodopsin (meta II, yellow) in a dimeric form with rhodopsin (red) in a complex with transducin: 
Gtα (magenta), Gβ1 (blue), and Gγ1 (green). The coordinates for rhodopsin[71] and transducin[113] were 
obtained from the RCSB Protein Data Bank, accession number 1F88 and 1GOT, respectively. The 
conceptual model of a dimeric rhodopsin, where one molecule is activated, with a single Gt was previously 
proposed by Filipek et al.[35]. 

 

Src, Raf and ERK) has been proposed to serve as an important, non-G protein-dependent 

function of the superfamily of seven-transmembrane spanning receptors [114]. Future 

studies will undoubtedly reveal the underlying functions of oligomerization itself and the 

contributions it makes toward recruitment of important signaling partners. 
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Materials and Methods 

Materials.  Expired human sera were generously donated by Dr. Bert La Du 

(University of Michigan). All lipids were purchased from Avanti Polar Lipids (Alabster, 

AL). N-dodecyl-β-D-maltoside (DDM) was obtained from Dojindo Molecular 

Technologies (Gaithersburg, MD). Triton X-100 and sodium cholate were purchased 

from Sigma-Aldrich (St. Louise, MO). Frozen bovine retina were obtained from J. A. 

Lawson Co. (Lincoln, NE). All other reagents were of analytical grade.  

Purification of human apoA-I.  ApoA-I was purified from human serum 

essentially as described by Gan et al. [82]. Briefly, clarified serum was diluted into a 

conditioning buffer: 50 mM Tris-HCl, pH 8.0, 1 mM CaCl2, 3 M NaCl, 5 mM EDTA and 

added to an equal volume of Cibacron blue F3GA-agarose (Sigma-Aldrich) equilibrated 

in 50 mM Tris-HCl, pH 8.0, 1 mM CaCl2, 3 M NaCl, 5 mM EDTA (Buffer A). The 

slurry was stirred for 30 min and then batch washed by filtration through a Whatman #1 

filter in a Büchner funnel five times with Buffer A or until the absorbance (λ=280 nm) of 

the filtrate was less than 0.025 OD The resin was then washed with two additional 

volumes of Buffer A without NaCl (Buffer B). The residual cake was resuspended in an 

equal volume of Buffer B and transferred to a column. ApoA-I was then eluted with 

Buffer B containing 5 mM cholate, yielding fractions with purities typically between 80-

90 %. Peak fractions were pooled, concentrated and then diluted 1:1 in 25 mM Tris-HCl, 

pH 8.0, 1 mM CaCl2, 5 mM EDTA, 0.2 % Triton X-100 and loaded on to a Q Sepharose 

(GE Healthcare, Piscataway, NJ) column. The column was washed with 20 mM Tris-

HCl, pH 8.0, 1 mM CaCl2, 5 mM EDTA, 0.1 % Triton X-100 (Buffer C) and eluted with 

a shallow linear gradient with Buffer C, containing 1 M NaCl. Peak fractions (> 95 % 
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purity) were buffer exchanged into 100 mM K-acetate pH 5.0, 1 mM EDTA, 0.1 % 

Triton X-100 and applied to a SP Sepharose (GE Healthcare) column equilibrated in 25 

mM K-acetate pH 5.0, 1 mM EDTA, 0.1 % Triton X-100 (Buffer D). The column was 

washed in Buffer D and apoA-I was eluted with a linear gradient of Buffer D containing 

1 M NaCl. Residual contaminants were removed by size exclusion chromatography on a 

Superdex 200 column (GE Healthcare) in 20 mM Hepes-NaOH, pH 8.0, containing 100 

mM NaCl, 1 mM EDTA, 20 mM cholate, at 4 °C. ApoA-I fractions were pooled and 

concentrated (~10 mg/mL), then dialyzed at 4 °C against 20 mM Hepes-NaOH, pH 8.0, 

100 mM NaCl, 1 mM EDTA, 5 mM cholate and stored at –80 °C until further use. 

Purification of bovine rhodopsin.  Rhodopsin was purified from ROS isolated 

from bovine eyes as previously described [115], a procedure that yielded rhodopsin with 

a A280 nm/A500 nm absorbance ratio of 1.63. ZnSO4 was removed by dialysis in the presence 

of 0.1% DDM (final) to avoid precipitation of added cholate during the subsequent rHDL 

preparation. 

In vitro reconstitution of HDL.  HDL was reconstituted in vitro essentially as 

described by Jonas [50] with slight modifications. Palmitoyl-oleoyl-phosphatidylcholine 

(POPC), and palmitoyl-oleoyl-phosphatidylglycerol (POPG) were used in combination at 

a 3:2 molar ratio to mimic the zwitterionic environment of a cell membrane [40]. Lipids 

were dried under argon (or nitrogen) from a chloroform solution and desiccated for 30-60 

min to remove residual chloroform. Then briefly, lipids were solubilized in 20 mM 

Hepes-NaOH, pH 8.0, 100 mM NaCl, 1 mM EDTA (Buffer A) containing 50 mM 

detergent (DDM or cholate) and added to purified rhodopsin. ApoA-I then was added and 

the mixture incubated for 1-2 hr on ice. The final concentrations of the components were 
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1 μM rhodopsin, 24 mM detergent, 8 mM lipids, and 100 μM apoA-I. This mixture was 

added to BioBeads (BioRad, Hercules, CA) to remove detergents. Samples were stored 

on ice until used. All of the above procedures were performed under dim red light λ > 

640 nm. 

Analytical size exclusion chromatography.  Analytical size exclusion 

chromatography was performed on a HR10/30 column (GE Healthcare) packed with 

about 20 mL Superdex 200 preparative resin (GE Healthcare) (Vo = 7 mL). The column 

was calibrated with thyroglobulin (molecular weight (MW) 669 kDa, Stokes diameter 

(Sd) 17.2 nm, elution volume (Ve) 9.1 mL, apoferritin (MW 432 kDa, Sd 12.2 nm, Ve 

10.6 mL), alcohol dehydrogenase (MW 150 kDa, Sd 9.1 nm, Ve 13.2 mL), bovine serum 

albumin (MW 66 kDa, Sd 7.2 nm, Ve 14.7 mL), and carbonic anhydrase (MW 29 kDa, 

Sd 4 nm, Ve 17.8 mL). Samples were loaded in 100-500 μL static loops and run at a flow 

rate of 0.7 mL/min using the BioLogic DuoFlow system (BioRad) at 4 °C. Column 

fractions, 200 μL each, were collected in a 96-well plate for further analysis. 

Chromatography of rhodopsin samples was performed under dim red light. 

UV/Vis absorbance assays.  All UV/Vis absorbance assays were performed in 

UV-transparent 96-well plates (Corning, Lowell, MA) on a SpectraMax 190 plate reader 

(Molecular Devices, Sunnyvale, CA). The PathCheck™ feature was used for normalizing 

path lengths to 1 cm. Rhodopsin concentrations were determined by the absorbance 

change at λ=500 nm before and after bleaching.  A value of 40,600 M-1 cm-1 used as the 

extinction coefficient [116]. Rhodopsin photoactivation was achieved by illuminating 

samples for 15 s with a 500 W halogen lamp affixed with a 495 nm long-pass filter 

(Melles Griot, Rochester, NY).  
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Meta II formation and decay spectra.  Rhodopsin samples were adjusted to pH 

6.5 and photoactivated as described above. Subsequent absorbance spectra were recorded 

at 0, 5, 10, 15 and 30 min. Meta II decay rate determinations were performed by the Trp 

fluorescence (λex=295 nm and λem=330 nm) method of Farrens and Khorana [99]. All 

measurements were performed with 10 nM rhodopsin dissolved in buffer consisting of 10 

mM Bis-Tris-HCl, pH 6.0, containing 100 mM NaCl, which favors the formation of Meta 

II, the activated, signaling form of rhodopsin. A Perkin Elmer LS 55 Luminescence 

Spectrophotometer was used to measure the intrinsic fluorescence increase due to Trp 

residues that correlates with the decrease in the protonated Schiff base concentration 

(data not shown but consistent with Refs. [99, 102, 117]). Rhodopsin•rHDL or ROS 

membranes were bleached by a Fiber-Lite illuminator for 15 s immediately before the 

fluorescence measurements. Bleaching was carried out from a distance of 15 cm, to 

prevent heat accumulation and a thermostat was applied to stabilize the temperature of 

the cuvette at 20ºC. Fluorometer slit settings were 2.5 nm at λ=295 nm for excitation and 

8.0 nm at λ=330 nm for emission. 

Rhodopsin:ApoA-I molar ratio.  Rhodopsin:ApoA-I ratios were determined 

from Concanavalin A (ConA)-Sepharose [118] or immunoaffinity (monoclonal 1D4) 

[119] chromatography-purified rhodopsin•rHDL using the known extinction coefficients 

for rhodopsin (40,600 M-1cm-1 at λ=500 nm) [116] and apoA-I (31,720 M-1cm-1 at λ=280 

nm) [120] and the known 280 nm to 500 nm absorbance ratio of pure rhodopsin of 1.6.  

The rhodopsin concentration was calculated as: [rho] = A500 / 40,600.  The apoA-I 

concentration was calculated as: [apoAI] = A280 (due to apoA-I only) / 31,720, where 

A280 (due to apoA-I only) = A280 (total) – A280 (due to rhodopsin only), and A280 (due to 
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rhodopsin only) = A500 x 1.6. 

Activation of transducin.  Photoactivation of Gt was performed as previously 

described [100, 121].  Gt concentrations were determined by a Bradford assay (BioRad). 

Purified, native bovine Gt heterotrimer (Gtα,β1,γ1) was added to rhodopsin in bovine ROS 

membranes that were sonicated before measurement, or to rhodopsin•rHDL, at a 

Gt:rhodopsin ratio of 9:1 at a concentration of 250 nM and rhodopsin at 30 nM (within 

the linear range of fluorescence change and protein concentration). The measurement of 

intrinsic Gt fluorescence at 345 nm was performed in a buffer consisting of 20 mM Bis-

Tri-HCl, pH 6.0, containing 120 mM NaCl and 6 mM MgCl2. The sample was bleached 

for 15 s with a Fiber-Lite covered by a long-pass wavelength filter (λ >490 nm) and 

followed by a 400 sec incubation with continuous low-speed stirring. Then GTPγS was 

added and the intrinsic fluorescence increase from Gt was measured with a Perkin Elmer 

LS 55 Luminescence Spectrophotometer.   No signals from rhodopsin were detected in 

control experiments without transducin (not shown). 

Transmission Electron Microscopy (TEM).  Reconstituted HDL samples were 

placed on a carbon-coated copper grid and stained with 1 % phosphotungstic acid, pH 

6.5. Samples were imaged with a Philips CM-100 transmission EM operating at 60 kV. 

Purified (either ConA or 1D4-immunoaffinity) rhodopsin•rHDL particles were adsorbed 

for 10 s to parlodion carbon-coated copper grids rendered hydrophilic by glow discharge 

at low pressures. Grids were washed with double distilled water and stained with 0.75% 

uranyl formate. Electron micrograph images of rhodopsin•rHDL particles were recorded 

with a Hitachi H-7000 TEM operated at 100 kV.  
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CHAPTER 4 

CONCLUSIONS 

 

Summary 

 The concept that GPCRs can associate as physical oligomeric complexes has been 

a controversial subject for many years.  As data supporting this idea has emerged, the 

phenomenon of GPCR dimerization has become relatively well accepted.  But along with 

this acceptance came questions as to the functional significance of GPCR dimerization.  

Many had postulated that since GPCRs do indeed dimerize, then the dimeric interaction 

must therefore be required for function, namely G protein activation.  This evolved as a 

fundamental question regarding the mechanism of these important drug targets. 

 Prior to the development of the reconstituted HDL system, there was no definitive 

way to test this hypothesis in a rigorous, reductionist manner.  By adapting the rHDL 

system for studying GPCRs, we were able to circumvent the inherent limitations of 

standard membrane protein biochemical techniques and isolate monomeric receptors in 

phospholipids bilayers.  With the β2AR, we showed that a monomeric receptor could 

efficiently couple to and activate a G protein [51].  We also demonstrated that the 

cooperativity observed with agonist binding to β2AR, like many others members of the 

GPCR family, can be accounted for by direct G protein association, and not 

oligomerization – i.e. G proteins directly and allosterically modulate agonist binding to 

the receptor.   Likewise, we relied on the unique organization of rhodopsin in specialized 

 62



tissues in the retina to show that monomeric rhodopsin is functionally identical to 

oligomeric rhodopsin in vivo [52]. 

 Because we see little difference in function between monomeric and 

natively oligomeric receptors, we reason that dimerization plays little to no role in 

regards to G protein activation.  In fact, this observation has also been recently confirmed, 

to a degree, by two separate labs, both studying rhodopsin.  The Oprian lab, in 

collaboration with the Silgar lab, was able to incorporate one or two rhodopsins per HDL 

particle and observed that the HDL particles with two rhodopsins were approximately 

half as active as the monomer in terms of activating transducin [90].  However, the 

Sakmar lab, using a similar approach, observed that preparations containing two 

rhodopsins were actually comprised of a mixture of parallel and anti-parallel dimers (Fig. 

4-1) [43].  It is assumed, but not yet demonstrated, that a similar distribution of parallel 

and anti-parallel dimers would be present in the Oprian/Sligar particles.  Although the 

Sakmar lab also observed that transducin activation was half as efficient for two 

rhodopsins, they reasoned that the anti-parallel dimers were, however, non-functional.  

This assumption may be over-speculative based upon the presented data.  An alternative 

interpretation and scenario could suggest that anti-parallel dimers are 90% as active as 

monomers and parallel dimers are 10% as active.  The stochastic average would suggest 

that the dimers were half as active as monomers and lead to a dramatically different 

conclusion.  The best way to avoid these confounding problems in interpreting the data is 

to isolate pure GPCR preparations of only parallel dimers. This is an extremely 

challenging task and is an approach that I have spent considerable time developing, but is 

unfortunately beyond of the scope of this thesis. 
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Figure 4-1.  Visualization of rhodopsin in HDL using electron microscopy. Image adapted from Banerjee 
et al. [43] with permission.   They used nanogold-labeled Fab fragments to label the rhodopsin in the HDL 
particles to elucidate their relative orientation.  The Fab fragment is observed as an extra region of low 
density on the periphery of the HDL particle (white region surrounded by black ring).  They observed an 
equal distribution of both parallel and anti-parallel orientations.  Preparing samples of all parallel receptor 
dimers represents a challenging task but will be a necessary development for using the HDL system to 
study GPCR heterodimerization or arrestin signaling. 

 

Is There a Functional Role for Dimerization? 

Although we think that dimerization plays little to no role in G protein activation, 

it is still worth speculating as to a physiological/functional role of GPCR dimerization, 

since the evidence that GPCR dimers exist is still compelling.  As mentioned earlier, 

clear targeting roles have been implicated for some GPCRs, such as the GABAB and α1D 

receptors [29-32].  This may turn out to be a more common mechanism for other 

recalcitrant receptors, or for yet to be discovered orphan receptors.  In a related vein, 

another likely possibility is that receptor oligomers exist solely on account of receptors 
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having a natural affinity for each other.  This affinity could afford an extra quaternary 

language for dictating the organization of receptors as well as other proteins (i.e. effector 

proteins such as adenylyl cyclase or GIRK channels) into signalosome compartments to 

allow for more efficient signal transduction. 

There are also several studies that have revealed interesting ligand binding data 

that suggest that dimerization may mediate receptor-receptor cross-talk, or cooperativity.  

One of the earliest of these studies attempted to show that co-expression of different 

opioid receptor heterodimers may affect their function [122].  A more recent study has 

implicated serotonin-glutamate receptor heterodimers in psychosis [123].  These are 

exciting studies that demonstrate interesting phenomena that may only exist with 

heterodimers, as a way to increase the natural receptor repertoire, and may not be 

manifested by homodimers.  However, the interpretation of many of these results is 

confounded by cell-based systems and the lack of a rigorous demonstration of receptor 

dimerization.  It would be useful to utilize the HDL system to address these questions. 

Dimerization may also be important in regulating receptor desensitization.  A 

dimeric cytosolic interface may have different affinities or reaction kinetics with the 

receptor kinase and arrestin desensitization machinery, when compared to a monomeric 

interface.  Indeed, the crystal structure of arrestin reveals a double chalice-type shape 

[110-112] that is highly indicative of having a preferred interaction towards a receptor 

dimer (Fig. 4-2).  Even more intriguing is the implication that receptor dimerization may 

play a role in regulating the G protein-independent signaling effects mediated by arrestin.   

The capacity of arrestin, like G proteins, to modulate agonist binding to β2AR 

preparations reconstituted in phospholipid vesicles strongly supports this notion.  
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Likewise, these are all questions that application of the HDL reconstitution system is 

adeptly suited to answer. 

 

Figure 4-2.  Molecular model of an arrestin-rhodopsin dimer complex.  Arrestin (purple) has double-
chalice-type structure that may have a preferential affinity for a rhodopsin dimer (yellow).  Adapted from 
Park et al. [124] with permission. 

 

Dimerization in Question 

It should also be pointed out that the concept of GPCR dimerization has taken 

some hits in recent years.  This is important to note because although our data do not rule 

out the existence of dimers, they are also completely compatible with the notion that 

dimers may not actually exist in vivo. 

The strongest evidence to date against the prevailing GPCR dimer hypothesis 

comes from the Davis group[59].  In a rigorous study, they suggested that previous FRET 

and BRET experiments may have either been improperly executed or incorrectly 

 66



interpreted, and they actually concluded that the β2AR does not dimerize using their 

methodology.  This has generated considerable controversy in the field [125, 126] 

because RET experiments had heretofore been some of the best evidence that 

demonstrated that bona fide physical dimeric receptor interactions occurred in cells. The 

implications drawn here may influence the interpretation of published RET data 

concerning dozens of GPCRs. 

The other pillar of evidence supporting GPCR dimerization, the AFM images 

showing paracrystalline arrays of rhodopsin dimers ROS discs [10], has also faced some 

criticism since its publication.  Marc Chabre and others have claimed that the AFM data 

are the result of structural artifact resulting from sample preparation and that they defy a 

plethora of previous biophysical data that support the concept of rhodopsin as a 

monomeric and freely diffusing entity [33].  More importantly, this observation has yet to 

be repeated.  In fact, using an ostensibly more native technique, the Palczewski lab 

imaged intact rod cells using cryoelectron tomography and did not observe any 

paracrystalline arrangement of rhodopsin [127].  

It is clear that the field would benefit from more definitive proof or denial of the 

existence of GPCR dimers in vivo.  New imaging or biophysical techniques are needed to 

observe the true native oligomeric state of GPCRs in primary tissue culture or in 

unperturbed tissues. 

 

General applications of HDL technology 

The technique of in vitro HDL reconstitution has been around for over 20 years, 

but has only been adapted to studying integral membrane biochemistry with in the last 5 
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years or so.  Since then, the approach is gaining acceptance as a valid and superior 

method for studying membrane proteins.  The Sligar lab first used the technology for 

studying P450 enzymes [68] and the bacteriorhodopsin ion channel [47], but other labs 

have since used HDL to study chemoreceptors [128], amphotericin B [129], and of 

course GPCRs [43, 51, 52, 90].  Over time, other labs will surely turn towards HDL for 

studying their protein of interest. 

The absence of detergent and the mono-dispersed characteristics of HDL particles 

allow for the application of many biochemical and biophysical techniques that are not 

possible with other cell membrane-mimetic systems when detergent-based systems are 

not suitable.  These include many types of assays that are taken for granted with soluble 

proteins, such as protein-protein interaction kinetics, novel ligand screening, proteomics, 

and of course standard enzymatic assays where detergents would have a deleterious effect.   

As an example, we have taken fluorophore-labeled preparations of the β2AR and 

studied their behavior in HDL particles.  In collaboration with Dr. Brian Kobilka, we 

have now recapitulated the conformational changes observed with agonist binding to 

detergent preparations of monobromobimane-labeled β2AR.  More importantly we have 

recently observed a strong allosteric role of G proteins on agonist binding that is 

consistent with our observations using radioligand binding assays.  The attributes of the 

HDL approach are perfectly suited to monitor the receptor conformations by fluorescence 

spectroscopy.  In fact, we are now applying single molecule spectroscopy approaches 

using total internal reflection fluorescence (TIRF) microscopy to study receptor 

conformation.         
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HDL may also be an attractive platform for structural studies of membrane 

proteins.  Since HDL itself has been described as a “molten” complex, X-ray 

crystallography may not be feasible unless the protein inserted into HDL’s bilayer can be 

sufficiently stabilized by other protein-protein interactions within the crystal lattice.  

Cryo-electron microscopy, although lower resolution, may prove to be the most tractable 

approach.  The natural mono-dispersion of HDL particles is well suited to the single 

particle reconstruction technique of building a three-dimensional structure from EM data.  

Indeed, our lab has initiated successful preliminary studies using this technique (Fig. 4-3).  

NMR may also prove to be a valuable method, and some groups have already initiated 

such studies [130, 131].  

 

Figure 4-3.  Cryo-EM class averages of HDL.  In collaboration with Wah Chiu at the National Center for 
Macromolecular Imaging at Baylor College, we have started using the cryo-EM technique to gain structural 
information about HDL particles.  Seen here are the class averages of several thousand HDL particles in 
vitrified ice.  Each panel represents a group of HDL particles in a particular orientation.  The main 
structural features are clearly seen: the apoAI belt (black ring) and the phospholipid bilayer (inner gray 
mass).  With refinement of the technique, we hope to use this system as a platform for structural studies of 
membrane proteins. 
 

An interesting feature of HDL is that it is amenable to extensive re-engineering 

since apoA-I can be expressed recombinantly.  The Sligar lab has been able to duplicate 

internal apoAI segments to effectively increase the diameter of the HDL disc to 13 nm 

[132], and I have been able to increase this further to 16 nm (data not shown).  These 
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advancements will undoubtedly aid the adoption of the HDL system to studying large 

proteins or multimeric protein complexes.   

 
 In summary, we have utilized this very powerful HDL approach to address an 

extremely controversial but fundamental aspect of GPCR signaling. We have 

successfully isolated monomeric GPCRs in a phospholipid bilayer and demonstrated 

efficient coupling to G proteins.  The efficiency of this coupling is comparable with that 

observed in native membranes. We have also demonstrated that complex allosteric 

properties of agonist binding to the β2AR, and perhaps other members of the Class A 

receptors are largely attributable to direct G protein allostery, and not receptor 

oligomerization, as previously postulated in the field.   Together, these data support the 

notion that the monomeric GPCR, at least for the Class A family of receptors, is the 

minimal functional unit that couples to G proteins.    
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