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ABSTRACT

Accounting Fraud and Institutional Investors

by
Chad R. Larson

Chair: Russell J. Lundholm

This dissertation examines institutional investors’ trading behavior in a sample of

322 firms alleged in Accounting, Auditing, and Enforcement Releases to have

manipulated their accounting earnings (hereafter fraud firms). Over the course of

the fraud period, I find that institutions increase their ownership in fraud firms by

approximately 14 percent, resulting in institutional losses of approximately $138

billion. Although institutional investors’ losses are significant, I find that in the

quarter immediately prior to the public revelation of accounting frauds, institutions

with short investment horizons (“transient” institutions) slightly mitigate their

losses by decreasing their ownership in fraud firms. I also provide evidence that

institutions that own fraud firm shares prior to a fraud and have large stakes in

fraud firms, have large portfolios, or own a relatively large block of fraud firm

shares divest shares prior to the public revelation of a fraud.
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CHAPTER I

Introduction

U.S. capital markets rely on financial reporting systems to help efficiently allocate

capital. The recent breakdowns in the financial reporting process at many high

profile companies have renewed researchers’, regulators’, and market participants’

interest in accounting fraud. Two important empirical regularities emerge from the

body of literature documenting the determinants and consequences of extreme

earnings manipulations. First, stock market reactions to the revelation of

accounting manipulations are significantly negative. Estimated declines in market

value following the public announcement of accounting manipulations range from

20 to 40 percent (Palmrose, Richardson, and Scholz 2003; Karpoff, Lee, and Martin

2007). Second, accounting manipulations are predictable. A body of literature

documents that accounting manipulations can be predicted with measures of

accruals quality, accounting performance, non-financial statement variables, and

stock market variables (e.g., Beneish 1999; Dechow, Ge, Larson, and Sloan 2007).

Although accounting manipulations result in significant investor losses and are

associated with firm characteristics and performance, little evidence exists on

whether sophisticated investors are able to avoid losses associated with accounting

fraud.

1
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Institutional investors have become a significant market force over the last several

decades. From the early 1980s to the late 1990s, institutional investors doubled

their ownership in the equity markets to over 50 percent (Gompers and Metrick,

2001). The rising presence of institutional investors in the U.S. markets has spurred

a significant body of literature investigating whether they execute profitable trades.

The results of the literature are mixed. Several studies document positive

associations between changes in institutional investors’ holdings and future

earnings and returns, suggesting that institutions are informed traders (e.g., Ke

and Ramalingegowda 2005; Ke and Petroni 2004; Ali, Durtschi, Lev, and

Thrombley 2004). On the other hand, some literature suggests that informed

trading might be more limited, finding that superior mutual fund performance is

rarely persistent (Carhart 1997; Brown and Goetzmann 1995) and trading patterns

previously considered informed might simply be the result of momentum trading

(Bushee and Goodman, 2007).

The predictability of accounting fraud and the large market losses associated with

accounting fraud suggest that it is an ideal setting to examine the sophistication of

institutional investors. If institutional investors possess superior information and

are sophisticated users of accounting information with respect to accounting fraud,

they should sell shares in fraud firms prior to public revelations of fraud. My

primary research question is whether institutional investors anticipate accounting

fraud revelations and divest shares in fraud firms prior to the public revelation of

frauds. As a secondary research question, I examine whether institutions act as

effective firm monitors in the prevention of fraud. I use Accounting, Auditing, and

Enforcement Releases (AAER) involving accounting manipulations as a proxy for

fraud and the first press article in Factiva mentioning an accounting irregularity as
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the public revelation of fraud.1 I examine institutional trading patterns in 322 firms

that the Securities and Exchange Commission (SEC) identified in enforcement

actions from 1982 through 2005 as having manipulated their accounting earnings.

My analysis is conducted in two stages. The first stage is a firm-level analysis that

aggregates institutions at the firm-level and examines their trading behavior in

fraud firms. The second stage is an institution-level analysis that exploits the

heterogeneity among institutional investors and examines their trading behavior in

fraud firms.

For my firm-level analysis, I follow Bushee (2001) by grouping institutions into

three categories based on their investment styles: quasi-indexer, transient, and

dedicated. Quasi-indexer institutions are characterized by diversified portfolios and

low portfolio turnover. Transient institutions are characterized by diversified

portfolios and high portfolio turnover, and dedicated institutions are characterized

by highly concentrated portfolios and low portfolio turnover. Consistent with prior

literature, I expect to find that transient institutions are the most likely to initiate

profitable trades in anticipation of a fraud revelation and quasi-indexer institutions

are unlikely to initiate profitable trades in anticipation of a fraud revelation (e.g.,

Ke and Ramalingegowda 2005; Hribar, Jenkins, and Wang 2006). I make no strong

predictions for dedicated institutions as research typically finds that they do not

trade based on impending future events. However, fraud is a unique setting that

may lead dedicated institutions to divest their positions. If dedicated institutions

invest in firms based on their confidence in the vision and integrity of management,

detecting a fraud might lead dedicated institutions to divest their shares. In

1In AAERs the Securities and Exchange Commission (SEC) typically alleges manipulation of financial statements.
This does not necessarily mean that firms are guilty of fraud under the strict definition. By legal definition, fraud
requires both knowledge of the falsity (scienter) and the intent to deceive and induce reliance. The vast majority
of AAERs are settled between parties and the SEC without parties “admitting or denying guilt.” In the following
sections, I discuss the implications of this for my research design.
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addition, since dedicated institutions are characterized by highly-concentrated

portfolios, they are likely to have a larger percentage of their portfolios at risk if

fraud is revealed. Therefore, they are likely to have the strongest incentives to

anticipate fraud and divest their shares in fraud firms.

A body of literature suggests that institutional investors act as firm monitors (e.g.

Chung, Firth, and Kim 2002; Chen, Harford, and Li 2007). If this is the case, then

it is possible that fraud firms have low levels of institutional investment prior to

committing fraud because they lack effective monitoring. Therefore, my first set of

tests examines whether institutional ownership levels in fraud firms immediately

prior to the release of a first fraudulent earnings report differ from a population of

control firms. In univariate analysis, I find that fraud firms actually have higher

levels of total institutional ownership, quasi-indexer ownership, and transient

institutional ownership than non-fraud firms. Dedicated institutional ownership is

not significantly different from the non-fraud sample of firms. Next, I conduct

regression analysis that controls for firm characteristics. I find that immediately

prior to the beginning of a fraud, fraud firms’ total level of institutional ownership

is higher than institutional ownership for a sample of control firms. However, I find

that the higher level of institutional ownership is primarily the result of a

significantly higher level of transient institutional ownership, while quasi-indexer

and dedicated institutional ownership is nearly identical after controlling for firm

characteristics. The univariate and regression results suggest that the level of

institutional ownership does not act as a sufficient monitoring device in the

prevention of fraud.

My next sets of tests provide evidence relating to my primary research question. I

first examine changes in institutional ownership levels in fraud firms over the
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periods firms commit fraud. From the quarter prior to the issuance of a first

fraudulent earnings report until the quarter prior to the public revelation of an

accounting fraud, I find that institutional ownership in fraud firms increases by

almost 14 percent, representing 3.9 percent of a fraud firm’s outstanding stock.2

Because fraud firms experience stock price declines of approximately 35 percent

once the fraud is revealed, the 3.9 percent increase in institutional ownership over

the fraud period is not trivial. In fact, calculations suggest that total institutional

losses for the 322 fraud firms in my sample are on the order of $138 billion. The 3.9

percent increase in institutional ownership over the fraud period represents

approximately $20 billion of those losses.

Prior research has examined whether institutions can predict impending events

over short windows (Hribar, Jenkins, and Wang, 2006). Accordingly, in my next set

of tests, I observe changes in institutional ownership in the quarters immediately

prior to and following the public revelation of fraud. I find that in the quarter

immediately prior to a fraud revelation, institutional ownership decreases by

approximately one and a half percent of a fraud firm’s outstanding stock. I find

significant decreases for transient institutional holdings, while changes in

quasi-indexer and dedicated institutional holdings are insignificant. I also find

significant decreases in the quarter immediately following the fraud revelation.

These results are robust to several control variables including current and past

stock returns, unexpected earnings, and changes in share turnover. Although I find

some evidence that transient institutions are able to anticipate fraud one period

prior to its revelation, this evidence must be interpreted in light of evidence from

my previous tests. The one and a half percent decrease in institutional ownership

2I assume that the first quarter a firm committed fraud is the first quarter that the SEC alleged in an AAER a
firm manipulated its earnings.
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prior to fraud revelations, though statistically significant, only slightly mitigates

substantial losses for institutional investors.

Institutions are more heterogeneous than the three categories I employ in my

firm-level analysis. Therefore, I conduct a second analysis at the institution-level

that further exploits the heterogeneity among institutional investors. I create

proxies for institutions’ information environments and institutions’ incentives to

avoid the negative market consequences associated with the revelation of

accounting fraud. Conditional on owning fraud firm shares prior to a fraud

beginning, I test whether the proxies are associated with institutions’ ownership

changes in fraud firms prior to the revelation of an accounting fraud. The results

provide some evidence that institutions with the strongest incentives to avoid

accounting fraud and with the highest quality information environments divest

shares in fraud firms prior to the revelation of accounting fraud. Although the data

are consistent with an increased rate of divestitures among these institutions, I am

unable to establish whether these relations are a result of informed trading or

natural mean reversion in ownership levels.

This study should be of interest to both institutional investors and researchers.

The results suggest that institutional investors lose significant amounts of money

by investing in firms that commit accounting fraud. My study contributes further

evidence to the body of literature documenting the sophistication level of

institutional investors. At least for this particular context, most institutions do not

appear to be sophisticated users of accounting information; however, I do provide

limited evidence of informed trading in the quarter immediately prior to fraud

revelations among a subset of institutions.

The remainder of my dissertation proceeds as follows. Chapter 2 examines prior
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literature and outlines my empirical predictions. Chapter 3 outlines my research

design. Chapter 4 describes my sample selection process and provides descriptive

statistics. Chapter 5 details my tests and presents results and chapter 6 concludes.



CHAPTER II

Prior Literature and Empirical Predictions

My dissertation builds on two streams of prior literature. The first stream of

literature examines the determinants and consequences of accounting

manipulations. The second stream of literature examines the trading behavior of

institutional investors.

2.1 Accounting Manipulations

Prior research has identified characteristics of firms that manipulate their financial

statements. Dechow, Ge, Larson, and Sloan (2007) investigate a comprehensive

sample of all 895 firms subject to Accounting, Auditing, and Enforcement Releases

(AAER) from 1982 through July 2005. They examine the use of several financial

statement variables, off-balance sheet and non-financial variables, and

market-related variables to predict accounting manipulations. They find that firms

accused by the SEC of manipulating their financial performance tend to have had

strong performance prior to manipulations. They also find that manipulations

appear to be motivated by managers’ desire to obfuscate deteriorating financial

performance. During manipulation years, they find that cash profit margins and

return on assets are declining while accruals are increasing. They also find that

firms manipulating financial reporting are more likely to issue debt and equity.

8
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Ranking firms based on the predicted likelihood of accounting manipulations from

a logistic model, they classify almost 50 percent of manipulation firms in the top 20

percent of their manipulation index and 65 percent of manipulation firms in the top

40 percent of their index.

Beneish (1999) creates a fraud prediction model based on a sample of 74 firms that

manipulated earnings and a sample of 2,332 matched firms. Estimating probit

models of accounting manipulations as a function of eight accounting based

variables (indexed day’s sales in receivables, gross margin, asset quality, sales

growth, depreciation, sales, general and administrative expenses, leverage, and

accruals to total assets) he is able to correctly classify approximately 50 to 75

percent of fraud firms, while incorrectly classifying only 10 to 20 percent of

matched firms.1

Several other studies document relations between earnings manipulation firms and

firm characteristics. Two other notable studies include Dechow, Sloan, and

Sweeney (1996) and Brazel, Jones, and Zimbelman (2006). Dechow et al. (1996)

examine a sample of 92 firms with an AAER from 1982 to 1992. They document

that AAERs are associated with external financing needs and poor corporate

governance. They also show that AAER firms experience significant increases in

their cost of capital after the revelations of accounting manipulations. Brazel et al.

(2006) also find that several non-financial measures can be useful in predicting

accounting manipulations.

Although the number of Type I errors in fraud prediction models is relatively high,

the relative cost of Type I to Type II errors for institutional investors is likely

1The accuracy of the models in Dechow, Ge, Larson, and Sloan (2007) and Beneish (1999) are not directly
comparable. Beneish (1999) uses a matched sample methodology, while Dechow et al. (2007) compare AAER
manipulation firms to the entire population of non-manipulation firms. The methodologies are also slightly different
as Beneish (1999) includes non-AAER manipulation firms obtained from news searches, while Dechow et al. (2007)
tests are joint tests of earnings manipulation and receiving an AAER.
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extremely low. Several studies have estimated investment losses when accounting

manipulations are revealed. The latest large sample evidence suggests that the cost

of Type II errors average approximately 40 percent of an institution’s investment in

a fraud firm (Karpoff, Lee, and Martin, 2007). On the other hand, the cost of a

Type I error is extremely low in a market with many substitute assets as investors

can simply choose not to hold firms with a high probability of fraud. Investors may

also be privy to private information regarding firm performance and accounting

manipulations. To the extent that investors possess private information and choose

to use other qualitative information, they may be able to significantly reduce the

number of Type I and II errors incurred when attempting to identify accounting

frauds.

The high number of Type I errors associated with using earnings manipulation

prediction models might also suggest that investors would be willing to live with

the negative returns associated with fraud firms if the negative returns are balanced

out with sufficiently positive returns from non-fraud firms with strong signals of

fraud. In a concurrent working paper, Beneish and Nichols (2007), show that this is

not the case. Their results reveal that firms with a high probability of manipulated

earnings have lower future earnings and returns. They also show that a trading

strategy based on the probability of earnings manipulation yields an abnormal

hedge return of 13.9 percent.2 Through additional tests they conclude that the

returns, which are concentrated on the short side, are not a result of asymmetric

arbitrage costs, but rather a result of asymmetric errors in market expectations.

Beneish and Nichols (2007) do not provide direct evidence on firms that actually

manipulate earnings, rather they examine portfolios of firms with a high

2I conduct a similar analysis using the F-score in Dechow, Ge, Larson, and Sloan (2007), which uses the same
sample I employ, and find results qualitatively similar to Beneish and Nichols (2007).
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probability of manipulation. They find that institutional investors increase their

holdings in firms with a high probability of manipulation. My study focuses on the

actual incidence of fraud. I am able to provide more detailed and direct evidence

on the trading behavior of institutions in actual fraud firms before, during, and

after the period in which firms commit fraud and the frauds become public.

2.2 Institutional Investors

From 1980 to 1996, institutional investors doubled their share of the market and

now control over half of the U.S. equity market (Gompers and Metrick, 2001). The

increased importance and perceived sophistication of institutional investors has

spawned a large body of literature.

One branch of the literature examines whether institutional investors act as

monitors and influence managements’ decisions. The evidence suggests that the

level of institutional ownership and the composition of a firm’s institutional

ownership base matters when determining whether institutional owners are likely to

act as effective monitors. Bushee (1998) finds that managers are less likely to cut

research and development expenses when facing an earnings shortfall if institutional

ownership is high. But he also finds that a large proportion of ownership by

institutions that trade based on momentum and have high portfolio turnover

increase the likelihood that a firm will cut research and development to meet an

earnings shortfall. Chung, Firth, and Kim (2002) find that large institutional

shareholdings in a firm reduce the likelihood of earnings management using

accruals. Chen, Harford, and Li (2007), using acquisition decisions to reveal

monitoring, find that institutions with long-term investments specialize in

monitoring while other institutions do not monitor. Bushee (2001) finds that high
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levels of short-term investors are associated with an over-weighting of near-term

expected earnings and an under-weighting of long-term expected earnings. In light

of this combined evidence, my first prediction is that fraud firms, prior to the

issuance of their first fraudulent earnings report, are likely to have low levels of

institutional ownership. I also expect that fraud firms will have higher levels of

short-term, transient, institutional ownership and lower levels of long-term,

dedicated, institutional ownership.

Much of the accounting research on institutional investors’ trading behavior

suggests that institutional investors are sophisticated users of accounting

information. For example, previous literature has documented that the higher the

level of institutional ownership, the smaller the market reaction surrounding

earnings announcements (El-Gazzar, 1998). Balsam, Bartov, and Marquardt (2002)

find that the valuation implications of large discretionary accruals are incorporated

into stock prices more quickly for firms with large institutional investor bases. The

presence of institutional investors is also positively associated with the extent that

prices lead earnings (Jiambalvo, Rajgopal, and Venkatachalam, 2002). Studies have

also shown that institutional investors exploit accounting based stock price

anomalies such as the post-earnings announcement drift (Ke and Ramalingegowda,

2005) and the accruals anomaly (Collins, Gong, and Hribar, 2003). Lev and Nissim

(2006) also show that the accruals anomaly is exploited by some institutional

investors, but the magnitude of this accruals-related trading is rather small. They

show that the continued persistence of the accruals anomaly is not explained by a

lack of understanding among institutions, but rather an institutional distaste for

extreme-accruals firms that are typically small, unprofitable, and risky. Ke and

Ramalingegowda (2005) find that institutions also possess information that allows
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them to avoid negative stock price shocks associated with a break in a string of

consecutive earnings increases.

Although much of the literature on institutional investors suggests that they are

sophisticated users of financial information, this literature stands in contrast to

evidence that questions whether institutions profit from informational advantages.

For example, much of the literature on mutual fund performance suggests that

superior performance is not persistent (e.g., Brown and Goetzmann 1995).

Additionally, O’Brien and Bhushan (1990) find that institutions are attracted to

firms with more analyst following. Similarly, Bushee and Noe (2000) find that

institutions are attracted to firms with high-quality disclosure regimes. Therefore,

if public and private information are substitutes, institutions should have fewer

opportunities to benefit from informational advantages. If institutional investors

possess superior private information or information processing abilities, I expect to

find support for my second prediction that institutional investors divest shares in

firms that are committing accounting fraud. A lack of evidence that institutions

divest shares in fraud firms prior to public revelations of fraud would suggest that

either investors are unable to use private information to anticipate public

announcements of fraud or the cost of anticipating the public announcements of

fraud are too great relative to the benefits.

Institutional investors exhibit heterogeneity in their investment styles. Prior

literature has shown that the likelihood of informed trading varies with institutional

investors’ characteristics (e.g., Hribar and Jenkins 2004; Ke and Ramalingegowda

2005). Much of the prior literature has relied on a methodology proposed by

Bushee (1998). In this methodology, institutions are first classified into one of three

investment strategies (quasi-indexer, transient, and dedicated institutional
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investors) based on portfolio turnover and stake sizes. The institutions are then

aggregated at the firm level. The body of evidence that uses this methodology

typically finds that profitable trading in anticipation of future events is only

identifiable for the transient investor category. Therefore, I expect any evidence

that institutional investors predict accounting fraud will be concentrated among

transient institutional investors. Because dedicated institutional owners have the

largest portion of their portfolios at stake when a fraud is revealed, I also anticipate

the possibility that they may divest shares in anticipation of fraud revelations.

In a recent paper, Bushee and Goodman (2007) exploit the heterogeneity among

institutional investors and the positions they hold by conducting an analysis that

includes not only institution-level variables such as portfolio size and trading

strategy but also institution-firm-level characteristics such as the size of a position

in a particular firm and the size of the position in a firm relative to an institution’s

portfolio size. They find that private information trading is most pronounced when

large positions are taken by investment advisers in small firms. In the spirit of

Bushee and Goodman (2007), I conduct an institution-level analysis that exploits

the heterogeneity among institutional investors that is not captured by the three

types of trading strategies employed in my firm-level analysis. Using proxies for the

quality of an institution’s information environment and the incentives an

institution has to avoid fraud firms, I expect to find that institutions with the

strongest incentives to avoid accounting fraud and higher-quality information

environments are more likely to divest shares in fraud firms prior to the revelation

of accounting fraud. I define and discuss in the institution-level analysis section the

proxies I employ.
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2.3 Accounting Fraud and Restatements

A body of literature exists examining the determinants and consequences of

accounting restatements (e.g., Palmrose, Richardson, and Scholz 2003; Palmrose,

Scholz, and Wahlen 2004; Hribar and Jenkins 2004). For example, Desai,

Krishnamurthy, and Venkataraman (2006) find that short interest increases in the

months immediately prior to an earnings restatement. Also, in a current working

paper, Hribar, Jenkins, and Wang (2006) examine institutional investors and

accounting restatements and find that transient institutional investors significantly

reduce their holdings in the quarter prior to a restatement. Although there is some

overlap with my work on accounting fraud, it is important to note that

restatements and accounting fraud are not the same.

Firms in my sample are firms that are accused by the SEC of manipulating their

earnings. Restatements, on the other hand, can occur for a number of reasons,

including unintentional errors and legitimate disagreements over the application of

generally accepted accounting principles. Additionally, not all firms accused of

accounting manipulations restate their earnings. Often, firms that have

manipulated their earnings are not required to restate their earnings as part of an

SEC settlement. These firms may also delist or enter bankruptcy before they have

a chance to restate their earnings. Palmrose, Richardson, and Scholz (2003) find

that in a sample of 403 restatements fewer than 23 percent resulted in an AAER.

This is consistent with restatements resulting from a number of behaviors other

than intentional manipulations.

The differences between accounting fraud and accounting restatements are

significant because they affect both the determinants and consequences of
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accounting irregularities. For example, Palmrose, Richardson, and Scholz (2003)

document a much more negative market reaction to accounting fraud than to

accounting restatements. This more negative price reaction to accounting fraud

increases the benefits of early detection of accounting fraud by institutional

investors. In addition, substantial differences in the ability of institutional investors

to detect accounting manipulations and accounting restatements likely exist. For

example, accounting restatements can come in waves as a consequence of SEC and

FASB clarifications on generally accepted accounting principles (such as SAB 101),

whereas accounting frauds require intent and the desire to hide manipulations from

investors.



CHAPTER III

Research Design

My research design involves classifying firms into two samples: a fraud sample and

a non-fraud sample. I use SEC Accounting, Auditing, and Enforcement Releases

(AAERs) as a proxy for accounting fraud. The SEC takes enforcement actions

against firms, auditors, and managers who violate securities laws. In 1982, the SEC

began issuing AAERs in cases where securities law violations involved accounting

or auditing issues. Although AAERs all relate somehow to accounting and auditing

issues, not all AAERs are the result of reported accounting manipulations. Some

AAERs are the result of disclosure issues, bribery, and other violations of securities

laws. I exclude these AAERs from my sample and focus on AAERs that allege

manipulation of reported accounting earnings.

The use of AAERs as a proxy for fraud is consistent with much of the prior

literature (e.g., Bonner, Palmrose, and Young 1998; Erickson, Hanlon, and Maydew

2004). This methodology has advantages and disadvantages. The use of AAERs as

a proxy for fraud is a straightforward and consistent methodology that avoids

potential biases induced in samples based on a researcher’s classification scheme.

AAERs are also likely to capture a group of economically significant frauds as the

SEC has limited resources and likely pursues cases against large firms (Dechow, Ge,

17
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Larson, and Sloan, 2007). On the other hand, using AAERs as a proxy for fraud

may result in a sample that includes firms that the SEC targeted for political

reasons rather than fraud.1 This methodology also excludes an unknown number of

firms the SEC did not take action against.

Any research design that attempts to classify firms into fraud and non-fraud

samples will have an unknown number of Type I and Type II errors. Assuming

that the number of Type I errors is relatively low in my fraud sample, then my

tests, at worst, can be interpreted as joint tests of committing fraud and receiving

an enforcement action. If the number of Type I errors is relatively high then, at

worst, my results can be interpreted as tests of firms engaging in accounting

activities that result in enforcement actions. My non-fraud sample is also likely to

have an unknown number of Type I errors as the SEC clearly does not catch all

frauds. Although this weakens the power of my tests, it is unlikely to be a

significant problem in my research design as the number of Type I errors in my

non-fraud sample is likely relatively small. In addition, the event of interest in my

study is the revelation of the accounting fraud. Frauds that go undiscovered are

unlikely to have as significant a negative effect on institutional investors.

My research design and the power of my tests would benefit by including a proxy

for the magnitude of the frauds. Unfortunately, the inconsistency in details across

AAERs makes collection of the fraud magnitudes from the AAERs unfeasible.

Magnitudes are measured inconsistently and many times are not reported at all.

1Using a stricter legal definition of fraud, Feroz, Park, and Pastena (1991) point out that not all AAERs are the
result of fraud. Therefore, in some studies, such as Erickson, Hanlon, and Maydew (2004), where managerial intent
is central to the hypotheses being tested, all AAERs are read and only those firms that the SEC specifically alleged
committed fraud are included. I elect not to take this approach, because managerial intent is not as critical in my
setting. Therefore, my approach increases my sample size at a relatively low cost. In addition, after a detailed reading
of many AAERs it becomes clear that the wording and level of detail in the AAERs varies greatly. Although this
variation is likely associated with the severity and types of violations, the variation is also likely to be associated with
the SEC regime at the time of the enforcement action, the individuals investigating the violations, who is assigned
to write the AAER, and negotiations between the SEC and those receiving the enforcement action. Therefore any
methodology that seeks to separate AAER firms into fraud and non-fraud firms based on direct allegations of fraud
in an AAER is likely reducing Type I errors while increasing Type II errors.
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An AAER may report magnitudes on a before or after tax basis, a gross or net

income basis, or a raw dollar or per share basis.2 As a result, I focus on the

incidence of fraud rather than the magnitude.

Investigating the trading behavior of institutional investors during accounting

frauds requires an understanding of the timing of the events surrounding the

manipulations. Figure 3.1 shows a timeline of the events and time period

associated with an earnings manipulation.

Figure 3.1: Fraud period timeline

Last Fraudulent
Earnings Report

First Fraudulent
Earnings Report

Fraud Revelation
Date

Fraud
Period

2For those firms that do eventually restate earnings, it may be possible to obtain restatement amounts, but this
methodology will exclude many firms that never restate earnings either because they were not required to restate as
part of a SEC settlement, or the firms went bankrupt, merged, or were acquired prior to a restatement opportunity.
Another approach would be to consider changes in stock prices around the fraud announcements. Although this
method may appear reasonable, it poses significant problems in my research design. If institutional investors divest
some fraud firms prior to fraud announcements as a result of fraud suspicions, then this information is likely to be
impounded into stock prices. This would bias the fraud magnitude proxy - announcement returns - downward for
these firms. In addition, the initial announcement of fraud often does not include many details. This means that
the market may react efficiently to the fraud revelation by impounding the expected result of the fraud investigation
into price, but the expected magnitude is by no means the actual magnitude of the fraud once all of the details are
revealed.
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The timeline includes three events. The first event is the issuance of a first

fraudulent earnings report, which is then followed by the second event, the issuance

of a final fraudulent earnings report. The number of quarters between these two

events varies considerably across firms some only manipulate 1 quarter while a

handful of firms manipulate over 20 quarters. The last event in the timeline is the

public announcement of the earnings manipulations. I define the time period

between the issuance of a first fraudulent earnings report and the fraud revelation

date as the fraud period. The fraud period in my sample varies in length from 1

quarter to 39 quarters. Figure 4.1 displays the distribution of fraud period lengths

for the 322 firms in my fraud sample. My non-fraud sample consists of all firms

never included in my fraud sample.

I conduct both firm-level and institution-level analyses. For the firm-level analysis,

I conduct three sets of tests. Each set of tests is conducted on total, quasi-indexer,

transient, and dedicated institutional ownership. I use the classification scheme in

Bushee (2001) to characterize institutional investors.3 Following Ke and

Ramalingegowda (2005) and Hribar, Jenkins, and Wang (2006), I assign each

institution to the type that is most frequent over my sample period.4 First, I test

whether levels of institutional ownership in fraud firms the quarter prior to the

fraud period differ from non-fraud firms. Second, I test for unusual changes in

institutional ownership levels and numbers of institutional investors owning shares

in fraud firms from the quarter prior to the fraud period until the last quarter of

3Bushee (2001) uses several variables from prior studies that describe institutional trading behaviors including
portfolio concentration, average percentage holding, percent held in large blocks, Herfindahl measure of concentration,
stability of holdings, and portfolio turnover. He then uses principal factor analysis to generate factors that explain
the variation across institutions. The institutions are then classified into groups using K-means cluster analysis. I
would like to thank Brian Bushee for providing me with the institution classifications through 2005.

4Thomson Financial has reused approximately 500 manager identification numbers out of approximately 2500
manager identification numbers in the Institutional Ownersip Database. I have not made any attempts to fix this
issue. This reuse of manager numbers will add an unknown amount of noise to my classification scheme. This should
have no effect on the total institutional ownership inferences.
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the fraud period. Third, I examine changes in institutional ownership in the

quarters immediately prior to and following the public revelation of the fraud. In

my second analysis, I test whether institution-level proxies for 1) incentives to

avoid accounting fraud and 2) private information and superior information

processing ability are negatively associated with changes in ownership of fraud

firms prior to fraud revelations. The next chapter describes my sample selection

and provides descriptive statistics for the fraud and non-fraud samples.



CHAPTER IV

Sample Selection and Descriptive Statistics

I obtain data for my tests from four data sources: the Dechow, Ge, Larson, and

Sloan (2007) AAER database, the CDA/Spectrum S34 database, the Center for

Research in Stock Prices (CRSP), and COMPUSTAT. Dechow et al. (2007) read

and code AAER one through 2,261. After reading the AAERs, they identify 895

separate firms identified by the SEC as having committed wrongdoing. Of the 895

firms, 677 were alleged to have manipulated at least one specific quarterly earnings

report. The Dechow et al. (2007) quarterly database includes observations for each

quarter that AAERs alleged firms manipulated earnings.1 I use this quarterly

database of 677 firms as the starting point for the construction of my fraud sample.

Table 4.1 details my sample selection process.

Table 4.1: Sample selection
Firms

Firms alleged in AAERs to have manipulated their earnings 677
Missing a Cusip (139)
Fraud begins before 1981 (20)
Do not have a Compustat match with data during the fraud quarters (77)
Do not have a CRSP Match (55)
Do not have institutional ownership data in CDA/Spectrum (15)
Do not have an identifiable fraud revelation date in Factiva (46)
No institutional report date during the fraud period (3)
Fraud Sample 322

1Dechow et al. (2007) include a detailed description of the data collection process and the AAER database they
create. They also include numerous descriptive statistics on the firms in the databases including the number of
AAERs per firm, firm industries, and who the AAERs were against, just to mention a few.
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Of the 677 firms that manipulated a quarterly earnings report, Dechow et al.

(2007) are unable to identify Cusips for 139 of those firms and thus I exclude them

from my sample. I also exclude 20 firms with fraud periods beginning before 1981.

I exclude 77, 55, and 15 firms because they are not covered on Compustat, CRSP,

and the CDA/Spectrum databases, respectively. I then searched Factiva between

the issuance of the last fraudulent earnings report and the date of the first AAER

for a fraud revelation date for each of the remaining fraud firms. I consider the

fraud revelation date to be the first announcement in the press that a firm had an

accounting issue. The sources of these announcements included firm press releases

announcing accounting “irregularities” or restatements, announcements of SEC

investigations, articles by journalists who uncovered evidence of fraud, and press

releases from auditors resigning over accounting issues. I lose another 46 fraud firms

for which I cannot establish a fraud revelation date.2 Lastly, I exclude an additional

3 firms because the fraud period was so short that there was no institutional report

date during the fraud period. My final fraud sample consists of 322 fraud firms

with frauds beginning and ending between 1981 and the first quarter of 2004.

Figure 4.1 displays the number of quarters in each fraud period for the 322 firms in

my fraud sample. The average fraud period is approximately 7.5 quarters with the

shortest fraud period being only one quarter and a handful of fraud periods

extending over five years.

In figure 4.2, I detail the frequency and types of accounting manipulations alleged

in AAERs for my 322 sample firms. Consistent with prior literature, just over 60

percent of the frauds in my sample involve revenue manipulations. Common types

2A small number of firms experienced multiple AAERs relating to different earnings manipulations over different
time periods. I only include the last earnings manipulation incident for these firms. For example, Enron Broadband,
a subsidiary of Enron, received an AAER in the 1980’s for an earnings manipulation. I excluded this event and only
included the later Enron earnings manipulations relating to AAERs in the most recent scandal, so that no firm is
included in the sample more than once.
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Figure 4.1: Number of quarters during the fraud period (n=322)
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of revenue manipulations in the AAER sample include the creation of fictitious

sales, recognition of revenue with side letters granting return provisions, and

holding the quarter open to recognize revenue from the subsequent quarter. Other

common manipulations include the understatement of expenses or overstatement of

shareholder equity accounts (24%), the overstatement of accounts receivable (19%),

the overstatement of other asset accounts (15%), and the overstatement of

inventory accounts (14%).3 In additional analyses, I test whether institutional

investors are more or less likely to detect certain types of accounting

manipulations. I discuss those results in the empirical tests and results chapter.

3The percentages sum to over 100 percent as many firms manipulate multiple accounts.
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Figure 4.2: Frequency of manipulation types mentioned in Accounting Auditing and Enforcement
Releases (n=322)
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Firms may have multiple manipulations therefore the percentages sum to over 100 percent.
REVENUE = Manipulated revenue
OESE = Manipulation of other expense/shareholder equity account
AR = Manipulated accounts receivable
ASSETS = Manipulated assets
INV = Manipulated inventory
COGS = Manipulated cost of goods sold
OTHRLIAB = Manipulated liabilities
RESERVE = Manipulated a reserve account
ALLOWDD = Manipulated allowance for bad debt
MKTSEC = Manipulated marketable securities
PAYABLE = Manipulated payables
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I construct my non-fraud sample by running the firms never receiving an AAER

through a similar sample selection criteria. I require that non-fraud firms have data

on Compustat, CRSP, and at some point during the sample period, institutional

ownership on the CDA/Spectrum S34 database. As in previous research, I find that

the distributions of my variables are characterized by a small number of extreme

outliers. Therefore, with the exception of returns, indicator variables, and

institutional ownership levels and changes, for my firm-level analysis I winsorize

variables at the 1st and 99th percentiles. I also winsorize institutional holdings

levels at 100% and changes at +/- 100%.4

I obtain institutional investor data from the CDA/Spectrum S34 database of 13f

filings. According to SEC rule 13f, managers of institutions with more than $100

million in equity must report on a quarterly basis all equity holdings that are

greater than $200,000 or 10,000 shares. I have two sets of dependent variables in

my tests. Institutional ownership levels defined as the sum of

end-of-calendar-quarter institutional holdings scaled by a firm’s total shares

outstanding (TOTALHELDt, QIXt, TRAt, and DEDt for total, quasi-indexer,

transient, and dedicated institutional investors, respectively) and quarterly changes

in institutional holdings as a percentage of a firm’s total shares outstanding

(∆TOTALHELDt, ∆QIXt, ∆TRAt, and ∆DEDt for total, quasi-indexer, transient,

and dedicated institutional investors, respectively).

The quality of the institutional data limits my analysis and the inferences I can

draw in two ways. First, quarterly measurements of institutional ownership

4These observations are clearly data errors, likely a result of rounding in shares outstanding. Where possible
I obtain shares outstanding from CRSP as CRSP only rounds to the thousands. Unfortunately, CDA/Spectrum
rounds to the nearest million. Therefore, firms with institutional holdings close to 100% and shares outstanding
unavailable on CRSP might appear to have holdings slightly above 100% although this is clearly impossible. As
total holdings for these firms are likely near 100% it makes sense to winsorize these observations at 100% rather than
eliminate them.
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weakens the power of my event study tests because changes in institutional

ownership, which are measured over an entire quarter, do not match the event date,

which is measured on a specific day. Second, 13f institutional data is measured at

the institution level rather than the fund level. For example, Fidelity, which

manages hundreds of funds, reports as one entity for 13f purposes. The result is

that methodologies that consider institution-level characteristics, such as splitting

institutions into investment styles, are measured with noise.

Table 4.2 Panel A presents descriptive statistics for the 322 fraud firms in the

quarter immediately prior to the first fraudulent earnings report. Panel B presents

descriptive statistics for 662,565 firm-quarter observations in the non-fraud control

sample. Total institutional ownership is higher for fraud firms (27.5 percent) than

non-fraud firms (21.7 percent). The table shows that fraud firms in my sample tend

to be larger. They also tend to be younger and to have extremely positive earnings

momentum and low book-to-market ratios, consistent with prior evidence that

managers may commit fraud to maintain high stock prices.
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Table 4.2: Descriptive statistics
N Mean 1st Quartile Median 3rd Quartile

Panel A: Fraud firm sample descriptive statistics the quarter prior to the first fraud quarter

TOTALHELD 322 0.275 0.003 0.211 0.479
QIX 322 0.133 0.001 0.075 0.245
TRA 322 0.087 0.000 0.047 0.149
DED 322 0.053 0.000 0.027 0.082
SIZE (millions) 272 1446.08 40.36 155.70 610.72
PRICE 272 20.77 7.59 15.13 26.19
AGE 274 111.64 18.00 51.50 141.00
TURNOVERt−1 256 0.164 0.047 0.099 0.228
YIELD 264 0.017 0.000 0.000 0.004
RET0,−3 270 0.090 −0.126 0.014 0.206
RET−4,−12 255 0.379 −0.119 0.261 0.664
SP 322 0.109 0.000 0.000 0.000
BTM 250 0.604 0.131 0.305 0.586

Panel B: Non-fraud firm sample descriptive statistics

TOTALHELD 662565 0.217 0.014 0.128 0.359
QIX 662565 0.114 0.005 0.055 0.186
TRA 662565 0.051 0.000 0.012 0.071
DED 662565 0.050 0.000 0.018 0.073
SIZE (millions) 605796 658.04 23.12 83.05 343.51
PRICE 605796 16.31 4.75 11.88 22.75
AGE 615647 141.60 38.00 93.00 189.00
TURNOVERt−1 583201 0.085 0.022 0.047 0.098
YIELD 539930 0.041 0.000 0.000 0.025
RET0,−3 604454 0.038 −0.117 0.014 0.145
RET−4,−12 597360 0.116 −0.200 0.039 0.288
SP 662565 0.067 0.000 0.000 0.000
BTM 520796 1.409 0.310 0.590 1.018

TOTALHELD, QIX, TRA, and DED are measured as the percentage of the firm owned by all institutional
investors, quasi-indexer institutional investors, transient institutional investors, and dedicated institutional
investors, respectively. SIZE is measured as market value of equity, and PRICE is the current share price. AGE is
the number of months since first appearing on CRSP. TURNOVER is the average monthly turnover for the quarter.
YIELD is the annual dividend from the previous year scaled by total market value of equity. RET0,−3 is the
market return for the quarter. RET−4,−12 is the market return for the 9 months prior to the start of the quarter.
SP is an indicator variable if the firm is a member of the S&P 500. BTM is measured as the previous year’s book
value of equity scaled by current market value of equity. SIZE, PRICE, AGE, TURNOVER, YIELD, and BTM are
winsorized at the 1st and 99th percentiles. Institutional investor variables are winsorized at 100 percent.



CHAPTER V

Empirical Tests and Results

In this chapter, I present my empirical tests and results. The first section conducts

my firm-level analysis. The second section reports my institution-level analysis.

The third section provides some additional tests.

5.1 Firm-level Analysis

In this section, I conduct tests on levels and changes in institutional holdings

aggregated at the firm level. All of my tests are conducted on total, quasi-indexer,

transient, and dedicated institutional ownership.

5.1.1 Pre-fraud institutional ownership levels

To test whether levels of institutional ownership in fraud firms differ from

non-fraud firms in the quarter prior to the fraud period, I first conduct univariate

tests and then regression analysis. Univariate tests in Table 5.1 show that total

institutional ownership for fraud firms immediately prior to committing fraud is

0.058 higher than for non-fraud firms and significant at the one percent level.

Quasi-indexer ownership and transient institutional ownership for fraud firms are

also higher and significantly different from non-fraud firms at the one percent level.

Dedicated institutional ownership for fraud firms is slightly higher but not
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significantly different from non-fraud firms. Next, I employ regression analysis to

test whether institutional ownership of fraud firms differs significantly from

institutional ownership for non-fraud firms after controlling for firm characteristics.

Table 5.1: Univariate tests of institutional ownership levels
N Total Held QIX TRA DED

Pre-fraud Institutional Ownership Levels 322 0.275 0.133 0.087 0.053
Non-fraud Institutional Ownerhsip Levels 662565 0.217 0.114 0.051 0.050
Difference 0.058 0.019 0.036 0.002

(3.89) (2.32) (6.12) (0.56)

TOTALHELD, QIX, TRA, and DED are measured as the percentage of the firm owned by all institutional,
quasi-indexer, transient, and dedicated institutional investors, respectively. Institutional investor variables are
winsorized at 100 percent.

In my regression analysis, I employ a model based on Gompers and Metrick (2001).

Gompers and Metrick (2001) model institutional ownership as a function of several

firm characteristics for which institutional investors have varying preferences.1 To

test whether total institutional ownership differs for fraud firms prior to the

issuance of a first fraudulent earnings report, I estimate the following regression for

fraud-firm quarters immediately prior to the fraud beginning and all non-fraud firm

observations:

TOTALHELDt =β1PREFRAUDt + β2SIZEt + β3BTMt + β4Y IELDt + β5PRICEt+

β6SPt + β7AGEt + β8RET0,−3 + β9RET−4,−12+

β10TURNOV ERt +
104∑
i=11

βiQTRt + εt

Where
1I modify Gompers and Metrick (2001) model slightly by excluding volatility as it requires two years of data in

their model and would decrease my sample size significantly. I also calculate book-to-market quarterly rather than
calculating it once at the beginning of the year and average turnover over the whole previous quarter rather than
over one month.
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TOTALHELD = shares held by all institutions scaled by total shares outstanding

PREFRAUD = indicator variable equal to one for a quarter immediately prior

to a fraud and zero otherwise

SIZE = market value of equity

BTM = book value divided by market value of equity

YIELD = cash dividends for the fiscal year divided by market value of equity

PRICE = price per share

SP = indicator variable equal to one if the firm is a member of the

S&P 500 and zero otherwise

AGE = number of months since first return appears in the CRSP file

RET0,−3 = past three-month return, the return earned in the current quarter

RET−4,−12 = nine-month return preceding the quarter

TURNOVER = average monthly share turnover from the previous quarter

QTR = indicator variables for quarterly fixed effects

To test for differences in quasi-indexer, transient, and dedicated institutional

ownership levels, I estimate the same model replacing the dependent variable

TOTALHELD with QIX, TRA, and DED respectively. For consistency with

Gompers and Metrick (2001) and to ease interpretation of the coefficients because

the dependent variable is measured as a percentage, I take natural logs of all

independent variables with the exception of returns and indicator variables. I also

include quarterly fixed effects to control for time-series trends in institutional

holdings. A significantly positive (negative) coefficient on PREFRAUD would

imply higher (lower) institutional holdings for a fraud firm prior to the fraud period
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after controlling for fraud firms’ characteristics.2 Typically, firm-level

auto-correlation of the error terms is a concern in an estimation procedure where

firms appear multiple times. To adjust for this possibility, I estimate Rogers (1993)

standard errors clustered at the firm level. These standard errors are robust to

heteroskedasticity and within cluster correlation.

The results of the tests are presented in Table 5.2. I include 233 fraud firm quarter

observations (only the fraud firm quarters immediately prior to the fraud

beginning) and 498,065 non-fraud firm-quarter observations with available data.

The estimates of the coefficients on the control variables are consistent with those

in Gompers and Metrick (2001). I find that institutional ownership levels are

positively associated with SIZE, PRICE, AGE, TURNOVER, SP, and BTM and

negatively associated with YIELD, RET0,−3, and RET−4,−12. I also find that the

PREFRAUD indicator variable is positive and significant in the total and transient

institutional ownership regressions and insignificant in the quasi-indexer and

dedicated ownership regressions. After controlling for other firm characteristics, the

regression results suggest that on average fraud firms have 2.5 percent more

institutional ownership and 1.7 percent more transient institutional ownership than

non-fraud firms immediately before the fraud period. I find no evidence that fraud

firms have higher or lower levels of total, quasi-indexer, or dedicated institutional

ownership than control firms.3

The univariate results and the results in Table 5.2 are inconsistent with my first

2Another alternative research design to test for differences in institutional ownership levels would be a matched
sample methodology. I choose not to use this methodology for two reasons. First, ex-ante there is no reason to
suspect that there are any correlated omitted variables or non-linearities that could be controlled for by matching
fraud firms to non-fraud firms on any pre-fraud characteristics. Second, by including all non-fraud firm observations,
the coefficients on the control variables are being estimated as efficiently as possible.

3As a robustness test, because institutional preferences for firm shares may have changed over time, I estimate the
same model for each quarter without PREFRAUD and the fixed effects. I then aggregate the fraud firm residuals and
test whether the mean residuals are significantly positive or negative. The magnitudes and significance are similar
to those presented in Table 5.2.



33

Table 5.2: Pooled OLS regressions of institutional ownership levels on firm characteristics
(n=498,298)

TOTALHELD QIX TRA DED

PREFRAUD 0.025 0.007 0.017 0.001
(2.21) (1.12) (2.86) (0.20)

SIZE 0.052 0.031 0.013 0.008
(39.13) (38.68) (33.80) (14.54)

PRICE 0.033 0.019 0.006 0.008
(22.51) (21.86) (14.17) (12.32)

AGE 0.023 0.017 −0.002 0.008
(20.22) (25.30) (−4.94) (16.16)

TURNOVERt−1 0.049 0.019 0.023 0.008
(43.13) (29.09) (60.47) (12.52)

YIELD −0.375 −0.179 −0.079 −0.116
(−33.61) (−29.44) (−23.07) (−32.90)

RET0,−3 −0.030 −0.027 0.002 −0.006
(−27.86) (−36.07) (5.53) (−13.55)

RET−4,−12 −0.021 −0.018 0.004 −0.007
(−13.17) (−11.93) (5.99) (−11.43)

SP 0.022 0.043 −0.018 −0.004
(3.49) (10.91) (−9.24) (−1.55)

BTM 0.014 0.008 −0.001 0.007
(9.99) (10.32) (−3.11) (13.49)

R2 0.778 0.743 0.560 0.480

Each regression is estimated with quarterly fixed effects. The sample includes 233 fraud-firm quarters immediately
prior to a first fraudulent earnings report and 498,065 non-fraud firm quarters. Standard errors are estimated as
Rogers adjusted standard errors clustered at the firm level. TOTALHELD, QIX, TRA, and DED are measured as
the percentage of the firm owned by all institutional, quasi-indexer, transient, and dedicated institutional investors,
respectively. PREFRAUD is an indicator variable equal to 1 for quarters immediately prior to the first fraud
quarter. SIZE is measured as the market value of equity, and PRICE is the current share price. AGE is the
number of months since a firm first appears on CRSP. TURNOVER is the average monthly turnover for the
quarter. YIELD is the annual dividend from the previous year scaled by total market value of equity. RET0,−3 is
the market return for the quarter. RET−4,−12 is the market return for the 9 months prior to the start of the
quarter. SP is an indicator variable if the firm is a member of the S&P 500. BTM is measured as the previous
year’s book value of equity scaled by current market value of equity. SIZE, PRICE, AGE, TURNOVER, YIELD,
and BTM are winsorized at the 1st and 99th percentiles. Institutional investor variables are winsorized at 100
percent. All variables with the exception of the dependent variables, returns variables, and indicator variables are
entered into the regression as natural logs.
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prediction. I find no evidence that institutional ownership levels are lower than

would be expected given firm characteristics. This evidence suggests that the level

of institutional ownership does not act as a sufficient monitoring device in the

prevention of fraud. I do find some evidence consistent with my predictions

regarding institutional ownership levels for transient institutions. I find that

transient ownership levels are higher in fraud firms than expected given firm

characteristics. Although the magnitude is small and I cannot determine the

causality of this result (transient institutions have an increased demand for firms

with “aggressive” accounting practices or transient institutions place pressure on

firms to use “aggressive” accounting), it is interesting in light of evidence that

transient institutions overweight short-term expected earnings and underweight

expected long-term earnings (Bushee, 2001) and that firms with high transient

ownership make myopic decisions (Bushee, 1998).

5.1.2 Changes in institutional ownership over the fraud period

In my second set of tests, I investigate whether institutional investors increase or

decrease their positions in fraud firms over the course of the fraud period. I first

provide univariate tests of mean changes in institutional ownership levels and in the

number of institutional investors owning shares in fraud firms from the quarter

prior to the first fraudulent earnings report to the quarter immediately prior to the

revelation of the fraud.

Table 5.3 Panel A presents the univariate results. I find that the level of total

institutional ownership significantly increases by 3.92 percent of shares outstanding

over the entire fraud period – a 14 percent increase in institutional ownership. The

total number of institutions owning shares also significantly increases from almost

66 institutions to 79 institutions, an 18 percent increase. Both quasi-indexer and
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dedicated institutional ownership levels and the number of owners significantly

increase over the fraud period. Transient institutional ownership slightly but

insignificantly decreases, while the number of transient institutions owning shares

significantly increases.

It is possible that the changes in institutional ownership observed in Table 5.3

Panel A are simply the result of general trends in institutional ownership.

Therefore, I estimate regressions controlling for time-series trends in institutional

ownership and institutional ownership levels in Panel C. If ownership levels over

the entire fraud period were decreasing, it would be necessary to establish that the

decline was abnormal and a result of sophisticated trading and not poor

performance. But because institutional ownership levels are increasing over the

fraud period, I am only interested in testing whether the increase is not the result

of general time-series trends in institutional ownership levels. I am uninterested in

controlling for performance as fraud firms’ performance is a direct result of the

perpetrated fraud.4

To control for general time-series trends in total institutional ownership changes, I

estimate the following regression:

∆TOTALHELDt =β1FRAUDPERIODt + β2TOTALHELDt−1 + β3PWEIGHTt−1+

97∑
i=4

βiQTRt + εt

Where
4It is possible that although institutions increase their institutional ownership in fraud firms, they are doing so

cautiously and increasing their ownership levels less than for non-fraud firms reporting similar financial performance.
Therefore, in untabulated results I estimate regressions that control for firm performance. I find no evidence that
institutions are approaching fraud firms cautiously.
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∆TOTALHELD = quarterly change in shares held by all institutions scaled

by total shares outstanding

FRAUDPERIOD = indicator variable equal to one for a quarter during a fraud

and zero otherwise

TOTALHELD = shares held by all institutions scaled by total shares outstanding

PWEIGHT = market value of firm i held by a group of institutions in period

t scaled by the market value of all firms held by the same group

of institutions in the same period t

QTR = indicator variables for quarterly fixed effects

I estimate this regression for the entire non-fraud sample and for the quarters

during the fraud period for the fraud sample. In addition to to this first regression,

I estimate additional regressions for QIX, TRA, and DED, replacing

∆TOTALHELD, PWEIGHT, and TOTALHELD with each groups change in

ownership, portfolio weight, and ownership level. Portfolio weights and lagged

levels of institutional ownership are included to control for the influence of level

and concentration of holdings on future changes in institutional ownership.

Quarterly fixed effects control for general time-series trends in institutional

ownership changes. If positive changes in institutional ownership are not increasing

as a result of general time-series trends in institutional ownership, I expect to find a

positive coefficient on FRAUDPERIOD. If the coefficient on FRAUDPERIOD is

insignificant or negative, this would suggest that the increase in institutional

ownership over the fraud period is simply the result of an increasing trend in

institutional ownership. To adjust for firm-level auto-correlation of the error terms,

I estimate Rogers standard errors clustered at the firm level. Panel C presents the
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regression results.

I find that all FRAUDPERIOD indicator variables are positive and significant,

suggesting that institutional ownership in fraud firms is significantly increasing over

the fraud period over and above the general trend in institutional ownership for all

three institutional ownership types. The coefficient on FRAUDPERIOD for the

total ownership regression equals 0.008. This means that for the average fraud

period, which is approximately 7.5 quarters in length, institutional ownership is

increasing by approximately 6.0 percent after controlling for institutional ownership

levels, portfolio weights, and quarterly fixed effects. The coefficients on the levels

are negative, consistent with mean reversion in institutional ownership. The

increase in institutional ownership is similar across all three groups of institutional

owners.

These results show that over the course of the fraud period institutional investors

increase their ownership in fraud firms. Because fraud firms experience significant

stock price declines once frauds are revealed, the 3.9 percentage point increase in

institutional ownership over the fraud period is not trivial. To access the

magnitude of the losses that institutional investors suffer, I present raw returns

over the fraud period and estimates of the dollar returns institutional investors

experience over the entire period firms commit fraud.

I calculate returns over two periods. The first period is from the first institutional

report date prior to the issuance of a first fraudulent quarterly report until the

institutional report date immediately prior to the quarter in which the fraud is

made public. The second period covers the quarter in which the fraud is revealed to

the public. I find that over the fraud quarters prior to the fraud revelation quarter,

fraud firms experience total positive mean returns of 21.6 percent over an average
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Table 5.3: Changes in institutional ownership over the fraud period
Panel A: Mean levels and changes in institutional ownership over fraud periods (n=322)

TOTALHELD QIX TRA DED

Pre-Fraud Level 0.2748 0.1332 0.0871 0.0526
Before-Fraud Revelation Level 0.3141 0.1552 0.0859 0.0714
Change 0.0392 0.0221 -0.0012 0.0188

(3.40) (4.02) (-0.19) (5.15)

Panel B: Mean levels and changes in number of institutions over fraud periods (n=322)

# Institutional Investors Pre-Fraud 66.12 44.61 16.51 4.13
# Institutional Investors Before-Fraud Revelation 79.08 53.40 19.90 4.75
Change 12.97 8.78 3.39 0.62

(4.17) (4.21) (3.45) (3.91)

Panel C: Regression of quarterly changes in percentage holdings for fraud and non-fraud sample

∆TOTALHELD ∆QIX ∆TRA ∆DED

FRAUDPERIOD 0.008 0.004 0.003 0.003
(4.27) (4.81) (3.34) (4.90)

TOTALHELDt−1 -0.044
(-56.84)

QIXt−1 -0.048
(-40.93)

TRAt−1 -0.104
(-41.59)

DEDt−1 -0.071
(-33.33)

PWEIGHTt−1 1.708
(10.33)

PWEIGHTQIXt−1 2.034
(14.86)

PWEIGHTTRAt−1 0.528
(6.63)

PWEIGHTDEDt−1 0.258
(4.41)

R2 0.032 0.031 0.050 0.053

TOTALHELD, QIX, TRA, and DED are measured as the percentage of the firm owned by all institutional,
quasi-indexer, transient, and dedicated institutional investors, respectively. PWEIGHT, PWEIGHTQIX,
PWEIGHTTRA, and PWEIGHTDED are measured as the market value of the instititutional ownership for firm i
scaled by the sum of the portfolio values of the institutions invested in firm i. FRAUDPERIOD is an indicator
variable equal to 1 if the quarter is during a fraud period and 0 otherwise. Panel C regressions are estimated as
pooled regression that include quarters during the fraud period and the non-fraud sample. Standard errors are
estimated as Rogers adjusted standard errors clustered at the firm level. The regressions in Panel C are estimated
with quarterly fixed effects.
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of 7.5 quarters. While in the fraud revelation quarter, fraud firms experience

significant negative mean returns of 32.5 percent.5 Next, I calculate the dollar

returns institutional investors are likely to have experienced. Because institutions

only report holdings on a quarterly basis, I must assume when institutional

investors buy and sell their shares. For simplicity, I assume that all of an

institutions buying and selling occurs on one date, the end of quarter report date. I

find that from the first institutional quarterly report prior to the fraud beginning

through the quarter that the accounting frauds are revealed institutional investors

lose a total of $137.8 billion from their investments in 322 fraud firms.6

5.1.3 Changes in institutional ownership around fraud revelations

In my third set of tests, I examine quarterly changes in institutional ownership in

the two quarters immediately prior to and the quarter following the public

revelation of the fraud. I first present descriptive evidence of changes in

institutional ownership around fraud revelations in Figure 5.1. I find that

institutional ownership is increasing up to one quarter prior to the fraud revelation

at which point institutional ownership decreases by approximately one and one half

percent of shares outstanding. The decrease in t-1 is particularly strong for

transient institutional owners, representing almost 75 percent of the total decrease.

Following the fraud revelation, institutional ownership drops by approximately 4

percent of shares outstanding in each of the next two quarters.

Although the drop in institutional ownership prior to the fraud revelation is

significant, it is far from complete and may have nothing to do with the detection

5Returns are calculated from the CRSP monthly stock file. Returns are inclusive of delisting returns from the
CRSP monthly event file. Missing quarterly returns are set equal to 0.

6I also conduct the same analysis making two different assumptions about the timing of institutions’ trades. I
first assume that firms make all of their trades on the first day of the quarter rather than the last. Second, I assume
that firms hold the average of the beginning of quarter and end of quarter holdings for each quarter. Using these
assumptions, the losses over the fraud period are $ 34.4 billion and $86.1 billion respectively.
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Figure 5.1: Quarterly mean changes in institutional holdings around fraud revelations (n=322)
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Changes in TOTALHELD, QIX, TRA, and DED are measured as quarterly changes in the percentage of the firm
owned by all institutional investors, quasi-indexer institutional investors, transient institutional investors, and
dedicated institutional investors, respectively. Quarter t-1 represents the quarter immediately prior to the fraud
revelation, and quarter t+1 represents the quarter of the fraud revelation.
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of fraud; it may simply be due to poor firm performance. Figure 5.2 presents

returns over the same period, and shows that in quarter t-1 institutional ownership

begins to drop consistent with the idea that the decrease in institutional ownership

might be due to poor performance. Therefore, I test whether institutional

ownership changes around fraud announcements are significant after controlling for

firm performance.

Figure 5.2: Quarterly mean raw returns around fraud revelations

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

t-4 t-3 t-2 t-1 t+1 t+2 t+3 t+4

Returns are calculated from the CRSP monthly stock file. Returns are inclusive of delisting returns from the CRSP
monthly event file. Quarter t-1 represents the quarter immediately prior to the fraud revelation, and quarter t+1
represents the quarter of the fraud revelation. N=295 for period t-4, N=298 for period t-3, N=306 for period t-2,
N=310 for period t-1, N=291 for period t+1, N=245 for period t+2, N=216 for period t+3, and N=208 for period
t+4.

Using the Gompers and Metrick (2001) model of institutional ownership levels and

other previous literature, I develop a model of changes in institutional ownership.

Beginning with the levels regression, I convert TURNOVER, and SP (SP+ and
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SP−, indicator variables equal to one for additions and deletions from the S&P 500

index and zero otherwise) into changes. I retain RET0,−3 and RET−4,−12 because

prior literature has documented that institutional investors tend to be momentum

traders (Cai and Zheng, 2004). I also include market value of equity (SIZE) and

unexpected earnings, measured as earnings before extraordinary items less earnings

before extraordinary items in the previous same quarter scaled by average total

assets (UE), which prior research shows is positively associated with changes in

institutional holdings (Hribar, Jenkins, and Wang, 2006). Consistent with my

previous set of tests, I also include lagged levels of institutional ownership, lagged

portfolio weights, and quarterly fixed effects to control for time-series trends in

institutional ownership. I test changes in institutional ownership around the fraud

revelation by including three indicator variables, FRAUDt−2, FRAUDt−1, and

FRAUDt+1, where t-2 and t-1 indicate two quarters and one quarter before the

fraud revelation respectively and t+1 indicates the quarter immediately following

the fraud revelation. I estimate the following model for the fraud quarters

surrounding the fraud revelation and the non-fraud sample:

∆TOTALHELD =β1FRAUDt+1 + β2FRAUDt−1 + β3FRAUDt−2+

β4TOTALHELD + β5PWEIGHT + β6SIZE + β7RET0,−3+

β8RET−4,−12 + β9∆TURNOV ERt + β10SP
+ + β11SP

−+

β12UE +
106∑
i=13

βiQTR + εt

If institutional investors are anticipating the fraud immediately prior to the

revelation, I expect negative coefficients on FRAUDt−2 or FRAUDt−1. Consistent

with my previous tests, I also estimate regressions for QIX, TRA, and DED by
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replacing total change in ownership, total level of ownership, and total portfolio

weight with the respective change, level, and weight. To adjust for firm-level

auto-correlation of the error terms, I estimate Rogers standard errors clustered at

the firm level.
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Table 5.4: Pooled OLS regressions of changes in institutional ownership surrounding accounting
fraud revelations (n=476,662)

∆TOTALHELD ∆QIX ∆TRA ∆DED

FRAUDt+1 -0.030 -0.009 -0.016 -0.003
(-4.16) (-2.74) (-3.64) (-1.11)

FRAUDt−1 -0.010 -0.002 -0.007 0.000
(-1.63) (-0.72) (-1.98) (0.12)

FRAUDt−2 0.017 0.005 0.008 0.005
(3.00) (1.82) (2.53) (2.60)

TOTALHELD -0.053
(-51.17)

QIX -0.061
(-38.25)

TRA -0.103
(-43.36)

DED -0.068
(-28.24)

PWEIGHT -3.874
(-21.07)

PWEIGHTQIX -1.603
(-12.11)

PWEIGHTTRA -0.784
(-10.90)

PWEIGHTDED -0.138
(-1.97)

SIZE 0.005 0.004 0.002 0.001
(47.04) (43.02) (34.78) (30.58)

RET0,−3 0.004 0.001 0.004 0.000
(14.03) (11.20) (15.13) (-7.65)

RET−4,−12 0.017 0.002 0.015 0.000
(34.40) (12.25) (39.07) (-0.51)

∆TURNOVER 0.015 -0.001 0.022 -0.005
(5.63) (-0.74) (14.30) (-5.35)

SP+ 0.011 0.020 -0.007 -0.001
(2.90) (9.00) (-3.97) (-0.82)

SP− -0.250 -0.143 -0.056 -0.050
(-19.04) (-20.54) (-14.22) (-12.13)

UE 0.021 0.012 0.008 0.003
(10.56) (11.11) (6.53) (3.80)

R2 0.068 0.059 0.085 0.068

Regressions are estimated as pooled regressions including the fraud sample observations in the two quarters
immediately prior to and the one quarter immediately following fraud revelations, the non-fraud sample and
quarterly fixed effects. Standard errors are estimated as Rogers adjusted standard errors clustered at the firm level.
TOTALHELD, QIX, TRA, and DED are measured as the percentage of the firm owned by all institutional,
quasi-indexer, transient, and dedicated institutional investors at the beginning of the quarter, respectively. Changes
are measured as quarterly changes in institutional ownership as a percentage of shares outstanding. FRAUD
variables are indicator variables equal to 1 for the two quarters immediately prior to and the first quarter
immediately following the fraud revelation and 0 otherwise. PWEIGHT, PWEIGHTQIX, PWEIGHTTRA, and
PWEIGHTDED are measured as the market value of the instititutional ownership for firm i scaled by the sum of
the portfolio values of the institutions invested in firm i. SIZE is measured as the natural log of market value of
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equity. RET0,−3 is the market return for the quarter. RET−4,−12 is the market return for the 9 months prior to
the start of the quarter. ∆TURNOVER is measured as the change in average monthly turnover from the current
quarter to the previous quarter. SP+ and SP- are indicator variables for additions and deletions from the S&P500
index respectively. UE is measured as earnings before extraordinary items in period t minus earnings before
extraordinary items in period t-4 scaled by average total assets. SIZE, PWEIGHT, PWEIGHTQIX,
PWEIGHTTRA, PWEIGHTDED, and UE are winsorized at the 1st and 99th percentiles. Institutional investor
variables are winsorized at +/- 100%.

Table 5 presents estimation results. Consistent with prior results, I find that

changes in institutional ownership are positively associated with SIZE, SP+, and

UE. I also find that changes in ownership are positively associated with RET0,−3

and RET−3,−12, consistent with momentum trading. In Table 5.2, returns are

negatively associated with levels, while in Table 5, returns are positively associated

with changes. This suggests that institutions flock to growth firms as they increase

in market value and then remain once the firms have matured and returns slow.

Changes in institutional ownership are negatively related to SP-, portfolio weights,

and lagged institutional ownership levels. I find a negative coefficient on FRAUDt−1

for total institutional ownership. This result suggests that in the quarter prior to

the fraud becoming public, total institutional ownership significantly decreases.

More specifically, I find that transient institutional ownership significantly decreases

while quasi-indexer institutional ownership and dedicated institutional ownership

does not significantly decrease. Following the fraud revelation, institutional

ownership significantly decreases for total, quasi-indexer, and transient institutional

ownership. This evidence suggests that some institutional owners, particularly

transient owners, may be avoiding some of the negative effects of fraud revelations

by reducing their ownership in fraud firms immediately prior to fraud revelations.

Though this evidence suggests some informed trading, it must be interpreted in

light of the evidence from the previous tests, which suggests that all institutions

increase their ownership in fraud firms over the course of the entire fraud. The

decrease in institutional holdings prior to the fraud revelations is incomplete for
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total institutional ownership representing only a 4.7 percent decrease in total

institutional holdings. The decrease in transient institutional ownership in the

quarter immediately prior to the fraud revelations represents only a 15.1 percent

decrease in their institutional holdings. Thus, although institutions mitigate losses

by divesting fraud firms prior to fraud revelations, overall they still lose a

considerable amount of their investments.

5.2 Institution-level Analysis

Institutions exhibit significant heterogeneity beyond the three investment styles I

employ in my first analysis; therefore, I conduct a second analysis at the institution

level. In this analysis, I test whether institution-level proxies for incentives to avoid

accounting fraud and for private information are negatively associated with changes

in institutions’ ownership of fraud firms. In this section, private information refers

to both an institution’s ability to gather private information and an institution’s

ability to process both private and public information. I employee two sets of

variables in my tests. The first set is measured at the institution level and the

second set is measured at the institution-firm level.

My first variables are measured at the institution level and include an institution’s

investment strategy, fiduciary type, and size. To measure investment strategy, I

create indicator variables for the three trading strategies that I employee in my

firm-level analysis: INDEXERS, TRANSIENT, and DEDICATED. Next, I classify

institutions into four categories based on fiduciary type: bank trusts (BANK),

insurance companies (INSURANCE), investment advisors (IA), and pensions and

endowments (PENSION). Bank trusts and pensions face strict prudent investment

standards under the Employee Retirement Income Securities Act and common law.
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These investment standards may lead these institutions to tilt their portfolios

toward characteristics that are more likely to justify the prudence of their

investments. For example, Guercio (1996) finds that banks tilt their portfolios

toward firms with high S&P stock ratings. Following Bushee and Goodman (2007),

my last institution-level measure is ISIZE, which is an indicator variable equal to

one if the market value of an institution’s equity portfolio is in the top quintile for

all institutions in a particular quarter and zero otherwise. Because larger

institutions have more resources, I expect that ISIZE is a proxy for an institution’s

ability to acquire and process information. Therefore, I expect that large

institutions will be more likely to divest shares in firms committing fraud.

At the institution-firm level, I employ two additional measures that proxy for an

institution’s private information and incentives to avoid accounting fraud. The

first, BET, is a variable that measures the relative size of the stake an institution

has at risk in a particular firm. BET is measured as the market-value of equity

owned by institution j in firm i in quarter t scaled by the total market value of

institution j’s portfolio in quarter t. I expect BET to be negatively associated with

institutional changes in ownership in fraud firms. Institutions with higher levels of

BET have relatively more value at risk than firms with lower levels of BET;

therefore, these institutions have greater incentives to gather private information

and avoid investments in firms committing fraud. My last institution-firm level

variable is BLOCK, which is an indicator variable equal to one if the percent of

total shares outstanding held by an institution in a firm is in the top quintile of

institutional ownership for that firm and zero otherwise. I expect that BLOCK is

associated with private information advantages because these institutions are more

likely to have access to private information and are more willing to incur the costs
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of private information acquisition and processing. Therefore, I expect that BLOCK

will be negatively associated with changes in institutional holdings of fraud firms.

Bushee and Goodman (2007) were the first to employ these two measures and point

out that while BET and BLOCK are probably positively correlated, BET is likely a

better measure of incentives to gather private information about a firm. BLOCK,

on the other hand, is a better measure of an institution’s access to management. I

also include the pre-fraud level of institutional ownership, HELDt−1, as a control

variable.

For my institution-level analysis, my sample consists of those institutions holding

fraud firms immediately prior to a fraud firm’s first issuance of a fraudulent

earnings report. Because institutions that purchase fraud firms during the fraud

period and hold shares until the fraud is revealed do not appear to anticipate fraud,

I focus on those institutions that hold fraud firms prior to frauds beginning. To test

the relation between changes in institutional ownership and my proxies for private

information and incentives, I first examine correlations between changes in

institutional ownership and my explanatory variables. I then conduct regression

analysis using my fraud sample and a matched sample. Consistent with my tests in

the firm-level analysis, I measure changes in institutional ownership, ∆HELD, as

changes in percentage ownership of the firm from the period immediately prior to

the first fraudulent earnings report until the period immediately prior to the fraud

revelation. All incentive and information environment proxies are measured in the

quarter immediately prior to the fraud beginning.

The samples for my institution-level tests include a fraud sample of 21,290

institution-fraud firm observations and a matched sample of 21,290

institution-non-fraud firm observations. For the regression analysis, I construct my
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matched sample by matching each institution-firm observation in my fraud sample

with a different institution-non-fraud firm observation. Matches between

institution-fraud firm observations and non-institution-fraud firm observations are

made in the quarter immediately prior to the first fraudulently-issued earnings

report. Institution-firm observations are first matched to all other

institution-non-fraud observations with the same trading strategy in the same

quarter. I then require that all institution-non-fraud matches be within 30 percent

of the market value of an institution’s portfolio and 30 percent of HELDt−1.7

Lastly, I match the institution-fraud firm observation with the institution

non-fraud observation with the closest value of BETt−1. The dependent variable in

my analysis, ∆HELDt, for the matched institution-non-fraud firm observations is

then measured over the same time-period as the dependent variable for the

matched institution-fraud-firm observations.

Table 5.5 presents descriptive statistics for both the fraud sample and the matched

sample. All of the variables for the institution-fraud firm observations and the

institution-non-fraud firm observations are similar in magnitude and variance. The

pre-fraud level of institutional ownership is 0.38 percent and the average firm has

0.57 percent of their portfolio at risk in a fraud firm. The average ∆HELD is -0.15

percent, which is a decrease of 39.5 percent from the pre-fraud level of institutional

ownership. It is important to note once again that these tests are all conditional on

pre-fraud ownership of fraud firm shares. The evidence in 5.5 suggests that on

average institutions owning fraud firm shares prior to the fraud decrease their

ownership over the fraud period. This result in conjunction with the firm-level

results suggests that the increase in institutional ownership over the fraud period is

7An insignificant number of institution-firm observations did not match using the 30 percent criteria. For the
observations that did not match, I expanded the percentage by 10 percent until all 21,290 observations matched.
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a result of increased ownership by institutions not owning fraud firm shares prior to

frauds beginning.

Table 5.5: Institution-level descriptive statistics
Fraud Sample Matched Sample

N Mean Std. Dev. Mean Std. Dev.
∆HELDt 21290 -0.0015 0.0066 -0.0015 0.0061
INDEXERS 21290 0.6701 0.4702 0.6701 0.4702
TRANSIENT 21290 0.2516 0.4339 0.2516 0.4339
DEDICATED 21290 0.0657 0.2477 0.0657 0.2477
HELDt−1 21290 0.0038 0.0092 0.0036 0.0088
BETt−1 21290 0.0057 0.0100 0.0057 0.0099
BLOCKt−1 21290 0.1974 0.3980 0.2050 0.4037
ISIZEt−1 21290 0.1717 0.3771 0.1643 0.3706
BANK 21290 0.2362 0.4248 0.2473 0.4315
INSURANCE 21290 0.0482 0.2143 0.0526 0.2232
IA 21290 0.2979 0.4573 0.2857 0.4517
Pension 21290 0.4177 0.4932 0.4145 0.4926

The fraud sample is composed of all institution-firm observations holding fraud firm shares in the quarter
immediately prior to the first fraudulently issued earnings report. The matched sample is composed of non-fraud
institution-firm observations matched to institution-fraud firm observations. ∆HELDt is the change in shares held
by the institution scaled by total shares outstanding in the firm. INDEXERS, TRANSIENT, and DEDICATED
are indicator variables equal to one if an institution belongs to that particular investment strategy and zero
otherwise. HELD is the total shares held by an institution scaled by total shares outstanding. BET is the market
value of equity that institution i owns in firm j scaled by the total portfolio value of institution i. BLOCK is an
indicator variable equal to one if an institution is in the top quintile of institutional ownership for a particular firm.
ISIZE is an indicator variable equal to 1 if an institution is in the top quintile of portfolio size for period t and zero
otherwise. BANK, INSURANCE, IA, and PENSION are indicator variables equal to one if an institution belongs
to a particular fiduciary group and zero otherwise. Continuous variables are winsorized at the 1st and 99th
percentiles.

In table 5.6, I present the first evidence on associations between my proxies for

private information and incentives and changes in ownership. Consistent with my

predictions, I find negative and significant correlations between ∆HELDt and

TRANSIENT, DEDICATED, BETt−1, BLOCKt−1 and ISIZEt−1. I also find a

negative and significant relation between ∆HELDt and IA, suggesting that

investment advisors decrease their ownership in fraud firms before fraud revelations,

while banks and pensions and endowments increase their ownership in fraud firms.
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Although I find negative and significant relationships between changes in

institutional ownership in fraud firms and my proxies for private information and

incentives, the correlations must be interpreted cautiously as they may be the

result of mean reversion. For example, by definition transient institutional investors

buy and sell shares over short periods of time; therefore, it should not be surprising

to find a negative relationship between ∆HELD and TRANSIENT for any random

sample of firms. Therefore, I estimate the following regression of ∆HELD on my

proxies for institutional private information and incentives for both my

institution-fraud observations and my matched observations:

∆TOTALHELDt =β1 + β2TRANSIENT + β3DEDICATED + β4HELDt−1+

β5BETt−1 + β6BLOCKt−1 + β7ISIZEt−1 + β8INSURANCE + β9IA+

β10PENSION + β11FRAUD + β12FRAUD ∗ TRANSIENT+

β13FRAUD ∗DEDICATED + β14FRAUD ∗HELDt−1+

β15FRAUD ∗BETt−1 + β16FRAUD ∗BLOCKt−1+

β17FRAUD ∗ ISIZEt−1 + β18FRAUD ∗ INSURANCE+

β19FRAUD ∗ IA+ β20FRAUD ∗ PENSION + εt

INDEXERS and BANK are the excluded groups from the regression. FRAUD is an

indicator variable equal to one if an observation is an institution-fraud firm

observation and zero otherwise. Although I match based on HELDt−1 and BETt−1,

I include these variables in the regression to control for residual variation. If my

proxies explain changes in institutional ownership in fraud firms beyond mean

reversion, I expect to find significantly negative coefficients for my interaction

variables.
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Although significantly negative coefficients on my interaction variables can provide

strong evidence that specific types of institutions are more likely to make informed

trades in fraud firms, a lack of significance is difficult to interpret. For example, if

BETt−1 is significantly negative and FRAUD*BETt−1 is not significantly negative,

the explanation might simply be that on average large bets taken by institutions

are a result of informed trading and are thus likely to reverse in the near future

after the private information is made public and returns are realized. In fact, this is

consistent with Baks, Busse, and Green (2006), which shows that mutual funds

with more concentrated portfolios are more likely to out perform mutual funds with

more diversified portfolios. To adjust for auto-correlation of the error terms at the

firm-level, I estimate Rogers standard errors clustered at the firm level.

Table 5.7 presents the regression results. The variables of interest, the interactions

between FRAUD and my proxies for incentives and information environments, are

largely insignificant. The two exceptions are the coefficient on

FRAUD*TRANSIENT, which is negative and significant in the direction I

predicted, and the coefficient on FRAUD*ISIZEt−1, which is positive and

significant in the opposite direction. Because many of the variables in the

regression are highly collinear, in other regressions (untabulated) I remove

HELDt−1, BETt−1, BLOCKt−1, ISIZEt−1, and their interaction terms and estimate

new coefficients including each variable and its interaction one at a time. Although

the coefficients on HELDt−1, BLOCKt−1, and ISIZEt−1 are all significant and

negative, none of the coefficients on the interaction terms are significantly negative.

Neither the coefficient on BETt−1 or its interaction was significant. The results of

the regression make it difficult to draw any strong conclusions.

The results of the institution-level analysis suggest that conditional on owning
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Table 5.7: Institution-level OLS regression of change in percentage ownership for fraud and matched
samples (n=42,580)

∆HELDt

INTERCEPT -0.0045
(-0.75)

TRANSIENT -0.0544
(-6.29)

DEDICATED 0.1022
(4.47)

HELDt−1 -45.7945
(-29.84)

BETt−1 -0.0194
(-0.06)

BLOCKt−1 -0.0094
(-0.73)

ISIZEt−1 0.1381
(9.59)

INSURANCE 0.0099
(0.57)

IA 0.0032
(0.34)

PENSION 0.0248
(3.25)

FRAUD -0.0196
(-2.13)

FRAUD*TRANSIENT -0.0264
(-1.79)

FRAUD*DEDICATED 0.1027
(2.91)

FRAUD*HELDt−1 -1.4830
(-0.56)

FRAUD*BETt−1 0.0377
(0.06)

FRAUD*BLOCKt−1 -0.0235
(-1.13)

FRAUD*ISIZEt−1 0.0605
(2.53)

FRAUD*INSURANCE -0.0057
(-0.24)

FRAUD*IA 0.0421
(2.94)

FRAUD*PENSION 0.0222
(1.90)

Coefficient estimates are multiplied by 100 to aid presentation. Standard errors are estimated as Rogers adjusted standard
errors clustered at the firm level. The omitted group from the regression is the BANK and INDEXERS group. ∆HELD is
measured as the change in shares held by an institution scaled by total firm shares outstanding. INDEXERS,
TRANSIENT, and DEDICATED are indicator variables equal to one if an institution belongs to that particular
investment strategy and zero otherwise. HELD is the total shares held by an institution scaled by total shares outstanding.
BET is the market value of equity that institution i owns in firm j scaled by the total portfolio value of institution i.
BLOCK is an indicator variable equal to one if an institution is in the top quintile of ownership for a particular firm and
zero otherwise. ISIZE is an indicator variable equal to 1 if an institution is in the top quintile of portfolio size for period t
and zero otherwise. BANK, INSURANCE, IA, and PENSION are indicator variables equal to one if an institution
belongs to a particular fiduciary group and zero otherwise. Period t-1 represents the quarter immediately prior to the
issuance of the first fraudulent quarterly report. Period t is the entire period over which a firm commits fraud. FRAUD is
an indicator variable equal to 1 if an institution-firm observation is a fraud-firm observation and zero if the institution-firm
observation is a matched observation. Continuous variables are winsorized at the 1st and 99th percentiles.
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fraud firm shares prior to the beginning of a fraud, certain types of institutions are

more likely to divest shares in fraud firms prior to the public revelation of a fraud.

These institutions include those that are transient, dedicated, investment advisors,

make large bets, hold large blocks of shares, or have large portfolios. The lack of

evidence in the regression analysis makes it difficult to conclude whether the

associations are the result of greater incentives to avoid fraud firms and information

advantages or natural mean reversion.

5.3 Additional Tests

I conduct two further sets of tests. The first test examines whether institutional

investors are more likely to divest fraud firms with stronger publicly-available

signals of fraud. The second test examines whether institutional investors are more

likely to anticipate and divest fraud firms engaging in specific types of fraud.

For the first analysis, I use the F-score from the model in Dechow, Ge, Larson, and

Sloan (2007) as a proxy for publicly-available signals of fraud. Using firms accused

of manipulating earnings in AAERs, Dechow et al. (2007) create a prediction model

based on publicly available information. The basic model has six variables: total

accruals, change in receivables, change in inventory, change in cash sales, change in

return on assets, and an indicator variable equal to one if a firm issues debt or

equity. The prediction model produces an annual F-score, which is calculated as

the predicted probability of an earnings manipulation scaled by the unconditional

probability. Because the number of fraud periods varies across firms and fraud

signals vary across time, I select the largest F-score (MAXFSCORE) for each fraud

firm over its fraud period. This seems reasonable, as the largest F-score represents

institutions’ best opportunity to detect the fraud.
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Using only the sample of fraud firms, I estimate a model (untabulated) of changes

in institutional ownership over the entire fraud period as a function of

MAXFSCORE and four control variables. The control variables include SIZE,

beginning of period institutional ownership levels (TOTALHELDt−1,QIXt−1,

TRAt−1, and DEDt−1), and portfolio weights (PWEIGHTt−1,PWEIGHTQIXt−1,

PWEIGHTTRAt−1, and PWEIGHTDEDt−1). I expect that if institutional

investors are more likely to divest fraud firms with stronger fundamental signals of

fraud, I will observe a negative coefficient on MAXFSCORE.

I find that changes in institutional ownership are not significantly negatively

associated with MAXFSCORE for any of the institutional ownership groups. If

there is a relation at all, it appears that changes in institutional ownership over the

fraud periods may be positively associated with MAXFSCORE. The results suggest

that institutions are not more likely to divest shares in fraud firms with stronger

publicly-available signals of fraud. The failure to find a result suggests a potential

learning opportunity for institutional investors.

It is possible that specific types of manipulations are more likely to be detected by

institutions as they may pay closer attention to specific accounts or line items or

that certain manipulations are more easily observed. For example, for many firms

revenue is an extremely important income statement line item, and therefore,

investors may approach the line item with more scrutiny. On the other hand,

detection of manipulations that involve allowance accounts might be more easily

detected as fundamental analysis and private information might lead investors to

conclude that estimates are not reasonable. Therefore, I estimate similar

regressions as those used in the F-score analysis, but instead of the F-score I

include indicator variables for the types of manipulations alleged in AAERs. The
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frequency of the types of manipulations are reported in Figure 4.2. The results

(untabulated) do not present any evidence that institutions are more likely to sell

shares in fraud firms manipulating specific accounts.



CHAPTER VI

Conclusion

The purpose of my dissertation is to document the trading patterns of institutional

investors in fraud firms. I examine institutional trading patterns in 322 firms that

the Securities and Exchange Commission identified in enforcement actions from

1982 through 2005 as having manipulated their accounting earnings. I find that

institutional ownership for fraud firms increases by 14 percent, over the fraud

period, representing an increase of 3.9 percent of the firm’s outstanding shares. The

3.9 percent increase consists of significant increases for both quasi-indexer and

dedicated institutional investors. Transient institutional ownership, however,

remains nearly constant. I also find that the number of institutional owners

significantly increases for all three groups over the fraud period. Although

institutional investors lose approximately $138 billion by investing in fraud firms, I

do find that some investors are able to mitigate their losses by anticipating fraud

revelations in the quarter immediately prior to the revelation. I also conduct an

institution-level analysis of trading behavior in fraud firms and find that of the

firms holding shares prior to a fraud, those with greater incentives and private

information divest shares in fraud firms prior to fraud revelations.

This study increases our understanding of the sophistication of institutional

58
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investors. My results suggest that transient institutional investors have the ability

to predict impending revelations of accounting fraud one quarter prior to fraud

revelations and thus mitigate losses. I also provide evidence that institutional

investors increase their holdings over the course of the fraud period and lose

substantial amounts of money. This piece of evidence, in conjunction with a lack of

evidence that institutional investors use publicly available signals of earnings

manipulations, suggests that institutional investors may be less sophisticated than

previously thought with respect to fraud. It also suggests a potential learning

opportunity for institutional investors.

Future research could explore more fully the questions regarding publicly-available

signals of earnings manipulation and institutional investors. For example, what are

the cost and benefit trade-offs of using publicly-available signals of fraud? Future

research could also consider the different components of the fraud signal I analyze

and how much money institutions could save by using publicly-available signals of

fraud.
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