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Chapter 1 

 

 

 Introduction 

 

 

The revolution of information technology including both computing and 

communication has dramatically changed human society over the past decades. 

Computers and cell phones have become important tools in our daily lives so that 

it is impossible for us to imagine how to live without them. Research on 

semiconductors has been well developed to provide cheap, reliable, and functional 

devices with high performance. As computers and cell phones become more and 

more powerful as well as smaller, people may wonder how long this trend will 

last and what will happen after the limit is reached. Far before classical 

information technology reaches its limits, physicists have started to ponder the 

future of information system and technologies. This thesis aims to address issues 

associated with the study and development of devices that lie beyond the limit, 

with the immediate focus being quantum computing. 

This chapter provides a brief introduction. First, the motivation of the work is 

discussed, including the history and progress of quantum computing. The history 

of quantum computing is reviewed with a focus on selecting a good physical 

system to implement quantum computing. Quantum dot based quantum 

computing is reviewed with progress on charge and spin based quantum dot 
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quantum computing. Then, the research problems studied in this thesis are 

discussed. An outline of the thesis is presented at the end of the chapter. 

 

1.1 Motivation for quantum computing 

Semiconductor technology has produced powerful integrated circuits with low 

cost and small size to make complicated electronics affordable and portable. In 

1965, Moore predicted that the number of transistors on a single chip would 

double every two years [1]. This prediction is known as Moore’s law and turned 

out to be surprisingly accurate over the past forty years, as shown in Figure 1.1.  

 
Figure 1.1 Growth of transistor counts for Intel processors (dots) and Moore's 

Law (logarithmic vertical scale) (from http://en.wikipedia.org/wiki/Moore's_law) 
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Moore explained that as the size of transistors approaches the size of atoms 

[2], quantum interactions will take over classical interactions in describing the 

physics of the devices. Current information technology is based on classical bits, 

defined as 0 or 1, usually represented by an ON or OFF state of a transistor. 

Classical information can only be processed in series in a single device, which has 

a fundamental limit that only allows linear increase by increasing the processing 

speed or number of processors. To process information faster, the operating 

frequency has to be increased until it hits a limit caused by either physics or 

engineering. To keep increasing the processing speed, parallel processing has to 

be used, which requires using multiple physical devices working simultaneously 

in the frame of classical information technology.  

Quantum information aims to break this linear increase limit to gain 

exponential growth by parallel processing, at least for some special problems of 

great imporatnce. By using quantum bits (qubits), superpositions of quantum 

eigenstates, quantum gates can operate on multiple quantum eigenstates 

simultaneously. For example, a qubit is represented as 0 1α β+ , where 0  and 

1  are the two eigenstates of a two-level system, and α  and β  are the 

population coefficients at the corresponding eigenstate. A Rabi oscillation can 

invert the two eigenstates simultaneously as a quantum NOT gate operation. To 

make a quantum computer run faster, we can increase the number of qubits rather 

than the operating frequency or number of processors. More importantly, the gain 

from increasing the number of qubits is exponential. For example, from a 2-qubits 

to N-qubits, the gain is 12N −  rather than 
2
N  times. 

 Research for quantum computing spans from physics to computer science, 

including different aspects such as quantum computing algorithm design and 

implementation of functional quantum gates. After the Turning’s classical 
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computing theory [3] and Shannon’s information theory [4], for the first time 

Feynman proposed the idea of quantum computing by using quantum complexity 

to achieve computational capability beyond that of classical computation [5]. It 

took a long time for quantum computing algorithms to be developed [6-8], 

providing evidence that quantum computing algorithms can efficiently solve some 

problems that are unsolvable within a limited time (e.g. the life of the universe) 

for classical algorithms due to the exponential growth of the computing time. 

However, quantum computing algorithms can not be implemented on classical 

computers running on classical gates. Quantum algorithms require a quantum 

computer with quantum gates; that is, a physical quantum system that can 

represent and process information quantum mechanically [9,10]. To provide an 

experimental guide for implementing quantum computing algorithms, 

DiVincenzo listed a set of criteria with five fundamental requirements [11]. 

1. A scalable physical system with well characterized qubits, 

2. The ability to initialize the state of the qubits to a simple initial state, 

3. Long relevant decoherence times, much longer than the gate operation time, 

4. A “universal” set of quantum gates, 

5. A qubit-specific measurement capability. 

The first criterion requires that the physical system should have a well-defined 

quantum system that can interact with external operations as predicted and 

designed, and can be scaled up to a large number of qubits without losing the 

performance of the operation. Physical systems not controllable or scalable are 

not good candidates for large scale quantum computing. The second criterion 

requires that the physical system should be able to be initialized to a repeatable 

initial state, which is the start of quantum operations. Physical systems without 

controllable and stable initial states can not be used for building quantum 

computers. The third criterion requires that the physical system needs to remain 

coherent during the repetitive quantum operations, since multiple quantum 
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operations are necessary to handle possible errors in a single quantum operation. 

A relevant decoherence time of 104 times the operations time is required before 

the system decoheres to achieve error corrected quantum operations. The fourth 

criteria requires that operations on the physical system be able to create  an 

established universal gate such as a controlled not combined with single qubit 

rotations. The fifth criteria requires that the results of the quantum operation can 

be read out, which means that the final states after the quantum operation can be 

measured.  

A few different approaches, including approaches based on the use of single 

photons, NMR, trapped ions, and QDs, have been proposed for implementing 

quantum computing algorithms. 

Single photons can be used for quantum computing with qubits being a 

superposition of two orthogonal polarization states [12]. Single photon based 

systems have been well studied for quantum communications with experimental 

demonstration of long distance quantum key distribution in optical fibers [13] and 

free space [14]. Commercial systems for quantum key distribution to improve 

security are even available on the market [15]. An all-optical controlled NOT gate 

was also demonstrated [16]. However, the lack of stable and controllable single 

photon sources limits the feasibility of polarization based single photon quantum 

computing. 

NMR can be used for quantum computing with qubits as superpositions of 

ensemble spin states [17]. Some quantum computing algorithms have been 

demonstrated on NMR quantum computing systems [18, 19]. However, the NMR 

systems are not practical for scalable quantum computing due to the fact that the 

readout signal drops exponentially when the system scales up. This is because the 

qubits states in NMR are not pure states and they are susceptible to thermal 

effects [20]. 
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Trapped ions are good candidates for quantum computing, which satisfies all 

five criteria, with qubits as a superposition of spin states of single electrons [21]. 

Atoms and ions have nature-created stable and controllable quantum states with 

excellent stability (lifetime up to minutes) due to weak interactions with the 

environment for trapped isolated ions. Initialization, quantum operations, and read 

out schemes are already available by optical transitions though a history of 

extensive studies on the properties of atomic states. Especially due to the 

development of laser cooling and trapping to provide stable ions with ultra low 

temperature, trapped ion quantum computing has made the most advanced 

progress towards making a functional quantum computer. Gate operations [21-

23], entanglement between multiple trapped ions [24, 25], quantum computing 

algorithms [26, 27], and entanglement between atoms and photons [28] have been 

demonstrated by experiments. By using electrodes on a chip to build multiple ion 

trap regions, scalability has been demonstrated [29, 30].  

Semiconductor quantum dots (QDs), using a superposition of electron spin 

states as qubits, is another promising candidate for quantum computing that 

satisfies all five criteria [31,32]. Semiconductor QDs have controllable and stable 

quantum states that can be optically manipulated as ions or atoms. The 

initialization, operation, and readout can be achieved optically similar to ions 

through optical pumping, Rabi oscillation, and population measurement. The long 

decoherence time can be achieved through spin based QD quantum computing. 

Compared with the trapped ion quantum computing, semiconductor QD quantum 

computing has the scalability advantage due to its compatibility of semiconductor 

fabrication infrastructures.  

Implementation of QD quantum computing started with optically driven 

population based QD quantum computing due its simplicity. One scheme is using 

optically excited excitons, electron-hole pairs, in QDs as qubits [33]. For 
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example, the absence of an exciton is defined as 0  and the presence of an 

exciton as 1 . Quantum gate operations can be achieved by two-level Rabi 

oscillation. It has been shown that excitons in QDs have an average life time of 

around 50ps without much pure phase dephasing [34]. To achieve qubit operation, 

Rabi oscillations were demonstrated in a single QD [35-38]. Furthermore, the 

entanglement of excitons and biexcitons have been created and detected in a 

single dot [39-42]. A major breakthrough was the demonstration of a quantum 

control-ROT gate with high fidelity [43]. Besides, a density matrix mapping of 

qubit rotation has been measured [44]. However, due to the short lifetime of 

excitons, the number of operations that can be applied on exciton based qubits is 

limited. 

To avoid the short exciton life time and to obtain a long decoherence time as 

required by the third criteria, electron spin can be used as the qubit [31, 45] since 

spin has a much longer decoherence time up to at least micro seconds [46]. The 

spin down state is defined as 0 , and the spin up state is defined as 1 . It has 

been shown that spin based qubits are longer-lived than the exciton qubits [31]. 

Spin decoherence times of at least 10ns in ensemble QDs with inhomogeneous 

broadening have been measured by time domain spin beats [47]. It is expected 

that the spin decoherence time in a single QD without inhomogeneous broadening 

would be much longer, since the spin relaxation time is much longer [48]. 

Recently, spin initializations with high fidelity have demonstrated [49, 50], and 

coherent control on spin states has been achieved [47, 51].  

 

1.2 Problems studied in this thesis 

To implement spin based QD quantum computing, the number of electrons in 

the QD needs to be controlled. Two techniques have been studied to control the 
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number of electrons in a single QD. One technique is to provide extra electrons by 

proper doping. With a silicon doping layer close to the QD layer, doped electrons 

can tunnel into a QD with a certain tunneling probability and get trapped in the 

QD. With a proper doping layer with the right doping density, thickness, and 

distance to the QD layer it is possible to obtain a single QD with an extra electron 

trapped within the QD. However, there are a few problems associated with the 

doped electrons. First, the doped electrons are not stable due to tunneling. The 

electrons that tunneled into QDs may tunnel out of QDs when the temperature 

changes. Second, the number of electrons within a single QD is not controllable in 

experiments after the sample is grown. Third, practically the possibility of getting 

exactly one electron in a single QD is very small due to the difficulty of 

controlling the doping density, position, and thickness of the doping layer in the 

sample growth procedure. 

Another technique is to obtain extra electrons by electric injection. By adding 

electrodes on the top and bottom of a QD sample, a bias voltage can be applied on 

the QD samples [52]. Electrons can be electrically injected into the QDs and be 

trapped within the QDs. The electron tunneling rate depends on the applied bias 

voltage. With a proper sample design, the number of electrons within a single QD 

can be controlled by adjusting the bias voltage in experiments. The electrically 

gated samples give better control and a more stable system for QD study, but they 

also bring new problems. To put electrodes on a QD sample, thick GaAs 

substrates are needed, which absorb light at the exciton energy of interface 

fluctuation QDs (IFQDs). To study the optical properties of IFQD for spin based 

QD quantum computing, interaction of the light with a single IFQDs must be 

studied in the reflection geometry. 

Another experimental challenge is how to measure the voltage dependent 

absorption of QDs quickly and with a high signal noise ratio (SNR). For the 

electrically gated QD samples, optical properties of a QD are affected by the 
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number of electrons in the QD, which depends on the bias voltage [53-55]. Single 

QD photoluminescence (PL) and absorption need to be measured over not only 

energy, but also bias voltage, which creates an extra dimension for the 

measurement. Voltage dependent PL is relatively easy because the PL can be 

measured with high speed and a high signal noise ratio (SNR). However, voltage 

dependent absorption of single QDs is challenging due to the poor SNR in single 

QD absorption measurements. A single QD leads to a relatively small absorption 

at the same level as laser noise. A single scan over laser energy measures the 

single QD absorption with a poor SNR; hence this requires a large number of 

averages to improve the SNR. Single QD absorption measurements are time 

consuming, and typically tens of minutes are required to obtain a single QD 

absorption with an acceptable SNR. For the gated sample, the absorption of a 

single QD needs to be repeatedly measured many times over a voltage range. The 

entire process is very time consuming. The available measurement time for single 

QD study is limited by the stability of cryogenic systems, usually on the order of 

tens of minutes or a few hours. Experimental techniques capable of measuring the 

voltage dependent absorption of a single QD with high speed and SNR needs to 

be developed. 

Precise measurement of the electron spin decoherence time of a QD is also 

important for spin based QD quantum computing. The spin relaxation time limits 

the spin decoherence time. Most experimental techniques in laser spectroscopy 

study the relaxation time by resonant or above resonance energy excitation, which 

may affect the spin relaxation time.  Recently, it was found that the measured spin 

relaxation time in bulk GaAs is affected by the optical excitation energy [56]. 

Hence, the effects of the optical excitation on spin relaxation time in 

semiconductor QDs needs be studied. 

 

1.3 Thesis outline 
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This thesis will discuss experimental work on biased IFQDs through  

differential reflection (DR) and voltage modulation (VM) techniques, and spin 

noise measurements on n-GaAs.  

Chapter 2 gives an introduction to semiconductor physics and the biased 

IFQD sample we used in this study. The basic optical properties of semiconductor 

and semiconductor QDs are briefly discussed. The energy diagrams of neutral and 

charged IFQDs are described. The biased IFQD sample structure is provided with 

characterization results by photoluminescence.  

Chapter 3 discusses noise in laser spectroscopy to explain the experimental 

challenges in studying optical properties of single QDs. The statistics and physics 

of two kinds of fundamental noise, laser shot noise and electrical thermal noise, 

are studied. Practical noise coming from various sources including the light 

source, propagation, and detection are discussed. This chapter provides a 

foundation to understand the experimental challenges of QD study and the 

experimental techniques to reduce the effects of the noise on the measurements. 

Chapter 4 studies the nonlinear absorption of IFQDs with the DR technique. 

The differential transmission (DT) technique with bandwidth reduced detection is 

discussed to illustrate how to measure a small signal out of a noisy background by 

reducing measurement bandwidth. The DT technique in the reflection geometry, 

DR is studied. Voltage dependent nonlinear absorption of ensemble of and single 

QDs from biased IFQDs samples are measured by the DR. 

Chapter 5 studies the VM technique to measure the voltage dependent 

absorption map of single QDs with high speed and high SNR. The voltage 

dependent nonlinear absorption of QDs shows a quantum confined Stark effect 

(QCSE), which enables VM to measure the absorption of a single QD with higher 

speed and SNR compared with DR. The VM technique is discussed with an 

analytic model based on Lorentzian shaped absorption, and a numerical 
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simulation with a linear QCSE. The voltage dependent absorption measured by 

VM agrees with DR. 

Chapter 6 discusses the spin noise measurement technique, which can 

measure the spin relaxation time with below resonance excitation and with a 

capability of measuring a weak signal below the apparent laser shot noise and 

electrical thermal noise. The physics of the spin noise measurement is discussed 

as a Faraday rotation caused by the weak oscillating magnetic field due to the 

intrinsic spin flips at the Lamor frequency, which gives a Lorentzian shaped spin 

noise spectrum. Spin noise measurements on an n-GaAs sample give the absolute 

value of electron g factor and spin relaxation time. 

Chapter 7 studies the optical effects of the laser energy and intensity on the 

spin relaxation time in n-GaAs. The laser energy and intensity dependence of the 

spin noise spectra are measured. Both spin noise power and width increase 

dramatically when the laser energy approaches the resonance. The spin noise 

power fits with a two-level model with a Lorentzian shaped absorption and 

saturation behavior. It is found that the spin noise width has a linear relation with 

the optically excited ionized impurity density under the same two-level system 

model with a Lorentzian shaped absorption and two-level saturation behavior. By 

extracting the spin noise with at zero laser intensity or far below resonance, it is 

inferred that the spin relaxation time would be longer when there is no optical 

excitation.  

Chapter 8 concludes the thesis with a summary and a few possible directions 

for future work. To apply the spin noise technique to QDs, it will be necessary to 

put the QD in a high Q micro-cavity. By increasing the laser energy range of the 

spin noise measurement, the effect of above resonance excitation can be studied. 

Effects of doping density and external fields on the spin relaxation time can also 

be studied. 
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Chapter 2 

 

 

Biased Semiconductor Quantum Dot Samples 

 

 

The semiconductor is the most important material used to build powerful 

electronics devices with high performance and low cost widely used for 

information technologies. The massive production of high performance integrated 

circuit chips makes high tech products affordable for daily consumer electronics. 

Quantum dot (QD) based quantum computing is promising because of the 

feasibility to make QD based quantum computing systems and devices at low cost 

once the technology is developed. However, fundamental research needs to be 

done to understand the QD growth technique, material properties, and optical 

properties far before making any functional device. 

Studies on QD are a large research area covering physics, materials, optics, 

and electrical engineering [1-5]. QD growth remains an active area of research  to 

find ways to grow QDs with better uniformity, desired wavelength, and 

complicated structures like quantum dot molecules. QDs have been studied in 

many different areas for both fundamental physics and application devices [6-10]. 

This chapter will give a brief discussion about the background material 

properties and sample structures used in the study. First, a brief introduction of 

semiconductor material and its optical properties is provided. Then, QDs with 

discrete states are introduced with explanation of QDs used for quantum 

computing with different growth techniques and different charge properties. At 

the end of the chapter, the bias interface fluctuation QD (IFQD) sample is 

discussed with its structure and characterization described by photoluminescence. 
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2.1 Semiconductors 

It is important to understand the semiconductor band structure to study 

semiconductor QDs. Here is a brief introduction of the band structure, while a 

detailed discussion is available in References [11, 12]. Crystalline solid materials, 

like semiconductors, are formed by a large number of atoms, usually in the order 

of 1023/cm3, built on periodic lattice structures. Isolated individual atoms have 

discrete energy levels due to strong Coulomb interaction between nuclei and 

electrons. When the number of atoms is large, they can form a crystal with 

periodic lattice structures, leading to the formation of band structure. The 

energetically forbidden regions between the energy bands are called bandgaps. 

Electrons are filled from the lowest energy band to the higher energy bands. The 

highest energy band filled with electrons can be either completely filled or 

partially filled. Without any thermal or optical excitation, the crystal with the 

highest energy band partially filled is a metal, characterized by good electric and 

thermal conductivity, and the crystal with the highest energy band completely 

filled is an insulator or a semiconductor (depending on the bandgap), 

characterized by poor electric and thermal conductivity.  

The last filled energy band is called the valance band and the unfilled energy 

band above the valance band is called conduction band. The energy difference 

between the valance band and conduction band, called bandgap energy, 

determines the electric and optical properties of the crystal. Crystals with the 

highest energy band completely filled and with the bandgap energy larger than the 

energy of thermal and optical excitation are insulators. Crystals with the highest 

energy band completely filled and with the bandgap energy comparable with the 

energy of thermal and optical excitation are semiconductors. With thermal or 

optical excitation, the electrons in semiconductors can be excited from the valance 

band into the conduction band, leaving equivalent positive changes in the valence 

band, called holes. The electron- hole pair generation causes the phonon energy 

from thermal excitation or the photon energy from optical energy to be absorbed. 

The recombination of an electron-hole pair may emit a phonon or photon. 
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GaAs is the most commonly used semiconductor material for optoelectronics. 

It is an III-V compound semiconductor with a cubic crystal structure, which has a 

lack of inversion symmetry. The crystal structure and the bandgap energy diagram 

of bulk GaAs are shown in Figure 2.1.  

 

 
  (a)      (b)    (c) 

Figure 2.1 (a) Crystal structure of GaAs (b) expanded view of GaAs band 

structure near k~0 (bandgap energy Eg is 1.519eV) (c) optical absorption in bulk 

GaAs [13] 

 

Optical properties of semiconductor are characterized by its laser energy 

dependent absorption and luminescence. Semiconductors are transparent to the 

light with energy below the bandgap energy, and have strong absorption of light 

with energy above the bandgap energy. The transition from transparency to strong 

absorption is called the Urbach tail, where impurity absorption dominates. Optical 

absorption of GaAs is shown in Figure 2.1(c). 

The optical absorption of semiconductors can be understood with the band 

structure. Light with energy lower than the bandgap energy can not be absorbed 

since the photon energy is not enough to excite electrons from valence band to 

conduction band. Light with energy above the bandgap energy is strongly 

absorbed since the photons excite electron-hole pairs. The electron-hole pair may 

recombine and emit a photon, which gives photoluminescence. Since the optical 

transitions are associated with electron energy states, optical absorption and 

photoluminescence give information about the energy states in the semiconductor 
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materials, but absorption and photoluminescence may give different energy states 

since they are different processes. 

Depending on the Bohr radius and de-Broglie wavelength, the optically 

generated electron and hole can be either non-interacting particles or be bounded 

as an interacting exciton subjected to the Coulomb interaction, like a positronium 

atom. Since an electron has a negative charge and a hole has a positive charge, the 

binding energy of an exciton is negative, about -5meV in GaAs.  

 

2.2 Semiconductor quantum dots 

In bulk semiconductor, excited electrons may have any energy over a 

continuous energy spectrum. Quantum confinement, for example, an abrupt 

energy change over a small spatial region comparable with the electron wave 

function, will lead to quantization of energy, causing the energy states available to 

electrons changing from continuous to discrete.  

 

 
  (a)      (b)         (c)   (d) 

Figure 2.2 DOS of semiconductors with different level of quantum confinements 

(a) 3D bulk (b) 2D quantum well (c) 1D quantum wire (d) 0D quantum dot 

 

The density of states electrons can occupy over a unit energy range can be 

calculated as the Density of State (DOS) [12]. Figure 2.2 shows the DOS for 

systems with different level of confinement. Bulk semiconductors, a 3D structure 
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without any confinement, have a continuous DOS. Quantum wells, a 2D structure 

with one-dimensional confinement, have step like DOS. Quantum wires, a 1D 

structure with two-dimensional confinement, have a palm like DOS. Quantum 

dots, a 0D structure with the ultimate three-dimensional confinement provides 

delta function like DOS. The DOS of the bulk, quantum well, quantum wire, and 

quantum dot can be represented as, 

3D bulk:  
3
2

3 2 2

1 2( )
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mDOS E E
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2D quantum well: 2 2( ) ( )D i
i

mDOS E E E
π

= Θ −∑  

1D quantum wire: 
1
2

1 2
,

1 1( )
2D

i j ij

mDOS E
E Eπ

⎛ ⎞= ⎜ ⎟ −⎝ ⎠
∑  

0D quantum dot: 0
, ,

( ) 2 ( )D ijk
i j k

DOS E E Eδ= −∑  

where Θ  is the Heavyside step function, and δ  is the Dirac delta function. 

Quantum confinement gives discrete energy states, which is similar to atoms 

with discrete states due to strong confinement and Coulomb interaction. The exact 

energy of the discrete states depends on the strength of confinement, size and 

shape of QDs, which can be controlled in the material growth. It is possible to 

make QDs with controllable discrete states, so QDs are also called “artificial 

atoms”. 

    
   (a)     (b) 

Figure 2.3 (a) STM image of QDs [13] (b) NSOM image of a single QD [14] 
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Usually the size of the confinement in a few to tens of nm, and the energy 

change is a few hundred or thousand meV in QDs. Due to this strong confinement 

in a size smaller than the electron de-Broglie wavelength, the wave function of 

exciton in localized within a QD. Figure 2.3(a) shows a scanning tunneling 

microscope (STM) image of QDs for a cross section along the growth direction 

[13]. The near-field scanning optical microscopy (NSOM) image of a single QD 

shows that the exciton wave function is localized in a confined area, shown in 

Figure 2.3(b) [14].  

Due to the feature of discrete energy states and large oscillator strength, QDs 

have been extensively studied for a wide range of quantum optical phenomena, 

including the quantum confined Stark effect [15], quantum interference [16], 

photon antibunching [17], electromagnetically induced transparency [18], spin 

blockade [19], and Autler-Townes splitting [20]. QDs have also being extensively 

studied to make application devices with better performances than current 

devices. QD lasers have the advantage of low threshold current, high output 

power and efficiency, and better temperature independence. Significant efforts 

have been made to make QD lasers running at room temperature commercially 

available [21-25]. QDs photodetectors have the advantage of low dark current and 

high temperature operation [26-30]. QDs modulators have the advantage of high 

efficiency and broad frequency range [31-32]. Our interest is using QDs for 

quantum computing. 

 

2.2.1 Semiconductor QDs for quantum computing 

Many different QDs have been grown with different techniques including 

electrostatically and lithographically defined QDs [33-38], chemically synthesized 

QDs [39-44], interface fluctuation QDs (IFQD) [45-49], and self-assembled QDs 

(SAQD) [50-53]. The QDs used for optically driven QD quantum computing are 

mainly the last two kinds of QDs.  

IFQDs are formed by the clustering of atoms caused by growth interruption 

when a QW is grown [46]. The GaAs/Al0.3Ga0.7As IFQDs used for QD quantum 

computing are random islands of GaAs clusters surrounded by Al0.3Ga0.7As with a 
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vertical height of a few nm and a lateral size around 40~100 nm. From the STM 

image shown in Figure 2.3(a), the IFQDs are randomly distributed with irregular 

shapes elongated along one direction. Since the bandgap energy is 1.52eV for 

GaAs and 1.95eV for Al0.3Ga0.7As, the vertical confinement energy is about 

0.43eV. The dipole momentum measured from single IFQD absorption is around 

60~100 Debye [13]. Due to its relatively large dipole compared with SAQD, 

IFQD gives a relatively strong optical absorption, which makes it easier to 

measure signals in experiments. 

SAQDs are clusters of atoms formed naturally with regular shapes by the 

strain caused by lattice mismatch when growing a different material on an 

expitaxial surface [50]. InAs/GaAs SAQDs used for QD quantum computing are 

disk or pyramid shaped clusters of InAs atoms surrounded by GaAs with a 

vertical confinement of around 3nm and a lateral size of around 20nm. Since the 

bandgap energy is 0.43eV for InAs and 1.52eV for GaAs, the confinement energy 

in SAQD is about 1.09eV. Compared with IFQDs, SAQDs have stronger 

confinement and smaller dipole momentum. Different from IFQDs, the height and 

location of SAQDs can be controlled by growth processes, which provides 

possibilities to grow desired SAQDs with certain energy and patterned spatial 

distributions [53]. This engineering capability makes SAQDs a primary focus for 

semiconductor QD study and research. However, small dipole moments give 

small optical signals, which requires more sensitive experimental techniques.  

 

2.2.2 Neutral and charged quantum dots 

To implement spin based QD quantum computing, extra electrons are 

introduced into QDs. Depending on the initial charging state, neutral or charged, 

the optical property of the QD can be different. 

A neutral QD absorbs a photon and generates an exciton. Due to the selection 

rules, only two transitions are optically allowed. For ideally symmetric QDs, 

circular polarization is expected. However, in real QDs, linear polarization is 

observed due to the asymmetry in QDs, which is elongated along y direction in 

the IFQD we studied, as shown in Figure 2.3(a). The energy diagram of a neutral 
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exciton is shown in Figure 2.4(a). Due to the lateral asymmetry, there is a small 

splitting of about 25µeV between the horizontal and vertical polarization [13]. 

For the exciton population based QD quantum computing, the qubit is a 

superposition of the population of the two level system composed of the crystal 

ground state (no exciton) and the exciton state. The decoherenece time is limited 

by the exciton decay time in the QDs, usually in the order of 100ps, since not 

much pure dephasing was observed in these QDs [54]. Even with ultrafast laser 

pulse with a pulse width of tens of fs, the number of operations within the 

decoherence time is limited. However, the simplicity of the exciton population 

based QD quantum computing makes it a good starting system to make fast and 

significant progresses, including exciton Rabi oscillation [55], entanglement 

between two excitons [56], a two-qubit controlled ROT gate [57], and density 

matrix tomography of a qubit [59]. 

 

              
Figure 2.4 Bandgap energy level diagram and two level representation for (a) 

excitons and (b) trions (CB and VB stand for conduction band and valence band.) 
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For a charged QD, an optically generated exciton can combine with the extra 

electron existing in the QD to form a charged exciton, two electrons and one hole, 

called trion. The selection rule is circular due to the Pauli principle. Only the left 

and the right transitions are allowed due to the selection rule. The energy diagram 

is shown in Figure 2.4(b). In our study of IFQD, no magnetic field is applied. The 

selection rule will be different when a magnetic field exists. The two cross 

transitions can be turned on by applying a magnetic field, which allow the two 

spin states optically coupled by a shared trion state. Detailed study about the trion 

coupled spin states can be found in Reference [59-61]. 

For the spin based QD quantum computing, the qubit is a superposition of the 

population of a two level system composed of electron spin states. By optically 

manipulating the electron spin states through the trion states, optically driven spin 

based QD quantum computing can be implemented. The electron spin has a long 

decoherence time up to microsecond, which allows 107 or more quantum 

operation with fs ultrafast laser pulses. Even through the trion life time (in the 

order of 100ps) is much shorter than the spin decoherence time, it does not limit 

the speed of operation. To experimentally manipulate the trion state, it becomes 

important to understand the optical properities of exciton and trions in QDs. 

 

2.3 Biased Interface Fluctuation Quantum Dot Samples 

The sample we studied is an electrically gated or biased, IFQD sample as 

illustrated in Figure 2.5(a). It is a 4.2nm GaAs QW sandwiched between two 

50nm Al0.3Ga0.7As layers grown on a GaAs substrate. A thin titanium oxide layer 

is deposited above the 50nm capping Al0.3Ga0.7As layer to serve as an electrode 

and an Al mask layer is laid on top to provide 25μm-diameter apertures for 

ensemble study, and sub-micron-sized small apertures for single dot study. A bias 

voltage can be applied across the sample through the substrate and the Ti/Al layer. 

With a bias voltage, an applied electric field adjusts the QD energy state with 

respect to the Fermi energy level, as shown in Figure 2.5(b), and the number of 

extra electrons tunneled into the QD can be controlled. Within a certain bias 

voltage range, there is no electron in the QD. Under optical excitation caused by a 
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laser beam, a neutral exciton is created in the QD, illustrated in Figure 2.5(a) as 

X. Within a given voltage range, only one electron can tunnel and be trapped in 

the QD. Under the optical excitation where an exciton is created, the extra 

electron will bind with the exciton in the QD to form a trion, labeled in Figure 

2.5(a) as X-, with energy a few meV below the exciton. A transition from exciton 

to trion occurs when the bias voltage is adjusted continuously over the exciton-

trion voltage range. By measuring the bias voltage dependent absorption and 

photoluminescence of the QD, we can study the optical signature of the exciton-

trion transition. 

 

     
Figure 2.5 Biased IFQD sample (a) structure (not to scale) (X and X- represent 

exciton and trion (b) charging scheme (CB and VB stand for conduction band and 

valence band. EF represents Fermi energy) (c) aperture map 

 

Figure 2.5(c) shows the aperture map on the sample. The dots density of the 

sample is about 1QD/µm2. Under a big aperture with a diameter about 25µm, 

ensemble of QDs in the order of a few hundred QDs is studied. Due to the 

difficulty of controlling QD size and confinement, the ensemble QD shows an 

inhomogeneous broadening. With a small aperture with a diameter less than a 

micron, the QD density gives a an average of one QD per aperture, single QD can 

be studied due to the low possibility of two QDs under one small aperture having 
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the exact same energy. It has proved that the aperture provides an effective 

method to study optical properties of single QDs [46]. 

beamsplitter

 
Figure 2.6 PL setup 

 

The sample is characterized by photoluminescence (PL) in order to obtain the 

energy states of QDs. As shown by Figure 2.6, a green laser beam at 540nm or a 

red laser beam at 700nm is focused on the sample. The laser excitation creates 

excitons or trions in the sample, and they recombine to generate photo 

luminescence emission coming out of the sample from all directions. Due to the 

fact that the GaAs substrate absorbs the luminescence light going in the forward 

direction, the luminescence light going to the backward direction is collected in 

reflection geometry with a beam splitter and a lens directed to a spectrometer.  

For biased IFQD, PL as function of energy and voltage need to be measured 

to obtain a bias voltage dependent PL map, which provides an optical signature of 

excitons and trions in QDs. Figure 2.7 shows the PL map measured for an 

ensemble of IFQDs through a 25µm aperture and for single IFQDs through a sub-

micron aperture. Figure 2.7(a) shows the PL map of ensemble QDs. In the voltage 

range from -2V to -1.3V, the PL has about 2meV FWHM centered at 1630meV. 

In the voltage range from -1.2V to 1V, the PL is centered at 1627.5meV with the 

same FWHM. Based on the width of the PL peak, the energy separation between 

the two peaks, and the corresponding voltage, the peak at 1630meV in the voltage 

range from -2V to -1.3V is assigned as possible excitons; the one at 1627.5meV in 

the voltage range from -1.2V to 1V is assigned as possible trions [62, 63]. 

 

laser DC 

Lens

spectrometer
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Figure 2.7 PL maps of biased IFQDs (a) ensemble QDs (b) single QDs 

 

Figure 2.7(b) shows the PL map of single QDs through a sub-micron aperture. 

Following the exciton-trion transition feature, the PL peak around 1617meV-

1618meV appeared in the voltage range from -1V to -0.2V is assigned as a 

possible exciton, labeled as X. The peak around 1615meV-1616meV existing in 

the voltage range from -0.1V to 0.8V is assigned as a possible trion, labeled as X-. 

Verification of exciton or trion needs more careful investigation including 

polarization, power dependence, and temperature dependence. Since our interest 

is in absorption rather than PL, here we just provide a simple characterization to 

find out the energy ranges of the QDs for absorption studies to be discussed later. 

In summary, semiconductor QD samples used for this thesis work were 

discussed in this chapter. Semiconductor materials are introduced with the band 

theory to explain their optical properties. Semiconductor QDs were discussed to 

show their discrete energy states. Semiconductor QDs for quantum computing 

were reviewed with their properties. Neutral and charged QDs were introduced to 

illustrate why we need to study absorption of single QDs. At the end, the biased 

IFQD sample for this thesis work was discussed with its structure. 

Characterization of the biased IFQD sample by PL map showed optical signatures 

of exciton-trion transition in both ensemble QDs and a single QD. 
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Chapter 3 

 

 

 Noise in Laser Spectroscopy 

 

 

Laser spectroscopy experiments are carefully designed to measure specific 

optical signals despite the presence of fluctuating noise. The signals are physical 

observables with certain characteristics we are interested in, and the noise is the 

same physical variable changing in an undesired way. If there were no noise, laser 

spectroscopy would be much easier. Ideally, no matter how small the signal may 

be, we can always use amplifiers to boost signals up to a level detectable by 

instruments, assuming there is no noise. However, in practice the amplifier 

approach does not always work because amplifiers amplify both signals and noise 

in the same way and amplifiers bring extra noises into the measurement. 

To be specific, noise, defined as random fluctuations in a particular 

measurement, is distinguished from signals, the measured quantities themselves, 

for experimental studies. Noise always exists in the experiments, for example, in 

the lasers, detectors, etc. Whether we can measure the signals of interest depends 

on the ratio between the signal and noise, the SNR (Signal to Noise Ratio). In 

some experiments, the signals are much bigger than the noise so that noise can be 

essentially ignored. In other experiments, where the signals are comparable or 

even weaker than the noise, measuring the weak signals could be challenging. It is 

important to study the properties of noise to develop experimental noise reduction 

techniques to improve the SNR for laser spectroscopy. 

This chapter studies noise statistics, noise physics, and the actual noise seen in 

laser spectroscopy experiments. First, some statistical models for the noise are 
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introduced to lay down a mathematical foundation for the properties of noise. 

Then the physics of two kinds of fundamental noise, electrical thermal noise and 

laser shot noise, are discussed to understand the underlying principles. At the end 

of the chapter, the practical noise, seen in laser spectroscopy, from the light 

source, optical devices, detectors, and electrical signal processing, are discussed 

to illustrate how noise affects experiments. 

 

3.1 Noise Statistics 

Noise consists of nondeterministic random fluctuations which require 

statistical descriptions. Some simple description of the statistics will help in 

understanding the noise properties to be discussed later. In this section, first some 

statistical terms are defined for noise measurements. Then two statistical models, 

a random walk model and a rare event model, are discussed along with their 

respective statistical distributions. 

 

3.1.1 Statistics for noise measurement 

The properties of random variables can be described by a statistical 

distribution [1]. The statistical distribution gives the probability of the random 

variable taking a given value. Once the statistical distribution is known, important 

properties of a random variable X can be estimated. The mean and the variance 

are the two most important characteristics. The mean X , defined as the average 

over a certain number of repeated measurements, gives the expected value of the 

random variable. For a discrete random variable where ip  is the probability 

for iX x= ,  

i i
i

X p x=∑         (3-1) 

For a continuous random variable where ( )f x  is the probability distribution 

function,  

( )X xf x dx
∞

−∞

= ∫         (3-2) 
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The variance 2XΔ ,  

( )2 22 2X X X X XΔ = − = −      (3-3) 

is defined as the averaged square of the variation of the measured value from the 

mean, represents the amount of fluctuation of the random variable. 

Experiments are designed to measure physical observables, for instance, 

voltage or current. Although experimentalists try to keep all parameters fixed as 

much as possible, repeated measurements yield different values due to 

uncontrollable changes in experimental parameters. Usually a large number of 

repeated measurements under the same conditions are taken to obtain reliable 

experimental results. In experiments the measured quantities are modeled as 

random variables with certain statistical distributions. Under the assumption that 

all noise and measurement errors are random and independent, experimental data 

will follow Gaussian distributions. The average represents the most probable 

value of the physical measurable, and the variance indicates the noise in the 

experiment. 

Another statistical model is the binominal distribution. Binominal statistics is 

a simple model to describe the probability of the number of successes in a 

consecutive yes/no experiments with a fixed rate. Assume the rate for yes is p and 

the rate for no is 1 p− .  After n trials the number of success could be any number 

from 0 to n. The probability of getting k success follows the binominal 

distribution. 

!( , , ) (1 )
!( )!

knf k n p p p
k n k

n k−=
−

−      (3-4) 

The binominal coefficient is defied as 

!
!( )!

n n
k k n k
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
        (3-5) 

This statistical distribution will be used in the next subsection to help describe 

more complicated models. 

 

3.1.2 Random walk model 
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The random walk model [2] is a statistical model to describe the offset from 

an origin after successive steps of the same step size without preferred directions. 

There are three assumptions. First, the walk starts from the origin. Second, each 

step is the same size. Third, the probability of stepping into any direction is the 

same. The random walk model gives the average straight-line distance after N 

steps. 

The simplest random walk is a one-dimensional random walk, which means 

the walk is confined in a line and there are only two possible directions. A simple 

derivation shows that the average straight-line distance is 0 and the variance is 

N  times the step size. 

Assume there are a total of N random steps of equal length l, and  ( ) is the 

respective number of steps in the positive (negative) direction. The straight-line 

distance L from the origin after N steps is 

1n 2n

1 2 1 2 1( ) ( ( )) (2L l n n l n N n l n N= − = − − = − )     (3-6) 

The probability of getting  positive steps is given by the binomial 

coefficient 

1n

1
1

1( )
2N

N
P n

n
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

        (3-7) 

The average and variance can be estimated as 

1 1

1 1
1

( ) (2 )
2N

n n

NlL LP n n N
n
⎛ ⎞

= = − ⎜ ⎟
⎝ ⎠

∑ ∑      (3-8) 

1 1

2
22 2

1 1
1

( ) (2 )
2N

n n

NlL L P n n N
n
⎛ ⎞

= = − ⎜ ⎟
⎝ ⎠

∑ ∑     (3-9) 

With the aid of the binomial theorem 

0

(1 )
n

n

k

n kx x
k=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
∑ ,       (3-10) 

we get 

0L =          (3-11) 

2L Nl= 2 .        (3-12) 
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It shows the average distance is 0, as expected from the randomness about the 

origin, and the variance is N , due to the independence of adjacent steps. 

The random walk model is more complicated in two-dimensions and three-

dimensions. There are many applications of the random walk model in physics 

and mathematics. The Brownian motion of particles suspended in liquid is an 

example of a three-dimensional random walk. We will show how it describes the 

thermal noise in a later section. 

 

3.1.3 Rare events model with the Poisson distribution 

Another statistical model related to noise is the rare event model, which 

describes the probability of a given number of independent events occurring in a 

certain time if the events have a known average occurrence rate. Many physical 

processes are repeated independent single events with fixed probabilities. We will 

use photon detection here as an example [3]. There are three assumptions. First, a 

single event has a certain probability and the probability of the event occuring is 

proportional to the length of the time interval. 

(1, , )P t t t tλ+ Δ = Δ        (3-13) 

where λ  is the probability coefficient, and tΔ  is the time interval. 

Second, no multiple events occur simultaneously. The probability of getting 

more than one photon in the short time interval is zero. 

( , , ) 0P n t t t+ Δ =  for  and 2n ≥ (0, , ) 1P t t t tλ+ Δ = − Δ    (3-14) 

Third, the system has no memory. Photon detection occurring in any two non-

overlapping time intervals is statistically independent. 

The probability of getting k photons can only occur in two ways. One is 

getting k photons in the time interval ( , )t t τ+  and getting 0 photons in the time 

interval ( ,t t )τ τ τ+ + + Δ . The other is getting k-1 photons in the time interval 

( , )t t τ+  and getting 1 photon in the time interval ( , )t tτ τ τ+ + + Δ . 

( ; , ) ( ; , )[1 ( ) ] ( 1; , )[ ( ) ]P K t t P k t t t P k t t tτ τ τ λ τ τ τ λ τ τ+ + Δ = + − + Δ + − + + Δ  

          (3-15) 

Rearranging terms, we get 
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( ; , ) ( ; , ) ( )[ ( 1; , ) ( ; ,P k t t P k t t t P k t t P k t t )]τ τ τ λ τ τ
τ

+ + Δ − + τ= + − + − +
Δ

 (3-16) 

Taking 0τΔ → ,  

( ; , ) ( )[ ( 1; , ) ( ; ,dP k t t t P k t t P k t t
d

)]τ λ τ τ
τ
+

= + − + − +τ    (3-17) 

The boundary condition is 

(0; , ) 1P t t = . 

Solving Equation (2-17) gives 

( )( ; , )
!

k

P k t t e
k

λτλττ −+ =  .      (3-18) 

Taking τ  as the unit of time, we get the Poisson distribution. 

( )
!

k

P k e
k

λλ −=         (3-19) 

The mean and the variance are 

 
0

( )k P k k λ
∞

< >= =∫        (3-20) 

2 2 2
k k kσ λ≡< > − < > = .       (3-21) 

The quantification factor for the fluctuation is λ . Since the quantity is 

independent of time, the same amount of fluctuation, λ , occurs at any frequency. 

Figure 3.1 gives the plot of the Poisson distribution. 

 

 
Figure 3.1 An example of a Poisson distribution (λ indicates the expected 

number of occurrence and the variance). 
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Another more intuitive way to understand the Poisson statistics is by studying 

the occurrence probabilities of rare events in the limit of an infinite number of 

trials. A rare event is an event that may or may not occur in a single trial. Assume 

the probability that an event occurs is p, which means the probability that the 

event does not occur is 1 p− . For n independent trials, the probability that the 

event occurs k times follows a Binominal distribution ( , , )f k n p  as in Equation 

(2-4). Taking the limit as n goes to infinity, we get 

! !lim (1 ) lim ( ) (1 )
!( )! !( )!

1 2 1lim 1 1
!

k n k k n

n n

n kk

n

n np p np
k n k k n k n

n n n n k
n n n n k n n

λ λ λ

− −

→∞ →∞

knp

−

→∞

− = −
− −

− − − +⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

iii −

  (3-22) 

Since lim 1
n

n
e

n
λλ

→∞

⎛ ⎞− =⎜ ⎟
⎝ ⎠

       (3-23) 

!lim (1 )
!( )! !

k
k n k

n

n p p
k n k k

e λλ −
−

→∞
− =

−
     (3-24) 

Distributions with a standard deviation larger than n are called super-Poisson 

distributions, and distributions with a standard deviation smaller than n are called 

sub-Poisson distributions.  

 

3.2 Noise physics 

In laser spectroscopy all kinds of noise exist. Some noise is internal, coming 

from fundamental physical processes. Some noise is undesired fluctuation caused 

by the environment. This section focuses on the underlying physics of the 

properties of internal noise. Two types of fundamental noise are discussed here. 

One is electrical thermal noise due to thermal fluctuation of the electrons’ motion, 

and the other is laser shot noise due to fluctuation of the quantized optical fields. 

 

3.2.1 Electrical thermal noise 

Electrical thermal noise, also called Johnson noise, giving rise to the 

fluctuation of electrical currents in electrical circuits, is ubiquitous for all 

electronics. At any temperature above 0K, the thermal motion of electrons in any 
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electronic component changes randomly due to collisions, which causes random 

fluctuations of the current. When measuring the current on a resistor in a closed 

circuit precisely, we will see this small thermal noise. Equivalently, the thermal 

noise can also be represented as voltage or power.  

Johnson and Nyquist first studied electrical thermal noise from statistical and 

thermal physics [4, 5]. The intrinsic electrical thermal noise is independent of the 

size, current, or voltage on the resistor. It is notable that the amount of electrical 

thermal noise depends on 4  only, which is related to the thermal energy 

causing the noise. At temperature T, electrons have random thermal motion of 

energy , which gives rise to fluctuations of the electron velocity. A simple 

picture is that at higher temperatures, electrons move faster, and the fluctuation of 

the electron speed increases. For a completely random fluctuation, the speed 

change can happen on any time scale with an equal probability, which gives a 

frequency-independent (white) noise spectrum. 

Bk T

Bk T

Electrical thermal noise can be understood with a simple random walk model 

[6]. Assume the electrons in a circuit go through a one-dimensional random walk 

with a step size d due to the thermal motion at temperature T. According to the 

statistical properties we obtained in Section 3.1.2, after N steps, the average 

displacement Nx  is 0, but the fluctuation 2
Nx  is nonzero. 

0
1

==∑
N

iN dx         (3-25) 
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2 dNddx
N

i

N

iN ==⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑      (3-26) 

The average step size d depends on the velocity of the thermal motion v, 

determined by the temperature T. 

21
2 BE m kν= = T        (3-27) 

2 2 2 2 2 Bk Td
m

2ντ ν τ= = = τ       (3-28) 
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where v is the electron velocity,  is the Boltzmann constant, and m is the mass 

of electrons. 

Bk

In a volume with an area A and a length L, the number of steps N during a 

time period  can be estimated as: 0t

τ
0nALtN =         (3-29) 

where n is the electron density, and τ  is the time between collisions. 

The thermal noise current can be evaluated as 

( ) ( )
1 22 1 2

1 22 0

0 0 0

2N B
e x nALt k Te ei N d

Lt Lt Lt m
τ

τ
⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

2 .  (3-30) 

The resistance R and the conductivity σ  are 

A
LR
σ

=  and        (3-31) 

2
ene
m
τσ = ,        (3-32) 

Taking  to normalize the bandwidth to 1Hz, we thus get for the 

thermal noise current. 

0 1sect =

1 24 Bk Ti
R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.        (3-33) 

It is shown that electrical thermal noise current depends on the temperature T 

and the resistance of the resistor R. The resistor, usually 50 ohms for impendence 

matching in radio frequency (RF) circuits, is to convert the thermal fluctuation 

into a current or voltage. 

Electrical thermal noise is a form of white noise, i.e. it is independent of 

frequency. A simulation of thermal noise is illustrated in Figure 3.2 (a) and (b). 

Experimentally, the electrical thermal noise can be measured with an amplifier. 

Figure 3.2(c) shows the electrical thermal noise as the background noise floor of 

the measurement system when there is no input. This noise floor includes the 

thermal noise from the opto-electronics and the amplifier noise. The electrical 

thermal noise is responsible for most electronics noise commonly seen in 
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optoelectronics detectors, electrical circuits, amplifiers, and electrical instruments, 

which will be discussed in Section 3.3. 

 
Figure 3.2 Electrical thermal noise in time and frequency domains (a) simulation 

of electrical thermal noise in the time domain (b) simulation of electrical thermal 

noise in the frequency domain (c) measured electrical thermal noise spectrum 

 

There are a few ways to reduce the electrical thermal noise. One way is to 

reduce the temperature since the thermal noise power drops linearly with the 

temperature. Practically it is not hard to keep the detection electronics at low 

temperature, especially for cryogenic experiments. But the final stage of 

measurement always involves large-size commercial instruments, such as lock-in 

amplifiers or spectrum analyzers, which are usually specified for room 

temperature operation. Another method of reducing the electrical thermal noise is 

by using large resistance. This is also hard to implement since standard RF 

circuits use a 50 ohm impendence. Some experimental techniques can reduce the 

effects of thermal noise in measurement and they will be discussed in later 

chapters. 

 

3.2.2 Laser shot noise 

The fundamental optical noise is laser shot noise, which appears as the 

fluctuation of the laser intensity in repeated measurements, even for an ideal laser 

without any external noise caused by the environment. All lasers, as coherent light 

sources, are subjected to laser shot noise due to the quantum properties of light. 

In classical physics, an ideal monochromatic coherent light is described as a 

continuous electromagnetic wave with well defined amplitude and phase, like a 
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classical particle having well defined momentum and position. However, in 

reality the optical amplitude and phase are not infinitely well defined, but always 

fluctuating with a small variance according to some statistical models. Usually a 

laser beam has a very large number of photons, for example,  for a few 1310 Wμ , 

so that the small fluctuation can be ignored. However, in some precise 

measurements where the fluctuation becomes important, or in low light intensity 

measurements where the fluctuation is comparable with the light intensity, those 

fluctuations cannot be ignored, and quantum optics is necessary to study the 

quantum fluctuations shown in laser shot noise. 

In this section, first a simple photon number model is introduced to illustrate 

the properties of laser shot noise. Then a quantum optics model is presented to 

explain the origin of laser shot noise and how different optical quantum states 

demonstrate laser shot noise. 

 

3.2.2.1 A photon number laser shot noise model 

A simple understanding of laser shot noise is based on the Poisson distribution 

of photon number as discussed in Section 3.1.3. The photon number fluctuation in 

a quantized coherent laser light source is a random process following the 

assumptions of the rare event model, due to the probabilistic nature of quantum 

mechanics. For a laser beam with an average number of photons N in a unit of 

time, the number of photons measured in repeated measurement follows a Poisson 

distribution. 

Based on this model, two important properties of laser shot noise can be 

derived. First, laser shot noise, like electrical thermal noise, is white noise. Since 

the standard derivation of a Poisson distribution is N  and the fluctuation is 

random over any time scale, the amount of the laser shot noise is N  over any 

frequency. Second, the noise spectra of two laser beams with same power are 

completely independent. These properties will be the foundation for our work in 

measuring signal below the laser shot noise. Figure 3.3 illustrates laser shot noise 

in time and frequency domains, as fluctuations of electric field, fluctuation of 

laser intensity, and noise spectrum. 
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Figure 3.3 Laser shot noise in time and frequency domains (a) laser shot noise as 

E-field amplitude fluctuations in the time domain by simulation  (b) laser shot 

noise as laser intensity fluctuations in the time domain  by simulation (c) laser 

shot noise spectrum of the (b) obtained by Fourier Transform (d) laser shot noise 

spectrum measured with a Coherent 699 dye laser 

 

Usually laser shot noise is very small compared with the average intensity so 

that it can be ignored in most laser spectroscopy experiments. Figure 3.4 gives the 

amount of laser shot noise and the corresponding ratio between the laser shot 

noise and the average intensity over the photon number and laser power. The 

inserts illustrate the electric field amplitude fluctuation caused by the laser shot 

noise with a normalized scale when photon number is small (<100). It is clear that 

at the laser power range used in most laser spectroscopy experiments, μW to mW, 

the laser shot noise can be ignored. However, laser shot noise becomes important 

for laser spectroscopy with small signals comparable to or even lower than the 

shot noise, which is the focus of this study. 
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Figure 3.4 Laser shot noise and the optical signal detection capability at the SNL 

versus laser power or photon number [the inserts illustrate the electric field 

amplitude fluctuation caused by the laser shot noise with a normalized scale when 

the photon number is small (<100). ] 

 

The shot noise limit (SNL) refers to the experimental condition under which 

the dominant noise is the laser shot noise. In most laser spectroscopy experiments 

the largest noise is the laser common mode noise that goes up linearly with N, 

which means the SNR cannot be improved by increasing the laser power. At the 

SNL, the SNR can be improved by increasing laser power. The SNL is a desired 

condition that requires significant effort. Practically the SNL indicates the 

minimum optical signal we can measure if we know the laser power on the 

detector. The minimum detectable optical signal normalized to the laser power 

should be larger than the ratio between the laser shot noise and average intensity. 

Figure 3.4 shows the optical signal detection capability as the ratio between the 

laser shot noise and the average intensity depending on the laser power.  
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Since the photon number is proportional to the laser power, the square root 

dependence indicates that the laser shot noise is proportional to the square root of 

the laser power. Since in the usual case signals and most noise in experiments are 

proportional to the laser power, the square root dependence provides two different 

strategies of optimizing the SNR in experiments. On the one hand, if the 

experiment is limited by common mode noise, which proportional to the laser 

power, the SNR is optimized by reducing the laser power, since the common 

noise drops faster than the laser shot noise. We can always reach the shot noise 

limit by attenuating the laser power, even though practically we may be limited by 

the sensitivity of our detectors. On the other hand, if the experiment is in the shot 

noise limit, the SNR is optimized by increasing the laser power. In this case the 

practical limits would be the available laser power or detector damage threshold. 

To measure signals smaller than the laser shot noise, specific experimental 

techniques are required to reduce the effects of noise, which will be discussed in 

following chapters. It is worthy to note that some experiments may go below the 

shot noise limit by using a current with sub-Poisson distributions in laser diodes 

[7, 8, 9]. 

 

3.2.2.2 A quantum optics laser shot noise model 

Besides the simple pictorial description of shot noise as the fluctuation of 

photon number caused by rare events, shot noise can be described as fluctuations 

of the intensity of the electrical field through the quantization of light. 

In this section, first a quantum harmonic oscillator model is introduced to 

define quantum amplitude and phase. Then three different quantum states: 

number states, coherent states, and squeezed states, are discussed to show the 

interplay between quantum amplitude and phase fluctuations that gives rise to 

laser shot noise. Most of the discussion here is adapted from Reference [10]. 

 

A Quantum Harmonic Oscillator Model for the Quantization of Light 

A quantum harmonic oscillator can model the quantization of light. For a 

harmonic oscillator, the Hamiltonian is 
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2 2ˆ 1ˆ ˆ
2 2
pH m
m

ω= + q        (3-34) 

where  is the position operator and q̂ p̂  is the momentum operator. p̂  and  

obey the commutation relation. 

q̂

[ ]ˆ ˆ,q p i=          (3-35) 

A pair of dimensionless operators, a destruction operator  and a creation 

operator , are defined as the following. 

â
†â

ˆ 2 (a m m q iω ω= ˆ ˆ )p+        (3-36) 

†ˆ 2 (a m m q iω ω= ˆ ˆ )p−

1

       (3-37) 

The commutation relation is 
† † †ˆ ˆ ˆ ˆ ˆ ˆ,a a aa a a⎡ ⎤ = − =⎣ ⎦        (3-38) 

The Hamiltonian can be rewritten as 

† † †1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (
2 2

H aa a a a aω ω= + =
1)+      (3-39) 

Let n  be an energy eigenstate with eigenvalue . The eigenvalue equation 

is 

nE

† 1ˆ ˆ ˆ( )
2 nH n a a n E nω= + =       (3-40) 

Solving the equation we get  

ˆ 1a n n n= −         (3-41) 

†ˆ 1 1a n n n= + +        (3-42) 

†ˆ( ) 0
!

nan
n

=         (3-43) 

1( )
2nE n ω= + ,       (3-44) 0,1,2,...n =

where 0  is the ground state, and the ground state energy is 1
2

ω  rather than 0. 

It shows that the vacuum field has a nonzero energy, a statement that does not 

appear in the classical theory. Later discussion will show that the vacuum field 

also gives rise to noise due to the fluctuation caused by the nonzero energy. 
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The number operator , which corresponds to the number of photons in a 

quantum state, is defined as  

n̂

†ˆ ˆ ˆn a a=          (3-45) 

And it gives 

n̂ n n n=         (3-46) 

Quantization of the electromagnetic field yields an E-field operator of the 

form 
1/ 2 †

0
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( / 2 ) ( )iE E E V ae a e iχ χχ χ χ ω ε+ − −= + = +    (3-47) 

where  

2
t kz πχ ω= − −         (3-48) 

Defining a pair of quadrature operators X̂  and  as Ŷ
†ˆ ˆ ˆ( ) /X a a= + 2         (3-49) 

†ˆ ˆ ˆ( ) /Y a a= − 2i         (3-50) 

and with the commutation relation  

ˆ ˆ,X Y i⎡ ⎤ =⎣ ⎦ ,        (3-51) 

we get a dimensionless form of the Heisenberg uncertainty relation 

2 2 1( ) ( )
16

X YΔ Δ ≥         (3-52) 

Using the quadrature operators, with units of  the E field 

operator can be written as  

1/ 2
0( / 2 )Vω ε

†1ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) cos sin
2

i iE E E ae a e X Yχ χχ χ χ χ+ − −= + = + = + χ   (3-53) 

To evaluate the effects on measuring signals vs. noise, a few parameters are 

defined here for evaluating the SNR for different states. The coherent signal S is 

defined as the expectation value of the field operator. The inherent noise is 

defined as the variance of the electrical field, showing the fluctuation of the field. 

The SNR is defined as the signal power over the noise power. 

( )S E χ=         (3-54) 
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( 2( )N E )χ= Δ         (3-55) 

( )

22

2

( )
( )

ESSNR
N E

χ

χ
= =

Δ
       (3-56) 

By looking into the photon number fluctuation and SNR for the number states, 

coherent states, and squeezed states, we can compare the noise properties of the 

different states. 

 

Number State 

Quantization of light with a harmonic oscillator model shows that the photon 

number states form a complete set for a single mode state. Number states, also 

called Fock states, are the energy eigenstates of the harmonic oscillator discussed 

in the previous section. Applying the number operator, we get 
†ˆ ˆ ˆn n n n a a n n= =        (3-57) 

2ˆ ˆn n n n nn n n= 2=        (3-58) 

2( ) 0nΔ =          (3-59) 

There is no photon number fluctuation for the number states according to the 

definition of a number state. 

Using the quadrature operators defined earlier, the average and the variance of 

the operators can be estimated. 

2 2 1ˆ ˆ( ) ( )
2

X Y n n n+ = +        (3-60) 

2 1 1ˆ ( )
2 2

X n n= + n        (3-61) 

2 1 1ˆ ( )
2 2

Y n n n= +        (3-62) 

ˆ ˆ 0n X n n Y n= =        (3-63) 

2 2 1 1( ) ( ) (
2 2

X Y nΔ = Δ = + )       (3-64) 

The average field measured by any detector is zero and the intensity 

fluctuation is nonzero. 
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ˆ ( ) 0S n E nχ= =        (3-65) 

22 2 1 1ˆ( ( ) ) ( ) ( ) (
2 2

N E n E n E nχ χ χ= Δ = − = + )    (3-66) 

0SNR =          (3-67) 

 

 
Figure 3.5 A number state (a) illustrated with the quadrature operators (b) 

illustrated with the amplitude-phase picture (the sin waves with different phases 

represents the phase is random.) (Figure courtesy of Loudon [10]) 

 

Figure 3.5(a) illustrates the electric field of a number state as an arrow with 

the uncertainty of the quadrature operators, which gives a circle according to 

Equation 3-60. The average of the field is zero, shown by the position of the 

center of the circle at the origin.  

It is clear that amplitude of the number state is well defined without 

uncertainty, shown by the constant length of the arrow no matter where it is on the 

circle. However, the phase, represented by the angle from the real field axis, could 

be anywhere, which means the phase is undefined with infinite uncertainty. The 

amplitude-phase picture of number states is illustrated in Figure 3.5(b). 

Even though number states show zero amplitude fluctuation, they are not 

helpful in reducing experimental noise. The number states are theoretical states, 

and it is very hard to generate them in experiments. 

 

Coherent State 

A coherent state is a linear superposition of the number states defined as 
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2
1/ 2

0

1exp( )
2 ( !)

n

n
n

n
αα α

∞

=

= − ∑ .      (3-68) 

The coherent states are eigenstates of the destruction operator , where â

2
1/ 2

0

1ˆ exp( ) 1
2 ( !)

n

n
a

n
α nα α

∞

=

= − − =∑ α α  and    (3-69) 

ie θα α= .         (3-70) 

The photon number fluctuation gives the laser shot noise as the square root of 

the photon number, just as the statistical model shows, where 
2†ˆ ˆ ˆn a aα α α α α= =       (3-71) 

42 † †ˆ ˆ ˆ ˆ ˆn a aa a 2α α α α α α= = +      (3-72) 

22( )n αΔ = = n .        (3-73) 

The average and variance of the quadrature operators are 

†1 1ˆ ˆ ˆ ( ) co
2 2

X a a sα α α α α α α∗= + = + = θ    (3-74) 

ˆ sinYα α α= θ        (3-75) 

22 † † † 21 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 cos
4 4

X a a a a aaα α α α α θ= + + + = +   (3-76) 

22 † † †1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 sin
4 4

Y a a a a aaα α α α α θ= − + − + = +2   (3-77) 

2 2 1( ) ( )
4

X YΔ = Δ =        (3-78) 

This shows that coherent states have equal minimum uncertainty for both 

quadrature operators. Using the definition in Section 3.2.2.2, we can calculate the 

SNR for coherent states. 

ˆ ( ) cos( )S Eα χ α α χ θ= = −       (3-79) 

2 1( ( ) )
4

N E χ= Δ =         (3-80) 

2 24 cos ( ) 4 cos ( )SNR n 2α χ θ χ θ= − = −     (3-81) 
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Figure 3.6(a) illustrates the phase dependence of the electric field according to 

Equation (3-79). The solid line represents the sinusoidal curve of the mean E-field 

and the dashed lines represent the fluctuation of the field. This shows that 

coherent states have equal uncertainty for any given phase, giving the closest 

analogue to the classical EM field with minimum uncertainty in both amplitude 

and phase. Therefore coherent states are the best quantum states to represent a 

coherent single laser mode [11]. 

 

 
Figure3.6 A coherent state (a) phase dependence of the electrical field  (b) 

quadrature representation (Figure courtesy of Loudon [10]) 

 

The uncertainty of the photon number and phase can be illustrated with a 

quadrature representation, as shown in Figure 2.6(b). The mean amplitude is 

represented by the arrow of length 1/ 2nα =  at the angle χ θ− . The circular 

disk of diameter ½ represent the field uncertainty according to the variance of the 

quadrature operators. 

The amplitude uncertainty is estimated by the variance of the amplitude mean, 

and the phase uncertainty is represented by the angle corresponding to the 

variance of the phase operator: 
2 2

1/ 2 1/ 2 1/ 21 1
4 4

n n n n⎛ ⎞ ⎛ ⎞Δ = + − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (3-82) 

1/ 2

1 2 1
2 n

ϕ
α

Δ = = .       (3-83) 
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The uncertainty relation is 1
2

n ϕΔ Δ = .     (3-84) 

Since 
†

2 2 †
1/ 2

0 0

ˆ1 1 ( ) ˆexp( ) exp( ) 0 exp( ) 0
2 ( !) 2 ! 2

n n

n n

an a
n n
α αα α α α α

∞ ∞

= =

= − = − = −∑ ∑ 21

â

           

          (3-85) 

it will be convenient to define a coherent-state displacement operator 
†ˆ ˆ( ) exp( )D aα α α∗= − .       (3-86) 

 

Squeezed states 

Squeezed states are quantum states with reduced noise lower than the SNL in 

amplitude or phase. This is accomplished by shifting the uncertainty from one 

parameter space to another. Here, a squeezed coherent state is discussed for 

illustration. 

A single mode quadrature squeezed coherent state is defined as 

ˆˆ, ( ) ( )D Sα ζ α α= 0        (3-87) 

where ˆ ( )D α  is the coherent state displacement operator defined in Equation 3-86, 

and ˆ( )S α  is the squeeze operator 

2 †1 1ˆ ˆ ˆ( ) exp( ( ) )
2 2

S aζ ζ ζ∗= − 2a       (3-88) 

ζ is the complex squeeze parameter with amplitude and phase defined as 
ise ϑζ =          (3-89) 

Applying these operators we get 
† † †ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) cosh sinhiS D aD S a s a e sϑζ α α ζ α= − +    (3-90) 

† † † †ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) cosh sinh *iS D a D S a s ae sϑζ α α ζ α−= − +    (3-91) 
†ˆ ˆ ˆ ˆ( cosh sinh ) , ( cosh * sinh ) ,i ia s a e s a s a e sϑ ϑα ζ α− −+ = + ζ   (3-92) 

The photon number fluctuation can be estimated as 
2 2ˆ, , sinhnα ζ α ζ α= + s        (3-93) 
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2 2 2 2 2 2 2 21 1( ) sin ( ) cos ( ) 2sinh (sinh 1)
2 2

s sn e e s sα θ ϑ θ ϑ−⎧ ⎫Δ = − + − + +⎨ ⎬
⎩ ⎭

(3-94) 

Similarly, the SNR can be evaluated. 

ˆ, , Re coX sα ζ α ζ α α= = θ       (3-95) 

ˆ, , Im sinYα ζ α ζ α α= = θ       (3-96) 

2 2 2 2 21 1 1( ) sin ( ) cos ( )
4 2 2

s sX e eϑ ϑ−⎧Δ = +⎨
⎩ ⎭

⎫
⎬     (3-97) 

2 2 2 2 21 1 1( ) cos ( ) sin ( )
4 2 2

s sY e eϑ ϑ−⎧Δ = +⎨
⎩ ⎭

⎫
⎬     (3-98) 

ˆ ( ) cos( )S Eα χ α α χ θ= = −       (3-99) 

2 2 2 2 21 1( ( ) ) sin ( ) cos ( )
4 2

s sN E e e 1
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e e

α χ θ
1χ ϑ χ−

−
=

− + − ϑ
    (3-101) 

22
max 4 sSNR e α=  for 1

2
χ θ= = ϑ      (3-102) 

The phase dependence of the field amplitude is shown in Figure 3.7(a). The 

noise reduction at phase values of 0, π  and 2π  are achieved at the expense of 

increased noise at phase values of 
2
π  and 3

2
π . 

 

    
Figure 3.7 A squeezed state (a) phase dependence of the electrical field (b) 

quadrature representation (Figure courtesy of Loudon [10]) 
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Figure 3.7(b) is the representation of an amplitude squeezed state with 

 using the same notation as Figure 3.6(b). In the same way the photon 

number and phase uncertainty can be estimated as 

exp( ) 2s =

2 2
1/ 2 1/ 2 1/ 21 1

4 4
s sn n e n e n e− −⎛ ⎞ ⎛ ⎞Δ = + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
s−    (3-103) 

1/ 22 2

s se e
n

ϕ
α

− −

Δ = =        (3-104) 

The uncertainty relation remains same as 1
2

n ϕΔ Δ = . 

Experiments have been done to measure the phase dependence of squeezed 

states [12], as shown in Figure 3.8. The experimental results agree well with the 

theoretical plots in Figure 3.6(a) and 3.7(a). 

 
Figure3.8 Experimental measurement of coherent states and amplitude 

squeezed states (Figure courtesy of Breitenbach et. al. [12]) 

 

Squeezed states have been generated and measured with about 8dB below the 

SNL by using either parametric amplification with nonlinear optical crystals [13, 

14] or sub-Poisson photon generation with semiconductor diode lasers [7-9]. Both 

techniques require complicated and precisely controlled systems. Even the best 

performance is limited to a few dB. All these limit the practical implementation of 

using squeezed states to measure weak signals below the SNL. One proposed 

application of squeezed light is to detect gravitational waves [15], which is still 

under design. 

 54



 

3.3 Practical noise in laser spectroscopy 

Laser spectroscopy uses lasers as the light source, optical components to 

control light, and various photodetectors to convert optical signals into electrical 

signals. All these parts may bring noise into laser spectroscopy experiments. 

In this section, the actual noise seen in laser spectroscopy from every step is 

analyzed. First, the optical noise caused by the optical source and components is 

discussed. Then the electrical noise from photodetection and electrical signal 

processing is studied. At the end, the total noise in the system is examined. 

 

3.3.1 Optical noise 

Optical noise is the noise from the optical components at the experimental 

setup. In laser spectroscopy, light is generated by lasers that generate coherent 

optical radiation with a certain frequency, linewidth, and intensity either as a 

continuous wave (CW) or a repetitive pulse train. Most often light is controlled by 

optical components or devices through intensity, phase, polarization, and 

wavelength. Optical noise can be divided into laser noise and propagation noise. 

In the previous discussion, we learned that an ideal laser can generate 

radiation in coherent states at SNL, or squeezed states with sub-Poisson 

distributions. Actual lasers used in laser spectroscopy are dominated by technical 

noise due to practical limitations including spontaneous emission, mode hopping 

and competition, pumping power fluctuation, laser cavity drifting, temperature 

fluctuation, etc. To reduce laser noise it is preferable to stabilize the environment 

(including temperature, pumping source, and laser cavity) and have the laser run 

at a single longitudinal fundamental mode of minimum linewidth. One practical 

guide is the Schwalow-Townes limit [16], which gives the limited linewidth 

caused by spontaneous emission. 

The amount of noise in different lasers varies over a large range due to the 

different configurations present. Technical noise of a laser can be characterized 

and reduced with experimental techniques to be discussed later. Figure 2-9(a) 

gives the overall noise of a CW dye laser. Figure 2-9(b) shows a comparison of 
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the ratio between the laser noise and average power from 10Hz to 100KHz, the 

frequency range for our lock-in amplifiers, of a dye laser and a diode laser. The 

diode laser is about two orders better than the dye laser. The dye laser approaches 

the SNL only at frequency above a few MHz, and the diode laser approaches the 

SNL at frequency above hundreds of Hz. 
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Figure 3.9 Laser noise (a) Laser noise of a CW dye laser (b) the ratio between 

the laser noise and average power of a dye laser and a diode laser 

 

Practically laser noise can be divided into two categories. One is laser shot 

noise caused by quantization of field which can not be divided into two identical 

halve, as we discussed earlier. The other is common mode laser noise caused by 

the changing environment, which can be divided into two identical halves and be 

cancelled out with some experimental techniques to be discussed later. Usually 

the laser noise is the sum of the laser shot noise and common mode laser noise, 

with the former dominating at high frequency and the later dominating at low 

frequency. 

All the noise discussed above is the static noise when a laser is running under 

a stable condition without any internal modulation. In many experiments the laser 

may need by internally modulated or scanned in frequency (or wavelength), 

amplitude, or phase by changing the laser cavity or gain medium. All these 

internal modulation or scanning causes significant noise much bigger than the 

static noise we have discussed. For our spectroscopy study on QDs, we needed to 

scan the laser over a wavelength range to study the absorption spectrum. The laser 

scanning noise dominates over other noise. Some experimental technique will be 

discussed in Chapter 5 to avoid the laser scanning noise. 
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In laser spectroscopy, laser light goes through optical components and 

experimental apparatuses before the optical signals are converted into electrical 

signals. Any mechanical vibration of the optical components or the experimental 

apparatuses gives mechanical noise in the measurements. Usually mechanical 

vibration for optical components is not an issue since most optics have properly 

designed mounts, and the mounts are tighten down on optical tables to minimize 

any mechanical vibration. Mechanical noise becomes important for experiments 

where the laser beam propagates through small apertures or suspended samples. 

For example, in our experiments on semiconductors, samples are mounted on a 

sample holder suspended in a cryostat, and the laser beam is focused down to a 

few microns to pass through submicron sized apertures. Mechanical noise needs 

be avoided for single dot study through the apertures. 

Another noise source from beam propagation is the back reflection from 

optical surfaces and multiple reflections caused by undesired etalon effects. For 

any uncoated optical surface there is a 4% reflection. Usually the back reflected 

beams are ignored in experiments. In experiments with laser diodes, the back 

reflection could cause instability of the laser diode. Optical isolators can be used 

to reduce the back reflection into the laser diode. Multiple reflections caused by 

etalon effects could give artificial signals on detectors, which usually appear as 

interference patterns. The artificial effects can be removed by rotating the optics 

that are causing the etalon effects by a small angle. 

 

3.3.2 Electrical noise 

Electrical noise is the noise related to electronics or optoelectronics. In laser 

spectroscopy optical signals are converted into electrical signals by photo 

detectors and processed by electronics. Electrical noise consists of photodetection 

noise and signal processing noise. 

In laser spectroscopy, optical signals are usually converted into electrical 

signals for convenient processing. Ideal opto-electrical conversion should not 

bring in noise. Actual opto-electrics devices always bring in extra noise due to 
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device properties [17]. Here the noise of two commonly used photo detectors: 

photodiodes and avalanch photodiodes (APD) are discussed. 

Photodiodes are the most commonly used phtodetectors that convert light into 

electrical current. The noise of the photodiode consists of two sources [18]. One is 

the thermal noise caused by the resistance of the photodiode. The other is the dark 

current noise. The dark current indicates the amount of current coming out of the 

photodiode when there is no light. For a good photodiode and large enough 

signals, the dark current (nA) can be ignored compared with the photo current 

(μA or mA). 

The avalanch photodiode is a photodiode with gain to amplify signals more 

than noise [18]. In addition to all the characteristics of the photodiode, APDs have 

one more characteristic, the gain. With a gain factor, the APD amplifies the 

current generated from the photodiode without the thermal noise, which gives 

better SNR than using a photodiode and electrical amplifiers. Usually, APDs are 

used for low light intensity detection rather than high light intensity since the 

APD has a low saturation threshold with gain. The extra noise caused by the APD 

can be represented by the excess noise factor, which is small compared to other 

noise sources for a good APD. Further details can be found in Reference [18]. 

Electrical signals converted from optical signals may go through electrical 

signal processing involving amplifiers, filters, and digitizers. Most electrical 

processing noise is from amplifiers and digitizers. 

Since Johnson noise exists in any circuit, any electrical amplifier amplifies 

Johnson noise when it amplifies signals [19]. The quality of an amplifier is 

characterized by the Noise Factor or the Noise Figure (NF) defined as 

10log(Noise Factor) dB, which tells how much excess noise the amplifier causes 

in the amplification. An ideal amplifier has a Noise Factor of 1 (NF 0dB). Low 

noise amplifiers may have Noise Factor of 2 (NF 3dB), which only doubles the 

noise power after amplification. 

Now most signal processing is done digitally. Due to the rounding procedure 

in any A/D conversion, there is always a small amount of A/D conversion noise 

depending on the number of bits in the A/D converter. It is one over the maximum 
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integer represented by the A/D converter. For an 8-bit A/D converter, the error is 

1
256

± . For a state-of-the-art 14-bit A/D converter, it is 1
48896

± , which usually 

can be ignored. 

 

3.3.3 Total noise 

 
Figure 3.10 Total noise  (a) Laser power dependence of the individual and total 

noise for a photodiode with a 20dB gain and 3dB NF amplifier (b) Laser power 

dependence of the individual and total noise for an APD with 20dB gain and 3dB 

NF 

 

The total noise in laser spectroscopy measurements will be the incoherent 

superposition of the noise power from each source. At the shot noise limit, the 

total noise will be the sum of the laser shot noise and the electrical thermal noise, 

amplified by amplifiers. Figure 3.10 gives the laser power dependence of laser 

shot noise, electrical thermal noise, and total noise for a photodiode with 

amplifiers and an APD without amplifiers, assuming the amplifiers and the APD 

have the same 20dB gain and 3dB NF. It shows that in the low laser power regime 

electrical thermal noise dominates, and in the high laser power regime laser shot 

noise takes over. For the photodiode with amplifiers, the amplifier amplifies both 

laser shot noise and electrical thermal noise by 100 times in power, and introduces 

extra noise by a factor of two. The minimum laser power required to detect laser 

shot noise due to the existence of thermal noise is about 1mW. The APD only 
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amplifies the laser shot noise with extra noise, and the thermal noise is not 

amplified. The minimum laser power required to detect the laser shot noise drops 

down to about 10μW, which shows the advantage of APDs for low light intensity. 

 

In summary, noise in laser spectroscopy was studied including noise statistics, 

noise physics of two fundamental noise sources, and actual noise from each 

component used in laser spectroscopy. The noise statistics section provided a 

mathematical model to study the properties of noise. The noise physics section 

explained the electrical thermal noise with statistical physics and the laser shot 

noise with quantum optics. The actual noise section illustrated the specific sources 

of noise from lasers, photo detectors, and amplifiers, and the total noise types. 

Based on an understanding of all these noise sources, experimental techniques to 

reduce the effects of noise in laser spectroscopy measurements will be discussed 

in the following chapters. 
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Chapter 4 

 

 

Differential Reflection for Single QD Absorption Measurement  

 

 

To manipulate quantum dots (QDs) for optically-driven quantum computing 

(QC), it is fundamental to understand the optical properties of these 

nanostructures, including emission, absorption, and spin dynamics [1, 2, 3]. The 

emission spectrum contains information about the energy levels of the QDs. The 

absorption properties provide information about how to optically drive QDs 

efficiently. The spin dynamics help to find optimized schemes to manipulate the 

spin optically for spin based QC. To explore quantum dot based quantum 

computing (QDQC) all these optical properties needed to be experimentally 

measured. To measure these optical properties of a single QD, sensitive 

experimental techniques are crucial. Differential Transmission (DT) is a powerful 

laser spectroscopy technique to study the absorption and spin dynamics of QDs [4, 

5, 6, 7]. DT has been used to read out the quantum state of the QDs for QC [8]. 

Even current measurements requires averaging over multiple measurements due 

to low SNR, which limits scaling the DT to real QC systems, DT with ultrafast 

lasers provides a convenient and accurate way for rapid quantum state 

tomography [ 9]. 

Previous studies on QDQC have used DT to study the nonlinear optical 

properties of interface fluctuation quantum dots (IFQDs). The transmission 

geometry works well for neutral QDs or doped QDs, where the substrate can be 

removed from the sample. However, in order to be able to control the number of 

electrons in the QD, electric gates must be attached to the substrate. This requires 

that the GaAs substrate be retained, and prohibits transmission studies as the 
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energy of the IFQDs is above the GaAs band gap. Study in a reflection geometry 

is required for electrically gated IFQDs [10]. 

In this chapter, differential measurements are extended to the reflection 

geometry. First, the sample structure of the electrically gated IFQDs is introduced. 

Then phase sensitive bandwidth reduced detection with lock-in amplifiers is 

presented to show how to measure small signals out of noise by narrowing the 

bandwidth. Next, the physics of the nonlinear spectroscopic DT signal is reviewed 

through the density matrix equations and Maxwell-Bloch equations, and 

homodyne detection with lock-in amplifiers is explained to illustrate how a weak 

nonlinear optical signal can be measured out of a noisy background. At the end of 

the chapter, the differential reflection (DR) technique is discussed accounting for 

the phase shifts on reflection and relating the spectrum to the terms to the solution 

of the density matrix equations using the third order perturbation theory. 

Nonlinear absorptions of ensemble and single IFQDs are measured with the DR 

technique. 

 

4.1 Bandwidth reduced detection with Lockin amplifiers 

To study the optical properties of quantum dots, we need to measure both the 

linear and nonlinear absorption in order to obtain all the fundamental parameters. 

As shown in experiments, the linear and nonlinear absorption signals, represented 

as the ratio between the absorbed light and the incident light, are very small, on 

the order of  for the linear absorption and 410− 610−  for nonlinear absorption [11, 

12, 13], which is sometimes comparable with the laser noise (  to ) in our 

experiments as we demonstrated in Chapter 2. Special experimental techniques 

are required to measure the weak signal from a single quantum dot. In this section 

first we will discuss how the bandwidth affects the signal-noise-ratio (SNR) and 

how lock-in amplifiers achieve bandwidth reduced detection. 

310− 610−

As we have seen in Chapter 3, electrical thermal noise and laser shot noise are 

forms of white noise uniformly spread out over all frequencies. The common 

mode laser noise of the dye laser in our experiment drops, from  at DC down 

to near the shot-noise-limit (SNL) at a few MHz. Within a small bandwidth 

310−

710−
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(100Hz to 0.3Hz) for center frequencies under 100KHz, the total noise is 

dominated by common mode noise, a few orders of magnitude above the SNL.  
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Fig. 4.1 Bandwidth effect on signal, noise and SNR (a) signal and noise versus 

bandwidth (b) SNR and measurement time versus bandwidth 

 

An important property of noise is that the noise power is integrated over the 

bandwidth of the measurement. For a flat noise spectrum, the noise power is 

directly proportional to the measurement bandwidth. However, usually the signal 

is at a single frequency, and its strength is independent of the measurement 

bandwidth. By reducing the measurement bandwidth, the noise can be reduced 

without reducing the signal strength so that the SNR can be improved. Figure 

4.1(a) illustrates the effect of bandwidth on the signal, noise, and SNR. It shows 

that a weak signal comparable to the noise can be measured with a SNR of 10 by 

reducing the bandwidth from 1Hz to 0.1Hz. 

The increase in SNR comes at the cost of measurement bandwidth, thus 

extending the required measurement time, as shown in Figure 4.1(b). The 

experimental system needs be stable during the long measurement time so that the 

random noise can be averaged out while the signal is not affected. In principle, the 

SNR can be infinitely improved by narrowing the measurement bandwidth. In 

actual experiments, the bandwidth cannot be made infinitely narrow due to 

limited system stability.  
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The simplest way to achieve a reduced bandwidth is to use a narrow bandpass 

filter at the central frequency. However, it is very hard to make narrow band pass 

filters for high frequencies compared to low frequency. The best narrow band 

pass filters are available only at DC. A lock-in amplifier is an instrument that 

converts AC signals into DC signals with adjustable narrow band pass filters at 

DC to achieve phase sensitive bandwidth reduced detection.  

Figure 4.2 illustrates the functional diagram of a lock-in amplifier. The input 

first passes through a preamplifier. Then the amplified input mixes with a 

reference sine wave to convert the input into a high frequency and a low 

frequency component. After passing through the narrow-band low-pass filter 

centered at DC, only the signal in phase at the reference frequency survives [14]. 

 

Vout Vpsd 

Vref 

Vin 

Preamp Narrow-band low-
pass filter at DC 

Output 
amplifier Mixer 

Reference  
Figure 4.2 A functional diagram of a lock-in amplifier 

 

Assume the input contains a single frequency signal with a constant phase, a 

broadband noise with random phase, and a DC offset as 

sin( ) sin( )in signal signal signal noise noise noise DCV V t V t Vω ϕ ω ϕ= + + + +   (4-1) 

where signalV  is the signal amplitude, signalω  is the signal frequency, signalϕ  is the 

constant phase of the signal,  is the noise amplitude, noiseV noiseω  is the noise 

frequency covering a broad band, noiseϕ  is the random phase of the noise, and DCV  

is the DC offset. 

The reference is a pure sinusoidal wave as sin( )ref ref refV tω ϕ+ , where  is 

the reference amplitude, 

refV

refω  is the frequency of the reference, and refϕ  is the 

phase of the reference. After the preamplifier, the DC offset is filtered out. After 

the mixer we get 
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( sin( ) sin( )) sin( )

1 (cos[( ) ( )] cos[( ) ( )])
2
1 (cos[( )
2

psd signal signal signal noise noise noise ref ref ref

signal ref signal ref signal ref signal ref signal ref

noise ref noise ref

V V t V t V t

V V t t

V V t

ω ϕ ω ϕ ω ϕ

ω ω ϕ ϕ ω ω ϕ ϕ

ω ω

= + + + +

= − + − + + + +

+ − + ( )] cos[( ) ( )]noise ref noise ref noise reftϕ ϕ ω ω ϕ ϕ− + + + + )

. 

After the narrow band low pass filter at DC, only the frequency components 

near the reference frequency with a frequency difference less than the filter 

bandwidth will pass. The in phase component will give a maximum signal. 

Applying the condition in refω ω=  and in refϕ ϕ= , we get 

1 ( cos(( )))
2out in noise noise in refV V V Vϕ ϕ= + − .      (4-2) 

This shows that the lock-in amplifier only selectively measures AC signals in 

phase with the reference at the reference frequency within the narrow bandwidth. 

Noise at other frequencies will be frequency shifted, but remain as AC rather than 

DC. Noise at the reference frequency varies in phase with respect to the reference 

phase and gives a varying DC. Then, by using a narrow band filter with a tunable 

bandwidth, all the noise above a certain frequency threshold can be filtered out. 

The noise passing through the lock-in amplifier is only the noise at the reference 

frequency in phase with the reference. 

Based on the noise properties we discussed in chapter 3, bandwidth reduced 

detection with lock-in amplifiers is still subject to the total noise at the reference 

frequency in the system, which is usually 1/f noise, for two reasons. The first 

reason is that lock-in amplifiers usually work in a low frequency range (0.001-

100KHz), where the 1/f noise is dominates. The second reason is that absorption 

measurements require multiple measurements of absorption over a range of 

wavelengths. The 1/f noise affects the periodic measurement when the 

wavelength is scanned. 

 

4.2 Differential transmission 

To take the advantage of bandwidth reduced detection, the DT technique has 

been developed to measure nonlinear spectroscopic signals [15, 16, 17, 18]. In 
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this section, the physics of the nonlinear spectroscopic signals and the DT 

experimental technique employed to measure nonlinear signals are explained. 

First, solving the density matrix equations gives a theoretical description of the 

linear and nonlinear polarization of the system. Then a derivation of the Maxwell-

Bloch equations shows the relation between the signal electric field and the 

polarization. Next, the DT technique illustrates how a weak nonlinear signal is 

measured with a lock-in amplifier. 

 

4.2.1 Spectroscopy signals from material polarization 

When studying the optical properties of quantum dots, the quantum dots are 

excited and the optical properties are probed with laser beams. The electric field 

of the laser beam creates polarizations in the quantum dots, which give rise to the 

spectroscopic signals to be measured. Here density matrix theory is used to 

explain the physics of the polarization and the Maxwell equations are solved to 

illustrate the spectroscopic signal caused by the polarization. 

Density matrix theory [19] describes the material response to excitation by 

external fields. A simple closed two-level system, as illustrated in Figure 4.3, is 

used here to illustrate the material response as material polarization under optical 

excitation from the laser beams. 

For a two-level system, the wave function ψ  is 

1 21a aψ = + 2         (4-3) 

where  and  are the probability amplitudes of states 1a 2a 1  and 2 , respectively.  

 
Figure 4.3 A closed two-level system with a transition 12ω  and population decay 

rate  2Γ

2

2Γ

12ω

1  
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The Schrödinger equation is 

i a Ha=          (4-4) 

12 12

12 0
X

H
X
ω−⎡ ⎤

= ⎢
⎣ ⎦

⎥        (4-5) 

1212
12 12 . .i tEX e cωμ χ= − = +

i c       (4-6) 

where  is the Plank constant, a  is the wave function, H is the Hamiltonian, 12ω  

is the frequency of  the transition between the two levels, 12X  is the interaction, 

12μ  is the dipole moment of the transition, and E  is the electrical field. 

The density matrix equations of motion are 

[ ],
relaxation

i H iρ ρ ρ= +        (4-7) 

[ ]

11 12 21 12 12 2 22

22 12 21 12 12 2 22

12 12 12 12 22 11 12

iX iX
iX iX
i iX

ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ω ρ ρ ρ γρ

= − + +Γ
= − −Γ

= − − −

     (4-8) 

where γ  is the coherence decay rate, and 2Γ  is the population decay rate. 

Utilizing the rotating wave approximation and solving the density matrix 

equations under a cw field (i k R tE Ee )ω− −= i   with a perturbation approach we get 

(1) ( )0
12

122 ( )
i k R tNi E e

i
ωμρ

γ ω ω
− −=

+ −
i      (4-9) 

3 3
(3) ( )0

12 3 2 2
12 12 2

2 2
8 ( ) ( )

i k R tNi E e
i

ωμ γρ
γ ω ω γ ω ω

− −=
+ − + − Γ

i .   (4-10) 

The material polarization induced by the optical excitation is 

12 21( ) ( . .P N NTr N c cμ μρ μ ρ= = = + )∑ .    (4-11) 

From a macroscopic picture, when light interact with materials it causes 

induced polarization, which can be expressed in terms of material susceptibility.  
(1) (2) (3)

0 0 0
, , ,

...i i j i j
i i j i j k

P E E E E E Eε χ ε χ ε χ= + +∑ ∑ ∑ k +    (4-12) 
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where 0ε  is the permittivity of free space, and ( )nχ is the nth order of the 

susceptibility. The first order susceptibility (1)χ  gives linear absorption and 

dispersion. The second order susceptibility (2)χ  gives second harmonic 

generation, sum and difference frequency generation, and optical rectification. 

The third order susceptibility (3)χ  gives the third harmonic generation, four-

wave-mixing, and phase conjugation. For centro-symmetric crystals, all even 

order polarizations vanish due to crystal symmetry. Higher order polarizations are 

ignored since they are much weaker than the 1st and 3rd order terms. 

For the two-level system, perturbation theory shows that polarizations only 

appear for odd orders, and the population terms occur for even orders. Based on 

the calculation of a two-level system with density matrix equations and Maxwell-

Bloch equations, the first and the third order nonlinear polarization is 
2 2

(1)
2 2

( )
2 ( ) 2 ( )

i i
i

μ μ γ
χ

γ γ
− Δ

= =
− Δ + Δ

      (4-13) 

2
(1)

2 22 ( )real

μ
χ

γ
−Δ

=
+ Δ

       (4-14) 

2
(1)

2 22 ( )imaginary

γ μ
χ

γ
=

+ Δ
       (4-15) 

4 4
(3)

3 2 2 3 2
2 2

2 (1 4
8 ( ) ( )

i i
i

μ μ γγχ
γ γ γ 2 2

)γ − Δ
= =

− Δ Γ + Δ Γ + Δ
    (4-16) 

4
(3)

3 2 2
2 ( )real

μ γ
χ

γ
− Δ

=
Γ + Δ 2        (4-17) 

4 2
(3)

3 2 2
2 ( )imaginary

μ γ
χ

γ
=

Γ + Δ 2 .      (4-18) 

where 12ω ωΔ = −  is the detuning. 

The real part of the susceptibility is related to the refractive index, and the 

imaginary part is related to the absorption. In the case of the linear response the 

two parts are related through Kronig-Kramer relation. It is worth noticing that the 
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first order susceptibility is a Lorentzian curve and the third order susceptibility is 

a Lorentzian squared curve, as plotted in Figure 4.4.  
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Figure 4.4 Real and imaginary part of the first and third order susceptibilities (a) 

Real and imaginary part of the first order linear susceptibility (b) Real and 

imaginary part of the third order linear susceptibility 

 

The density matrix gives the nonlinear susceptibility from material polarization 

under optical excitation. Using the polarization as the source term in the Maxwell 

equations we can obtain the signal containing the spectroscopic information of the 

nonlinear susceptibility. 

The Maxwell equations are 

0D∇ =i          (4-19) 

0E∇× =          (4-20) 

0B∇ =i          (4-21) 

DH
t

μ ∂
∇× =

∂
        (4-22) 

D Eε= + P         (4-23) 

B H Mμ= + ,        (4-24) 

where  is the electric displacement, ED  is the electric field, B  is the magnetic 

induction,  is the magnetic field, and H M  is the magnetization. 
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To solve the Maxwell’s equation, we take the curl of Equation (4-22) and 

substitute equation (4-22) in to find 
2 2

2
2 2 2

1( ) EE E
c t t

μ P∂ ∂
∇ ∇ −∇ = − −

∂ ∂
i .     (4-25) 

Two approximations are made here to solve the equation. The first, 0E∇ =i , 

means that there is no net charge density due to the material polarization. It is 

valid in our experiments since there is no net charge creation. The second is that 

the electric field propagation is treated in the plane wave approximation, meaning 

that the longitudinal field is negligible. This is appropriate in our experiments 

since all detection is through lens systems at far fields. Applying these 

approximations yields 
2 2

2 2 2

1E E
z c t t

μ∂ ∂ ∂
= +

∂ ∂

2

2

P
∂

.       (4-26) 

Assuming a solution of the form 

. .ikz i tE Ee e c cω−= +         (4-27) 

. .ikz i tP Pe e c cω−= + ,       (4-28) 

we get the following terms 
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For cw measurement, in the slow varying envelop approximation (SVEA), the 

fast time varying components, 
2
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∂
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 and 
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, and the fast spatially varying 

components, 
2

2

E
z

∂
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, can be ignored. Equation (4-24) reduces to 
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Since k
c
ω

= , we thus get the Maxwell-Bloch Equation 

2
E ki
z

P
ε

∂
=

∂
        (4-31) 

For an optically thin sample with a thickness of l, 

2
klE i P
ε

=          (4-32) 

The Maxwell-Bloch equation [20] gives a linear relation between the signal 

electric field and the material polarization. Higher order of polarizations have 

nonlinear dependences on the electric fields of the exciting light, but the signal 

electric field is still proportional to the polarization. Since the polarization of a 

single QD radiates as a dipole, the signal radiates in the dipole radiation pattern, 

with maximum radiation occurring in the plane perpendicular to the dipole 

orientation. 

 

4.2.2 Homodyne detection with differential transmission 

Usually the nonlinear spectroscopic signals from QDs are very small, 

especially for a single QD. To detect the small signals, a homodyne scheme that 

measures the mixing of the signal electric field and a reference electric field from 

the same laser beam is used. DT is an experimental spectroscopy technique used 

to measure the optical signal in a pump-probe setup. The simplest version of the 

DT is a single chopping scheme, as illustrated in Figure 4.6. A pump laser beam 

and a probe laser beam are incident upon a QD sample from two slightly different 

angles. The pump beam is intensity modulated with an acousto-optic modulator or 

a mechanical chopper, and the probe beam is not modulated. For both the pump 

and the probe beams, most of the light is specularly reflected, a small portion of 

light interacts with QDs and gets scattered to all directions with spectroscopic 

signals, and some light propagates through the sample along the original direction. 

After the sample, the pump and probe beams propagate in different directions. 

Blocking the pump beam after the sample, the transmitted probe beam and 

forward scattered pump and probe light are collected by a lens and imaged on a 

detector. The DT signal is detected at the pump modulation frequency with a 
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lock-in amplifier. The laser wavelength is scanned for both the pump and the 

probe to map out the DT signal over a wavelength range. 
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Figure 4.5 DT setup 

 

A simple picture of DT is also illustrated in Figure 4.5. When the pump is off 

all population is in the ground state, and the probe beam experiences a certain 

amount of absorption. When the pump is on, some population is pumped to the 

excited state, and the probe beam experienced slightly less absorption. DT detects 

the difference of absorption between the pump on and pump off. 

The exact DT signal can be obtained by analyzing signals on the detector. 

When the pump beam is off, the detector measures the transmitted and forward 

scattered probe beam. 
2

( 0) ( 0)DT pump off transmitted probe forward scattered probeI E f E f− − − − −= = + =   (4-33) 

where  is the electric field of the probe beam transmitted through the 

sample hitting the detector, 

transmitted probeE −

forward scattered probeE − −  is the electric field of the forward 

scattered probe beam, and f represents frequency. Since the probe beam is not 

modulated, all pure probe related intensities are at DC ( 0)f = . If the transmitted 

probe is a few orders of magnitude stronger than the scattered probe, it is 

impossible to extract the spectroscopic signal from the huge background of the 

transmitted probe unless additional experimental techniques are used. 
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When the pump beam is on, the detector detects the electric field of the 

transmitted probe and the electric field of the forward scattered signal caused by 

both pump and probe. 
2

( 0) ( 0) ( 0)DT pump on transmitted probe forward scattered probe forward scattered pumpI E f E f E f− − − − − − −= = + = + ≠

           

          (4-34) 

where forward scattered pumpE − −  is the electric field of the forward scattered signal 

caused by the pump beam. Since the pump beam is modulated and no transmitted 

pump beam hits the detector, the scattered pump is separated from the scattered 

probe by frequency. The weak scattered pump is at the pump beam modulation 

frequencies or its higher order harmonics. All pure probe beam effects, including 

the strong transmitted probe and the weak scattered probe, remains as a DC 

background. By using narrow band phase-sensitive detection with a lock-in 

amplifier to detect signals at the modulation frequency, the small spectroscopic 

signal in the scattered pump can be measured out of a large DC background 

caused by the transmitted probe with homodyne detection. 

The DT signal on the detector is. 
*2 Re( )DT transmitted probe forward scattered pumpI E E− − −=     (4-35)  

transmissioni
transmitted probe probeE tE e φ

− = ,      (4-36) 

where t is the transmission coefficient, and  is the phase of the transmitted 

beam, which is same for the transmitted probe and forward scattered pump since 

their propagation paths are the same. 

transmissionφ

From Equation (4-12) and (4-32), we get 

(1) (3)
0 0

, ,
...

2
transmissioni

forward scattered pump pump i j k
i j k

klE i E E E E φε χ ε χ
ε− −

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ e , (4-37) 

where i,j,k could be either the pump or the probe and at least one of them should 

be the pump. At the pump beam modulation frequency the dominant terms are the 

third order polarization without any other background. 

( ) (3)
02

transmissioni
forward scattered pump pump pump probe

klE f i E E E φε χ
ε

∗ ∗
− − = e   (4-38) 
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( )(3) * * (3)0
0( ) 2Re Im

2DT pump pump probe probe pump probe
kltklI f i E E E tE I Iεε χ χ

ε ε
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

          (4-39) 

This shows that the DT only measures the imaginary part of the 3rd order 

nonlinear susceptibility. The key is that the transmitted probe experiences the 

exact same optical path as the forward scattered signal caused by the polarization 

in the transmission geometry. Transmission always measures the absorption, 

which is related to the imaginary part of the susceptibility. 

Single chopping is a good choice when the pump and probe beams can be 

separated in space or by polarization so that the detector only detects the probe 

beam. For single dot spectroscopy with small apertures, it is hard to separate the 

pump and the probe beams on the detector. Double chopping with both the pump 

and the probe modulated at two different frequencies measures DT at the 

difference frequency. The high sensitivity of the DT comes from optical 

modulation. Most noise in experiments, like air flow, mechanical vibration, and 

laser noise, is distributed in the low frequency regime. By choosing the proper 

optical modulation frequency, usually a few MHz, noise at other frequencies can 

be inhibited to measure small signals. With DT, the linear absorption of a single 

dot has been measured with non-resonant excitation [11], and the nonlinear 

absorption of a single dot has been studied with resonant excitation [15]. 

Ensemble and single dot nonlinear spectroscopic signals have been measured 

with DT earlier in our labortary, as shown in Figure 4.6. Photoluminescence (PL) 

is also shown as a reference. In ensemble studies with large apertures with 

diameters on the order of tens of microns, a large number of QDs give an 

inhomogeneously broadened spectrum in both PL and DT that overlaps in energy. 

There are mainly two 2meV wide peaks separated by about 8meV appearing in 

both the PL and DT scans, corresponding to the monolayer fluctuation in IFQDs. 

The relative strengths of the two monolayers are different for the two scans. The 

lower energy monolayer gives strong PL and weak DT, the higher energy 

monolayer shows weak PL and strong DT.  
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In single dot studies through sub-micron size small apertures, discrete states of 

single QDs can be resolved as narrow peaks at difference frequencies in both 

photoluminescence and nonlinear absorption. Most states show PL and DT at the 

same frequency. A few states shown in PL are not observed in DT, and some 

states appear in DT are not observed in PL. The left inset shows a DT state with 

fine energy resolution, which is well fit to a Lorentzian squared as the theory 

predicts. 

 

 
Figure 4.6 DT scans for an ensemble of IFQDs and single IFQDs (a) The PL and 

DT/T of an ensemble QDs measured with a 25um diameter aperture (b) The PL 

spectrum through a 0.5 um aperture at low resolution and degenerate nonlinear 

spectrum  (Right inset) The power dependence of the DT signal. (Left inset) A 

Lorentzian squared fit to a high resolution degenerate nonlinear response. (Figure 

Bonadeo[21]) 

 

4.3 Differential reflection 

Differential Reflection (DR) is a modification of DT that extends the capability 

of nonlinear laser spectroscopy to the reflection geometry, enabling measurement 

of both the real and the imaginary parts of the nonlinear susceptibility. In this 

section, first the theory of DR is explained and then some simulation results are 
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presented. At the end of this section DR measurements on quantum dots are 

presented. 

 

4.3.1 Theory of the differential reflection 

A different approach to solving the problem is to use the reflected light rather 

than the transmitted light. Both reflected and transmitted light carry the optical 

information of the QD. DT detects the homodyne signal by collecting the forward 

transmitted light. Similarly, the homodyne signal can also be obtained by 

detecting the backward reflected or scattered light with a beam splitter, as 

illustrated in Figure 4.7 in a double chopping scheme. We call this differential 

reflection. DR measures the nonlinear susceptibility using the reflected probe 

beam and back scattered signal. The only difference between DT and DR is the 

phase difference caused by a round trip of light propagation from the sample 

surface to a distance d below the surface, as shown in Figure 4.7.  

 

 
Figure 4.7 Differential Reflection setup 

 

The detector collects all the light hitting the detector, which includes the 

reflected probe and back scattered light of both the pump and the probe. In 

writing the intensity of light hitting the detector, we have 
2

( 0) ( 0) ( 0)DR reflected probe backward scattered probe backward scattered pumpI E f E f E f− − − − −= = + = + ≠

          (4-40) 
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where  is the electric filed of the reflected probe,  

is the electric field of the back scattered probe, and  is the 

electric field of the back scattered pump. Only  is modulated 

and the other two are DC. 

reflected probeE − backward scattered probeE − −

backward scattered pumpE − −

backward scattered pumpE − −

As we have analyzed for DT, the signal we are interested in is the homodyne 

detected reflected probe beam and the scattered pump. 
*2Re( )DR reflected probe backward scattered pumpI E E− − −= .    (4-41) 

The reflected probe is mainly from the reflection at the top surface of the QD 

sample, which is different from the backward scattered pump at the QD by a 

reflection coefficient and a phase shift caused by propagating a distance 2d. This 

yields 

reflected probe probeE r− = E        (4-42) 

(1) (3)
0 0

, ,
...

2
reflectioni

backward scattered pump pump i j k
i j k

klE i E E E E φε χ ε χ
ε− −

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ e  (4-43) 

22reflection
dφ π
λ

=         (4-44) 

where r is the reflection coefficient, and φ  is the phase shift. 

( ) (3)
02

reflectioni
backward scattered pump pump pump probe

klE f i E E E e φε χ
ε

∗ ∗
− − =   (4-45) 

Employing the same phase-sensitive narrow band detection scheme using a 

lock-in amplifier, DR measures the nonlinear susceptibility at the pump 

modulation frequency: 

(3) * *
0( ) 2Re

2DR pump pump probe reflected probe
klI f i E E E Eε χ
ε −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.   (4-46) 

Using equation (4-42) we get 

( )(3) * * (3)0
0( ) 2 Re Im

2
reflection reflectioni i

DR pump pump probe probe pump probe
kl rklI f i E E E rE e e I Iφ φεε χ χ

ε ε
⎛ ⎞= =⎜ ⎟
⎝ ⎠

−

          (4-47) 

Separating the real and imaginary parts, we get 

( )(3) (3)0( ) sin cosDR real reflection imaginary reflection pump probe
kl rI f I Iε χ φ χ φ
ε

= − + . (4-48) 
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This shows that DR measures a combination of the real and imaginary parts of 

the nonlinear susceptibility depending on the phase difference between the 

reflected probe and the probe at the QD. 

From Section 4.2.1 we know that the real and imaginary part of the third order 

nonlinear susceptibility have different line shapes. The real part is derivative-like 

and the imaginary part is a Lorentzian squared. Depending on the phase 

difference in the reflection geometry, the DR signal has a combination of the 

derivative and Lorentzian square shape. To show the effect of the phase 

difference reflectionφ on the DR signal, a few simulations are performed for different 

phases, as illustrated in Figure 4.8. When reflection kφ π=  (k is an integer), DR 

measures only the imaginary part of the third order nonlinear susceptibility, just 

as DT does. When 
2reflection k πφ π= + , DR measures only the real part of the third 

order nonlinear susceptibility, which is not capable in DT. 

When
2reflectionk k ππ φ π< < +  , DR measures a combination of the real and 

imaginary parts of the nonlinear susceptibility. 
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Figure 4.8 Simulation of DR lineshape under a few different phases. (DR gives a 

Lorentzian squared lineshape when the phase is 0, a derivative lineshape when the 

phase is 
2
π , a superposition of both when the phase is between 0 and 

2
π ) 
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Similar results were obtained in the reflection geometry for the first order 

linear susceptibility of a single QD [22]. With certain phases a combination of 

real and imaginary parts of the linear susceptibility was measured. 

 

4.3.2 QD absorption measured by differential reflection 

With the above setup, DR for an ensemble of QDs and for single QDs from a 

biased IFQD sample is performed. For the sample studied, n is 3.5, d is 55nm, and 

λ is 760nm, yielding a phase of approximately π. In our case the DR measures 

only the imaginary part of the complex susceptibility as DT does. 

Ensemble DR over a voltage range 0 to -2V is shown in Figure 4.9, along with 

the corresponding PL of the same ensemble QDs. Figure 4.9 (a) and (b) are 3D 

pseudocolor PL and DR absorption maps interpolated from measured data to 

show the peak energy shift over bias voltage. Figure 4.9 (c) is a plot of the paired 

measured PL (solid blue line) and DR absorption (dotted red line) data over same 

energy range under a few different bias voltages. For each bias voltage, PL is 

measured under non resonant excitation to obtain the photoluminescence over PL 

energy by a spectrometer. The corresponding absorption of the same ensemble 

IFQDs is measured with DR under resonant excitation by scanning the laser 

energy. PL and DR at different bias voltages are vertically shifted for visual 

clarity. The DR absorption data are global-fitted to Gaussian curves  (green 

dashed curves) with same width and different peak positions. Two black vertical 

dashed lines are guides to show the PL peaks shift over energy when the bias 

voltage changes. A purple vertically dashed line is to show the DR peaks shift. 

The voltage dependent PL map is dominated by an ensemble IFQDs with PL 

energy peaked around 1628meV at the voltage range 0 to -1V, shifted from 

1631meV at -1.2V to 1630meV at -2V. Since this bias voltage dependence is the 

same as exciton-trion transitions previously reported [10, 23], and the 3meV 

energy difference is comparable to the trion binding energy in IFQDs, we assign 

the PL peak around 1632meV within the voltage range of 0 to -1V as trion (X-), 

and the PL peak shifted from 1635meV to 1633meV in the voltage range of -1.2V 
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to -2V as exciton (X). For the ensemble QDs, since the inhomogeneous 

broadening (2meV) is comparable with the trion binding energy (3meV), excitons 

and trions from different QDs may overlap in energy. Our assignment only means 

that from 0 to -1V trions are dominant and form -1.2V to -2V excitons are 

dominant. 

 
Figure 4.9 Ensemble IFQDs voltage dependent PL and DR absorption map (a) 

pseudocolor voltage dependent PL map interpolated from measured data (b) 

pseudocolor voltage dependent absorption map measured with DR interpolated 

from measured data (c) Measured voltage dependent PL (blue solid lines) and DR 

(red dotted lines) plots over energy at different bias voltages vertically shifted for 

clarity (green dashed lines are Gaussian fits.). Two black vertical dashed lines are 

guides to show the PL peaks shift over energy when the bias voltage changes. A 

purple vertically dashed line is to show the DR peaks shift. 

 

The voltage dependent DR absorption map is dominated by an ensemble 

IFQDs with absorption energy peak shifted from 1639meV at -1.2V to 1638meV 

at -2V. The energy difference between the ensemble PL peak and the DR 

absorption peak is about 8meV, which is same as the energy difference between 

the high and low energy monolayers ensemble neutral IFQDs shown in Figure 4.6 

(a). We think the strong PL peak is from the lower energy monolayer, which has a 

strong PL and weak absorption, the strong DR absorption peak is from the higher 

energy monolayer, which has a weak PL and strong absorption. The same 
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correlation has been observed in other ensemble IFQDs, as shown in Figure 4.6 

(a). Even the lower energy monolayer absorption and the higher energy 

monolayer PL are too weak to see, the vertically shifted plots in Figure 4.9 (c) 

show that the PL spectra align with the DR absorption spectra in energy.  

With a sub-micron-sized small aperture, DR of a single QD state from the 

same biased IFQD sample is studied, as shown in Figure 4.10. According to the 

voltage dependence, most likely this state is an exciton rather than trion. When 

the bias voltage changes from -0.4V to -0.8V, the absorption peak shifts from 

1634.5meV to 1634.2meV. The data were globally fitted to Lorentzian squared 

curves with same width. The fitted linewidth is194 16 eVμ± , about 2 to 3 times 

broader than single IFQDs seen in Figure 4.6, which may indicate that the state is 

a micro-ensemble rather than a single QD. Since the study was to verify the 

feasibility of DR technique, the data were taken with a coarse wavelength scan 

without averaging. With a frequency stabilized low noise laser and averaging, the 

data quality can be improved. 
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Figure 4.10 Voltage dependent absorption measured with DR (red dotted lines) 

with Lorentzian squared fit (green dashed lines) of a single or micro ensemble 

IFQDs. A dashed vertical purple line is a guide to show the absorption peak shifts 

when the bias voltage changes. 

 

We studied a few biased samples to search for sufficiently strong trion states 

that absorb light. We did identify some trion states in PL, but they did not exhibit 
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absorptions. Thus we did not find a suitable trion state with DR for further study. 

The reason could be that the states shown in PL do not absorb light due to the 

upper energy state being filled. Further study for the bias voltage dependence of 

single QD DR will be carried in Chapter 5. 

 

In summary, DR with bandwidth reduced detection was employed to perform 

nonlinear spectroscopy of QDs. Phase sensitive detection with lock-in amplifiers 

can improve the SNR by reducing the bandwidth in the measurement. Solutions 

from the density matrix equations provided lineshapes for the linear and nonlinear 

susceptibilities. Maxwell-Bloch equation gave the spectroscopic signal from the 

material polarization caused by optical excitation. Using a homodyne phase 

sensitive detection with lock-in amplifiers, DT measures the nonlinear absorption 

caused by imaginary part of the nonlinear susceptibility of QDs. By extending DT 

to the reflection geometry, DR measures a superposition of the real and imaginary 

parts of the nonlinear susceptibility of QDs depending on the phase caused by the 

distance between the QDs and the sample surface. DR of a biased IFQD sample is 

studied with both ensemble and single QDs. DR from ensemble IFQDs shows an 

inhomogeneous broadened Gaussian lineshape with voltage dependent. DR of a 

single IFQD or micro ensemble IFQDs gives a voltage dependent Lorenzian 

squared lineshape. Search for single trions with strong absorption by DR was not 

successful due to sample issues. 
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Chapter 5  

 

 

Voltage Modulation for Single QD Absorption Measurement 

 

 

In Chapter 4 we used the differential reflection (DR) technique to measure the 

voltage dependent nonlinear absorption of biased interface fluctuation quantum 

dots (IFQDs) as a function of wavelength. The voltage-wavelength absorption 

map of excitons or trions in a single QD is important for manipulating QDs for 

QC [1-5]. Combined with a voltage dependent PL map of the same QD, excitons 

and trions can be identified by features including signal strength, voltage range 

and energy seperation. However, it is not trivial to obtain this voltage dependent 

absorption map for single QDs due to their small absorption strengths. For IFQDs 

with relatively large absorption strengths, DT/DR measures the nonlinear 

absorption of single IFQDs with limited signal-noise-ratio (SNR). When QD 

based QC moved to using SAQDs, which have comparatively smaller absorption 

strengths, DT/DR did not give enough SNR. More sensitive absorption 

measurement techniques needed to be developed. 

The main challenge in measuring small absorption signals is to reduce the 

background noise of a strongly transmitted laser beam. Some noise reduction 

techniques have been developed to measure the linear absorption of single QDs, 

but the SNR is still limited by 1/f noise in the low frequency range. For the biased 

QD samples, an AC bias voltage can be applied. Due to the quantum confined 

Stark effect (QCSE), the absorption of a single QD can be electrically modulated 

with this bias voltage. A differential technique, which we called voltage 
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modulation (VM), can achieve background free measurement of the small linear 

absorption of a single QD approaching the shot noise limit (SNL).  

In this chapter, VM is studied in the context of measuring the linear absorption 

of single biased IFQDs. First, the challenge and noise reduction techniques for 

measuring linear absorption of single QDs are introduced. Then, the Stark effect 

(SE) is explained in both classical and quantum mechanical pictures. Next, the 

QCSE in IFQDs is studied with a simple linear model and experimental 

measurements. At the end of the chapter the VM technique is discussed with a 

combination of theory, simulation, and experiments. 

 

5.1 Noise reduction techniques for single QD absorption measurement 

Usually, absorption is measured by comparing the intensity of a laser beam 

transmitted through a sample with the intensity of the incident laser beam. By 

scanning the wavelength, an absorption spectrum can be mapped out as a ratio of 

the absorbed light to the incident light over a wavelength range. Given all the 

kinds of noise in laser spectroscopy, the transmitted laser intensity is not a stable 

constant, but gives a strong background with random noise. Since this method 

measures absorption as the change on top of a noisy background (the transmitted 

laser beam), it only works for materials with relatively large absorption strengths 

compared with the noise in the transmitted laser beam, which is usually on the 

order of  to . For a single QD with relatively small absorption strengths 

on the order of  or 

210− 310−

310− 410− , which is comparable or lower than the noise, a 

simple direct absorption measurement technique does not work due to the large 

noisy background. Even bandwidth reduced measurement techniques using laser 

intensity modulation as discussed in Chapter 4 may not work since the noise is at 

the same frequency as the signal. A few noise reduction techniques have been 

developed to extract the small absorption signal from a huge noisy background, 

including non resonant excitation DT, the noise eating technique, wavelength 

modulation, and voltage modulation. 

With a non resonant excitation, the linear absorption dominates over nonlinear 

absorption. With the advantage of optical modulation and differential detection, 
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the linear absorption of single IFQDs has been measured with non resonant 

excitation DT [6]. However, this technique does not work for resonant excitation 

and the SNR is limited due to the limited efficiency of non resonant excitation. 

The noise eating technique uses active feedback to control an intensity 

modulator to reduce common mode laser noise. Commercial noise eating devices 

are available, but the performance is limited due to the speed of the electronics, 

usually below MHz, and the precision of the feedback control. By using a low 

noise diode laser and a noise eater, linear absorption of a single IFQD has been 

measured [7]. 

Wavelength modulation is a differential detection technique used to reduce 

laser common mode noise by modulating the laser wavelength. It has been used to 

measure linear absorption of single QDs with a high SNR [8]. However, it 

requires laser wavelength modulation capability, which usually requires low 

modulation frequencies and may cause extra noise. 

Voltage modulation is a differential detection technique used to reduce laser 

common mode noise by modulating the absorption of QDs through the QCSE. It 

has been used to measure linear absorption of SAQDs with a high SNR and fast 

measurement speed [9]. It will be discussed in detail later in this chapter. For a 

biased QD sample, VM provides an easy way to achieve a sensitive differential 

measurement of the small absorption strength from single QDs out of a noisy 

background. 

 

5.2 Stark effect and quantum confined Stark effect 

The Stark effect (SE) and quantum confined Stark effect (QCSE) are the 

underlying physics that allows VM to measure linear absorption with high SNR. 

In this section, first the SE is introduced with both classical and quantum 

mechanical pictures. Then the QCSE in IFQDs is studied with a simple linear 

model by experiments and numerical simulations. 

 

5.2.1 Stark effect in atoms 

 88



The SE [10], the energy shifting or splitting of optical transitions under an 

external electric field, has been well studied for atoms and molecules. The SE has 

been widely used in Stark spectroscopy and laser spectroscopy. There are two 

types of SE, DC and AC [11]. Since the frequency of the applied voltage is much 

slower than the optical oscillation frequency, the SE studied here is a DC SE.  

A simple classical picture for the SE is an energy shift of an electric dipole 

caused by an external electric field [12]. Dipole transitions in hydrogen atoms 

provide good examples. There are two different scenarios depending on whether 

the dipole is intrinsic or is externally induced by the applied electric field. When 

there is an initial electric dipole, for example, the 2s-2p dipole transition in a 

hydrogen atom, the effect of the external electric field on the dipole itself is small 

compared with the initial dipole and is negligible, as shown in Figure 5.1(a). The 

energy shift caused by the external electric field is proportional to the external 

electric field, which gives a linear SE as 

U EμΔ = − i         (5-1) 

where μ  is the dipole moment, and E  is the external electric field. 

ΔU ΔU 

 
Figure 5.1 A classical picture of SE (a) linear SE (the initial dipole is not affected 

by the external electric field) (b) quadratic Stark effect (the external electric field 

induces a dipole) 
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When there is no initial dipole, the external electric field causes an induced 

electric dipole and to the lowest order of electric field gives a quadratic energy 

shift, as shown in Figure 5.1(b). Without any external electric field there is no 

initial electric dipole, for example the 1s state of the hydrogen atom. Under an 

external electric field, the positive charge and the negative charge get separated 

since they experience forces towards opposite directions. The external electric 

field produces an induced dipole with a direction opposite to the external electric 

field. The induced dipole interacts with the external electric field giving a 

quadratic Stark effect. 

With a classical picture of a charge on a spring, the induced dipole moment 

can be estimated as: 
2

eqm z eEω =         (5-2) 

2eq
eEz

mω
=          (5-3) 

2

2induced
e ED
mω

=         (5-4) 

where m is the mass of the dipole, ω  is the dipole oscillation frequency,  is the 

equilibrium position, e is the charge of the dipole, and 

eqz

inducedD is the induced 

dipole moment. 

The total energy is 
2

2 2 2
2

1 1
2 2eq

eU m z D E E
m

ω
ω

Δ = − = −i      (5-5) 

The SE has been studied in quantum mechanics with a perturbation approach 

[12]. Usually the energy shift by the external electric field is much smaller 

compared to the transition energy so that the problem can be treated with 

perturbation theory. 

The unperturbed system is 
(0) (0) (0)

0 n n nH Uφ = φ        (5-6) 

where  is the Hamiltonian, 0H (0)
nφ  are the eigenstates, and are the 

eigenenergies for the unperturbed system. 

(0)
nU
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With the external electric field as a weak perturbation the new Hamiltonian is 

0 inH H V= + t

Ei

        (5-7) 

intV E erμ= − = −i        (5-8) 

For hydrogen atoms, the solution to the first order perturbation is  
(1)

1 1 int 1 1 1 0s s s s sU V eE rφ φ φ φ= = =i .     (5-9) 

Any inversion symmetric wave function will give zero for first order energy 

shifts. The second order needs to be considered. 
22

1int 1(2) 3 2
1 0

', ', ' 0,0,0 ', ', ' 0,0,01 ' ' 1 ' '

', ', '', ', ' 9
4

ss
s

n l m n l ms n l s n l

n l m D En l m V
U a

E E E E

φφ

≠ ≠

= =
− −∑ ∑ E= −

i

          (5-10) 

The induced dipole can be calculated for the 1s state. 

1 1
ˆ

s sD e r e dφ φ= − = −       (5-11) 

(0) (1)
1 1 1s s sφ φ φ= +        (5-12) 

(1)
1

' 0 1 '

ˆ'00 '10 100
s

n s n p

n n z
eE

E E
φ

≠

=
−∑      (5-13) 

To the lowest order, we get, 

2

' 0 ' 1

ˆ ˆ100 '10 '10 100ˆ 2
n n p s

z n n z
D e

E E≠

=
−∑ E     (5-14) 

For a degenerate system, for example, 2s and 2p states, the above simple 

nondegenerate perturbation theory cannot be used since the perturbation couples 

states to all orders. The Hamiltonian matrix needs to be rediagonized. 

The matrix elements are 

ˆ2 ' ' 2ll m H lml

1

.        (5-15) 

Due to the selection rules 'l l= ±  and 'lm ml= , the non-vanishing matrix 

element is 

2 0 int 2 2 2 0ˆ ˆ210 200 3p s p sU V eE z eE z eφ φ φ φΔ = = = = − Eai i . (5-16) 

The matrix is 
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1

0 0
0 0 0ˆ

0 0 0 0
0 0 0 0

U
U

H

Δ⎛ ⎞
⎜ ⎟Δ⎜=
⎜
⎜ ⎟
⎝ ⎠

0

⎟
⎟

0⎟
⎟

       (5-17) 

Rediagonizing the matrix we get 

1

0 0 0
0 0ˆ
0 0 0 0
0 0 0 0

U
U

H

−Δ⎛ ⎞
⎜ ⎟Δ⎜′ =
⎜
⎜ ⎟
⎝ ⎠

.      (5-18) 

1 ( 200 210 )
2

1 ( 200 210 )
2

λ

λ

+

−

= +

= −
       (5-19) 

2
(0)

2 0
0

2
(0)

2 0
0

3
8

3
8

eU U U eEa
a

eU U U eEa
a

−

+

= − Δ = − −

= + Δ = − +
      (5-20) 

The quantum description gives similar results as the classical picture for the 

linear and quadratic Stark effects, which have been experimentally observed in 

the hydrogen atom. 

 

5.2.2 Quantum confined Stark effect in QDs 

QDs, as artificial atoms, have similar properties as atoms. Similarly  to atoms, 

optical transitions of excitons and trions in QDs are affected by external electric 

fields through the QCSE. In Chapter 4 we have seen the voltage dependence of 

PL and DR for both ensembles of and single QDs, which is known as the QCSE 

in semiconductor heterostructures.  In this section the theory and experimental 

measurement of QCSE in IFQDs will be discussed. 

The QCSE is the Stark effect of bound excitons in semiconductor 

heterostructures, enhanced by the quantum confinement caused by materials with 

different bandgaps [13-15]. Due to the strong quantum confinement, a weak 

external electric field will pull the electron-hole pairs of the exciton toward 
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opposite directions but will still allow them to remain bound. With a small voltage 

change the transition energy changes dramatically. The QCSE in quantum wells 

(QWs) has been well studied and widely applied in optical modulators for optical 

communication with high efficiency, low voltage, and fast speed [13, 16]. QCSE 

has also been studied in QDs [17-19]. ZnCd QDs show a strong quadratic QCSE 

at room temperature, and excitons/trions in SAQDs show a linear QCSE. 

 

 
Figure 5.2 Simulation of QCSE of a single QD with a Lorentzian line shape (a) a 

linear QCSE model (b) voltage dependent absorption over laser energy (c) 

voltage-energy absorption map (d) laser energy dependent absorption over 

voltage 

 

The simplest model is a linear QCSE model, which assumes the energy shift is 
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ratio between the energy shift and the bias voltage. From the two-level model 

discussed in Chapter 4 we learned that the linear absorption of excitons/trions in 

QDs has a Lorentzian shape. With a simple Lorentzian line shape model, Figure 

5.2 illustrates the QCSE of a single QD with a simple linear shift. Figure 5.2(a) 

illustrates that the energy of the dipole transition shifts linearly with the applied 

voltage, causing a linear shift of the peak of the Lorentzian shaped absorption 

under the applied voltage. The QCSE provides a voltage dependent absorption 

map over laser energy for a single QD, illustrated by multiple absorption lines 

artificially shifted vertically for clarity as shown in Figure 5.2(b), and a three 

dimensional pseudocolor map of the voltage-energy absorption map ( , )Vα λ  as 

shown in Figure 5.2(c). It is worth pointing out that the voltage dependent 

absorption map can also be viewed as a laser energy dependent absorption map 

over voltage as shown in Figure 5.2(d), which indicates that the same information 

can be obtained equivalently by measuring absorption over voltage at different 

wavelengths. This is exactly the basis for the VM technique to be discussed later 

in this chapter. 

This simple linear QCSE model is based on ideal QDs with strong quantum 

confinement. It works well under the perturbation approximation for strongly 

confined QDs in a small voltage range where the external electric field is much 

weaker than the quantum confinement, as shown in Figure 4.10. This model does 

not work well when the perturbation assumption is not valid, which appeared in 

some IFQDs to be discussed next. However, a more complicated QCSE can be 

numerically modeled based on this linear QCSE model with varying SE 

coefficients, as we will see in the following discussion. The linear QCSE was 

experimentally observed in Figure 4.10 for both ensembles of and single QDs. For 

ensembles of QDs in the low and high energy monolayer, the QCSE is linear and 

the coefficient is similar for both layers. A linear QCSE has also been observed in 

single SAQDs [9]. 

However, the QCSE can be more complicated than this simple linear model. 

Figure 5.3(a) shows the nonlinear absorption measured with DR for another single 

QD under different bias voltages. Compared with the simple model in Figure 5.2, 
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there are a few complications. First, the SE coefficient is not a constant and it 

changes at different voltage ranges. Second, the strength of the DR changes at 

different biased voltages. The DR signal is strong in the voltage range -0.6V to 

+0.6V, and it gets weak in the voltage range -0.6V to -0.8V and 0.6V to 0.8V. It 

disappears in the voltage -0.8V to -1V and 0.8V to 1V. Third, the line shape of the 

DR signal changes with bias voltage. It is symmetric and narrow in the voltage -

0.4V to 0.6V.  It gets asymmetric and the width broadens in the voltage -0.6V to -

1V. 
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Figure 5.3 Quantum confined Stark effect in a single IFQD (a) nonlinear 

absorption measured by DR (b) simulated linear absorption 

 

These complications could be caused by a few sources. One problem is that the 

quantum confinement in IFQDs may be weak enough for electrons confined in 

QDs to tunnel out of the QDs under a certain applied bias range. We have 

observed that leakage current in these samples increases with a high bias voltage. 

Another problem is that a local electric field with bias dependence may exist in 

the sample. Due to the sample structure and strain there may be a different local 

electric field at each QD, which means the actual electric field on a QD is the 

combination of the local electric field and the applied electric field from the bias 

voltage. The local electric field may change under different bias voltages. It has 

been observed that the bias voltage range and SE coefficients of the QCSE vary 

for different QDs on same sample. 
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To understand the physics, this complicated QCSE is simulated numerically 

using a linear SE model with strong and weak QCSE regimes, as shown as 

voltage dependent linear absorption curves in Figure 5.3(b). In the voltage range 

from -1V to -0.2V, there is a strong QCSE with a large SE coefficient of about 

1meV/V. In the voltage range from -0.2V to 1V, there is a weak QCSE with a 

small SE coefficient of about 0.125meV/V. The underlying physics for the strong 

and weak SE could be a quadratic QCSE or a bias voltage dependent local field 

effect, which need further study. This phenomenological model will be used later 

to qualitatively explain the measured VM signals. More complications like line 

shape broadening and absorption strength change caused by the bias voltage are 

not considered. Using a high resolution laser wavelength scan and small steps in 

voltage, a more precise voltage-energy absorption map can be obtained 

experimentally. However, due to the extra noise and time caused by the laser 

wavelength scan, this approach to obtain the absorption map is slow and would 

not work for SAQDs with much weaker absorption strength. Next, we will show 

how VM overcomes these difficulties to obtain the same absorption map faster 

and with much higher SNR. 

 

5.3 Voltage modulation 

With the QCSE demonstrated in DR measurements, background-free 

measurements of the linear absorption of a single IFQD are achieved through VM. 

In this section, first the physics of VM is explained to illustrate how the 

background is cancelled to improve SNR. Then the linear absorption of a single 

IFQD is measured with the VM technique and the results are compared with the 

DR measurements. 

 

5.3.1 Theory of voltage modulation 

The experimental setup and the physics of VM are illustrated in Figure 5.4. 

Figure 5.4(a) shows the experimental setup. Reflection geometry is used since our 

biased IFQD sample does not allow the laser beam at the QD absorption 

wavelength to be transmitted. One laser beam is focused onto a small aperture and 
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interacts with QDs. Backscattered light is collected by a beam splitter and focused 

onto a photo detector. The voltage applied on the sample is DC with a small 

square wave AC component. The differential absorption is measured by a lock-in 

amplifier at the voltage modulation frequency. The AC voltage is fixed and the 

DC voltage is scanned over a range to map out the absorption as a function of 

voltage. The laser wavelength is fixed in each voltage scan and the voltage-energy 

absorption map is obtained by scanning the voltage at different laser wavelengths. 

 

 
Figure 5.4 Voltage modulation (a) experimental setup and (b) VM physics 

 

Figure 5.4(b) illustrates the physics of the VM technique. With a voltage-

energy absorption map, the Lorentzian shaped absorption peaks appear at 

different wavelengths depending on the bias voltage. With a square wave 

modulation, the bias voltage on the sample is switched between DC+AC and DC-

AC at the voltage modulation frequency for each DC voltage. Due to the QCSE, 

the absorption curve is modulated by the bias voltage, which means the 

absorption peak jumps at the voltage modulation frequency. The lock-in amplifier 
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( , )DC AC laserVα λ+  reaches the maximum. The dip of the VM signal occurs at the 

DC voltage where ( , )DC AC laserVα λ−  reaches the maximum. The center zero 

corresponds to the DC voltage where ( , )DC AC laserVα λ+  and ( , )DC AC laserVα λ−  are 

equal. 

The exact VM signal can be obtained by analyzing the signal on the photo 

detector. For each DC voltage, the intensity of the transmitted laser beam on the 

detector corresponding to the two modulation voltages can be represented as 

[ ]0( ) 1 ( ,DC AC DC AC laserI V I Vα λ+ += − ) ,     (5-21) 

[ ]0( ) 1 ( ,DC AC DC AC laserI V I Vα λ− −= − )

)

.     (5-22) 

The absorption change caused by the voltage modulation is 

( ) ( , ) ( ,DC DC AC laser DC AC lasV V V erα α λ α λ+ −Δ = − .    (5-23) 

The time domain signal measured by the detector is 

[ ]0 0( ) 1 ( , ) ( ) ( )DC AC laser DCI t I V V square f tα λ α−= − + Δ i .   (5-24) 

The Fourier series of the square wave is the odd orders of harmonics with the 

first order dominant. 

0
1,3,...

4 1( ) sin(2 )
n

square f t nf t
n

π
π

∞

=

= ∑ 0      (5-25) 

We get 

0 0
1,3,...

4 1( ) 1 ( , ) ( ) sin(2 )DC AC laser DC
n

I t I V V nf t
n

α λ α π
π

∞

−
=

⎡ ⎤
= − + Δ⎢ ⎥

⎣ ⎦
∑i .  (5-26) 

In the frequency domain, the background transmitted beam will be at DC, and 

the absorption change caused by the VM will appear at the voltage modulation 

frequency. 

0 0
4( ) ( )sin(2DC 0 )I f f I V f tα π
π

= = Δ      (5-27) 

With a lock-in amplifier at the voltage modulation frequency, the linear 

absorption signal can be separated from the noisy background transmitted beam 

for a background free detection. All the background noise except the laser noise at 
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the modulation frequency is automatically cancelled out with the differential 

technique. 

Depending on the amplitude of the AC voltage compared with the voltage 

corresponding to the absorption line width, VM may give a derivative line shape 

or recover the original absorption line shape. Here we assume a simple Lorentzian 

line shape for a QD based on Equation (4-15), so that the absorption peaks at the 

voltages DC+AC and DC-AC are 

0 2( , )
( )DC AC laserV 2

γα λ α
γ δ+ =

+ Δ +
     (5-28) 

0 2( , )
( )DC AC laserV 2

γα λ α
γ δ− =

+ Δ −
     (5-29) 

laser DCVλ βΔ = −         (5-30) 

where 0α  is the absorption of the QD, γ  is the coherence decay rate, Δ  is the 

detuning corresponding to the DC voltage, δ  is the detuning corresponding to the 

AC amplitude, laserλ  is the laser wavelength, β   is the SE coefficient, and DCV  is 

the DC voltage. 

The difference of the two absorptions gives the VM signal as 

0 2 2 2( )
( ) ( )DCV γ γα α

γ δ γ δ
⎛

Δ = −⎜ + Δ + + Δ −⎝ ⎠
2

⎞
⎟ .    (5-31) 

For small AC amplitude, δ Δ , the differential absorption is simplified as 

0 2 2

4( )
( )DCV 2

γ δα α
γ

Δ
Δ =

+ Δ
.       (5-32) 

VM may give a derivative line shape or recover the original absorption line 

shape, depending on the AC amplitude. Figure 5.5 shows the simulation of the 

AC amplitude dependence of the VM signal. Figure 5.5(a) is a pseudocolor map 

showing the VM signal when the AC amplitude changes from 0 to 0.4V, and 

Figure 5.5(b) is a vertically shifted plot of the VM signal when the AC amplitude 

is 0.05V, 0.1V, 0.2V, and 0.3V. When the AC amplitude increases, the peak 

position shifts linearly in the AC amplitude. With a small AC voltage, 0.05V, 

corresponding to an energy shift smaller than the absorption line width, VM gives 

a derivative line shape due to the overlap of the two absorption peaks 
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( , )DC AC laserVα λ+  and ( , )DC AC laserVα λ− . With a large AC voltage, 0.3V, 

corresponding to an energy shift larger than the absorption line width, VM 

recovers the original absorption line shape due to the complete separation of the 

two absorption peaks. Ideally, large AC VM is preferred, but small AC VM is 

more frequently used for two practical reasons. One reason is that small AC VM 

avoids interacting with other nearby states. Usually it is very hard to find only one 

clean state without any other states close in energy even in a small aperture. Large 

AC VM may give a strange line shape which requires extra effort to explain. 

Small AC VM provides a smaller but symmetric signal which is easier to explain. 

Another reason to avoid large AC VM is that a large AC voltage may affect the 

absorption line shape and strength, which complicates the data interpretation. 
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Figure 5.5 Simulation of the AC amplitude dependence of the VM signal (a) 

pseudocolor map for AC amplitude between 0 and 0.4V (b) vertically shifted VM 

signal for AC amplitude of 0.05V, 0.1V, 0.2V, and 0.3V 

 

For a fixed AC modulation, when the laser energy changes, the VM signal 

remains the same shape and shifts in DC voltage, as shown in Figure 5.6 by 

simulation. With a small AC amplitude, Figure 5.6(a) illustrates the laser energy 

dependence of the VM signal in the laser energy range 1634.3-1634.9meV with a 

three dimensional pseudocolor map, and Figure 5.6(b) shows the derivative VM 
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signal at three different laser energies. When the laser energy moves to a higher 

energy, the derivative VM signal retains the same line shape, but shifts to a higher 

voltage, agreeing with the QCSE shown in Figure 5.2. The best laser energy for 

VM is the wavelength corresponding to the center of the voltage range where the 

linear QCSE approximation is effective. 

It is worth pointing out that the voltage-energy VM map contains the same 

information as the voltage–energy absorption map. The voltage-energy absorption 

map can be constructed from a voltage-energy VM map. The VM technique is 

important for SAQDs with small absorption strengths which are hard to measure 

by DT/DR, but easier to measure with VM. With a small AC voltage VM, the 

relative absorption map can be recovered. With a large AC voltage VM, the 

absolute absorption map can be easily recovered from the VM map. This is 

important when the absorption is too small to measure except with VM. 

(a) 

 
Figure 5.6 Simulation of laser energy dependence of the VM signal (a) 

pseudocolor map for the laser energy range 1634.2-1635.1meV (b) vertically 

shifted VM signal for laser energies of 1634.4, 1634.5, and 1634.6meV 
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energies 1634.4meV and 1634.5meV, the VM signal has a derivative line shape, 

but the dip has a smaller width and height than the peak. At the laser energy 

1634.6meV, the peak shifts to a higher voltage with same width and height, but 

the dip vanishes. The peak of the measured VM signal has same laser energy 

dependence as Figure 5.6, with the VM signal peak moving to a higher voltage 

when the laser energy increases. However, the data indicates that the dip gets 

inhibited when the laser energy increases. This is different from the simple linear 

QCSE VM signal in Figure 5.6, but it agrees with the complications of the QCSE 

of the QD as shown in Figure 5.4(a), which shows a strong QCSE in the voltage 

range -1V to -0.4V and a weak QCSE in the voltage range -0.4V to 0.6V with a 

turning point around the bias voltage -0.4V and laser energy 1634.6meV. At the 

laser energies 1634.4meV and 1634.5meV, which are below the turning point, 

strong QCSE dominates, which gives a derivative line shape showing a peak and 

a dip, with the dip slightly inhibited due to the effect of weak QCSE. At the laser 

energy 1634.6meV, which is at the turning point, the peak is in the strong QCSE 

regime, and the dip falls into the weak QCSE regime. As a result the peak is 

strong but the dip is strongly inhibited. 

 
Figure 5.7 VM signal laser energy dependence by measurement and simulation 

with AC amplitude of 0.3V. (a) measured VM signal at three laser energies (b) 

simulated pseudocolor map of VM in the laser energy range (c) simulated VM 

signal at the same laser energies  
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To support the above qualitative explanation, we calculated the VM signal 

quantitatively with the simulated voltage-energy absorption map shown in Figure 

5.3(b), which takes into account a strong QCSE in the voltage range -1V to -0.2V 

and a weak QCSE in the -0.2V to 1V voltage range. The simulated VM signals 

for the laser energy range 1643.3meV to 1643.9meV are shown as a pseudocolor 

map in Figure 5.7(b), and the VM signals at the three specific laser energies 

1643.4, 1634.5 and 1634.6meV are shown in Figure 5.7(c). The pseudocolor map 

shows that strong QCSE gives a strong VM signal in the regime below and to the 

left of (-0.2V, 1634.68meV) and that weak QCSE gives a weak VM signal in the 

regime above and to the right of (-0.2V, 1634.68meV). The peak of the large VM 

signal goes beyond the QCSE turning laser energy of 1634.6meV, maintaining the 

same height and width. The dip of the large VM signal vanishes by reducing in 

depth and width when the laser energy approaches the QCSE turning point. The 

three separate VM signals from simulation show reasonable agreement with the 

measured VM signals. Some discrepancy between the simulation and the 

measurement could be caused by more complex aspects of the QCSE, such as 

effects of the bias voltage on the lineshape and signal strength, which are not 

considered in the simulation. 

 

 
Figure 5.8 VM signal AC amplitude dependence by measurement and simulation 

with the laser energy at 1634.22meV. (a) Measured VM signal at three AC 

amplitudes. (b) Simulated pseudocolor map of VM in the AC amplitude range. (c) 

Simulated VM signal at the same AC amplitudes 
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For the same QD, VM signals at three different AC amplitudes of 0.3V, 0.4V 

and 0.5V are measured for laser energy at 1634.22meV, as shown in Figure 5.8(a). 

Only the dip of the VM signal, measured as a peak due to a 180 degree phase 

offset on the lockin amplifier, is measured due to the limited voltage range in 

which the strong QCSE exits. For the same reason, only VM signals in the AC 

voltage range of 0.3V to 0.5V are obtained, corresponding to large AC VM since 

the energy shift caused by the AC voltage is larger than the energy corresponding 

to the absorption linewidth. As expected, when the AC amplitude increases, the 

VM signal remains a Lorentzian shape and shifts linearly to the more positive DC 

voltage side. With the same simulated voltage-energy absorption map shown in 

Figure 5.3(b), the AC amplitude dependence of the VM signal is calculated, 

shown in Figure 5.8(b) as a pseudocolor map, and in Figure 5.8(c) as vertically 

shifted plots for the same AC amplitudes as in Figure 5.8(a). The simulated 

results gave the same AC amplitude dependence as the measurement, except that 

the measured VM signals showed a non zero background due complications from 

the QCSE in the QD as we discussed in Section 5.2.2. 

Here we simulated a voltage-laser wavelength dependent absorption map to 

calculate the VM map. With a measured voltage-laser wavelength dependent VM 

map, we can construct the absorption map by calculation. For SAQDs with weak 

absorptions, VM provides an efficient way to obtain a voltage-energy absorption 

map that is hard to obtain with other techniques. 

 

5.3.3 Advantages of voltage modulation 

Modulating the bias voltage on a QD sample through the QCSE provides a 

new dimension of control in laser spectroscopy for QDs. Using this new 

capability, VM measures the linear absorption of single QDs with less noise and 

higher speed. The ratio between the signal and DC voltage on the detector for the 

single QD VM signal is about 
42 10−× , which is comparable with the ratio 

between the size of a IFQD (estimated to be 40nm) and the aperture (estimated to 

be 2µm). In this section, VM is compared with its variations and other techniques 

to illustrate its advantages and disadvantages.  
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Due to the correspondence between the bias voltage and the energy of the state, 

there are two ways to obtain the voltage-energy VM map. One way is to scan the 

voltage, another is to scan laser wavelength. The voltage-energy VM map can be 

obtained equally by either a voltage scan over a wavelength range or a laser 

wavelength scan over a voltage range.  

Ideally it is preferred to scan laser wavelength rather than voltage because 

there could be complicated QCSE-related effects as we saw in Figure 5.5. 

Although the laser wavelength scan has the advantage of direct mapping, the laser 

wavelength scan capability may be limited by available lasers, resolution, and 

stability. VM requires a wavelength-stable CW laser with a narrow line width 

compared with the absorption line of the QDs, which is in the order of GHz. 

Usually narrow linewidth tunable lasers with fine resolution wavelength scanning 

capabilities are hard to obtain or very expensive compared with those without 

wavelength scanning capabilities. Even for the narrow line width lasers with fine 

resolution wavelength scanning capabilities, the mode hop free wavelength 

scanning range is very limited. There is always more laser noise when the laser 

wavelength is scanned compared to wavelength stabilized operation since 

scanning the laser wavelength involves altering the laser cavity. 

The voltage scan has the disadvantage of indirectly mapping the absorption, 

but the advantages of ease of use and speed. The voltage scan is always available 

for biased samples. Since the voltage can be tuned with high resolution, it is easy 

to obtain high resolution absorption spectra. Also voltage scans can be very fast 

since the voltage can be ramped quickly over a large range without worrying 

about slow laser cavity response time or a small mode hope free wavelength 

scanning range, which limits the speed of wavelength scans. 

VM and WM use similar differential techniques, but there are still a few 

significant differences between VM and WM. WM requires the capability of 

modulating laser wavelength, preferably at high frequency to account for 1/f noise. 

Modulation of the laser frequency is usually slow (<KHz) because mode hop free 

wavelength tuning requires precise laser cavity changes. Also, laser wavelength 

tuning adds noise compared to fixed wavelength operation. Actually, low noise 
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lasers with external reference cavities require that the laser wavelength be fixed 

and the reference cavity be only slowly tuned. Finally, lasers with wavelength 

modulation capabilities are much less common and more expensive than those 

without wavelength modulation capabilities. The WM modulation has the 

advantage of reliable wavelength information, and the disadvantage of low SNR 

and expense. 

VM only requires a low noise wavelength tunable laser, which is cheaper and 

less noisy than a wavelength modulated one. VM can go to much higher 

modulation frequencies to get better SNR. VM also can achieve much finer 

resolution than WM due to the greater availability of high precision voltage 

control over high precision wavelength control. VM has the advantage of high 

SNR, cheaper lasers and the disadvantage of more complicated data interpretation. 

As discussed in Chapter 4, laser intensity modulation has the advantage of 

shifting measurement frequency to a high frequency to reduce noise, but a good 

portion of the dominate 1/f noise near DC is also carried to the high frequency. 

DT/DR is always limited by the 1/f noise near DC and it can not reach SNL due 

to this fundamental limitation, which is why fast measurement at a time scale 

comparable to the bandwidth helps to reduce the common mode noise in DT/DR. 

Compared with DT/DR, VM has the advantage of shifting measurement 

frequency to a high frequency without being affected by the dominant 1/f noise 

near DC, which enables VM to reach SNL. VM gives much higher SNR than 

DT/DR. 

The VM gives larger signal strength than DR due to that its modulation 

scheme is more efficient than DT/DR. In VM the majority (>90%) of the signal is 

at the modulation frequency. In DR, only a small portion (about 1/8) is at the 

difference frequency. 

The absorption of QDs can be studied by either VM or DT/DR. For biased 

QDs samples, the voltage-energy absorption map of a single QD can be 

constructed either through DR or VM. In the laser spectroscopy studies of QDs, 

signal strength and SNR become important due to the weak absorption of SAQD. 

Comparing VM and DR signals in IFQDs, the absorption measured with VM 
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gives a bigger signal and higher SNR than the nonlinear absorption signal 

measured with DR. Similar results have been obtained with SAQDs. The high 

SNR gained by VM enabled further study on SAQDs demonstrating optical 

pumping, the Mollow triplet and the Autler-Townes splitting, which would have 

been impossible with DT/DR [20, 21].  

 

In summary, measurement of the linear absorption of a single QD is 

challenging due to the fact that the signal exists at the same frequency as a noisy 

background. Noise reduced techniques were studied to measure the single QD 

absorption with high SNR by shifting the small signal away from the noisy 

background through VM. The physics and setup of VM were discussed to 

illustrate its advantages and disadvantages. VM achieves linear absorption of 

single IFQDs that agrees with the nonlinear absorption measured with DR, but 

with a higher acquisition speed and SNR.  
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Chapter 6 

 

 

Spin Noise 

 

 

The various kinds of noise discussed in Chapter 3 always exist in laser 

spectroscopy experiments. Usually, such noise can cause random fluctuations of 

physical variables, which may add difficulty to the signal measurement process. It 

is often desirable to minimize the random fluctuating noise to improve signal 

measurements. However, noise is not always useless. Sometimes the noise, if 

carefully measured, can provide useful information about a given physical system. 

For example, Johnson noise, the thermal noise of electronics has been measured 

to monitor the temperature [1]. Another example is that of spin noise [2,3,4], 

which yields physical properties of spin systems, as discussed in this chapter. 

The chapter starts with an introduction of spin with a focus on its quantum 

properties. Then the physics of spin noise is explored to understand its physical 

origin and properties. After that, spin noise measurement techniques and the 

physics behind the measurement are explained. At the end of this chapter, 

experimental measurements of the spin noise at different magnetic fields are 

presented and discussed. 

 

6.1 Properties of spin 

Spin is an intrinsic quantum property of elementary particles that build up all 

matter, and it is a fundamental measurable quantity independent of all other 

properties like charge and mass. Spin has been studied for various applications 
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like magnetic resonance imaging (MRI) [5], quantum computing [6,7], and 

spintronics [8,9].  

The definition of classical spin comes from the physical rotation of a particle. 

Therefore, it is tempting to apply this idea to the quantum spin of elementary 

particles, where the spin is caused by the rotation of a charged particle. But the 

spin of a subatomic particle is not from the rotation of the charge in the particle. 

For example, if the spin of an electron were from the fast rotation of the electron, 

then the speed of the rotation would be faster than the speed of light, which 

contradicts the theory of relativity. To understand the properties related to the 

spin, it has to be assumed that spin is an intrinsic property independent of any 

other properties of subatomic particles. 

Spin is a quantum character rather than a classical one. In the limit of , 

the quantity of spin vanishes. Spin is measured through its projection along a 

certain direction. Along any direction, the measured spin angular momentum is 

quantized with discrete values. For example, an electron spin angular momentum 

can be only 

0→

1
2

± , and is thus called a spin 1
2

 system. Photon spin can be 1± , 

and a spin 1 system. Spin may be represented as a spin vector with three spin 

angular momentum along the x, y, z directions. But unlike a classical angular 

momentum vector, different spin angular momentum cannot be measured 

simultaneously due to the uncertainty principle. For example, if the spin angular 

momentum along the z direction is measured precisely, then the spin angular 

momentum along the x, y directions measured at the same time will have some 

uncertainty. 

For a spin 1
2

 system the eigenstates of the spin are the spin up state with the 

spin angular momentum of 1
2

+  and the spin down state with the spin angular 

momentum of 1
2

− . The two eigenstates are degenerate in energy when there is 

no magnetic field. At thermal equilibrium without any magnetic field, the spin is 
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in an equal mixture of the spin up and down state leading to an overall average 

spin component measured to be 0.  

Usually it is convenient to use the Pauli matrices to describe the three spin 

angular momentum projected onto the three spatial coordinates. 

0 1 0 1 0
, ,

1 0 0 0 1x y z

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡

= = =⎢ ⎥ ⎢ ⎥ ⎢
⎤
⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Spin states may change due to the interaction between the spin and other 

particles in the environment, like nuclei or phonons [10,11,12,13, 14]. The 

interaction causes a spin to relax between its two eigenstates. Studying spin 

relaxation will help us understand the interaction between the spin and the 

environment. 

The spin of a particle is robust against Coulomb interactions with its 

surrounding enviroments, which enables a spin state to maintain its coherence for 

a long time and makes the spin a good candidate for quantum computing [6,7]. 

The main form of interaction between the spin and its environment is magnetic in 

nature. 

As mentioned earlier, without any magnetic field the two spin states are 

degenerate in energy. Since there is no preferred orientation direction, the spin 

polarization is random in space. When an external magnetic field is applied, the 

spin will align or precess along the external magnetic field depending on the 

initial spin state. The spin will align parallel or anti-parallel to the external 

magnetic field. The spin not parallel or anti-parallel to the external magnetic field 

will precess with a certain frequency, called the Larmor frequency Lω , defined as 

L Bg Bω μ≡         (6-1) 

where g is a factor describing the strength of the interaction between the particle 

and the magnetic field, Bμ  is the Bohr magneton, and B is the magnetic field. 

The precession of a single spin in an external magnetic field, as illustrated in 

Figure 6.1, can be modeled with an equation of motion as the following. 

d s g B s
dt

μ= ×         (6-2) 
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where  is the spin vector. s

 

s

B 

a single spin 
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frequency ωL 
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Figure 6.1 Spin precession in a magnetic field 

 

For a static magnetic field along the x direction, the solution is the rotation of 

the spin components in the y-z plane. 

( ) (0)

( ) (0)

L

L

i t
y y

i t
z z

s t s e

s t s e

ω

ω

=

=
        (6-3) 

where  and  are the spin components along the y and the z directions,  

and  are the initial values of the spin components  and . 

ys zs (0)ys

(0)zs ys zs

The Fourier Transform of the time evolution of the spin component  gives a 

single frequency in the frequency domain. 

zs

2

( ) ( )
2zS Lω δ ω ω= −        (6-4) 

 

6.2 Spin noise physics 

With an understanding of the quantum properties of spin, the physics of spin 

noise can be explored. As discussed in Chapter 2, noise is usually represented as 

some random fluctuation in measurements, and it is always associated with 

uncertainty in experiments. In general the uncertainty can be classified into two 

categories. One category is the external noise from the classical fluctuation of the 

environment, e.g. thermal fluctuation or mechanical vibration. The external noise 
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can be reduced or even cancelled in measurements once the physical process is 

understood and better techniques are available. For example, the thermal noise 

can be reduced by stabilizing the temperature. Common mode noise in laser 

power fluctuation can be cancelled through balanced detection. The other 

category of noise is the intrinsic fluctuation of the quantum systems, illustrating 

the fundamental uncertainty of quantum mechanics. The internal quantum noise 

cannot be cancelled or removed in measurements until new quantum states, like 

squeezed states, are used. For instance, the laser shot noise cannot be reduced by 

balanced detection. By studying the properties of the quantum noise, the 

underlying physics can be explored. 

Spin noise comes from the intrinsic quantum fluctuation of spin states [15], 

which has been measured in nuclei [16], electrons in atoms [2,3], and electrons in 

semiconductors [4]. The fundamental statistical model is the Poisson distribution 

for rare events statistics, as discussed in Chapter 2. For a random variable with N 

as its expectation value, the fluctuation, or standard variance, is N . Similarly, a 

system with N spins shows a N  intrinsic quantum fluctuation. 

Assume there are N electrons in a certain volume. Without any magnetic field 

the electron spins are randomly oriented in space. The N  spin fluctuation is 

averaged out over the volume due to the random orientation of the N spins in the 

volume. 

When an external magnetic field B is applied, all electron spins precess along 

the external magnetic field at the same Larmor frequency. If there is no spin flip 

and spin relaxation, there will be no net spin precessing due to the equal 

probability of the two spin eigenstates. When a spin flips, it causes a net spin 

precessing along the external magnetic field. The net precessing spin produces a 

rotating-magnetic field in the plane perpendicular to the external magnetic field at 

the Larmor frequency. By measuring the rotating spin-induced magnetic field, the 

spin noise of the electrons can be measured. 

With a total of N spins, there will be N  spin flips. Each spin flip produces a 

small rotating magnetic field in the plane perpendicular to the external magnetic 
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field. The total effect, which is not averaged out due to the quantum property of 

the spin noise as shown in the laser shot noise, is amplified by a factor of N . If 

there is no spin relaxation, all rotating magnetic fields will be at the same Larmor 

frequency. When spin relaxation occurs, the rotating frequency will be broadened 

in the spectrum by the spin relaxation rate, which is similar to the line width in 

atomic transitions caused by the population decay. 

A simple spin relaxation model can explain the line shape anticipated in the 

spin noise measurement [17].  

2

d s s g B s
dt T

μ= − + ×        (6-5) 

where  is the spin relaxation time. 2T

For a static magnetic field the solution is a damped oscillation of the spin 

components. 

2

2

( ) (0)
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t i t
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y y
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s t s e
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ω

− +

− +

=

=

       (6-6) 

Through a Fourier Transform, the damped oscillation gives a Lorentzian 

shape with the center frequency at the Larmor frequency and the width 

determined by the spin relaxation time . 2T

2
2 2

2 2 2
2 2

( )
2 1 ( ) 1 ( )z

L L

T TS
T T

ω
ω ω ω ω

⎛ ⎞
= +⎜ + − + +⎝ ⎠

2 ⎟     (6-7) 

Useful information can be obtained from the spin noise measurement. With a 

precise measurement of the magnetic field and the Larmor frequency, the g factor 

can be extracted. More importantly, the spin relaxation time can be obtained from 

the width of the spin noise signal. 

 

6.3  Physics of the spin noise measurement 

The spin noise measurement is based on polarization dependent optical 

absorption and the Faraday rotation effect. A detailed explanation of the physics 

of optical absorption, the refractive index, and the Faraday rotation effect will 
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help us understand the experimental technique used for the spin noise 

measurement. In this section, first a simple classical Lorentz model is used to 

explain the origin of absorption and the refractive index. Then using the same 

model and including the effect of an external magnetic field, the physics of the 

Faraday rotation is discussed. 

 

6.3.1 Absorption and refractive index of a two-level system 

With a simple classical Lorentzian model [18], the optical absorption (and 

refractive index) of dielectric materials can be modeled with a Lorentzian (and 

derivative) line shape. When a plane wave of monochromatic light propagates 

through a dielectric material, electrons bound in the atoms oscillate with the 

electrical field induced by the light, causing material polarization.  

The equation of motion for the polarization is 
2 2

2
2

0

( )

ˆ( )

a a

i t

d P dP NeP E
dt dt m
E t E e ω

ω ω

ε

+ Δ + =

=

t
     (6-8) 

where  is the polarization, P aωΔ  is the transition line width, aω  is the transition 

frequency, N is the total number of electrons, ( )E t  is the electric field due to the 

light,  and ε̂  is the polarization vector. 

The polarization can be obtained by solving the equation in the frequency 

domain. 

0

2

0 02 2
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i t

a a

P t P e

NeP E
m i

ωε
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=

⎡
= ⎢ ⎥− + Δ⎣ ⎦

⎤       (6-9) 

The material susceptibility is  
2

2 2
0

( ) 1( )
( )( ) a a

P t Ne
m iE t

χ ω
ε ω ω ωε

≡ =
− + Δ

     (6-10) 

In vacuum Maxwell equations yield a plane wave solution. Light propagates 

at the same speed, independent of the wavelength. 
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In a dielectric material, light still propagates as a plane wave. However, light 

at different wavelengths propagate at different speeds, due to the wavelength 

dependent material susceptibility. By solving Maxwell’s equation for a plane 

wave propagating in the dielectric material, the material’s absorption and the 

refractive index can be estimated. 
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Usually the transition line width is much smaller than the transition frequency, 

which means a aω ωΔ  and aω ω≈ . 

2 2 ( )( ) 2 (a a a a a )ω ω ω ω ω ω ω ω ω− = + − ≈ −     (6-15) 
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   (6-16) 

The real part yields the dispersion shown in the refractive index, and the 

imaginary part is responsible for the absorption, as plotted in Figure 6.2. It clearly 

shows that the absorption has a Lorentzian line shape, and the refractive index has 

a derivative line shape. 
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Figure 6.2 (a) Lorentzian shape absorption (b) derivative shape refractive index 

 

The selection rule of a transition is defined by angular momentum 

conservation during the atomic transition. In semiconductors the transition from 

the ground state to the first excited state is the generation of an electron-hole pair. 

For electrons with spin up or down states in semiconductors, the optical 

transitions have a selection rule 1lΔ = . This selection rule requires circularly 

polarized light with σ +  or σ − . Without a magnetic field, the two transitions are 

degenerate with same Lorentzian absorption and derivative refractive index at the 

same frequency, as illustrated in Figure 6.3. 

With a simple classical Lorentzian model, the two transitions with orthogonal 

polarization are degenerate at the same frequency with identical Lorentzian-

shaped absorption and derivative refractive index. 

 118



22

σ −σ +

11
 

Figure 6.3 Two degenerate transitions with orthogonal circular polarizations 

 

6.3.2 Faraday rotation effect 

Faraday rotation is the effect by which the polarization of a linearly polarized 

beam is rotated by an angle θ when the beam passes through a dielectric material 

with a magnetic field oriented along the light propagation direction, as illustrated 

in Figure 6.4. 
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Figure 6.4 Faraday rotation effect 

 

The magnetic field induces a small change in the refractive index, which is 

different for left and right circularly polarized light, creating a circular 

birefringence. This circular birefringence causes the Faraday rotation by an angle 

n Blθ
λ
Δ

∝ , where  is the difference in the refractive indices for left and right 

circularly polarized light, 

nΔ

λ  is the wavelength, B is the strength of the magnetic 

field, and l is the length of the dielectric material. 
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This model can be understood by the effects of the magnetic fields on the 

motion of electrons in the dielectric materials. With circularly polarized light 

going through the dielectric material, the bounded electrons in the dielectric 

material experience a circular electrical field and rotate in circles in the plane 

perpendicular to the light propagation direction. Under a magnetic field, the 

rotating electrons are subjected to the Lorentz force, which may point towards or 

away from the center of the electron rotation, depending on whether the circularly 

polarization is the left or right. So the electron rotation will be affected differently 

for the left and the right circularly polarized light, which gives the Faraday 

rotation. 

The Faraday rotation effect can be explained with the same classical 

Lorentzian model used to explain the absorption and the refractive index by 

adding the effect of the magnetic field on the electrons [19]. 

The equation of motion is 
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For the experimental geometry, B is along the z direction and the motion of 

the electrons is in the x-y plane. The equation reduces to the following two 

equations. 
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These two equations can be represented with an equation of circular motion. 
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Since b aω ω , and bω ω , bωω  can be replaced by a bω ω . 
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It is shown that for material with a simple Lorentzian-shaped absorption, the 

refractive index has a derivative line shape with the maximum (minimum) at the 

wavelength with the fastest absorption change, as shown in Figure 6.2. When a 

magnetic field is applied, the energy of one transition (σ + ) goes down by bω , 

and the other (σ − ) goes up by bω  (Zeeman Effect). The two transitions become 

non-degenerate, shown in Figure 6.5.  

 
Figure 6.5 Non-degeneracy due to the energy shift caused by a magnetic field 

 

Correspondingly, the absorption curves are shifted by bω  in two opposite 

directions for the spin up and the spin down states, while the line shape remains 

σ +

1

2 2

σ −

1bω
bω
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unchanged. So the original Lorentzian absorption curve is split into two identical 

Lorentzian curves separated by 2 bω , corresponding to the two orthogonal circular 

polarizations, as illustrated in Figure 6.6(a). 

The change of the absorption affects the refractive index. The refractive index 

of the two orthogonal circular polarizations can be obtained from the two shifted 

Lorentzian absorption curves, illustrated in Figure 6.6(b). The difference between 

the two refractive indices for the two orthogonal circular polarizations can be 

estimated from the subtraction of the two derivative curves, plotted in Figure 

6.6(c). The laser wavelength dependence of the Faraday rotation can be estimated 

from Figure 6.6(c). 
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Figure 6.6 (a) Absorption, (b) refractive index of the two orthogonal circular 

polarized light, (c) Faraday rotation 

 

The maximum positive Faraday rotation, which corresponds to the maximum 

positive signal, is obtained at the peaks of refractive index, which are the steepest 
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places of the absorption. There are two zero-crossing near the resonance, one for 

the left and one for the right. The maximum negative Faraday rotation, which 

corresponds to the maximum negative signal, appears at the peaks of the negative 

dips of the shifted derivative refractive-index curves. Actually, the maximum 

negative Faraday rotation gives the biggest signal in experiments since the 

absolute value determines the signal strength. At the absorption resonance there is 

still some Faraday rotation, but it is not the maximum. The amount of rotation 

drops quickly when the wavelength moves away from the wavelength 

corresponding to the positive maximum signal, with the rate at which the 

refractive index drops. 

It is understandable that the maximum signal appears at the wavelength where 

the absorption changes most rapidly, rather than the peak of the absorption, since 

the Faraday Effect is caused by the change of the absorption, not the absorption 

itself. Since most materials with Lorentzian absorption shapes have the most rapid 

change of absorption at a wavelength away from resonance, often in the 

transparency region with very weak absorption. This gives the advantage of 

measuring spin dynamics without disturbing the measured system. On the other 

hand, when the wavelength is too far away from the resonance, where absorption 

is too weak to get enough change of absorption, the Faraday rotation will be too 

small to be measured. So there is a working wavelength range for spin noise 

studies. 

The above analysis assumes a simple symmetric Lorentzian absorption line 

shape, which works well for atoms, but not for the bulk semiconductors. GaAs 

shows strong absorption above the exciton absorption peak (818nm or 1.515eV) 

with an absorption coefficient of , and weak absorption in the 

transparency region (>844nm or below 1.47eV) with an absorption coefficient 

less than 10 . Between the weak absorption (<1.47eV or 844nm) and the 

strong absorption (>1.515eV or 818nm) there is a transition region called the 

Urbach tail, where the absorption coefficient goes up exponentially [18]. Our 

experiments are conducted in the Urbach tail region. Further discussion about the 

wavelength dependence of the spin noise will appear in later chapters. 

41.2 10 / cm×

/ cm
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6.4 Spin noise measurement on n-GaAs 

Spin noise measurements are challenging mainly due to the weak signal 

strength, which is usually below other noise sources like laser shot noise or 

electrical thermal noise, which always exist in experiments. The balanced 

detection scheme discussed in Chapter 2 is utilized to get to the shot noise limit, 

and a background subtraction technique is used to obtain the weak spin noise 

signal which is below laser shot noise and electrical thermal noise. These 

techniques have been used in measuring the spin noise of atoms [3, 21] and n-

GaAs [4]. 

 

6.4.1 Spin noise measurement technique 

As discussed earlier, spin noise gives a rotating spin component in the plane 

perpendicular to the external magnetic field. The rotating spin component causes 

an oscillating magnetic field along the z direction, as illustrated in Figure 6.7. 

Through the Faraday rotation effect, the oscillating magnetic field gives an 

oscillating Faraday rotation angle, which can be measured with high sensitivity 

down to micro radians by using high quality polarization optics and the balanced 

detection technique.  

 

electron spin 
precession at 
frequency ω 

z

oscillating 
magnetic field 
along z 

y

x

 
Figure 6.7 Oscillating magnetic field generated from the electron spin precessing 

 

The experimental setup is illustrated in Figure 6.8. 
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Figure 6.8 Spin noise measurement setup 

 

A laser beam is tuned to 826nm, with the energy below the GaAs bandgap 

(816nm or 1.515eV), where most of the laser power is absorbed and some laser 

power is transmitted. The laser beam goes through a polarizer along the 45 degree 

direction in the x-y plane before it hits a sample in a cryostat. The sample is a 

350μm thick n-doped GaAs substrate with a doping density of  at 

8K. Lenses are used to focus the laser beam on the sample and the detectors. The 

transmitted laser beam passes through a polarization beam splitter and is detected 

by a balanced detector. A weak magnetic field along the x direction causes the 

electron spin to precess, which produces an oscillating magnetic field along the z 

direction. Birefringence due to the oscillating magnetic field provided by the 

Faraday rotation effect is detected by a balanced detector and a spectrum 

analyzer. 

16 31.8 10 / cm×

 

6.4.2 Magnetic field dependence of spin noise of n-GaAs 

With the above experimental setup, the spin noise of GaAs was measured at 

different magnetic fields, as shown in Figure 6.9. It is clear that the spin noise 

spectrum appears at different frequencies at different magnetic fields. As 

explained before, the spin noise spectrum can be fitted with a Lorentzian curve, as 

shown in the inset of Figure 6.9. From the curve fitting, important parameters 

including peak frequency and spectrum width can be extracted. The magnetic 

field dependence of these parameters is plotted in Figure 6.10. As expected, it is 

shown that the shift of the peak frequency, the Larmor frequency, depends 
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linearly on the magnetic field strength, while the spectral width and the amplitude 

remain constant independent of the magnetic field strength. 

 

 
Figure 6.9 Magnetic field dependence of the spin noise (the inset is a 

Lorentzian fit for the spin noise spectrum measured at 49.2mT.) 

 

As discussed in the section 6.2, information about the electron spin can be 

obtained from the spin noise spectrum. The electron g factor can be extracted 

from the slope of the linear dependence of the Lamar frequency on the magnetic 

field. With a linear fit to the data, the slope gives a g factor magnitude about 0.45. 

From the spectral width, the electron spin relaxation time can be estimated. With 
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the number in Figure 6.10, the spectrum width is 7MHz, which yields a spin 

relaxation time of about 45ns. These numbers agree with the ones measured with 

other methods [22,23]. 

 
Figure 6.10 Peak frequency and the spectrum width of the spin noise  vs. 

magnetic field (the dashed line is a linear fit.) 

 

Spin noise provides a new method of studying the spin in atoms and 

semiconductors. Compared with other methods which measure the spin relaxation 

time through the Hanle effect and time resolved Faraday rotation, spin noise is 

measured with the laser tuned to the transparent regime away from resonance, 

while all other techniques use resonant excitation. One advantage of the spin is 

that the measured system is not disturbed in below-resonant excitation. For GaAs, 

spin noise was measured below the band gap energy with the laser tuned to the 

Ulbach tail region where absorption is weak and is caused by impurities and 

defects. Hanle effect measurements use above band gap excitation, and time-

resolved Faraday rotation measurements use near-band gap excitation. Both 

techniques create carriers and the measured system is disturbed. 

Another advantage of spin noise is that the spin relaxation time can be 

measured over a large wavelength range from below to above resonance. For 

semiconductors, it enables spin relaxation time measurement from below-band 

gap to above band gap. This will help in studying the spin relaxation time of 

doped, photo-generated, and electrically injected electrons. Most previous 

experiments have been focused on the spin relaxation time of photon-generated 
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electrons. With spin noise, the difference between the spin relaxation time of 

different electrons can be studied. 

 

In summary, the quantum properties of spin were discussed and the physical 

origin of the spin noise was explored. Based on a classical Lorentzian model, the 

optical absorption, refractive index, and the Faraday rotation effect were 

explained to illustrate the spin noise measurement. The spin noise measured at 

different external magnetic fields provided the g factor and the spin relaxation 

time for the doped electron in n-GaAs. 
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Chapter 7 

 

 

Optical and Thermal Effects on Spin Noise Measurement of n-GaAs 

 

 

In Chapter 6 the spin noise of doped electrons in n-GaAs was measured under 

different magnetic fields. The slope of the Larmor frequency as a function of 

magnetic field gives the electron g factor, and the spin noise spectrum width 

represents the electron spin relaxation time. Due to the high sensitivity of spin 

noise measurement and its property of not disturbing the system under study, it 

can be a powerful tool to study the spin dynamics in atoms and semiconductors 

[1-5]. To obtain a comprehensive understanding of the spin noise technique, it is 

important to understand how optical and local environment parameters affect spin 

noise spectra. 

It is important to understand optical effects to provide a comprehensive 

understanding of the spin noise measurement. Spin noise spectra shows a strong 

dependence on laser energy and intensity. Even though the spin noise technique 

has the advantage of not substantially disturbing the system under study by 

detuning from the resonance, it is desirable to know to what degree the system is 

disturbed in the spin noise measurement and how to minimize the disturbance. 

Usually spin noise measurement is difficult due to the low signal level, and it is 

important to optimize experimental parameters to improve spin noise signal 

effectively. Also local environmental effects on the spin noise measurement need 

to be understood to use the spin noise technique properly. As a sensitive 

experimental technique, spin noise measurement is capable of measuring small 

changes on the g factor and spin relation time due to local change like temperature, 
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external electric field, and extra optical excitations. Multiple effects may mix in a 

single spin noise measurement. It is necessary to isolate individual environmental 

effects to extract correct information from the spin noise measurement. 

In this chapter we will study the optical and thermal effects on spin noise 

measurement of n-GaAs. First, the signal strength of the spin noise is analyzed 

based on a Lorentzian model with saturation behavior. Then optical effects 

including both the laser energy and laser intensity on spin noise are studied. Next, 

the temperature effect on the spin noise is discussed. At the end of the chapter the 

spin relaxation mechanisms in n-GaAs are discussed to explain the optical 

excitation induced spin relaxation observed in our experiments. 

 

7.1 A two level system with Lorentzian line shape and saturation 

The signal strength of the spin noise measurement is defined as the integrated 

power under the Lorentzian shaped spin noise spectrum. The spin noise power we 

measure, represented by a spin noise voltage snV , is determined by two factors. 

One factor is the change of refractive index caused by electron spin relaxation in 

the measured system. This can be seen as a Faraday rotation angle, which may 

depend on laser energy or intensity as discussed in Chapter 6. The other factor is 

the laser power on the detector from the laser beam transmitted through the 

sample, which is a carrier to convert the refractive index change into an 

oscillating electrical signal we can measure through photodetectors. The laser 

power on the detector is independent of the refractive index change and its effect 

on the spin noise voltage can be removed by normalization. The spin noise 

voltage snV   is 

( , )sn iV RR P Iθ λ=         (7-1) 

where R is the equivalent resistance of the photo detector circuit, iR  is the 

responsivity of the photo detector, P is the laser power on the photo detector, and 

( , )Iθ λ  is the Faraday rotation angle due to spin relaxation. 

When we change experimental parameters, both the Faraday rotation angle 

and the transmitted laser power change. To obtain the refractive index change 
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caused by the spin relaxation, the spin noise power is normalized to a fixed 

reference level so that the transmitted laser power on the detector does not affect 

the normalized spin noise power ( , )snnV Iλ  

( , ) ( , )snn iV I RR Iλ θ λ=        (7-2) 

 
Figure 7.1 Absorption of a two level system with Lorentzian line shape and 

saturation behavior (a) pseudo colormap of the laser energy and intensity 

dependent absorption coefficient (b) a vertical cross section plot of the absorption 

coefficient along laser energy showing the Lorentzian line shape (c) a horizontal 

cross section plot of the absorption coefficient along laser intensity showing 

saturation 

 

With a two-level model with a Lorentzian line shape and saturation behavior, 

the absorption coefficient ( , )Iα λ  gives a laser energy and intensity dependence,  
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where  is the detuning, Δ γ  is the width of the Lorentzian curve, 0α  is the 

absorption coefficient at zero laser intensity, and satI is the saturation intensity at 

which the absorption drops by half. Figure 7.1 illustrates the laser energy and 

intensity dependent absorption. 

In Chapter 6 the spin noise signal strength is discussed with a Lorentzian 

absorption model for atomic systems without considering the saturation effect. 

Here we add two more assumptions to simplify equations to illustrate the effect of 

the laser beam on the refractive index change. First, we assume that the energy 

splitting bω   in the Faraday effect is much smaller than the laser detuningΔ . In 

our spin noise measurement with GaAs, the energy splitting bω  is below 2μeV, 

while the laser detuning Δ  is at least 5meV. Second, we assume that the laser 

intensity affects population in the two level system, which further changes the 

absorption and refractive index. This can be seen by solving the density matrix for 

a simple two level system and observing the dependence of the real and imaginary 

parts of the polarization on laser intensity. The normalized spin noise signal 

strength can be simplified as 
2

01( , ) ( , )
( ) 1

snn i i

sat

NL eV I RR I RR Icn m
I

ωλ θ λ
ε λ

= =
Δ +

,   (7-4) 

where ω  the angular frequency of the laser, L is the thickness of the sample, c is 

the speed of light, n is the refractive index, e is the charge of an electron, ε  is the 

dielectric constant, m is the mass of an electron, and ( )λΔ is the detuning. Figure 

7.2 shows the laser energy and intensity dependent spin noise power. It shows that 

the spin noise power reaches maximum on resonance with low laser intensity, and 

the spin noise power drops rapidly when the laser energy is detuned away from 

the resonance and when the laser intensity is increased. 
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Figure 7.2 Spin noise power of n-GaAs (a) pseudo colormap of the laser energy 

and intensity dependent spin noise power (b) a vertical cross section plot of the 

spin noise power along laser energy (c) a horizontal cross section plot of the spin 

noise power along laser intensity 

 

7.2 Optical effects on the spin noise in n-GaAs 

To understand the effect of the laser beam on the spin noise measurement, we 

change the laser energy and laser intensity to study how these parameters affect 

the spin noise width and power. For each experimental condition, we measure the 

optical transmission through the sample, ( , )T Iλ ,  as a ratio between the 

transmitted laser power and the input laser power with corrections for surface 

reflections. Then an absorption coefficient ( , )Iα λ  is calculated from the 

transmission with the formula 
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( , )( , ) out

in

P IT I
P
λλ =        (7-5) 

1( , ) lnI T
L

α λ = −         (7-6) 

where ( , )outP Iλ  is the laser power transmitted through the sample with a 

dependence on laser energy and intensity,  is the normalized input laser power 

getting into the sample by taking into account the surface reflection due to 

refractive index mismatch, and L is the sample thickness. Spin noise width and 

power are extracted from Lorentzian curve fitting parameters of the measured 

spin noise spectra, and the spin relaxation time is inferred from the spin noise 

width. 

inP

 

7.2.1 Laser energy dependence of the spin noise in n-GaAs 

Laser energy dependence of the spin noise is studied with a fixed laser 

intensity of about 169μW/μm2 at 9.5K, over the laser energy range 1.465eV to 

1.505eV, which is the laser energy range where the spin noise of the sample is 

large enough to be measured. When the laser energy goes above 1.505eV, the 

transmission is too low to measure the spin noise, due to strong absorption close 

to the GaAs band gap 1.519eV for the sample thickness of 0.35mm. When the 

laser energy goes below 1.465eV, the spin noise also becomes too weak to 

measure, due to the off resonance detuning effect.  

Figure 7.3 (a) shows the measured laser energy dependent transmission and 

the absorption coefficient of the n-GaAs sample between 1.465eV to 1.505eV. 

The measurement errors are from the uncertainty of the optical power meter. The 

transmission is high and the absorption coefficient is small between 1.465eV and 

1.49eV, far away from the GaAs band gap, defined as a transparency regime 

where absorption is weak due to the off resonance effect. From 1.49eV to 

1.505eV, close to the GaAs band gap, the transmission drops and the absorption 

coefficient increases rapidly.  
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Figure 7.3 Laser energy dependence of the spin noise of the n-GaAs sample (with 

a laser intensity of about 169μW/μm2 at 9.5K) (a) transmission and absorption 

coefficients of the n-GaAs sample over laser energy (b) spin noise spectra at 

different laser energies (c) spin noise width over laser energy (d) spin noise power 

over laser energy (Theory for the solid lines is described in the text) 

 

The absorption of GaAs in this laser energy range is the Urbach tail caused by 

impurity absorption. The Urbach tail absorption we measured with our sample is 

similar to that measured by others [6-8]. A few models have been presented to 

describe the Urbach tail absorption [9-11].For simplicity we use a Lorentzian 

model to fit the laser energy dependent absorption coefficient, as illustrated by a 
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dashed line in Figure 7.3(a), which gives a peak absorption centered at 

. This number matches the exciton absorption peak at 1.514eV, 

5meV below the band gap in GaAs at low temperature. Rather than explaining the 

physics for the Urbach tail absorption, the Lorentzian model is a 

phenomenological model for absorption coefficient covering both the 

transparency and absorption regimes that can be used to explain the spin noise 

width and power measurements. 

1.512 0.008eV±

The measured spin noise spectra over the same laser energy range are plotted 

in Figure 7.3(b) as vertically shifted plots. The peaks are not aligned at the same 

frequency due to the difficulty of obtaining the same magnetic field in different 

measurements since the magnetic field is adjusted by physical positions of 

magnets. Spin relaxation time and spin noise power are extracted as curve fitting 

parameters and plotted over laser energy in Figure 7.3(c) and Figure 7.3(d). 

Figure 7.3(c) shows that the spin noise width starts from about 10MHz at 

1.465eV, and from 1.465eV to 1.49eV it increases slowly to about 15MHz in the 

transparency regime where the laser energy is far away from the GaAs band gap. 

When the laser energy approaches the GaAs band gap in the absorption regime, 

the spin noise width increases rapidly to 30MHz. By extrapolating the laser 

energy dependent spin noise width to the lower limit of the laser energy, it is 

expected that the width of the spin noise would be about 10MHz, which 

represents an upper limit of the electron spin relaxation time of about 32ns. If the 

laser energy dependence of the spin noise width holds for higher laser energy 

until the absorption peak, then by extrapolating the curve to the absorption peak 

of 1.512eV, the upper limit of the spin noise width could approach hundreds of 

MHz, which indicates the electron spin relaxation time could be reduced to a few 

ns when the laser energy hits the band gap. 

Figure 7.3(d) shows that the spin noise power is very small at 1.465eV, it 

increases linearly and slowly in the transparency regime from 1.465eV to 1.49eV, 

and it goes up very rapidly in the absorption regime from 1.49eV to 1.505eV. The 

laser energy dependent spin noise power can be fitted with a detuning effect as in 

Equation (7-4), which supports the Lorentzian model we used for the laser energy 
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dependent absorption we measured. Similar results have been observed for the 

spin noise measurement in atomic gas [1] and GaAs [5]. In Reference [5], the 

same laser energy dependent absorption, spin noise width and power have been 

observed for n-GaAs. A Lorentzian model based on near band gap absorption is 

presented to explain the laser energy dependence of the spin noise power. But 

there is significant discrepancy between the measurement and the calculation 

results. Our Lorentzian model based on the measured absorption coefficients 

gives a better fit between the measurement and calculation results. 

The laser energy dependence of the spin noise indicates that the spin noise 

power is optimized at high laser energy close to the absorption peak with the side 

effect of broadening spin noise width. To minimize the spin noise width 

broadening caused by the near resonance excitation, it is desirable to measure the 

spin noise with far off resonance detuning, with a cost of reduced spin noise 

power. 

 

7.2.2 Laser intensity dependence of the spin noise in n-GaAs 

This subsection explores how the spin noise is affected by the laser intensity. 

We choose the laser energy of 1.501eV, which gives a proper absorption to obtain 

the spin noise signal over a wide laser intensity range on our sample. When the 

laser energy is too high (close to the GaAs band gap), the absorption is too strong 

to get enough transmitted laser power to measure the spin noise. When the laser 

energy is too low, the absorption is too weak to provide enough spin noise signal. 

To adjust the laser intensity we change the laser power in front of the cryostat 

from 2mW to 200mW with a fixed focal spot size. The transmission and 

absorption coefficients of the n-GaAs sample over a laser intensity range from 28 

μW/μm2 to 1121μW/μm2 are plotted in Figure 7.4(a). When the laser intensity 

increases from 28 μW/μm2 to 200μW/μm2 the transmission increases linearly and 

the absorption coefficient drops with the laser intensity. When the laser intensities 

go above 200μW/μm2, the transmission remains constant and the absorption 

coefficient becomes saturated. This laser intensity dependent absorption 
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coefficient can be well fitted with a two level saturation model as Equation (7-3), 

as shown by the dashed line in Figure 7.4(a). 
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Figure 7.4 Laser intensity dependence of 

the spin noise of the n-GaAs sample 

with laser energy about 1.501eV at 9.5K 

(a) transmission and absorption 

coefficients of the n-GaAs sample as a 

function of laser intensity (b) spin noise 

spectra at different laser intensity (c) 

spin noise width as a function of laser 

intensity (d) spin noise power as a 

function of laser intensity (e) spin noise 

power vs. absorption coefficient 
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It gives a zero laser intensity absorption coefficient of 1
0 45 6cmα −= ± , a 

saturation intensity of 233 8 /satI W mμ μ= ± , and a non-saturating absorption 

coefficient about 123 1ns cmα −= ± . 

The spin noise spectra at different laser intensities are shown in Figure 7.4(b) 

with vertically shifted plots for clarity. The peaks are not aligned at the same 

frequency due to difficulty of repeating the same magnetic field in different 

measurements. Spin noise width and power are extracted as curve fitting 

parameters and plotted over laser intensity in Figure 7.4(c) and Figure 7.4(d). 

Figure 7.4(c) shows that the spin noise width starts from about 10MHz and 

increases linearly at a relatively high rate in the low laser intensity regime, and it 

increases linearly at a relatively low rate in the high laser intensity regime. By 

extrapolating the laser intensity dependent width to the lower limit of zero laser 

intensity, the width of the spin noise becomes about 5MHz, which represents an 

upper limit of the electron spin relaxation time of about 63ns. By extrapolating the 

laser intensity dependent width to the upper limit of an infinite laser intensity, we 

estimate the spin noise width which can either increase to hundreds of MHz or 

saturate at somewhere between 50MHz and hundreds of MHz, which indicates a 

reduced spin relaxation time of a few ns at high laser intensities. 

In the laser intensity dependence measurement, there is no noticeable 

intensity dependence of the sample temperature in the low laser intensity regime. 

In the high laser intensity regime, we observed that the laser causes the sample 

temperature to increase, which indicates a heating effect caused by the laser 

power absorbed by the sample. The temperature sensor shows that temperature 

increases from about 8K at low laser intensity to 9.5K at the maximum laser 

intensity. The temperature dependence of spin noise measurements discussed later 

shows that an increasing temperature of a few K may cause spin noise width to 

increase by a few MHz. Even with a small thermal effect in the measurement, the 

main effect is still caused by the laser intensity rather than the temperature change. 
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A similar laser intensity dependent result was verified at low laser energy where 

absorption is weak and the thermal effect is negligible. 

The spin noise power over laser intensity is plotted in Figure 7.4(d), with a 

dashed blue curve showing the laser intensity dependent absorption coefficients 

we measured in Figure 7.4(a). The spin noise power starts from a relatively large 

number, then it drops quickly in the small absorption regime, and it stays constant 

in the transparency regime. The spin noise power follows a similar trend as the 

absorption coefficient, as we expected from Equation (7-4). Figure 7.6(e) gives a 

linear fit between the absorption coefficient and the spin noise power. To verify 

that the effect is caused by the laser intensity rather than laser power, we also 

adjusted the laser intensities by changing the focus spot size through lenses with 

different focus length under a fixed laser power. Similar laser intensity dependent 

results were observed and confirmed that the spin noise depends on the laser 

intensity rather than the laser power. Similar laser intensity dependent results have 

also been measured with a lower laser energy in the transparency regime. 

Compared with the laser energy dependence of the spin noise width, a 

comparable lower limit of 5MHz to 10MHz is obtained at either lower laser 

energy (i.e. long wavelength) or in the limit of zero laser intensity. Both are 

associated with minimal absorption of the laser power by the sample. Any 

increase of optical absorption, either by moving the laser energy to the strong 

absorption regime or by increasing laser power, increases the spin noise width. 

This indicates that the 5MHz to 10MHz spin noise width is associated with the 

upper limit of the electron spin relaxation time of about 32ns to 63ns in the n-

GaAs sample without optical excitation. Spin relaxation is enhanced under optical 

excitation, reducing the electron relaxation time to a few ns.  

An optical effect on spin noise power is observed because the spin noise 

power is proportional to the change of the refractive index, which depends on the 

laser energy and intensity. The maximum spin noise power can be obtained with 

near resonance excitation. 

 

7.3 Thermal effects on the spin noise in n-GaAs 
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To study the thermal effect, we measure spin noise over the temperature 

range of 1.4K to 50K, which is the temperature range when the spin noise is big 

enough to be measured. The laser energy is 1.501eV with an intensity of about 

200μW/μm2. 

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

0 10 20 30 40 50

transmission

absorption coefficient

tra
ns

m
is

si
on

absorption coefficient (/cm
)

temperature (K)

(a)

0

10

20

30

40

50

0 10 20 30 40 50

sp
in

 n
oi

se
 w

id
th

 (M
H

z)

temperature (K)

(c)

 

49.5K
44.5K
41.6K
38.8K
32.5K
25K
17.5K
12K
8K
5K
1.4K

250 300 350

sp
in

 n
oi

se
 p

ow
er

 (m
W

)

frequency (MHz)

(b)

0

0.5

1

1.5

0 10 20 30 40 50

sp
in

 n
oi

se
 p

ow
er

 (
a.

u)

temperature (K)

(d)

 
 

Figure 7.5 Temperature dependence of the spin noise of the n-GaAs sample with 

laser energy at 1.501eV and intensity about 200μW/μm2 (a) transmission and 

absorption coefficients of the n-GaAs sample as a function of temperature (b) spin 

noise spectra at different temperature (c) spin noise width as a function of 

temperature (d) spin noise power as a function of temperature 

 

The transmission and absorption of the n-GaAs sample over the temperature 

range 1.4K to 50K is plotted in Figure 7.5(a). At low temperatures below 20K, the 

absorption remains constant. As the temperature increases further above 20K, the 
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absorption gets stronger because the GaAs band gap shifts to a lower energy when 

the temperature increases. The spin noise data over the same temperature range is 

plotted in Figure 7.5(b) as vertically shifted plots. The peaks are not aligned at the 

same frequency due to difficulty of repeating the same magnetic field in different 

measurements, as discussed earlier. Spin noise width and power are extracted as 

curve fitting parameters, plotted as a function of laser energy in Figure 7.5(c) and 

Figure 7.5(d). Figure 7.5(c) shows that the spin noise width drops from 18MHz at 

2.4K to 12MHz at 5K, then increases to 40MHz around 18K, and drops to 25-

30MHz above 23K. In the temperature range 5K to 18K, the increase of the spin 

noise width could be associated with thermal excitation of impurities. There could 

be due to mixed complications of both thermal and optical effects. Further 

investigation is necessary to understand this temperature dependence. 

Figure 7.5(d) shows that the spin noise signal strength slightly increases from 

1.4K to 18K, drops and goes back from 18K to 25K, and stays same above 25K. 

 
Figure 7.6 Temperature dependence of spin noise width and peak position 

measured by Romer (Figure Romer[5]) 

 

Figure 7.6 shows the spin noise width measured by Romer [5] with laser 

energy of 1.46eV. Romer’s data gives much narrower spin noise width and shows 

a monotonic increasing of the spin noise width when the temperature increases 

from 3K to 40K. The difference between our data and Romer’s data, measured 

with similar samples but different laser energy and intensity, indicates that at the 
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laser energy 1.501eV, where we measured the temperature dependence, the spin 

noise width is dominated by the optical effect rather than the thermal effect. From 

our study on the laser energy and intensity effect on the spin noise width, we 

learned that the spin noise width gets broadened with laser energy close to the 

bandgap energy and high intensity. To study the temperature effect, the spin noise 

need to be measured with laser energy far away from the bandgap energy, which 

we did not do due to the low signal level. Romer measured the temperature 

dependence with laser energy far away from the bandgap energy with a system 

with a higher sensitivity. Here the temperature dependence was measured with 

laser energy near the bandgap energy to verify whether the spin noise width we 

measured at high laser intensities is due to the optical or thermal effect. The 

temperature dependence supports the conclusion that the spin noise width we 

measured at high laser intensities is due to the optical rather than thermal effect. 

 

7.4 Optical excitation induced spin relaxation  

From the above experiments we found that the spin relaxation time in n-GaAs 

depends on laser energy, intensity and temperature. To understand how spin 

relaxation is affected by these parameters, spin relaxation mechanisms in 

semiconductors need to be discussed. In this section, first the three spin relaxation 

mechanisms in n-GaAs are briefly introduced. Then related experimental and 

theoretical work on spin relaxation time in n-GaAs is summarized. At the end of 

the section a possible explanation of optical effects on the measured spin noise 

width is presented. 

 

7.4.1 Spin relaxation mechanisms in n-GaAs 

There are mainly three spin relaxation mechanisms in semiconductors, and 

one may dominate over others depending on the material and temperature [12-14]. 

The Elliot-Yafet (EY) mechanism is a spin relaxation mechanism due to spin-

orbit coupling [15]. The electron wave functions with opposite spin orientation 

mix due to spin-orbit coupling, which induces spin relaxation by momentum 
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scattering with photons and impurities. The spin relaxation time EY
sτ   caused by 

the EY mechanism is 
2
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where A  is a dimensionless constant varying from 2 to 6 depending on the 

scattering mechanism for the momentum relaxation,  is the Boltzmann 

constant, T  is the temperature, 

Bk

gE  is the band gap energy, and sosΔ  is the spin-

orbit splitting of the valance band. 

The D’yakonov-Perel (DP) mechanism is a spin relaxation mechanism caused 

by the ionized impurity scattering in n-type III-V semiconductors [16]. For 

crystals without inversion symmetry, electrons in the conduction band with same 

k vector but opposite spin orientations have different energies, which depend on 

the k vector. This energy splitting is equivalent to the energy splitting caused by 

an internal magnetic field depending on the magnitude and orientation of the k 

vector. The electron spin precesses along the equivalent internal magnetic field, 

causing spin relaxation. When the electron scatters by an ionized impurity, the 

precession axis is randomized after scattering. When the spin precession period is 

longer than the momentum relaxation time, multiple scattering occurs before the 

spin relaxation is achieved. Therefore, spin relaxation is suppressed by the 

frequent scattering with ionized impurities, and the spin relaxation time is 

inversely proportional to the momentum relaxation time. The spin relaxation time 

caused by the DP mechanism is 
2
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where α  is a dimensionless factor (0.07 for GaAs),  is the Plank constant over 

2π ,  is the Fermi energy, FE ( )p Eτ  is the momentum relaxation time, and Dn  is 

the doping density. The momentum relaxation time ( )p Eτ  is evaluated with the 

Brook-Herring method under the Born approximation by estimating the cross 

section of an electron scattering from a Coulomb potential screened by the 

degenerate electron gas. 
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where x is a dimensionless number, and  is the screening radius.  0r

The Bir-Aronov-Pikus (BAP) mechanism is a spin relaxation mechanism due 

to electron-hole scattering through exchange and annihilation interactions [17]. 

BAP dominates in p doped semiconductors rather than n doped semiconductors.  

These spin relaxation time in n-GaAs has been studied both theoretically and 

experimentally [13-14]. The Hanle effect can be used to measure the external 

magnetic field induced depolarization rate in luminescence. This method was 

used to study spin relaxation time of optically excited electrons in n-GaAs at 

different doping densities [13]. For n-GaAs with similar doping density as our 

sample, the spin relaxation time of optically excited electrons measured by the 

Hanle effect is in the same range as that of doped electrons measured by spin 

noise in the low laser power and weak absorption regime. It is found that 

increasing the doping density causes the spin relaxation time to drop linearly, 

explained as increasing the doping density increases the ionized impurity density 

and carrier momentum relaxation time. In the doping density range similar to our 

n-GaAs sample, the relation between the spin relaxation time and doping density 

was explained with the DP mechanism in Reference [13]. 
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In the work of Song et. al [14], the spin relaxation time in III-V compound 

semiconductors was calculated by examining dominant spin relaxation 

mechanisms depending on the doping density and temperature. Reference [14] 

reinforces that for the doping density and temperature in our measurement, the 

dominant spin relaxation mechanism is the DP mechanism. 

Based on the these works, we tried to explain the laser energy, power, and 

spot size dependent spin noise data with excitation induced spin relaxation by 

associating optical excitation with ionized impurity density. 

 

7.4.2 Optical excitation induced spin relaxation in n-GaAs 

From the above introduction, we learned that spin relaxation in sparely doped 

n-GaAs at low temperatures is dominated by the DP mechanism caused by 

electron scattering by ionized impurities. Due to the scattering mechanism, the 

electron spin relaxation time is inversely proportional to the electron momentum 

relaxation time. In this section, we will explore the excitation induced spin 

relaxation in n-GaAs due to impurity ionization to explain the laser energy and 

intensity dependence of the spin noise width we measured. 

Without optical excitation, the momentum relaxation time depends on the 

concentration of the impurity, the temperature, and the electron effective mass. 

For a sample with a certain doping density, the electron momentum relaxation 

time is minimized at low temperature and no optical excitation. With optical 

excitation a laser beam tuned to the spectral range of the Urbach tail, where the 

impurity absorption dominates, causes impurities to be ionized, giving a laser 

energy and intensity dependent ionized impurity density. By studying the laser 

energy and intensity dependence of ionized impurity density in the n-GaAs 

sample, we can find the relation between the ionized impurity density and the spin 

noise width. 

A simple model for the optical excitation effect on the ionized impurity 

density is to assume that the ionized impurity density ( , )iiN Iλ   is proportional to 

the intensity of the absorbed light ( , )absI Iλ , which is exponentially attenuated 

when the laser propagates through the sample, 
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0( , ) ( , )ii ii absN I N I Iλ β λ= + ,      (7-14) 

( , )( , ) (1 )I z
abs inI I I e α λλ −= − ,      (7-15) 

where  is the ionized impurity density without optical excitation, 0iiN β  is the 

impurity ionization rate under optical excitation, inI  is the input laser intensity, 

( , )Iα λ  is the laser energy and intensity dependent absorption coefficient,  and  

is the propagation distance in the sample. 

z

Depending on the laser energy and intensity, there are two regimes which 

give different optical excitation effects. One is the transparency regime, which 

appears at either low laser energy or high laser intensity (saturation regime). In 

this regime the absorption is small enough to be ignored, which gives laser energy 

and intensity independent absorption. In this regime, the ionized impurity density 

and the spin noise width are independent of the laser energy and intensity, which 

has been observed in atoms [1] and n-GaAs. 

The other is an absorption regime, which occurs at laser energies near 

resonance (or band gap) or low laser intensity. Here the absorption is big enough 

that it can not be ignored and it shows a strong dependence on the laser energy 

and intensity, as we have seen in our spin noise measurement with n-GaAs. To 

treat the absorption regime correctly, we need to take into account the non 

uniformity of the intensity distribution within the sample, which gives different 

behaviors for laser energy dependence and laser intensity dependence. 

With a fixed laser intensity, when the laser energy is tuned from low to high, 

the sample changes from a uniform transparency regime with a long interaction 

length but weak interaction strength into a non uniform absorption regime with a 

short interaction length but a strong interaction strength due to decreased 

penetration depth. In the transparency regime, where laser energy is low and 

absorption is weak, the laser beam passes through the sample with an almost 

uniform intensity, giving a low ionized impurity density due to the weak 

absorption. When the laser gets into the absorption regime where the laser energy 

is high and absorption is strong the laser beam is attenuated when it propagates 
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through the sample, giving a quickly increasing ionized impurity density as a 

function of laser energy due to the strong absorption.  

With a fixed laser energy when the laser intensity increases from 0 to infinity 

the sample changes from a non-uniform absorption regime with a small 

interaction volume but relatively strong interaction strength to a uniform 

transparency regime with a large interaction volume but relatively weak 

interaction strength due to increased penetration area. In the small absorption 

regime, where laser intensity is low and absorption is relatively strong, the laser 

beam passes through the sample with small slightly attenuated laser intensity, 

giving a low ionized impurity density due to the weak laser intensity. When the 

laser gets into the saturation regime, where laser intensity is high and absorption 

is saturated, the laser beam passes through the sample with large slightly 

attenuated laser intensity, giving a slowly increasing ionized impurity density due 

to the strong absorption. 

Based on the two level model with a Lorentzian line shape and saturation 

behavior, from experimentally measured absorption coefficients we numerically 

estimated the local laser intensity distribution along the laser propagation path for 

both cases, shown in Figure 7.7(a) and 7.7(b). Then the average ionized impurity 

is estimated, and it is found that the estimated ionized impurity density is 

proportional to the spin noise width, as shown in Figure 7.7(c) and 7.7(d). By 

plotting the spin noise width vs. the estimated optically excited impurity density, 

as shown in Figure 7.7(e) and 7.7(f), there are good linear fits between the spin 

noise width and the estimated optically excited impurity density. Figure 7.7(e) 

gives a y intersection of about 11.5MHz, which is close to the lower limit we 

measured for the laser energy dependent spin noise width. Figure 7.7(f) gives a y 

intersection about 5MHz, which is close to the lower limit we got for the laser 

intensity dependent spin noise width. The two lines give different slopes and y 

intersections indicating that the laser energy and intensity affect spin relaxation 

differently. 
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Figure 7.7 Optically excited ionized impurity density in n-GaAs (a) laser intensity 

in the sample with varying laser energy (b) laser intensity in the sample with 

varying laser intensity (c) estimated optically excited ionized impurity density 
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over laser energy (d) estimated optically excited ionized impurity density over 

laser energy (e) measured spin noise width vs. estimated optically excited ionized 

impurity density at different laser energies (f) measured spin noise width vs. 

estimated optically excited ionized impurity density at different laser intensities 

 

From Figure 7.4(d), the experimentally measured absorption coefficients have 

a saturating term 
1

0 45 6cmα −= ±  and a non-saturating term . An 

interesting question is how much does the non-saturating term contribute to the 

optically excited ionized impurity density. Only part of the non-saturating term 

should contribute to the optically excited ionized impurity density because the 

non-saturating term exists even for pure GaAs with little impurity. Our calculation 

shows that the non-saturating absorption coefficient affects the shape of the 

optically excited ionized impurity density significantly. When the power absorbed 

by the non-saturating term is considered 100% contributing to the optically 

excited impurity ionization, the optically excited ionized impurity density 

increases linearly to the laser intensity. When the power absorbed by the non-

saturating term is considered 0% contributing to the optically excited impurity 

ionization, the optically excited ionized impurity density gives saturation at high 

laser intensity. A background absorption coefficient 

123 1ns cmα −= ±

bgα , with a value between 0 

and nsα ,  is chosen to be a fitting parameter to obtain the best estimated optically 

excited ionized impurity density. The estimated optically excited ionized impurity 

density shown in Figure 7.7(d) was obtained with . It might be 

interesting to study the laser intensity dependence at different laser energy to find 

if any relation exists between the non-saturating absorption coefficient 

12.2bg cmα −=

( )nsα λ  

and the background absorption coefficient ( )bgα λ . 

It is worth noting that the ionized impurity density remains a nonzero 

constant, determined by the doping density when the optical excitation effects 

approach zero. This can be approached experimentally by tuning the laser 

wavelength away from the band gap, reducing the laser intensity to zero, and 
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lowering the temperature. An even lower spin relaxation rate can be expected, 

which was recently measured [5]. 

 

In summary, the spin noise of n-GaAs under various laser energies, intensities 

and temperatures was studied to understand the effect of experimental parameters 

on the spin noise measurement in n-GaAs. It is found that the spin noise width 

approaches a maximum of 5MHz to 10MHz at low laser energy or low laser 

intensity, indicating an upper limit of the electron spin relaxation time of 32ns to 

63ns. Optical excitation causes the spin relaxation time to drops to a few ns. With 

a two level system with Lorentzian line shape and saturation behavior, it is found 

that the spin noise width has a linear relationship with the optically excited 

ionized impurity density, and the spin noise power is associated with the 

absorption. In a spin noise measurement, experimental parameters need to be 

carefully chosen to measure the desired information. 
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CHAPTER 8 

 

 

 Summary and Future Directions 

 

 

This thesis work is a part of the effort to improve the experimental techniques 

to study the optical absorption properties of QDs for the ultimate goal of 

implementing optically driven QD based quantum computing. The experimental 

techniques are not limited to IFQDs and they can be applied to other QDs with 

bias structures. To conclude this thesis, here we summarize the thesis work and 

provide a few future directions. 

 

8.1 Summary of thesis 

Experimental techniques to measure the voltage dependent absorption of 

single QDs and optical effects on spin relaxation time in n-GaAs have been 

studied in this dissertation.  

Differential reflectivity is studied to measure the nonlinear absorption of 

biased IFQDs to illustrate how a pump-probe experiment with optical modulation 

techniques measures a weak absorption signal below the limit set by laser power 

fluctuations with band width reduced lock-in detection. Under the condition of no 

transmission, DT is replaced by DR to measure the nonlinear absorption in 

reflection geometry. It was found that DR measures a combination of the real and 

the imaginary part of the nonlinear susceptibility, depending on a phase factor 

caused by the laser propagation related to the position of QDs below the sample 

surface. Bias voltage dependent nonlinear absorption of both ensemble of and 

single IFQDs are presented with DR on the biased IFQD sample. 
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Based on the bias voltage dependent nonlinear absorption of IFQDs measured 

by DR, both the QCSE and VM is studied to improve the SNR and measurement 

speed of the voltage and wavelength dependent absorption map of single IFQDs. 

The QCSE in both the strong and weak regimes were observed in a single QD by 

DR measurements. VM was studied to measure the linear absorption of single 

QDs with high SNR and measurement speed. The physics of VM was discussed 

with numerical simulations to explain how to extract useful information form VM 

signal. Experimentally measured a VM signal matches the voltage wavelength 

dependent absorption map on a single IFQD. 

To explore the spin relaxation time in semiconductors and the measurement of 

the signal below the apparent laser shot noise, spin relaxation based on noise 

fluctuations was studied. The physics of spin noise is studied as revealed by the 

Faraday rotation effect due to the oscillating magnetic field caused by electron 

spin relaxation. The spin noise spectrum gives a Lorentzian shape, providing 

information about the Larmor frequency and spin relaxation time. The spin noise 

measurement on an n-GaAs at different magnetic fields gives an electron g factor 

value about 0.45 and electron spin relaxation time about 45ns. 

A comprehensive study of the effects of experimental parameters, including 

laser energy, intensity and temperature, on spin noise measurement, shows optical 

excitation induced spin relaxation. With a two level model with a Lorentzian line 

shape and saturation behavior, the absorption coefficients depends on both laser 

energy and intensity. Measured spin noise spectra show that the spin noise power 

is proportional to the absorption coefficient, and the spin noise width is related to 

the optically excited ionized impurity density.  

 

8.2 Future directions 

Our study of spin noise in n-GaAs proved that spin noise measurement can be 

a sensitive experimental technique to study spin dynamic in semiconductors. 

Beside the effects of laser energy and intensity on spin noise width, we studied 

excitation dependent relaxation, future work can be extended into QDs with 

micro-cavities to enhance the optical interaction strength (see below), a larger 
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laser energy range, various doping densities, and effects of external fields on the 

spin relaxation time. 

Our study of the spin noise in n-GaAs involved using a spin noise technique to 

study the spin relaxation in QDs. We tried to measure the spin noise of ensemble 

and single QDs, but the efforts were not successful. The main challenge of a spin 

noise measurement on QDs is the lack of adequate QD density to interact with 

laser beam. Compared with 350μm thick n-GaAs, the spin noise signal strength 

for QDs with a thickness of a few ns will be five orders weaker, which is far 

beyond the current measurement sensitivity. Even for the 350μm n-GaAs, the spin 

noise measurement is challenging due to the fact that the spin noise signal 

strength is an order of magnitude below laser shot noise and electric thermal 

noise. There are two approaches to solve this problem in the future. One approach 

is to grow multiple layers of uniform QD. Unfortunately, QDs produced by 

current technologies probably are not sufficiently uniform due to the limitation of 

QD growth techniques. Progresses have been made to improve the uniformity of 

QDs. At present it would take 105 layers of uniform QDs with a thickness of 

hundreds of microns to enable measurement of the spin noise with similar signal 

strength as our n-GaAs sample. Another approach is to use a high finess optical 

cavity to increases interaction length. It has been reported that small Faraday 

rotation effects can accumulate in a Fabry-Perot cavity [1-3]. This approach will 

work not only for ensemble QDs, but also for single QDs. However, the Q of the 

cavity will have to be extremely high. 

In our spin noise measurement, we have seen that optical excitation reduced 

the spin relaxation time due to optically excited impurity ionization. The two level 

model with a Lorentzian line shape and saturation behavior will not work for 

excitation near above the bandgap energy. It would be interesting to study the 

electron spin relaxation time in this laser energy range. Due to the strong 

absorption close and above the GaAs band gap, micron thick n-GaAs samples 

with optical surface quality are required. Such samples were not available to us. 

Even though spin noise has the advantage of not disturbing the system under 

study, we have seen clear evidence of optical excitation induced spin relaxation in 

 157



the spin noise measurement on n-GaAs. The non-disturbing condition resulted 

from detuning away from the transparency regime, where the spin noise width is 

independent of the laser energy and intensity, as observed in the spin noise 

measurement in atoms. To get into the transparency regime, the detuning needs be 

on the order of tens times of the width of the Lorentzian shaped absorption. For n-

GaAs, we expect to obtain a similar transparency with far below band gap 

detuning, which may give the ultimate spin relaxation time much longer than 

what we have measured. For example, by detuning the laser energy to 1.48eV, 

spin noise width of 1MHz, corresponding to a spin relaxation time about 220ns, 

was measured in an n-GaAs with similar doping density as our sample [4]. 

As a useful tool to study the spin relaxation time, the spin noise technique can 

be used to study the effects of external fields on spin relaxation. An external 

electric field caused by a bias voltage or optical field may affect the electron spin 

relaxation time. By measuring the spin noise width of n-GaAs under an electric 

field or pump laser beam, the effect of the external electric field on electron spin 

relaxation time can be studied. 

Here we only measured the spin noise of a sample with a low doping density. 

It is possible that much longer spin relaxation time may exist for electron in ultra 

low doping density. A spin relaxation time about 17us been reported for an ultra 

low doping density n-GaAs through the Hanle effect [4]. Even spin relaxation 

time in n-GaAs with different doping density have been studied by Hanle effect, 

the actual spin relaxation time could be even longer due the possible side effect of 

the above bandgap excitation. With the advantage of not disturbing the system 

under study, the spin noise technique can provide reliable spin relaxation time 

measurements as a function of the doping density dependence. 

 

The future of QD quantum computing is promising with the efforts and 

progress being made. The ultimate goal of building a functional optically driven 

QD quantum computer is an unknown long term goal that our group has pursued 

as scientific research. The final result may deviate from the original plan 

depending on technological development and need. The beauty is that the 
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knowledge we learn along the path may benefit the scientific community and 

society in a way we may not expect. 
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