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CHAPTER I

Introduction

Ranging from barely perceptible to problematic, unsteadiness is a feature of hu-

man movement. Some part of this unsteadiness is likely due to fluctuations in muscle

tension, partially generated by spinal motoneurons sending impulsive and somewhat

random excitation to muscle fibers. The hypothesis of this work is that unsteadiness

in movement reflects, in some way, both the internal wiring of the central nervous

system (CNS) and the physical geometry of the connection between muscles and

the skeleton. This dissertation seeks to exploit human movement unsteadiness to

bring important insights into problems in motor neuroscience and biomechanics:

how different muscles are coordinated and precisely how individual muscles move

body segments. Muscle coordination can be severely impaired by stroke (Dewald et

al., 1995), and a detailed understanding of muscle action is likely necessary to accu-

rately predict and improve outcomes of tendon transfer surgeries aimed at restoring

function to paralyzed limbs (Towles et al., 2004).

There are some key concepts and terminology that will run throughout this work,

so we introduce them here. The endpoint is the segment of the body being used to

interact with the world. In the case of typing on a computer, the endpoint is the

fingertip (Figure 1.1A). If a person reaches out to push open a door, the endpoint

1
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is the palm of the hand (Figure 1.1B). The task space is a set of movements of the

endpoint in which the experimenter is interested. For instance, the experimenter may

be interested in up/down and left/right movements of the end of the index finger,

but may be uninterested in forward/backward movements, thus defining a task plane

of interest (Figure 1.1A). Alternatively, the experimenter may be interested in all

possible physical translations of the palm, but not in rotations, defining a task cube

of interest (Figure 1.1B).

down

left

up

right

muscle 1

muscle 2
muscle 3

muscle 4

A. Muscles in a task plane

up

down

forward

right

left

B. Muscles in a task cube

backward
muscle 1 action

muscle 1 endpoint vector

net endpoint vector

Figure 1.1:
Muscles are vectors that move endpoints in task space. A. Muscle actions in a task
plane. B. Muscle actions in a task cube, dashed lines highlight that that the vectors
are 3 dimensional.

Having the notions of endpoint and task space allows us to form an understanding

of muscle action useful for this work. Think of a muscle as a vector in task space,

pushing the endpoint in a particular direction (Figure 1.1). This concept simplifies

the complex internal architecture of how muscles pull on the skeleton and focuses

instead on the result of muscle contraction. The force vector generated at the end-

point by muscle contraction will be referred to as the muscle’s endpoint vector, and
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will be denoted F (i) for muscle number i.

A muscle’s endpoint vector can be controlled by the nervous system, but also

has a component that depends only on the musculoskeletal geometry. The part of a

muscle’s endpoint vector that is assumed (at this point) intrinsic to how the muscle

attaches to the skeleton is called the muscle’s mechanical action (or just action, for

short). A muscle’s action is a vector whose direction represents the direction the

endpoint would move if that muscle were activated. A muscle’s action also has a

magnitude because, for instance, two muscles may have the same action direction,

but one may have twice the mechanical leverage of the other. The action vector of

a muscle i is denoted a(i). The part of a muscle’s endpoint vector that is varied by

the nervous system to accomplish tasks is a scalar value called the muscle’s activity,

denoted ui for muscle number i. The muscle’s activity scales its action to produce

its endpoint vector, which can be expressed for muscle number i as F (i) = a(i)ui.

Endpoint vectors from different muscles will sum to form a net force vector in

task space. The endpoint will actually move according to this vector; we refer to the

net vector as the net endpoint vector, which will have both a net endpoint direction

and net endpoint magnitude. The CNS coordinates different muscles so that the

endpoint can perform desired tasks. The desired net endpoint vector will be called

the task vector, and denoted YT . An isometric task is one where all body segments

are fixed in space, and the endpoint exerts force against a constraint. Isometric

tasks are important for obtaining more interpretable experimental findings. The net

endpoint vector can be interpreted as the instantaneous direction and magnitude of

limb movement if the constraint were suddenly removed.

A physiological structure that will be important in this work is the motor unit.

The motor unit is defined to be a motoneuron in the spinal cord, along with the set of
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muscle fibers it excites. One motoneuron may excite several hundred muscle fibers,

but it is generally true that each muscle fiber is excited by only one motoneuron.

Given our description of task space and mechanical action above, it is as equally

appropriate to discuss motor unit mechanical action as it is muscle mechanical action.

Motor unit mechanical action is a vector describing the magnitude and direction of

how the endpoint is moved if a single motor unit is active. Motor units also have

endpoint vectors formed by motor unit activity scaling motor unit action.

Chapter II introduces two key questions in movement neuroscience that this dis-

sertation will consider. First, it is generally true that the number of muscles acting

in a task space exceeds the dimension of the task space. This fact affords the CNS a

certain amount of choice when deciding how much activity each muscle should have

to make the net endpoint vector match as close to the task vector as possible. This

problem is often referred to as the muscle redundancy problem, and many theories

of how the CNS uses redundant muscles have been proposed. Second, though motor

units within a muscle are generally understood to function as a unit, several studies

have shown different motor units within the same muscle may behave differently

depending on the task direction. Whether these differences relate to differences in

motor unit mechanical action remains an open question. Since these scientific ques-

tions will be approached using unsteadiness in human movement, Chapter II also

presents a brief review of previous findings on the source of unsteadiness.

Chapter III introduces an original experimental and computational technique

coined force covariance mapping (FCM). FCM is based on the principle of signal-

dependent noise: the variability in the tension generated by a muscle is proportional

to the average tension generated. Applying FCM experimentally involves having a

subject push (against a force sensor) to different stationary task vectors distributed



5

uniformly around task space. As the subject attempts to hold a particular stationary

task vector, unsteadiness will cause the net endpoint vector exerted by the subject

to fluctuate. Applying FCM across the task plane shown in Figure 1.1A, it was

found that in some task directions the net endpoint vector always had essentially

the same direction and only fluctuated in magnitude. For other task directions, the

net endpoint vector fluctuated in both magnitude and direction. The former ob-

servation implies that a single muscle is providing most of the control (prime mover

strategy), while the latter observation implies a significant contribution from multiple

muscles having different actions (cooperation strategy). The CNS strategies inferred

from FCM are discussed in regard to the muscle redundancy problem and muscle

synergy hypothesis. FCM may also provide more information about how the CNS

coordinates muscles compared to a traditional dimensionality analysis.

This work then turns to the problem of using unsteadiness to determine muscle

mechanical action. Chapter IV provides a rigorous mathematical framework for ana-

lyzing spike-triggered averaging (STA), a widely-used tool in motor neuroscience, for

understanding the mechanical action of single motor units. STA uses the discharges

from a single motor unit to filter fluctuations in the net endpoint vector, potentially

revealing force generating characteristics of the motor unit being studied. STA thus

produces a motor unit action estimate (MUAE) for a particular motor unit, referred

to as the MUAE vector. In analytical equations, when the task vector was multi-

directional (i.e. the task space is multidimensional), motor unit discharge rates did

not affect the MUAE direction. However, weak synchronization of discharge times

among motor units with different mechanical action directions did profoundly affect

the MUAE direction. Novel predictive equations are presented that relate motor

unit synchronization to MUAE direction distortion. This theoretical analysis lays
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the groundwork for the second experiment of this dissertation, described in Chapter

V.

Studying whether motor unit control within a muscle is related to differences in

motor unit mechanical action, directly at the motor unit level, presents significant

difficulties. An alternative approach was taken, aimed at providing global infor-

mation about this hypothesis. Chapter V shows how the concept of STA can be

generalized to use a complex electrical signal, such as surface EMG, instead of a

single motor unit discharges. The technique that arose from this analysis is coined

EMG-weighted averaging (EWA). EWA provides a muscle action estimate, also re-

ferred to as the MAE vector. MAE vectors for two index finger muscles across tasks

in the plane (Figure 1.1A) were experimentally measured. Significant shifts were

found in the MAE direction for both muscles as a function of task direction. These

findings indicate that representing a muscle with a single vector describing its action

may not be valid even for constant posture tasks, and supports the idea that the

CNS can control muscle action as well as activity.

When the human motor system is unimpaired, it is able to minimize the effects

of unsteadiness on accomplishing tasks. However, if human motor unsteadiness is

carefully measured, it can reveal a wealth of information about how muscles are

coordinated and how single muscles move body segments. The experimental methods

and computational analyses presented in this dissertation will hopefully provide a

means of harnessing the information contained in human motor unsteadiness.



CHAPTER II

Background

This chapter presents an overview of two key problems in movement neuroscience:

1) how do redundant muscles cooperate to achieve tasks? and 2) is muscle action

direction fixed? Some common approaches to these problems are reviewed, and

concrete examples are given to discuss these problems in a mathematical context.

First, one source of human motor unsteadiness is discussed, so that examples of how

unsteadiness may provide key insights into the relevant problems will be clear as the

chapter progresses.

2.1 Movement unsteadiness

Unsteadiness in human movement may be generated by many processes, both

central and peripheral. Motoneurons in the spinal cord may not receive steady

commands (Lowery and Erim, 2005). Motoneurons may not generate a steady output

even when provided a steady input because of fluctuations in membrane voltage

threshold (Binder and Powers, 2001). Information in the brain is largely transmitted

in the form of action potentials, brief electrical discharges that initiate chemical

events in target cells (Rieke et al., 1997). At some point, these all-or-none events must

be filtered so that our movements are smooth. Thus, even if a motoneuron were to

generate a completely regular spike train, muscle force will still be unsteady because

7
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of un-fused motor twitches (Thomas et al., 1991). After receiving excitation from

motoneurons, motor unit force output is generally smooth, but it retains oscillations

due to the action potential input (Figure 2.1). For inputs at sufficiently low rates,

the fluctuations in the net endpoint magnitude generated by a single motor unit will

be substantial. This work will be focused on the effects of movement unsteadiness,

with less emphasis on its exact source.

50 mN

1 Hz

8 Hz

15 Hz

Figure 2.1:
Motor unit force is not steady, even given steady input. The different panels show the
force recorded when a single human motor unit was stimulated with regular spike trains
at various frequencies. Notice that force fluctuations about the average steady state
level can be significant. Adapted from Thomas et al. (1991).

Fluctuations in the net endpoint magnitude are also present when motor units are

activated under natural conditions. For isometric force generated by the index finger,

net endpoint magnitude variability is on the order of 5% of average net endpoint

magnitude (Moritz et al., 2005). Fluctuations in net endpoint magnitude are time-

locked to single motor unit discharges, as revealed by the spike-triggered averaging

technique (Stein et al., 1972). Thus, fluctuations in motor unit force will generate
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measurable fluctuations in the net endpoint vector.

When considering the mechanical action and activity of muscles, the muscle-level

consequences of the motor unit force fluctuations are of interest. Fluctuations in

force generated by a single muscle exhibit signal-dependent noise: the variability

in muscle endpoint magnitude increases with increasing average muscle endpoint

magnitude (Galganski et al., 1993; Moritz et al., 2005). This scaling relation may be

related to physiological properties of the motoneuron pool (Jones et al., 2002): since

motor units are activated in an orderly manner by strength, stronger motor units are

recruited when larger forces are required. These stronger motor units will generate

larger force fluctuations, which may contribute to signal-dependent noise.

This work will seek to make use of signal-dependent noise to infer the activity

of muscles from observed net endpoint vector fluctuations, and exploit the fact that

increases in muscle force will be accompanied by specific changes in the net endpoint

vector to estimate muscle mechanical action.

2.2 How do redundant muscles cooperate to achieve tasks?

Nikolai Bernstein (1896-1966) was probably the first to formulate the degrees of

freedom problem in motor control (Macpherson, 1991). The problem is that the CNS

is confronted with choice when deciding how to move the body to accomplish any

task. This problem may appear at the kinematic level: your elbow can be a great

many places while maintaining your hand at a fixed location in space. The degrees

of freedom problem may also appear at the muscle level: after the CNS has decided

where to put your elbow relative to your hand, there may be many combinations

of muscle activities that can accomplish the desired goal. The degrees of freedom

problem at the muscle level is referred to as the muscle redundancy problem; it will
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be a major question that this work will address experimentally.

2.2.1 Muscles are not redundant because of incomplete task spaces

The muscle redundancy problem is often casually articulated by scientists by say-

ing: “every joint has more muscles crossing it than degrees of freedom.” In the

context of the terminology of the introduction in Chapter I, the muscle redundancy

problem is that each task space has more muscle action vectors in it than the di-

mension of the task space. However, the task space is defined by the experimenter.

What says that, if the task space is simply made to include more degrees of freedom,

the redundancy would not disappear? What if the CNS has all the information it

needs to set the exact activity of all muscles, but the experimenter is ignoring some

of this information by throwing degrees of freedom away?

The problem is that muscle can only pull. This evolutionary restriction requires

that there are more muscles in any task space than the dimension of the task space. If

m is the number of muscles and d is the dimension of the task space, then m ≥ d+ 1

(see Appendix for proof). Given that muscles only generate tension, the muscle

redundancy problem is probably better stated as the muscle redundancy necessity.

The CNS will always have to make a choice when controlling muscles, and this choice

will likely not go away by picking a certain task space.

For example, imagine two actuators that can both push and pull (not muscles) in

a one-dimensional task space (Figure 2.2A). We would say that these actuators are

redundant, because you could push the endpoint in either direction using only one

of these actuators. It is possible, in this case, that the experimenter simply made a

poor choice when defining the task space. The one-dimensional task space is actually

a part of a complete two-dimensional task space, which has two actuators, and is

therefore not redundant (Figure 2.2B). Thus, recognizing the complete task space
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0

A. Incomplete task space

B. Complete task space

0

C. Incomplete task space

Push-pull actuators, redundancy resolved Muscles (pull only), redundancy not resolved

D. Complete task space

Figure 2.2:
Muscle redundancy relates to the fact that muscles can only pull. When actuators can
both push and pull, they may be redundant for a subspace (A) of the complete task
space (B). However, when muscles are vectors that can only be weighted positively, the
redundancy for the subspace (C) persists when the complete task space (D) is shown.

eliminated the apparent redundancy in the one-dimensional subspace.

Now, imagine that the actuators are actually muscles, only able to produce tension

(positive force). The experimenter again defines a one dimensional task space (Figure

2.2C), and this time it has 3 muscles in it because the complete two-dimensional task

space must have at least 3 muscles (Figure 2.2D). Three muscles controlling a single

degree of freedom are certainly redundant if there are muscles that can generate

both positive and negative endpoint vectors. The experimenter later realizes that

the true task space for the system was two-dimensional, and draws it accordingly.

Now there are three muscles in a two-dimensional task space, and these muscles are

still redundant; for a task vector in the action direction of one of the muscles (YT

in Figure 2.2D), the task could be accomplished by that muscle alone. Or, that

muscle could pull harder, and the other two muscles could counteract the excess
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force producing the same net endpoint vector.

2.2.2 The question of one or multiple muscles

One of the most basic questions that can be asked about a redundant set of

muscles is whether a given task is being performed by primarily one muscle (prime

mover strategy), or if the CNS is coordinating multiple muscles with different me-

chanical actions (cooperation strategy)? Of course, if no muscle has its mechanical

action vector aligned with the task vector, only the cooperation strategy makes sense.

However, when the task vector is well aligned with the mechanical action vector of

a muscle, the CNS is faced with choosing between the cooperation and the prime

mover strategy.

As a simple example, imagine 3 muscles in a two-dimensional task space. Muscle

1 pulls straight to the right (a(1) = [1, 0]T ), muscle 2 pulls straight up (a(2) = [0, 1]T ),

and muscles 3 pulls straight down (a(3) = [0,−1]T ). These mechanical actions are

placed as columns of a matrix A. Once we choose a vector ū specifying the average

activity in each muscle, the average net endpoint vector will be Ȳ = Aū. If we have

a task vector YT = [1, 0]T , we can either use a prime mover strategy ū = [1, 0.1, 0.1]

or a cooperation strategy ū = [1, 1, 1]T . Note, however, that for these muscles and

YT = [1, 1]T , there is no prime mover strategy available because there is no muscle

mechanical action in the task vector direction.

Does the CNS always use the prime mover strategy when available? Buchanan et

al. (1986; 1989) considered a 2-dimensional task space at the wrist consisting of rota-

tions of the elbow and forearm. They studied electromyographic (EMG) data from

a number of relevant muscles, and they did not find any task directions in which

one muscle appeared to be a prime mover. In contrast, many authors claim that

index finger force generated in abduction (away from the other fingers) is primar-
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ily attributable to the first dorsal interosseous (FDI) muscle (Flament et al., 1993;

Semmler and Nordstrom, 1998; Thomas et al., 1986), though this assumption has

recently been challenged (Keenan et al., 2006). In addition, the EMG data of Hoff-

man and Strick (1999) suggest that there may be task directions in the task space of

human wrist movements that are controlled using the prime mover strategy, though

the authors did not comment on this possibility.

Being able to investigate prime mover versus cooperation strategies is clinically

relevant. Hoffman and Strick (1995) showed that after motor cortex lesion in the

monkey, movements involving combinations of wrist flexion and radial deviation

changed from straight trajectories to piecewise trajectories involving radial devia-

tion first followed by wrist flexion. Given the mechanical action directions of the

wrist muscles (Hoffman and Strick, 1999), it is possible that the motor cortex lesion

causes a smooth cooperation strategy to be replaced by two sequential prime mover

strategies.

Whether the net endpoint vector is generated by a prime mover or cooperation

strategy is a question about one task in particular. The next three sections introduce

theories of how the CNS might activate multiple redundant muscles to achieve all

tasks in a task space.

2.2.3 The muscle synergy hypothesis

One approach to muscle redundancy is to hypothesize that the CNS does not

control each muscle individually, but forms muscle groups that can be controlled

independently. The synergy hypothesis considers movement control hierarchically:

a task vector YT is formed by the CNS, and this task vector is transformed into

activity in a group of synergies (Figure 2.3). Each synergy specifies activity ratios

for all muscles that are involved in the task. In this way, it is proposed that the
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1 2 7

Syn 2Syn 1 Syn 3

Muscles...

Synergies

Task commands

Figure 2.3:
Schematic diagram of the muscle synergy hypothesis. Components of the task vector
YT are transformed into the activity of synergies. Each synergy fixes the activity of a
group of muscles. In this way, the CNS controls synergies rather than muscles, resulting
in fewer degrees-of-freedom to control.

complexity of control is reduced because muscle groups are controlled rather than

the muscles themselves (Lee, 1984; Macpherson, 1991).

Researchers typically test the muscle synergy hypothesis by applying a feature ex-

traction algorithms, such as variants of principal components analysis, to electromyo-

graphic (EMG) signals from multiple muscles during movement. Three time-varying

patterns of muscle activity are sufficient to describe the activity in 13 hindlimb mus-

cles of the frog during kicking in different directions (d’Avella et al., 2003). Four

patterns of muscle activity are sufficient to describe the activity in > 8 cat hindlimb

muscles during postural response to translations of the support surface in 16 different

directions (Ting and Macpherson, 2005). EMG activity from 8 muscles controlling

the human elbow can be described by only 2 variables during isometric elbow flex-

ion/extension, and these variables are clearly related to joint torque and total muscle

activity (Kutch and Buchanan, 2001). Finally, four to five patterns of time-varying
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muscle activity are sufficient to describe the activity in up to 19 human shoulder and

arm muscles during reaching movements in vertical planes (d’Avella et al., 2006).

One possible interpretation of these findings is that muscle synergies are enforced

by fixed neural constraints, and the CNS uses these constraints as a substrate for

reducing degrees of freedom.

One problem with the muscle synergy hypothesis, in light of the discussion of com-

plete and incomplete task spaces in Section 2.2.1, is that forming muscle synergies can

not eliminate redundancy. Muscle synergies are often viewed as linear transforma-

tions applied to the muscle mechanical action matrix A (Ting and Macpherson, 2005;

Tresch et al., 2006). The net endpoint vector Y is ordinarily expressed as Y = Au.

Under the modern mathematical interpretation of the muscle synergy hypothesis,

Y = AWusyn . If m is the number of muscles and msyn is the number of synergies,

W is a m × msyn matrix, where the ith column specifies the contribution of each

muscle to the ith synergy. The usyn vector contains a weighting for each synergy,

and is assumed to be positive. The product Asyn = AW has column i specifying the

mechanical action of the ith synergy. In order to perform all tasks by coordinating

a set of synergies, there must be msyn ≥ d + 1 synergies, where d is the task space

dimension, because the synergy activities usyn are assumed to be positive. Thus, the

CNS is still faced with choice when deciding on the synergy activities usyn , and thus

synergies do not eliminate redundancy.

2.2.4 The optimization hypothesis

A long-standing hypothesis about how the CNS eliminates muscle redundancy

proposes that, for any given task vector, the CNS chooses to activate muscles so

that performance criteria are optimized. It has been proposed that muscle activity

patterns may be explained by minimizing some measure of effort (Buchanan and
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Shreeve, 1996; van Bolhuis and Gielen, 1999; Fagg et al., 2002), or by maximizing

accuracy (Harris and Wolpert, 1998; Todorov, 2002; Haruno and Wolpert, 2005).

Some optimization criteria compare very nicely with experimental data.

The problem with the optimization approach is that it is very difficult to say with

certainty that “the CNS is minimizing X.” It has been pointed out that minimizing

effort and maximizing accuracy may be equivalent for isometric tasks, as the presence

of signal-dependent noise encourages the minimization of squared muscle force (van

Bolhuis and Gielen, 1999; Todorov, 2002). Also, many optimization criteria based

on physiological muscle properties generate similar results (Buchanan and Shreeve,

1996), meaning that experimental data may be unable to argue definitively for some

criteria over another.

This work is more interested in providing experimental support for statements

of the form “it is more likely that the CNS resolves redundancy using synergies as

compared to optimization”, or visa versa. As an example, we consider the rela-

tion between optimization and the prime mover strategy versus cooperation strategy

(Section 2.2.2). Consider a hypothetical task space at the end of the index finger con-

sisting of four muscles: muscle A pulls up, muscle D, pulls down, muscle B pulls right

and down, muscle C pulls left and down (Figure 2.4). This simple example shows

that, for task vectors aligned with muscle mechanical action vectors, optimization

will sometimes favor the prime mover strategy and sometimes favor the cooperation

strategy, depending on the geometric relations among the muscle mechanical action

vectors. Alternatively, if all muscles are part of synergies containing muscles with

different mechanical actions, the prime mover strategy will never be observed because

activity of any synergy will involve the coactivation of multiple muscles. Depending

on experimental observations of CNS control strategies, it may be possible to argue
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Figure 2.4:
Relation between optimization and prime mover versus cooperation strategy. I. Four
muscles in a task space. II. For a task vector YT

(A) in the direction of muscle A’s
mechanical action, minimizing effort clearly dictates that muscle A function as a prime
mover, because activity in any other muscle would be detrimental to the task. III. For a
task vector YT

(B), muscle D is in a position to assist muscle B. However, this assistance
comes at the expense of an unwanted endpoint vector contribution perpendicular to
the task direction, which necessitates that muscle A is activated. However, the activity
of muscle A generates an unwanted endpoint contribution in the direction opposite
to YT

(B), canceling the help provided by muscle D. Thus, the optimal strategy for
minimizing effort is still to use muscle B as a prime mover. IV. If a muscle has two
muscles within 90◦ on either side, then it becomes advantageous to use the cooperation
strategy. The prime mover strategy would have u = [0, 0, 0, 2]T (A,B,C,D) to achieve
the task vector YT

(D). A possible cooperation strategy is u = [0, 1, 1, 1]T . If the CNS is
minimizing

∑
i u

2
i , then the prime mover strategy has a cost of 4, while the cooperation

strategy as a cost of 3, making it a more optimal strategy.
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for one hypothesis or another.

2.2.5 The uncontrolled manifold hypothesis

Another possibility for eliminating redundancy is the uncontrolled manifold hy-

pothesis. This hypothesis, most often applied to kinematic redundancy, states that

only some kinematic degrees of freedom are relevant to performing a task; these are

stabilized with the remaining allowed to fluctuate (Latash et al., 2002; Todorov and

Jordan, 2002). For instance, when visual feedback is provided to a human subject

about the total vertical force generated by index and middle finger, force is dis-

tributed among the fingers to stabilize moment about a point between the fingers at

the expense of destabilizing total force (Latash et al., 2001). Recently, the uncon-

trolled manifold hypothesis has been discussed in terms of the muscle redundancy

problem (Krishnamoorthy et al., 2007).

A simple example will illustrate the key concept of the uncontrolled manifold

hypothesis applied to muscle activity. Consider three muscles in a two-dimensional

task space, with mechanical actions of equal magnitude distributed through the

plane with 120◦ between each pair (Figure 2.5I). The mechanical action matrix for

this muscle system is

(2.1) A =

 1 −0.5 −0.5

0 0.866 −0.866


The null space of a matrix is the set of vectors that, when multiplied by the matrix,

become the zero vector. The null space of A is any vector of the form [α, α, α]T

for some positive number α. The null space is easy to see for this set of muscles

because if the three muscles pull equally hard, the net endpoint vector is zero. For

this example, the null space can be thought of as a line in activity space (Figure

2.5II).



19

The idea of the uncontrolled manifold is that the component of the activity vector

that is in the null space can do whatever it wants, and no effect will be seen on the

net endpoint vector. At the same time, there is (in this example) one less degree of

freedom, so redundancy is eliminated. Let vn denote a vector in the null space, and

let v1 and v2 be two other linearly independent vectors not in the null space. The

activity vector u required to achieve some task vector YT can be expressed as some

linear combination of v1, v2, and vn according to u = b1v1 + b2v2 + bnvn for scalars

b1, b2, and bn. Applying A to u, we find

(2.2) Au = A(b1v1 + b2v2 + bnvn) =


| |

Av1 Av2

| |


 b1

b2

 = YT

bnAvn disappears because vn is in the null space of A. We can now invert the matrix

[Av1, Av2], multiply by the task vector YT , to obtain [b1, b2]T . The activity vector

will then be u = b1v1 + b2v2 + [any number]vn.

In the example presented, the prime mover strategy will only appear if the null

space vector vn has a zero contribution to the activity vector. The uncontrolled

manifold hypothesis encourages the cooperation strategy, because there are many

combinations of multiple muscles that will have no effect on the net endpoint vector.

It is not possible to have uncontrolled activity of a single muscle because it will

always have an effect on the task vector.

2.2.6 Example: using signal-dependent noise to determine average muscle activities

Variability in a muscle endpoint vector likely provides information about average

muscle activity. Here is an example of how unsteadiness may be exploited to provide

additional information about muscle activity.
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muscle C

muscle B (uncontrolled
manifold)

I II

Figure 2.5:
Using the uncontrolled manifold hypothesis for eliminating muscle redundancy. I. A
set of three muscles pulling 120◦ apart in a 2-dimensional task space. II. This set of
muscle mechanical action vectors has a null space along the line [1, 1, 1]T . There is
enough information in the 2-dimensional task vector to uniquely determine v1 and v2.
A activity vector can then be chosen by adding appropriate contributions from v1 and
v2 along with any contribution from vn. Thus, the activity vector can fluctuate along
an uncontrolled manifold (the null space) while still achieving the task.

Consider a 1-dimensional task space having “forward” and “backward” directions.

Muscle 1 pushes the endpoint forward while muscle 2 pulls the endpoint back (Figure

2.6A). We denote the net endpoint vector Y , though in this case it is simply a scalar.

Assuming the magnitude of the action vectors are equal for muscles 1 and 2, and

both equal to unity, the average net endpoint vector can be expressed:

(2.3) Ȳ = ū1 − ū2

where ū1 is the average activity in the first muscle and ū2 is the average activity in the

second muscle. Assume that the standard deviation of muscle activity is proportional

to average muscle activity, and that both muscles have the same (known) constant

of proportionality. Then, σ1 = kū1 and σ2 = kū2. If the standard deviation of the

net endpoint magnitude is denoted it σY ,

(2.4) σ2
Y = k2(ū1

2 + ū2
2)
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muscle 2

forward

backward

muscle 1

A B

Figure 2.6:
Unsteadiness can uniquely determine muscle activity. A. A one dimensional task space,
with muscle mechanical actions. Hypothetical muscle 1 pushes the hand forward while
hypothetical muscle 2 pulls the hand back. B. In the space of activities, an average net
endpoint vector Ȳ only constrains (ū1, ū2) to be along a line, while a measurement of the
task vector variance adds a circular constraint, thus uniquely specifying a contribution
from each muscle.

Can the pair of average activities (ū1, ū2) used to perform the task be determined?.

Visualize the(ū1, ū2) plane (Figure 2.6B). Equation 2.3 is not sufficient to know ex-

actly what combination of average activities were used because this equation only

defines a line in the (ū1, ū2) plane. However, introducing the information gained

from measuring the standard deviation of the the net endpoint vector magnitude,

expressed in Equation 2.4, a circular constraint appears in the (ū1, ū2) plane. Pro-

vided that σY /k ≥ Ȳ , there is a unique solution with ū1 and ū2 greater than zero.

2.3 Are muscles fixed vectors in task space?

The smallest physiological structure that the CNS could use to control the net

endpoint vector is the motor unit, consisting of one motoneuron in the spinal cord

and the set of muscle fibers it excites. An elegant study by Westling and colleagues

(1990) demonstrated that a single stimulation pulse applied to a single human motor
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unit generated a straight force trajectory in a task plane perpendicular to the long

axis of the thumb. These trajectories left the origin along a straight line, peaked in

magnitude, and returned to the origin along the same straight line. These results

suggest that motor unit mechanical action can be understood as fixed vector in an

isometric task space.

The CNS likely does not send an individual command to every motor unit. Given

feedback about the discharges of two motor units, humans generally can not make the

stronger motor unit discharge while having the weaker motor unit not discharge (Fetz,

2007). Studies of discharge times from motor unit pairs reveal more synchronous

discharges than would be expected by chance, likely indicating shared synaptic input

(Sears and Stagg, 1976). Certain muscles do not have very different mechanical

actions in some task spaces (An et al., 1983); thus in many cases there may not be

an advantage to having motor units receive different commands.

However, what if a group of motor units, historically defined to be part of one

muscle, did have different mechanical action vectors? If the activity of these motor

units reflected their mechanical action, the CNS could tune the mechanical action

vector for the muscle to generate force most efficiently for the given task vector.

For example, the cat hindlimb muscle biceps femoris has three neuromuscular com-

partments that are innervated by separate nerve branches. The compartments have

different mechanical functions (Chanaud et al., 1991) and are roughly used accord-

ingly (Chanaud and Macpherson, 1991). This dissertation will be concerned with

such a correspondence between motor unit mechanical action and activity even for

muscles that are not thought to be compartmentalized.

The following sections review key findings about motor unit activity, and explores

mechanisms that could change the mechanical action vector of a muscle.
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2.3.1 Henneman Size Principle

Elwood Henemann’s seminal work stressed that motoneuron size determines its

recruitment threshold (Henneman et al., 1965b), and proposed that small and large

motor neurons should receive equal synaptic input (Henneman et al., 1965a). He

argued then that motoneurons controlling a particular muscle are recruited primarily

on the basis of input resistance, an intrinsic property of motoneurons closely linked

to motoneuron size (Loeb and Ghez, 2000). These findings have come to be known

as the size principle of motor unit recruitment.

A rigid interpretation of the size principle would suggest that all the motor units

of a given muscle would receive the same input regardless of differences in mechanical

action direction among the units. The size principle would predict that one common

descending command is provided to a group of motoneurons exciting a muscle (Figure

2.7). In general, smaller motoneurons would excite motor units that have smaller

mechanical action magnitude. The input resistance of the motoneurons would dictate

that, for the same descending command, the smaller motoneurons would be activated

first. In this scheme for motoneuron recruitment, the controlled muscle would have

one effective mechanical action direction; differences in motor unit mechanical action

direction would not be exploited.

2.3.2 Differential tuning of motor units within a muscle

Though the size principal provides a general description of how motor units are

recruited to do work in multidimensional task spaces (Thomas et al., 1986), the

completeness of this theory has been questioned. For example, Desmedt and Go-

daux (1981) found that, in about 8% of the motor unit pairs examined in the hu-

man first dorsal interosseous, the activation order switched when the task direction
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Figure 2.7:
The size principle applied to motor units of a muscle in a 2-dimensional task space.
Three illustrative motor units have differences in mechanical action and magnitude.
The size principle states that a single descending command is distributed to all the
motoneurons, so that motor units are activated in order of mechanical action magnitude.
In this scheme, differences in mechanical action direction are ignored.

changed. ter Haar Romeny (1982; 1984) showed that the recruitment of motor units

in the human biceps depends on direction; units located more laterally were recruited

for flexion while those more medially were recruited for supination. Herrmann and

Flanders (1998) showed that the activity of motor units in the human biceps could

be described by a cosine function of the task direction. The task direction of peak

activity varied substantially across the population of motor units studied, and did

not appear to depend on the recording location. What did not appear in any of these

studies was a thorough analysis of the mechanical action of the units studied.

2.3.3 Potential differences in mechanical action among motor units in a muscle

The first dorsal interosseous (FDI) is a popular model muscle because if its ac-

cessibility from the skin surface. It is generally considered to be one muscle be-



25

first dorsal interosseous

Figure 2.8:
The human interossei muscles, reproduced from Gray’s anatomy (public domain image).

cause of its anatomical structure (Figure 2.8), and evidence that different motor

units in the FDI may receive some common inputs (Datta and Stephens, 1990;

Deluca et al., 1993). It is know to exert abduction (away from the hand) torque

about the metacarpophalangeal (MCP) joint of the index finger, as well as flexion

(down toward the palm) torque about the same joint (An et al., 1983; Thomas et

al., 1986). What is not known is whether different motor units within the FDI can

generate mechanical action vectors having different directions.

Some preliminary support in favor of different mechanical action directions is

provided by a careful analysis of spike-triggered averaging data (Thomas et al., 1986).

This study estimated the relative force contribution of single FDI motor units to

the abduction and flexion direction. The study presented this data on a log-log

plot, which indicated a potential clustering of the estimates and a lack of different

mechanical action directions among units (Figure 2.9a). However, when this data is

re-plotted on linear axes as lines of action, a different picture emerges that suggests

a 53◦ range of mechanical action directions among FDI motor units (Figure 2.9b).
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Figure 2.9:
Mechanical action direction data from the FDI of Thomas et al. (1986) plotted in two
ways. a. Data as presented in the article, which spike-triggered average estimated
abduction and flexion force plotted on a log-log scale. b. The same data as in a,
re-plotted as lines of action in a task plane with a linear scale.

If FDI motor units indeed have different action directions, it is conceivable that the

CNS could set higher activity in a subset of the units with the most advantageous

mechanical action.

2.3.4 Proposition: a direction principle of motor unit recruitment?

If motor units contained within a muscle exhibit differences in mechanical action

direction, it is conceivable that the CNS might try and exploit these differences in

an attempt to optimize motor function. The CNS could preferentially excite motor

units that had mechanical action directions closer to the task direction (Figure 2.10).

While the mechanical action direction of every motor unit would remain constant as

the task changed, the effective mechanical action direction of the muscle as a whole

would be expected to shift to align as closely as possible with the task direction.

This work will examine movement unsteadiness looking for evidence of such a shift

in muscle mechanical action direction.
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Figure 2.10:
A direction principle of motor unit recruitment. If a muscle, such as the FDI, has
motor units that have differences in mechanical action direction, then motor units
similar to 1 might be preferrentially active for task 1, motor units similar to 2 might
be preferrentially active for task 2, and motor units similar to 3 might be preferrentially
active for task 3. The effective mechanical action for the FDI would then be expected
to shift as a function of task direction.

2.3.5 Proposition: nonlinear summation of force?

Another mechanism that could cause muscles not to be fixed vectors in task

space is nonlinear summation of force. Nonlinear force summation can occur when

application of one force deforms the structure used to transmit another force. To

illustrate this concept, imagine a person pulling on an object with rigid rods in each

hand versus elastic cords in each hand connected by a rigid rod (Figure 2.11). In

the case of rigid rods, force exerted by one hand can not affect the direction of force

exerted by the other. In the case of elastic rods, deformation in the structure induced

by pulling with one hand will affect the direction of force exerted when the other
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A.  Rigid structure: direction constant B.  Elastic structure: direction can change

Figure 2.11:
Principle of nonlinear force summation. Imagine a object (circle) that can slide in a
track. A. If the person pulls on the object with two rigid links, the force exerted on
the object by the left hand vL can not affect the force vector exerted by the right hand
vR. B. Imagine that these links were not rigid, but could stretch but were connected
by a rigid rod. Then the direction of force exerted by the left hand pulling v

L,before
could change direction to v

L,after after the right link was pulled on and stretched.

hand pulls.

For many muscle systems, there may be compliant mechanisms in the transmission

of muscle activity to endpoint force. One example is the finger extensor hood mecha-

nism, which may be approximated by Winslow’s tendinous rhombus (Winslow, 1732;

Valero-Cuevas et al., 1998; Valero-Cuevas et al., 2007). With such a compliant net-

work, activity of one muscle could affect the mechanical action directions of other

muscles (Figure 2.12). Changes in activity among a group of muscles for changes in

the task vector could then lead to muscle mechanical actions depending on the task

vectors, i.e. not fixed vectors in task space. There are other mechanisms that could

generate such effects, such as one muscle pulling on another (Sandercock, 2005).

Though this work will not deal with the exact biomechanical mechanisms, it

will present evidence that the muscle mechanical action direction depends on task
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insertions
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Figure 2.12:
Winslow’s tendinous rhombus - extensor hood model. Several index finger muscles
insert into a compliant tendinous network, which transmits force to two insertion
points on the index finger.

direction.

2.3.6 Example: using unsteadiness to determine muscle mechanical action

Unsteadiness in the net endpoint vector will lead to a trajectory in task space. If

some measure of activity in a particular muscle is available, it can be used to extract

sections of the net endpoint trajectory that likely contain a large contribution from

the muscle. If these sections are averaged together, a mechanical action estimate

can be constructed for the muscle of interest (Figure 2.13). This process is generally

referred to a spike-triggered averaging (Buchthal and Schmalbruch, 1970; Stein et al.,

1972). This dissertation will present rigorous equations describing this process, and

then generalize to the case when muscle contributions are not considered discrete,

yielding a process that is experimentally tractable for estimating muscle mechanical

action for a variety of task vectors.
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Figure 2.13:
Example: using unsteadiness to determine muscle mechanical action. A. Three muscles
are active for a particular task. Because of motor unsteadiness, the net endpoint vector
Y moves along a random trajectory. B. When each muscle is active, it exerts a force
with the time course shown in the direction of its mechanical action vector. C. Assume
for simplicity that the contributions of the individual muscles sum to generate the net
endpoint vector. D. Having knowledge of when muscle 1 is active, we can trigger an
averaging process. Sections of Y (t) are extracted around a(1) activity, and averaged.
When the sections are added together, the contribution from a(1) is always in the same
position, but contributions from other muscles may be distributed randomly around
a(1). When the contributions are randomly distributed, they will sum to a constant.
The resultant average, denoted z(1)(t) will have a time course the reflects the time
course of muscle 1, and will a direction that reflects muscle 1’s mechanical action.
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2.4 Appendix

Here we show mathematically that muscle redundancy is a fundamental feature

resulting from the fact that muscles only generate tension. We assume that the

muscle mechanical action vectors are the columns of a matrix A, and that the net

endpoint vector Y is generated by taking linear combinations of the columns of A:

Y = Au.

Definition II.1. The nonnegative linear span of a linear transformation A is the set

of vectors Au where u ∈ Rm[0,∞), and is denoted nlspan(A).

If the complete task space has dimension d, than nlspan(A) = Rd if all tasks

in the space are doable. We need to determine the minimum number of muscles

necessary to meet this condition. Clearly, d muscles are not enough, because muscles

are constrained to only pull.

The next definition involves an important concept related to the nlspan of a

transformation, and shows essentially when a set A will “open up” and span the

space it lives in under nonnegative linear combinations.

Definition II.2. Let A be a set of d + 1 vectors in Rd. Let A(j) = A − a(j) (i.e.

A(j) is a subset of A formed by removing the jth column). A is noncollapsing if

a(j) ∈ nlspan(−A(j)) for all j.

Lemma II.3. If A is noncollapsing in Rd, then nlspan(A) = Rd.

Proof. Since A is noncollapsing, then it must have d vectors a(1), . . . , a(d) that are

linearly independent in the standard sense. Furthermore, since A noncollapsing

implies that

(2.5) a(d+1) = −(b1a
(1) + · · ·+ bda

(d))
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with bj ∈ R(0,∞) for all j = 1, . . . , d. This is equivalent to a(n+1) ∈ nlspan(−a(1), . . . ,−a(d)).

Consider now a vector v such that v ∈ nlspan(A). This means that

(2.6) v = u1a
(1) + u2a

(2) + · · ·+ uda
(d) + ud+1a

(d+1)

We then substitute the expression for a(d+1) from Equation 2.5 into Equation 2.6 and

find that

(2.7) v = (u1 − ud+1b1)a(1) + · · ·+ (ud − ud+1bd)a
(d)

Let gj = uj − ud+1bj. The product ud+1bj is a nonnegative number which is set for

each j once ud+1 is chosen. However, we form gj by adding a positive number dvecuj

(that we can choose for each j to be as large as we like) to ud+1bj. It follows then

that gj can be controlled independently and all j. Therefore, since a(1), . . . , a(d) are

linearly independent in the standard sense, it follows that v can be any vector in Rd.

Since v ∈ nlspan(A), it follows that nlspan(A) = Rd.

This shows that there is a set of d + 1 vectors that span Rd with nonnegative

weighting coefficients. If the task space is d dimensional, it must have at least d+ 1

muscle mechanical action vectors to make all tasks feasible, thus and task space

chosen to be a subspace must have more muscles than dimensions.



CHAPTER III

Neuro-motor control strategies appear in endpoint force
fluctuations

3.1 Abstract

How the nervous system activates multiple redundant muscles to achieve a speci-

fied task is a long-standing question in motor neuroscience. We used a novel approach

to investigate this question by studying the net endpoint vector fluctuations during

isometric force generation at a multi-degree-of-freedom joint: the metacarpopha-

langeal (MCP) joint of the human index finger. We made high-gain measurements

of time-varying forces generated during ramp-and-hold tasks to different magnitudes

and directions in the abduction-adduction/flexion-extension plane of the index finger.

For each task, we calculated the force covariance between the abduction-adduction

and flexion-extension components; this covariance could be visualized as an ellipse

in the task plane with center at the magnitude and direction of the task. Two types

of force covariance ellipses were observed: some task directions exhibited narrow el-

lipses with principal axis aligned to the task direction, while other task directions

showed broad ellipses without clear directional alignment. Task directions containing

narrow ellipses appeared to be aligned with estimated mechanical action directions

of key muscles acting at the MCP joint. For example, an average of 90% of force

variance was confined to the task direction when the direction was aligned with the

33
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likely action direction of the first dorsal interosseous (FDI). It follows the FDI is

likely a prime mover in this direction, and that at most 10% of the force variance

could be explained by fixed coupling between the FDI and other muscles pulling

in different directions. In contrast, other task directions exhibited broader ellipses

that were not well-aligned with the task direction, with as little as 30% of force

variance confined to the task direction. In these task directions, the cooperation of

multiple muscles with distinct action directions is likely, and was supported by elec-

tromyographic recordings from relevant forearm and hand muscles. It follows that

net endpoint vector fluctuations reveal multiple neural control strategies for muscle

action at a multi-degree-of-freedom joint.

3.2 Introduction

When controlling multiple degrees-of-freedom (DOF) of the body, there are typi-

cally many different muscle combinations that the CNS can utilize to achieve a de-

sired task (Bernstein, 1967). To simplify task control, it has been proposed that the

CNS enforces fixed activation ratios (synergies) among multiple muscles acting at the

involved DOF (d’Avella et al., 2003; Saltiel et al., 2001; Ting and Macpherson, 2005;

Tresch et al., 2006). Alternatively, the CNS could tune muscle commands so that

movement is optimized according to some suitable performance criteria (Buchanan

and Shreeve, 1996; Harris and Wolpert, 1998; Todorov and Jordan, 2002).. It is also

unclear whether some tasks are controlled by a “prime mover” muscle (Thomas et al.,

1986), or whether all tasks involve the cooperation of multiple muscles (Buchanan

et al., 1986; Keenan et al., 2006). These questions remain unresolved, in spite of

multiple attempts to characterize muscle activation patterns across multiple DOF.

To date, most studies that have investigated muscle coordination across multiple
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DOF have focused on the use of electromyographic (EMG) recordings. While such

EMG recordings provide invaluable information about muscle activity, they offer sig-

nificant disadvantages for studying muscle coordination in multiple muscle systems.

First, EMG studies of muscle coordination require that recordings be made from

each muscle that potentially contributes torque to the DOF of interest, a poten-

tially difficult assignment. Second, the EMG-force relation remains undetermined at

present for many muscles, since the relation depends critically on how mechanical

and electrical motor unit properties are coupled (Zhou and Rymer, 2004). EMG as-

sessments may either overestimate or underestimate muscle force (Zhou et al., 2007),

which complicates the interpretation of muscle coordination studies based on EMG.

Third, the identification of muscle-level synergies using EMG signals from multiple

muscles may be complicated by the existence of biomechanical or neural constraints

unrelated to muscle synergies (Saltiel et al., 2001).

An alternative approach to studying muscle coordination involves mapping iso-

metric net endpoint vector variability for an array of tasks distributed uniformly

across the task space. Stochastic effects may enter such tasks in several ways, but

one of the most significant is signal-dependent noise, where isometric force variability

increases with average isometric force. Such signal-dependent noise may arise from

the properties of the motoneuron pool (Jones et al., 2002). If muscle force variabil-

ity increases with average muscle force, then differing neuro-motor control strategies

can generate different patterns of net endpoint vector variability. For example, one

muscle acting alone will induce variability that not only increases with signal magni-

tude but is also directionally aligned with the muscles action direction in task space.

Alternatively, cooperation among multiple muscles, each with different action direc-

tions, will induce net endpoint vector variability that reflects the multiple directions
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of muscle pull. It follows that the overall net endpoint covariance caused by a muscle

synergy will be composed of individual covariances from the constituent muscles, but

will not be aligned with the covariance of any one muscle.

In light of these possibilities, the aim of the present study was to demonstrate,

using multidirectional tasks performed by the human index finger, that the covariance

of multidirectional isometric force exhibits significant differences as a function of task

direction. Furthermore, we argue that such force covariance maps provide strong

clues about the ways in which the nervous system controls muscle combinations or

synergies, acting about multiple DOF.

3.3 Methods

We developed a method to use the variability of isometric forces exerted by the

index finger as an indicator of underlying muscle coordination. The method uses the

pattern of this force variability as a function of task direction and magnitude, termed

the force covariance map, to quantify the relative amount of variability that occurs

in the task direction itself, termed the task-directed variance fraction η. Muscle co-

ordination strategies may constrain how η varies with the tasks direction. Below we

describe the theoretical basis for the force covariance map, our means of experimen-

tally measuring it, and the techniques used for relating the force covariance map to

muscle action direction and activity.

3.3.1 Force covariance mapping (FCM)

The variability of the net endpoint vector will likely be influenced by how muscles

are activated. In the present study, we define the task as the exertion of isometric

forces by the tip of the index finger (i.e., the endpoint), with a specified direction

and magnitude in the plane perpendicular to the finger. We define the axes of this
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plane as flexion-extension and abduction-adduction, corresponding to vertical and

horizontal forces, respectively, when the palm of the hand faces down. We define the

force directions in this way purely for ease of reference, recognizing that the physical

flexion-extension and abduction-adduction axes of the MCP joint are not orthogonal

(Kamper et al., 2006). The relation between the pattern of net endpoint vector

variability – the force covariance map – and hypothetical muscle coordination is based

on three principles of muscle force production: linear superposition, signal-dependent

noise, and at most modest correlation of forces among muscles. When these principles

apply, the force covariance map may be used to study muscle coordination and muscle

synergies.

Linear superposition provides a means to examine muscle coordination in task

space. Superposition is the assumption that the net endpoint vector is the linear sum

of individual contributions of force from each muscle. These individual contributions

occur along directions in the task space, or muscle action directions (illustrated

hypothetically in Figure 3.1A) that depend on the musculoskeletal geometry, for

example the lengths of body segments and moment arms about the degrees of freedom

of joints (Kuo, 1994; Kuo, 2000). Action directions have been empirically quantified

for cat hindlimb muscles contributing to multidirectional ankle force (Lawrence et al.,

1993), monkey forearm muscles contributing to multidirectional wrist force (Hoffman

and Strick, 1999), and human thenar motor units contributing to thumb abduction

and flexion (Westling et al., 1990). Superposition does not always apply, for example

if a single muscle also pulls on neighboring muscles. However, these effects are usually

small, even among motor units within a muscle (Sandercock, 2005), and are assumed

negligible in the present study.

Signal-dependent noise will induce variability in endpoint forces, dependent on
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Figure 3.1:
Conceptual basis for force covariance mapping. A. Muscles have biomechanical actions
in task space, represented hypothetically as action directions in the task space of iso-
metric abduction/adduction (Y1) and flexion/extension (Y2) forces exerted by the index
finger. B. Activation of single muscles as prime movers will generated an average force
vector in task space, with force covariance largely aligned with the muscles action direc-
tion. Four such covariances are illustrated. C. Two or more muscles may be coactivated,
for example, to generate a force with direction between the individual muscle action di-
rections. Coactivation produces a much broader covariance, representing the combined
covariance of the individual muscles (see APPENDIX). D. If the average activations of
multiple muscles are constrained by a synergy, a new effective synergy action direction
is generated, but the corresponding covariance will be similar to the case of muscle
coactivation. E-F. Constructing the force covariance map involves measuring the net
endpoint vector covariance across an array of tasks around circles of constant average
net endpoint magnitude. E. If muscles are not in fixed ratio synergies, both prime mover
and coactivation force covariance ellipses may be observed. F. If all muscles are in fixed
ratio synergies, only broad coactivation force covariance ellipses may be observed.
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muscle action directions and how muscles are coordinated. We consider first the

hypothetical case of muscles activated as prime movers, when the task direction is

aligned with a particular muscles action direction. The endpoint force would be

expected to fluctuate (e. g., (Galganski et al., 1993; Thomas et al., 1991)) with

force variability increasing with activation magnitude (e. g., (Jones et al., 2002;

Moritz et al., 2005)). The force covariance may be thought of as an ellipse, expected

to align well with task direction (Figure 3.1B). We next consider the more typical case

where muscles are activated together, for example to produce a force directed between

the two individual muscle action directions. The individual muscle covariances then

approximately add together to determine the total force covariance, provided that

noise-like fluctuations in the individual muscle forces are relatively uncorrelated.

The force covariance ellipse will then be aligned with neither muscle action (Figure

3.1C). A muscle synergy combines multiple muscles together (Figure 3.1D), and will

therefore produce a covariance ellipse in the direction of synergy action that is the

same covariance as the co-activation case.

The force covariance map is a set of force covariances measured at equally spaced

points around a constant average net endpoint magnitude. A force covariance map

when no muscles are in synergies may contain two types of force covariance ellipses:

narrow ellipses aligned with the task direction in directions of muscle pull indicat-

ing muscles behaving as prime movers, and broad non-aligned ellipses in directions

involving coactivation of multiple muscles with different action directions (Figure

3.1E). Alternatively, if all muscles are grouped into synergies with muscles having

different action directions, only coactivation ellipses will be observed, because mul-

tiple muscles will always contribute in some fixed amount (Figure 3.1F).

Our analysis thus far is based on the assumption that muscles have uncorre-
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lated force fluctuations. This assumption is a concern because, for instance, very

highly correlated force fluctuations between two antagonistic muscles would can-

cel from the measurable net endpoint vector variance, hiding their activation from

the force covariance map. Although we are not aware of any direct measurements

of correlation in force between muscles, two lines of research support our assump-

tion that correlation will not strongly affect inferences about muscle coordination

made from the force covariance map. First, coherence between EMG pairs has

been shown to be modest (¡10%) at low frequencies, with higher values (30-50%)

only in upper frequencies of 15 30 Hz (Farmer et al., 2007; Fisher et al., 2002;

Kilner et al., 1999). Second, joint force only contains significant signal in the 6-12

Hz range due to unfused motor unit twitches, but relatively little signal at higher fre-

quencies due to the time course of muscle contraction (see (Galganski et al., 1993)).

Therefore, even if there is significant coherence in muscle electrical activity, it occurs

at frequencies unlikely to produce significant muscle forces. We will return to the

potential effects of muscle force correlation in the DISCUSSION.

3.3.2 Experimental methods

We experimentally measured the force covariance map for endpoint forces pro-

duced by the metacarpophalangeal joint of the human index finger. We also mea-

sured surface EMG from three muscles to compare with the force covariances and

also to form rough estimates of muscle recruitment curves and action directions.

Seven unimpaired subjects (2 female, 5 male) participated in the study. All subjects

were right-handed, and used their dominant index finger to produce isometric forces

in different directions and magnitudes in the flexion-extension/abduction-adduction

(FEAA) task space. The Northwestern University Institutional Review Board ap-

proved the study protocol, and informed consent was obtained from each subject
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prior to participation.

The experimental apparatus was designed to mechanically isolate the index finger

(Figure 3.2). Subjects were seated upright in an adjustable chair with the shoulder

abducted approximately 15◦ with the elbow resting on a padded support. The elbow

joint was flexed to 90◦, and the forearm was casted and secured in a plastic orthosis,

in a pronated position with the palm facing down. The index finger was casted and

placed in a fixed cylindrical tube, so that forces were exerted against the inside of

the tube and about an “endpoint” just distal to the DIP joint. These forces were

transmitted to the tube by 3 screws 120◦ apart that centered the finger in the tube.

The screws were gently pushed into the cast while it hardened, making a secure but

comfortable connection with the index finger. One subject repeated the experiment

with the screws rotated to different positions relative to the finger, and it was found

that the screw positions did not affect the results. This setup maintained both

interphalangeal joints extended and approximately aligned the MCP extension axis

with the vertical load cell axis. Digits 3-5 were secured in a resting position that was

slightly adducted away from the index finger. The thumb was abducted to 50◦ and

casted with the wrist. One Velcro strap was placed around the subjects waist, and

two Velcro straps were placed in a criss-cross fashion over each shoulder to restrain

the subject and to minimize shoulder movement.

Isometric index finger forces in the FEAA plane were measured using a sensitive

6 axis load cell (JR3, Woodland, CA, Model 20E12A-I25 9N.5). The index finger

exerted forces on one end of the tube, and the other end transmitted and amplified

these forces to the load cell. The length of the tube (10 cm) was designed to am-

plify potentially small endpoint forces, and to allowed them to be recorded by both

translational forces and rotational moments on the load cell. We estimated the load
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Figure 3.2:
Experimental setup for measuring isometric forces exerted by the index finger. The
subject is configured with the shoulder abducted approximately 15◦, and the elbow
flexed to 90◦ and positioned in full pronation. The wrist is immobilized with rigid
casting tape and secured within a fixture. The right index finger is similarly immobilized
and secured just distally to the distal interphalangeal joint, connected to a 6 degree-
of-freedom load cell through a rigid tube. Visual feedback of abduction-adduction
(left-right direction) and flexion-extension (down-up) forces is displayed to the subject
on a computer screen, with instantaneous force and the task direction and magnitude
displayed in polar coordinates. The subject exerts forces to move the cursor towards
the target force. The example shows the force trace recorded over a trial.
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cell’s resolution (smallest measurable force) to be 1 mN. These forces were also pre-

sented visually to subjects in real time. We displayed a dynamic cursor representing

the instantaneous two-dimensional force in the FEAA plane (see 3.2) on a computer

screen. Forces were recorded at 1000 Hz.

We also recorded surface electromyograms (EMG) from several finger muscles,

so that EMG activity regions could be compared with force covariances. EMGs

were recorded using miniature electrode/preamplifiers (DELSYS, Boston, MA) with

2 silver recording surfaces, 5 mm long and 10 mm apart. The preamplifiers have

bandwidth 20-450 Hz for surface recordings, with gains set to 100. EMG electrodes

were placed according to standard anatomical landmarks and verified with the rec-

ommended test maneuvers (Perotto, 2005). EMG signals were sampled at 2000 Hz.

EMGs were recorded from the first dorsal interosseus (FDI), extensor digitorum

communis (EDC), and extensor indicis proprius (EIP), but not in all subjects. EMG

activity was recorded from the FDI in six subjects. Additional activity was recorded

from the EDC in three of these subjects, and the EIP from the other three. We

used the EMGs to estimate recruitment curves as a function of task direction and

to estimate muscle action directions. These were then compared qualitatively to

force covariance results. We found the small number of subjects acceptable for such

qualitative comparisons. The experimental protocol called for the exertion of end-

point forces in 24 different directions and at 3 different magnitudes. The directions

were generally distributed equally over the plane at 15◦ increments. One subject per-

formed a slightly different protocol, with tighter distribution between pure abduction

and pure flexion, but the same number of directions overall. A rest trial was collected

for each subject to establish EMG baseline levels. For each trial, the subject viewed

the desired force as a target on the visual display (Figure 3.2), represented in polar
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coordinates by a static ray for target direction, and a static circle for target magni-

tude. The subject was instructed to gradually exert force in the target direction, and

then to hold the target force as precisely as possible for about 10-20 seconds. The

experimenter examined the time-domain force traces on-line. Trials were repeated if

forces were found not to be approximately constant. The force feedback display was

zeroed, with the subject at rest, before each set of trials. Subjects were asked to rest

for at least ten seconds between each trial, and at least one minute after each group

of ten trials.

The force magnitudes were also equally distributed at three levels, chosen to

require very minimal effort for all subjects. Because these magnitudes were at discrete

levels, we refer to them as task levels 1 - 3. These task levels were distributed at

equal intervals, with the highest magnitude level, task level 3, at approximately 2 N

in magnitude.

3.3.3 Data analysis

The experimental data were analyzed to quantify net endpoint vector variability,

to determine regions of activity in task space for key muscles, and to estimate the

action direction of these muscles.

Quantifying force variability

We used measured forces to compute force covariance maps. We first cropped each

trial to isolate relatively constant forces of at least 10 sec duration (Figure 3.3A). The

time series forces, YAA in the adduction-abduction direction and YFE in the flexion-

extension direction, were combined in a vector time series Y . The empirical task force

vector YT was defined to be equal to the average force vector Ȳ , with ŶT defined as

the unit vector in that direction. Task direction can also be expressed as an angle
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θ in task space, measured counter-clockwise from the adduction axis. To reduce the

voluntary contribution to force variability, we filtered both force components (Figure

3.3B) with a zero-phase-lag 8th order Butterworth band-pass filter with -3 dB cut-

offs at 5 and 30 Hz (Filter Design and Analysis Toolbox of MATLAB, Mathworks,

Natick MA). We found substantial voluntary contribution below 5 Hz, and non-

physiological noise above 30 Hz. Experimentation with cutoff frequencies showed

that they did not qualitatively change the results. Filtered force data Ỹ were then

used to compute the force covariance (Figure 3.3C-E). The covariances, plotted as

ellipses centered at the mean task force for each trial, comprise the force covariance

map (Figure 3.3F).

To determine if net endpoint vector variability could be used as an indicator of

muscle activity, we examined net endpoint magnitude variability for signal-dependent

noise. Signal-dependent noise should manifest itself in recordings of multidirectional

force variability as a scaling of variability as a function of task magnitude level

(see APPENDIX). We tested this hypothesis by computing the total variance of

force as the trace of the force covariance matrix. The total variance was averaged

across all task directions for each task level and subject. Within each subject, the

total variance was normalized by dividing by the total variance of task level 1. A

linear regression analysis was performed (regress in MATLAB) using the equation

Normalized total variance = a ∗ (Task level) + b, where a and b were coefficients to

be determined. We quantified the degree to which the covariance for each trial was

aligned with that trial’s task direction. The task-directed variance fraction η was

defined as the fraction of the total variance (in both force components) that occurs

in the task direction (Figure 3.3G). η is 100% if force fluctuates only in the task

direction, 50% if it fluctuates equally in all directions, and 0% if it fluctuates entirely
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Figure 3.3:
Construction of force covariance map with representative data. A. Raw force traces in
abduction/adduction and flexion/extension. Subjects produced ramp-and-hold forces
to a specified magnitude and direction, holding for between 10 and 20 seconds. B.
Noise-like fluctuations were emphasized by filtering data (passband 5 - 30 Hz) to de-
emphasize both high-frequency noise and low-frequency oscillations associated with
voluntary drive. C. Raw force fluctuations, plotted in the abduction-adduction/flexion-
extension plane. D. Band-pass filtered force fluctuations. E. Covariance of force vari-
ability, plotted as a two standard deviation ellipse, representing the data covariance
matrix. Note that data are plotted in an expanded scale relative to D. F. Covariance
ellipses plotted for every trial from one representative subject. The center of the ellipse
indicates the average force vector produced during the trial; the task direction θ is the
angle between the average force vector direction and the adduction axis. The ellipses
are magnified by a factor of 25 for visualization. G. Alignment between ellipse and
task direction is quantified using the task-confined variance fraction eta, the fraction
of total variance that occurs in the direction of the task. Various hypothetical force
covariance ellipses are shown along with the corresponding η value, where the diagonal
ray indicates the task direction.
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in a direction orthogonal to the task. We refer to the covariance matrix of filtered

data as cov[Ỹ ], and define η as

(3.1) η =
ŶT

T
cov[Ỹ ]ŶT

Trace
(

cov[Ỹ]
)

Assuming that correlation between forces generated by different muscles is modest,

and that the dependence of force noise on signal is similar for different muscles, the

task-directed variance fraction can be used as a bound on synergistic behavior among

muscles. Suppose that the force covariance map exhibits task directed variance in a

muscle A’s action direction. If η = 0.90 in this task direction, then at most 10% of

the force variance is generated by the combined effect of muscles acting in different

directions than muscle A. Such a relatively low contribution to force variability from

muscles in other direction would suggest that muscle A is not strongly synergistically

linked to muscles that act in different directions. 1 − η is an upper bound on syn-

ergistic behavior because muscle A may contain motor units with slightly different

mechanical actions, thereby generating variance outside the task direction without

any synergistic coupling with other muscles. Statistical regularities in the force co-

variance map were quantified using a one-way ANOVA of the task-directed variance

fraction using task direction as the factor. Task direction θ, was a continuous vari-

able. In order to make it a discrete factor for ANOVA analysis, task direction was put

into 15◦ bins. 15◦ bins were the natural choice for discretization because it was the

increment of target directions presented to the subject. A post-hoc multi-comparison

test with Bonferroni correction was performed to determine which groups exhibited

significant differences. Task directions with statistically significant peaks in η were

determined using the post-hoc test. The post-hoc test then revealed contiguous task

direction sets for which η was significantly less than the peak η values. This analysis
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revealed regions of task space that did not contain task-directed variance, and these

regions were compared with regions of coactivation between muscles with distinct

action directions.

Regions of muscle activity in task space

Muscle recruitment curves were computed from EMG data and plotted as a func-

tion of task direction. Raw EMG traces were first rectified and averaged across the

hold period of each trial and the corresponding rest period, with the difference be-

tween the two serving as the net EMG. We fitted a cosine tuning curve (Hoffman

and Strick, 1999; Todorov, 2002) to net EMG data within each subject and task level

(24 values for each task level), minimizing the sum-squared error. The EMG data

for each task level and subject were then normalized to the maximum of the fit, thus

avoiding normalization to a spurious maximum in the data. Once the EMG data

were normalized, comparisons of directional tuning could be made across task levels

and subjects. A single cosine tuning curve was fit to the normalized data grouped

across subject to produce a single curve representing a region of muscle activity in

task space for each muscle studied. These curves were compared with features of the

force covariance map.

Estimates of muscle action direction

Muscle action directions specific to our experimental setup were estimated with

a cross-correlation of force and EMG data. This is a generalization of the spike-

triggered averaging method, normally applied to single motor unit EMGs, to surface

EMGs. Spike-triggered averaging correlates intramuscular EMGs to a single motor

unit’s spike waveform to yield spike times, and then correlates spike times with

endpoint force yielding an estimate of a single motor unit’s mechanical action. Our
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method correlates surface EMGs directly with endpoint force to yield an estimate of

a muscle’s action direction. Referring to muscle i’s EMG time series (normalized to

its mean) as Ei[n] with n for discrete time, the cross-correlation z(i)[n] is defined as

(3.2) z(i)[n] =
∑
j

Y [j + n]Ei[j]

where the sum was computed across the hold period of each trial. The action direc-

tion estimate αi was derived by computing the direction of the average vector z(i)[n]

over a range of time shifts between force and EMG (EMG and force simultaneous to

EMG leading force by 100 milliseconds). αi is the direction of change for isometric

force when the rectified EMG in muscle i is increasing, averaged across the hold

period. When Ei[n] is a spike train, the above process reduces to spike-triggered

averaging. We have recently shown on theoretical grounds that the direction of αi

may accurately represent muscle mechanical action despite the fact that z(i)[n] may

not accurately represent the muscle activation magnitude or time course (Kutch et

al., 2007).

Action direction estimates, specific to our experimental setup, were constructed as

follows for the first dorsal interosseous (FDI), extensor digitorum communis (EDC),

and extensor indicis proprius (EIP). For each muscle i, a polar histogram of αi was

constructed across all subjects and task directions in 15◦ bins. The peak of this

distribution was taken as the action direction estimate for muscle i. For muscles

that we did not record EMG from, we estimated action directions from moment

arm data in the literature. We used published data for index finger muscles derived

from MRI data (Fowler et al., 2001), for finger postures that corresponded to the

posture used in the present study. The literature estimates were: flexor digitorum

profundus (FDP) 296.5◦, flexor digitorum superficialis (FDS) 292.7◦, first lumbrical

(LUM) 247.9◦, and first palmar interosseous (FPI) 347.5◦.
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3.4 Results

A representative force covariance map measured from a single subject during a

single session is shown in Figure 3.3F. Though the force covariance ellipse structure

varies smoothly as task direction changes, the ellipses fall into roughly two categories.

Certain task directions (indicated by arrows in Figure 3.3F) exhibit force covariance

ellipses that are relatively narrow and have their principal axes relatively well-aligned

with the task direction. We will refer to these as task-directed ellipses, because they

have high task-directed variance fractions (η). Based on the theoretical framework

for force covariance mapping developed in Section 3.3, we suspect that task-directed

ellipses reflect control by a prime mover muscle. In contrast, intermediate task

directions exhibit broad covariance ellipses without clear directional alignment. We

will refer to these as non-task-directed ellipses, because they have lower η-values.

Based on our theoretical framework, we suspect that non-task-directed ellipses are

reflective of cooperation among multiple muscles with different action directions.

We wanted to determine if η varied significantly as a function of task direction,

if similar force covariance map features were consistently found in multiple subjects,

and if the covariance map features could be related to estimates of muscle activity and

action direction. Task directions having task-directed ellipses should correspond to

directions of muscle action if these covariance ellipses reflect control by a prime mover

muscle. Task directions non-task-directed ellipses should correspond to directions

where the cooperation of multiple muscles can be supported by EMG data. We first

define the activity and action direction for 3 key muscles likely contributing force to

the endpoint, and then show how these relate to the force covariance map.



51

3.4.1 Regions of muscle activity and directions of muscle action

The goal of our EMG analysis was to determine likely task direction ranges of

significant activity for the FDI, EIP, and EDC, and to also make an estimate of the

action direction for these muscles that was specific to our experimental setup. We

fit cosine tuning curves to normalized EMG data grouped across subjects and task

levels (Figure 3.4). The FDI was most active in the left half of the task plane, with

significant activity extending as far as extension and flexion. The EIP was most

active in the top half of the task plane, with significant activity extending as far as

abduction and adduction. The EDC activity appeared to be concentrated on the

2nd quadrant, which is interesting because the EIP and EDC have similar action

directions in the FEAA plane, but different activity tuning curves.

Based on the regions of significant activity described above, histograms across all

tasks in these active ranges were made of the action direction estimate (Figure 3.4).

These histograms indicated that action direction estimates for each muscle tended to

cluster along particular directions. The average action direction estimate was taken

as the likely action direction for these muscles (average ± standard deviation across

subjects): FDI pulled in 196◦ ± 7◦ (abduction with some flexion), EIP pulled in 75◦

± 3◦ (extension with some adduction), and EDC pulled in 91◦ ± 9◦ (almost pure

extension).

The muscle activity ranges and likely action directions were then compared to the

force covariance map in the following section.

3.4.2 Force covariance map relates to muscle activity and muscle action directions

Force covariance ellipse geometry, as described by η, was significantly non-uniform

as a function of task direction (ANOVA, p < 0.001). η as a function of task direc-
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Figure 3.4:
Task regions of muscle activity and muscle action direction estimates. Normalized EMG
data from each muscle were fit with cosine tuning curves. Top panels show EMG data
grouped across subjects from the three muscles studied plotted in polar coordinates
along with the best-fit cosine tuning curve. Bottom panels show polar histograms of
action direction estimates from each muscle studied. A. The FDI was most active in
the second and third quadrants between extension and flexion, and had an average
action direction estimate of 196◦. B. The EIP was most active in quadrants 1 and 2
between adduction and abduction, and had an average action direction estimate of 75◦.
C. The EDC was most active in quadrant 2 between extension and abduction, and had
an average action direction estimate of 91◦.
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tion, was consistent across subjects, having a standard deviation across subjects

averaged across task directions of 0.099. The variation in η across task directions av-

eraged across subjects was 0.53. Thus, inter-subject variability was small compared

to inter-task-direction variability, leading to a cloud of data points with consistent

features when η was plotted as a polar function of task direction (Figure 3.5A).

We consistently found 3 distinct task directions with high η values, indicating that

force covariance ellipses were largely task-directed in these directions (marked η peak

in Figure 3.5A). These η-peak directions were 195◦, 75◦, and 330◦. We grouped η

data into 15◦ task direction bins, and between η-peak directions, we consistently

found “non-task-directed ranges” where η was significantly (p < 0.05) lower than the

nearest η-peak, and thus force covariance ellipses were relatively non-task-directed.

These task direction ranges were 0◦-45◦, 105◦-180◦, and 225◦-300◦ (illustrated as

shaded regions in Figure 3.5B).

We found that η-peak directions corresponded closely to muscle action directions

(Figure 3.5B). The η-peak direction of 195◦ was closely matched by the FDI action

direction estimate of 196◦. The η-peak direction of 75◦ was closely matched by the

EIP action direction estimate of 75◦. The η-peak direction of 330◦ was less well

matched by the 347.5◦ FPI action direction estimate, though this might be expected

since the FPI estimate was not produced by our recording setup or exact posture.

Based on cadaveric data, we would expect that slight increases in the MCP flexion

angle would cause the FPI to have a greater flexion moment arm while having the

abduction moment arm remain unchanged (An et al., 1983), thus reducing the dis-

crepancy between the η-peak direction and the FPI action direction estimate. The

close alignment between directions of task-directed ellipses and muscle action direc-

tions suggests that these muscles may act as prime movers for tasks in their action
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Figure 3.5:
Force covariance map relates to muscle activity and action direction. A. Relation be-
tween force covariance ellipses and the task direction, as quantified by the task-directed
variance fraction (η). Each point represents a task, with direction given by the task
direction, and magnitude given by η. Different task magnitude levels are represented by
different symbols, while different subjects are represented by different colors. The sub-
ject population consistently showed relative peaks in η at 195◦, 75◦, and 330◦, marked
with arrows. These peaks correspond to narrow, task direction-aligned covariance el-
lipses in these task direction. B. η data were grouped by 15◦ task direction bins, and
task-direction regions with average η significantly less than the closest peak average η
are shown as shaded regions. These regions contain covariance ellipses that are either
broad or not task-aligned. Cosine tuning curves derived from normalized EMG data are
shown, and action direction estimates are shown as lines (see text for abbreviations).
Notice that EMG data and action direction estimates suggest coactivation of muscles
with different action directions in regions of non-task-directed variance.

direction.

For all non-task-directed ranges of task directions, which exhibit non-task-directed

ellipses, there is clear EMG evidence of cooperation among multiple muscles with

different action directions (Figure 3.5B). For the second quadrant non-task-directed

range (105◦-180◦), there was significant EMG activity in the FDI, EDC, and EIP, so

there were muscles with different action directions active throughout this region of

task directions. For the non-task-directed range in quadrants 3 and 4 (225◦-300◦),

there was significant EMG activity in the FDI. Since the FDI action direction is
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not in this range, there must have been significant force contributions from other

muscles with different action directions to achieve the tasks. Likewise, for the non-

task-directed range in quadrant 1 (0◦-45◦), there was significant EMG activity in

the EIP, and since the range did not contain the EIP action direction, other muscles

with different action directions had to have been active to achieve the tasks. Thus,

task directions exhibiting force covariance ellipses are relatively non-task-directed,

correspond to task directions where EMG data indicates cooperation of multiple

muscles.

3.4.3 Signal-dependent noise generates the force covariance map

The force covariance map produces inferences about the average amount of force

produced by a muscle based on variability in the net endpoint vector; thus, force

covariance mapping requires a scaling of muscle force variability with mean muscle

force. We indeed observed that the total endpoint force variance significantly (p <

0.001) scales with task level (Figure 3.6), which may be interpreted as the average,

across active muscles, of the scaling relation between individual muscle force variance

and individual muscle average force (APPENDIX).

3.5 Discussion

We have introduced force covariance mapping (FCM) as a novel approach using

variability in human index finger forces for studying muscle coordination at the

metacarpophalangeal joint of the index finger in the hand. We have shown that

this force covariance map offers several significant insights. In particular, we found

that net endpoint vector covariance depends critically on task direction. We further

showed that non-uniformities in the force covariance map could plausibly be related

to action directions of contributing muscles, based on analysis of the EMG activity
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Figure 3.6:
Endpoint force variability exhibits signal-dependent noise. Total force variance, nor-
malized to the lowest task level, plotted versus task magnitude level. Variance increased
with task level, as would be expected with signal-dependent noise. Error bars indicate
95% confidence intervals, and the best fit line shows results of a regression analysis
indicating that the increase in total variance as a function of task level was significant
(p < 0.001).

of the contributing muscle.

To integrate these findings into current motor control thinking, we first discuss

the relevance of our results to theories of muscle coordination, including the muscle

synergy hypothesis, prime mover activation, and optimization. We then further

discuss the FCM technique, contrasting it to uncontrolled manifold analyses and

showing how it complements dimensionality analyses of EMG data and stimulation

of anatomical structures. We conclude with a discussion of potential limitations of

FCM and of this study.
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3.5.1 Muscle coordination: FCM and the muscle synergy hypothesis

We interpret the existence of task-direction-confined (TDC) covariance ellipses

in directions of likely muscle action as evidence that these particular muscles are

not strongly coupled, in fixed ratio synergies, to other muscles with different action

directions. As an example of non-synergistic behavior, we found a high TDC variance

fraction for force production in the action direction of first dorsal interosseous (FDI),

with approximately 90% of the force variance confined to the task direction.

Recent muscle synergy descriptions have defined individual synergies as a fixed set

of weights for activating a set of muscles, with overall motor coordination achieved

by appropriate activation of multiple synergies (e.g. (Ting and Macpherson, 2005)).

If such a synergy involving the FDI had significant weights for muscles with different

action directions than the FDI, FDI activation would automatically incur activation

in the other muscles of the synergy. This muscle coactivation would be expected to

generate non-TDC covariance ellipses for any task for which the synergy was active.

Thus, based on our results, we suspect that many index finger muscles do not exhibit

fixed synergistic behavior.

3.5.2 Muscle coordination: FCM and prime movers versus cooperating muscles

Alternatively we sought to establish whether a given task could be executed using

a prime mover muscle, or whether multiple muscles with different action directions

could be played off against each other. The results of our study suggest that both

situations may occur, depending on the desired direction of the task.

For example, the FDI is often assumed to be a prime mover for MCP abduction

(Flament et al., 1993; Semmler and Nordstrom, 1998; Thomas et al., 1986). This

assumption has recently been challenged because of the finding of relatively large
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amounts of extensor EMG activity during finger abduction (Keenan et al., 2006).

Our results support this latter finding (see Figure 3.5B). However, the FDI is also

known to generate flexion torque about the MCP joint in addition to abduction

torque (An et al., 1983; Thomas et al., 1986). We found that the EMG activity

in both EDC and EIP dropped off sharply as the task direction changed from pure

abduction toward the FDI action direction. Our results suggest that the MCP joint

torque may be more governed by the FDI alone for tasks directed in the FDI action

direction.

As a converse to prime mover activation, there is clear evidence in the force

covariance map for sets of task directions controlled by multiple muscles with different

action directions. This type of coordination strategy was particularly apparent for

tasks between pure extension and pure abduction, a range for that contains the

unique action directions of no muscles.

If muscle activity does indeed exhibit cosine tuning with the task direction based

on an optimization principle (Herrmann and Flanders, 1998; Hoffman and Strick,

1999; Todorov, 2002), we would predict that some muscles might appear as prime

movers in their action direction and others would not. Cosine tuning predicts that

muscle activity should drop to baseline levels 90◦ away from the muscle preferred

direction.

Assuming that muscle activity is cosine tuned, and that the preferred directions

correspond approximately to the action directions, we can make some interesting

predictions. The extensor action directions are greater than 90◦ from the FDI and

FPI, whereas the flexor action directions have other muscles within 90◦ on both

sides (Figure 5B). According to the assumptions put forth here, we would expect

that the extensors, FDI and FPI might appear as prime movers for tasks in their
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action directions, whereas the flexors would not because coactivation of the FDI and

FPI (within 90◦) would produce smaller errors (Todorov, 2002). We found force

covariance ellipses consistent with this expectation, as well as significant FDI EMG

activity in the flexor action direction.

3.5.3 Technique: FCM and uncontrolled manifold analyses

Our approach is superficially similar to the evaluation of the uncontrolled manifold

(UCM) hypothesis, in that we also seek to use motor variability as a window into CNS

organization (Latash et al., 2002). However, whereas UCM studies seek to exploit

a mismatch between kinematic and feedback degrees-of-freedom, we seek to provide

complete feedback about the involved kinematic degrees-of-freedom while observing

residual variability in isometric force. For instance, when visual feedback is provided

to a subject about the total vertical force generated by the index and middle fingers,

force is distributed among the fingers to stabilize moments about a point between the

fingers, at the expense of stabilizing total force (Latash et al., 2001). This approach

provides important information about how the CNS coordinates kinematic degrees-

of-freedom by exploiting a mismatch between the number of kinematic degrees-of-

freedom (two) and the number of feedback dimensions (one). If feedback were given

to the subject showing both force and moment, and the subject was instructed to

hold a specified force and moment, forces exerted by the kinematic degrees-of-freedom

would still fluctuate because of fluctuations in muscle force. We are interested in this

latter form of motor variability, namely variability that arises even if the subject has

feedback about all relevant kinematic degrees-of-freedom.

Technique: FCM and dimensionality analysis

We introduced force covariance mapping in a largely intuitive fashion, and then

demonstrated that there is significant experimental information available in this new
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approach. In this section, we illustrate with a simple computational model that the

force covariance map likely contains information about muscle coordination beyond

traditional dimensionality analysis (see APPENDIX for mathematical details).

We begin with a set of muscle action directions from cadaveric estimates (An et

al., 1983) (Figure 3.7A). We then consider two, of many possible, activation strategies

that the CNS could use to activate these redundant muscles to achieve isometric force

tasks of constant magnitude. These are examined in 5◦ direction increments in the

flexion-extension/abduction-adduction plane (the task set). One possible activation

strategy is to reduce the degrees of freedom in muscle activity by introducing muscle

synergies (Figure 3.7B). We choose three synergies here, because it is the minimum

necessary to generate force in all directions of the task plane. Activation of the three

chosen synergies is dictated by the task commands so that the desired magnitude

and direction of force is achieved for each task. As one possible alternative that does

not contain explicit neural coupling between muscles, is that each muscles activity

is a cosine function of the task direction (Herrmann and Flanders, 1998; Hoffman

and Strick, 1999; Todorov, 2002) (Figure 3.7C). Each muscle has a force specified for

each task in the task set. The set of forces across muscles are subjected to principal

components across the task set. The set of muscle forces exhibits low dimensionality

for both synergy activation (Figure 3.7D) and cosine tuning activation (Figure 3.7E).

Muscle activity dimensionality is unable to distinguish between these activation

strategies because the underlying dimensionality of the task demands is low in both

cases. The same set of muscle forces used to compute dimensionality is used to com-

pute the expected force covariance map. The task-directed variance fraction η was

calculated as a function of task direction for the synergy activation (Figure 3.7F) and

the cosine tuning activation (Figure 3.7G). It is evident that the force covariance map
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Figure 3.7:
Comparison of dimensionality analysis with force covariance mapping, for two hypothet-
ical muscle recruitment strategies. A. Action directions in the task space of isometric
forces for seven index finger muscles, estimated from cadaveric data (An et al., 1983).
B. The synergy hypothesis combines muscles into a relatively small number of fixed,
synergistic groups. Here muscle redundancy is eliminated because three synergies are
sufficient to produce any desired force in task space. C. Another hypothesis is that
muscles are activated according to a cosine tuning function rather than fixed groupings.
Model simulations produce hypothetical results for the two strategies and the two types
of analysis. Simulations were performed for a random selection of parameter values for
synergy weightings, signal-dependent noise coefficients, and muscle force correlations
(see APPENDIX). D. Simulation results of principal component analysis for synergy
hypothesis, plotted as average % variance versus number of principal components. E.
Simulation results of principal component analysis for cosine tuning hypothesis are sim-
ilar, with two to three principal components accounting for the majority of the variance.
F. Average task-confined variance fraction (η) as a function of task direction for syn-
ergy hypothesis, and G. for cosine tuning hypothesis. H. Histograms of the average
η for tasks aligned with a muscles action direction, for the two simulated hypotheses.
The cosine tuning strategy predicts that high values of η will be produced, whereas
the synergy hypothesis predicts lower values. Principal components analysis, applied
to this simple model, cannot distinguish whether low dimensionality is due to the task
or due to muscle synergies. In contrast, force covariance mapping can indicate lack of
synergistic behavior even for low-dimensional tasks.
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is very different for the two activation strategies, with synergy activation producing

non-specific peaks in η along the skew of the muscle action direction distribution,

and cosine tuning activation producing η peaks in muscle action directions (Figure

3.7H).

3.5.4 Technique: FCM and the stimulation of anatomical structures

If the dimensionality reduction observed experimentally in EMG signals indeed

occurs at the level of task planning, one implication is that low dimensionality will

be observed among muscle control signals even if there are no neural constraints

among muscles. More direct support for the muscle synergy hypothesis comes from

techniques involving stimulation of anatomical structures along with the measure-

ment of resulting EMG dimensionality. For example, when NMDA microstimula-

tion is applied to a large number of frog spinal cord regions, a large percentage of

EMG variance in 12 muscles is accounted for using 7 muscle synergies (Saltiel et al.,

2001). The stimulation paradigm for examining muscle synergies may show that low

dimension in muscle activation across muscles is unlikely to result only from low di-

mensionality in task planning during natural movements. However, the stimulation

paradigm may not reveal the full repertoire of coupling between muscles available

to the CNS. It is highly desirable then to have an experimental approach, com-

plementary to CNS stimulation, that can examine muscle synergies during natural

behavior but does not rely on estimating the dimension of EMG activity among a

set of muscles. Force covariance mapping, as described in the present study, is one

such experimental approach.
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3.5.5 Technique: FCM compared to EMG studies

EMG studies of muscle coordination clearly have the advantage of having a mea-

surement of neural input for all relevant muscles. However, EMG assessments may

either overestimate or underestimate muscle force (Zhou et al., 2007), which compli-

cates the interpretation of muscle coordination studies based on EMG. Furthermore,

for many muscles, it may be difficult to estimate the EMG-force relation because

it may be impossible to have a particular muscle active in isolation. FCM relies

on a different relation: the relation between average muscle force and muscle force

variability. While FCM, as applied in this study, can not directly determine which

muscles are contributing to a particular task, the average force-force variability can

be directly estimated from the scaling of endpoint force variability with average

endpoint force (see APPENDIX) as is shown in Figure 6.

3.5.6 Technique: Inferring muscle forces from FCM

The results presented in this study largely focused on classifying force covariance

ellipses into task-directed and non-task-directed. This binary classification separates

tasks that are performed using cooperation among muscles and those performed by

muscles functioning as prime movers. However, the specific geometry of the covari-

ance ellipse may actually allow the exact force contribution of multiple muscles to

be estimated. For a 2-dimensional task plane, the ellipse carries 5 pieces of infor-

mation. Two come from the Cartesian coordinate of the ellipse center. Three come

from the covariance matrix (which is symmetric and thus only has 3 free parame-

ters). If the muscle action directions are known, and the constant of proportionality

between average muscle force and force variance can be estimated, then the ellipse

uniquely specifies the activity of up to 5 muscles. Further study is required to deter-
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mine if FCM can appropriately estimate the activity in muscles having known action

directions.

3.5.7 Limitations: FCM and correlation

Force varies mainly in the task direction when the task aligns with the action

direction of certain index finger muscles. This observation is possibly because the

muscle (and possibly others with similar action directions) is preferentially activated

relative to muscles with different action directions. As an example, we found a high

TDC variance fraction for force production in the action direction of FDI, with more

than 90% of the force variance confined to the task direction.

An alternative explanation is that the same result could be produced by muscles

that are coactivated, but with highly correlated noise-like force fluctuations. We can

assess the likelihood of this possibility using a simple thought experiment. Suppose

that muscle E pulls 90◦ from the FDI toward extension and muscle F pulls 90◦

from the FDI toward flexion, and all three muscles have mechanical actions of equal

magnitude. Neglecting the lumbrical muscle, this fictive muscle system could be

considered an approximation to the cadaveric estimates for the action directions of

muscles likely to be active in the left half of the task plane (Figure 3.7A).

Activating the FDI, muscle E, and muscle F equally would generate a net average

endpoint vector in the direction of the FDI. We would be concerned that a large

task-confined variance fraction might be observed if muscles E and F had correlated

force fluctuations. Assume that the correlation coefficient between the time-varying

forces generated by muscle E and F is 0.5, which is the largest peak coherence value

between pairs of surface EMG signals from different muscles that we are aware of in

the literature (Kilner et al., 1999). If we measured the task confined variance fraction

for this system and task, we would find that η = 0.5 (see APPENDIX), much less
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than the observed 0.90. Therefore, correlated force fluctuations would be unlikely to

solely produce task-directed variance fractions for tasks in the FDI action direction

as high as were observed in this study. However, the usefulness of 1− η as a upper

bound on synergistic activity with other muscles having distinct action directions

may be affected by the presence of muscle force correlation, an issue that will require

further investigation.

3.5.8 Limitations: Proving prime mover activity

We hypothesized that task-directed variance was generated by prime mover ac-

tivity, while non-task-directed variance was generated by muscle coactivation. Using

EMG data from muscles with different action directions, we directly showed that low

task-directed variance fractions were associated with muscle coactivation. We used

EMG-based and MRI estimates of muscle action direction to establish the plausibil-

ity of high task-directed variance fractions being generated by prime mover activity,

as we showed that high task-directed variance fractions were found in directions of

muscle action. However, further study is required to establish that EMG for muscles

other than the prime mover was actually low in these directions. Nonetheless, we

can claim that the high task-directed variance fractions observed in the FDI action

directions are unlikely to result from mechanisms other than the FDI behaving as a

prime mover. The previous section showed that correlation is not a likely candidate

for explaining our results. We also note that extensor activity was not significant in

the FDI action direction (Figure 3.5B). Therefore based on the action directions of

the relevant muscles (Figure 3.5B), if the FDI were not also significantly more active

than the other muscles not recorded from in this study, forces would not balance

correctly to generate a net endpoint vector in the FDI action direction.
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3.6 Conclusion

The detailed structure of multidirectional net endpoint vector variability likely

contains a significant amount of information about how muscles are coordinated to

achieve tasks. Force variability patterns are consistent with the CNS using different

types of muscle coordination strategies for tasks in different directions, but many

index finger muscles are not likely to couple into fixed ratio synergies with other

muscles acting in different directions. The CNS may recruit primarily one muscle

for tasks in the action direction of the muscle, or may recruit multiple muscles when

appropriate. Further study of the detailed multidirectional structure of human motor

variability will hopefully provide additional insights into how the CNS coordinates

multiple redundant muscles.
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3.8 Appendix

Force covariance mapping (FCM) was introduced in METHODS in a largely in-

tuitive fashion. Here, we illustrate the most important equations underlying the use

of signal-dependent noise for studying muscle coordination, and describe how these

equations were used to show that FCM may reveal more about muscle coordination

than dimensionality analysis when the inherent task dimension is low (Figure 3.7).

Assuming that the endpoint forces generated by different muscles sum linearly to
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generate the observed time-varying net endpoint vector Y (t), then

(3.3) Y (t) =
m∑
i=1

F (i)(t)

where F (i)(t) is the force vector exerted by the ith muscle. The statistics we compute

will be over multiple samples through time, so t will not explicitly appear in our

equations for simplicity. The average net endpoint vector Ȳ (i.e. the covariance

ellipse center) is then simply

(3.4) Ȳ =
m∑
i=1

¯F (i)

The covariance matrix of Y , denoted cov[Y ], can be expressed as cov[Y ] = E[Y Y T ]−

Ȳ Ȳ
T

, where E[X] is the average (expected value) of X. Assuming, for the moment,

that forces exerted by different muscles are uncorrelated, then the observed force

covariance is simply the sum of the covariance of the force vectors exerted by all

muscles

(3.5) cov[Y ] =
m∑
i=1

cov[F (i)]

How does signal-dependent noise in the net endpoint vector reflect how variability

in individual muscle force vectors contains information about muscle activation? The

trace of a covariance matrix of a random vector indicates the total variance induced

by that vector. We denote total variance by varT , and note that varT [a] = tr(cov[a])

for any vector a. Returning to Equation 3.5, we see that

(3.6)
1

m
varT [Y ](‖Ȳ ‖) =

1

m

m∑
i=1

varT [F (i)](‖Ȳ ‖)

Thus, up to a potentially unknown constant (the number of muscles), the measurable

left-hand side of Equation 3.6 shows that total force variance scales with average

force magnitude the same as individual muscles do, on average across the set of

active muscles.
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How will the net endpoint vector covariance matrix differ if different control strate-

gies are used? If muscle 1 is a prime mover, ‖ ¯F (1)‖ � ‖ ¯F (i)‖ for all i other than

1. Thus, by Equation 3.5, cov[Y ] ≈ cov[ ¯F (1)]. If we assume that the action of any

muscle i can be described by a vector a(i), then F (i) = uia
(i), the product of a scalar

weighting ui and the muscle action vector a(i). We then find

(3.7) cov[Y ] = cov(F (1)) = E[F (1)F (1)T ]− ¯F (1) ¯F (1)
T

= var[u1]a(1)a(1)T

Such a covariance matrix has one zero eigenvalue and one non-zero eigenvalue corre-

sponding to an eigenvector in the direction of a(1). Thus, the force covariance ellipse

is highly elongated along the direction of a(1). Now, suppose that a task is performed

by coordinated action of two muscles: cov[Y ] = cov[F (1)] + cov[F (2)]. Suppose that

a(1) and a(2) are orthogonal vectors of equal length, and that scalar weightings satisfy

u1 = u2. Without loss of generality, a(1) = [1, 0]T and a(2) = [0, 1]T . Then

cov[Y ] = var[u1]


 1 0

0 0

+

 0 0

0 1


(3.8)

= var[u1]I2(3.9)

where I2 is the 2 × 2 identity matrix. cov[Y ] therefore has eigenvalues λ1 = λ2 =

var[u1], and the corresponding covariance ellipse will be a circle. Many intermediate

covariance ellipse types are possible, but based on these simple calculations, we

expect tasks performed by prime mover muscles to have narrow covariance ellipses

elongated along the task direction, and tasks performed by coordinated activity of

muscles with very different action directions to have broad covariance ellipses.

How do fixed ratio muscle synergies affect the force covariance map? If the CNS

enforces a rigid constraint between two muscle force vectors, such that F (2)(t) =

wF (1)(t) for all tasks and some constant w, then the synergy will appear to FCM to
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be just another muscle. A more interesting case to consider is what would appear in

FCM if only average force vectors were constrained across tasks, ‖ ¯F (2)‖ = w‖ ¯F (1)‖.

In this case, muscles retain some element of uncorrelated noise that we can seek

to exploit. In accord with our experimental findings, we assume that covariance

matrix scales linearly with average net endpoint force vector magnitude. Using this

assumption, we can express the covariance of a particular muscle force vector as the

product of the muscle force vector magnitude and some covariance matrix for unit

excitation: cov[F (i)] = ‖ ¯F (i)‖ cov1[F (i)]. Using Equation 3.5, we find

(3.10) cov[Y ] = ‖ ¯F (1)‖(cov1[F (1)] + w cov1[F (2)]) +
m∑
i=3

cov[F (i)]

For simplicity, we consider muscle 1 and muscle 2 to have orthogonal action direc-

tions. In this case, the covariance matrix associated with the synergy S can be

expressed as

(3.11) cov[S] = ‖ ¯F (1)‖

 1 0

0 w


cov[S] has eigenvalues λ1 = 1 and λ2 = w. If the fixed ratio synergy strongly

couples muscles 1 and 2, w ≈ 1. In this case, the covariance ellipse associated

with the synergy is a circle, whenever the synergy is active. This constraint makes

impossible the observation of narrow task-aligned ellipses in the action directions of

either muscles 1 or 2.

How can more general forms of these equations be used to simulate the force covari-

ance map? We began with estimates of muscle action directions made from cadaver

measurements of all 7 muscles that could contribute abduction-adduction/flexion-

extension force to the human index finger (An et al., 1983). The goal of each simula-

tion was to activate the muscles to generate task vectors distributed at 5◦ increments
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around the unit circle. All simulations were performed by random search (50000 it-

erations) over parameters with unknown values. For each iteration, a vector k was

generated with 7 elements selected uniformly between 0.05 and 1.0. For muscle i

with mean scalar weighting ūi for a given task, the standard deviation of ui was

σi = kiūi. A random correlation matrix ρ was generated for each iteration using

standard methods (Marsaglia and Olkin, 1984). The cross-correlation values in the

correlation matrix were selected uniformly between 0 and 0.2, which seemed to be

reasonable values maximal coherence values for the pairs FDI/EDC and FDI/FDS

(flexor digitorum superficialis) as reported in the literature (Fisher et al., 2002).

Average muscle forces were simulated according to two strategies. The synergy

activation strategy couples muscles and thereby reduces the number of variables that

need to be controlled (e.g. (Macpherson, 1991)). Since we worked with muscles acting

in the plane, the biomechanical system requires 3 muscle synergies. The measured 2-

dimensional muscle action vectors were placed as columns in a 2×7 matrix A. During

each iteration of the random search, random 7 × 3 synergy coupling matrices W

were generated with elements between 0 and 1 until the synergy mechanical actions

Asyn = AW formed a biomechanically feasible set (i.e. vectors in the columns of

Asyn span the plane with positive coefficients). Once a suitable coupling matrix W

was identified, there was an obvious choice to activate the synergies: activate the two

synergies surrounding the given desired task vector and deactivate the other synergy.

This procedure produced a vector of average muscle scalar weightings ūi
(s) for the

synergy strategy.

The cosine tuning activation strategy activates muscles as a function of the angular

difference between the desired force direction and the “preferred” force direction of

the muscle. To implement cosine tuning, we choose to minimize total net endpoint
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vector variance (Todorov, 2002) as it was consistent with instructing our subjects

to be as precise as possible. For simplicity, we use the notation that x ∗. y denotes

a matrix whose ijth element is the product of the ijth elements of x and y. We

used quadratic programming (quadprog in MATLAB) to choose a vector of average

muscle weightings that minimized uTHu subject to Ȳ = Au and u ≥ 0 where

H = kkT ∗. ρ ∗. ATA. This procedure produced a vector of average scalar weightings

ūi
(c) for the cosine tuning strategy.

For each iteration, the net endpoint vector covariance matrix was computed using

Equation 3.12.

(3.12) cov[Y ] = A(kkT ∗. ρ ∗. ūūT )AT

where u could be generated either by the synergy or cosine tuning strategy. The

task-directed variance fraction was then computed as a function of task according to

(3.13) η =
ˆ̄Y T cov[Y ] ˆ̄Y

tr(cov[Y ])

where ˆ̄Y denotes a unit vector in the direction of Ȳ .

We used principal components analysis (PCA) to estimate the dimensionality of

the average muscle scalar weighting vectors across all tasks for each iteration. For the

muscle activation strategies considered, we would expect the average muscle weight-

ing vectors to occupy linear subspaces of 7 dimensional Euclidian space. Though

PCA vectors will not describe the synergies themselves (Tresch et al., 2006), it is

an appropriate technique to put an upper bound on the dimension of the subspace

containing the average muscle force vectors, as any non-linear dimensionality reduc-

ing structure should be contained within the linear PCA subspace containing the

majority of the data.



CHAPTER IV

Analysis of the effects of firing rate and synchronization on
spike-triggered averaging of multidirectional motor unit

torque1

4.1 Abstract

Spike-triggered averaging (STA) of muscle force transients has often been used

to estimate motor unit contractile properties, using the discharge of a motor unit

within the muscle as the triggering stimulus. For motor units that exert torque about

multiple degrees-of-freedom, STA has also been used to estimate motor unit action

direction. It is well known that motor unit firing rate and weak synchronization

of motor unit discharges with other motor units in the muscle can distort STA

estimates for contractile properties, but the distortion of STA estimates for motor

unit action direction has not been thoroughly evaluated. Here, we derive exact

equations that predict that STA decouples firing rate and synchronization distortion

when used to estimate motor unit action direction. We derive a framework for

analyzing synchronization, consider whether the distortion due to synchronization

can be removed from STA estimates of action direction, and show that there are

distributions of motor unit action directions for which the STA is insensitive to

synchronization. We conclude that STA may give insight into how motoneuronal
1This chapter is based on the publication: Kutch J, Suresh N, Bloch A, Rymer W (2007) Analysis of the effects

of firing rate and synchronization on spike-triggered averaging of multidirectional motor unit torque. Journal of
Computational Neuroscience 22:347-361.

72
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synchronization is organized with respect to motor unit action direction.

4.2 Introduction

Spike-triggered averaging (STA) is one of the most widely used system identifi-

cation techniques in motor neuroscience. When estimating motor unit properties,

STA involves extracting sections of joint torque based on the timing of discharges of

a single motor unit, and then averaging the sections together (Buchthal and Schmal-

bruch, 1970). While the resulting torque transient is reflective of the magnitude

and time course of the motor unit twitch, it has also been shown in numerous ex-

perimental and theoretical studies that STA of joint torque based on motor unit

discharge times is strongly influenced by both mean motor unit firing rate (Calancie

and Bawa, 1986; Nordstrom et al., 1989) and by synchronization (Taylor et al., 2002;

Keen and Fuglevand, 2004b). Synchronization refers to the increased probability

of simultaneous discharge between a pair of motor units relative to chance, and

has been studied in many muscles (Datta and Stephens, 1990; Deluca et al., 1993;

Farmer et al., 1997; Semmler, 2002). The distortion of the twitch waveform by firing

rate is well understood (Andreassen and Baron, 1983; Lim et al., 1995), but the

distortion due to motor unit synchronization is less well understood. For example,

it has been observed that increases in motor unit firing rate decrease estimates of

motor unit peak force, whereas increases in population synchronization likely in-

crease estimates of motor unit peak force (Thomas et al., 1990a; Taylor et al., 2002;

Keen and Fuglevand, 2004b). Clearly, such confounding distortions make the inter-

pretation of STA estimates for motor unit contractile properties difficult.

Motor unit action direction is a very different property. Action direction is an

angle that specifies the relative torque contribution of a motor unit to the various
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components of torque output. For example, Keen and Fuglevand (2004b) evaluated

the action direction of motor units in the extensor digitorum communis, a large digital

extensor muscle on the dorsal side of the forearm. The action direction described the

relative amounts of torque generated on each of the digits subsequent to a discharge

in a particular motor unit. Thomas et al. (1990b) evaluated the action direction of

thenar motor units. In this case, the action direction specified the relative amounts

of torque generated in thumb abduction and flexion subsequent to a discharge in a

particular motor unit.

Many other experimental studies have sought to determine the range of action

directions for the motor units within a muscle or a related group of muscles. We show

that whether synchronization distorts STA results is likely to depend on the action

directions of the weakly synchronized motor units. In particular, STA distortion may

occur if weakly synchronized motor units have action directions spanning a larger

range than the desired directional accuracy of the study. Throughout the paper,

motor units that pull in a range of directions greater than the desired accuracy are

said to have different action directions, while motor units that pull in a range of

directions less than the desired accuracy are said to have similar action directions.

Here, we develop a framework for analyzing the effects of motor unit firing rate

and population synchronization on STA estimates of motor unit action direction.

We show that when multiple torque components are recorded and simultaneously

averaged based on a single motor unit spike train, firing rate distorts all components

equally and the correct action direction is recovered in the absence of synchroniza-

tion. Therefore, any distortion of the STA estimate for action direction is likely to

result from motor unit population synchronization. In other words, STA performed

on multidirectional motor unit torque decouples firing rate and synchronization dis-
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tortion.

We further develop the analysis of synchronization to show that if the set of

weakly synchronized motor units all pull in the same direction, STA will still cor-

rectly identify the action direction of any sampled motor unit. Alternatively, if

several motor units with very different action directions are even weakly synchro-

nized, STA estimates of action direction will be profoundly distorted, with each

sampled motor unit producing roughly the same STA estimate for action direction.

We consider whether synchronization-induced distortion of STA estimates for mo-

tor unit action direction can be removed. We show, both in the case of uniform

synchronization applied to a population of motor units and also in a simple case of

non-uniform synchronization motivated by the experiments of Keen and Fuglevand,

that the distortion of STA estimates for action direction can be removed. It has

been shown that pairs of motor units between muscles with very different action

directions can be weakly synchronized (Bremner et al., 1991a; Bremner et al., 1991c;

Bremner et al., 1991b); we therefore show that there are distributions of motor unit

action directions for which STA is insensitive to synchronization.

4.3 Methods

The theoretical framework and assumptions are illustrated in Figure 4.1. The key

assumptions of this model were that

1. Motor unit force sums linearly among units, and

2. Force within a single motor unit can be described by the superposition of impulse

responses (twitches), though the impulse response gain can vary through time

in a stochastic or nonlinear way.
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Figure 4.1:
The modeling framework for spike-triggered averaging. A population of m active motor units
generates spike trains S(1), . . . , S(n). These spike trains generate continuous-time joint torques
Y1(t), . . . , Yd(t). The spike trains are transformed into continuous-time motor unit forces
u1(t), . . . , um(t) by time-varying linear transformations. The effect of ut(t) for some motor
unit i may be confined to a single torque dimension, such as motor units 1 and m, or may span
multiple torque dimensions such as motor unit 2. This information is encoded in the motor
unit’s “action direction” which is a multidimensional vector a(i) whose components specify the
relative contributions made by motor unit i to the different dimensions of torque output. The
motor unit “action direction” αi for motor unit i is the direction of a(i).

With regard to the first assumption, nonlinear summation of motor unit force is

most easily observed in otherwise passive muscle, and does not appear to be as sig-

nificant when large portions of muscle are active (see (Sandercock, 2005) for review).

Westling et al. (1990) found that individual thenar motor units have straight force

trajectories in the flexion/abduction plane of the thumb when activated by intraneu-

ral stimulation, suggesting that motor unit action across multiple degrees-of-freedom

can be approximated by a single vector.

With regard to the second assumption, experiments have shown that the frequency

response of motor units is consistent with a second-order, critically-damped linear

model (Stein et al., 1972; Mannard and Stein, 1973). However, the steady state force
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versus firing rate curve is nonlinear and similar for most motor units when firing rate

is normalized to the twitch time course (Kernell et al., 1983), suggesting that the

motor unit twitch gain is firing-rate dependent (Fuglevand et al., 1993).

The analytical predictions were compared to the numerical model of Fuglevand et

al. (1993) for a motor unit population. This model specifies the contractile properties

of the set of motor units, as well as the dependence of motor unit firing rate on these

properties and on the global level of excitation applied to the motor unit population.

200 seconds of simulated data were generated, which typically produced 1600-3000

spikes on which to perform STA. Motor unit spike trains were generated indepen-

dently with a constant coefficient of variation in their inter-spike interval of 20%

(Fuglevand et al., 1993). Synchronization was then applied using the algorithm of

Yao et al. (2000). Spikes selected for synchronization by this algorithm were shifted

into exact alignment plus a normal random variable with mean zero and standard

deviation of 1.67 ms (Taylor et al., 2002). Under these conditions, the expected

width of synchronization peaks was approximately 6 ms. Imposing weak motor unit

synchronzation using the algorithm of Yao et al. requires two input parameters: the

fraction of reference spikes that would be used to apply synchronization, and the frac-

tion of “alternate” motor units that would have spikes synchronized to the selected

reference spike. The actual amount of synchronization was measured between all

active motor unit pairs using the synchronization index (described below). Since the

parameters of the algorithm of Yao et al. are not experimentally measurable, they

were adjusted by trial-and-error until the average synchronization index across all

active motor unit pairs was set to a level that could be compared with experimental

measures.
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The synchronization index was computed as follows. Given a pair of motor units

test and alt, with unit test serving as the reference, let the synchronization probability

p be the fraction of spikes discharged by unit test for which there is a spike in unit

i within the synchronization peak. The synchronization index s was the difference

between the actual synchronization probability and the synchronization probability

when the spike trains were independent. Thus, s = pactual − pindependent . This

synchronization index s was the same as the “extra spikes per trigger” used by

Binder and Powers (2001) and the synchronization index of Deluca et al. (1993).

We chose to use this synchronization measure for two reasons. First, it has been

measured experimentally from several muscles and can be computed directly from the

crosscorrelogram (Deluca et al., 1993). Second, unlike the Common Input Strength

(CIS), the synchronization index that we used does not depend on reference motor

unit firing rate. In the theoretical analysis of synchronization derived below, the

synchronization index that we used arises naturally in the equations. STA depends

critically on the fraction of synchronized spikes, but not how fast they occur, which

would be measured by the CIS.

For some simulations, the synchronization index was varied over the physiological

range measured by (Deluca et al., 1993), which was 0-25%. In other simulations, the

average synchronization index was set to 0.08, which was the average synchronization

index measured from the FDI by Deluca et al. (1993). In some simulations, synchro-

nization is applied uniformly across all motor unit pairs, while in other simulations

synchronization is limited to motor units with similar action directions. When we

refer to uniform synchronization, we are referring to uniform with respect to action

direction. Synchronization is not uniform with respect to motor unit recruitment

threshold (Schmied et al., 1994; Datta and Stephens, 1990). We did not model
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the dependence of synchronization on recruitment threshold as we were interested

in the effects of synchronization on STA estimates for action direction. Thomas et

al. (1990b) did not find a clear relation between motor unit peak force and action di-

rection. Therefore in our model, peak force, and consequently recruitment threshold,

was distributed uniformly with respect to action direction.

We were interested in how STA would perform when multidirectional torque is

averaged based on a single reference spike train. Therefore, a two-dimensional action

vector additionally described each motor unit. The action vector of motor unit i is

labeled a(i), and is a vector of that specifies the relative contribution of motor unit i

to the two torque outputs. Motor unit i exerted force ui(t) along the action vector

a(i) so that the total torque output was the linear sum

(4.1) Y (t) =
m∑
i=1

ui(t)a
(i)

We derive general equations and analyses that apply to an arbitrary distribution

of action vectors. In order to compare simple analytical predictions with numeri-

cal simulations, we were interested in how STA would perform in identifying motor

unit action vectors if simultaneously active motor units had action vectors span-

ning a broad range; thus the direction vectors during simulation were assumed to

continuously span a range of 90◦. A broad, continuous range of action vectors was

observed from human thenar motor units using intraneural stimulation (Thomas et

al., 1990b); a broad range is also possible for human first dorsal interosseous motor

units (Thomas et al., 1986).

To investigate the possibility of action vector distributions for which STA would

be insensitive to synchronization, a separate set of simulations were performed that

involved the simulation of simultaneously active muscles. The action vectors (mo-

ment arms) for the 7 muscles that contribute torque to human metacarpophalangeal
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(MCP) joint torque were estimated from cadaver measurements by An et al. (1983).

These muscles were the first dorsal interosseous (FDI), first palmar interosseous

(FPI), first lumbrical (LUM), extensor indicis proprius (EIP), extensor digitorum

communis (EDC), flexor digitorum profundus (FDP), and flexor digitorum superfi-

cialis (FDS). We used the moment arms that corresponded to a joint flexion angle of

0◦ and a joint adduction angle of 0◦. For these simulations, each motor unit within

a muscle was assumed to have the same action vector. Since, to our knowledge, no

models exists for the recruitment and rate-coding schedule for muscles other than

the FDI, we assumed that each muscle had the same schedule as does the FDI model

(Fuglevand et al., 1993).

To find the proper excitation for each muscle to achieve the desired force in each

muscle, a calibration curve was derived by using various levels of excitation with a

model with one-dimensional force output and measuring the resultant average force

level. In the case where activating each muscle generated no net torque, we solved for

the required average force level of each muscle using quadratic programming (quad-

prog in MATLAB) so that the minimum total squared force was exerted subject

to the constraint that there was no net torque and all muscles were active. Each

muscle was given a (potentially) different excitation command, independent spike

trains were generated for all motor units in all muscles, weak synchronization was

applied using the algorithm of Yao et al. (2000) as above to to all pairs of active

motor units both within and across muscles, and finally the force for each muscle

was computed, multiplied by the moment arm vector, and summed to generate net

joint torque. Bremner et al. (1991a; 1991c; 1991b) estimated the level of synchro-

nization between the FDI and the second dorsal interosseous to be roughly half of

the level between motor unit pairs within the FDI. Since the synchronization index
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of Deluca et al. (1993) was the same as the one that we used, and they found an

average synchronization index of 0.08 between FDI motor units, we applied synchro-

nization between motor unit pairs within and across muscles so that the average

synchronization index was 0.08. We reasoned that this would provide a worst-case

simulation of the distorting effects of synchronization on STA when synchronization

spanned multiple muscles.

4.4 Results

General Equations

It is possible to use the assumptions of Figure 4.1 to derive general equations

that describe the STA process. Assuming that the motor units in Figure 1 generate

torque in parallel, it is possible to write

(4.2) Y (t) =
m∑
i=1

ui(t)a
(i) + ε(t)

where ε(t) is a mean-zero independent and identically distributed random vector

associated with the measurement uncertainty inherent in observing the output torque

vector Y (t) = [Y1(t), . . . , Yd(t)]. Using assumption 2 for motor unit force generation,

we can write

(4.3) ui(t) =

Ni∑
j=1

g
(i)
j Ti(t− S

(i)
j )

where S
(i)
j is the time of the jth spike in the ith motor unit, and g

(i)
j is the impulse

response gain in the force of the ith motor unit at the time of the jth spike, Ti(t)

is the unpotentiated twitch waveform of motor unit i, and Ni is the number of

spikes in motor unit i. The twitch gain g
(i)
j , which can vary from discharge to

discharge, was included to model the nonlinear dependence of twitch gain on firing

rate (Fuglevand et al., 1993). Inserting Equation 4.3 into Equation 4.2, we obtain
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an equation describing the output torque vector

(4.4) Y (t) =
m∑
i=1

a(i)

Ni∑
j=1

g
(i)
j Ti(t− S

(i)
j ) + ε(t)

STA involves knowing the spike times S(test) from a reference motor unit test, and

then averaging the torque based on these spike times. Applying this process to

Equation 4.4, we find that the STA trajectory z(test)(t) based on motor unit test is

z(test)(t) =
1

Ntest

Ntest∑
k=1

Y (t+ S
(r)
k )

=
m∑

alt=1

a(alt) 1

Ntest

Ntest∑
k=1

Nalt∑
j=1

g
(alt)
j Talt(t+ S

(test)
k − S(alt)

j )︸ ︷︷ ︸
Ctest,alt(t)

+
1

Ntest

Ntest∑
k=1

ε(t+ S
(test)
k )

=
m∑

alt=1

Ctest,alt(t)a
(alt) +

1

Ntest

Ntest∑
k=1

ε(t+ S
(r)
k )(4.5)

We are interested in the behavior of the STA process as Ntest gets very large, and it is

clear by the Law of Large Numbers that the second term in Equation 4.5 approaches

zero as Ntest → ∞. The first term of Equation 4.5 shows that STA is composed of

weighted averages of the action vectors, the weighting functions we will refer to as

contribution functions. Contribution functions can be expressed as

(4.6) Ctest,alt(t) =
1

Ntest

Ntest∑
k=1

Nalt∑
j=1

g
(alt)
j︸︷︷︸

random gain

Talt(t+ S
(test)
k − S(alt)

j︸ ︷︷ ︸
random shift

)

Equation 4.6 shows that the contribution function is an average of a function of two

random variables, a random gain and a random shift, over the duration of the STA.

We denote the random gain g and the random shift x. For a given motor unit pair

(test, alt) , there is a map (k, j)→ (x, g) generating a locus of NtestNalt points in the

(x, g)-plane. We convert Equation 4.6 into an integral by letting ftest,alt(x, g) denote
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the fraction of shift-gain pairs per unit area from the spike trains of motor units

test and alt observed in the rectangle with lower left corner at (x, g), horizontal side

length ∆x , and vertical side length ∆g. The integral expression for Ctest,alt(t) is

(4.7) Ctest,alt(t) = Nalt

∫ ∞
0

∫ ∞
−∞
gTalt(t+ x)ftest,alt(x, g)dxdg

We first note that Equation 4.7 predicts that, if the spike trains of all motor unit

pairs in the population are independent, STA will accurately identify the action

direction αtest without being able to accurately identify either the magnitude or

time-course of the reference motor unit twitch Ttest(t). To show this fact, we note

that if the spike trains of motor units test and alt are independent, then ftest,alt(x, g) =

ftest,alt,X(x)ftest,alt,G(g) where ftest,alt,X(x) and ftest,alt,G(g) are marginals of the den-

sity ftest,alt(x, g). ftest,alt,X(x) is the crosscorrelogram between the spike trains in

motor units test and alt , with motor unit test serving as the reference. Since we as-

sume no correlation between the spike trains of motor units test and alt, ftest,alt,X(x)

is a constant function (for some region surrounding x = 0 that becomes arbitrarily

large as Ntest →∞) if alt 6= test. Therefore, if alt 6= test,

(4.8) Ctest,alt(t) = Nalt

∫ ∞
0

gftestalt,G(g)dg

∫ ∞
−∞
Talt(t+ x)ftest,alt,X(x)dx

Since ftest,alt,X(x)dx is a constant function, the integral in x is the same value re-

gardless of t. Thus, Ctest,alt(t) is a constant function of t if alt 6= test. Returning to

Equation 4.5, we can see that

(4.9) ztest(t) = Ctest,test(t)a
(test) + c

Ctest,test(t) does not necessarily have the same magnitude or time-course as Ttest(t),

but nonetheless points in the direction of a(test).
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Figure 4.2 illustrates the convergence of motor unit action estimate (MUAE) di-

rection (STA trajectory direction) to the action direction in the absence of synchro-

nization for the simulated Fuglevand model. MUAE is computed as the direction of

the best fit line to the STA trajectory. Figure 4.2A shows simulation results at 5%

maximum as an increasing number of spikes are used for STA. The MUAE direction

converges to the actual motor unit action direction, but neither the time course (time

to STA trajectory peak) nor the magnitude (peak STA trajectory magnitude) con-

verges to the corresponding properties of the twitch waveform. Figure 4.2B-C shows

simulation results at 15% maximum after 1500 spikes have been used for STA. The

angular error in the MUAE direction is shown across all 75 active motor units. Figure

4.2B shows results for the standard distribution of peak forces across the motor units;

motor units that discharge more rapidly also have smaller peak forces. Equation 4.9

predicts that increased firing rate can not distort the MUAE direction, so Figure

4.2C shows results from a modified model in which all motor units have the same

peak force. Notice that the MUAE direction now converges to the correct action

direction for all motor units, indicating that increased firing rate is not the source

of distortion seen during increased excitation. Equation 4.8 predicts the distortion

of STA for low force motor units when higher force motor units are simultaneously

active. If Ntest < ∞, there will be residual non-uniformity in the crosscorrelogram

between motor unit pairs. If unit alt is a higher force motor unit and unit test is a

lower force motor unit, the convolution in the computation of Ctest,test(t) will am-

plify the non-uniformity of the crosscorrelogram ftest,alt,X(x) because the convolution

depends on the twitch waveform Talt(t) of the larger force motor unit.

Even weak synchrony between motor unit pairs may significantly complicate the

use of STA, so the remainder of the paper is devoted to analytical tools for predicting
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Figure 4.2:
Motor unit action estimate (MUAE) direction (STA trajectory direction) converge to motor
unit action direction in the absence of synchronization whereas estimates of contractile prop-
erties do not. A. STA error as a function of the number of number of spikes in the average for
a 90◦ range of action directions and an excitation of 5% maximum. Square curve corresponds
to the left vertical axis and shows the angular error in degrees between the line of best fit to
the STA trajectory and the true motor unit action direction. Triangle curve corresponds to
the right vertical axis and shows the error in percent between the actual contraction time and
the average time to peak of the STA waveforms for both torque components. Circle curve
corresponds to the right vertical axis and shows the error in percent between the actual peak
force and the peak magnitude of the STA trajectory. Error bars indicate best and worst
performance over the population of active motor units. B, C. Simulations performed at 15%
maximum. Each plot shows the angular error in degrees as a function of motor unit num-
ber. B. The standard model that contains motor units with peak forces ranging from P = 1
arbitrary unit (au) to P = 17.8 au. Notice that lower force motor units that are firing at a
faster rate have more error than the larger units firing at a slower rate. C. Modified model
that contains motor units all having peak force P = 1. Notice that STA identifies the correct
action direction for all motor units independent of firing rate.
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the effects of synchronization on MUAE direction. When considering the entire set

of active motor units, STA should be viewed as a time-varying linear map from the

distribution of action vectors to the distribution of STA trajectories. This linear map

can be visualized by the following matrix

(4.10)



z(1)(t)

z(2)(t)

...

z(m)(t)


=



C1,1(t) C1,2(t) · · · C1,m(t)

C2,1(t) C2,2(t) · · · C1,m(t)

...
...

. . .
...

Cm,1(t) Cm,2(t) · · · Cm,m(t)





a(1)

a(2)

...

a(m)


We can write this equation compactly as z(t) = C(t)AT . If the motor unit population

torque Y (t) is d-dimensional, then A is a m×d matrix with the ith row equal to a(i)

(represented as a row vector). Z(t) is also a m× d matrix with the z(i)(t) trajectory

represented as the ith row of Z(t). We call C(t) the contribution matrix, A the

distribution of action vectors, and Z(t) the distribution of STA trajectories.

From the general equations, we are able to make some hypotheses about the

effects of synchronization on STA. Note that all terms in the integral expression for

Ctest,alt(t) (Equation 4.7) are positive. Therefore, the set Z(t) are linear combinations

of the set A with positive coefficients, so Z(t) must be in the interior of A. Thus, the

range of MUAE directions can only underestimate the range of action directions.

Next, consider a population of motor units, potentially expressing weak synchro-

nization, that all have the same action direction a. The STA trajectory for motor

unit can be written

(4.11) z(test)(t) =

(
m∑

alt=1

Ctest,alt(t)

)
a

for which the MUAE direction is correct regardless of synchronization. Therefore

synchronization-induced distortion of MUAE directions will depend critically on how
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synchronization is organized with respect to action directions. Finally, we would ex-

pect that if many motor units with very different action directions were synchronized,

the effects of synchronization would compound and profoundly distort the distribu-

tion of MUAE directions relative to independent spike trains.

We tested these hypotheses by simulating the Fuglevand model and the results

are shown in Figure 4.3. Figure 4.3 shows that the distribution of MUAE direc-

tions represents the underlying distribution of action directions when spike trains

are independent, the distribution MUAE directions is profoundly altered when syn-

chronization is uniform with respect to action direction, and that the distortion is

limited if synchronization occurs between motor units with similar action directions.

Homogenous Approximation for Synchronization Analysis

The purpose of this section is to show that, under certain conditions, synchroniza-

tion can be analyzed using linear algebra. The conditions underlying this analysis

are that the set of active motoneurons can be approximated as homogenous in dis-

charge statistics and that there is one impulse response T (t) common to all motor

units. By comparison to the Fuglevand motor unit population model, we will show

that the homogenous approximation well describes STA applied to the full system in

which motor units can have different firing rates and motor unit twitch properties are

different among the population of motor units. Presumably, the quality of approx-

imation comes from the fact that differences in motor unit properties are averaged

out in the STA process. The homogenous approximation retains the synchronization

structure of the motor unit pairs, and generates a simple framework for analyzing

different synchronization configurations.

The simulation of contribution functions strongly suggests the linear scaling of

contribution function magnitude by the synchronization index: Ctest,alt(t) ≈ sCtest,test(t)+
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Figure 4.3:
The effect of synchronization on STA estimates for motor unit action direction. A. The as-
sumed underlying distribution of action directions for the set of potentially active motor units.
Circles become relevant in H-J. B-D. Evaluation of STA trajectories without motor unit syn-
chronization. B. Distribution of synchronization indices between all active motor unit pairs
(shown for 5% of maximum; distribution at 15% maximum was similar). C. The STA trajec-
tory from 0 to 100 ms post-spike for each active motor unit at 5% of maximum. D. The STA
trajectory for from 0 to 100 ms post-spike for each active motor unit at 15% of maximum.
E-G. Evaluation of STA trajectories with synchronization applied uniformly to all motor unit
pairs. E. Distribution of synchronization indices between all active motor unit pairs (shown at
5% of maximum; distribution at 15% maximum was similar), with a mean of 0.08 consistent
with the measurements of Deluca et al. (1993) from the FDI muscle. F. The STA trajectory
from 0 to 100 ms post-spike for each active motor unit at 5% of maximum with uniform syn-
chronization. G. The STA trajectory from 0 to 100 ms post-spike for each active motor unit
at 15% of maximum with uniform synchronization. H-J. Evaluation of STA trajectories with
non-uniform synchronization. Three groups of motor units were formed by finding the set of
active motor units with active directions closest to each of the three directions indicated by
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in synchronization organized with respect to motor unit action direction. H. Distribution of
synchronization indices between all active motor unit pairs (shown at 15% of maximum; distri-
bution at 5% maximum was similar), showing peaks corresponding to intra- and inter- group
synchronization. I. The STA trajectory from 0 to 100 ms post-spike for each active motor unit
at 5% of maximum with non-uniform synchronization. J. The STA trajectory from 0 to 100 ms
post-spike for each active motor unit at 15% of maximum with non-uniform synchronization.
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c, where c is an arbitrary constant. Figure 4.4 compares Ctest,alt(t) and Ctest,test(t)

both in an example (A), and across a range of synchronization indices and firing rates

(B). The results of these simulations suggest that Ctest,alt(t) ≈ sCtest,test(t) + c is an

appropriate approximation for a pair of motor units with identical properties under

the conditions of relatively low variability in the discharge statistics (i.e. inter-spike

interval coefficient of variation ≈ 0.2).

The homogenous approximation allows the contribution function matrix to be

represented by the product of a single function of time C(t), and a symmetric time

independent matrix CH (H for homogenous):

(4.12)



z(1)(t)

z(2)(t)

...

z(m)(t)


= C(t)



1 s1,2 · · · s1,m

s1,2 1 · · · s2,m

...
...

. . .
...

s1,m s2,m · · · 1


︸ ︷︷ ︸

CH



a(1)

a(2)

...

a(m)



where stest,alt is the synchronization index between the motor unit pair (test, alt) .

In this case we will write Z = CHA, because C(t) is common to all components of

Z, and is thus no longer relevant to the direction of the STA trajectories (MUAE

direction). Thus, the homogenous approximation maps the changes in STA induced

by synchronization into the structure of a matrix. The special case of particular

interest that we analyzed is that of a homogenous set of motor units with uniform

synchronization index s applied between all motor unit pairs and a uniform distri-

bution of two-dimensional action vectors A. The homogenous contribution matrix

CH has stest,alt = s for alt 6= test, so we will denote it C
(s)
H . Suppose that a set of m

active motor units have a set of 2-dimensional action vectors that span an angular
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Figure 4.4:
Contribution functions scale linearly with synchronization. A. Example of contribution func-
tions derived from a pair of simulated motor units discharging at 10 Hz, inter-spike inter-
val coefficient of variation 0.2, peak force 1 arbitrary unit (au), contraction time 50 ms,
with a 10% synchronization index. Notice that Ctest,test(t) is 10 times Ctest,alt(t) (alter-

natively Ctest,alt(t) is 0.1 times Ctest,test(t). B. Empirical evaluation of the proposed re-

lation Ctest,alt(t) ≈ sCtest,test(t) + c over a range of synchronization indices for discharge
rates of 8 and 12 Hz, which is a typical range of rates for STA experiments. The goodness
of the approximation is evaluated by least-squares fitting Ctest,alt(t) to a linear function of

Ctest,test(t). The scale factors are shown with the left axis and conform very well to the 1-1

line. The goodness of fit is evaluated using the R2 coefficient as shown by the right axis; the
R2 values are greater than 0.9 indicating a good similarity in shape between Ctest,alt(t) and

Ctest,test(t).
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range of θr. The angular range of STA trajectory directions θ′r is given by

(4.13) tan
θ′r
2

=
1− s

1− s+ms
tan

θr
2

which is derived in the Appendix.

To investigate the usefulness of the homogenous approximation, we simulated the

Fuglevand motor unit population model and compared the range of STA trajectory

directions to that predicted by Equation 4.13. The results of this comparison are

shown in Figure 4.5. Both the full model and the homogenous approximation predict

a rapid collapse in the range of STA directions relative to the range of action direc-

tions in the presence of synchronization applied uniformly across motor units with

different action directions. Equation 4.13 makes an accurate approximation when

there are 36 active motor units, and a slightly less accurate by reasonable prediction

when 75 motor units are active. Presumably, the homogenous approximation pro-

vides a good “rule-of-thumb” because the STA process averages out differences in

firing rate, peak force, and contraction time among motor units.

STA Invertibility

The collapse of STA trajectories illustrated in Figure 5 provides a worst-case sce-

nario for the corrupting effects of synchronization. If synchronization is limited to

pairs of motor units with similar action directions, the distribution of STA trajecto-

ries will be much less distorted with respect to the distribution of action directions.

Nonetheless, it is logical to ask whether or not the synchronization effects on STA

can be inverted: that is, given a set of STA trajectories and the structure of the con-

tribution matrix, can the underlying distribution of action directions be recovered?

This question is equivalent to determining whether or not the contribution matrix is

invertible.



92

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70

80

90

Average synchronization index

R
an

ge
 o

f S
T

A
 d

ire
ct

io
ns

 (°
) 

Simulated: 36 Active Units
Approximate: 36 Active Units
Simulated: 75 Active Units
Approximate: 75 Active Units

Figure 4.5:
Range of STA directions for the simulated Fuglevand motor unit model and homogenous
approximation with uniform synchronization. At 5% of maximum, the model predicts
36 active motor units, firing rate ranging from 8.07 Hz to 9.82 Hz, peak force ranging
from 1.03 arbitrary units (au) to 3.98 au, and contraction time ranging from 64 ms to 89
ms. At 15% of maximum, the model predicts 75 active motor units, firing rate ranging
from 8.17 Hz to 15.5 Hz, peak force ranging from 1.03 au to 17.78 au, and contraction
time ranging from 45 ms to 89 ms. Uniform synchronization was applied at various
levels, and STA was performed on the two-dimensional torque based on the spike times
from all active units. Notice the sharp collapse in the range of STA trajectories relative
to the 90◦ range of action directions as synchronization increases. The approximate
curves shown were derived from Equation 4.13. Notice that both the full model and the
homogenous approximation predict a sharp collapse of STA trajectories with increasing
synchronization. The homogenous approximation with uniform synchronization makes
very accurate predictions at 5% maximum, and slight less accurate but acceptable
predictions at 15% maximum, which is a reasonable limit to the level at which STA
would be performed experimentally at present.
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Again, we consider a synchronization index s applied uniformly to all motor unit

pairs. In this case, we can explicitly write down the eigenvalues of the contribution

matrix:

(4.14) λ1 = (m− 1)s+ 1 and λ2, . . . , λn = 1− s

Notice that since the synchronization index satisfies 0 ≤ s ≤ 1, all eigenvalues

are positive unless all pairs are perfectly synchronized and s = 1. Physiological

synchronization is never this large across a population of motor units, and therefore

the contribution matrix is invertible in this case. The range of STA trajectories θ′

can be directly inverted to the range of action directions θ using Equation 4.13.

Keen and Fuglevand (2004b; 2004a) described non-uniform synchronization with

respect to action direction in a population of motor units. They showed that motor

unit pairs in different compartments of the extensor digitorum communis muscle

expressed different levels of synchronization. Motor unit pairs within a compartment

expressed the highest synchronization levels, while pairs in adjacent compartments

expressed less but significant synchronization (Keen and Fuglevand, 2004a). They

also showed that while intraneural stimulation of motor units produced force on a

single finger, STA gave the impression that motor units generated force on multiple

fingers (Keen and Fuglevand, 2004b).

We consider whether the effect of synchronization can be removed in this case

of non-uniform synchronization. We suppose that there are two compartments of

motor units; one group only exerts torque on the index finger while the second group

only exerts torque on the middle finger. Motor unit pairs in this population express

synchronization index swithin within the same compartment, while the motor unit

pairs express synchronization index sbetween between compartments. If we make the

homogenous approximation for this system, the STA system can be expressed with
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block contribution matrix as

(4.15)

Z =



1 swithin

. . . sbetween

swithin 1

1 swithin

sbetween
. . .

swithin 1





a(1)

...

a(1)

a(2)

...

a(2)


where a(1) is the action vector of compartment 1 motor units and a(2) is the action

vector of compartment 2 motor units. If we assume that each compartment has m

active motor units, a contribution function matrix of this form has 2m−2 eigenvalues

λ1 = 1− swithin and 2 eigenvalues λ2 = (m−1)swithin + 1 +msbetween and λ3 = (m−

1)swithin +1−msbetween. λ1 and λ2 are clearly greater than zero because swithin is not

near 1 (synchronization is weak). λ3 can be rewritten as λ3 = m(swithin− sbetween) +

1 − swithin which is greater than 0 under the experimental observation that sw >

sb. Therefore, the contribution matrix for this simple non-uniform synchronization

configuration has no eigenvalues equal to zero, and is therefore invertible.

Synchronization-insensitive direction vector distributions

The previous section highlighted the finding that if synchronization is known, its

effects may be inverted without the need for a specific linear model. Although there

are experimental examples of non-uniform synchronization where the synchroniza-

tion structure is known (Keen and Fuglevand, 2004a), in general, the structure of

synchronization with respect to direction vectors may not be known. Therefore, it

is appropriate to ask whether there are special action direction distributions ASI for

which MUAE direction is synchronization insensitive (SI). For simplicity, we ask this
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question in the case of the homogenous approximation with synchronization index s

applied uniformly to all motor unit pairs acting in two dimensions of torque output,

though this analysis can be readily extended to more complicated synchronization

configurations and higher dimensional torque outputs. We conclude the section by

studying a specific example of muscle action vectors measured experimentally by An

et al. (1983), and show that, if the muscles are appropriately activated to produce

zero net torque, STA may be synchronization-insensitive for these action vectors.

To look for action vector sets for which MUAE direction is synchronization in-

sensitive, we need to look at the fixed point structure of the contribution matrix

C
(s)
H . That is, does there exist a set of direction vectors A for which C

(s)
H A = λA.

The application of C
(s)
H to the cth column of A results in the cth column of the

STA trajectory matrix Z. In order for a direction vector set A to be insensitive to

synchronization, the columns of A must be linear combinations of the eigenvectors

of C
(s)
H with common eigenvalues. Interestingly, C

(s)
H has m− 1 repeated eigenvalues

(see Equation 4.14). Linear combinations of eigenvectors with the same eigenvalue

are also eigenvectors, so a synchronization-insensitive matrix A of action vectors

must have columns in the span of the eigenvectors of C
(s)
H that are associated with

λ2, . . . , λn. This set of eigenvectors can be represented as the columns of matrix V .

As an example, if the torque vector Y (t) is two-dimensional, we can generate an ac-

tion direction distribution for which MUAE directions are synchronization insensitive

by taking two linear combinations of the columns of V . If these two linear combi-

nations are labelled v(1) and v(2), then we form the action vector distribution ASI

for which STA is synchronization insensitive by looking at the rows of the following
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matrix

(4.16) ASI =


| |

v(1) v(2)

| |


Since any two linear combinations of the eigenvectors in V yields a valid ASI, STA

may be insensitive to synchronization for many action vector distributions. There-

fore, it is useful to ask if, given an action vector distribution A, is it possible to

compute the “nearest” ASI for which STA would be insensitive to synchronization?

For simplicity, we consider this question in the context of the homogenous approxi-

mation with uniform synchronization. Given a contribution matrix C
(s)
H and a action

vector distribution A, we first compute the eigenvalue matrix V as above. For any

non-zero matrix M , ASI = VM is guaranteed to produce STA directions that are

synchronization-insensitive. We would like to find M such that the overdetermined

system A = VM is solved in a least-squares sense. The resultant ASI = VM will

have STA directions insensitive to synchronization and will be the nearest possible

distribution to the starting distribution A in the least squares sense. An example

of ASI computed in this way for A measured experimentally by An et al. (1983)

assuming equal force generated by each muscle is shown in Figure 6G-H.

Figure 4.6 shows simulation results for the muscle action vectors measured by An

et al. (1983). All graphs except Figure 4.6D have the same axes and units, which is

shown in the upper left of the figure to be the four directions of torque production at

the MCP joint with arbitrary units. Figure 4.6A shows the measured action vectors.

Figure 4.6B shows the predicted distribution of MUAE directions using the homoge-

nous approximation with uniform synchronization (index=0.08) assuming that all

muscles generate the same force. Figure 4.6C shows the simulated STA trajectories
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with each muscle contributing 5% of its maximum force. Figure 4.6D shows the dis-

tribution of synchronization indices for this simulation across all active motor units

(within and between muscles). Figure 4.6E shows the predicted STA directions using

the homogenous approximation with uniform synchronization (index=0.08) assum-

ing that muscles are appropriately activated to generate no net torque. Figure 4.6F

shows the simulated STA trajectories with each muscle contributing an appropriate

force level to achieve no net torque (the average contribution was 5% of each muscle’s

maximum). Notice that the homogenous approximation with uniform synchroniza-

tion accurately predicts the simulated STA trajectory direction when each muscle

is generating the same force, but does not accurately predict the synchronization-

insensitivity under conditions of no net torque. Figure 4.6G shows the nearest dis-

tribution (in the least-squares sense) of action vectors to the vectors in Figure 4.6A

for which STA is insensitive to synchronization when all muscles contribute equal

amounts of force. Figure 4.6H shows simulated STA trajectories for the distribution

of action vectors shown in Figure 4.6G. These results suggest that synchronization-

insensitive STA might be successfully applied experimentally if the subject were

required to co-contract to generate zero net torque.

4.5 Discussion

This paper presents a simple framework for the analysis of the effects of firing rate

and synchronization on the STA of joint torque based on motor unit discharge. If

the joint torque output is multidirectional, and motor units discharge independently,

STA trajectories are unaffected by firing rate and correctly represent the action

direction of the motor unit being studied. This observation is significant because

it decouples the effects of firing rate and synchronization on STA. When STA is
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Figure 4.6:
Analysis of STA synchronization insensitivity of the muscle action directions measured
by An et al. (1983). Each plot (with the exception of D) has the same axes and same
arbitrary units (au), shown in the upper left. A. Moment arms measured by An et
al. (1983) for muscles controlling the human second metacarpophalangeal (MCP) joint
(see text for abbreviations used). B-D: STA results assuming equal force generated
by each muscle and uniform weak synchronization between all motor unit pairs with
synchronization index of 0.08. B. STA directions predicted by the homogenous approx-
imation with uniform synchronization for the case of equal force exerted by all muscles.
C. Numerical simulation results of STA trajectories for all active motor units for the
case of equal force exerted by all muscles. D. The distribution of the synchronization
index across all active motor unit pairs had a mean of 0.08, which we expect to be an
overestimate for the synchronization that can occur between motor units in different
muscles. E-F: STA results assuming muscle forces are chosen so that the net torque
about the MCP joint is zero. Muscles forces were chosen using quadratic programming
to minimize total squared muscle force while requiring that the force in each muscle was
larger than a small positive amount. E. STA directions predicted by the homogenous
approximation with uniform synchronization. F. Numerical simulation results of STA
trajectories for net zero torque. The distribution of the synchronization index between
motor unit pairs during the net zero torque simulation was identical to the distribution
shown in D. G-H: Analysis of the least-squares nearest distribution of action vectors to
those measured by An et al. for which STA is insensitive to synchronization assuming
equal force in all muscles. G. The nearest distribution of action vectors to the vectors
in A for which STA is synchronization insensitive assuming equal force in all muscles.
H. Simulated STA trajectories for the equal activation of muscles with the action vec-
tors shown in G. The net zero torque case examined had an average excitation of 5%
maximum, so 5% maximum was also used for the case of equal force.
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applied to estimate motor unit twitch contractile properties, firing rate leads to the

underestimation of peak force while synchronization leads to the overestimation of

peak force (Thomas et al., 1990a; Keen and Fuglevand, 2004b). These competing

effects make the interpretation of STA waveforms difficult. However, our analysis

framework would suggest that any distortion of the direction of STA trajectories from

averaging multiple dimensions of joint torque would result from synchronization, not

firing rate.

We analyzed the effects of synchronization on STA estimates of motor unit action

direction and showed that even weak synchronization applied to motor units with

different action directions could significantly alter STA estimates of action direction.

We constructed our synchronization analysis based on an approximation that motor

units were homogenous in contractile properties and firing statistics. This approx-

imation is only justified by comparison to the simulation of the Fuglevand motor

unit population model with non-homogenous motor units. Even under conditions

of weak uniform synchronization across motor units with different action directions,

STA would indicate that all motor units act in approximately the same direction. We

showed that synchronization-induced distortion could be removed both for uniform

synchronization and a specific case of non-uniform synchronization. Lim et al. (1995)

considered whether firing-rate distortion of STA estimates of contractile properties

could be removed. Removal of firing rate distortion requires the assumption of a

particular model for the twitch waveform. The removal of synchronization-induced

distortion does not require a specific twitch waveform because its effects are com-

mon to the multiple dimensions of torque output. Finally, we showed that there are

distributions of motor unit action directions for which STA is insensitive to synchro-

nization.
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Our analysis may also be applicable to STA of postsynaptic membrane potential

based on extracelluar spike recording Komatsu et al. (1988); Matsumura et al. (1996)

or STA of muscle activity based on cortical spikes (Fetz and Cheney, 1980). The

framework that we developed is based on the assumptions illustrated in Figure 1. If

post-synaptic potentials combine under approximately linear spatio-temporal sum-

mation, then the same equations apply. If the time-varying postsynaptic potentials

from two neurons were simultaneously recorded, it may be appropriate to denote

these variables y1(t) and y2(t) as in Figure 1. If these potentials were simultaneously

averaged based on the spike train Sr from a reference neuron r, “action vector” ar

would have the interpretation as the relative actions of neuron r on the output neu-

rons 1 and 2. Our analysis would be useful in predicting the effects of synchronized

inputs on the estimation of ar.

Keen and Fuglevand (2004b) compared STA of multiple dimensions of joint torque

based on spikes from extensor digitorum communis (EDC) motor units with intra-

neural stimulation of EDC motor units. They found that intraneural stimulation

produced torque on primarily one finger while STA showed torque on multiple fin-

gers. The authors conclude, based on previous work (Keen and Fuglevand, 2004a),

that synchronization was the primary cause of the distortion. Our results agree

with this conclusion. However, STA would not have been distorted relative to the

underlying distribution of action directions unless there were synchronizing path-

ways between motor units that had very different action directions. Binder and

Powers (2001) showed that common input to a pair of motoneurons may need to

be quite strong to produce experimentally-observed levels of synchronization. It re-

mains to be seen whether these common inputs are strong enough to prevent the

central nervous system from exploiting the differences in action directions that exists
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among motor units within the EDC.

The strong effect of relatively weak synchronization seen in Figures 3 and 5 cau-

tions against STA being used as a direct measure of motor unit action direction.

However, STA can be very useful in more subtle ways. Preliminary observations

from our laboratory suggest that the first dorsal interosseous (FDI), which con-

tributes torque to both abduction and flexion of the index finger about the MCP

joint, may have a 53◦ range of STA trajectory directions in the abduction/flexion

torque plane. Using Equation 4.13 and assuming that the muscle has between 36

and 75 active units when STA measurements were made, we predict that the FDI

could have had a 90◦ range of action directions with a 0.027 uniform synchronization

index, or a 60◦ range of action directions with 0.005 uniform synchronization index,

or perhaps anything in between. However, these synchronization indices are much

less than literature values for the FDI. Deluca et al. (1993) observed an average 0.08

synchronization index from the FDI, which is smaller than values reported elsewhere

(Datta and Stephens, 1990). Given a 90◦ range of action directions with a synchro-

nization index of 0.08 and 5% MVC activation (36 active units), we would predict a

range of STA directions of 27◦. Given the same conditions with 15% MVC activation

(75 active units), we would predict a range of 15◦. If the range of action directions

is smaller than 90◦ and the synchronization index was uniform at 0.08, the range of

STA directions would likely be even smaller.

The most direct explanation of this discrepancy is that synchronization is not

uniform with respect to action direction. If motor units with similar action directions

are more likely to synchronize than units with different action directions, the collapse

of STA trajectory directions will not be nearly as dramatic (see Figure 3 H-J). STA

is simultaneously indicating that FDI motor units may both span a sizable range of
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action directions, and motor units with different action directions may receive less

common input than those with similar action directions.

STA is potentially useful for studying how motor unit synchronization is organized

with respect to motor output. The framework developed in this paper demonstrates

how STA trajectories are generated by an interaction between motor unit action di-

rections and crosscorrelograms between motor unit pairs. Since performing STA in

a multidirectional setting removes firing rate distortion, it allows the direct exami-

nation of how synchronization is organized with respect to action direction. A broad

distribution of STA trajectories observed from a motor unit system implies both that

the active motor units have a broad distribution of action directions, and that there

is very limited synchronization between motor units with different action directions.

This analysis may aid in the interpretation of STA studies, and may give significant

clues about how descending pathways are organized to control movement.

In Chapter V, the theoretical work of this chapter will be extended to construct a

method capable of estimating muscle mechanical action. The extension is straight-

forward: suppose the discharge times in each and every active motor unit are known,

but not which motor unit was associated with each discharge. Suppose these dis-

charge times are merged into a single spike train. If STA is performed on this spike

train, the associativity of addition would produce the average STA trajectory across

the set of active motor units, which might be considered a reasonable estimate for

the action of the muscle. In general, finding the discharge times of all motor units

within a muscle is experimentally prohibitive, but the surface EMG signal retains

qualitatively similar information because the electrical potential generated at the

skin surface by a motor unit discharge is relatively brief. Chapter V will show how a

surface EMG signal can be coupled with fluctuations in the net endpoint force vector
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to construct a muscle action estimate, in analogy with how, in this chapter, a motor

unit spike train was coupled with fluctuations in the net endpoint force vector to

construct a motor unit action estimate
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4.7 Appendix

Here we derive Equation 4.13, which relates the angular range of STA trajectories

to the angular range of two-dimensional action directions using the homogenous

approximation with uniform synchronization. We suppose that n active motor units,

each pair of motor units being uniformly synchronized with synchronization index s,

exhibit a range of action directions θr. Given the homogenous contribution function

matrix with uniform synchronization

(4.17) Z =



1 s · · · s

s 1 · · · s

...
...

. . .
...

s s · · · 1


A

we need to determine what angular range θ′r is exhibited by the rows of Z given that

the rows of A exhibit a range of θr. We observed in computer simulations that the

same range of θ′r was observed regardless of whether A had m rows with directions

uniformly distributed over a range of θ, or m/2 rows at one angle and the other m/2

rows at an angle of θ from the first set. We visualize this transformation from action
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direction to STA direction as:

(4.18)



z(1)

...

z( m
2

)

z( m
2

+1)

...

z(m)


=



1 s

. . . s

s 1

1 s

s
. . .

s 1





a(1)

...

a( m
2

)

a( m
2

+1)

...

a(m)


Given that

(4.19)

a(1), . . . , a( m
2

) =

[
cos θr

2
sin θr

2

]
and

a( m
2

+1), . . . , a(m) =

[
cos θ

2
− sin θ

2

]
it is clear that

(4.20) z(1), . . . , z( m
2

) = u(1) and z( m
2

+1), . . . , z(m) = u(2)

where u(1) and u(2) are single two-dimensional vectors. The angular range θ′r of the

STA directions will be the angle between u(1) and u(2). We can write down u(1) and

u(2) explicitly as

(4.21)

u
(1)
1 = cos

θr
2

+ s
(m

2
− 1
)

cos
θr
2

+ s
m

2
cos

θr
2

u
(1)
2 = sin

θr
2

+ s
(m

2
− 1
)

sin
θr
2
− sm

2
sin

θr
2

u
(2)
1 = cos

θr
2

+ s
(m

2
− 1
)

cos
θr
2

+ s
m

2
cos

θr
2

u
(2)
2 = − sin

θr
2
− s

(m
2
− 1
)

sin
θr
2

+ s
m

2
sin

θr
2

Vectors u(1) and u(2) are of the form u(1) = [α, β] and u(2) = [α,−β] where

(4.22)
α = (1− s+ms) cos

θr
2

β = (1− s) sin
θr
2



105

We also have

(4.23) tan
θ′r
2

=
β

α

Substituting Equation 4.22 into Equation 4.23 gives the desired result.

(4.24) tan
θ′r
2

=
1− s

1− s+ms
tan

θ

2



CHAPTER V

Does muscle mechanical action change depending on the
task direction?

5.1 Abstract

An individual muscle’s mechanical action - its contribution to the net force pro-

duced in extrinsic task space - may be described as a vector whose magnitude is

scaled by the muscle activity and whose direction is determined by musculoskeletal

geometry. The direction of this action is usually assumed constant for a specific

posture, independent of the task being performed. But some muscles’ motor units

are differentially recruited based on task direction (e.g. (Herrmann and Flanders,

1998)); given broad enough insertions these muscles could then potentially produce

different actions. Deformable tendon networks in the finger can also cause one muscle

to alter the mechanical action of another (e.g. (Valero-Cuevas et al., 2007)). Both

possibilities lead to the hypothesis that the direction of muscle action may change

with task. We propose a new method for estimating muscle mechanical action in

vivo, termed EMG-weighted averaging, based on cross-correlation of endpoint forces

and surface electromyograms (EMGs). We examined endpoint forces exerted by the

distal end of the human index finger in 24 different task directions, keeping posture

fixed. These were cross-correlated against EMGs from the first dorsal interosseous

(FDI) and the extensor indicis proprius (EIP) to estimate their direction of mechan-

106
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ical action. We found that, while mechanical action directions tended to point along

known directions derived from anatomical studies, they also shifted systematically

in the direction of endpoint force. The FDI action changed at a rate of 0.13 degrees

per degree of task direction change, and the EIP’s at 0.36 degrees per degree (both

p < 0.0001). These results indicate that muscle mechanical action can vary with task,

even for isometric tasks at fixed posture. The CNS might therefore compensate for

or exploit these changes when coordinating muscles. EMG-weighted averaging may

also be useful for estimating mechanical action for cases where no anatomical data

is available.

5.2 Introduction: Can muscle action change?

The action produced by a muscle in task space is often characterized as a single

vector that remains invariant as long as posture is fixed. Sometimes referred to as

muscle pulling direction, muscle action likely depends on musculoskeletal geometry,

for example the lengths of body segments and moment arms about the degrees of

freedom of joints (Kuo, 1994; Kuo, 2000). Actions have been empirically quantified

for cat hindlimb muscles contributing to multidirectional ankle force (Lawrence et al.,

1993), monkey forearm muscles contributing to multidirectional wrist force (Hoffman

and Strick, 1999), and human thenar motor units contributing to thumb abduction

and flexion (Westling et al., 1990).

The assumption of constant mechanical action has become very pervasive in mod-

els of neural coordination of muscle. For example, Fagg et al. (2002) attempted

to predict the spatial tuning properties of wrist muscles observed by Hoffman and

Strick (1999) based on the observed muscle action directions and an optimization

criterion. Haruno and Wolpert (2005) used constant muscle action directions to
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predict the spatio-temporal activation from the same data set. Todorov (2002) de-

veloped a optimal control theory for muscle tuning that assumed constant muscle

action vectors.

Extensive work has been done to understand changes in muscle action as posture

changes. Changes in muscle action have been investigated in musculoskeletal models

(Murray et al., 1995), using MRI images (Fowler et al., 2001), and by applying elec-

trical stimulation (Kamper et al., 2006; Hoffman and Strick, 1999). The distribution

of muscle action across the set of involved muscles can change substantially as pos-

ture changes, and these action change likely give rise to changes in how muscles are

coordinated by the CNS.

Much less work has been done to understand mechanisms that could change

muscle action for constant posture tasks, but evidence for such mechanisms ex-

ists. Perhaps the simplest example would be a highly compartmentalized mus-

cle. The cat biceps femoris has 3 neuromuscular compartments that have differ-

ent mechanical actions (Chanaud et al., 1991) and different tuning curves as a

function of movement direction (Chanaud and Macpherson, 1991). While the ac-

tion of each compartment may be constant across a range of directional tasks, if

the biceps femoris were considered as a whole, its direction would be character-

ized as shifting as a function of task because of the tuned activity in the com-

partments. The activity of single motor units within human muscle have been

shown to exhibit activity tuned to task direction (ter Haar Romeny et al., 1982;

ter Haar Romeny et al., 1984), with the tuning perhaps not having a clear relation

to recording location (Herrmann and Flanders, 1998). This tuning, when coupled

with differences in mechanical action for different motor units, could produce changes

in muscle action. Also, muscle action could be altered by nonlinear force summation.
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For example, different muscles transmit force to the human finger through an elastic

tendon network; the direction of torque produced about the finger joints generated

by one muscle can be changed substantially by the ratio of forces provided by a set

of muscles deforming the tendon network (Valero-Cuevas et al., 2007). An in vivo

case where muscle force ratios can change dramatically is varying the task direction.

The purpose of this work was to introduce a new method for estimating muscle

action for human muscles under conditions of natural excitation, and to determine if

this method provided any evidence for muscle action changes during constant posture

tasks.

5.3 Methods: How is muscle action estimated in vivo?

Muscle mechanical action (henceforth: muscle action) can be characterized using

a number of different methods. Cadaveric estimates are useful because they provide

a direct measure of mechanical output when tension is applied to various tendons

(An et al., 1983), but are limited because it is difficult to maintain the tissue in

a relatively intact state and it is also difficult to coordinate multiple muscles in a

similar way to the CNS. Estimates based on MRI data provide a unique view of

muscloskeletal geometry (Fowler et al., 2001), but are limited by image quality and

inability to study active contraction. Electrical stimulation can be used to study

muscle action over a wide range of intact postures (Kamper et al., 2006), but it

would be useful to have a complementary method that could examine muscle action

under conditions of natural excitation by the CNS.

Isometric net endpoint vector variability likely contains a great deal of information

about muscle action, and when coupled with electromyographic data, can be used to

construct a muscle action estimate. The concept of this approach is first explained,
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and followed by a description of the experimental methods.

5.3.1 Concept of EMG-weighted averaging (EWA)

The technique of spike-triggered averaging (STA) (Buchthal and Schmalbruch,

1970; Stein et al., 1972) can be used to investigate the mechanical properties of

single motor units. Briefly, STA extracts sections of endpoint force or joint torque

subsequent to discharges in a motor unit of interest, and then averages the sections

together. The principle behind STA is that, by triggering the averaging based on a

particular motor unit, the mechanical output due to that motor unit will always be

in a “rising phase”, whereas mechanical output from other motor units will be in a

random phase. Thus, mechanical output contributions from other motor units will

average out, while mechanical output contributions from the motor unit of interest

will average to a function relating to the magnitude and time course of the mechanical

contribution. Of course, any time correlation among motor unit discharges will

adversely affect this process (Taylor et al., 2002), can generate misleading results

(Keen and Fuglevand, 2004a; Keen and Fuglevand, 2004b), and will be the limiting

factor for determining motor unit action direction (Kutch et al., 2007). Nonetheless,

the STA principle can be a powerful tool for gaining insight into motor unit action,

if its limitations are carefully considered.

EMG-weighted averaging (EWA) is a natural extension of the STA principle in an

attempt to estimate muscle action. The set of active muscles will generate a random

net endpoint (force) trajectory (Figure 5.1A). Sections of the net endpoint trajec-

tory, usually 100 ms in duration, are extracted from the force trace. Whereas when

performing STA only those segments following a motor unit discharge are used, EWA

uses all possible 100 ms long segments, but weights the segment by the amplitude of

the surface EMG signal from a muscle being tested at the beginning of the segment
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Figure 5.1:
Conceptual basis for EMG-weighted averaging (EWA). A. Fluctuation in the tension
generated by the set of active muscles will generate a random trajectory for the endpoint
force vector. B. Segments are extracted and weighted by the surface EMG from a muscle
of interest, muscle 1 in this example. Segments of high weight will signal the imminent
development of force in muscle 1, but are likely not to reflect any consistent changes
in the other muscles. C. When the weighted force trajectory segments are averaged
together, all variation in time will likely be along the action direction of muscle 1.

(Figure 5.1B). In this way, sections of high weight will signal imminent increases in

the net endpoint trajectory along the action direction for the reference muscle. If the

activity in the muscles is sufficiently uncorrelated, large EMG in the test muscle will

not signal any consistent changes in endpoint force generated by the other muscles.

Thus, when the weighted-sections are averaged together, all time variation will be

along the action direction for the test muscle, whereas the contributions of the other

muscles will average to constant vectors and may be subtracted out (Figure 5.1C).

5.3.2 Experimental Methods

This section describes the experimental procedure to acquire the data necessary for

EWA. Net endpoint trajectories were measured during the hold period of ramp-and-

hold contractions produced by the metacarpophalangeal joint of the human index

finger. Surface EMG data from two muscles with distinct action directions were

also measured so that EWA could be performed. Five unimpaired male subjects

participated in the study. All subjects were right-handed, and used their dominant
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index finger to produce isometric forces in different directions and magnitudes in

the flexion-extension/abduction-adduction (FEAA) task space. The Northwestern

University Institutional Review Board approved the study protocol, and informed

consent was obtained from each subject prior to participation.

The experimental apparatus has been described previously (Chapter III). Briefly,

subjects were seated with the index finger was casted and placed in a fixed cylindrical

tube, so that forces were exerted against the inside of the tube and at an “endpoint”

just distal to the DIP joint. This setup maintained both interphalangeal joints

extended and approximately aligned the MCP extension axis with the vertical load

cell axis. Isometric index finger forces in the FEAA plane were measured using

a sensitive 6 axis load cell (JR3, Woodland, CA, Model 20E12A-I25 9N.5). The

load cell’s resolution (smallest measurable force) was estimated to be 1 mN. These

forces were also presented visually to subjects in real time. We displayed a dynamic

cursor representing the instantaneous two-dimensional force in the FEAA plane on

a computer screen. Forces were recorded at 1000 Hz.

Surface electromyograms (EMG) were recorded from the first dorsal interossesous

(FDI) and extensor indicius proprius (EIP). EMGs were recorded using miniature

electrode/preamplifiers (DELSYS, Boston, MA) with 2 silver recording surfaces, 5

mm long and 10 mm apart. The preamplifiers have bandwidth 20-450 Hz for surface

recordings, with gains set to 100. EMG electrodes were placed according to standard

anatomical landmarks and verified with the recommended test maneuvers (Perotto,

2005). EMG signals were sampled at 2000 Hz.

The experimental protocol called for the exertion of endpoint forces in 24 different

directions and at 3 different magnitudes. The directions were distributed equally over

the plane at 15◦ increments. A rest trial was collected for each subject to establish
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baseline EMG signals. For each trial, the subject viewed the desired force as a target

on the visual display, represented in polar coordinates by a static ray for target

direction, and a static circle for target magnitude. The subject was instructed to

gradually exert force in the target direction, and then to hold the target force as

precisely as possible for about 10-20 seconds. The experimenter examined the time-

domain force traces on-line. Trials were repeated if forces were found not to be

approximately constant. The force feedback display was zeroed, with the subject

was at rest, before each set of trials. Subjects were asked to rest for at least ten

seconds between each trial, and at least one minute after each group of ten trials.

The force magnitudes were also equally distributed at three levels, chosen to

require very minimal effort for all subjects. Because these magnitudes were at discrete

levels, we refer to them as task levels 1 - 3. These task levels were distributed at

equal intervals, with the highest magnitude level, task level 3, at approximately 2 N

in magnitude.

5.3.3 Analytical computations of EWA

EMG-weighted averaging (EWA) is performed by cross-correlating the time-varying

net endpoint vector with EMG. Let n denote discrete time, Y [n] denote the end-

point force trajectory, and Etest[n] denote the (processed) EMG in a muscle test.

The EWA trajectory for muscle test, denoted z(test)[n], can be computed using the

following equation

(5.1) z(test)[n] =
∑
j

Y [j + n]Etest[j]

where the sum is computed over the hold period of the ramp-and-hold contraction.

This process is illustrated with representative data in Figure 5.2. We begin with

EMG signals EFDI[n] and EEIP[n] collected simultaneously from a single subject



114

C. EWA trajectory for each muscle,
with average vector. 

 1.1  0.9

0.5

0.7

abduction force (N) 

extension force (N
)

0 10 20 300
time (s)

40
 m

V

0

10
0 

m
V

A. Simultaneous EMG signals 
from 2 muscles

B. Each EMG signal separately
weights the endpoint force trajectory 

ext

flex

abd add

ext

flex

abd add

00

Figure 5.2:
Representative EWA data from a single subject during a single task. A. EMG data
collected simultaneously from the first dorsal interoesseous (FDI) and extensor indicis
proprius (EIP). B. The force trajectory in steady state generated by the action of
these (and potentially other) muscles. EMG-weighted averaging (EWA) is performed
separately on this force trajectory using the FDI and EIP EMG signals. C. The average
trajectory produced by EWA for the FDI and EIP over a 100 ms period. The trajectory
is averaged across time to generate a single EWA vector, which serves as the mechanical
action estimate (MAE) for these muscles.

during a single trial (Figure 5.2A). These signals are used, in conjunction with the

hold period endpoint force trajectory Y [n] (Figure 5.2B), to generate two EWA

trajectories (Figure 5.2C). A muscle action estimate (MAE) was formed by averaging

the trajectory over its 100 ms duration, and can be represented as a vector with

magnitude and direction (Figure 5.2C). The vector magnitude was normalized to

the EWA vector magnitude computed for the subject’s rest trial. Thus an EWA

vector magnitude of 100 means that the EWA vector was 100 times as large as an

EWA vector constructed from noisy EMG data. Thus the EWA vector magnitude is

a signal-to-noise ratio.
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Representative results show that raw EMG signals can be used in EWA. The re-

sults presented will show how the MAE vectors approximately align with anatomical

estimates for the action of these muscles, but show that the MAE vectors shift in

direction as the task direction changes. In order to ensure that these shifts were not

a trivial consequence of voluntary control or low-frequency correlated oscillations

among motor units (Deluca and Erim, 1994), EMG data that had been high-pass

filtered above 5 Hz (4th order Butterworth filter with −3 dB at 5 Hz) was used in

the EWA analysis. A value of 5 Hz was chosen due to exploratory data analysis that

revealed that EMG signal in the 0-5 Hz range generated very large shifts in MAE

direction, while results remained qualitatively unchanged over different frequency

bands provided that the 0-5 Hz was removed.

Shifts in MAE direction were quantified as follows. Muscle recruitment curves

were computed from EMG data and plotted as a function of task direction. Raw

EMG traces were first rectified and averaged across the hold period of each trial and

the corresponding rest period, with the difference between the two serving as the net

EMG. We fitted a cosine tuning curve (Hoffman and Strick, 1999; Todorov, 2002)

to net EMG data within each subject and task level (24 values for each task level),

minimizing the sum-squared error. The EMG data for each task level and subject

were then normalized to the maximum of the fit, thus avoiding normalization to a

spurious maximum in the data. Once the EMG data were normalized, comparisons

of directional tuning could be made across task levels and subjects. Task direc-

tion ranges exhibiting significant EMG for each muscle were determined as follows.

Normalized EMG data were grouped by 15◦ task direction bins. An ANOVA was

performed on the normalized EMG data using the task direction bin as the factor. A

task direction was defined for each muscle for which the muscle was likely inactive.
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A post-hoc multi-comparison test with Bonferroni correction was then performed to

identify a range of task directions significantly greater (p < 0.05) than the inactive

direction.

A linear regression analysis was performed between MAE direction and task di-

rection for each muscle separately over the range of task directions for which the

muscle was significantly active. This analysis was performed both across and within

subjects.

5.3.4 EWA governing equations and computational model

Simple equations and a computational model were constructed to estimate the

probability that the results were generated purely by correlation in the EMGs among

multiple muscles without any real changes in muscle action. We assume that the

muscle command to muscle i can be measured in the form of an EMG signal Ei(t),

where t represents continuous time. We assume that muscle commands are converted

into muscle activity by a filter having impulse response Ti(t) for muscle i. Finally, we

assume that the net endpoint trajectory can be expressed as a weighted linear sum of

the muscle action vectors a(), the weighting performed by the activity in each muscle.

These assumptions lead to the following equations for the net endpoint trajectory,

where ∗ represents the convolution operator:

(5.2) Y (t) = a(1)T1(t) ∗ E1(t) + · · ·+ a(m)Tm(t) ∗ Em(t)

For simplicity of notation, we drop t explicitly so we can illustrate the dependence

on time shift ∆t. The EWA trajectory z(1)(∆t) can be computed; for simplicity, we

compute z(1)(∆t). ? represents the cross-correlation operator

(5.3) z(1)(∆t) = [Y ? E1](∆t) = a(1)T1 ∗ E1 ? E1 + · · ·+ a(m)Tm ∗ Em ? E1
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If cross-correlation among the EMG signals is modest, Equation 5.3 predicts that

z(1)(∆t) will have the same direction as a(1). This results from the fact that [Ei ?

Ej](∆t) is a constant function of ∆t while the auto-correlation [Ei ? Ei](∆t) is not.

Thus, if the cross-correlation is computed over a sufficiently long interval, the EWA

trajectory can be expressed as z(1)(∆t) = a(1)q(∆t) + c for some function q(∆t) and

constant c.

If [Ei ? Ej](∆t) is not constant when i 6= j, muscle j will make a contribution

to z(i)(∆t) in the direction of a(j) depending on how active muscle j is. Thus, it

is possible that correlation among EMG signals will cause the EWA trajectory to

shift direction as the activity in a group of muscles changes, for instance, as the

task direction is changed. To estimate how large the correlation would need to be to

produce a certain change in MAE direction, Equation 5.2 was simulated. The muscle

action for each muscle came from cadaveric estimates for the 7 muscles that control

the human index finger MCP joint (An et al., 1983). Following the modeling work of

Haruno and Wolpert (2005), we assume that muscle commands can be represented

by a constant function that is corrupted by gaussian noise with standard deviation

proportional to the signal mean. We further assume that muscle force is generated by

linearly filtering the muscle commands by a second-order filter with time constants of

30 and 40 ms, representing excitation and activation, respectively (Van der Helm and

Rozendaal, 2000). The average command to each muscle was calculated by choosing

commands to minimize endpoint force variance (Todorov, 2002). Correlation was

imposed uniformly between simulated EMG signals to a specified level using standard

methods based on the Cholesky decomposition.

In analogy to the experimental data analysis, regions of significant activity were

determined for the FDI and EIP, and the slope of the MAE direction versus task
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direction was computed. Different amounts of uniform correlation were explored

until values were found that matched the observed slopes.

5.4 Results: Muscle action shifts with task direction

These results will demonstrate that MAE direction for both the FDI and EIP

muscles changes significantly as task direction changes, and that uniform correlation

among all muscles pairs is unlikely to account for these results.

Plots of MAE magnitude versus MAE direction reveal that MAE vectors of large

magnitude tend to have their directions clustered near anatomical estimates (Fowler

et al., 2001) regardless of task direction (Figure 5.3A). Examining more closely the

dependence of MAE direction on of task direction (Figure 5.3B) reveals that MAE

direction appears to depend linearly on task direction. This result would not be

predicted by Equation 5.3 if EMG signals from pairs of muscles were uncorrelated. In

this case, constant MAE direction as a function of task direction would be expected.

Linear regression analysis indicates that MAE direction changes with task direc-

tion were highly significant. Linear regression applied to data grouped across subjects

(Figure 5.4) revealed that both muscles exhibited regression slopes (FDI slope: 0.13,

EIP slope: 0.36) significantly greater than 0 (p < 0.0001) and that the EIP slope was

significantly greater than the FDI slope (p < 0.05). When linear regression analysis

was performed on data from each subject individually, similar results were found,

except one subject’s EIP data did not exhibit a significant slope at the 0.05 level.

The possibility of these MAE direction shifts being obviously related to EMG

correlation was examined by looking at the EMG-EMG cross-correlation functions

for the FDI and EIP over a region of task directions exhibiting significant coactivation

of these muscles. EMG-EMG cross-correlation functions were normalized to auto-
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Figure 5.3:
Muscle action estimates (MAE) are close to anatomical data, but shift as a function
of task. A. The amplitude of the MAE vector for each trial is normalized to the
amplitude of the MAE vector during the rest trial. MAE vectors that are relatively
large in amplitude cluster near the pulling directions of these muscles as estimated from
MRI data (Fowler et al., 2001). B. The direction of the MAE vector shifts gradually
toward the task direction as the task direction is changed. Bars indicate task regions of
significant EMG activity for the two muscles, and lines show best-fit linear regression
lines, computed over the regions of significant EMG activity.

correlation functions, and the results indicate that the cross-correlation functions

were small compared to auto-correlation functions (Figure 5.5), indicating that these

muscles likely had a limited impact on each other’s EWA trajectory. Dividing the

peak of the FDI-EIP cross-coorelation function by the peak of the FDI-FDI auto-

correlation function gives the FDI-EIP correlation ratio, and provides a measure

of the impact the EIP can have on the FDI MAE direction. Dividing the peak of

the EIP-FDI cross-correlation function by the peak of the EIP-EIP auto-correlation

function gives the EIP-FDI correlation ratio, and provides a measure of the impact

the FDI can have on the EIP MAE direction. A model was used to estimate the

ratios required among all muscle pairs to obtain the experimentally-observed MAE
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Figure 5.4:
Best-fit linear regression slopes for first dorsal interosseous (FDI) and extensor indicis
proprius (EIP) across all subjects. The slope describes how quickly the MAE direc-
tion changes as task direction changes. Error bars indicate 95% confidence intervals.
Both slopes were sigificantly greater than zero (p < 0.0001) and the EIP slope was
significantly greater than the FDI slope (p < 0.05).

direction - task direction slopes. The model predicted that muscle EMG signals

would require a uniform correlation ratio of 0.11 to explain the FDI slope, but an

FDI-EIP ratio of only 0.0259 was observed. Likewise, the model predicted that

muscle EMG signals would require a uniform correlation ratio of 0.19 to explain the

EIP slope, but an EIP-FDI ratio of only 0.0375 was observed.

5.5 Discussion: Possibilities and pitfalls

This work has shown that the direction of force associated with electrical activity

in two index finger muscles changes as the task direction changes for constant posture

tasks. This section explores possible scientific interpretations of this work, along with

methodological caveats that need to be considered.
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Figure 5.5:
Can correlated EMG signals account for the change in muscle action direction? The
region of significant EMG activity in both the first dorsal interosseous (FDI) and the
extensor indicis proprius (EIP) was determined, indicating the region of likely cooper-
ation between these muscles (105◦-165◦). A. For every task in this region, the EMG
cross-correlation and auto-correlation were calculated as a function of time shift. Within
each trial, the FDI/EIP cross-correlation was normalized to the FDI auto-correlation
at zero time shift, which was then normalized to have a peak of 1. Within each trial,
the EIP/FDI cross-correlation was normalized to the EIP auto-correlation at zero time
shift, which was then normalized to have a peak of 1. Dark curves represent averages
across all trials while light curves represent the individual trials. B. The likely contribu-
tion to the muscle action estimates (MAE) from EMG-EMG correlation was estimated.
The FDI-EIP ratio was determined by dividing the peak of the normalized FDI/EIP
cross-correlation by the FDI auto-correlation, and represents the potential contribution
of the EIP to the FDI MAE. The EIP-FDI ratio was determined analogously. The
dots represent the ratios for each trial, while the horizontal lines show the average ratio
across all tasks. For this range of task directions, the FDI and EIP are likely two of
the dominant muscles, yet the correlation contribution to each others MAE is largely
limited. The horizontal dashed lines indicate the model-estimated amount of uniform
correlation among all muscle pairs required to explain the observed MAE direction
versus task direction slope for each muscle.
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5.5.1 Scientific possibilities: variable muscle action

There are two readily apparent mechanisms that could change the action direc-

tion for a muscle. First, the muscle could be composed of motor units with different

actions, and these motor units could be activated differently for different task di-

rections. Second, muscle could transmit their force to compliant structures, such as

tendon networks, rather than directly to the skeleton. The precise combination of

muscles pulling on the compliant structure could alter the action direction of any

muscle connected to the structure.

The FDI is a good candidate for action direction change via the first mechanism.

Desmedt and Godaux (1981) observed that 8% of FDI motor unit pairs studied

switched their recruitment order when the task direction was switched from MCP

abduction to MCP flexion. Thomas et al. (1986), using the spike-triggered averag-

ing technique, found evidence that different FDI motor units had slightly different

mechanical action directions in the abduction-flexion task plane. Though no study

has provided direct evidence that these two phenomena are coupled to change the

FDI action direction, the observed MAE direction shifts for FDI found in this study

may reflect these processes.

The EIP is a good candidate for action direction change via the second mechanism

- nonlinear force summation due to compliance. The EIP inserts into the compliant

extensor mechanism of the finger along with the first palmar interosseous, and first

lumbrical muscle, both of which act on the MCP joint in very different directions

compared to the EIP (Valero-Cuevas et al., 1998).

This study found that the change in EIP action direction was significantly more

substantial compared to the FDI action direction change. Though the FDI tendon

may insert into the extensor apparatus (Kamper et al., 2006), its interaction with
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the apparatus is likely less than that of the extensors (Long, 1968; Tubiana, 1987).

The extensor apparatus may be able to change muscle action quite substantially

(Valero-Cuevas et al., 2007). In contrast, the range of mechanical action directions

exhibited by FDI motor units may be limited (Thomas et al., 1986), leading to

the expectation of smaller muscle action direction changes. Thus, the interaction

between the extensor mechanism and the FDI may partially explain the differences

in MAE direction shifts observed experimentally for these muscles.

If muscle action does shift by one of these mechanisms, there are consequences

for how the CNS coordinates muscles. Are the muscle action shifts reflective of a

deliberate motor plan implemented by CNS circuity to optimize movement? Or,

are the shifts an inevitable consequence of biomechanical constraints, that must be

circumvented or exploited?

5.5.2 Methodological pitfalls: the curse of correlation

There are clear advantages for using EWA to estimate muscle action. For superfi-

cial muscles, such as those investigated in this study, changes in EMG can be readily

detected by surface electrodes and cross-correlated with changes in force. Of course,

the same process can be applied to deeper muscles using a fine-wire electrode, with-

out the need for electrical simulation which may lead to faster fatigue of the muscle

(Kamper et al., 2006), and will not reveal the complexities of muscle action that may

arise from natural excitation by the CNS.

The main pitfall of EWA is the potential effect of significant EMG-EMG cross-

correlation. This affect is analogous to the effects of weak synchronization on STA

based on motor unit discharges, and has been well-described in the literature (Taylor

et al., 2002; Keen and Fuglevand, 2004b; Kutch et al., 2007). The main difference

is that EWA only relies on the condition that EMG signals between muscles don’t
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have significant cross-correlation. This requirement is likely to be less stringent than

requiring that there is no significant weak synchronization between spike trains in

motor unit pairs within a muscle, needed for STA to be accurate.

We have suggested that the amount of cross-correlation between the FDI and EIP

may be insufficient to explain the observed MAE direction changes, if that amount

of cross-correlation were found uniform across all muscle pairs. This analysis does

not rule out the possibility that cross-correlation is non-uniform among muscle pairs.

Further study, involving EMG recordings from all index finger muscles that could

contribute to the tasks, is required to make certain that the results are not generated

by EMG-EMG cross-correlation.

EWA relies on the condition that relatively high EMG in a particular muscle con-

sistently signals an imminent force contribution from that muscle, while not signaling

force contributions from other muscles. To a degree, this condition can be checked

by calculating EMG-EMG cross-correlation between muscle pairs, as was done in

this study. However, such cross-correlation functions being flat simply implies that

increases in EMG in one muscle do not signal imminent events in the EMG of an-

other muscle. There is the possibility, however, that increases in EMG in one muscle

could consistently signal imminent muscle force contributions from multiple muscles

without signaling increases in EMG in the other muscles. Such a situation could

potentially impact the MAE estimates based on EWA without EMG-EMG cross-

correlation being detectable. This situation is discussed in (Keenan et al., 2007),

and requires further consideration.

EWA uses the size of the EMG signal at any given instant to weight the subsequent

net endpoint trajectory. Thus, this process will naturally weight the EWA trajectory

toward the mechanical action of motor units that generate larger potentials, either by
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being larger motor units or being closer to the recording electrode. However, using

intraneural microstimulation, Westling et al. (1990) showed that human thenar motor

unit strength was not correlated with action direction, so larger motor units should

not skew the EWA trajectory direction. Therefore, if cross-talk from other muscles

to the recording electrode is minimized, and thus motor units from other muscles

are not close enough to the electrode to generate large potentials, EWA trajectories

likely reflect changes in the net endpoint trajectory correlated with the muscle of

interest.

5.6 Conclusion

A new method for estimating muscle action in vivo was described. This method

reveals that muscle action estimates change direction as the task direction changes

for constant posture tasks. If such shifts were not observed, it would be difficult to

conclude that muscle action could change. Therefore, this study supports the hy-

pothesis that various mechanisms could change muscle action, but does not disprove

the hypothesis that muscle action is constant. The question remains: Does muscle

mechanical action change depending on the task direction?
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CHAPTER VI

Summary and future work

6.1 Summary

Prior to this work, the role of motor unsteadiness in exploring central nervous sys-

tem function appeared in three main contexts: 1) examining trial-to-trial variability

as subjects repeated ill-posed tasks (uncontrolled manifold analysis), 2) coupling un-

steadiness with motor unit discharges (spike-triggered averaging), and 3) examining

scaling properties of force variability (signal-dependent noise). This work has signifi-

cantly broadened the spectrum of approaches to motor unsteadiness by demonstrat-

ing additional sources of signal in what otherwise would have been considered motor

noise, and increasing the specificity with which this unsteadiness can be processed

to make inferences about physiological function.

The first approach, force covariance mapping (FCM), took a multidirectional ge-

ometrical approach to motor unsteadiness. FCM simply generates a map of the

second-order statistics of endpoint forces exerted across a range of tasks in fixed pos-

tures. As was demonstrated experimentally, this deceptively simple approach reveals

differences in net endpoint vector fluctuations that are consistent with the CNS using

different muscle control strategies for different tasks. For some tasks, the CNS may

use a set of motor units having mechanical action highly tuned to the task direction.

126
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For other tasks, the CNS may use a less specific set of motor units with very differ-

ent mechanical actions. The key insights of this work were that the phenomena of

signal-dependent noise in muscle force generation would allow inferences about aver-

age muscle activity from measurements of force fluctuations, and that measurements

of multidirectional net endpoint vector fluctuations would allow the visualization of

CNS control strategies beyond the traditional variability measurements in a single

degree of freedom.

The rigorous mathematical analysis of spike-triggered averaging presented in Chap-

ter IV showed that STA was a potential method for estimating motor unit action

direction, and made the relation between STA estimates for action direction and

weak synchronization precise. In addition, the equations of Chapter IV implied that

STA can estimate the direction of muscle action if applied to a merged spike train

formed from all active motor units. Though this merged spike train is not typically

available experimentally, the surface EMG signal from a muscle of interest contains

relatively brief electrical signals occurring when any motor unit in the recording vol-

ume discharges. This realization lead to the development of EMG-weighted averaging

(EWA) described in Chapter V.

EWA was the second approach to motor unsteadiness presented in this work. Tra-

ditionally, net endpoint trajectories have been cross-correlated with a single motor

unit spike train to understand motor unit mechanical properties. This work demon-

strated that net endpoint trajectories can also be cross-correlated with the surface

EMG signal from a muscle of interest to estimate muscle mechanical properties. EWA

applied to experimental data from the human index finger support the hypothesis

that muscle mechanical action can change for tasks in different directions even when

the limb is held in a fixed posture. Future work will be necessary to uncover the
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exact mechanism that is producing changes in muscle action.

Descriptions of potential future experimental work are provided here, along with

proposals for further new approaches to human motor unsteadiness that are suggested

by the current work but not implemented. The first suggests using net endpoint

vector statistics to estimate the activity in each active muscle for a given task. This

contrasts with the less specific conclusions derived from FCM. The second suggests

that muscle action estimates could potentially be made directly from the detailed

temporal structure of the net endpoint trajectory, thus enabling the determination

of the entire set of active muscles, and their action directions, without electrical

recordings from any muscle.

6.2 Future experiments

For scientific work testing the predictions of quantitative models, there are usually

a set of “unchecked scenarios.” In drawing appropriate conclusions from experimental

results in this dissertation, these potential scenarios were carefully considered and it

was argued that they were unlikely to produce the results. However, experimental

checks of these scenarios would likely further the impact of this work, so they are

described here.

What these future experiments require most are electrical recordings from a com-

plete set of muscles contributing to tasks in the task space. For these experiments

to be as effective as possible, a new experimental system would be invaluable. The

index finger was convenient for the experiments described in this work because the

net endpoint vector fluctuations were previously known to be large enough to extract

useful information (i.e. spike-triggered averages). This disadvantage of this system

is that it is controlled by 7 muscles, requiring difficult placements of intramuscular
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electrodes. The wrist may be a suitable alternative, as it is acceptable to perform

surface EMG recordings from most of the 5 muscles controlling the wrist (Hoffman

and Strick, 1999). The disadvantage of the switching to the wrist system is that it is

presently unknown whether a load cell apparatus can be engineered that is sensitive

enough to detect variability in a muscle’s endpoint vectors.

The following sections describe how scenarios could be checked with electrical

recordings from a full muscle set.

6.2.1 FCM: EMG evidence of the prime mover strategy

Using force covariance mapping (FCM) results, non-task-directed covariance el-

lipses were shown to be associated with the cooperation of multiple muscles with

different mechanical actions. In order to show definitively that task-directed covari-

ance ellipses are associated with the prime mover strategy, EMG recordings from a

complete muscle set would be required.

To illustrate the desired dataset, computer simulated data was generated. A

fictive set of 5 muscle action vectors was generated. The standard deviation of

activity in each muscle was assumed to be σi = 0.05ūi, and muscle activity between

muscle pairs was assumed to be uncorrelated. The ellipse field for one task level was

simulated (Figure 6.1): muscle activity was chosen to minimize net endpoint vector

variance. By comparing the muscle activity tuning curves and the covariance ellipse

field, it is possible to see that task-directed covariance ellipses are associated with

“activity holes”: task directions for which one muscle dominates. Looking for activity

holes is only rigorously possible if all activity tuning curves are recorded. Applied

experimentally, this analysis would support the contention that task-directed ellipses

result directly from the use of a prime mover strategy, and are not an epiphenomenon

of muscle activity correlation.
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Figure 6.1:
Simulated ellipse field compared to muscle activity tuning curves. A fictive system
with 5 muscles was generated. Outer arrows indicate muscle action directions. The
standard deviation of muscle activity was assumed to be 5% of average muscle activity
for all muscles, correlation between muscle pairs was assumed to be 0, and activity
tuning curves and ellipse field were simulated by minimizing total net endpoint vector
variance. Notice that task-directed (skinny) ellipses correspond to “activity holes”–task
directions in which one muscle is the prime mover.

6.2.2 EWA: checking correlation

Following the previous section, if electrical signals from a complete set of muscles

were recorded, it would be possible to check if EMG-EMG correlation between muscle

pairs was responsible for the shifts in EWA direction observed as task direction

changed.

An interesting possibility that arises from having a full set of muscle electrical

signals is that correlation can be “inverted out” of MAE estimates based on EWA,

in much the same way that weak synchronization could be removed from MUAE



131

estimates based on STA (Chapter IV). The STA equations presented in Chapter IV

are special cases of the more general EWA governing equations presented in Chapter

V. Therefore, there will be a matrix of “contribution functions” mapping muscle

action vectors to EWA trajectories, and if the correlation between all muscle pairs

is known, the contribution function matrix can be estimated and inverted. Muscle

action vectors determined in this way could be compared with those estimated from

electrical stimulation, so both a direct estimate and an estimate under conditions of

physiological excitation could be computed.

6.3 Proposals

A main advantage of using motor unsteadiness as opposed to EMG to study move-

ment is that there is a natural information transmission pathway between the force

generated in every motor unit and the endpoint vector; the primary purpose of motor

units is to move the endpoint, not to emit electrical signals. The next two sections

describe proposals for extending the ideas FCM and EWA to generate a complete

picture of muscle action and activity from net endpoint vector measurements alone.

6.3.1 Determining muscle activity from endpoint measurements

The experiments presented in Chapter IV were largely focused on determining if,

for a particular task, there is significant activity in muscles with different mechanical

actions. We can immediately ask a more general question: can the net endpoint

covariance ellipse exactly determine the activity in each muscle with known action

directions?

Consider again the simulated ellipse field of Figure 6.1. Task-directed and non-

task directed ellipses arise, but there is more information to a covariance ellipse than

whether or not it is task-directed. The covariance ellipses in the second quadrant
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between +Y2 and −Y1 are “leaning back”, and immediately give the qualitative

impression that these variability patterns were generated by muscles acting > 90◦

apart. A covariance ellipse actually holds 5 pieces of information. The 5 muscle action

vectors in Figure 6.1 are anatomical estimates for muscles acting in the abduction-

adduction/flexion-extension task space of the human index finger task space, with

the two flexors and two extensors each represented by a single average vector. So it

is possible to have roughly 5 muscles acting in a 2 dimensional task space, and each

ellipse can provide 5 equations to try and solve for the unknown muscle activities

without measuring any electrical activity in any muscle.

Consider the case of 5 muscles acting in a two-dimensional task space. Assume

that the mechanical action vector a(i) is known for every muscle i. These mechanical

actions are placed as columns of a matrix A. Assume also that the force variance in

every muscle scales linearly with average force, so σi
2 = kiūi with known ki for every

muscle. The net endpoint vector is Y . Both its mean vector Ȳ and its covariance

matrix cov[Y ] are measured. Since this matrix is 2 × 2 and symmetric, it can have

at most 3 elements that are distinct.

Under these conditions, the following matrix equation for the vector of average

force in each muscle can potentially be solved:

(6.1)
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We can write this equation more succinctly as SY = Mf̄ , where SY represents
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statistics about the endpoint force vector Y , and M represents the map that converts

average muscle forces into task vector statistics. We can recover the mean forces

given the covariance ellipse and its center using ū = M−1SY provided that M−1

exists. M−1 will not exist if any of the mechanical actions are the same or linearly

dependent, otherwise, it will exist.

This process can be further explored on a more complex model using computer

simulations. For this analysis, assume that muscle activity standard deviation is

proportional to average muscle activity. This assumption rules out the simple linear

system of equations described above, replacing them with a nonlinear set of equations

that convert action and activity into quantities defining the covariance ellipse:

Ȳ = Aū(6.2)

cov[Y ] = A(kkT ∗. ρ ∗. ūūT )AT(6.3)

Equations 6.2-6.3 are the forward equations mapping muscle activity and action to

the covariance ellipse center Ȳ and the covariance matrix cov[Y ]. Important param-

eters are the standard deviation scaling factors k and the muscle activity correlation

matrix ρ. The idea is to solve these equations in the “inverse direction”: knowing

the average net endpoint vector and its covariance matrix, find the average muscle

activity for each muscle and each task. Assume that the muscle action vectors have

been estimated by some other means, such as EWA. There are four basic cases to

consider for these nonlinear equations: 1) all parameters are known (Figure 6.2B),

2) k is known but ρ is unknown so it is assumed that there is no correlation (Figure

6.2C), 3) ρ is known but only the average k across all muscles is known (Figure 6.2D)

(Appendix of Chapter III shows how the average k can be estimated experimentally),

and 4) only the average k is known and it is assumed that there is no correlation
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(Figure 6.2E). When simulating Equations 6.2-6.3 in the forward direction, we as-

sume that elements of the scaling vector k are uniformly distributed between 0.05

and 0.15, and that the muscle activity correlations are uniformly distributed between

0 and 0.2. Preliminary computer simulations indicate that using the net endpoint

vector statistics to solve for the average muscle activity is reasonable in all cases, but

it is more important to know the standard deviation scaling factor ki as precisely

as possible for all muscles i and relatively unimportant to know the muscle activity

correlation matrix ρ.

Implementing this process on experimental data will require significant future

work. First, knowledge of the mechanical action vectors for each potentially active

muscle must be known a priori or else there will be too many parameters. Finally, if

there are more than 5 active muscles, this process will require the use of higher order

statistics. However, if the task space dimension is expanded, the average tension

in more muscles can be determined by second order statistics. For instance, if the

task space dimension is 3, then a matrix equation similar to Equation 6.1 will be

generated with 9 equations, thus potentially accommodating 9 muscles. The number

of muscles for which second order statistics in a task space of dimension d could

determine the activity in every muscle exactly is given by

(6.4) # of muscles =
d2 + 3d

2

Computing muscle activity from net endpoint vector variance is exciting because a

complete ensemble of muscles could potentially be studied with reduced need for the

placement of fine wire electrodes in deep or sensitive muscles. A muscle is deep and

hard to access only because of its position relative to the skin surface. Preliminarily,

there appears to be less of a concept of a deep muscle with regard to the force

fluctuations it generates at the endpoint. It may be discovered in subsequent study
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A.  Muscle actions

B.  Scaling & 
correlation known

C.  Scaling known,
assumed no correlation D.  Average scaling known,

correlation known

E.  Avererage scaling known,
assumed no correlation

Figure 6.2:
Nonlinear force covariance mapping equations can be solved for average muscle activity
in a set of 5 muscles. A. Muscle actions are shown for a fictive system of 5 muscles
operating in a 2-dimensional task space. Muscle activity is calculated by minimizing
net endpoint vector variance, and Equations 6.2-6.3 are used to calculate the covari-
ance ellipse for each task. Since the covariance ellipse and its center are measurable,
Equations 6.2-6.3 are then used in reverse to estimate the average muscle activity for
each task under various assumptions about what parameters are known. B. If relevant
parameters are known, the muscle activity tuning curve can be estimated exactly for
each muscle. C. If scaling factor relating activity standard deviation to average activity
is known for each muscle, but correlation is assumed to be absent, reasonable estimates
of muscle activity curves can be made for each muscle. Tuning curves are shifted away
from the origin to facilitate viewing. D. If the correlation between the activity in all
muscle pairs is known, but only the average standard deviation scaling factor is known,
greater errors are made estimating the tuning curves from the endpoint vector covari-
ance, but estimates are still reasonable. E. If neither the exact standard deviation
scaling nor the correlation is known, estimate errors are similar to D, indicating that
knowing exactly how activity standard deviation scales with average activity is more
important than knowing the exact activity correlation matrix.
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that examining muscles through motor unsteadiness is just as problematic because

some muscles may have mechanisms of transmitting force but not force variability

to the endpoint. Nonetheless, potentially inferring muscle activity from endpoint

measurements seems to be a fruitful area for further research.

6.3.2 Determining muscle action from endpoint force accelerations

The computations of section 6.3.1 really require that some a priori information

is available about the mechanical actions of the active muscles. While these may be

estimated by electrical stimulation or EMG-weighted averaging, this would make for

complicated and difficult experiments. Thus, it is reasonable to ask if there are ways

of estimating the mechanical actions of the active muscles for a given task directly

from fluctuations in endpoint force.

Motor unit action potentials generate force twitches. Thus, for a brief time after a

motor unit action potential, the endpoint force should be rapidly accelerating along

the mechanical action direction of the motor unit that most recently discharged. It

is possible that, by looking at directions in which the endpoint force trajectory is

accelerating, we may infer directions of likely muscle mechanical action.

Consider a typical waveform of a human motor twitch (Figure 6.3). The general

structure of the twitch waveform can be represented by 3 parabolas: there is an initial

period of relatively large positive force acceleration, followed by a period of lower

negative acceleration, ended with a period of relatively low positive acceleration.

Assuming that the twitches from all motor units in all active muscles sum together

to generate the net endpoint force, it is likely that the endpoint force trajectory

will have some interesting temporal derivatives based on the twitch structure. We

performed a simulation of the Fuglevand model in which we activated the EDC, FDI,

and FDS equally. We chose a minimal level of excitation so that each muscle had
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Figure 6.3:
A measured human motor unit twitch (Thomas et al., 1990b) shown in dark, can be
approximately broken up into three parabolic phases, highlighting the regions of positive
and negative acceleration.

18 active motor units. The mechanical action of these three muscles generated a

force trajectory (Figure 6.4A). The second derivative of the force trajectory reveals

directions along which the force trajectory accelerates, which correspond closely to

the mechanical action directions of the active muscles (Figure 6.4B).

There are many obstacles to overcome if endpoint force acceleration can be used

experimentally to identify muscle mechanical action directions. First, computing the

acceleration will involve differentiation of a potentially noisy signal. Specialized fil-

ters, such as Savitzky-Golay differentiators, will need to be designed to smooth out

non-differentiable noise while preserving fast changes in force necessary for this anal-

ysis. Second, even in simulation, this process becomes less feasible as the number of

active motor units is increased, because the time region over which one muscle dom-

inates the force acceleration shrinks to zero. Nonetheless, examining the endpoint

force trajectory time course in more detail will likely provide further clues about

muscle mechanical action.
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Figure 6.4:
Endpoint force trajectory accelerations reveal muscle mechanical action directions in a
simulated contraction. A. Three muscles (FDI, EDC, and FDS) with mechanical actions
shown were equally activated to produce an endpoint force trajectory (shown). B. If
the second derivative of the endpoint force trajectory is taken, and plotted as equally
spaced points in time, the muscle mechanical actions appear as directions of relatively
large acceleration magnitude.

6.4 Final thoughts: the past and future of motor unsteadiness in move-
ment neuroscience

Figure 6.5 presents one possible diagram that gives some chronology and attempts

to link some concepts of motor variability, showing specifically how force covariance

mapping and EMG-weighted averaging came from other approaches.

Previous sections of this chapter have described possible research directions in the

immediate future. What are the longer term prospects for using motor unsteadiness

to study physiology and pathology? The first question is, can movement unsteadiness

generated by muscle contraction always be measured, or was the choice of model

system used in this work just extremely fortunate? In Chapter II, motor unsteadiness

due to muscle contraction was built up from first principles as an intrinsic process;

anytime motor neurons discharged to excite muscle, some oscillation in the tension
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thinking about motor variability

spike-triggered 
averaging
for studying motor 
units. 1970s

muscle as an unsteady actuatorhuman movement variability

information transmission,
noisy channels,
Fitts law, etc.  1940s-50s

uncontrolled manifold 
hypothesis. CNS does not 
control all DOF.
early 2000s

motor axon stimulation,
overcome STA drawbacks.
early 1990s

EWA  for estimating
muscle action
2007

signal dependent noise.
late 1980s - early 90s

motor coordination 
theories.
late 1990s

FCM as tool for 
determining
muscle activity.
2006

Figure 6.5: Tree view of thinking about motor variability.

generated by the excited muscle is inevitable. These oscillations were experimentally

measurable for the human index finger, but it is quite possible that they may be

dissipated in the surrounding tissues for other joints and limbs. Performing the

techniques described in this work on other parts of the musculoskeletal system may

require a large number of technical “tricks.” It is intuitive that unsteadiness increases

when handling large loads, and for a given movement of the hands, the head of a golf

club moves more. Unsteadiness may be amplified using the choice of task magnitude

and construction of experimental setup, but other problems may follow, such as

finding a load transducer that is both exquisitely sensitive and operates over a large

range of loads. It may be necessary to explore unsteadiness using non-mechanical

means such as high-speed video or medical imaging. Many technical hurdles exist,

but do not seem insurmountable.
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The scientific questions this work chose to address with motor unsteadiness were

the muscle redundancy problem and the problem of flexible muscle action direction.

After the technical hurdles of measuring unsteadiness, it is important to consider

broadening the scientific reach of unsteadiness. Philosophically, it seems that move-

ment unsteadiness is a secret whispered by the body: what other information might

it contain? One possibility is that unsteadiness holds information about the recruit-

ment of motor units within a muscle. When the force demand of a task is increased,

more motor units are recruited. After a motor unit is recruited, it begins to discharge

more rapidly. The fluctuation in endpoint force due to a single motor unit would

be expected to decrease as the discharge rate increases. Thus, net endpoint vector

variability might contain information about the relative rate at which new motor

units are recruited compared to the rate at which previously recruited motor units

are increasing their discharge frequency. A map of all the scientific questions motor

unsteadiness can address is needed to determine which problems are most tractable

and should be tackled first.

Some neuro-motor pathologies may give rise to observable phenomena in the pat-

tern of motor unsteadiness that could be exploited to design better treatments. Be-

fore treatments options are explored, the existence of embedded information must

be established. Does the multidimensional structure of movement fluctuation in pa-

tients with tremor hold any clues about the underlying cause? Can force covariance

mapping detect and study abnormal muscle coordination following CNS lesion? Can

EMG-weighted averaging be used to assess the mechanical contribution of particular

muscles after surgery or injury? These and related questions will require extensive

future work, but it is hoped that the approaches described in this dissertation will

play some role in answering these questions.
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