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3.5 Grüneisen parameter (γ) and isochoric heat capacity (CV ) for the respective liquid

compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6 Thermodynamics of vaporization in Mg2SiO4 liquid . . . . . . . . . . . . . . . . . . 87
3.7 Pressure (P ) and internal energy (E) of MgO periclase . . . . . . . . . . . . . . . . 88
3.8 Pressure (P ) and internal energy (E) of MgSiO3 perovskite . . . . . . . . . . . . . 89
3.9 Shock melting of MgO periclase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.10 Shock melting of MgSiO3 perovskite . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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CHAPTER I

Introduction

The chemical history of a terrestrial planet such as Earth is intimately tied to its

thermal history through fractionation processes associated with cooling of a magma

ocean and partial melting of a solid mantle. Sufficient energy sources have been iden-

tified for the planet to have been entirely molten during the late stages of accretion

(Urey, 1955; Tonks and Melosh, 1993; Ruff and Anderson, 1980; Hanks and Ander-

son, 1969). Seismic observations suggest the presence of partial melt atop the 410 km

discontinuity, (Revenaugh and Sipkin, 1994; Song et al., 1994) and at the base of

the mantle (Williams and Garnero, 1996; Revenaugh and Meyer, 1997; Garnero and

Helmberger, 1995). Also, while decompression melting at mid-ocean ridges occurs at

depths of 50 − 200 km (McKenzie and Bickle, 1988; Asimow et al., 1995), evidence

from xenoliths suggests that melt has reached the surface from significantly greater

depths (Haggerty and Sautter, 1990; Collerson et al., 2000). Despite this variety of

planetary settings where melts play a role, the physics of the liquid phase over the

pressure and temperature range relevant to these settings is not well understood.

Of especial interest are the transport and thermodynamic properties, and how these

relate to the characteristics of liquid structure. Accurate estimates of freezing tem-

peratures can therefore provide key constraints on the composition, thermal profile,

1
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dynamics and evolution of the mantle.

The goal of this dissertation is to apply state of the art theoretical methods to

elucidate the properties of silicate liquids at pressures and temperatures relevant to

the entire extent of the Earth’s mantle. First principles methods describe the system

directly in terms of the charge density by means of the Hohenberg-Kohn theorem

and density functional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965,

DFT). The method is independent of experimental input, and the underlying theory

is equally valid at ambient as well as very high pressure. It has been successfully

applied to solids at high pressure (Karki et al., 2001; Stixrude, 2001; Oganov et al.,

2001b), and has recently been used to simulate silicate liquids at pressures and

temperatures relevant to the entire extent of Earth’s mantle (Stixrude and Karki,

2005; Karki et al., 2007; Wan et al., 2007; Trave et al., 2002).

Reasons for focussing on liquids in the MgO-SiO2 system are as follows. Firstly,

MgO and SiO2 are the two most abundant oxide components in the mantle, and

account for a dominant fraction of the composition of a terrestrial magma ocean

after core-mantle segregation. Secondly, the system has relatively few valence elec-

trons, enabling extensive investigation of compositional space via computationally

intensive first principles molecular dynamics (FPMD) simulations. Finally, the re-

fractive nature of forsterite and periclase has limited the liquid compositions that

have been studied experimentally. Our calculations can therefore test the existing

extrapolations by which their properties are currently estimated.

The MgO-SiO2 phase diagram at ambient pressure (Figure 1.1) is experimentally

well constrained (Bowen and Andersen, 1914; Greig, 1927; Ol’Shanskii, 1951; El-

liott et al., 1963; Riley, 1966; Chen and Presnall, 1975; Hageman and Oonk, 1986).

Melts are by their very nature high temperature phenomena, the experimental study
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of which pose non-trivial technical challenges even at ambient pressure. Partial

molar models based on extensive measurement of liquid state density (Lange and

Carmichael, 1987; Lange, 1997), heat capacity (Stebbins et al., 1984; Lange and

Navrotsky, 1992) and sound speed (Rivers and Carmichael, 1987; Ai and Lange,

2008) at ambient pressures continue to serve as the foundation for the thermody-

namic investigation of silicate liquids. With higher pressure, static experiments are

limited by progressively smaller sample sizes. Piston cylinder and multi anvil experi-

ments have nonetheless elucidated upper mantle melting phase relations (Boyd et al.,

1964; Davis and England, 1964; Ohtani and Kumazawa, 1981; Presnall and Walter,

1993; Presnall and Gasparik, 1990; Presnall et al., 1998; Dalton and Presnall, 1997)

and the equations of state (Suzuki and Ohtani, 2003; Ohtani et al., 1993; Agee and

Walker, 1993) of liquids in the upper mantle. At lower mantle pressures, melting

has been measured with the laser heated diamond anvil cell (Zerr and Boehler, 1993,

1994; Shen and Lazor, 1995; Heinz and Jeanloz, 1987; Knittle and Jeanloz, 1989;

Sweeney and Heinz, 1993). Measurement of the high pressure equation of state and

melting has recently been made upon shock loading of solid samples (Mosenfelder

et al., 2007; Akins et al., 2004; Luo et al., 2004, 2002; Hicks et al., 2006).

As with the experimental studies of liquid thermodynamics, high temperatures

also hamper measurement of the structure of silicate liquids, and its response to

pressure. The earliest inferences were based on X-Ray diffraction (XRD) studies

of glasses (Warren and Biscoe, 1938; Mozzi and Warren, 1969), and later expanded

through in situ conductivity (Bockris et al., 1948), XRD (Waseda and Toguri, 1977)

and nuclear magnetic resonance (NMR) (Stebbins and Farnan, 1992) studies of liq-

uids. These studies revealed silicate liquids to comprise fourfold coordinated silicon

atoms arranged in a network modified to varying extent by other cations (network
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modifiers) (Bottinga and Weill, 1972). Pressure induced coordination increases were

first predicted in analogy to changes in solids (Waff, 1975), and inferred from changes

in glass measured by spectroscopy (Williams and Jeanloz, 1988) and NMR (Allwardt

et al., 2007). Atomistic simulations have revealed that some liquids also accommo-

date compression by changing ring statistics (Stixrude and Bukowinski, 1990b).

In spite of the large contributions which these studies have made, large discrep-

ancies exist and important problems remain. These include the pressure and compo-

sitional dependence of structural response to compression, the nature of the density

contrast between melt and solid, high pressure melting temperatures, the possible

presence of immiscibility at deep Earth pressure, as well as identifying the underly-

ing structural response mechanisms responsible for thermodynamic phenomena. The

functional form by which to describe liquid state thermodynamics as a function of

pressure, temperature and composition also remains the subject of debate. These

are the main issues addressed in this thesis.

Mg2SiO4 liquid has a high ambient freezing temperature (Bowen and Andersen,

1914, 2163±25 K) and is very fragile, with the result that its structure has only been

inferred from studies of flash quenched glasses (Cooney and Sharma, 1990; Williams,

1990; Kohara et al., 2004), while its thermodynamic properties are only known from

extrapolation of partial molar values (Lange and Carmichael, 1987; Stebbins et al.,

1984; Rivers and Carmichael, 1987) and from measurements in the super cooled

state (Tangeman et al., 2001; Navrotsky et al., 1989). A density crossover within the

stability field of olivine has been observed for high Mg-number peridotite melts (Agee

and Walker, 1993), but forsterite melting curve measurements are disparate (Ohtani

and Kumazawa, 1981; Presnall and Walter, 1993) and show no evidence of a density

crossover in Mg2SiO4 liquid. However, at much higher pressure (150 − 200 GPa)
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shock density measurements do predict a liquid denser than the solid (Mosenfelder

et al., 2007). To shed light on these important issues, the liquid structure, equation

of state, Hugoniot, forsterite coexistence curve and transport properties of Mg2SiO4

liquid are explored in Chapter II.

Chapter III presents a detailed consideration of the description of silicate liquid

thermodynamics over large pressure intervals. The finite strain expansion of the

energy (Birch, 1952, 1978) is often used to represent the liquid equation of state

(Rigden et al., 1988; Ghiorso et al., 2002; Lange, 2003, 2007; Stixrude and Karki,

2005; Karki et al., 2006, 2007), yet concerns over its suitability for liquids has been

raised (Ghiorso, 2004; Hofmeister, 1993), while the suitable treatment of tempera-

ture dependence has not been explored self consistently. Using theoretical relations

for simple liquids as a starting point, I extend the finite strain free energy expansion

to self consistently include temperature dependence. FPMD simulations provide a

unique set of constraints with which to test this description, while also affording an

account of the electronic free energy contribution. The resulting parameterization

of silicate liquid thermodynamics is combined with a description of solids at high

temperature to compute high pressure melting curves and Hugoniot loci for MgO

periclase and MgSiO3 perovskite, and make predictions of the changes in tempera-

ture, density and sound speed expected upon shock melting of these compounds.

To apply this thermodynamic description to liquids of arbitrary composition along

the join, an appropriate model of mixing is required. The regular solution model,

applied with the assumption of pressure independent enthalpy of mixing, works well

over the limited range of composition and pressure considered in model parameter-

izations of experimental data (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Lange

and Carmichael, 1987; Stebbins et al., 1984; Lange, 1997; Ai and Lange, 2008), but
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the extent to which this assumption holds over larger ranges of composition and

pressure needs to be rigorously explored. Notable contrasts exist in the response of

structure and thermodynamics to compression found for MgO (Karki et al., 2006),

Mg2SiO4 (Chapter II), MgSiO3 (Stixrude and Karki, 2005) and SiO2 (Karki et al.,

2007). In Chapter IV, thermodynamic and structural properties are computed for

four additional intermediate liquid compositions along the join (Mg5SiO7, Mg3S2iO7,

MgSi2O5 and MgSi3O7) and combined with existing results to explore the enthalpy

and volume of mixing, as well as the underlying structural controls.

Chapter II is already published, while Chapters III and IV will be submitted for

publication. Citations are as follows.

N. P. de Koker, L. Stixrude, and B. B. Karki. Thermodynamics, Structure, Dynam-

ics, and Freezing of Mg2SiO4 Liquid at High Pressure. Geochimica et Cosmochi-

mica Acta, 72:1427-1441, 2008a.

N. P. de Koker and L. Stixrude. Self-Consistent Thermodynamic Description of Sil-

icate Liquids, with Application to Shock Melting of MgO Periclase and MgSiO3

Perovskite. to be submitted to Geophysical Journal International, 2008b.

N. P. de Koker, L. Stixrude and B. B. Karki. Structure and Mixing of Liquids on

the MgO − SiO2 Join and the Origin of Liquid Immiscibility. to be submitted to

Nature, 2008c.
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CHAPTER II

Thermodynamics, Structure, Dynamics, and Freezing of

Mg2SiO4 Liquid at High Pressure

2.1 Abstract

We perform first principles molecular dynamics simulations of Mg2SiO4 liquid and

crystalline forsterite. On compression by a factor of two, we find that the Grüneisen

parameter of the liquid increases linearly from 0.6 to 1.2. Comparison of liquid and

forsterite equations of state reveals a temperature dependent density crossover at

pressures of ∼ 12 − 17 GPa. Along the melting curve, which we calculate by inte-

gration of the Clapeyron equation, the density crossover occurs within the forsterite

stability field at P = 13 GPa and T = 2550 K. The melting curve obtained from the

root mean square atomic displacement in forsterite using the Lindemann law fails

to match experimental or calculated melting curves. We attribute this failure to the

liquid structure that differs significantly from that of forsterite, and which changes

markedly upon compression, with increases in the degree of polymerization and co-

ordination. The mean Si coordination increases linearly from 4 in the uncompressed

system to 6 upon two-fold compression. The self-diffusion coefficients increase with

temperature and decrease monotonically with pressure, and are well described by the

Arrhenian relation. We compare our equation of state to the available high pressure

shock wave data for forsterite and wadsleyite. Our theoretical liquid Hugoniot is con-

8
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sistent with partial melting along the forsterite Hugoniot at pressures 150 − 170 GPa,

and complete melting at 170 GPa. The wadsleyite Hugoniot is likely sub-liquidus at

the highest experimental pressure to date (200 GPa).

2.2 Introduction

The Earth’s mantle is almost entirely solid, yet liquids play a disproportionately

large role in our understanding of terrestrial chemical and thermal evolution. Silicates

melt incongruently, and in the shallow mantle, the partial melt is readily separated

from the residuum as a result of the large density contrast and low viscosity of the

liquid. To accurately describe these processes, knowledge of the changes in liquid

physical properties with pressure and temperature is needed, especially the density,

Grüneisen parameter, chemical diffusivity and melting temperature. Furthermore,

an understanding of liquid structure that ultimately governs these physical properties

is key to predicting properties at conditions previously unexplored, and also offers

deep insight into the physics of the liquid state.

Olivine and its polymorphs of dominantly Mg2SiO4 composition make up approx-

imately 60 % of the upper mantle and transition zone. With increasing pressure, the

eutectic composition on the MgO − SiO2 join moves towards Mg2SiO4 (Ohtani and

Kumazawa, 1981; Kato and Kumazawa, 1985; Presnall and Gasparik, 1990). The

properties of Mg2SiO4 liquid are thus crucial to deep earth studies involving a liquid

phase. These include magma ocean dynamics, lunar formation and mantle melting

as the source for komatiitic and basaltic magmas. Buoyantly stable partial melt has

been proposed to exist atop the 410 km discontinuity on the basis of seismic observa-

tions (Revenaugh and Sipkin, 1994; Song et al., 1994). In addition, the discovery of

a ultra-low-velocity zone (ULVZ) at the core-mantle boundary (CMB) (Garnero and
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Helmberger, 1995; Williams and Garnero, 1996) has lead to the speculation of the

presence of partial melt in the bottom most part of the mantle. Indeed, estimates of

the mantle geotherm in the lowermost mantle are similar to estimates of the lower

mantle solidus (Holland and Ahrens, 1997; Luo et al., 2004; Stixrude and Karki,

2005).

The high melting temperature of forsterite (2163 ± 25 K; Bowen and Andersen,

1914) has made accurate in situ experimental measurement of Mg2SiO4 liquid prop-

erties difficult. The volume at ambient pressure and its pressure and temperature

derivatives are estimated from experimental measurements at lower temperature and

more silica rich compositions, combined with the assumption of linear additivity of

partial molar properties (Lange and Carmichael, 1987; Lange, 1997; Ai and Lange,

2008), or from fusion curve analysis and calorimetric data (Bottinga, 1985). The

value of CP measured for the supercooled liquid (225 J.mol−1.K−1; Tangeman et al.,

2001) differs significantly from the model value calculated from partial molar heat ca-

pacities (285 − 295 J.mol−1.K−1; Stebbins et al., 1984; Lange and Navrotsky, 1992).

Studies of non-crystalline structure have been limited to Mg2SiO4 glass (Cooney and

Sharma, 1990; Kohara et al., 2004).

Here we apply first principles molecular dynamics to simulate Mg2SiO4 liquid

and forsterite at pressures and temperatures relevant to the mantle. We investigate

the equation of state, liquid structure and transport properties and compare with

experiments and previous results based on semi-empirical inter atomic force models.

By combining the liquid equation of state with that of forsterite, calculated using the

same method, we integrate the Clapeyron equation to obtain the forsterite melting

curve.
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2.3 Computational Technique

The power and robustness of density functional theory (DFT) as a tool for de-

termining the properties of earth materials at conditions relevant to planetary in-

teriors have been extensively explored (Stixrude, 2001; Gillan et al., 2006). DFT

was recently applied in combination with Born-Oppenheimer molecular dynamics to

the simulation of silicate liquids over the entire mantle pressure-temperature regime

(Stixrude and Karki, 2005; Karki et al., 2007).

DFT is based on the Hohenberg-Kohn theorem (Hohenberg and Kohn, 1964; Kohn

and Sham, 1965), through which the wave function and total energy may be expressed

as a unique functional of the ground state electron density. Although the theorem is

exact, approximations are needed to account for the unknown exchange-correlation

functional. In this study we adopt the most widely applied approximation, the local

density approximation (LDA; Ceperley and Alder, 1980).

The influence of the core electronic wave functions of Mg, Si and O is approximated

using ultrasoft pseudopotentials with core radii of 1.06 Å, 0.95 Åand 0.82 Å, and

valence shells representing the 3s2, 3s23p2 and 2s22p4 electrons, respectively (Kresse

and Hafner, 1994), as implemented in the VASP code (Kresse and Furthmüller, 1996).

We perform molecular dynamics in the canonical ensemble (constant NVT), via a

thermostat (Nosé, 1984). In order to make simulation with systems of sufficient size

computationally feasible, the size of the plane-wave basis set is limited to a cutoff

energy Ecut = 400 eV, for which we account by applying a finite basis set (Pulay)

correction (Gomes Dacosta et al., 1986; Francis and Payne, 1990) to the calculated

pressures (see below).

Simulations contain 112 atoms (16 formula units) with periodic boundary condi-
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tions (Figure 2.1). The initial condition is a 2× 1× 2 supercell of forsterite homoge-

neously strained to a cubic cell shape and the desired volume. The Brillouin zone is

sampled at the gamma point only. We simulate the liquid at volumes of V/VX = 1.2,

1.1, 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5 where VX = 52.36 cm3/mol is an estimate of the vol-

ume of Mg2SiO4 liquid at the ambient melting point (Lange and Carmichael, 1987).

The initial configuration is melted at 6000 K, and then cooled isochorically to 3000 K

and 4000 K. We also perform simulations of crystalline forsterite at 1000 K, 2000 K

and 3000 K, and at volumes V/VX = 1.0, 0.9, 0.8 and 0.7. We initiate crystalline

simulations with the cell shape obtained by static structural relaxation at each vol-

ume, and then adjust cell parameters until the stress tensor is hydrostatic to within

statistical uncertainty (Oganov et al., 2001b). The phase present in the simulation

(crystal or liquid) is verified by inspection of the radial distribution function and the

mean square displacement. Simulations of both liquid and solid are performed using

a time step Δt = 1 fs, with each simulation running for at least 3000 time steps. The

first 600 steps allow the system to converge, with equilibrium properties calculated

over the remaining time. We estimate the uncertainty in the energy (E) and pres-

sure (P ) by applying the blocking method (Flyvberg and Petersen, 1989). Tests of

convergence with respect to system size (70 and 336 atom supercells), run duration

(6 ps), initial configuration (strained ringwoodite) and k-point sampling (2 × 2 × 2

Monkhorst and Pack (1976) grid) show that variations are well within the mean

statistical uncertainty of the simulations (σE = 8.8 kJ/mol; σP = 1.5 GPa). Slow

cooling over 3000 fs from 6000 K to 3000 K showed no cooling rate dependence of the

thermodynamic or structural properties.

Two corrections are applied to the pressures calculated in the simulations as
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follows

(2.1) P (V ) = PMD(V ) + PPulay(V ) + Pemp(V ).

We compute the Pulay correction as

(2.2) PPulay(V ) = PS(V ; Ecut = 600 eV) − PS(V ; Ecut = 400 eV),

where PS is the static pressure of the fully relaxed structure of forsterite computed

with a 2 × 2 × 2 Monkhorst Pack k-point mesh, and 600 eV as has been found

in previous studies to yield fully converged results (Karki et al., 2001). We find

that PPulay increases monotonically from 2.6 GPa at V/VX = 1.0 to 5.1 GPa at

V/VX = 0.5. Values calculated for different atomic configurations obtained from

the simulations, as well as for wadsleyite and ringwoodite, differ from the forsterite

value by less than 0.2 GPa. The empirical correction accounts for the well known

and systematic over-binding of LDA (Karki et al., 2001; Oganov et al., 2001a) and

is computed as

(2.3) Pemp = −PS(Vexp; Ecut = 600 eV),

where Vexp is the experimental zero-pressure volume of forsterite at static condi-

tions computed via the thermodynamic model of Stixrude and Lithgow-Bertelloni

(2005). For forsterite we find Pemp = 1.6 GPa. Values calculated for wadsleyite and

ringwoodite are 1.4 GPa and 1.7 GPa, respectively.

We fit the simulation pressure and internal energy results to the Mie-Grüneisen

equation of state,

(2.4) P (V, T ) = PC(V, T0) +
γ(V )CV (V )

V
[T − T0] ,

(2.5) E(V, T ) = E0 + EC(V, T0) + CV (V ) [T − T0] ,
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(2.6) PC(V, T0) = 3K0f (1 + 2f)5/2
[
1 + a1f + · · ·

]
,

(2.7) EC(V, T0) = T0

∫ V

V0

γ(V ′)CV (V ′)
V ′ dV ′ + 9K0V0f

2
[1

2
+

a1

3
f + · · ·

]
,

(2.8) a1 =
3

2

[
K ′

0 − 4
]
,

(2.9) f =
1

2

[(
V0

V

)2/3

− 1
]
,

where the expression for the internal energy follows from the Eulerian finite strain

expansion of the Helmholtz free energy, F , (Birch, 1952; Stixrude and Bukowinski,

1990a), the Euler relation, E = F + TS, and the Maxwell identity (∂S/∂V )T =

(∂P/∂T )V . E0, V0, K0 and K ′
0 are respectively the internal energy, volume, isother-

mal bulk modulus (KT ) and its first pressure derivative at zero pressure and tem-

perature T0. The isochoric heat capacity (CV ) and Grüneisen parameter (γ), are

determined from our simulations as the dependence of internal energy and pressure

on temperature at constant volume, and are found to be linear to within our resolu-

tion:

(2.10) CV =

(
∂E

∂T

)
V

,

(2.11)
γ

V
=

(
∂P

∂E

)
V

.

The volume dependence of CV and γ are described accurately as

(2.12) CV (V ) = CV (VX) + C ′
V

[ V

VX
− 1

]
+ · · · ,
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(2.13) γ(V ) = γ(VX) + γ′
[ V

VX

− 1
]

+ · · · .

We estimate the uncertainty in a thermodynamic quantity at a given volume and

temperature by repeated fitting of the equation of state to a Monte-Carlo sampling

of the simulation data within its error estimates (values converge after about 104

iterations).

The melting curve is computed via the Clausius-Clapeyron relation

(2.14)
∂TM

∂P
=

ΔV

ΔH/TM
,

where the volume and enthalpy differences are taken from our simulations, and the

integration constant is set to the experimental melting point at ambient conditions

(2163 ± 25 K; Bowen and Andersen, 1914). This hybrid approach, in which we take

only the initial melting temperature from experiment, and compute the melting tem-

perature at all other pressures from our simulations is much more efficient than the

fully first principles determination of melting temperatures (Sugino and Car, 1995;

Alfe, 2005). Moreover, our approach is justified by the good agreement with ex-

perimental melting temperatures found in extremely demanding fully first principles

computations of melting, which have not yet been attempted on systems as complex

as forsterite. In order to compute the melting curve, we compare the properties of

the liquid and the solid at constant pressure. This is accomplished via interpolation,

and the error in the volume is estimated from that in the pressure as

(2.15) σV =

(
∂V

∂P

)
T

σP .

Our forsterite simulations allow the determination of the mean square displace-

ment of all the atoms (〈urms〉) as a function of pressure and temperature. Together

with the mean inter-atomic distance (a), the Lindemann law melting curve can be
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calculated in its original formulation (Lindemann, 1910)

(2.16) fc =
〈urms〉

a
,

by determining the value of the constant critical fraction (fc) at the experimental

ambient melting point (Gilvarry, 1956).

We calculate the theoretical Hugoniot pressure (PH), temperature (TH) and in-

ternal energy (EH) at a given volume (VH) by iteratively solving equations 4 and 5

to satisfy the Rankine-Hugoniot relation,

(2.17) (EH − ER) = −1

2
(PH + PR) (VH − VR) ,

where ER and VR is the internal energy and volume of the unshocked sample at

reference pressure PR and temperature TR.

The self-diffusion coefficient DN for the N -particle periodic system is computed

via

(2.18) DN = lim
t→∞

〈[r(t)]2〉
6t

,

where is the mean square displacement. The pressure and temperature dependence

of is described by the Arrhenius relation,

(2.19) DN(P, T ) = D0
N exp

[
− Ea + PVa

RT

]
,

where Ea and Va are the activation energy and volume. We account for finite size ef-

fects in the periodic system by applying a correction based on the Kirkwood-Riseman

theory of polymer diffusion (Yeh and Hummer, 2004; Zhang et al., 2004). The diffu-

sivity for an infinitely large system is calculated as

(2.20) D∞ = DN +
kBTξ

6πηL
,
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where DN is the diffusivity from the N -particle simulation, ξ is a constant (≈

2.837297), L is the size of the box and η is the viscosity of the liquid. The vis-

cosity is estimated by the Eyring relation

(2.21) η =
kBT

D∞λ
,

where λ was found by Lacks et al. (2007) to have a value of 16 RO for Mg2SiO4

liquid, RO = 1.4 Å being a canonical value for the ionic radius of oxygen.

2.4 Results

2.4.1 Equation of State

We find the third order expansion in f (equations 2.4 and 2.5) to be sufficient to

represent the equation of state results (Figure 2.2), with the isochoric heat capacity

(CV ) and Grüneisen parameter (γ) as linear functions of volume (equations 2.12-2.13;

Figure 2.3). Values of the parameters in equations 2.4-2.13 for liquid and forsterite

are reported in Table 2.1. Tables 2.2 and 2.3 compare theoretical and experimental

values for liquid and solid, respectively.

Our computed values of the physical properties of the liquid at the ambient melt-

ing point are consistent with previous experimental data (Stebbins et al., 1984; Bot-

tinga, 1985; Lange and Carmichael, 1987; Rivers and Carmichael, 1987; Rigden et al.,

1989; Lange, 1997; Tangeman et al., 2001; Ai and Lange, 2008). Agreement with the

volume, thermal expansivity and bulk modulus is excellent. The computed value of

K ′
0 is much larger than a previous estimate based on fusion curve analysis, and more

similar to values found for other silicate liquids by direct measurement of the equation

of state (Rigden et al., 1989). Our value of the heat capacity lies between two pre-

vious experimental estimates. Our value of V0 is very similar to that (57.9 cm3/mol)

found by Lacks et al. (2007) using empirical potentials. However, with compression
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their computed pressure deviates systematically and increasingly from our predic-

tions, being 1.4 GPa less at the smallest volume of their study (33.5 cm3/mol) and

3000 K.

We find that liquid state isotherms diverge upon compression: the thermal pres-

sure coefficient B = (∂P/∂T )V = γCV /V increases as the volume decreases. The iso-

choric heat capacity decreases from 4.4 NkB at V/VX = 1.0 to 3.7 NkB at V/VX = 0.5,

and the Grüneisen parameter of the liquid increases from 0.6 to 1.2 over the same

range of compression (Figure 2.3), in contrast to the behavior of crystalline forsterite

for which CV remains essentially constant at a value of about 3.1 NkB and the

Grüneisen parameter decreases on compression. Along the 3000 K isotherm, the

enthalpy difference between liquid and solid decreases steadily, while the difference

in volume reveals a density crossover at 16± 3 GPa (Figure 2.2, inset). The pressure

of the density crossover decreases with decreasing temperature.

2.4.2 Melting Curve

We find that the melting temperature reaches a maximum of T = 2550 K at

P = 13 GPa, well within the forsterite stability field (Akaogi et al., 1989), and has a

negative slope at higher pressures as a result of a density crossover (Figure 2.4). The

entropy and volume of fusion at ambient conditions (ΔH/TM = 0.95 ± 0.04 NkB,

ΔV = 5.7 ± 0.1 cm3/mol) agree with experimental estimates (ΔH/TM = 0.91 ±

0.16 NkB (Navrotsky et al., 1989; Lange and Carmichael, 1987; Lange, 1997)). The

entropy of fusion (ΔH/TM) along the melting curve decreases to 0.75 NkB at 20 GPa,

significantly lower than the entropy of melting of MgSiO3 perovskite (∼ 1.5 NkB)

found in a previous simulation study (Stixrude and Karki, 2005).

Experimentally determined melting curves of forsterite disagree with one another

above 10 GPa (Davis and England, 1964; Ohtani and Kumazawa, 1981; Presnall and
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Walter, 1993). At high pressures, our melting curve is in excellent agreement with

the measurements of Presnall and Walter (1993), while at lower pressures it is slightly

higher than the experimental measurements of both Davis and England (1964) and

Ohtani and Kumazawa (1981).

Experimental evidence shows that, towards the high pressure end of the forsterite

stability field, forsterite melts incongruently to a more silica rich liquid (Ohtani

and Kumazawa, 1981; Kato and Kumazawa, 1985; Presnall and Gasparik, 1990)

and either anhydrous B or periclase. Figure 2.5 illustrates that a more silica rich

liquid is denser than both forsterite and Mg2SiO4 liquid, though less dense than

crystalline anhydrous B and periclase (Karki et al., 2000a). Therefore partial melting

of forsterite at high pressure produces a liquid denser than crystalline forsterite. The

liquidus phases on Mg2SiO4 composition at the base of the upper mantle (periclase

and anhydrous B) are denser than the liquid.

The mean 〈urms〉 in forsterite varies between 0.05 Å2 at 1000 K and 0.3 Å2 at

3000 K, with a weak volume dependence of about 0.0065 Å2.mol.cm−3. Our Linde-

mann melting curve computed from interpolated values of 〈urms〉 (Figure 2.4), shows

poor agreement with experimental data and fails to capture the slope as well as

its change with pressure (curvature) seen in both our FPMD results as well as the

experimental data (Presnall and Walter, 1993).

2.4.3 Mg2SiO4 Hugoniot

We compare our theoretical Hugoniot for Mg2SiO4 liquid, together with Hugoniots

for a partially molten sample of periclase + MgSiO3 liquid (Stixrude and Karki,

2005), and solid phase assemblages perovskite + periclase (Pv+Pe), post-perovskite

+ periclase (PPv+Pe) and stishovite + periclase (St+Pe) (Stixrude and Lithgow-

Bertelloni, 2005), to the published high pressure shock data for forsterite and wads-
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leyite (Jackson and Ahrens, 1979; Watt and Ahrens, 1983; Brown et al., 1987a,b;

Luo et al., 2004; Mosenfelder et al., 2007) (Figure 2.6).

Pressure-density and temperature measurements on the forsterite Hugoniot agree

well with our computed Hugoniots of the sub-solidus assemblage (PPv+Pe) at pres-

sures below 150 GPa, a mixture of periclase and MgSiO3 liquid between 150 −
170 GPa, and with pure Mg2SiO4 liquid at higher pressures. We find that the

pressure-volume relation on the wadsleyite Hugoniot (there are no temperature mea-

surements) is consistent with the sub-solidus assemblage at 140 GPa, and pure liquid

or a mixture of periclase and Mg2SiO4 liquid at 200 GPa. Shot #349 on wadsleyite is

not consistent with any of our computed Hugoniots. The discrepancy with Mg2SiO4

liquid for wadsleyite shot #349 (almost 50 GPa) is much larger than the uncertainty

in the simulated pressure (1.4 GPa), which includes the uncertainty estimates for

PPulay and Pemp (equation 2.1).

2.4.4 Liquid Structure

We define the bond length as the mode of the first peak in the partial radial

distribution function (RDF) (McQuarrie, 1984). Upon compression, the Si-O bond

length increases initially from a value of 1.63 Å (Figure 2.7) to 1.64 Å at V/VX = 0.7

and then decreases to 1.62 Å at 3000 K and the highest compression considered.

Over the same compression interval the Mg-O bond length decreases from 1.97 Å to

1.83 Å. The mode and median of the first peak diverge, as the radial distribution

function broadens with increasing distortion of the polyhedra on compression. Si-O

and Mg-O bond lengths and coordination numbers at low pressure compare very well

with experimental data (Kohara et al., 2004) on the structure of Mg2SiO4 glasses

(Table 2.4).

The coordination number (Zαβ) is computed as the integral of the radial distri-



21

bution function

(2.22) Zαβ = 4πρ

∫ rcut

0

gαβ(r)r2dr,

where ρ is the density and rcut is the position of the first minimum in gαβ . ZSi−O in-

creases from 4.1 to 6.0, while ZMg−O increases from 5.1 to 7.7 (Figure 2.7) on two-fold

compression. The smooth and nearly linear increase on compression is facilitated by

gradual changes in the abundances of the various coordination species, of which a

mixture is present at all conditions studied (Figure 2.8). The variety of local coor-

dination environments may also be characterized by the O-Si coordination number

(ZO−Si), which shows relative abundances changing upon compression (Figure 2.9).

At low pressure, the liquid has ∼ 15 % (or 0.6 O per Si) bridging oxygens (OB ;

ZO−Si = 2) and ∼ 70 % (2.8 O per Si) non-bridging oxygens (ON ; ZO−Si = 1). The

remaining 15 % of O atoms are not bound to Si (OF ; ZO−Si = 0), and are hence

referred to as ‘free oxygens’ (Hess, 1980) (red spheres in Figure 2.1). Changes in

the concentrations of the various O and Si coordination species with pressure are

associated with increased polymerization and Si coordination.

Analysis of atomic trajectories reveals that coordination increases through the

following two reactions:

(2.23) ON +[Z] SiOB ↔[Z+1] SiOB+1 ,

(2.24) OF +[Z] SiOB ↔[Z+1] SiOB .

We describe the local structure about Si atoms as [Z]SiOB , with [Z] the coordi-

nation number and OB the number of bridging oxygens. Our notation is a general-

ization of the commonly used QOB notation, which specifies the number of bridging

oxygens in systems for which Z = 4. Reactions 2.23 and 2.24 are illustrated by
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the increase in the proportion of bridging oxygens as the proportion of free oxygens

decreases on compression (Figure 2.9). Bridging oxygens are almost never added to

the coordination shell of another silicon and therefore do not contribute significantly

to the coordination increase, consistent with Raman, infrared, and nuclear magnetic

resonance spectroscopic observations in alkali-silicate glasses (Wolf et al., 1990; Xue

et al., 1991) showing coordination increases primarily at the expense of non-bridging

oxygens. Examples of reactions 2.23 and 2.24 are illustrated in Figure 2.10 in which

[4]Si1 is shown transforming into [4]Si0 (top panel), and [4]Si3 to [3]Si2 and then to

[5]Si4(bottom panel).

2.4.5 Transport Properties

Characteristic bond lifetimes calculated from the bond breaking rate (Kubicki and

Lasaga, 1991) reveal a strong decrease in the average Si-O bond lifetime from 2000 fs

at ambient pressure and 3000 K to 500 fs at high pressure. Mg-O bond lifetimes

increase only slightly over the same pressure range from 300 fs to 400 fs. Over the

same compression range, the long lifetimes of OF and ON at low pressure (∼ 1500 fs

at 3000 K) decrease to values similar to that of OB (500 fs at 3000 K) which remain

essentially unchanged as a function of volume.

Self-diffusion coefficients increase with temperature and decrease with pressure

(Figure 2.12), and do not show the initial increase with increasing pressure seen in

more highly polymerized silicate liquids (Angell et al., 1982; Karki et al., 2007): The

pressure and temperature dependence is well described by the Arrhenius relation.

Fit parameters for Mg, Si, O and total self-diffusion (Table 2.5) are found to be

independent of temperature over the range investigated.

By comparing with longer runs, we find 2400 ergodic timesteps to be sufficient to

determine robust values of the self-diffusion coefficient values from the mean square
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displacement 〈[r(t)]2〉 (Figure 2.11), for all simulations except the V/VX = 0.5; T =

4000 K and V/VX = 0.6; T = 3000 K points, for which 5000 timesteps are sufficient.

The V/VX = 0.5; T = 3000 K point is not included in the analysis of thermodynamic

and transport properties, because we find it to be a glass: 〈[r(t)]2〉 flattens out at

0.25 Å
2
, similar to values found in the solid at low pressure, though somewhat higher

than solid values extrapolated to V/VX = 0.5 (0.17 Å
2
).

Equation 2.20 implies a N−1/3 dependence of diffusivity on system size. The

corrected total diffusivity at V/VX = 1.0; T = 3000 K, (D∞ = 6.13±0.6×10−9 m2/s)

calculated with equation 2.20 is similar to the value (D∞ = 6.7 ± 0.7 × 10−9 m2/s)

we find from the linear relation

(2.25) DN = D∞ + aN−1/3,

fit to our results for 112 and 336 atoms.

2.5 Discussion

The structure of Mg2SiO4 liquid differs markedly from that of crystalline forsterite.

Whereas in forsterite all O are bonded to Si, with SiO4 tetrahedra isolated from one

another (entirely Q0 or [4]Si0 in our notation), in the liquid free oxygens and tetra-

hedral linkages ( Q≥1 or [4]Si0 ) appear. Free oxygens are also present in the high

pressure crystalline polymorph wadsleyite, in which all tetrahedra exist as dimers

(Si2O7). The difference in structure between Mg2SiO4 liquid and forsterite is impor-

tant as it accounts for the very large enthalpy of vitrification of Mg2SiO4 (Kohara

et al., 2004) and the failure of the Lindemann law in this system. Evidence of

dimers in amorphous Mg2SiO4 had previously been obtained only for the glass, via

vibrational spectroscopy, nuclear magnetic resonance, and x-ray diffraction (McMil-

lan, 1984; Williams et al., 1989; Cooney and Sharma, 1990; Williams, 1990; Kohara
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et al., 2004). While experimental studies have found evidence only for Q0 and Q1

species, we also find a substantial number of Q2 and Q3. We find that the abundance

of Q2 and Q3 species decreases with decreasing temperature so that they may not be

detectable in the glass. The liquid also differs from the structure of crystalline phases

in having ZMg−O = 5.1, substantially less than that in the tetrahedrally coordinated

crystalline polymorphs (ZMg−O = 6), which accounts for the volume of melting.

The structure of the liquid remains distinct from that of crystalline phases at

elevated pressure. The Si-O (and Mg-O) coordination number of the liquid increases

monotonically with compression over the entire range studied, in sharp contrast to

that of the crystalline phases in which the coordination number remains ZSi−O = 4

up to the transformation of ringwoodite to perovskite + periclase near 24 GPa, where

it increases to ZSi−O = 6. Liquid structure is also distinct in that it shows an initial

increase in Si-O bond length on compression, which we attribute to the increase in

coordination number.

We suggest an alternative interpretation of the dynamic compression of forsterite

that is consistent with our computed Hugoniots, the shock temperature measure-

ments of Luo et al. (2004) and the pressure-volume data of Mosenfelder et al. (2007)

except the wadsleyite portion of shot #349. Dynamic loading of forsterite produces

incongruent melting to periclase and a more silica-rich liquid at 150 − 170 GPa. At

higher pressures, pure Mg2SiO4 liquid is present on the forsterite Hugoniot, while at

lower pressures, sub-solidus assemblages (PPv+Pe) are present on the Hugoniot.

This picture has important implications for the interpretation of the wadsleyite

Hugoniot (Mosenfelder et al., 2007) and of sound speed data (Brown et al., 1987a,b).

We find the wadsleyite Hugoniot to be 1000−1400 K colder than that of forsterite at

150−200 GPa. It is therefore likely that even the highest pressure wadsleyite point of
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Mosenfelder et al. (2007) (shot #350) is either sub-solidus or only partially molten.

We therefore suggest that determination of a liquid phase value of the Grüneisen

parameter based on this datum should be treated with caution. While Mosenfelder

et al. (2007) find that the Grüneisen parameter increases on compression in the

liquid, in general agreement with the trend that we find, their value (2.6) is much

higher than our predictions. This discrepancy is explained if the measured portion of

the wadsleyite Hugoniot is less than completely molten. Our interpretation cannot

account for shot #349 on wadsleyite of Mosenfelder et al. (2007) which lies at much

lower pressures than all our computed Hugoniots. Sound speed measurements have

been interpreted to indicate melting on the forsterite Hugoniot above 150 GPa. The

measured value of the sound speed at 168 GPa (10.8 km.s−1) is considerably less than

what we find at the same pressure: 11.5 km.s−1 varying little with temperature from

3000 to 6000 K. The smaller experimental value may be due to incongruent melting:

a solid-liquid mixture with proportions varying as the shock front passes. Because

the experimental sample may be only partially molten, the value of the Grüneisen

parameter determined (2.1), which is substantially higher than our predicted value,

may not be representative of the liquid state. Indeed, at higher pressures (195 GPa)

the experimental sound velocity (12.2 km.s−1 (Brown et al., 1987a)) agrees well with

extrapolation of our results (12.4± 0.2 km.s−1), consistent with complete melting in

the shocked sample.

The behavior of the Grüneisen parameter that we calculate in the liquid - in-

creasing on compression - is contrary to that of all mantle crystalline phases, for

which the Grüneisen parameter decreases with compression (Figure 2.3). This be-

havior was first recognized in silicate liquids by Stixrude and Karki (2005), and has

also been found in studies of non-silicate liquids (Davis and Gordon, 1967; Knopoff
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and Shapiro, 1970; Boehler and Kennedy, 1977; Vočadlo et al., 2003; Karki et al.,

2006). The increase of the Grüneisen parameter on compression in the liquid can

be understood as follows. While γ decreases with compression in crystalline phases,

it increases across pressure induced phase transitions associated with an increase in

Si coordination (Jeanloz and Roufosse, 1982) (Figure 2.3). Since the coordination

number increases gradually and continuously in the liquid, we expect the Grüneisen

parameter also to increase on compression as it adopts values characteristic of higher

coordinated states.

Increasing coordination is further expressed as a density crossover, providing fun-

damental insight into the contrasting behavior of complex liquids and solids upon

compression. Our results reveal the origin of olivine floatation in compositions

thought to be representative of an initial magma ocean (Stolper et al., 1981; Agee

and Walker, 1988; Ohtani, 1988; Trønnes and Frost, 2002). The density crossover

originates primarily in the structure of the liquid and occurs, even in forsterite com-

position, at 13 GPa along the solidus, where the Si-O coordination number of the

liquid is 4.4, greater than that in the crystal. In natural compositions the density

of the liquid will be further enhanced relative to that of coexisting solids by the

incompatibility of abundant heavy elements, such as Fe and Ca. The isochemical

density crossover that we find supports the notion that buoyantly stable silicate melt

may exist at the base of the olivine stability field in the mantle at 410 km depth

(Revenaugh and Sipkin, 1994).

The discrepancy between our melting curve and experimental data at low pres-

sures may be related to uncertainty in the ambient melting point of forsterite. To

illustrate, also shown in Figure 2.4 is an alternative melting curve obtained by us-

ing TM0 = 2140 K, which represents the lower bound of the quoted uncertainty for



27

the ambient melting temperature determined by Bowen and Andersen (1914). In-

tegration of the Clausius-Clapeyron equation (2.14) based on our results and this

value of TM0 improves agreement with the data of Davis and England (1964), while

maintaining agreement at high pressure with the data of Presnall and Walter (1993).

The failure of the Lindemann law to capture the change in slope of the melting

curve with pressure is not surprising, since it assumes that the structure of the liquid

remains constant along the melting curve (Ross, 1969). The changes in liquid struc-

ture that we find reduce the volume of the liquid relative to the Lindemann picture,

causing the melting slope to decrease rapidly with pressure. We thus reinforce the

overall conclusion of Wolf and Jeanloz (1984) that the Lindemann criterion should

not be used to extrapolate melting temperatures of mantle phases, although those

authors found good agreement in the case of forsterite between the Lindemann law

and the data of Ohtani and Kumazawa (1981), in notable contrast to other minerals

considered in their study, and with our findings.

The short lifetime of the Mg-O bond relative to that of the Si-O bond is consistent

with the smaller activation energy and higher self-diffusion coefficients found for Mg

compared to Si (Table 2.5). While our activation energy values are similar to those

obtained by Kubicki and Lasaga (1991), our finite size-corrected self-diffusion coef-

ficients are much larger. Conversely, our low pressure self-diffusion coefficients are

similar to results of Lacks et al. (2007), but the pressure dependence of their results

implies a higher activation volume (Figure 2.12). These previous simulations are

based on semi-empirical interatomic potentials, and differences likely reflect uncer-

tainties related to the construction of inter atomic force models in the earlier studies,

emphasizing the importance of our parameter free first principles simulations. No

experimental values of self-diffusion in forsterite liquid exist; data that have been
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obtained are on more silica rich compositions. For example, the experimental value

of the activation energy for diffusion of silicon and oxygen in CaMgSi2O6 melt (Ku-

bicki et al., 1990; Reid et al., 2001), is much greater than our value for forsterite.

This difference may reflect the difference in silica content, and therefore fragility

(Angell, 1995) of forsterite versus diopside composition melts, as well as the lower

temperature range over which the experimental value is obtained.

2.6 Conclusions

Our First Principles Molecular Dynamics calculations for Mg2SiO4 liquid show

the Grüneisen parameter and thermal pressure coefficient increasing upon compres-

sion. Comparison of the liquid equation of state to that we calculate for forsterite

shows the presence of a density crossover at pressures of 12 − 17 GPa and temper-

atures of 2000 − 3500 K. Along the melting curve we determine by integration of

the Clausius-Clapeyron equation, the density crossover is found at 13 GPa, within

the stability field of forsterite. Comparison of our melting curve to an extrapolation

of the ambient melting temperature through the Lindemann law indicates that such

extrapolations for silicates cannot yield accurate results, due to significant differences

in structure between the liquid and the solid, and significant changes in liquid struc-

ture on compression, primarily expressed as a continuous increase in coordination and

polymerization. Comparison of the liquid equation of state to the available high pres-

sure shock wave data is consistent with partial melting along the forsterite Hugoniot

at pressures above 150 GPa, and complete melting at pressures above 170 GPa; and

sub-liquidus conditions on the wadsleyite Hugoniot up to the highest pressures mea-

sured to date (200 GPa). Liquid diffusivities increase with temperature and decrease

monotonically with pressure, and are found to be well described by the Arrhenian
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relation.
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Table 2.1: Equation of state fit parameters for equations 2.4-2.13.

Mg2SiO4 Forsterite
T0 (Kelvin) 3000 1000

V0 (cm3/mol) 57.8 (3) 44.8 (2)
KT0 (GPa) 19 (3) 101 (7)

K ′
T0 6.2 (5) 5.4 (7)

CV (VX) (NkB) 4.29 (3) 3.10 (2)
C′

V 0.68 (16) 0.05 (8)
γ(VX) 0.64 (6) 1.4 (2)

γ′ −1.2 (2) 1.8 (1.2)
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Table 2.2: Comparison of liquid equation of state to experimental data at 2163 K, 0 GPa.

This study Experiment
V (cm3/mol) 53.55 53.5 (2)a

KT (GPa) 23 (8) 24.3 (1)b, 59c

K ′
T 7 (1) 3.75c, 6.9d,†

α 10−6K−1 121 (50) 122 (7)a

CV (NkB) 4.4 (5) 3.7 (4)a,e,‡, 4.9 (3)a,f

γ 0.6 (1) 0.22 (4)a,f , 0.56 (3)a,b,f , 0.74 (4)a,b,e

a Lange (1997), b Ai and Lange (2008), c Bottinga (1985), d Rigden et al. (1989), e

Tangeman et al. (2001), f Stebbins et al. (1984)
† K′

T for CaMgSi2O6 liquid
‡ Supercooled liquid at 1040 − 1773 K
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Table 2.3: Comparison of crystalline equation of state with experimental values computed from the
model of Stixrude and Karki (2005) at 1000 K, 0 GPa.

This study Experiment
V0 (cm3/mol) 44.8 (2) 44.5

K0 (GPa) 101 (7) 113.4 (2)
K ′

0 5.4 (7) 4.6 (2)
α 10−6K−1 44 (10) 35 (1)
CV (NkB) 3.10 (3) 2.92 (3)

γ 1.1 (3) 1.0 (3)
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Table 2.4: Comparison of simulated liquid structure to experimental data (Kohara et al., 2004).

This study Experiment
V/VX = 1.0; T = 1000 K P = 0 GPa; T = 300 K glass

dSi−O 1.63 Å 1.63 Å
dMg−O 1.97 Å 2.00 Å
ZSi−O 4.1 4.1
ZMg−O 5.1 5.0
[4]Si0 22 % ∼ 50 %
[4]Si1 38 % ∼ 50 %
[4]Si2 21 % −
[4]Si3 10 % −
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Table 2.5: Self-diffusion coefficient Arrhenius relation fit parameters (equation 2.19).

D0∞ (10−9 m2/s) D0
N (10−9 m2/s) Ea (kJ/mol) Va (cm3/mol)

Total 485 (70) 339 (49) 106 (5) 0.88 (7)
Si 476 (108) 332 (76) 124 (8) 0.76 (9)
Mg 359 (69) 251 (48) 87 (6) 1.00 (7)
O 560 (85) 391 (59) 113 (6) 0.87 (8)
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Figure 2.1: Snapshots of the simulated liquid at 3000 K, for V/VX = 1.0 and V/VX = 0.5. The
uncompressed structure is very open, with Si almost entirely four-fold coordinated. Tetrahedra are
mostly free-floating, with dimers and a four-membered chain also visible. The compressed structure
is more densely packed, with Si mostly six-fold coordinated. Polyhedra are highly polymerized, some
sharing edges. Free oxygen atoms (red spheres) are less abundant at higher pressures.
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The slope becomes negative around 13 GPa due to a density crossover of the liquid relative to
stable forsterite. Experimental data of Ohtani and Kumazawa (1981) (OK81; circles), Presnall and
Walter (1993) (PW93; inverted triangles), Davis and England (1964) (DE64; triangles) are shown
for observations of liquid (red symbols), crystal (blue symbols) and liquid-crystal coexistence (green
symbols). The forsterite-wadsleyite (Wa) transition (thin black line) is from Akaogi et al. (1989)
(A89). The Lindemann law melting curve obtained from the root mean square displacement 〈urms〉
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Figure 2.5: Density contrast expected during incongruent melting of forsterite. Contrasts are
along the calculated melting curve, between Mg2SiO4 and MgSiO3 liquids and the phases that
will comprise the residual crystalline assemblage (Presnall and Gasparik, 1990). The density of
anhydrous B is estimated by ideal mixing of periclase (Karki et al., 2000a) and forsterite.
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Figure 2.6: Theoretical Hugoniot for Mg2SiO4 liquid. Hugoniot curves calculated using the ther-
modynamic model of Stixrude and Lithgow-Bertelloni (2005) for crystalline phase assemblages (Pv
- perovskite; PPv - post perovskite; Pe - periclase; St - stishovite), as well as Mg2SiO4 liquid (this
study) and a partially molten mixture of Pe and MgSiO3 liquid (Stixrude and Karki, 2005), com-
pared to the pressure-volume shock measurements for forsterite (Fo) and wadsleyite (Wa) (WA83
- Watt and Ahrens, 1983; JA79 - Jackson and Ahrens, 1979; M07 - Mosenfelder et al., 2007 and to
pressure-temperature shock measurements of forsterite and olivine (Fo90) (Luo et al., 2004). Data
point labels refer to the shot numbers assigned by Mosenfelder et al. (2007).
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CHAPTER III

Self-Consistent Thermodynamic Description of Silicate

Liquids, with Application to Shock Melting of MgO Periclase
and MgSiO3 Perovskite

3.1 Abstract

We develop a self-consistent thermodynamic description of silicate liquids appli-

cable across the entire mantle pressure and temperature regime. The description

combines the finite strain free energy expansion with an account of the temperature

dependence of liquid properties into a single fundamental relation, while honoring

the expected limiting behavior at high volume and temperature. We find that the

fundamental relation describes well previous experimental and theoretical results for

liquid MgO, MgSiO3, Mg2SiO4 and SiO2. We apply the description to calculate

melting curves and Hugoniots of solid and liquid MgO and MgSiO3. For periclase,

we find a melting temperature at the CMB of 7360± 350 K, with the solid Hugoniot

crossing the melting curve at 344 GPa, 8880 K, and the liquid Hugoniot crossing at

452 GPa, 9170 K. For complete shock melting of periclase we predict a density in-

crease of 0.12 g/cm3 and a sound speed decrease of 2.3 km/s. For perovskite, we find

a melting temperature at the CMB of 5320 ± 210 K with the perovskite section of

the enstatite Hugoniot crossing the melting curve at 155 GPa, 5520 K, and the liquid

Hugoniot crossing at 242 GPa, 6290 K. For complete shock melting of perovskite

48
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along the enstatite principle hugoniot, we predict a density increase of 0.10 g/cm3,

with a sound speed decrease of 2.6 km/s.

3.2 Introduction

Liquid state thermodynamics have long played a central role in the study of mantle

petrology and geochemistry. The chemical history of a terrestrial planet is intimately

tied to its thermal history through fractionation processes associated with cooling

of a magma ocean and melting of a solid mantle (Miller et al., 1991b; Ohtani, 1988;

Solomatov and Stevenson, 1993; Agee and Walker, 1993; Ohtani and Sawamoto,

1987). Furthermore, seismic observations suggest the presence of partial melt atop

the 410 km discontinuity, (Revenaugh and Sipkin, 1994; Song et al., 1994) and at

the base of the mantle (Williams and Garnero, 1996; Revenaugh and Meyer, 1997;

Garnero and Helmberger, 1995). Accurate estimates of the solidus temperature of

the mantle at those depths can thus provide key constraints on the composition and

geothermal profile of the mantle. Decompression melting close to the free surface

is responsible for the mafic and ultramafic igneous rocks that, together with mantle

xenoliths, provide our most direct chemical observations of the Earth’s deep interior.

Accurate estimates of the equations of state and phase equilibria of melts constrain

the pressures at which melting primarily occurs (Asimow et al., 1995; McKenzie and

Bickle, 1988) and the depth limits from which melts can reach the surface (Agee and

Walker, 1988, 1993; Stolper et al., 1981; Rigden et al., 1989; de Koker et al., 2008a).

While the equations of state of many solid mantle phases have been measured

to lower mantle pressures (Stixrude and Lithgow-Bertelloni, 2005, and references

therein), the experimental study of silicate liquids remains challenging, even at low

pressures (Shen and Lazor, 1995; Rigden et al., 1989; Lange and Carmichael, 1987;
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Lange and Navrotsky, 1992; Ai and Lange, 2008). First principles molecular dynam-

ics (FPMD) studies (Stixrude and Karki, 2005; Karki et al., 2006, 2007; de Koker

et al., 2008a; Wan et al., 2007; Sun, 2008; Trave et al., 2002; Laudernet et al., 2004)

have recently focused on silicate liquids at pressures and temperatures relevant to the

full extent of the Earth’s mantle, and revealed rich structural and thermodynamic

compressional behavior. Thermodynamic properties were found to be significantly

different from those of solids: the isochoric heat capacity (CV ) is generally larger

than the high temperature limit seen in solids (3 NkB) and varies significantly on

compression; the Grüneisen parameter (γ) increases with compression, whereas it

always decreases during isostructural compression of solids.

In this study, we develop a self consistent thermodynamic description of liquid

state thermodynamics relevant to silicate liquids at pressures and temperatures char-

acteristic of mantles and magma oceans associated with terrestrial planets. We apply

our thermodynamic formalism to the description of FPMD results, using these as

a guide to the functional forms and the relevant physics. In addition, we derive an

anharmonic fundamental relation for solids at high temperature (i.e. in the classical

limit), which we combine with the liquid descriptions to obtain melting curves and

theoretical Hugoniot loci for MgO periclase and MgSiO3 perovskite.

3.3 Previous Work

PV T equations of state were first described for the ideal gas (Boyle, 1662; Clapey-

ron, 1834). This equation of state treats particles as independent, and is thus unable

to describe the liquid-vapor transition. At high pressures, this relation is commonly

applied to stellar interiors (Chandrasekhar, 1939; Phillips, 1994), but it does not

capture the comparative incompressibility of terrestrial materials such as silicate liq-
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uids at the conditions characteristic of planetary interiors. Subsequent Van der Waals

(van der Waals, 1873) and Redlich-Kwong (Redlich and Kwong, 1949) equations were

formulated to capture critical behavior and the liquid-vapor transition, but are only

valid close to ambient conditions, predicting very incompressible behavior at higher

pressure. Modified Redlich-Kwong forms (Brodholt and Wood, 1993; Halbach and

Chatterjee, 1982; Holland and Powell, 1991) address this problem, but require many

free parameters to constrain. Similarly, other empirical and semi-empirical forms,

developed primarily for interpolation of large datasets of liquid and gas thermo-

dynamic properties (Pitzer and Sterner, 1994; Belonoshko and Saxena, 1992; Span

and Wagner, 1997), also require large numbers of free parameters with consequent

poor extrapolation and unphysical oscillations in thermodynamic properties. None

of these existing forms are thus able to capture the essentials of silicate liquids over

a geophysically interesting pressure range with sufficiently few free parameters.

The Thomas-Fermi model (Slater and Krutter, 1935; Feynman et al., 1949; Mar-

shak and Bethe, 1940) gives an approximate description of the equation of state at

very high pressures, based on a simplified model of the electronic charge density. It

has been successfully applied to stellar and gas giant interiors, but is too approxi-

mate to offer detailed insight into the behavior of materials within the Earth’s interior

(Knopoff and Uffen, 1954; Birch, 1952). In high pressure hydrodynamic simulations

these problems are remedied to some extent by the quotidian equation of state (More

et al., 1988; Young and Corey, 1995), but it assumes a number of simplifying rela-

tionships, in particular the Dulong-Petit law and the Lindemann law, which have

been shown not to hold for silicate melts (Stixrude and Karki, 2005; Karki et al.,

2007; de Koker et al., 2008a; Jeanloz and Roufosse, 1982; Stebbins et al., 1984).

Experimental studies of the equation of state of silicate liquids have been almost
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entirely limited to ambient and uppermost mantle pressures (Lange and Carmichael,

1987; Lange, 1997; Courtial et al., 1997; Ai and Lange, 2008; Agee and Walker, 1988,

1993; Bottinga, 1985), with only a few shock loading and multi-anvil measurements

giving insight into the equation of state at pressures characteristic of the lower mantle

(Mosenfelder et al., 2007; Rigden et al., 1984, 1989; Chen et al., 2002; Miller et al.,

1991a; Suzuki and Ohtani, 2003; Sakamaki et al., 2006; Matsukage et al., 2005).

These results have shown that simple polynomial descriptions of P (V, T ) or V (P, T )

(Ghiorso and Sack, 1995) are inadequate at high pressure (Ghiorso, 2004). The Birch-

Murnaghan equation of state (Birch, 1952, 1978) has been widely used (Lange, 2003,

2007; Ghiorso et al., 2002; Rigden et al., 1989; Sakamaki et al., 2006; Matsukage

et al., 2005; Suzuki and Ohtani, 2003), but more high pressure data are needed to

test its validity, while its suitability for silicate liquids has been questioned on a

theoretical basis (Hofmeister, 1993; Ghiorso, 2004).

A key issue which has not been carefully addressed, is the thermal contribution to

the liquid equation of state. In describing the temperature and pressure dependence

of a material simultaneously, great care must be taken to preserve thermodynamic

self consistency (Ghiorso et al., 2002; Ghiorso, 2004; Dorogokupets, 2000; Pavese,

2002; Ai and Lange, 2008). The main goal of the work presented here is to derive

a thermodynamic treatment of silicate liquids which self consistently describes their

pressure and temperature dependence.

3.4 Fundamental Thermodynamic Relations

We obtain an expression for the Helmholtz free energy

(3.1) F = F (V, T ),
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as a function of its natural variables, volume (V ) and temperature (T ). We follow

Callen (1985) in referring to F (V, T ) as a ”fundamental thermodynamic relation”,

because all thermodynamic information may be self consistently obtained from it by

differentiation, reduction of derivatives and Legendre transformations,

P = −
(

∂F

∂V

)
T

,(3.2)

S = −
(

∂F

∂T

)
V

,(3.3)

KT = V

(
∂2F

∂V 2

)
T

,(3.4)

αKT = −
(

∂2F

∂V ∂T

)
,(3.5)

CV = −T

(
∂2F

∂T 2

)
V

,(3.6)

γ

V
=

αKT

CV
,(3.7)

KS

KT
=

CP

CV
= (1 + Tαγ) ,(3.8)

G = F − V

(
∂F

∂V

)
T

= F + PV,(3.9)

E = F − T

(
∂F

∂T

)
V

= F + TS,(3.10)

H = F − T

(
∂F

∂T

)
V

− V

(
∂F

∂V

)
T

= F + TS + PV.(3.11)

By deriving all the equilibrium thermodynamics from a single function, self-

consistency among properties is guaranteed through Maxwell relations.
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3.4.1 Liquids

The fundamental thermodynamic relation of the liquid phase is

(3.12) F (V, T ) = Fig(V, T ) + Fxs(V, T ) + Fel(V, T ),

where we have assumed the three contributions to F to be separable (McQuarrie,

1984). These contributions are: an ideal gas term (Fig) arising from atomic momenta,

an excess term (Fxs) which accounts for inter-atomic interaction, and an electronic

term (Fel) describing the free energy due to thermal excitation of electrons.

Nuclear Momentum Contribution

The atomic momentum contribution (ideal gas term) is given by an ideal mixture

of the free energy (Figα) of the respective species (α) that make up the liquid (Lupis,

1983; McQuarrie, 1984),

(3.13) Fig =
∑

α

NαFigα + RT
∑

α

Nα ln Xα,

(3.14) Figα = −RT

[
ln Vα +

3

2
ln T +

3

2
ln

(
mαkB

2π�2

)
+ 1

]
,

where

(3.15) Xα =
Nα∑
α Nα

,

and Vα and mα is the volume and mass of one particle of type α.

Excess Nuclear Contribution

Let f = f(V ) and θ = θ(T ) such that f(V0) = 0 and θ(T0) = 0, with V0 and T0

the reference volume and temperature at pressure P0. Expand Fxs in f and θ about

the origin in a two-dimensional Taylor series. From the resulting excess free energy

(3.16) Fxs(V, T ) =
∑
i=0

∑
j=0

aij

i!j!
f iθj ,
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follows

(3.17) Pxs(V, T ) = − ∂f

∂V

∑
i=0

∑
j=0

iaij

i!j!
f i−1θj ,

(3.18) Sxs(V, T ) = − ∂θ

∂T

∑
i=0

∑
j=0

jaij

i!j!
f iθj−1,

(3.19) Exs(V, T ) =
∑
i=0

∑
j=0

aij

i!j!
f iθj−1

(
θ − jT

∂θ

∂T

)
.

(3.20) KTxs(V, T ) = V
∑
i=0

∑
j=0

iaij

i!j!
θj

[(
∂2f

∂V 2

)
f i−1 +

(
∂f

∂V

)2

(i − 1)f i−2

]

(3.21) αKTxs(V, T ) = −
(

∂f

∂V

) (
∂θ

∂T

) ∑
i=0

∑
j=0

ijaij

i!j!
f i−1θj−1

(3.22) CV xs(V, T ) = −T
∑
i=0

∑
j=0

jaij

i!j!
f i

[(
∂2θ

∂T 2

)
θj−1 +

(
∂θ

∂T

)2

(j − 1)θj−2

]

We follow Birch (1952) and choose

(3.23) f =
1

n

[(
V0

V

)n
3

− 1

]
,

which reduces to the Eularian finite strain for n = 2. For T = T0, Equation 3.17

reduces to the Birch-Murnaghan equation of state.

By describing the thermal variable as

(3.24) θ =

[(
T

T0

)m

− 1

]
,

the internal energy (Equation 3.19) becomes

(3.25) Exs(V, T ) =
∑
i=0

∑
j=0

aij

i!j!
f iθj−1

[(
T

T0

)m

− 1

]j−1 [(
T

T0

)m

(1 − jm) − 1

]
,

which after rearrangement of terms, may be summarized as

(3.26) Exs(V, T ) =
∑
j=0

bj(f)T jm,

where the coefficients bj are polynomials in f that contain the excess free energy

expansion coefficients aij .
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Thermal Electronic Contribution

In a simple metallic system, the electronic heat capacity is (Wallace, 2002)

(3.27) Ccond
V el (V, T ) =

π2

3
n(εf )kBT,

where n(εf ) is the electronic density of states at the Fermi level, εf .

Silicate liquids are known to become conductive at high temperatures (Hicks et al.,

2006). Thus we adapt Equation 3.27 to apply only above the temperature of onset

(Tel) where the liquid becomes conductive

(3.28) CV el(V, T ) =

⎧⎪⎨
⎪⎩

β(V ) [T − Tel(V )] T ≥ Tel

0 T < Tel

.

With the electronic entropy (Sel) and free energy (Fel) zero at Tel, integration

yields

(3.29) Sel = β

[
T − Tel − Tel ln

T

Tel

]
,

(3.30) Fel = −β

[
1

2

(
T 2 − T 2

el

) − TTel ln
T

Tel

]
,

from which the electronic energy (Eel) and pressure (Pel) follow as

(3.31) Eel =
1

2
β [T − Tel]

2 ,

(3.32) Pel =
∂β

∂V

[
1

2

(
T 2 − T 2

el

) − TTel ln
T

Tel

]
+ β

∂Tel

∂V

[
(T − Tel) − T ln

T

Tel

]
.

The volume dependence of β and Tel is described by a power law relation

(3.33) β = β0

(
V

V0

)ξ

,

(3.34) Tel = Tel0

(
V

V0

)η

.
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Limiting Behavior

The liquid relation is designed such that the infinite temperature and volume

limits capture the expected material properties at those conditions, given suitable

values of n and m. Limiting values of the excess properties, derived from Equations

3.17-3.22 are summarized in Table 3.1. Total values follow from addition of ideal gas,

excess and thermal electronic terms, with the exception of the Grüneisen parameter,

which is not additive.

Also, the non-electronic portion of the liquid relation captures the physics of the

liquid-vapor transition at moderately high volumes. The power law parameterization

of volume dependence in the thermal electronic contribution does not capture the

limiting behavior of Fel as V → ∞.

3.4.2 Solids at High Temperature

We follow previous studies (Stixrude and Lithgow-Bertelloni, 2005; Stixrude and

Bukowinski, 1990a) and describe the solid by

(3.35) F = F0 + Fcmp + Fth,

with the assumption that the various contributions to F are separable. F0 is the free

energy at reference volume (V0) and temperature (T0), Fcmp and Fth are the compres-

sional and thermal contributions to the free energy, respectively. The contribution

due to atomic momentum (Fig) is negligible, and the thermal electronic contribution

(Fel) is zero for silicate minerals.

Fcmp is expressed as an expansion in terms of the Eularian finite strain (f) (Birch,
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1952, 1978)

Fcmp = 9KT0V0

[
1

2
f 2 +

1

6
a3f

3 +
1

24
a4f

4 + · · ·
]

,(3.36)

a3 = 3 (K ′
T0 − 4) ,(3.37)

a4 = 9 [KT0K
′′
T0 + K ′

T0 (K ′
T0 − 7)] + 143,(3.38)

f =
1

2

[(
V0

V

) 2
3

− 1

]
.(3.39)

The familiar form of the Birch-Murnaghan equation of state follows as the isothermal

volume derivative of Equation 3.36. V0, KT0, K ′
T0, and K ′′

T0 are the volume, bulk

modulus, and its frst and second pressure derivatives at zero pressure and a reference

temperature (T0).

Fth is obtained by integration of the entropy

(3.40) Fth = −
∫ T

T0

S(V, T ′)dT ′,

with the entropy obtained as

(3.41) S(V, T ) = S(V0, T0) +

∫ V

V0

αKT (V ′, T0)dV ′ +
∫ T

T0

CV (V, T ′)
T ′ dT ′,

with

(3.42) αKT =
CV γ

V
.

CV is taken as constant, although its value is not constrained to allow for anhar-

monicity. Through the Maxwell relation

(3.43)
1

T

(
∂CV

∂V

)
T

=
1

V

(
∂CV γ

∂T

)
V

,

CV independent of V and T implies that γ is independent of T . We describe γ(V )

as

(3.44) γ = γ0 + γ1V
−n/3 + γ2V

−2n/3,
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which follows from

(3.45) γ = γ′
0 + γ′

1f + γ′
2f

2,

a form akin to Equation 44 of Stixrude and Lithgow-Bertelloni (2005).

Fth now follows as

Fth(V, T ) = −S0 [T − T0] − CV

[
T ln

T

T0
− [T − T0]

]

−CV

[
γ0 ln

(
V

V0

)
− 3

n
γ1(V

−n
3 − V

−n
3

0 )

− 3

2n
γ2(V

− 2n
3 − V

− 2n
3

0 )

]
[T − T0] ,(3.46)

Applying Equations 3.2, 3.3 and 3.10 to Equation 3.35, we have

E(V, T ) = E0 + 9KT0V0

[
1

2
f 2 +

1

6
a3f

3 +
a4

24
f 4 + · · ·

]
+ CV [T − T0]

+T0CV

[
γ0 ln

(
V

V0

)
− 3

n
γ1(V

−n
3 − V

−n
3

0 ) − 3

2n
γ2(V

− 2n
3 − V

− 2n
3

0 )

]
,(3.47)

P (V, T ) = 3KT0(1 + 2f)
5
2

[
f +

a3

2
f 2 +

a4

6
f 3 + · · ·

]
+CV

[γ0

V
+ γ1V

− (n+3)
3 + γ2V

− (2n+3)
3

]
[T − T0] .(3.48)

3.5 First Principles Molecular Dynamics Simulations

To test the solid and liquid fundamental relations, we use FPMD simulation results

for MgO periclase, MgSiO3 perovskite (Stixrude and Karki, 2005), as well as liquid

MgO (Karki et al., 2006), MgSiO3 (Stixrude and Karki, 2005), Mg2SiO4 (de Koker

et al., 2008a) and SiO2 (Karki et al., 2007). With the application to shock melting

in mind, we supplement the MgSiO3 and MgO liquid data of Stixrude and Karki

(2005) and Karki et al. (2006) at high pressures. These systems are melted at higher
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temperatures (8000 K and 15000 K, respectively), and then cooled isochorically as

in previous calculations. Mg2SiO4 and MgSiO3 liquid simulations at 2000 K are also

added to improve constraints at ambient pressure.

Our computational technique is described in detail in our previous work, and we

only highlight a few salient points here. FPMD simulations based on DFT (Ho-

henberg and Kohn, 1964; Kohn and Sham, 1965) are performed as implemented in

the VASP plane-wave code (Kresse and Furthmüller, 1996), using pseudopotentials

(Kresse and Hafner, 1994), the local density approximation (LDA, Ceperley and

Alder (1980)) and a single k-point at the Brillouin zone center (Γ). Systems consist

of 64 (MgO liquid and periclase), 112 (Mg2SiO4 liquid), 80 (MgSiO3 liquid and per-

ovskite) and 72 atoms (SiO2 liquid) in a periodic simulation cell. The cell is cubic

for liquid simulations, with solid cell dimensions adjusted to obtain a hydrostatic

stress tensor. Simulations are performed in the canonical ensemble (constant NV T )

through the use of a thermostat (Nosé, 1984). We use a time increment of 1.0 fs and

run durations of at least 3000 fs, sufficient for converged values of the pressure and

internal energy, the mean values of which are obtained using the blocking method

(Flyvberg and Petersen, 1989).

The pressure is adjusted to correct for the finite basis set (Francis and Payne,

1990) and overbinding of the LDA (Karki et al., 2001; Oganov et al., 2001b). Be-

cause atomic motion is entirely classical at all temperatures (Allen and Tildesley,

1987), energy values do not capture the quantum effects characteristic of atomic vi-

brations at low temperature in solids, and are thus only physical in the limit of high

temperatures. Quantum corrections can be applied (Wigner, 1932; Kirkwood, 1933;

Oganov et al., 2001a), but our interest here is in solids close to melting where such

corrections will be negligible.
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The electronic entropy is obtained from the electronic eigenvalues (ε) as (Kresse

and Furthmüller, 1996; Mermin, 1965)

(3.49) SDFT
el = −2kB

∑
i

[φ(εi) ln φ(εi) + [1 − φ(εi)] ln [1 − φ(εi)]] ,

where

(3.50) φ(εi) =
1

eβ(εi−εf ) + 1

is the Fermi-Dirac distribution function, with β = kBT . The Fermi energy (εf ) is

determined by the number criterion.

We stress that our FPMD simulations do not give information on the value of

the entropy. S0 must be constrained by additional information. In liquids it is

obtained by specifying the free energy of the coexisting solid at a fixed melting

point, chosen from the available experimental estimates. For solids, S0 may be found

from the vibrational density of states, which we obtain here using an experimental

implementation of the Debye approximation which partially accounts for intrinsic

anharmonicity (Stixrude and Lithgow-Bertelloni, 2005). However, E, H , P and all

second and higher order derivatives may be derived without knowing the value of S0;

it is only needed for values of the entropy (S) and free energy (F and G), properties

crucial to phase equilibria calculations.

To perform the fit for the liquid, the order to which the excess free energy is

expanded must be determined and n and m specified. We denote the respective

orders of expansion in f and θ as Of and Oθ. Considering its overwhelming success

in fitting and extrapolating high pressure equations of state, we adopt the Eularian

finite strain in our description for melts as well, i.e. we use n = 2. Similarly, the

correct limiting behavior as T → ∞ requires m < 1 for Oθ = 1 and m < 1/2 for
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Oθ = 2. The value of m is therefore allowed to vary based on the composition and

the value of Oθ required to fit the data.

To constrain the liquid relation, electronic entropy is fit to Equation 3.29, with

the subsequent Eel and Pel removed from the total E and P values to obtain the

excess values. Exs and Pxs are fit to Equations 3.19 and 3.17 in a single least squares

inversion to constrain coefficients aij , which in turn are related to physical proper-

ties at the reference pressure (P0) and temperature (T0) (Equations A.5-A.19). To

minimize the number of free parameters, we explicitly exclude coefficients that do

not notably improve the fit.

The free parameters which describe the solid - E0, CV , γ0, γ1, γ2, K0, K ′
0 - are

similarly determined by inversion of the total E and P from FPMD to Equations

3.47 and 3.48.

3.6 Results

3.6.1 Liquids

Consistent with the conclusions in the original studies, we find that MgO, Mg2SiO4

and MgSiO3 liquid equations of state are sufficiently described with a third order

finite strain expansion (Of = 3), while SiO2 requires a fifth order expansion (Of = 5)

(Figures 3.1-3.4). Values of m that optimize the first (Oθ = 1) and second (Oθ = 2)

order fits to the FPMD data, are noted in Table 3.2. The quality of the optimal

Oθ = 1 fit is only sufficient in the case of MgO, and marginally so for Mg2SiO4.

High temperature low density points are poorly accounted for in all three silicate

compositions, with the misfit increasing with SiO2 content. These discrepancies are

remedied using Oθ = 2. However, in SiO2 the Oθ = 2 fit is significantly further

improved when excluding the T = 6000 K, V/VX = 0.8, 0.9 and 1.0 points (white

circles in Figure 3.4). These points are at pressures below 15 GPa, where 6000 K is
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of less geophysical importance.

For the Of = 3 cases, we find that allowing a31 to vary as a free parameter

improves the Of = 3, Oθ = 1 fits notably, as does including a31, a22, and a32 for

Oθ = 2. In contrast, a51, a42, and a52 does not improve the SiO2 fit to a meaningful

extent, and are thus explicitly excluded to reduce the number of free parameters.

Thermodynamic properties at ambient pressure for the respective liquids are com-

pared to previous experimental and theoretical estimates in Tables 3.3 - 3.6. Only

partial molar experimental data for MgO liquid is available, and we mostly compare

to previous theoretical estimates. Equation of state parameters differ slightly from

those of Karki et al. (2006), because all the data are used in obtaining the equation

of state fit. The added simulations at 2000 K for Mg2SiO4 and MgSiO3 enable us to

draw a direct comparison to experimental data collected at 1773 K. As with MgO,

the 3000 K equation of state parameters parameters of SiO2 also differ somewhat

from those obtained by Karki et al. (2007). Notable discrepancies with α, CV , and

CP likely result from the large thermal extrapolation. Uncertainties in each thermo-

dynamic property is estimated by repeated fitting to a Monte-Carlo perturbation of

the simulation data, constrained by its error estimates. Changes in CV and γ with

compression are shown in Figure 3.5.

The ability of the liquid relation to capture the thermodynamics of the liquid-

vapor transition is illustrated by extrapolating the Mg2SiO4 3000 K isotherm to very

large volumes (Figure 3.6). We ignore the thermal electronic contribution here,

as it will likely vanish at these large volumes. The extrapolation yields a liquid-

vapor coexistence pressure of 0.13 GPa, and a heat of vaporization of 1420 kJ/mol,

comparible to the heat of vaporization of forsterite used in giant impact studies (Benz

et al., 1989; Canup, 2004).
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3.6.2 Solids

A third order finite strain expansion is sufficient to fit the periclase simulations up

to a compression ratio of V/VX = 0.45, but we find that a fourth order expansion is

required to account for the points at higher pressures (Figure 3.7). Thermodynamic

parameters at ambient pressure and reference temperature compare favorably with

values from experiment and previous theoretical calculations (Table 3.7). Compar-

ison of γ at high pressure with experiment and theory are also good (Figure 3.7,

inset).

As found by Stixrude and Karki (2005), a third order finite strain expansion is

sufficient to fit the perovskite results, including the added data points at V/VX = 0.4

(Figure 3.8). Comparison of 0 GPa thermodynamic parameters to previous FPMD

results is excellent (Table 3.8). The compressional decrease of γ compares reasonably

with previous first principles estimates (Oganov et al., 2001a; Karki et al., 2000b)

(Figure 3.8, inset).

3.7 Applications

To illustrate the power of our method, we compute ambient pressure thermody-

namic properties as well as high pressure melting curves and Hugoniots for MgO

periclase and MgSiO3 perovskite (enstatite unshocked state), and the corresponding

liquid phases. Our aim is to obtain a direct comparison of our simulation results to a

broad range of low pressure measurements and high pressure shock loading data and

make predictions of trends to expect where measurements have not yet been made.

Melting curves are obtained by finding the loci of pressure and temperature where

solid and liquid Gibbs free energies correspond. As we use a reference melting tem-

perature to constrain the liquid free energy from that of the solid, this approach is
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equivalent to integration of the Clapeyron equation, with integration done analyti-

cally rather than numerically.

For a given volume (Vh) or density (ρh), the theoretical Hugoniot state is given

by the temperature (Th) at which the pressure (Ph) and internal energy (Eh) satisfy

the Rankine-Hugoniot relation,

(3.51) (Eh − Er) = −1

2
(Ph + Pr) (Vh − Vr) ,

where Er and Vr is respectively the internal energy and volume of the unshocked

state defined by pressure Pr and temperature Tr. We compute Er from first principles

by relaxing enstatite and periclase at the experimental volume Vr, and applying a

thermal correction to account for the difference in energy between static conditions

and 300 K (Stixrude and Lithgow-Bertelloni, 2005).

In a solid the longitudinal wave velocity is given by

(3.52) vP =

√
KS + 4/3μ

ρ
.

where μ is the shear modulus. In liquids, μ = 0, and vP reduces to the bulk sound

velocity

(3.53) vB =

√
KS

ρ
.

The sound velocity of the shock compressed phase can be measured in a shock loading

experiment, with a large decrease with pressure being a strong indication of shock

melting. For the liquid, we compute vB along the Hugoniot (Equation 3.8) and

compare to vP of the solid, calculated with Equation 3.52 from experimental data

using the model of Stixrude and Lithgow-Bertelloni (2005).

Consistent with previous theoretical estimates (Cohen and Gong, 1994; Vočadlo

and Price, 1996; Belonoshko and Dubrovinsky, 1996; Strachan et al., 2001; Alfe,
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2005), our periclase melting curve (Figure 3.9), has a distinctly higher initial Clapey-

ron slope than the experimental determination of Zerr and Boehler (1994). The slope

remains positive over the entire pressure range considered. We find a melting tem-

perature at the CMB of 7360 ± 354 K, which is 780 K lower than the LDA melting

curve obtained by Alfe (2005) through FPMD simulation of direct phase coexistance.

The FPMD periclase Hugoniot agrees very well with the measured pressure-

density Hugoniot (Svendsen and Ahrens, 1987; Duffy and Ahrens, 1995; Vassiliou

and Ahrens, 1981; Marsh, 1980), but is somewhat warmer than the temperature

measurements of Svendsen and Ahrens (1987). The periclase Hugoniot crosses the

melting curve at P = 344 GPa, T = 8880 K, with the liquid phase periclase Hugoniot

crossing the melting curve at P = 452 GPa, T = 9170 K. Complete shock melting is

predicted to result in a ∼ 0.12 g/cm3 density increase and a 2.3 km/s sound velocity

decrease along the Hugoniot. Liquid-solid sound velocity contrast along the Hugo-

niot is found from the p-wave velocity of periclase, calculated from experimental data

using the model of Stixrude and Lithgow-Bertelloni (2005).

Our perovskite melting curve (Figure 3.10) is almost identical to the result of

Stixrude and Karki (2005), being somewhat colder than the measurements of Zerr

and Boehler (1993) and Shen and Lazor (1995), though warmer than the experi-

mental measurements of Knittle and Jeanloz (1989), Heinz and Jeanloz (1987) and

Sweeney and Heinz (1998), as well as the result of Stixrude and Bukowinski (1990a).

The Clapeyron slope remains positive over the entire pressure range considered. We

find a melting temperature at the CMB of 5320± 213 K, which is more than 2000 K

lower than the melting temperature obtained by Brodholt (2008) through FPMD

simulation of direct phase coexistance.

The FPMD perovskite component of the enstatite principle Hugoniot compares
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well with the measured pressure-density Hugoniot (Akins et al., 2004) points at

149 GPa and 170 GPa, but is notably warmer than the temperature measurements

of Luo et al. (2004). The perovskite Hugoniot crosses the melting curve at P =

155 GPa, T = 5520 K, with the liquid phase Hugoniot crossing the melting curve

at P = 242 GPa, T = 6290 K. Complete shock melting is predicted to result in

a ∼ 0.10 g/cm3 density increase and a 2.6 km/s sound velocity decrease along the

Hugoniot.

3.8 Discussion

For a given order of expansion in the thermal variable (Oθ), values of m are

remarkably similar for all four compositions considered. We will highlight the impli-

cations of two aspects of this result. Firstly, the values of m obtained, especially in

the Oθ = 1 case, and secondly, the degree to which Oθ = 1 fails in Mg2SiO4, MgSiO3,

and especially in SiO2.

For Oθ = 1 and m = 3/5, the internal energy expression derived from our liquid

fundamental relation (Equation 3.26) is equivalent to the theoretical expression for

the energy of cold, dense, simple liquids (Rosenfeld and Tarazona, 1998)

(3.54) Etheory(T ) = Eig(T ) + c0 + c1T
3
5 ,

where c0 and c1 are isochoric constants. Although one could perform independent

E(T ) fits of Equation 3.54 along individual isochors and obtain reasonable agreement

to the FPMD results, such an approach gives no information on the temperature de-

pendence of the pressure. Taking this additional information into account, as is

done in fitting the liquid fundamental relation to both P (V, T ) and E(V, T ) simulta-

neously, yields m values markedly higher than 3/5 for all the Oθ = 1 fits, though still

consistent with limiting behavior constraints. Previous semi-emprical MD studies of
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SiO2, MgSiO3, and Mg2SiO4 liquids (Saika-Voivod et al., 2001; Ghiorso et al., 2006;

Martin et al., 2006) found Equation 3.54 to hold for individual isochors, but failed

to account for all thermodynamic properties in a self-consistent way. The contrast

of our results with these previous studies highlights the importance of describing

the liquid state thermodynamic properties in terms of a single fundamental relation

without rigid constraints on the functional form of individual properties.

For m independent of volume and temperature, Oθ = 1 fits do not sufficiently

account for all the data in Mg2SiO4, MgSiO3 and SiO2 liquids, again in contrast

to findings of the semi-emprical MD studies of these compositions (Saika-Voivod

et al., 2001; Ghiorso et al., 2006; Martin et al., 2006). This difference likely results

from changes in the Si − O bonds with temperature not captured by semi-empirical

techniques, and highlights the importance of obtaining the interatomic forces from

the electronic structure in situ during molecular dynamics.

For Oθ = 2 and Of = 3, the fit for the excess free energy contribution requires

ten free parameters (thirteen for Of = 5), in addition to the four required to fit the

electronic contribution. As a result, the Oθ = 2 relation does not extrapolate well,

and can only be applied within a grid of NV T points as we do here.

Nonetheless, Oθ = 1 fits do give reasonable results at temperatures within ∼ 1000 K

of freezing. Equation 3.16 can therefore potentially be applied to silicate liquids of

natural compositions at geophysically relevant conditions, constrained using experi-

mental data. Since a02 = 0 for Oθ = 1, Equation A.10 gives

(3.55) m =
CV xs0

Sxs0
+ 1,

for m �= 0. Therefore m can be found with knowledge of the liquid S and CV

at the reference point, making application of the liquid fundamental relation to

experimental data possible.
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The theoretical suitability of a Eularian finite strain expansion for use with highly

compressible materials such as silicate liquids has been questioned (Ghiorso et al.,

2002; Ghiorso, 2004; Hofmeister, 1993). The two main concerns that have been cited

are firstly, that analytical inter-atomic potentials derived from the Birch-Murnaghan

equation of state predict non-physical effects for K ′
0 > 6 (Hofmeister, 1993), and

secondly, that the equation allows liquid bulk moduli to vanish at large volumes.

Experimental and theoretical results for silicate liquids show K ′
0 values to vary from

around 5 to as high as 12 (Rigden et al., 1989; Ai and Lange, 2008; Lange, 2003,

2007; Stixrude and Karki, 2005; Karki et al., 2007; de Koker et al., 2008a; Sun, 2008).

These high values reflect the ability of silicate liquids to access structural compression

mechanisms not available to solids, such as coordination and ring statistics, which

enable liquids to become very compressible at high temperature and low density.

The Hofmeister (1993) prediction only applies to simple ionic compounds, in which

only the bond length is altered upon compression, and is therefore not relevant to

silicate liquids. The second concern cited is, in fact, an asset of the finite strain

expansion. When combined with an ideal gas term, as we have done, the relation

shows a van der Waals loop (Figure 3.6), and thus also captures the thermodynamics

of the liquid-vapor transition.

The relation for solids works well over the large range of pressure and temperature

we consider, though the absence of a quantum correction requires caution in compar-

ison with experimental equation of state data below about 1000 K. The requirement

of a fourth order finite strain expansion for periclase is primarily due to the very

large pressures attained in the smallest volume considered (V/VX = 0.35). The re-

lation requires only seven (eight for periclase) free parameters, and can therefore be

extrapolated to higher temperatures and pressures with reasonable confidence.
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The discrepancy between our respective melting curves for periclase and per-

ovskite, and those determined by FPMD simulation of two-phase coexistence by Alfe

(2005) and Brodholt (2008), highlights the pitfalls of the two-phase method. In the

FPMD implementation, these simulations are limited in size to hundreds of atoms,

with the result that the periodic boundary condition may favor the stability of the

crystalline phase, and overestimate the melting temperature. Also, surface effects at

the melt-crystal interface will alter a large portion of both the liquid and crystalline

portions in such small systems, with the result that the simulation may not reflect

the equilibrium phases, and a stable crystalline core will be absent. Of course, these

surface effects are interesting in their own right, and two-phase coexistence simula-

tions do have the advantage of giving estimates of melting completely independent

of experimental input. However, the melting temperatures of geophysically relevant

compositions are known at ambient pressures to within uncertainties far smaller than

those realistically obtainable in two-phase FPMD simulations. Therefore, combining

such experimental measurements with our approach is likely to provide the most

accurate estimate of congruent melting temperatures at very high pressure.

Agreement with pressure-density Hugoniot data for perovskite is excellent, but

poor for shock temperature measurements. Pressure-density measurements are far

more robust than shock temperature measurements, in which a number of assump-

tions about the radiative properties of the material are made, including that the

shock front is smooth and non-reflecting, and that the electronic temperature is in

equilibrium with that of the lattice at the shock front. A Hugoniot obtained using

the self consistent thermodynamic model of Stixrude and Lithgow-Bertelloni (2005),

constrained with a variety of experimental data, is very similar to the FPMD Hugo-

niot, showing similar disagreement with the shock measured temperatures. The
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perovskite Hugoniot intersects the melting curve at a pressure slightly smaller than

where incipient melting has been inferred on the measured enstatite Hugoniot, sug-

gesting that some extent of overdriving into a superheated solid state may be present

in the experimental data. Somewhat more troubling, however, is the large discrep-

ancy between the density increase along the Hugoniot upon melting predicted by

theory and observed in experiment. The three inferred liquid points in the data of

Akins et al. (2004) are at pressures smaller than that at which the theoretical liquid

Hugoniot crosses the melting curve, and are likely only partially molten. Indeed,

extrapolation of the inferred experimental liquid Hugoniot to higher pressures gives

good agreement with the theoretical prediction. The observed large increase in den-

sity may result from processes related to shock-induced phase transformation, such

as a double shock front (Ng et al., 1991).

The fact that the liquid Hugoniot is at a larger density than that of the solid in

both periclase as well as perovskite should not be confused with a density crossover.

The larger liquid Hugoniot density results simply due to thermal contraction as

heat is absorbed during melting. Indeed, along the melting curves the densities of

periclase and perovskite remain larger than that of the respective coexisting liquids,

as reflected by the positive Clapeyron slopes.

3.9 Conclusion

By extending the finite strain description of materials at high pressure of Birch

(1952, 1978) to account for the thermal free energy contribution, we have constructed

a thermodynamic description of silicate liquids that is self-consistent and requires rel-

atively few free parameters. Application of this relation to silicate liquids simulated

by FPMD reveals that the effect of excited electronic states cannot be ignored in
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these materials at temperatures well above that of melting, and that existing theo-

retical predictions for the temperature dependence of the liquid free energy fail for

silicate liquids at high temperature.

Of particular geophysical interest is the melting of mantle minerals at deep lower

mantle pressures, most readily achieved in shock loading experiments. Shock melt-

ing may be identified by large changes in the temperature, discontinuities in density,

and a marked decrease in the sound velocity of the shocked state measured along

the Hugoniot. We are able to apply the thermodynamic description to obtain melt-

ing curves and Hugoniot loci for perovskite and periclase, compare to existing shock

loading measurements and make quantitative predictions of each of the melting cri-

teria.
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Table 3.1: Limiting behavior of excess thermodynamic properties, and values of n and m required
for these limits to hold. Oθ denotes the order of expansion in θ.

limV →∞ n limT→∞ m
Pxs 0 > −3 ∞ > 0
Sxs const(T ) > 0 0 < 1/Oθ

Exs const(T ) > 0 ∞ > 0
KTxs 0 > −3/2 ∞ > 0
αKTxs 0 > −3 0 < 1/Oθ

CV xs const(T ) > 0 0 < 1/Oθ
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Table 3.2: m values used in liquids Fxs fits

Oθ MgO Mg2SiO4 MgSiO3 SiO2 Theorya

1 0.874 0.881 0.869 0.828 0.6
2 0.417 0.416 0.371 0.370 -

aRosenfeld and Tarazona (1998)
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Table 3.3: Thermodynamic properties of FPMD MgO liquid at 0 GPa, 3000 K

This study Previous Estimates
V (cm3/mol) 16.46 16.50a, 16.26b, 16.03c,d, 16.03f

KT (GPa) 33.2 (2) 30.8 (29)a, 59.2b

KS (GPa) 43.1 (8) 33 (1)h

K ′
T 4.81 5.03 (33)a, 3.83b

α (10−6 K−1) 103.2 (1) 204f

S (NkB)‡ 10.51 (5)† 11.03d,e

CV NkB 3.5 (5) 3.0 (3)a

CP NkB 4.6 (9) 5.19 (3)g

γ 0.97 (3) 0.95 (7)a, 1.25f,g,h

aKarki et al. (2006); bCohen and Gong (1994); cKarki et al. (2000b); dAlfe (2005); eStixrude and

Lithgow-Bertelloni (2005); fLange (1997); gStebbins et al. (1984); hAi and Lange (2008)
‡ Value at melting temperature of 3070 K (Riley, 1966; Zerr and Boehler, 1994)
† Based on periclase Gibbs free energy at an assumed melting point of 3070 K, 0 GPa (Riley, 1966)
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Table 3.4: Thermodynamic properties of FPMD Mg2SiO4 liquid at 0 GPa, 1773 K

This study Previous Estimates
V (cm3/mol) 52.35 50.9a

KT (GPa) 17.9 (6) 24.3 (1)b

KS (GPa) 19.5 (7) 27 (3)b

K ′
T 8.92 6.9d,∗

α (10−6 K−1) 106 (2) 122 (7)a

S (NkB)‡ 8.5 (3)† 8.10 (16)g,h

CV NkB 3.7 (5) 3.7 (4)a,e

CP NkB 4.0 (6) 3.9 (4)e, 5.1 3f

γ 0.46 (2) 0.56 (3)a,b,f , 0.69 (4)a,b,e

aLange (1997); bAi and Lange (2008); cRivers and Carmichael (1987); dRigden et al. (1989);
eTangeman et al. (2001); fStebbins et al. (1984); gNavrotsky et al. (1989); hStixrude and Karki

(2005)
∗ Value for CaMgSi2O6
‡ Value at melting temperature of 2163 K (Bowen and Andersen, 1914)
† Based on forsterite Gibbs free energy at an assumed melting point of 2163 K, 0GPa (de Koker

et al., 2008a)
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Table 3.5: Thermodynamic properties of FPMD MgSiO3 liquid at 0 GPa, 1773 K

This study Previous Estimates
V (cm3/mol) 37.63 38.88a

KT (GPa) 18.7 (5) 16.81 (7)b

KS (GPa) 19.6 (6) 22 (2)b

K ′
T 7.69 6.9d,∗

α (10−6 K−1) 72 (2) 84 (4)a, 60e

S (NkB)‡ 8.06 (8)† 7.62 (6)g,h

CV NkB 3.4 (6) 4.2 (2)i

CP NkB 3.5 (7) 4.61 (15)i

γ 0.36 (1) 0.37 (14)a,b,i

aLange (1997); bAi and Lange (2008); cRivers and Carmichael (1987); dRigden et al. (1989);
eTomlinson et al. (1958); gRichet and Bottinga (1986); hStixrude and Lithgow-Bertelloni (2005);
iStebbins et al. (1984)
∗ Value for CaMgSi2O6
‡ Value at metastable congruent melting temperature of 1840 K (Bowen and Andersen, 1914)
† Based on perovskite Gibbs free energy at an assumed melting point of 2900 K, 25 GPa (Stixrude

and Karki, 2005, and references therein)
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Table 3.6: Thermodynamic properties of FPMD SiO2 liquid at 0 GPa, 3000 K

This study Previous Estimates
V (cm3/mol) 27.6 27.6a, 28.7b, 28.6c,b, 26.9d, 31h

KT (GPa) 8.3 (43) 5.2 (10)a, 5.1b

KS (GPa) 8.9 (45) 10.6 (6)i

K ′
T 6.5 22.5 (30)a

α (10−6 K−1) 129 (9) 40.86b, 12.3 − 123j

S (NkB) 8.92 (12)† 8.35b, 8.26e,f,g

CV NkB 5.4 (6) 5.0 (4)a

CP NkB 5.9 (9) 3.4b, 3.21 (3)e

γ 0.22 (4) 0.2 (1)a

aKarki et al. (2007); bHudon et al. (2002); cGaetani et al. (1998); dLange (1997); eStebbins et al.

(1984); fRichet and Bottinga (1986); gStixrude and Lithgow-Bertelloni (2005); hBacon et al. (1960);
iAi and Lange (2008); jDingwell et al. (1993)
† Based on stishovite gibbs free energy at an assumed melting point of 3120 K, 14GPa (Zhang et al.,

1993; Shen and Lazor, 1995)



79

Table 3.7: Thermodynamic properties of FPMD MgO periclase at 0 GPa, 2000 K

This study Previous Estimates
V (cm3/mol) 12.2 12.23a

KT (GPa) 107.9 (6) 102a

KS (GPa) 127 (1) 126a

K ′
T 4.92 4.97a

KT K ′′
T −6.65 -

CV NkB 3.04 (3) 2.98a

CP NkB 3.6 (7) 3.69a

α (10−6 K−1) 59.0 (5) 68.7a, 53b, 64c, 48d

γ 1.54 (2) 1.72a, 1.47e, 1.71c, 1.69d

aStixrude and Lithgow-Bertelloni (2005); bTouloukian et al. (1977);
cKarki et al. (2000a); dOganov and Dorogokupets (2003); eIsaak et al.

(1989)
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Table 3.8: Thermodynamic properties of FPMD MgSiO3 perovskite at 0 GPa, 2000 K

This study Previous Estimates
V (cm3/mol) 25.87 25.81a, 26.26b, 25.73c

KT (GPa) 191 (5) 189.06a, 181b, 210.6c

KS (GPa) 217 (11) 212.57a

K ′
T 4.30 4.96a, 4.67, 4.49c

α (10−6 K−1) 43 (1) 40a, 45.2b,37.3c

CV NkB 3.05 (30) 2.97a, 2.99b

CP NkB 3.5 (9) 3.34a, 3.46b

γ 1.6 (1) 1.57a, 1.9b, 1.51c

aStixrude and Lithgow-Bertelloni (2005); bKarki et al. (2000b);
cOganov et al. (2001b)
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Figure 3.1: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of MgO liquid.
Colored circles show values from FPMD simulations at 3000 K (blue), 4000 K (cyan), 5000 K (green),
6000 K (yellow), 7000 K (orange) and 10000 K (red) (Karki et al., 2006, except for points at V/VX =
0.35 and V/VX = 0.42). Black lines indicate the fit of P and E to Equation 3.16 with Oθ = 1
(solid lines) and Oθ = 2 (dashed lines), and a third order expansion in finite strain. Errorbars are
smaller than the size of the symbols. Inset on the right shows electronic entropy (Sel), with black
lines indicating the fit to Equation 3.30.
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Figure 3.2: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of Mg2SiO4

liquid. Colored circles show values from FPMD simulations at 2000 K (purple), 3000 K (blue),
4000 K (green) and 6000 K (red) (de Koker et al., 2008a, except for points at 2000 K). Black lines
indicate the fit of P and E to Equation 3.16 with Oθ = 2 (solid lines) and Oθ = 1 (dashed lines),
and a third order expansion in finite strain. Errorbars are smaller than the size of the symbols.
Inset shows electronic entropy (Sel), with black lines indicating the fit to Equation 3.30.
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Figure 3.3: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of MgSiO3

liquid. Colored circles show values from FPMD simulations at 2000 K (purple), 3000 K (blue),
4000 K (green), 6000 K (yellow) and 8000 K (red) (Stixrude and Karki, 2005, except for points at
2000 K and at V/VX = 0.4). Black lines indicate the fit of P and E to Equation 3.16 with Oθ = 2
(solid lines) and Oθ = 1 (dashed lines), and a third order expansion in finite strain. Errorbars are
smaller than the size of the symbols. Inset on the right shows electronic entropy (Sel), with black
lines indicating the fit to Equation 3.30.
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Figure 3.4: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of SiO2 liq-
uid. Colored circles show values from FPMD simulations at 3000 K (blue), 4000 K (green), 5000 K
(yellow) and 6000 K (red, white) (Karki et al., 2007). Black lines indicate the fit of P and E to
Equation 3.16 with Oθ = 2 (solid lines) and Oθ = 1 (dashed lines), and a fifth order expansion in
finite strain. White points are not included in the fit. Errorbars are smaller than the size of the
symbols. Inset on the right shows electronic entropy (Sel), with black lines indicating the fit to
Equation 3.30.
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Figure 3.5: Grüneisen parameter (γ) and isochoric heat capacity (CV ) for the respective liquid
compositions. γ and CV (units of NkB), follow the trends previously found by independent linear
fits of FPMD results along each simulated isochor (white symbols)(Stixrude and Karki, 2005; Karki
et al., 2006, 2007; de Koker et al., 2008a). Maxwell relations dictate that the volume dependence
of CV implies γ must be temperature dependent, so that independent isochoric fits are not ther-
modynamically self-consistent. Such linear fits are also inconsistent with the limiting behavior we
require for CV and γ. Our approach reveals detailed variations in CV and γ with temperature, but
also highlights that caution is required at the edges of the interpolated grid, as well as in extrap-
olation. Lines are colored by temperature: 3000 K (blue) through 6000 K (red) for SiO2, MgSiO3

and Mg2SiO4; 3000 K (purple) through 7000 K (orange) and 10000 K (red) for MgO
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obtained from this fit to previous estimates. Karki et al. (2000a), γ at 2000 K from lattice dynamics
(K20); Oganov and Dorogokupets (2003), FPMD at 1500 K (OD15) and 3000 K (OD30).
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Figure 3.9: Shock melting of MgO periclase. (top) FPMD melting curve of periclase with uncer-
tainty given by gray envelope. Previous LDA FPMD calculation of Alfe (2005) (A05; red dotted
line), and experimental measurement of Zerr and Boehler (1994) (ZB94) shown for comparison. The
solid Hugoniot (green line) crosses the melting curve at 344 GPa, 8880 K, and the liquid Hugoniot
crosses at 452 GPa, 9170 K (faint dotted lines). In between these points the equilibrium Hugoniot
should follow the melting curve. Metastable Hugoniot sections are shown as broken lines. SA87 -
shock temperature measurements of Svendsen and Ahrens (1987). (middle) Pressure-density Hugo-
niot, compared with measurements of Marsh (1980) (M80), Vassiliou and Ahrens (1981) (VA81),
Svendsen and Ahrens (1987) (SA87) and Duffy and Ahrens (1995) (DA95). Complete shock melting
is predicted to result in a ∼ 0.12 g/cm3 density increase along the Hugoniot, even though no density
crossover is present along the melting curve. (bottom) Bulk sound velocity (vB) of the liquid is
2.3 km/s slower than the p-wave velocity (vP ) calculated along the FPMD periclase Hugoniot from
experimental data using the model of Stixrude and Lithgow-Bertelloni (2005) (SLB05).
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Figure 3.10: Shock melting of MgSiO3 perovskite. (top) FPMD melting curve of perovskite with
uncertainty given by gray envelope. Result of Stixrude and Karki (2005) (SK05; red dotted line),
and experimental measurements of Heinz and Jeanloz (1987) (HJ), Knittle and Jeanloz (1989)
(KJ), Sweeney and Heinz (1998) (SH), Zerr and Boehler (1993) (ZB93), and Shen and Lazor (1995)
(SL95) shown for comparison. The solid Hugoniot (green line) is almost identical to that calculated
from experimental data (Stixrude and Lithgow-Bertelloni, 2005), and crosses the melting curve
at 155 GPa, 5520 K, with the liquid Hugoniot crossing at 242 GPa, 6290 K (faint dotted lines).
In between these points the equilibrium Hugoniot should follow the melting curve. Metastable
Hugoniot sections are shown as broken lines. L04 - shock temperature measurements of Luo et al.
(2004). (middle) Pressure-density Hugoniot, compared with measurements of Akins et al. (2004)
(A04), and Luo et al. (2004) (L04). Complete shock melting is predicted to result in a ∼ 0.1 g/cm3

density increase along the Hugoniot, even though no density crossover is present along the melting
curve. (bottom) Bulk sound velocity (vB) of the liquid is 2.6 km/s slower than the p-wave velocity
(vP ) calculated along the FPMD perovskite Hugoniot from experimental data using the model of
Stixrude and Lithgow-Bertelloni (2005) (SLB05).
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CHAPTER IV

Structure and Mixing of Liquids on the MgO − SiO2 Join and

the Origin of Liquid Immiscibility

4.1 Abstract

The properties of silicate melts in Earth’s deep interior are key to our under-

standing of its thermal and chemical evolution. Using results from first principles

molecular dynamics of six intermediate liquid compositions along the MgO-SiO2 join,

we investigate the compositional and pressure dependence of liquid state thermody-

namics and structure. At low pressure the enthalpy of mixing is notably pressure

dependent, primarily due to the disappearance with pressure of a maximum at high

silica compositions. Experimentally observed liquid immiscibility is a direct conse-

quence of this maximum. We identify the underlying contrasts in liquid structure

between pure SiO2 and intermediate composition liquids as the mechanism respon-

sible for liquid immiscibility, and illustrate its expression in other liquid properties

such as the Grüneisen parameter, isochoric heat capacity and compressibility. We

further find that the enthalpy of mixing is described by a two-parameter asymmetric

Margules solution model with pressure dependent interaction parameters.
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4.2 Manuscript

It is widely recognized that the Earth was likely entirely molten during the late

stages of accretion (Urey, 1955; Tonks and Melosh, 1993; Ruff and Anderson, 1980;

Hanks and Anderson, 1969), and that melt may be present at great depth within

current day the mantle (Revenaugh and Sipkin, 1994; Song et al., 1994; Williams

and Garnero, 1996; Garnero and Helmberger, 1995). Knowledge of the eutectic

composition and temperature of the lower mantle can thus constrain the geotherm

and yield insight into the thermal and chemical evolution of the planet. Liquids in

the MgO-SiO2 system account for a major fraction of the composition of a terrestrial

magma ocean after core-mantle segregation. Liquid immiscibility is known to exist in

this system at ambient pressures (Bowen and Andersen, 1914; Hageman and Oonk,

1986; Dalton and Presnall, 1997), and its potential occurrence at great depth within

a magma ocean has notable implications for its chemical evolution. To address these

questions, knowledge of the thermodynamics of mixing at lower mantle pressures is

required to combine results from experimental and theoretical studies of individual

compositions into a universal thermodynamic model of silicate melts. Here, we use

results from first principles molecular dynamics (FPMD) simulations of a number

of liquid compositions along the MgO-SiO2 join to investigate thermodynamics of

mixing and the compositional dependence of liquid structure to very high pressures.

Our approach has been discussed extensively in previous studies (Stixrude and

Karki, 2005; de Koker et al., 2008a,b). Constant NV T FPMD (Nosé, 1984) is per-

formed in the local density approximation (Ceperley and Alder, 1980, LDA) with

psuedopotentials (Kresse and Hafner, 1994) and the VASP planewave code (Kresse

and Furthmüller, 1996). We combine published simulation results for liquid MgO
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(Karki et al., 2006), Mg2SiO4 (de Koker et al., 2008a), MgSiO3 (Stixrude and Karki,

2005) and SiO2 (Karki et al., 2007), with new simulations for intermediate com-

position liquids, Mg5SiO7, Mg3Si2O7, MgSi2O5 and MgSi3O7. These intermediate

systems are initiated by removing and/or transforming an appropriate number of

atoms from either MgSiO3 or Mg2SiO4 and evolving the resulting high energy con-

figuration to a favorable state at 10000 K for 6000 time steps by FPMD. The empirical

pressure correction which accounts for the systematic overbinding in LDA for these

compositions is determined by interpolation along the join using the known values

for MgO, Mg2SiO4, MgSiO3 and SiO2.

As found previously for Mg2SiO4 and MgSiO3, a third order finite strain and

second order thermal variable (θ) expansion is required to fit P (V, T ) and E(V, T )

for the intermediate composition liquids to the liquid state fundamental relation

(de Koker et al., 2008b) (Figures B.1 - B.4).

In all compositions Si − O coordination (ZSi−O) increases from 4 to 6 upon two-

fold compression, with this increase notably delayed in pure SiO2 (Figure 4.1). ZMg−O

is close to 5 for all systems at V/V0 = 1.0, with a strong compositional trend emerging

by V/V0 = 0.5, where ZMg−O = 7 in MgO and ZMg−O = 7.2 in Mg5SiO7 increases to

ZMg−O = 8.8 in MgSi3O7. Polymerization, as expressed by ZO−Si, changes strongly

as a function of pressure and composition. At 0 GPa and 3000 K, only free (OF;

ZO−Si = 0), non-bridging (ON; ZO−Si = 1), and bridging oxygen (OB; ZO−Si = 2) are

present. ON is present in all mixed compositions, but most abundant at XSiO2 = 0.4.

Highly coordinated oxygen species appear upon compression, with ZO−Si = 3, and

ZO−Si = 4 dominant in high silica liquids by 136 GPa and 6000 K (Figure 4.2). A

larger variety of oxygen species are present at high pressures, with abundances more

evenly spread along the join.
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The changes in liquid structure with pressure and composition are strongly re-

flected by the thermodynamic properties. The increase in Grüneisen parameter (γ)

with compression is seen for all liquids along the join, albeit delayed in SiO2, and

highlights the relation between γ and ZSi−O (Figure 4.1). In solids, high pressure

phase transitions involving an increase in ZSi−O result in notable increases in γ, with

similar effects predicted for other cations, including Mg2+ (Jeanloz and Roufosse,

1982). The increase of γ with MgO content, and its notably weaker volume depen-

dence in MgO suggests that Mg − O bonds have intrinsically higher γ values, less

sensitive to changes in bond length. The decrease in compressibility with compres-

sion is delayed in SiO2 as well (Figure 4.3), while the decrease in KT0 values from

24 GPa in Mg5SiO7 to 9.9 GPa in MgSi3O7 is accompanied by an increase in K ′
T0 from

5.88 to 8.24 (Table 4.1), consistent with a more general KT0 - K ′
T0 anti-correlation

observed in silicate liquids (Lange, 2007).

At 0 GPa and 3000 K, the enthalpy of mixing (Hmix) shows a minimum of −22 kJ/mol

for Mg3Si2O7, and positive values at MgSi2O5 and MgSi3O7 (Figure 4.4). Extrapo-

lating Hmix to the critical miscibility temperature of 2250 K (Hageman and Oonk,

1986), we estimate an entropy of mixing (Smix) of 0.45 NkB at MgSi3O7. Above

7 GPa all Hmix values are negative, showing increasingly symmetric compositional

dependence. Pressure dependence in Hmix

(4.1)

(
∂Hmix

∂P

)
T

= Vmix (1 − Tαmix) .

results in a volume of mixing (Vmix), which displays a notably asymmetrical Vmix

minimum is at low pressure (Figure 4.4).

The contrast in compressional dependence of ZSi−O between pure SiO2 and liquid

mixtures, also reflected by γ, CV and KT , may be understood in terms of differences

in the liquid structure and its response to compression. In pure SiO2, the liquid
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is completely polymerized, comprising an open framework topology (Karki et al.,

2007). Upon compression, this open structure initially adapts through changes in ring

statistics (Stixrude and Bukowinski, 1990b; Karki et al., 2007), before coordination

increase sets in. These mechanisms are absent in the liquid mixtures, where the

framework breaks down in the presence of a high field-strength network modifier

(Hess, 1995). The contrast in topology is further responsible for the extremes in

Hmix and Vmix at low pressure. The large density of high silica liquids relative to

pure SiO2 is consistent with the absence of an open framework. This less polymerized

structure is not energetically favorable (Kieffer and Angell, 1989), resulting in the

maximum in Hmix. Such a stability relation, whereby a low density two phase liquid

assemblage is more stable than a more dense, single liquid phase can only occur at

low pressures. The absence of a maximum in Hmix above about 7 GPa is in agreement

with the experimental observation of liquid immiscibility disappearing above 5 GPa

(Dalton and Presnall, 1997). Deep mantle liquid immiscibility can therefore not arise

by this mechanism, consistent with the compositional dependence of Hmix at deep

mantle pressures.

To model Hmix at constant P , we use a two-parameter Margules equation (Thomp-

son Jr., 1967)

(4.2) Hmix = WSiO2YSiO2(1 − YSiO2)
2 + WMgO(1 − YSiO2)Y

2
SiO2

,

(4.3) YSiO2 =
XSiO2

λ + XSiO2(1 − λ)
,

where WSiO2 and WMgO are interaction parameters, and λ is a endmember scal-

ing parameter. For example λ = 3/2 changes the endmembers to Mg2O2 and

Si3O6. Interaction parameters and the required endmember scaling change notably

with pressure (Table 4.2). We thus find that the commonly applied assumption of
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(∂Hmix/∂P )T = 0 and Vmix = 0 is insufficient for the MgO-SiO2 system. Although

this assumption has been applied with great success to modeling experimental data

for silicate liquids at low pressure (Stebbins et al., 1984; Lange and Carmichael,

1987; Ghiorso and Sack, 1995; Ghiorso et al., 2002; Ai and Lange, 2008), and has

also been shown to hold for a liquid mixture with CaAl2Si2O8 and CaMgSi2O6 as

endmembers at pressures up to 25 GPa (Rigden et al., 1989), these studies focus on

only a small section of compositional space, and are therefore unable to capture the

rich thermodynamic behavior that our results reveal. Our results serve as a reminder

that extrapolating these models outside the compositional range within which they

are parameterized must be done with caution, especially in the case of endmembers

for which liquid immiscibility is known to occur.
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Table 4.2: Interaction parameters for Hmix obtained from fit of Equation 4.2

0 GPa 5 GPa 10 GPa 25 GPa 60 GPa 100 GPa
WMgO (kJ/mol) 175 140 10 −140 −140 −130
WSiO2 (kJ/mol) −210 −240 −235 −240 −225 −210

λ 3/2 3/2 5/4 1 1 1
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(left) (ZSi−O) increases from 4 to 6 upon two fold compression along the whole join, with the
increase notably delayed in SiO2. (right) γ at 4000 K for all liquids on the join increases with
compression and MgO content. The delay in its increase for SiO2 reflects the delayed increase in
ZSi−O. V0 is the volume at zero pressure as determined from fitting the equation of state.
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CHAPTER V

Conclusion

Two recurring conclusions emerge in the work presented here. The first is that

liquid structure, and its ability to change readily with compression, has a profound

influence on the macroscopic thermodynamic properties of the liquid. This is ex-

emplified in the origin of an isochemical density crossover along the melting curve

of forsterite (Chapter II), and of liquid immiscibility at low pressures, expressed in

the thermodynamics of mixing (Chapter IV). Properties and trends that distinguish

silicate liquids of varying composition from each other, and especially from the crys-

talline polymorphs, such as the increasing Grüneisen parameter, high compressibility

and high K ′
T0 values, are all the direct expression of liquid structure and its response

to compression.

Because liquid structure depends directly on bonding, obtaining the correct liquid

structure requires the valence electronic structure to be accurately described. Indeed,

the second recurring conclusion is that describing the system directly in terms of the

charge density invariably gives superior results to that obtained by empirical poten-

tial atomistic simulation techniques. Results are accurate over a very large pressure

range, and information about the valence electronic structure and its contribution

to the free energy are computed self consistently. This is especially important in
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liquids since, as we have shown in Chapter III, the thermal electronic free energy

contribution is not negligible at high temperatures.

Although we have illustrated the significant utility of first principles molecular

dynamics (FPMD), one should not lose sight of the fact that the various theoret-

ical components of our implementation, notably the local density approximation

(LDA), the Γ-point only Brillouin zone sampling, and the use of a periodic boundary

condition, are not without shortcomings. In calculating the equation of state and

transport properties, we corrected for these factors by estimating their likely effects.

The validity of these corrections remains to be tested by future studies as larger

computational resources and superior theoretical techniques become available.

In the introduction (Chapter I) we speculated regarding the presence of liquid

immiscibility and density crossovers within the deep mantle. We have subsequently

shown that liquid immiscibility is absent at pressures above about 7 GPa, and that

the structural mechanism responsible is only favorable at low pressure. We further

found that while Mg2SiO4 forsterite shows a density crossover, neither MgO peri-

clase, nor MgSiO3 perovskite melts to form a denser liquid, despite the continued

increase in cation coordination shown to be responsible for the density crossover in

forsterite. Therefore, if perovskite is the liquidus phase within a crystallizing magma

ocean, it will sink to depths where it may be re-assimilated, diminishing chemical

differentiation and prolonging the crystallization time scale.

We have also shown the increasing trend in the Grüneisen parameter (γ) to hold

for all liquids along the join. From the definition of the Grüneisen parameter and

Maxwell relations follow that

(5.1)

(
∂ ln T

∂ ln ρ

)
S

= γ
T

ρ
.

Therefore, given the density profile of a magma ocean, the adiabat found for γ in-
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creasing with density will be steeper than that found where γ decreases. An increas-

ing γ thus places existing estimates of the adiabatic profile within a magma ocean

under renewed scrutiny, since these estimates assume γ to decrease with compression

(Miller et al., 1991b).

Because the melting temperatures of liquids that contain Fe, Ca, Al and H2O will

be lower than those of the MgO-SiO2 system, our respective melting curves serve

as upper bounds for the melting temperatures of Fe-bearing olivine, perovskite and

ferropericlase, as well as for the mantle solidus. Given these estimates, should we

expect melt to be present at depth within the mantle? Our metastable congruent

melting temperature for forsterite at the experimental forsterite-wadsleyite transfor-

mation (2540± 60 K) is well above the estimated mantle temperature at the 410 km

discontinuity (1800 K; Stixrude and Lithgow-Bertelloni (2007)). The eutectic melt-

ing temperature of a garnet-peridotite mantle composition will therefore need to be

around 740 K lower to account for seismic observations. This difference is rather

high (Zhou and Miller, 1997; Presnall et al., 1998), even with a mantle geotherm

increase of 100 − 150 K associated with an upwelling plume, and additional factors,

such as water are needed for melting atop the 410 km discontinuity. Similarly, the

melting temperature of perovskite at the core-mantle boundary (5320 ± 210 km) is

well above estimates of the adiabatic temperature profile of the mantle at that depth

(2400 − 3100 K, Stixrude and Lithgow-Bertelloni (2007); Boehler (1996); Jeanloz

and Morris (1986)). Adjusting the melting temperature by 800− 1300 K (Zhou and

Miller, 1997) to account for freezing point depression and the effect due to additional

major elements is therefore not sufficient for melt to be present. However, melting

at the core-mantle boundary can occur if the geothermal profile within the thermal

boundary layer crosses the solidus. This is not unlikely, given the general estimates
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of the melting temperature of Fe at this depth (4800±200 K, Williams et al. (1991)),

and is consistent with the observation that the ultra-low velocity zone is limited to

the very base of the D”.

Clearly a number of questions remain. We were able to compute congruent melting

curves for forsterite, perovskite and periclase, but can only approximate the effect of

incongruent melting. Accurate description of incongruent melting requires knowledge

of the chemical potential, for which both the enthalpy and entropy of mixing must

be known along the full extent of the join. We have shown that the liquid structure

comprises a number of Si − O coordination states, so that simple configurational

models for estimating the entropy of mixing (Hess, 1995; Charles, 1969) are not

sufficiently accurate to describe phase equilibria.

In relating our calculated melting curves to the mantle and its chemical composi-

tion, we make estimates of the potential effect of other major elements in the mantle,

notably Fe, Ca and Al. These estimates are based on systematics and simple ther-

modynamic arguments, and can only be accurately quantified through simulations

that include these elements. Due to the large number of valence electrons which

must be treated, FPMD simulations of Fe-bearing liquids require significantly more

computational resources, but it is certainly within reach. Studies of Ca-bearing, as

well hydrous liquids are under way (Sun, 2008; Mookherjee et al., 2008).
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APPENDIX A

Fxs coefficients

The excess free energy contribution to the liquid state fundamental relation is

given by

(A.1) Fxs(V, T ) =
∑
i=0

∑
j=0

aij

i!j!
f iθj ,

(A.2) f =
1

n

[(
V0

V

)n
3

− 1

]
,

(A.3) θ =

[(
T

T0

)m

− 1

]
.

By the assumption that the individual free energy contributions can be separated,

any excess thermodynamic property (Axs) which is a direct free energy derivative

(instead of following from reduction of derivatives) is obtained from the total value

(A) by removing the ideal gas and electronic terms

(A.4) Axs = A − Aig − Ael.

The coefficients of the excess free energy expansion (aij) are directly related to

the excess thermodynamic properties of the liquid at reference volume (V0) and

temperature (T0), and follow from taking the appropriate derivatives and substituting

f0 and θ0. These relations are
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(A.5) a00 = Fxs0,

(A.6) a10 = 3V0Pxs0,

(A.7) a01 = − 1

m
T0Sxs0,

(A.8) a20 = 9V0KTxs0 − 3(n + 3)V0Pxs0,

(A.9) a11 =
3

m
V0T0αKTxs0,

(A.10) a02 = − 1

m2
T0CV xs0 +

m − 1

m2
T0Sxs0,

(A.11) a30 = 27V0KTxs0(K
′
Txs0 − (n + 2)) + 3(n + 3)(2n + 3)V0Pxs0,

(A.12) a21 = − 9

m
V 2

0 T0

(
∂αKT

∂V

)
Txs0

−−3(n + 3)

m
V0T0αKTxs0,
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APPENDIX B

Equations of state for intermediate composition liquids
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Figure B.1: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of Mg5SiO7

liquid. Coloured circles show values from FPMD simulations at 3000 K (blue), 4000 K (green),
6000 K (orange) and 8000 K (red). Black lines indicate the fit of P and E to Equation 3.16 with
Oθ = 2 and a third order expansion in finite strain. Errorbars are smaller than the size of the
symbols. Inset shows electronic entropy (Sel), with black lines indicating the fit to Equation 3.30.
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Figure B.2: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of Mg3Si2O7

liquid. Coloured circles show values from FPMD simulations at 3000 K (blue), 4000 K (green) and
6000 K (red). Black lines indicate the fit of P and E to Equation 3.16 with Oθ = 2 and a third
order expansion in finite strain. Errorbars are smaller than the size of the symbols. Inset shows
electronic entropy (Sel), with black lines indicating the fit to Equation 3.30.
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Figure B.3: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of MgSi2O5

liquid. Coloured circles show values from FPMD simulations at 3000 K (blue), 4000 K (green) and
6000 K (red). Black lines indicate the fit of P and E to Equation 3.16 with Oθ = 2 and a third
order expansion in finite strain. Errorbars are smaller than the size of the symbols. Inset shows
electronic entropy (Sel), with black lines indicating the fit to Equation 3.30.
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Figure B.4: Pressure (P ), internal energy (E) and thermal electronic entropy (Sel) of MgSi3O7

liquid. Coloured circles show values from FPMD simulations at 3000 K (blue), 4000 K (green) and
6000 K (red). Black lines indicate the fit of P and E to Equation 3.16 with Oθ = 2 and a third
order expansion in finite strain. Errorbars are smaller than the size of the symbols. Inset shows
electronic entropy (Sel), with black lines indicating the fit to Equation 3.30.
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B. P. E. Clapeyron. Mémoire sur la puissance motrice de la chaleur. Journal de

l’ecole polytechnique Paris, 14:153–190, 1834.

R. E. Cohen and Z. Gong. Melting and melt structure of MgO at high pressures.

Physical Review B, 50(17):12301–12311, 1994.

K. D. Collerson, S. Hapugoda, B. S. Kamber, and Q. Williams. Rocks from the

mantle transition zone: Majorite-bearing xenoliths from malaita, southwest pacific.

Science, 288:1215–1223, 2000.

T. F. Cooney and S. K. Sharma. Structure of glasses in the systems Mg2SiO4-Fe2SiO4,

Mn2SiO4-Fe2SiO4, Mg2SiO4-CaMgSiO4, and Mn2SiO4-CaMnSiO4. Journal of

Non-Crystalline Solids, 122:10–32, 1990.

P. Courtial, E. Ohtani, and D. B. Dingwell. High-temperature densities of some

mantle melts. Geochimica et Cosmochimica Acta, 61(15):3111–3119, 1997.

J. A. Dalton and D. C. Presnall. No liquid immiscibility in the system MgSiO3-SiO2

at 5.0 GPa. Geochimica et Cosmochimica Acta, 61(12):2367–2373, 1997.

B. T. C. Davis and J. L. England. Melting of forsterite up to 50 Kilobars. Journal

of Geophysical Research, 69:1113–1116, 1964.

L. A. Davis and R.B. Gordon. Compression of mercury at high pressure. Journal of

Chemical Physics, 46:2650, 1967.

N. P. de Koker, L. Stixrude, and B. B. Karki. Thermodynamics, structure, dynamics,

and freezing of Mg2SiO4 liquid at high pressure. Geochimica et Cosmochimica Acta,

72:1427–1441, doi:10.1016/j.gca.2007.12.019, 2008a.



124

N. P. de Koker, L. Stixrude, and B. B. Karki. Self-consistent thermodynamic de-

scription of silicate liquids. to be submitted to Geophysical Journal International,

2008b.

D. B. Dingwell, R. Knoche, and S. L. Webb. A volume temperature relationship

for liquid GeO2 and some geophysically relevant derived parameters for network

liquids. Physics and Chemistry of Minerals, 19:445–453, 1993.

P. I. Dorogokupets. Thermodynamic functions at zero pressure and their relation to

equations of state of minerals. American Mineralogist, 85:329–337, 2000.

T. S. Duffy and T. J. Ahrens. Compressional sound velocity, equation of state,

and constitutive response of shock-compressed magnesium oxide. Journal of

Geophysical Research, 100(B1):529–542, 1995.

J. F. Elliott, M. Gleiser, and V. Ramakrishna. Thermochemistry of Steelmaking,

Vol II. Addison-Wesley, 1963.

R. P. Feynman, N. Metropolis, and E. Teller. Equations of state of elements based

on the generalized Fermi-Thomas theory. Physical Review, 75:1561–1572, 1949.

H. Flyvberg and H. G. Petersen. Error-estimates on averages of correlated data.

Journal of Chemical Physics, 91:461–466, 1989.

G. P. Francis and M. C. Payne. Finite basis set corrections to total energy pseu-

dopotential calculations. Journal of Physics - Condensed Matter, 2(19):4395–4404,

1990.

G. A. Gaetani, P. D. Asimow, and E. M. Stolper. Determination of the partial

molar volume of SiO2 in silicate liquids at elevated pressures and temperatures: A



125

new experimental approach. Geochimica et Cosmochimica Acta, 62(14):2499–2508,

1998.

E. J. Garnero and D. V. Helmberger. A very slow basal layer underlying large-scale

low-velocity anomalies in the lower mantle beneath the pacific: evidence from core

phases. Physics of Earth and Planetary Interiors, 91:161–176, 1995.

M. S. Ghiorso. An equation of state for silicate melts. I. formulation of a general

model. American Journal of Science, 304:637–678, 2004.

M. S. Ghiorso and R. O. Sack. Chemical mass transfer in magmatic processes IV. a

revised and internally consistent thermodynamic model for the interpolation and

extrapolation of liquid-solid equilibria in magmatic systems at elevated temper-

atures and pressures. Contributions to Mineralogy and Petrology, 119:197–212,

1995.

M. S. Ghiorso, M. M. Hirschmann, P. W. Reiners, and V. C. Kress. The pMELTS:

A revision of MELTS for improved calculation of phase relations and major ele-

ment partitioning related to partial melting of the mantle to 3 GPa. Geochemistry

Geophysics Geosystems, 3(5):10.1029/2001GC000217, 2002.

M. S. Ghiorso, D. Nevins, and F. J. Spera. Molecular dynamics studies of MgSiO3

liquid to 150 GPa: An equation of state (EOS), tracer diffusivities, and a detailed

analysis of changes in atomic coordination statistics as a function of temperature

and pressure. Eos Trans. AGU, 87(52):Fall Meeting Supplement, Abstract MR43B–

1079, 2006.

M. J. Gillan, D. Alfe, J. P. Brodholt, L. Vočadlo, and G. D. Price. First-principles
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